
Lattice Radiant Tutorial with
CrossLink-NX (LIFCL)

July 10, 2022

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 2

Copyright
Copyright © 2022 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. Modelsim and Questa are trademarks or registered trademarks of
Siemens Industry Software Inc. or its subsidiaries in the United States or other
countries. All other trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 3

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 4

Contents

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 6
About the Tutorial 6

About the Tutorial Data Flow 8
Task 1: Create a New Radiant Project 9

Opening the New Project Wizard 9
Setting the Project Name and Location 9
Adding Source Files 10
Selecting a Device 11
Finishing the Project Setup 12
About the File List View 13

Task 2: Add HDL Code 14
Generating Modules from IP Catalog 14
Instantiating the Modules 16

Task 3: Verify Functionality with Simulation 17
Starting a Simulation Run 18
Checking the Simulation Results 19
Rerunning the Simulation 21

Task 4: Set Location Assignments 22
Task 5: Process the Design 24

About the Process Toolbar 24
Processing the Design 25

Task 6: Examine the Layout 25
Task 7: Analyze Power Consumption 26
Task 8: Add an On-Chip Debug Module 27

About the Logic Analyzer Core 28
Setting Up Trace Signals 29
Setting Up Trace Options 30
Setting Up Trigger Units 31
Setting Up a Trigger Expression 32
Creating Virtual Switches and LEDs 33
Creating User Register Access 34

CONTENTS

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 5

Creating Hard IP Access 35
Inserting the Debug Logic 35

Task 9: Examine Timing Analysis Results 36
Reading the Timing Analysis Report 36
Using Timing Analyzer 37

Task 10: Programming the FPGA 39
Generating the Bitstream 39
Downloading the Bitstream 39

Task 11: Perform Logic Analysis 42
Creating a Reveal Analyzer Project 42
Running the Logic Analyzer Core 43
Using the Virtual Switches and LEDs 45
Accessing the User Register 46
Accessing the Hard IP 47
Close the Radiant Project 47

Summary of Accomplishments 48
Recommended References 48

Revision History 49

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 6

Lattice Radiant Tutorial with
CrossLink-NX (LIFCL)

The Lattice Radiant® software is a complete toolset for designing for Lattice
Semiconductor’s FPGAs. This tutorial leads you through all the basic steps of
designing, implementing, and debugging designs targeted to the Lattice
CrossLink-NX™ (LIFCL) device family.

About the Tutorial
When you have completed this tutorial, you should be able to do the following:

 Create a new Radiant software project.

 Customize IP using IP Catalog.

 Verify functionality with simulation.

 Set timing and location constraints.

 Process the design.

 Analyze power consumption.

 Analyze static timing.

 Create on-chip debug logic.

 Download a bitstream to an FPGA.

 Perform logic analysis.

Note
Some of the screen captures in this tutorial may have been taken from a version of the
Radiant software that differs from the one you are using. There may be slight
differences in the graphical user interface (GUI), but the software functions the same.

About the Tutorial

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 7

Time to Complete About 2½ hours.

You can stop at the end of any task and restart at the beginning of the next
task. See “Close the Radiant Project” on page 47. When you restart the
Radiant software, it shows a Recent Project List. Just click the name of your
project.

System Requirements You need:

 Radiant software, version 3.0 or higher.

 (Optional) CrossLink-NX Evaluation Board to download a bitstream and to
do on-chip debugging. If you do not have the board, you can still do most
of the tutorial.

For more information on the CrossLink-NX Evaluation Board, go to:
http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/
CrossLink-NXEvaluationBoard

Figure 1: Evaluation Board Revision and Device Part Number

Note
This tutorial is made to work on the CrossLink-NX Evaluation Board Rev. B with
either LIFCL-40 8BG400CES2 and LIFCL-40 9BG400CES2 device on the board.
The device number on the board should end with “ES2.”

Earlier CrossLink-NX Evaluation Board Rev. A with device number that end with
“ES” will not work with this tutorial. You will need to use Radiant v2.0SP1 for
CrossLink-NX Evaluation Board Rev. A.

Device Part NumberBoard Revision

http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/CrossLink-NXEvaluationBoard
http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/CrossLink-NXEvaluationBoard

About the Tutorial

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 8

Online Help You can find additional information on any tool used in the
tutorial at any time by choosing Help > Lattice Radiant Software Help or
Help > <tool name>. The Help also provides easy access to many other
information sources.

Sample Design This tutorial comes with a Verilog design that counts up
and down while displaying the values on the demo LEDs of the CrossLink-NX
Evaluation Board. There are also some additional modules so you can fully
exercise the Radiant software’s on-chip debugging abilities: a dual-port RAM
module, a module that uses the MIPI D-PHY interface, and a module that
uses the SGMIICDR interface, are built into CrossLink-NX. The tutorial
includes a simple testbench to run the functional simulation.

About the Tutorial Data Flow
Figure 2 illustrates the tutorial data flow through the FPGA design system.
You may find it helpful to refer to this diagram as you move through the tutorial
tasks. All tasks shown in the flow diagram are performed in this tutorial.

Figure 2: Tutorial Data Flow

Create a New Radiant Project

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 9

Task 1: Create a New Radiant Project
A “project” is a collection of all the files and settings needed to create your
design, test and analyze its behavior, and process it into a programming file
for a Lattice FPGA.

Setting up a new project is done through the New Project wizard. The New
Project wizard guides you through the steps of specifying a project name and
location, selecting a target device, and adding existing source files to the new
project. We will walk through each page of the wizard one by one. At the end,
we will introduce the Radiant main window and its parts.

Opening the New Project Wizard
Open the Radiant software and open the New Project wizard.

To open the New Project wizard:

1. If you haven’t already, start the Radiant software by doing one of the
following:

 On Windows, go to the Start menu and choose Lattice Radiant
Software > Radiant Software.

 On Linux, enter the following on a command line:

<Radiant_install_path>/bin/lin64/radiant

The main window of the Radiant software opens along with an Update
dialog box. This takes a moment.

2. If the Update dialog box says “No update found,” click Close. Otherwise,
install the update and restart the Radiant software.

Now you have a clear view of the Start Page. With the Start Page you can
easily open a new project, open a recent project, and access information.

3. Click the New Project button.

The New Project wizard opens.

4. Click Next.

The Project Name page opens.

Setting the Project Name and Location
Specify a name and location for the project files and for a design
“implementation.”

An implementation is one version of your design. You can have more than one
implementation, so that you can experiment with different design approaches.
A project starts with one implementation. You can add more later.

Create a New Radiant Project

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 10

To fill out the Project Name page:

1. Specify the project name. For this tutorial, we will use: CLNXtutorial.

2. Browse to where you want to store the project’s files. This tutorial uses
C:/my_radiant_tutorial. But you can use any location.

3. Make sure the Create subdirectory option is selected.

The wizard automatically adds a folder for your project, which is shown
immediately below the Location box.

4. Specify an implementation name. We’ll use the default: impl_1.

The directory for the implementation is displayed in the Location box.

5. Click Next.

The Add Source dialog box appears.

Adding Source Files
Since the tutorial comes with source files, you can add them now. Source files
can be added at any time or created with the Radiant software.

To add existing source files:

1. Click Add Source.

The Import File dialog box appears.

2. Browse to: <Radiant_install_path>/docs/tutorial/crosslink_nx_tutorial.

3. Select the following files (Control+A will do it.):

 count32.v

 dphy.v

 led_switch.v

 pmi_mem_32.v

 tb_top.v

 top.v

4. Click Open.

5. Confirm that the New Project wizard is showing all of the files.

If any files are missing, click Add Source again.

If any extra files are showing, select the files and click Remove Source.

6. Make sure that the Copy source to implementation source directory
option is selected.

This makes copies of the files in your implementation instead of referring
to the original files.

The Create empty constraint files option is not needed for this tutorial.

7. Click Next.

Create a New Radiant Project

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 11

The Select Device dialog box appears.

Selecting a Device
In this task we will select a device based on the tutorial requirement. We’ll
specify the FPGA on the CrossLink-NX Evaluation Board.

To select a device:

1. Select the device family: LIFCL (CrossLink-NX).

2. Select the specific device within the family: LIFCL-40.

3. Select the following device options:

 Operating Condition: Commercial

 Package: CABGA400

 Performance Grade: 8_High-Performance_1.0V

The Part Number, at the bottom, changes as you make selections.
Choose

The dialog box should resemble Figure 3. At the bottom is a link to get a
data sheet for the device. At the right is Device Information, including a list
of resources in the device such as the number of LUTs (look-up tables),
registers, and PIO (programmable I/O) pins.

Note
For the purpose of this tutorial, we selected Performance Grade: 8_High-
Performance_1.0V, as it matches the LIFCL-40 8BG400CES2 part shown on the
evaluation board in Figure 1. If you are using an evaluation board that has a
different part number, such as LIFCL-40 9BG400CES2, then you should select
Performance Grade: 9_High-Performance_1.0V, or whichever performance
grade is applicable to the evaluation board you are using.

Create a New Radiant Project

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 12

Figure 3: New Project Wizard’s Select Device Page

4. Click Next.

The Select Synthesis Tool dialog box opens.

Finishing the Project Setup
Finish by selecting a synthesis tool and confirming all the choices that you
made in the New Project wizard. Then you will see how a project looks in the
Radiant main window.

To finish setting up the project:

1. Select a synthesis tool. This tutorial requires Lattice LSE (Lattice
Synthesis Engine).

2. Click Next.

The Project Information dialog box appears. This dialog box summarizes
the choices you made in the wizard. If you want to change any of them,
click Back.

3. Click Finish.

Several views are added to the Radiant window to give you easy access
to files, tools, and messages from the software. Figure 4 identifies the
views in the default arrangement. On the left is the File List view showing

Select device

Select device options

Get data sheet

Device information

Note
If you choose to use Synopsys® Synplify Pro® for Lattice, Netlist Analyzer will not
be available. Synplify Pro has a similar tool, but it is not covered in this tutorial.

Create a New Radiant Project

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 13

the files and other components of the project that you just created. On the
right is the Reports view showing a summary of other information about
the project.

4. In the File List view, right-click tb_top.v and choose Include for >
Simulation.

By default all input files are marked for both synthesis and simulation. But
you do not want the testbench when you synthesize the design.

You will see activity in the Output view, at the bottom of the window, as the
Radiant software re-analyzes the design hierarchy. In the File List view,
top.v displayed in bold letters to show that it holds the top module. The
Hierarchy view, which is underneath the File List view, also changes.

Figure 4: Radiant Main Window

About the File List View
The File List view gives easy access to the components of the project
including:

 The device.

 Strategies, which are collections of option settings for how the design is
processed. Start with Strategy1, a balanced approach. If you are having
trouble fitting a design into a device, try the Area strategy. If you are
having trouble with timing, try the Timing strategy. You can create your
own strategy by cloning one of these.

 Implementations, which are all the source files for a version of a design. A
project can have several implementations so that you can experiment with
different design approaches.

 Input Files, which are the design files.

Process Toolbar
Controls converting the
design to a bitstream.

File List
Provides easy access to
project components.

Tool Area
Shows the active tools.

Hierarchy
Provides access to the
modules of the design.

Source Template
Helps create common
features in HDL code.

IP Catalog
Get customizable
modules (IP).

Output
Shows all messages
as they are produced.

Message
Shows messages
organized by type.

Tcl Console
Shows and accepts
Tcl commands.

Add HDL Code

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 14

 A variety of other files that may be created in the project.

Bold Text Notice that some of the items, such as Strategy1 and impl_1, are
written with bold text. You can have multiple components of a given type, but
usually only one can be active. So impl_1 is the active implementation and
Strategy1 is the active strategy for impl_1.

An exception to this rule is in the Input Files, which are the HDL design files.
These are all active. In Input Files, bold text indicates a file with a top module.
The Radiant software automatically analyzes the Input Files for the design
hierarchy, which can be seen in the Hierarchy view. So top.v holds the top
module in impl_1.

Commands Right-click an item to see the available commands for that
item. The commands vary depending on the item. There are commands for
changing properties, adding files, changing the active file, and more.

Task 2: Add HDL Code
The Radiant software has a few tools to help you create HDL code:

 Source Editor is a text editor optimized for HDL code. Source Editor color
codes different parts of HDL code, tracks parenthesis pairs, and can
collapse blocks for easier reading.

 Source Template provides templates for common functions and structures
to help you build Verilog, VHDL, and constraint files. The templates can
be simply dragged and dropped into Source Editor and filled in there.

 IP Catalog provides a collection of pre-built modules that you customize
through a dialog box. The Radiant software comes with many commonly
used functions such as I/O, arithmetic, and memory. Many more-
specialized functions can be downloaded.

 PMI (Parameterized Module Interface) provides a collection of modules
similar to those that come with IP Catalog. But with PMI, you customize by
changing parameters in the instantiation code, which is available in
Source Template. IP Catalog tends to provide more ways to customize its
modules. But PMI may be easier when you need several similar, but not
identical, instances of a module.

Of course, you can also create code outside of the Radiant software and
import the files into your project.

In this task you will use all these tools to add a few modules to finish the
design.

Generating Modules from IP Catalog
In this section, you will customize and generate oscillator (OSC) module and
a phase-locked loop (PLL) module to add to the design.

Add HDL Code

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 15

To customize and generate an OSC module:

1. On the IP on Local tab, expand Module > Architecture_Modules and hover
over OSC.

To the right, a blue circle with a question mark appears. You may need
to scroll to the right to see it.

2. Click the blue circle.

A brief description of the module appears in the tool area. To get more
information about this module, click User Guide in the description. This
will download a PDF file to your browser.

3. Double-click OSC.

The Module/IP Block Wizard opens.

4. For Component name, enter my_osc. Use the default for the Create In
location.

5. Click Next.

6. Set the following value:

 HFCLK Frequency (MHz): 20.4545

The wizard changes to a block diagram of the module and a table of
properties and values.

7. Click Generate.

The Check Generating Result page appears. This may take a moment.

8. Ensure that Insert to project, in the lower-left corner, is selected and click
Finish.

9. Go back to the File List view to see that my_osc/my_osc.ipx has been
added to the list of Input Files. The module comes with a few associated
files. In the Hierarchy view, a my_osc module appears.

To customize and generate a PLL module:

1. Click the IP Catalog tab (lower-left corner, under the File List view).

IP Catalog replaces the File List view.

IP Catalog comes with a large variety of architecture, arithmetic, and
memory modules. These are under the IP on Local tab. Click the IP on
Server tab to see more-specialized modules that you can download. Take
this opportunity to expand the folders and see what’s available to you.

2. On the IP on Local tab, expand Module > Architecture_Modules and hover
over PLL.

To the right, a blue circle with a question mark appears. You may need
to scroll to the right to see it.

3. Click the blue circle.

A brief description of the module appears in the tool area. To get more
information about this module, click User Guide in the description. This
will download a PDF file to your browser.

Add HDL Code

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 16

4. Double-click PLL.

The Module/IP Block Wizard opens. (file a CR. PLL Window issue.)

5. For Component name, enter my_pll. Use the default for the “Create in”
location.

6. Click Next.

The wizard changes to a block diagram of the module and a table of
properties and values.

As you can see, there are several ways that you can customize this
module. Each tab provides more options.

Some of the properties are grayed out because they are read-only, such
as a value calculated from the option settings. But usually, a grayed out
property becomes available to change depending on other option settings.
For example, if you change Configuration Mode to Divider, the CLKI:
Divider Value option becomes available.

7. In the General tab, set the following values:

 CLKI: Frequency (MHz) (10 - 800): 20

 CLKOP: Frequency Desired Value (MHz) (10 - 800): 40

8. Click Calculate.

A box opens with messages. This may take a moment. Check for error
messages.

9. Click Generate.

The Check Generated Result page appears. This may take a moment.

10. Ensure that Insert to project, in the lower-left corner, is selected and click
Finish.

11. Go back to the File List view to see that my_pll/my_pll.ipx has been added
to the list of Input Files. The module comes with a few associated files. In
the Hierarchy view, a my_pll module appears.

Instantiating the Modules
When IP Catalog generates a module, it also creates templates for
instantiating the module. You just copy the Verilog or VHDL code, paste it into
your design, and fill in the blanks: instance name and I/O signals.

To instantiate the OSC module:

1. In the File List view, double-click source/impl_1/top.v.

The file opens in Source Editor.

2. Scroll down to a comment that says: /* Add my_osc instance here
*/////////

Note
Most IP do not have a Calculate button.

Verify Functionality with Simulation

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 17

3. In the File List view, right-click my_osc.ipx and choose Copy Verilog
Instantiation.

4. Go to Source Editor and paste the code below the comment.

5. You need to fill in a name for the instance and signal names for the ports.
See below for the finished instantiation command. Bold is the text that you
enter.

my_osc osc_inst(.hf_out_en_i(1'b1),
 .hf_clk_out_o(osc_clk));

6. Click the Save button in the toolbar.

In the Hierarchy view, the my_osc module moves to be under the top
module.

To instantiate the PLL module:

1. In the Source Editor, in source/impl_1/top.v, scroll down to a comment
that says: //* Add my_pll instance here */////////

2. In the File List view, right-click my_pll.ipx and choose Copy Verilog
Instantiation.

3. Go to Source Editor and paste the code below the comment.

4. You need to fill in a name for the instance and signal names for the ports.
See below for the finished instantiation command. Bold is the text that you
enter.

my_pll pll_inst(.clki_i(osc_clk),
 .rstn_i(rstn),
 .clkop_o(clk_o),
 .lock_o(lock));

5. Click the Save button in the toolbar.

In the Hierarchy view, the my_pll module moves to be under the top
module.

6. Close Source Editor and IP Information by clicking the X in their tabs.

Task 3: Verify Functionality with Simulation
Now that the design is finished, you can simulate it to test the logic. With the
Radiant software, you can run a simulation at different stages of the
development process:

 Before synthesis (RTL)

 Post-synthesis

 Post-route, gate-level

Note
For VHDL, follow a similar process using the Copy VHDL Component and Copy
VHDL Instantiation commands.

Verify Functionality with Simulation

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 18

 Post-route, gate-level and timing

In this tutorial we will just do the RTL simulation. For the other stages, the
process is similar.

For a simulator, this tutorial uses the Mentor® ModelSim® Lattice FPGA
Edition simulator that comes with the Radiant software on Windows.

If you are not using an HDL simulator that is integrated with the Radiant
software, you can skip this task. “Integrated” means that you can run the
simulator from the Radiant software. What is available depends on your
operating system. You can use other simulators outside of the Radiant
software.

If you are not using the ModelSim that comes with the Radiant software, you
need to compile the primitive library. For instructions, open the Radiant Help
and see User Guides > Simulating the Design > Third-Party Simulators.

This tutorial comes with a simple testbench. You will probably create your own
testbenches using your simulator. Simulators usually include tools for creating
testbenches.

Starting a Simulation Run
While you can start your simulator directly, it is good to create a simulator
project that allows you to run the simulator from the Radiant software.

To start simulating the design:

1. Choose Tools > Simulation Wizard.

The Simulation Wizard dialog box appears.

2. Click Next.

The Simulator Project Name page appears.

3. Enter the Project name: sim_test.

Leave the other settings at their defaults.

4. Click Next.

5. If you left the default for the project location, a dialog box opens saying,
“sim_test does not exist. Do you want to create it?” Click Yes. This creates
a sim_test folder.

The Add and Reorder Source page appears.

6. Make sure all source files are present in the Source Files list. You can
modify this list but that is usually not needed. Instead, leave the
Automatically set simulation compilation file order option selected.
Click Next.

The “Parse HDL files for simulation” page appears.

7. Verify that the simulation top module is “tb_top.” This is shown at the
bottom of the dialog box. Click Next.

Verify Functionality with Simulation

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 19

The Summary dialog box appears.

8. Make sure that the Run simulator, Add top-level signals to waveform
display, and Run simulation options are all selected.

9. Click Finish.

The selected simulator launches and the simulation starts automatically.
After completing the simulation, the waveform appears. This takes several
moments. Wait for the waveform to appear.

If you see the Welcome to ModelSim dialog box, select Don’t show this
again, at the bottom of the dialog box, and click Close. Do not click
Jumpstart.

10. Look at the File List view in the Radiant window. Under Script Files, you
see sim_test/sim_test.spf.

You can rerun the simulation by double-clicking the .spf file. The Simulation
Wizard will open with a Skip to End button. Click it to jump to the last page of
the wizard. Then click Finish to start the simulation running.

Checking the Simulation Results
Once the simulation is launched, ModelSim automatically stops after the first
microsecond of simulation time. The testbench is set to run longer, but this is
enough to see the startup.

To check the simulation results:

1. You probably want to expand the Wave view. Do one of the following:

 Expand the ModelSim window.

 Undock the Wave view. Click the Dock/Undock button that is in the
upper-right corner of the Wave view. Then expand the Wave window.

2. To make other adjustments to the Wave view, choose Simulate >
Runtime Options.

The Runtime Options dialog box opens showing a variety of options that
you can set.

3. Make the following changes in the Defaults tab:

 For Default Radix, select Hexadecimal. This is how the values of
signals are normally displayed.

 For Default Run, enter 100ns. This is the amount of time that the Run
command simulates.

4. Click OK.

The values shown in the Objects and Wave views change to hexadecimal.

5. Choose Wave > Zoom > Zoom Full or click the Zoom Full button in
the toolbar to see the whole waveform. The Zoom toolbar looks like this:

Verify Functionality with Simulation

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 20

Once the zoom steps are done, the ModelSim Wave View may look like
Figure 5, depending on the cursor location.

Figure 5: Simulated Waveform

In the Wave view, you see the reset signal activated by the testbench.
This drives the LEDs value to zero. After reset is released, countt starts
counting.

6. The values of countt may not be visible. Click the Zoom In button in the
toolbar until you can see the values.

7. Choose Simulate > Run > Run 100 or click the Run button to see
more of the simulation. The Run toolbar looks like this:

Another 100 ns is added to the waveforms. This is the time you set in the
Runtime Options dialog box. You can change this amount in the box next
to the Run button.

8. Click anywhere to see what the values are at that moment.

The nearest cursor (a vertical yellow line) jumps to where you clicked. The
value column shows all the values at that moment.

Verify Functionality with Simulation

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 21

You can click on the cursor and drag it to other positions on the time-line.
You can also return to the cursor after scrolling away by clicking the Zoom
In on Active Cursor button.

Rerunning the Simulation
In ModelSim you can make changes in the simulation and rerun it. For
example, you can add more signals.

To add a signal and rerun the simulation:

1. In the List view, click the sim tab (also know as the Structure view), and
expand:

tb_top > dut > count32_inst

2. Click on count32_inst. The Objects view changes.

3. Drag countai from the Objects view to the Wave view.

4. Rerun the simulation to see what is happening with the countai register.
Choose Simulate > Restart or click the Restart button.

The Restart dialog box opens with a variety of features that you might
have changed. You can leave them all selected.

5. Click OK.

The waveforms in the Wave view disappear.

6. Then choose Simulate > Run > Run -All or click the Run -All button.

The Finish Vsim dialog box opens. It asks if you want to finish.

7. Click No.

ModelSim’s source editor opens with the testbench.v file.

8. Close testbench.v and go back to the Wave view. Now you see the full
5 µs.

9. You can take this opportunity to explore ModelSim more.

There’s a lot more that you can do with ModelSim. For more information,
see the Help menu in the ModelSim window.

10. When you are done exploring ModelSim, choose File > Quit to close
ModelSim.

The Quit Vsim dialog box opens.

11. Click Yes.

Warning
Do not click Yes. If you do, the $finish statement in the testbench causes
ModelSim to exit.

If this happens, go to the File List view in the Radiant window and look under the
Script Files folder. Double-click sim_test/sim_test.spf to restart ModelSim.

Set Location Assignments

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 22

Task 4: Set Location Assignments
You will use the Device Constraint Editor to assign signals to the pins of the
FPGA for the board’s Demo LEDs and GSRN button. There are a few ways to
do this:

 Drag the port from the Editor’s list view to the Package View, which is a
graphic layout of the FPGA’s pins.

 Right-click the port in the spreadsheet to open the Assign Ports dialog
box, which presents a list of all appropriate pins.

 Type the pin number in the spreadsheet.

Since we have a list of the pin numbers from the board’s user guide, typing is
probably the easiest way.

To assign pins:

1. Choose Tools > Device Constraint Editor.

The Device Constraint Editor appears.

2. If you see a yellow bar with a message saying the “Design database in
memory is outdated,” click Reset Database, which is to the right of the
message.

3. Click the Port tab, in the lower-left.

4. In the spreadsheet, right-click on Name and choose Filter > Enable
Filter.

A button for a drop-down menu appears on each column title.

5. Click the drop-down button in the Name column.

A filter list appears.

6. In the Search box, type rstn.

The filter list is reduced to the rstn port.

7. Click OK.

8. The spreadsheet is reduced to the rstn port.

9. Click in the Pin cell and enter G19.

In the Device View, G19 shows a green dot, indicating an input port.

10. Click the drop-down button in the Name column.

11. In the Search box, type leds.

The filter list is reduced to the leds ports.

12. Click OK.

The spreadsheet is reduced to the leds ports.

13. Fill in the Pin cells of the leds ports with the following pins. Start at the top
of the list. After typing the pin number, press the down arrow key to get to
the next cell.

 leds[0]: E17

Set Location Assignments

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 23

 leds[1]: F13

 leds[2]: G13

 leds[3]: F14

 leds[4]: L16

 leds[5]: L15

 leds[6]: L20

 leds[7]: L19

As you enter values, the matching spots in the diagram are filled in with
blue, indicating output ports.

14. Click the drop-down button in the Name column.

15. In the Search box, type direction.

The filter list is reduced to the direction port.

16. Click OK.

The spreadsheet is reduced to the direction port.

17. Fill in the Pin cells as follows.

 direction: N14

18. Click the Constraint Preview button.

The Preview dialog box opens showing the constraint commands. See
Figure 6.

Figure 6: Device Constraints

19. Click the Save button in the toolbar.

The Save dialog box opens.

20. Name the file eval_board and click Save.

In the File List view, eval_board.pdc appears under the Post-Synthesis
Constraint Files folder. Device constraints are not used in synthesis.

21. Close the Device Constraint Editor.

ldc_set_location -site {G19} [get_ports rstn]
ldc_set_location -site {E17} [get_ports {leds[0]}]
ldc_set_location -site {F13} [get_ports {leds[1]}]
ldc_set_location -site {G13} [get_ports {leds[2]}]
ldc_set_location -site {F14} [get_ports {leds[3]}]
ldc_set_location -site {L16} [get_ports {leds[4]}]
ldc_set_location -site {L15} [get_ports {leds[5]}]
ldc_set_location -site {L20} [get_ports {leds[6]}]
ldc_set_location -site {L19} [get_ports {leds[7]}]
ldc_set_location -site {N14} [get_ports direction]

Process the Design

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 24

Task 5: Process the Design
Processing a design involves a few steps that convert the high-level Verilog
and VHDL description into code that can actually program a specific FPGA:

1. Synthesize converts HDL into a gate-level netlist that is optimized for the
FPGA.

2. Map converts the netlist into a network of device-specific components,
such as PFU (programmable function units) and I/O buffers.

3. Place and route converts the mapped network into specific components
and signal routes within the device.

4. Export converts the place-and-route specifications into code to program
the FPGA.

Each step also produces a set of reports that describe how the process was
run and the results. If a process fails, its reports are the place to start
troubleshooting.

About the Process Toolbar
Use the Process Toolbar (shown below) to run the processes.

Figure 7: Process Toolbar

With a single click you can run any individual process including any preceding
processes that have not been run yet. Click the Run All button to run the
whole sequence. Right-click a process button to get a menu of options for
running the process.

Click the Task Detail View button to select other files to generate while
running the processes. Timing analysis and simulation files are available.

While a process is running, the Run All button changes to the Stop button.
Click the Stop button to stop the processing.

When a process completes, its button shows its success or failure with a
green check mark or a red X .

Task Detail ViewRun All

Examine the Layout

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 25

Processing the Design
In this task, you will step through the processes one-by-one and check the
reports after each. However, in normal practice, you would probably run the
whole sequence and then check the results.

To process the design:

1. In the Process Toolbar, click Synthesize Design.

Task Detail View opens and tracks completion of the processes.

2. In the Reports view, click Synthesis Reports.

These reports give details of how synthesis ran. They also give detailed
information about use of device resources and timing. Hover over the
Contents button in the top-right corner to get links to different sections of a
report.

3. When you finish looking at the synthesis reports, click Map Design.

4. In the Reports view, click Map Reports and examine the available reports.

5. When you finish looking at the map reports, click Place & Route Design.

6. In the Reports view, click Place & Route Reports and examine the
available reports.

7. When you finish looking at the place and route reports, click Export Files.

8. In the Reports view, click Export Reports and examine the available
reports.

At the end of the Bitstream report is the pathname of the bitstream file:
<project_path>/impl_1/CLNXtutorial_impl_1.bit.

Task 6: Examine the Layout
After place-and-route, you can see a display of the layout using Physical
Designer and cross-probing between different views.

To see the layout:

1. Choose Tools > Physical Designer.

Physical Designer shows a large-component layout of your design.

2. To the left of the diagram are lists of instances and IOs. Expand the
Instances list and choose one of the primitives, such as Instances >
count32_inst:68 > led_switch_inst:1 > leds_i3.ff_inst.

The display zooms to the component.

3. Right-click on the component and choose Physical Designer Routing
Mode.

The Routing Mode opens with the display zoomed to the same
component. The Routing Mode provides a detailed layout of your design
that includes switch boxes and physical wire connections.

Analyze Power Consumption

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 26

4. In the toolbar of Physical Designer, click the arrow of the Routing Mode
 button and choose IO Mode.

Physical Designer changes to show the I/O of the device.

5. In the list, expand Instances, scroll down to the bottom, and click
rstn_pad.bb_inst.

Physical Designer zooms in to the I/O for rstn: G19, which you set in the
constraint file. The padlock symbol shows the pads that have constraints
on them.

You can do this for any of the instances labeled with “_pad” and for any of
the items in the IOs list.

6. Close Physical Designer.

Task 7: Analyze Power Consumption
Power Calculator estimates the power dissipation for a given design. Power
Calculator uses parameters such as voltage, temperature, process variations,
air flow, heat sink, resource utilization, activity, and frequency to calculate the
device’s static and dynamic power consumption.

To analyze power consumption:

1. Choose Tools > Power Calculator.

Power Calculator opens in Calculation mode as shown in Figure 8.

Figure 8: Power Calculator

Power Calculator provides two modes for reporting power consumption:

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 27

 Estimation mode:

In estimation mode, Power Calculator provides estimates of power
consumption based on the device resources or template that you
provide. This mode enables you to estimate the power consumption
for your design before the design is complete or even started.

 Calculation mode:

In calculation mode, Power Calculator calculates power consumption
on the basis of device resources taken from a design’s .udb file or
from an external file such as a value change dump (.vcd) file, after
placement and routing. This mode is intended for accurate calculation
of power consumption, because it is based on the actual device
utilization.

Editing data in white cells, such as voltage, frequency, activity factor, and
thermal data, does not change the mode. Editing data in yellow cells, such
as design data, will change calculation mode to estimation mode.

2. For Process Type in the Device Power Parameters section, choose
Worst.

3. Click Thermal Profile in the Environment section.

The Power Calculator – Thermal Profile dialog box appears.

4. For Board Selection, choose Small Board.

5. Click OK.

After a moment, the new temperature results become available in the
Environment section.

6. Close Power Calculator.

A Confirm dialog box appears.

7. Click Yes.

8. Give the file a name, such as eval_board, and click Save.

In the File List view, a .pcf file appears under Analysis Files.

Task 8: Add an On-Chip Debug Module
Many times you will want to see what is happening inside the FPGA while it is
running. After you have your design in an FPGA on a prototype circuit board,
you may find problems that did not show up in simulation. The Radiant
software allows you to see what’s happening inside the FPGA and to even
change register values while your system is running.

The Radiant software does this by helping you create a “debug module” and
adding it to your design. The module is a combination of two types of “cores:”

 Logic Analyzer monitors selected signals for events that you define. When
these events happen, the values of these and other signals are uploaded
to the Radiant software. You can see the values in a waveform viewer or
save them for other software.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 28

 Controller gives ongoing access to selected signals and registers. A
Controller core has virtual switches and LEDs to monitor signals, read and
write access to user-defined memory, and read and write access to the
control registers of “hard IP.” Hard IP are modules such as I2CFIFO, PLL,
DPHY, and SGMIICDR that use features built into the FPGA.

The debug module can have up to 15 cores.

The Radiant software has two tools for on-chip debugging:

 Reveal Inserter, which you use to create a debug module and add it to
your design.

 Reveal Analyzer/Controller, which you use to control the debug module
and to view test results. Reveal Analyzer/Controller is used after
programming the FPGA with your combined design and debug module.

In this task, you will create a debug module with both Logic Analyzer and
Controller cores.

About the Logic Analyzer Core
The Radiant software has a flexible system that lets you specify the signals
you want to see and when you want to see them. The events that trigger
sampling the signals can range from very simple to very complex. The Logic
Analyzer core has several features that build up to a powerful logic analyzer:

 Trace signals are the signals that you want to analyze.

 Sample clock is a clock from your design. Trace signals are sampled on
the rising edge of the sample clock.

 Trigger units are the signals that you want to monitor and logic to monitor
them for certain values.

 Trigger expressions are logical or sequential combinations of the trigger
units.

 Trigger events are logical or sequential combinations of the trigger
expressions. Trigger events trigger uploading the trace samples to Reveal
Analyzer/Controller.

You use Reveal Inserter to specify the signals that the Logic Analyzer core will
use and to set up the trigger units and trigger expressions. But these are only
initial settings. They can be modified in Reveal Analyzer/Controller without
taking the time to process the design and program the FPGA again. Think of
Reveal Inserter as creating capabilities and capacities that you can use with
Reveal Analyzer/Controller.

In your own on-chip debugging, think about all the signals and all the trigger
events that you might want to see, and build as much of that as possible into
the debug module. The limitation, of course, is the FPGA resources,
especially EBR (embedded block RAM) and distributed RAM, that you have
left after installing your design.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 29

Setting Up Trace Signals
Start by opening Reveal Inserter and adding a Logic Analyzer core. You’ll add
signals with a simple drag-and-drop action. Then set several options.

To set up trace signals for a Logic Analyzer core:

1. Choose Tools > Reveal Inserter.

Reveal Inserter starts with a largely blank screen.

2. Choose Debug > Add New Core > Add Logic Analyzer.

The Trace Signal Setup tab appears. The Dataset view expands to
include a core named top_LA0. See Figure 9.

Figure 9: Trace Signal Setup

3. Click on the Trace Signal Setup tab, if it is not already selected.

4. In the Signal Search box, enter countai.

The Data Tree view expands to show countai[31:0] selected.

5. Drag the countai[31:0] bus to the Trace pane on the right.

The name of the bus now appears in bold font in the Design Tree pane.
The name is also labeled with “@Tc” to show that it is a trace signal.

6. Under the same count32_inst/(count32_uniq_1) list, drag the direction
bus to the Trace pane on the right.

The name of the bus now appears in bold font in the Design Tree pane.
The name is also labeled with “@Tc” to show that it is a trace signal

7. Under the same count32_inst/(count32_uniq_1) list, drag clk from the
Design Tree view to the Sample Clock box.

Reveal Inserter Toolbar
With Design Rule Check
and Insert Debug buttons.

Datasets
Provides access to the
cores in the debug module.

Design Tree
Provides access to all
signals in the design.

Signal Search
Finds signals in the Design Tree view.

Core Setup Area
Shows setup tabs of the selected core.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 30

The name of the signal now appears in bold font in the Design Tree pane.
The name is also labeled with “@C” to show that it is the sample clock
signal.

Setting Up Trace Options
Besides selecting the trace signals, there are several options that you need to
consider.

To set up trace options:

1. For Implementation, ensure EBR is selected in the dropdown list.

The implementation specifies what kind of RAM to use for the Logic
Analyzer core. Normally EBR (embedded block RAM) would be selected,
but distributed RAM can be used if you are short of EBR.

The number next to the Implementation menu shows how many EBR or
slices are needed.

2. For Buffer Depth, choose 512.

Choose an amount at least as big as the number of samples multiplied by
the number of trigger events. In this case, we plan for 32 samples for 1
trigger event. But, it’s good to build in some extra capacity if your FPGA
has the resources.

3. Select Timestamp and choose 10 bits.

Timestamp provides a count of sample clock cycles from the beginning of
a test run. The timestamp will show how long the test ran before
triggering. The timestamp can also help associate triggers with external
events.

The number of bits is the size of the timestamps. Choose the smallest
value that can hold the desired count.

Note that the number of EBRs increased to 2 EBRs when you selected
Timestamp.

4. Leave Sample Enable cleared.

This option specifies a signal that can turn data capture on and off. Use
sample enable to reduce the size of the trace buffer when there are
stretches of data of no interest that are associated with a single signal.

5. For Data Capture Mode, select Multiple Trigger Capture.

This option allows for multiple trigger events. The actual number of events
will be set in Reveal Analyzer.

6. For “Minimum samples per trigger,” choose 32.

This is the minimum number of samples for each trigger event. The
maximum is set in Buffer Depth.

7. Ignore POR Debug and Disable all Distributed RAMS. These options are
not currently available.

8. Click the Include trigger signals in trace data box.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 31

The Trace Signal Setup tab should now resemble Figure 10.

Setting Up Trigger Units
Here you will specify the signals and values that you want to watch for as part
of the trigger. The values, in the Operator and Value cells, are just initial
settings. They can be changed in Reveal Analyzer/Controller while running
tests.

To set up the trigger units:

1. Click on the Trigger Signal Setup tab.

2. In the Trigger Unit section, at the top, click Add.

A new row appears with default values.

3. Click in the Name cell and enter tu_countai.

4. Drag the countai[31:0]@Tc bus from the Design Tree pane to the Signals
(MSB:LSB) cell in the Trigger Unit pane.

In the Design Tree view, countai gains a Tg label to show that it is also a
trigger signal.

5. Click in the Operator cell and choose == from the drop-down menu.

The operators are logical comparisons between the signal and a specified
value. You can also choose rising or falling edges, or a series of values on
a one-bit signal.

Figure 10: Trace Signal Setup Tab

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 32

6. Click in the Radix cell and choose Hex.

Radix is just the format used to show the value. Pick whichever radix is
most convenient for you. If you are doing a lot of trigger units, you may
want to choose a radix in the Default Trigger Radix menu (lower-right of
the Trigger Unit area).

7. In the Value cell, enter 8.

This is the value that the trigger will look for.

8. Click Add to add a second trigger unit. Set up this trigger unit with the
following values:

 Name: dir

 Signals: direction (This is top > direction. If you search for dir*, it’s
“direction” in the results.)

 Operator: ==

 Radix: Bin

 Value: 1

Setting Up a Trigger Expression
Combine the trigger signals into a sequence that will trigger uploading the
trace signals.

To set up the trigger expression:

1. In the Trigger Expression section, in the middle, click Add.

A new row appears with default values.

2. In the Expression cell, select the tu_countai and dir trigger units by
entering dir THEN tu_countai.

This statement means: wait for dir to be true, then wait for tu_countai to be
true. They do not have to be true at the same time.

There are several logical and sequence operators available. These allow
you to specify very specific trigger events. Operators include:

 & - AND

 | - OR

 ^ - XOR

 ! - NOT

 () - Groups trigger units.

 THEN - After the first unit is true, wait for the second one.

 NEXT - Like THEN except the second unit must be true on the next
clock cycle.

 # - Adds a counter.

 ## - Adds a counter. Events must be in consecutive clock cycles.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 33

3. Set up the rest of this trigger expression with the following values:

 RAM Type: 1 EBR

Choose the type of RAM to use for the expression. The menu also
shows the amount needed.

 Sequence Depth: 2

This cell shows the number of sequences, or units, in the expression.
This cell is read-only.

 Max Sequence Depth: 4

If you want to change the expression in Reveal Analyzer, this is the
maximum number of sequences that will be possible.

 Max Event Counter: 32

If you want to change the expression in Reveal Analyzer, this is the
maximum number of counts that will be possible.

The Trigger Signal Setup tab should now resemble Figure 11.

Figure 11: Trigger Signal Setup

Creating Virtual Switches and LEDs
In a Reveal Controller module, you can manually control and watch values
inside the design by setting up virtual switches and LEDs.

The addresses that you see in the Reveal Controller core were assigned by
the Radiant software while processing the design.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 34

To create virtual switches and LEDs:

1. Choose Debug > Add New Core > Add Controller.

Most of the Reveal Inserter window changes to space to set up virtual
switches and LEDs. There are also set-up tabs for accessing user
registers and hard IP. The Dataset view expands to include top_Controller.

2. Click the Virtual Switch & LED Setup tab if it is not already showing.

3. Search for switch and select led_switch_inst(led_switch_uniq_1)/
switch[7:0].

The Data Tree view expands to show switch[7:0] selected.

4. Drag switch[7:0] into the Signal column of the Switch List field.

The field is filled with the individual switch signals. Above the Switch List
field, the Width field changes to 8.

5. Under the same led_switch_inst(led_switch_uniq_1) list, drag
leds[7:0] into the LED List field.

The field is filled with the individual leds signals. Above the LED List field,
the Width field changes to 8.

6. Make sure that the Virtual Switch Setting and Virtual LED Setting
options, at the top of the Reveal Inserter window, are selected.

Creating User Register Access
You can set up read and write access to an internal register by simply
specifying the register’s control and data ports. You can access PMI, EBR, or
distributed memory. In this tutorial, you are going to create read and write
access of a pmi_ram_dq module.

To set up access to a register:

1. Click the User Register Setup tab.

The tab shows a list of memory port types.

2. In the Design Tree view, look through the modules and find
pmi_mem_32_inst(pmi_mem_32_uniq_1). Expand it.

3. Fill the User Register Setup tab by dragging the matching ports from the
ram1 module:

 Clock: Clock

 Clock_enable: ClockEn

 Wr_Rdn: WE_RDN

 Address: Address[8:0]

 WData: WData[31:0]

Note
Only wire signals can be added to the virtual switch list.

Add an On-Chip Debug Module

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 35

 RData: Q[31:0]

4. Make sure that the Enabled check box, in the upper-right corner, is
selected.

Creating Hard IP Access
Set up access to the control and status registers of the hard IP by simply
selecting the IP you want. Hard IP are modules such as I2CFIFO, PLL, DPHY,
and SGMIICDR that use features built into the FPGA.

To set up access to hard IP:

1. Click the Hard IP Setup tab.

The tab shows a table with a list of all the hard IP in the design. In this
tutorial, there is PLL1 and DPHY1,

2. In the Enabled column, select DPHY1. Leave PLL1 unselected.

Inserting the Debug Logic
Now you will insert the debug logic into the design project.

To insert the debug logic:

1. Choose Debug > Insert Debug.

The Insert Debug to Design dialog box opens with the top_LA0 and
top_Controller cores listed.

2. Make sure that both cores are selected and that the Activate Reveal File
in design project option is selected.

3. Click OK.

The Save Reveal Project dialog box opens.

4. Accept the default filename, CLNXtutorial.rvl.

5. Click Save.

In the File List view, the CLNXtutorial.rvl file is added to the Debug Files
folder. In the Process Toolbar, all the green check marks are turned back
to blue arrows. The design has been changed and needs to be processed
again.

6. Close the Reveal Inserter window.

7. In the Process Toolbar, click the Place & Route Design button.

8. Go to the Reports tab.

Examine Timing Analysis Results

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 36

Task 9: Examine Timing Analysis Results
Static timing analysis can determine if your circuit design meets timing
constraints. Rather than simulation, it employs conservative modeling of gate
and interconnect delays that reflect specific operating conditions with a
specific FPGA.

You can produce timing analysis reports as part of the synthesize, map, and
place-and-route processes. Before running a process, click the Task Detail
View in the Process Toolbar and select Timing Analysis for that process.
Timing analysis is selected by default, so you already have all three reports.

The reports have similar information shown in the same format. But they are
based on information from each process:

 Post-synthesis timing analysis is based on pre-synthesis constraints and
estimates of delays.

 Map timing analysis is based on post-synthesis constraints, the actual
types of components, and estimates of the routing delays.

 Place-and-route timing analysis is based on post-synthesis constraints,
and the actual components and routing.

All the reports can be read in the Reports tab. The place-and-route timing
analysis can also be viewed in the Timing Analyzer tool. Timing Analyzer
gives you a spreadsheet view that you might find easier to read. Timing
Analyzer also has a search function to help you find different data paths.

Reading the Timing Analysis Report
The timing analysis report has several sections to explore.

To examine the timing analysis report:

1. In the Reports tab, click Place & Route Reports and then click Place &
Route Timing Analysis.

The Timing Report appears.

If the frame for the report is too small, you can enlarge it by clicking the
Detach Tool button that is at the top-right corner of the Tools Area. This
creates a separate window for Reports.

2. Hover over the Contents button, in the top-right corner of the report.

A list of the report’s section headings appears. You can use these links to
jump to any section of the report. You can make the contents disappear by
clicking anywhere in the report. You can also jump back to the top of the
report by clicking the scroll-up button in the bottom-right corner of the
report.

3. Click 1 DESIGN CHECKING.

“Design Checking - Section 1.1” shows the SDC constraints and operating
conditions that guided the analysis.

Examine Timing Analysis Results

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 37

Notice that you have one create_clock constraint and one
create_generated_clock constraint. The create_clock constraint was auto
generated to specify the output of the FPGA oscillator.

Similarly, the create_generated_clock constraint was also auto-generated
to specify the output of the PLL.

“Design Checking - Section 1.2” shows a list of combinational loops, if
any.

4. Go to 2 CLOCK SUMMARY.

“Clock Summary” shows an analysis for each clock domain defined in the
constraints. The analysis shows the target frequency versus the actual (or
maximum possible) and MPW (minimum pulse width) frequencies.

The “Clock Domain Crossing” section shows the slack with any other
clocks that connect with the given domain. That is, a data path that has
different clocks for its start and end points.

5. Go to 3 TIMING ANALYSIS SUMMARY.

“Timing Analysis Summary” shows a variety of data including lists of the
ten worst data paths for setup slack and for hold slack, unconstrained
timing start and end points, unconstrained I/O ports, and registers without
clocks.

It is not necessary or desirable for all paths to have constraints. Check
section 3.4, “Unconstrained Report” to make sure that all of the important
paths are constrained.

6. Go to 4 DETAILED REPORT.

“Detailed Report” shows details of the worst paths for setup slack and for
hold slack. Each path has a section that starts with a summary of the path
and the results of the analysis. This is followed by a table calculating the
delay step by step through the path, beginning with the clock at the start of
the path and ending with the clock at the end of the path. Each step
includes the name of the pin within the FPGA and the hierarchical name of
the module’s port, the type of delay, and the fanout from the pin.

If you want to visualize the path, the reports have links to other tools.
Physical Designer Placement Mode shows the sites within the FPGA.
Physical Designer Routing Mode shows the route within the FPGA.
(Physical Designer is only available after place-and-route.) Netlist
Analyzer shows a schematic view of the design. However, Netlist
Analyzer often cannot show the detailed path.

Before leaving this task, take a look at the Timing Analyzer tool.

Using Timing Analyzer
Timing Analyzer is a different way to look at the place-and-route timing
analysis that you might find easier to read. Timing Analyzer runs the timing
analysis and presents the results on three spreadsheet tabs. Plus, there is a
Query tab so you can search through the paths. The information in Timing
Analyzer is very similar to that in the Place & Route Timing Analysis report but
is presented differently.

Examine Timing Analysis Results

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 38

Timing Analyzer can be run anytime after completing the place-and-route
process. You do not need to select timing analysis in the Task Detail View of
the Process Toolbar.

To use Timing Analyzer:

1. Choose Tools > Timing Analyzer.

A progress indicator opens, showing that the Radiant software is
calculating the delays. This takes a moment. Then Timing Analyzer
appears in the Tool Area. The General Information tab is just basic
information about the FPGA and the option settings used in the analysis.
Tabs for the actual analysis are along the bottom.

2. Click the Critical Paths Summary tab.

This tab shows the same information as section 4, “Detailed Report,” of
the text report. At first you just see introductory information for the paths.

3. Click on a row to see the rest of the information.

The window splits into three parts. You might want to enlarge the view by
detaching the tool as a separate window.

The Path Detail part shows the same the introduction to the path seen in
the text report. There are also some delay calculations for the destination
and source clocks.

The third part has two tabs for the table calculating the delay step by step
through the path. Data Path shows the steps. Clock Paths shows the
clocks at the start and end of the path.

To link to Physical Designer Placement Mode or Routing Mode, right-click
any row in the Data Path or Clock Paths tabs.

4. Click the Critical Endpoint Summary tab.

This tab shows the same information as section 3.2, “Setup Summary
Report,” and section 3.2, “Hold Summary Report,” of the text report. Click
on a row to see the same path details as in the Critical Paths Summary
tab.

5. Click the Unconstrained Endpoint Summary tab.

This tab shows the same information as section 3.4, “Unconstrained
Report,” of the text report.

6. Click the Query tab.

This tab shows a query form to search for data paths. After each search,
check the Output view to see if anything was found. Any paths found are
shown in a spreadsheet view at the bottom of the form. Again, you might
want to enlarge the view by detaching the tool as a separate window. Click
on a row to see the same path details as in the Critical Paths Summary
tab.

7. Close Timing Analyzer.

Programming the FPGA

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 39

Task 10: Programming the FPGA
Use the Process Toolbar to generate files for exporting. One of the files
exported will be a bitstream file (.bit) that can be used to program an actual
CrossLink-NX device on a circuit board.

Generating the Bitstream
The final step in the Process Toolbar is Export Files. This generates the
bitstream file used to program the FPGA.

To generate files for export:

1. In the Process Toolbar, click Export Files.

The Radiant software generates the bitstream file and saves it in the
directory of the implementation.

2. In the Reports view, check that the timing errors are gone.

3. Click Export Reports and examine the available reports.

At the end of the Bitstream report is the pathname of the bitstream file.

4. In the File List view, right-click on impl_1 and choose Open Containing
Folder.

A window opens showing the contents of the impl_1 folder.

5. Look for a file named CLNXtutorial_impl_1.bit.

6. Close the impl_1 folder window.

Downloading the Bitstream
This task requires that you have a CrossLink-NX Evaluation Board. In this
section, you will use the Radiant Programmer to download a bitstream to a
CrossLink-NX FPGA.

To download the bitstream to the FPGA on the board:

1. Connect the USB cable from your computer to the CrossLink-NX
Evaluation Board. Give the computer a few seconds to detect the USB
device.

For more information, refer to the CrossLink-NX Evaluation Board User
Guide.

2. Choose Tools > Programmer.

Note
The rest of the tutorial requires the CrossLink-NX Evaluation Board. If you do not have
the board, you can stop the tutorial now. Go to “Close the Radiant Project” on page 47.

http://www.latticesemi.com/view_document?document_id=52807
http://www.latticesemi.com/view_document?document_id=52807

Programming the FPGA

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 40

The Radiant Programmer opens in a separate window. In the File List
view, source/impl_1.xcf appears under Programming Files.

3. In the Cable Setup box, under the Detect Cable button, you should see:

 Cable: HW-USBN-2B (FTDI)

The board uses an FTDI USB2-type of cable.

 Port: FTUSB-<number>

Ports for this type of cable are labeled FTUSB-<number>. The number
is assigned based on the USB port address.

Click Detect Cable. In the Programmer dialog box, choose FTUSB-0, as
shown in Figure 12.

Figure 12: Programmer Dialog Box

4. Choose Run > Scan Device.

A progress bar appears while Programmer scans the board. This will take
a moment.

When the scan is done, the spreadsheet view changes to show “LIFCL”
and “LIFCL-40.” Also, the spreadsheet view splits to show a diagram of
the connection between your computer and the FPGA. You may have to
expand the Programmer window to see the whole diagram.

5. Click on row 1 in the spreadsheet and choose Edit > Device
Properties.

The Device Properties dialog box opens.

Programming the FPGA

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 41

6. Ensure the settings are as follows:

 Target Memory: Static Random Access Memory (SRAM)

 Port Interface: JTAG

 Access Mode: Direct Programming

 Operation: Fast Program

 Programming file: <project_path>/impl_1/CLNXtutorial_impl_1.bit

 Password Protection Options: cleared (not selected)

The Device Properties dialog box should resemble Figure 13.

Figure 13: Device Properties Dialog Box

7. Click OK.

8. In Programmer, choose Run > Program Device.

A processing bar appears. Programming takes a few moments. In the
Output view, info messages appear. On the board, the blinking lights stop
as the boot-up design is erased.

When the programming is done, “PASS” appears in the Status column.

9. Close Programmer.

A dialog box opens asking if you want to save changes.

10. Click Yes.

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 42

Task 11: Perform Logic Analysis
In this task, you will use Reveal Logic Analyzer to set up the final options for
the trigger event and view the trace signals.

Creating a Reveal Analyzer Project
You must first create a Reveal Logic Analyzer project.

To create a new Reveal Logic Analyzer project:

1. In the Radiant software main window, choose Tools > Reveal
Analyzer/Controller.

The Reveal Analyzer Startup Wizard dialog box appears.

2. In the upper left of the Reveal Analyzer Startup Wizard dialog box, select
Create a new file.

3. Double-click in the top box and type eval_board to name the file.

4. In the pull-down menu on the top row next to the file name, choose
HW-USBN-2B (FTDI).

5. Click Detect.

Radiant detects the FTDI USB2 cables and they appear in the USB port
menu to the left.

6. For USB port, choose the port attached to the board. This is the same port
used in Programmer.

7. Click Scan.

The FPGA is displayed in the Debug device box.

8. In the RVL Source box, browse to <project_directory>/CLNXtutorial.rvl.

The startup wizard should resemble Figure 14.

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 43

Figure 14: Reveal Analyzer Startup Wizard

9. Click OK.

Reveal Logic Analyzer appears with the LA Trigger tab selected. It
contains the same trigger units and trigger expressions that you set up in
Reveal Inserter.

In the File List view, “eval_board.rva [CLNXtutorial.rvl]” appears under
Debug Files.

Running the Logic Analyzer Core
Now that Reveal Logic Analyzer/Controller is set up, you can run the Logic
Analyzer core. Then explore the LA Waveform view.

Figure 15: Dip Switch Labeled 1 set to Off

Note
Before running Running Logic Analyzer, make sure the dip switch labeled 1 on the
CrossLink-NX Evaluation Board is set to Off, as shown in Figure 15. This is because
the Trigger Unit Value for dir was set to 1 in “Setting Up Trigger Units” on page 31.

Dip Switch
Labeled 1
set to Off

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 44

To capture data:

1. Click the Run button in the Reveal Analyzer toolbar.

The Run button changes into the Stop button and the status bar next to
the button shows the progress.

Reveal Analyzer first configures the modules selected for the trigger
event, and then waits for the trigger event to occur. When the trigger event
occurs, the data is uploaded to your computer. The resulting waveforms
appear in the LA Waveform tab. This takes a few moments.

If the trigger is taking too long to occur, you can force an immediate trigger
by clicking the Manual Trigger button. This button is next to the Stop
button. The waveform may show why the trigger event did not happen.

The waveform should resemble Figure 16.

Figure 16: LA Waveform View in Reveal Logic Analyzer/Controller

2. Click in the Data cell of countai. When the cell changes to a drop-down
menu, choose Hex.

3. Click the Zoom In button in the toolbar until you can read the values for
countai and so that the waveform is wider than the LA Waveform view.

4. Click anywhere in the waveform.

A red line appears in the waveform. This is the active cursor. The values
in the Data column change to match the trace sample that the active
cursor is at.

5. Scroll away from the trigger cursor and then right-click anywhere in or
under the waveform.

A menu appears with several commands. Some of these commands can
help you move about in the waveform. For example, choose Zoom >
Zoom Trigger to get back to the trigger cursor.

6. Right-click and choose Add Cursor.

A blue line replaces the red active cursor.

This is a user cursor. You can have several of them. Use them to mark
interesting points in the data.

7. Scroll away from the user cursor and then right-click anywhere in or under
the waveform. Choose Go to Cursor > <number>. The number is the
sample index where the cursor is.

The trace samples can be saved three ways. To see the data in:

Data Column
Click to change the
radix.

Trigger Cursor
Marks the moment of the
trigger event with a “T”.

Timestamp
Top bar shows a count of
clock cycles.

Sample Index
Green bar shows a count
of triggers and samples.

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 45

 The LA Waveform view again, save to this or another .rva file. Click the
Save button in the toolbar or choose File > Save <file> As.

 Another waveform viewer, such as ModelSim or GTKWave export to a
value change dump file (.vcd). Right-click and choose Export Waveform.

 A spreadsheet, export to a text (.txt) file. Right-click and choose Export
Waveform.

Using the Virtual Switches and LEDs
Try changing the virtual switches and watching the effect on the board and on
the virtual LEDs.

You have a choice when setting the virtual switches. You can set up a value
and then apply it, or you can immediately apply changes as you click
individual switches. We’ll try both. The virtual switches and LEDs are shown in
Figure 17.

Figure 17: Virtual Switches and LEDs

To use the virtual switches and LEDs:

1. At the top of the Reveal Analyzer/Controller window, there is a drop-down
menu. Choose top_Controller.

The window changes to show a set of Virtual LEDs and switches.

2. Click Reset. This ensures that the Virtual LEDs and switches are reset.

3. In the Virtual LED area, click Polling Once. You will see a fixed Data
value, and the virtual LEDs will light up accordingly.

4. In the Virtual Switch area, type 0x55 in the Data box. (You can also set the
data value by clicking on the individual switches.)

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 46

5. Click Apply. This causes LEDs on the board to blink in the upcount
direction. (This may take a moment.)

6. In the Virtual LED area, click Start Polling. You will see the virtual LEDs
upcounting.

7. Move the Polling Speed slider to increase or decrease the polling speed
of the virtual LEDs.

8. For downcounting, in the Virtual Switch area, type 0xAA in the Data box.
(You can also set the data value by clicking on the individual switches.)

9. Click Apply. This causes LEDs on the board to blink in the downcount
direction. (This may take a moment.)

10. Alternately, you can also use the Direct Mode to see the LEDs change
their direction. Select the Direct Mode box.

The Data, Reset, and Apply controls are grayed out, but you still can click
switches to change the Data value.

In Direct Mode, if you change any of the individual switches it will change
the data value in real time. This affects the LED behavior.

11. In Direct Mode, for example, pull down switch 7. This changes the data
value, and will cause the Virtual LEDs and the LEDs on the board to stop
blinking. Pull switch 7 back up to see the Virtual LEDs and the LEDs on
the board to start blinking.

For this tutorial design, as soon as you set the switches to 0x55 or 0xAA,
the virtual LEDs and the LEDs on the board start to blink.

12. Click Stop Polling. This stops the movement of the virtual LEDs.

Accessing the User Register
Try reading and writing to RAM on the FPGA. You can write to individual
addresses, initialize the entire block with a single value, or load a memory file.
You can also dump the contents of the RAM to a memory file to analyze later.

To access the user register:

1. Click the User Register tab.

2. Click Read.

The Read Data box shows some random data.

3. In the Default Data box, type 0x0F.

4. Click Initialize.

Each word in the RAM is loaded with the new value. This takes a moment.

5. Click Read.

Note
You cannot run the Logic Analyzer core while the Controller core is running. The
polling occupies the cable.

Perform Logic Analysis

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 47

The Read Data box shows 0x0000000f.

6. In the Write Data box, type a different value.

7. Click Write.

8. Click Read again.

The Read Data box shows the new value.

Accessing the Hard IP
Try reading and writing to control registers of the DPHY1 hard IP. For the most
part, the controls look like the controls in the User Register tab. But some of
the IP, such as DPHY1, have extra controls.

 For more information about Hardened D-PHY, see CrossLink-NX
Hardened D-PHY Usage Guide Technical Note.

 For more information about DPHY control registers: see FPGA-IPUG-
02061-1.4 - MIPI DPHY Module - Lattice Radiant Software User Guide.

To access the DPHY1 Hard IP:

1. Click the Hard IP tab.

The tab shows a set of boxes and buttons for the DPHY1 hard IP.

2. In DPHY1, click Read.

The Read Data box shows a string of zeros.

3. Type a 4-bit hex value into the Write Data box and click Write.

The DPHY1control registers use 4-bit hex.

4. Click Read again.

The Read Data box now shows the value you entered.

Close the Radiant Project
If this were a real project, you would now program the FPGA on your
prototype board. Then you would start Reveal Analyzer/Controller to study the
internal operation of your design in detail.

But without a board, the tutorial ends here. You can close the project and exit
the Radiant software. You can also disconnect the board.

To gain more skill with the Radiant software, study the online help (Help >
Lattice Radiant Software Help). And begin work on your own project!

Note
This section gives a sample of Reveal Controller Hard IP access capabilities. This
section does not describe all control features of the Hard IP.

https://www.latticesemi.com/view_document?document_id=52781
https://www.latticesemi.com/view_document?document_id=52781
http://www.latticesemi.com/view_document?document_id=52465
http://www.latticesemi.com/view_document?document_id=52465

Summary of Accomplishments

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 48

To close the project:

1. Choose File > Close Project.

The Save Modified Files dialog box opens.

2. Select the files that you want to save.

3. Click OK.

The design project and associated tools close. The Radiant window
returns to the Start Page.

4. You can continue to work with the Radiant software or exit by choosing
File > Exit.

You can also disconnect the board.

Summary of Accomplishments
You have completed the Lattice Radiant Tutorial with CrossLink-NX (LIFCL).
In this tutorial, you have learned how to:

 Create a new Radiant software project.

 Customize IP using IP Catalog.

 Verify functionality with simulation.

 Set timing and location assignments.

 Process the design.

 Analyze power consumption.

 Analyze static timing.

 Use Reveal Inserter to add on-chip debug logic.

 Download a bitstream to an FPGA.

 Use Reveal Logic Analyzer to perform logic analysis.

Recommended References
You can find additional information on the subjects covered by this tutorial in:

 Radiant Software Help

 Radiant Software User Guide

 Reveal User Guide for Radiant Software

Lattice Radiant Tutorial with CrossLink-NX (LIFCL) 49

Revision History

The following table gives the revision history for this document.

Date Version Description

7/10/2022 3.2  Changed title of document to “Lattice Radiant Tutorial
with CrossLink-NX (LIFCL).” Removed references to
specific version of Radiant.

 Made correction to “Rerunning the Simulation.”

 Changed text and added screen capture in “Downloading
the Bitstream.”

6/9/2021 3.0 Updated for Radiant 3.0. Added support for CrossLink-NX
Evaluation Board, Revision B. Added sections for
programming the FPGA, and setting up and running on-chip
debug.

10/20/2020 2.2 Updated for Radiant 2.2. Rewrote “Verify Functionality with
Simulation” task to use Mentor ModelSim instead of Aldec
Active-HDL.

6/2/2020 2.1 Updated for Radiant 2.1. Added section for PMI and Source
Template. Removed use of CrossLink-NX Evaluation Board
until an updated board is available.

2/25/2020 2.0.1 Modified to include use of the CrossLink-NX Evaluation
Board. Added sections for programming the FPGA, and
setting up and running on-chip debug.

12/17/2019 2.0 Added a link for downloading the design files. Expanded
Task 1 with more information about the main window and the
File List view.

11/12/2019 2.0 Initial Release.

	Lattice Radiant Tutorial with CrossLink-NX (LIFCL)
	Contents
	Lattice Radiant Tutorial with CrossLink-NX (LIFCL)
	About the Tutorial
	About the Tutorial Data Flow

	Task 1: Create a New Radiant Project
	Opening the New Project Wizard
	Setting the Project Name and Location
	Adding Source Files
	Selecting a Device
	Finishing the Project Setup
	About the File List View

	Task 2: Add HDL Code
	Generating Modules from IP Catalog
	Instantiating the Modules

	Task 3: Verify Functionality with Simulation
	Starting a Simulation Run
	Checking the Simulation Results
	Rerunning the Simulation

	Task 4: Set Location Assignments
	Task 5: Process the Design
	About the Process Toolbar
	Processing the Design

	Task 6: Examine the Layout
	Task 7: Analyze Power Consumption
	Task 8: Add an On-Chip Debug Module
	About the Logic Analyzer Core
	Setting Up Trace Signals
	Setting Up Trace Options
	Setting Up Trigger Units
	Setting Up a Trigger Expression
	Creating Virtual Switches and LEDs
	Creating User Register Access
	Creating Hard IP Access
	Inserting the Debug Logic

	Task 9: Examine Timing Analysis Results
	Reading the Timing Analysis Report
	Using Timing Analyzer

	Task 10: Programming the FPGA
	Generating the Bitstream
	Downloading the Bitstream

	Task 11: Perform Logic Analysis
	Creating a Reveal Analyzer Project
	Running the Logic Analyzer Core
	Using the Virtual Switches and LEDs
	Accessing the User Register
	Accessing the Hard IP
	Close the Radiant Project

	Summary of Accomplishments
	Recommended References

	Revision History

