

N Input to 1 Output MIPI CSI-2 Side-by-Side Aggregation with CrossLink-NX

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	
1. Introduction	
1.1. Supported Device, IP, and Software	
1.2. Features	7
1.3. Block Diagram	
1.4. RX/TX Permutations and Parameter Calculation	10
2. Parameters and Port List	
2.1. Synthesis Directives	13
2.2. Simulation Directives	17
2.3. Top-Level I/O	18
3. Design and Module Description	
3.1. rx0*_unit	21
3.1.1. rx_dphy	21
3.1.2. RX FIFO	23
3.2. line_buf	25
3.2.1. Buffer Size	25
3.2.2. RX Buffer Offset Control	26
3.3. merge_ctrl	28
3.3.1. LP-HS Control in Non-Continuous Clock Mode	28
3.3.2. LP-HS Control in Continuous Clock Mode	30
3.3.3. Line Buffer Read and Data Merge Operation	31
3.4. tx_dphy	32
3.5. Clock Distribution	34
4. Design and File Modifications	35
4.1. Top-Level RTL	35
5. Design Simulation	36
6. Design Debug on Hardware	42
6.1. Top-Level	42
6.2. MIPI Clock Lane Transactions in D-PHY RX IP	42
6.3. MIPI Data Lane Transactions in D-PHY RX IP	44
6.4. Inter-Channel Synchronization and Line Buffer Control	48
6.5. D-PHY TX Control	
7. Known Limitations	
8. Design Package and Project Setup	
9. Resource Utilization	
10. References	
Technical Support Assistance	
Revision History	

Figures

Figure 1.1. N Input to 1 Output MIPI CSI-2 Side-by-Side Aggregation Block Diagram	8
Figure 1.2. Clocking Scheme Example in Continuous Clock Mode	
Figure 1.3. Clocking Scheme Example in Non-Continuous Clock Mode	9
Figure 1.4. Bandwidth and Parameter Calculator	
Figure 3.1. rx dphy IP Creation in Lattice Radiant	
Figure 3.2. Buffer Size and Brief Write/Read Timings	
Figure 3.3. RX Buffer Offset Example #1 (RX bus width = 16, TX bus width = 32, WC residual = 1)	
Figure 3.4. RX Buffer Offset Example #2 (RX_bus width = 8, TX bus_width = 64, WC residual = 5)	
Figure 3.5. RX Buffer Offset Example #2 (RX bus_width = 32, TX bus_width = 16, WC residual = 1)	
Figure 3.6. LP-HS-LP Transition in Non-Continuous Clock Mode (Short Packet)	
Figure 3.7. LP-HS-LP Transition in Non-Continuous Clock Mode (Long Packet)	
Figure 3.8. LP-HS-LP Transition in Non-Continuous Clock Mode with KEEP_HS	
Figure 3.9. LP-HS-LP Transition in Continuous Clock Mode (Short Packet)	
Figure 3.10. Line Buffer Read and Data Merge for 5-Channel Aggregation	31
Figure 3.11. tx_dphy IP Creation in Lattice Radiant	
Figure 5.1. Script Modification #1	36
Figure 5.2. Script Modification #2	36
Figure 5.3. Functional Simulation Example	41
Figure 6.1. MIPI Clock Lane Transition and Expected Debug Signal Behaviors	42
Figure 6.2. MIPI Clock Lane Transition	42
Figure 6.3. MIPI Clock Lane Transition from LP to HS Mode	44
Figure 6.4. Debug Signals of D-PHY RX IP	45
Figure 6.5. MIPI Data Lane Signal Transitions	45
Figure 6.6. Short Packet and Long Packet Transaction Example with Debug Signals	47
Figure 6.7. Line Buffer Control	48
Figure 6.8. D-PHT TX IP Timing Parameters	49
Figure 8.1. Directory Structure	
Figure 8.2 Project Files	52

Tables

Table 1.1. Supported Device and IP	7
Table 1.2. RX and TX Permutation	10
Table 2.1. Synthesis Directives	
Table 2.2. Simulation Directives	17
Table 2.3. CSI-2 Side-by-Side Aggregation Top-Level I/O	
Table 3.1. Unit EBR and Payload Byte Count of RX Buffer	
Table 6.1. Timing Parameters for Clock Lane Signal Transitions	
Table 6.2. Timing Parameters for Data Lane Signal Transitions	
Table 9.1. Resource Utilization Examples	

FPGA-RD-02212-1.0

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition	
AP	Application Processor	
CSI-2	Camera Serial Interface 2	
DDR	Double Data Rate	
EBR	Embedded Block RAM	
ECC	Error Correction Code	
HS	High Speed	
ID	Identification Data	
LP	Low Power	
MIPI	Mobile Industry Processor Interface	
PLL	Phase Locked Loop	
GPLL	General Purpose PLL	
RX	Receiver	
SoT	Start of Transmission	
TX	Transmitter	
VCO	Voltage Controlled Oscillator	
WC	Word Count	

6

1. Introduction

The majority of image sensors and application processors (AP) in the consumer market use the Mobile Industry Processor Interface (MIPI*) Camera Serial Interface 2 (CSI-2) as a video signal interface. In some cases, the AP has to take multiple image data for various applications without increasing the physical interface signals.

The Lattice Semiconductor N Input to 1 Output MIPI CSI-2 Side-by-Side Aggregation reference design for CrossLink™-NX devices offers up to eight-channel aggregation. Multiple channel image data are concatenated horizontally line by line. CrossLink-NX has two MIPI hard macro IPs, which can be used as MIPI TX or RX module (D-PHY Hard IP). The RX module can also be realized by a soft macro utilizing general DDR modules (D-PHY Soft IP).

1.1. Supported Device, IP, and Software

This reference design supports the following devices with IP and software versions shown below:

Table 1.1. Supported Device and IP

Device Family	Part Number	Compatible IP	Software Version
CrossLink-NX	LIFCL-40	D-PHY Receiver IP version 1.1.1	Lattice Radiant Software version
CIOSSLIIK-IVA	LIFCL-17	D-PHY Transmitter IP version 1.1.3	2.2 and above

1.2. Features

- Two to eight RX channels can be aggregated.
- One D-PHY Hard IP is used on TX channel.
- One Hard D-PHY IP is recommended to be used on RX Channel 0 to save FPGA resources.
- All RX channels must be in the same configuration.
- RX channels do not necessarily have to share the same clock source as long as their clock tolerance is within 500 ppm.
- All RX channels are expected to have almost same frame timing (20-pixel timing or less).
- RX channel can have one, two, or four lanes.
- Maximum RX bandwidth is 1.5 Gbps per lane.
- Number of TX lanes can be one, two, or four.
- Maximum TX bandwidth is 2.5 Gbps per lane.
- Non-continuous clock mode on RX channels is possible as long as the continuous clock is obtained directly or indirectly from the external reference clock.

1.3. Block Diagram

Figure 1.1 shows the block level diagram of the MIPI CSI-2 Side-by-Side Aggregation reference design with eight RX channels

In case of non-continuous mode on RX channels, an external clock is necessary to obtain a continuous clock. An on-chip GPLL may have to be used to create an appropriate clock since TX D-PHY PLL has an input clock frequency requirement of between 24 MHz and 200 MHz.

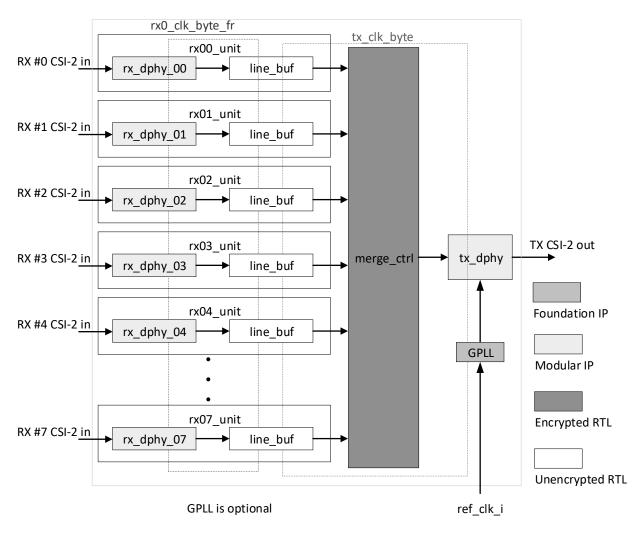


Figure 1.1. N Input to 1 Output MIPI CSI-2 Side-by-Side Aggregation Block Diagram

Figure 1.2 shows an example of clocking scheme in continuous clock mode. In this case, Hard D-PHY IP is used on channel #0 and continuous byte clock generated by rx_dphy_00 (rx0_clk_byte_hs) is shared by all RX channels. RX Soft D-PHY IP requires sync clock and the internal oscillator is used in this example.

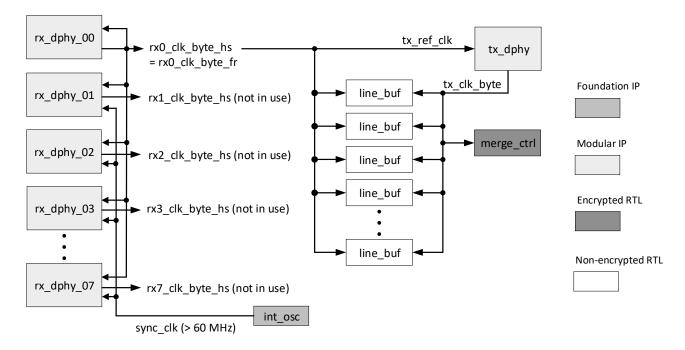


Figure 1.2. Clocking Scheme Example in Continuous Clock Mode

Figure 1.3 shows an example of clocking scheme in non-continuous clock mode. In this case, Hard D-PHY IP is used on channel #0. The external clock (ref_clk_i) is mandatory to feed both continuous byte clock and tx_ref_clk. GPLL can be bypassed if ref_clk_i is equal to rx0_byte_clk_fr. sync_clk for Soft D-PHY IP can be obtained by GPLL instead of the oscillator if GPLL generates a clock above 60 MHz.

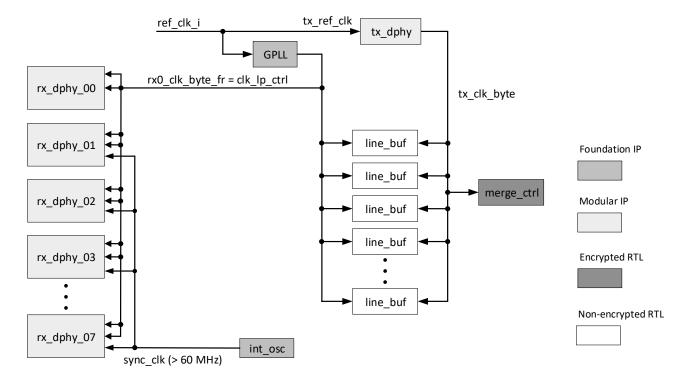


Figure 1.3. Clocking Scheme Example in Non-Continuous Clock Mode

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notic

1.4. RX/TX Permutations and Parameter Calculation

Table 1.2 shows available permutations of RX and TX configurations. Due to the minimum lane bandwidth supported by D-PHY RX IP (80 Mbps), some permutations are not possible and grayed out in the table.

Table 1.2. RX and TX Permutation

Number of RX Channels	Number of RX Lanes	RX Lane Bandwidth (Mbps)	Number of TX Lanes	TX Lane Bandwidth/RX Lane Bandwidth
		80 – 1250	1	2
	1	80 – 1500	2	1
		80 – 1500	4	0.5
		80 – 625	1	4
2	2	80 – 1250	2	2
		80 – 1500	4	1
		80 – 312.5	1	8
	4	80 – 625	2	4
		80 – 1250	4	2
		80 – 833	1	3
	1	80 – 1500	2	1.5
		80 – 1500	4	0.75
		80 – 416	1	6
3	2	80 – 833	2	3
		80 – 1500	4	1.5
		80 – 208*	1*	12*
	4	80 – 416	2	6
		80 – 833	4	3
		80 – 625	1	4
	1	80 – 1250	2	2
		80 – 1500	4	1
		80 – 312.5	1	8
4	2	80 – 625	2	4
		80 – 1250	4	2
		80≤ 156.25*	1*	16*
	4	80 – 312.5	2	8
		80 – 625	4	4
		80 – 500	1	5
	1	80 – 1000	2	2.5
		80 – 1500	4	1.25
		80 – 250*	1*	10*
5	2	80 – 500	2	5
		80 – 1000	4	2.5
		80≤ 125*	1*	20*
	4	80 – 250*	2*	10*
		80 – 500*	4	5
		80 – 416	1	6
	1	80 – 833	2	3
		80 – 1500	4	1.5
6		80 – 208*	1*	12*
	2	80 – 416	2	6
		80 – 833	4	3

Number of RX Channels	Number of RX Lanes	RX Lane Bandwidth (Mbps)	Number of TX Lanes	TX Lane Bandwidth/RX Lane Bandwidth
		80≤ 104*	1*	24*
	4	80 – 208*	2*	12*
		80 – 416	4	6
		80 – 357	1	7
	1	80 – 714	2	3.5
		80 – 1428	4	1.75
		80 – 178*	1*	14*
7	2	80 – 357	2	7
		80 – 714	4	3.5
		80≤ 89*	1*	28*
	4	80 – 178*	2*	14*
		80 – 357	4	7
		80 – 312.5	1	8
	1	80 – 625	2	4
		80 – 1250	4	2
		80 ≤ 156.25*	1*	16*
8	2	80 – 312.5	2	8
		80 – 625	4	4
		80≤ 78.125*	1*	32*
	4	80≤ 156.25*	2*	16*
		80 – 312.5	4	8

^{*}Note: These permutations are not supported.

The Excel sheet (csi2_aggregation_ss_param_NX.xls) is provided to calculate the byte clock, number of channels, and other information. Also, some parameter values can be obtained from RX Data Type and horizontal pixel count. Figure 1.4 shows a sample entry of this sheet. In CSI-2, the amount of active video data per line must be a multiple of 8 bits and that sets some restrictions on horizontal pixel count according to RX Data Type. This amount shows up as Word Count in the sheet and as a byte count of active video data per line when you enter the Horizontal Pixel Count value. You must enter the correct Horizontal Pixel Count value so that Word Count has an integer value. Less common data types (for example, RGB555) are not covered by this sheet, but it is possible to support by manually entering the Word Count value in the sheet as long as the value is integer.

N Input to 1 Output MIPI C	SI-2 Side-by	-Side Ag	gregation RD wi	th CrossLin	ık NX Parameter Calc	ulator		
RX Data Type	RAW10	1			Word Count	2205	Word Count must	ho an integer
Horizontal Pixel Count	1916	┨ ,			word count	2333	word count must	be all litteger
Number of RX Channels	7	\blacksquare	Set by user		DVO DOCT WINITE	4		
	_	- '	/ user	CH#0	RXO_POST_WRITE	1		
Number of RX Lanes	4	1		CH#U	RXO_POST_OFFSET	3		
RX Gear	8	. . /			RXO_EXT_R	0		
RX Line Rate (per lane)	300	Mbps	up to 1500			_		
RX DPHY Clock Frequency	150	MH/z			RX1_PRE_WRITE	0		
RX Byte Clock Frequency	37.5	MHz			RX1_PRE_OFFSET	3		
Number of TX Lanes	4	∦		CH#1	RX1_POST_WRITE	1		
TX Gear	16	<u>, </u>			RX1_POST_OFFSET	6		
TX Line Rate (per lane)	2100		up to 2500		RX1_EXT_R	0		
TX DPHY Clock Frequency	1050	MHz						
TX Byte Clock Frequency	131.25	MHz			RX2_PRE_WRITE	1		
					RX2_PRE_OFFSET	2		
				CH#2	RX2_POST_WRITE	2		
			1		RX2_POST_OFFSET	1		
RX Data Type of YUV420_8	is Legacy Yl	JV420 8-	bit format.		RX2_EXT_R	0		
					DV0 DD5 :::::=	_		
					RX3_PRE_WRITE	0		
				CH#3	RX3_PRE_OFFSET	1		
					RX3_POST_WRITE	1		
					RX3_POST_OFFSET	4		
					RX3_EXT_R	0		
					RX4_PRE_WRITE	1		
					RX4_PRE_OFFSET	0	always 0	
				CH#4	RX4_POST_WRITE	0		
					RX4_POST_OFFSET	7		
					RX4_EXT_R	0		
					RX5_PRE_WRITE	1		
					RX5_PRE_OFFSET	3		
				CH#5	RX5_POST_WRITE	2		
					RX5_POST_OFFSET	2		
					RX5_EXT_R	0		
					RX6_PRE_WRITE	0		
					RX6_PRE_OFFSET	2		
				CH#6	RX6_POST_WRITE	1		
					RX6_POST_OFFSET	5		
					RX6_EXT_R	0		
						_		
					RX7_PRE_WRITE	1		
				CH#7	RX7_PRE_OFFSET	1		
					RX7_POST_WRITE	0		
					RX7_EXT_R	0		

Figure 1.4. Bandwidth and Parameter Calculator

2. Parameters and Port List

There are two directive files for this reference design:

- synthesis_directives.v used for design compilation by Lattice Radiant® and for simulation.
- simulation_directives.v used for simulation.

You can modify these directives according to your own configuration. The settings in these files must match RX D-PHY IP, TX D-PHY IP, and other module settings described in the Design and Module Description section.

2.1. Synthesis Directives

Table 2.1 shows the synthesis directives that affect this reference design. These are used for both synthesis and simulation. As shown in Table 2.1 and Table 2.2, some parameter selections are restricted by other parameter settings.

Table 2.1. Synthesis Directives

Category	Directive	Remarks		
Frame Sync Output	FS_OUT	Enable to output Frame Sync Pulse when defined.		
Frame Sync Interval	FS_INTERVAL {value}	Interval period of Frame Sync in ref_clk_i cycles. Effective when FS_OUT is defined. Value must be equal or less than 20'd1048575.		
Frame Sync Pulse Length	FS_LENGTH {value}	Pulse width of Frame Sync in ref_clk_i cycles. Effective when FS_OUT is defined. Value must be 8'd1 – 8'd255.		
Frama Cuna Dalaritu	FS_POL_POS	Polarity of Frame Sync Pulse. Effective when FS_OUT is defined. Only		
Frame Sync Polarity	FS_POL_NEG	one of these two directives must be defined.		
	RAW8			
	RAW10			
	RAW12			
	RAW14	Data Tura of the grade idea data Only and of the continue discretized		
Data Type	RGB888	Data Type of the payload video data. Only one of these nine directives must be defined.		
	RGB666	Thus, be defined.		
	RGB565			
	YUV422_8			
	YUV422_10			
	NUM_RX_CH_2			
	NUM_RX_CH_3			
	NUM_RX_CH_4	N 1 (5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RX Channel Count	NUM_RX_CH_5	Number of RX channels aggregated. Only one of these seven directives must be defined.		
	NUM_RX_CH_6	must be defined.		
	NUM_RX_CH_7			
	NUM_RX_CH_8			
	NUM_RX_LANE_1			
RX Channel Lane Count	NUM_RX_LANE_2	Number of lanes in each RX channel. Only one of these three directives must be defined.		
	NUM_RX_LANE_4	must be defined.		
RX D-PHY Clock Gear	RX_GEAR_8	Only one of these directives must be selected. Gear 16 can be used for		
LV D-LUT CIOCK GGGL	RX_GEAR_16	only 1- and 2-lane configurations.		

Category	Directive	Remarks			
	RX0_DPHY_HARD				
	RX1_DPHY_HARD				
	RX2_DPHY_HARD				
RX Hard D-PHY Channel	RX3_DPHY_HARD	Specify RX channel that uses Hard D-PHY. Only one of these seven directives can be defined. If none of these is defined, all RX channels will			
KA Halu D-FIII Chaimei	RX4_DPHY_HARD	use Soft D-PHY.			
	RX5_DPHY_HARD				
	RX6_DPHY_HARD				
	RX7_DPHY_HARD				
RX D-PHY Clock Mode ¹	RX_CLK_MODE_HS_ONLY	RX D-PHY Clock mode. Only one of these two directives must be defined.			
KA D-FITT Clock Mode	RX_CLK_MODE_HS_LP	NA D-FITT Clock mode. Only one of these two directives must be defined.			
Use GPLL	USE_GPLL	Use GPLL to create a reference clock to be fed to PLL of TX D-PHY IP.			
Hard D-PHY Word Alignment	WORD_ALIGN	Enable word aligner in RX Hard D-PHY IP. Ignored when Hard D-PHY is not used.			
	RXO_BUF_SIZE_*	RX channel 0 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
	RX1_BUF_SIZE_*	RX channel 1 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
ı	RX2_BUF_SIZE_*	RX channel 2 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
DV D. ff- c'2	RX3_BUF_SIZE_*	RX channel 3 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
RX Buffer Size ²	RX4_BUF_SIZE_*	RX channel 4 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
	RX5_BUF_SIZE_*	RX channel 5 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
	RX6_BUF_SIZE_*	RX channel 6 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
	RX7_BUF_SIZE_*	RX channel 7 FIFO buffer size in byte. * must be 2048, 4096, 8192, or 16384.			
	RX1_PRE_WRITE {value}	Pre-write cycle count to RX channel 1 FIFO buffer. Value must be 0 – 7.			
	RX2_PRE_WRITE {value}	Pre-write cycle count to RX channel 2 FIFO buffer. Value must be 0, 2, 4, or 6.			
	RX3_PRE_WRITE {value}	Pre-write cycle count to RX channel 3 FIFO buffer. Value must be 0 – 7.			
RX Buffer Pre-Write ³	RX4_PRE_WRITE {value}	Pre-write cycle count to RX channel 4 FIFO buffer. Value must be 0 or 4.			
	RX5 PRE WRITE (value)	Pre-write cycle count to RX channel 5 FIFO buffer. Value must be 0 – 7.			
	RX6_PRE_WRITE {value}	Pre-write cycle count to RX channel 6 FIFO buffer. Value must be 0, 2, 4, or 6.			
	RX7_PRE_WRITE {value}	Pre-write cycle count to RX channel 7 FIFO buffer. Value must be 0 – 7.			

Category	Directive	Remarks
	RX1_PRE_OFFSET {value}	Pre-offset byte count to RX channel 1 FIFO buffer. Value must be 0 – 3.
	RX2_PRE_OFFSET {value}	Pre-offset byte count to RX channel 2 FIFO buffer. Value must be 0 or 2.
RX Buffer Pre-Offset ³	RX3_PRE_OFFSET {value}	Pre-offset byte count to RX channel 3 FIFO buffer. Value must be 0 – 3.
RX Buller Pre-Ollset	RX5_PRE_OFFSET {value}	Pre-offset byte count to RX channel 5 FIFO buffer. Value must be 0 – 3.
	RX6_PRE_OFFSET {value}	Pre-offset byte count to RX channel 6 FIFO buffer. Value must be 0 or 2.
	RX7_PRE_OFFSET {value}	Pre-offset byte count to RX channel 7 FIFO buffer. Value must be 0 – 3.
	RX0_POST_WRITE {value}	Post-write cycle count to RX channel 0 FIFO buffer. Value must be 0 – 7.
	RX1_POST_WRITE {value}	Post-write cycle count to RX channel 1 FIFO buffer. Value must be 0 – 7.
	RX2_POST_WRITE {value}	Post-write cycle count to RX channel 2 FIFO buffer. Value must be 0, 2, 4, or 6.
RX Buffer Post-Write ³	RX3_POST_WRITE {value}	Post-write cycle count to RX channel 3 FIFO buffer. Value must be 0 or 4.
	RX4_POST_WRITE {value}	Post-write cycle count to RX channel 4 FIFO buffer. Value must be 0 - 7.
	RX5_POST_WRITE {value}	Post-write cycle count to RX channel 5 FIFO buffer. Value must be .
	RX6_POST_WRITE {value}	Post-write cycle count to RX channel 6 FIFO buffer. Value must be .
	RX7_POST_WRITE {value}	Post-write cycle count to RX channel 7 FIFO buffer. Value must be .
	RX0_POST_OFFSET {value}	Post-offset byte count to RX channel 0 FIFO buffer. Value must be 0 – 7.
	RX1_POST_OFFSET {value}	Post-offset byte count to RX channel 1 FIFO buffer. Value must be 0, 2, 4, or 6.
	RX2_POST_OFFSET {value}	Post-offset byte count to RX channel 2 FIFO buffer. Value must be 0 - 7.
RX Buffer Post-Offset ³	RX3_POST_OFFSET {value}	Post-offset byte count to RX channel 3 FIFO buffer. Value must be 0 or 4.
	RX4_POST_OFFSET {value}	Post-offset byte count to RX channel 4 FIFO buffer. Value must be .
	RX5_POST_OFFSET {value}	Post-offset byte count to RX channel 5 FIFO buffer. Value must be .
	RX6_POST_OFFSET {value}	Post-offset byte count to RX channel 6 FIFO buffer. Value must be .
	RXO_EXT_R {value}	Extra Read Flag for RX channel 0 FIFO Buffer. Value must be 0 or 1.
	RX1_EXT_R {value}	Extra Read Flag for RX channel 1 FIFO Buffer. Value must be 0 or 1.
	RX2_EXT_R {value}	Extra Read Flag for RX channel 2 FIFO Buffer. Value must be 0 or 1.
RX Buffer Extra Read ³	RX3_EXT_R {value}	Extra Read Flag for RX channel 3 FIFO Buffer. Value must be 0 or 1.
KX Buffer Extra Read	RX4_EXT_R {value}	Extra Read Flag for RX channel 4 FIFO Buffer. Value must be 0 or 1.
	RX5_EXT_R {value}	Extra Read Flag for RX channel 5 FIFO Buffer. Value must be 0 or 1.
	RX6_EXT_R {value}	Extra Read Flag for RX channel 6 FIFO Buffer. Value must be 0 or 1.
	RX7_EXT_R {value}	Extra Read Flag for RX channel 7 FIFO Buffer. Value must be 0 or 1.
Long Packet Transfer Request Delay	LP_TX_REQ_DLY {value}	Long Packet Transfer Request Delay Time in tx_clk_byte cycles. Value must be 1 – 4095. Automatically calculated value is used if not defined.
nequest Delay		Refer to Line Buffer Read and Data Merge Operation section for details.
Virtual Channel ID	VC {value}	Virtual Channel ID. Value must be 2'd0 – 2'd3. The value on RX channel 0 is used if not defined.

Category	Directive	Remarks
	NUM_TX_LANE_1	
TX channel lane count	NUM_TX_LANE_2	Number of lanes in TX channel. Only one of these three directives must be defined.
	NUM_TX_LANE_4	be defined.
TX D-PHY Clock Gear	TX_GEAR_8	
TX D-PHY Clock Gear	TX_GEAR_16	TX D-PHY Clock Gear. Only one of these two directives must be defined.
TX D-PHY Clock Mode ⁴	TX_CLK_MODE_HS_ONLY	
TA D-PHY Clock Mode	TX_CLK_MODE_HS_LP	TX D-PHY Clock mode. Only one of these two directives must be defined.
TX Lane Bandwidth	TX_LANE_BW {value}	TX D-PHY Lane Bandwidth in Mbps. Effective when TX_CLK_MODE_HS_LP is defined.
Keep HS mode	KEEP_HS	Keep the clock lane in HS mode during the horizontal blanking periods of active video lines when defined. Effective when TX_CLK_MODE_HS_LP is defined.

Notes:

- 1. HS_LP mode means *non-continuous clock mode* and HS_ONLY means *continuous clock mode*. HS_LP mode works only if RX byte clock can be obtained directly or indirectly from the external clock.
- 2. This value affects necessary EBR used in the device. Total number of EBR must not exceed 84 for NX-40 and 24 for NX-17. Refer to line_buf section for details.
- 3. These parameter values are obtained by the provided Excel sheet as shown in Figure 1.4.
- 4. HS_LP mode means *non-continuous clock mode* and HS_ONLY means *continuous clock mode*. This mode does not have to be same as RX D-PHY Clock Mode.

2.2. Simulation Directives

Table 2.2 shows the simulation directives for this reference design.

Table 2.2. Simulation Directives

Category	Directive	Remarks		
Simulation	SIM	Select behavioral models for simulation.		
Reference clock period	REF_CLK_PERIOD {value}	Reference clock period in ps		
	RX0_DPHY_CLK_PERIOD {value}	RX Channel 0 DPHY clock period in ps		
	RX1_DPHY_CLK_PERIOD {value}	RX Channel 1 DPHY clock period in ps		
	RX2_DPHY_CLK_PERIOD {value}	RX Channel 2 DPHY clock period in ps		
RX D-PHY clock period	RX3_DPHY_CLK_PERIOD {value}	RX Channel 3 DPHY clock period in ps		
KX D-PHT Clock period	RX4_DPHY_CLK_PERIOD {value}	RX Channel 4 DPHY clock period in ps		
	RX5_DPHY_CLK_PERIOD {value}	RX Channel 5 DPHY clock period in ps		
	RX6_DPHY_CLK_PERIOD {value}	RX Channel 6 DPHY clock period in ps		
	RX7_DPHY_CLK_PERIOD {value}	RX Channel 7 DPHY clock period in ps		
	CH0_DELAY {value}	Initial delay to activate RX Channel 0 in ps		
	CH1_DELAY {value}	Initial delay to activate RX Channel 1 in ps		
	CH2_DELAY {value}	Initial delay to activate RX Channel 2 in ps		
Initial delay on RX	CH3_DELAY {value}	Initial delay to activate RX Channel 3 in ps		
channel	CH4_DELAY {value}	Initial delay to activate RX Channel 4 in ps		
	CH5_DELAY {value}	Initial delay to activate RX Channel 5 in ps		
	CH6_DELAY {value}	Initial delay to activate RX Channel 6 in ps		
	CH7_DELAY {value}	Initial delay to activate RX Channel 7 in ps		
Gap (LP) time between active lines on RX Channel	RX_DPHY_LPS_GAP {value}	Horizontal Blanking Gap time on RX Channels in ps		
Gap (LP) time between Frame End and Frame Start on RX Channel	RX_DPHY_FRAME_GAP {value}	Vertical Blanking Gap time on RX Channels in ps		
RX Channel 0 VC	RXO_VC {value}	Virtual Channel ID on RX Channel 0. The value must be $4'd0 - 4'd3$. The same values are used on all RX channels.		
Video data configuration on RX Channels	NUM_FRAMES {value}	Number of frames to feed		
	NUM_LINES {value}	Number of active lines per frame		
Internal signal monitoring	MISC_ON	Enables internal signals to be monitored by the testbench. Always enable this directive.		

2.3. Top-Level I/O

Table 2.3 shows the top-level I/O of this reference design. Actual I/O depend on the customer's channel and lane configurations. All necessary I/O ports are automatically declared by compiler directives.

Table 2.3. CSI-2 Side-by-Side Aggregation Top-Level I/O

Port Name	Direction	Description		
Clocks and Rese	ets			
ref_clk_i	I	Input reference clock. Used to feed a clock to TX D-PHY PLL directly or indirectly. This port is		
(optional)		declared only when RX_CLK_MODE_HS_LP or FS_OUT is defined in synthesis_directives.v.		
reset_n_i	1	Asynchronous active low system reset		
CSI-2 RX Interfa	ce			
fs_o (optional)	0	Frame Sync. Only declared when FS_OUT is defined in synthesis_directives.v.		
rx0_clk_p_i	1	Positive differential RX Ch0 D-PHY input clock		
rx0_clk_n_i	1	Negative differential RX Ch0 D-PHY input clock		
rx0_d0_p_i	1	Positive differential RX Ch0 D-PHY input data 0		
rx0_d0_n_i	1	Negative differential RX Ch0 D-PHY input data 0		
rx0_d1_p_i	1	Positive differential RX Ch0 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx0_d1_n_i	1	Negative differential RX Ch0 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx0_d2_p_i	I	Positive differential RX Ch0 D-PHY input data 2 (in case of 4-lane configuration)		
rx0_d2_n_i	I	Negative differential RX Ch0 D-PHY input data 2 (in case of 4-lane configuration)		
rx0_d3_p_i	I	Positive differential RX Ch0 D-PHY input data 3 (in case of 4-lane configuration)		
rx0_d3_n_i	I	Negative differential RX Ch0 D-PHY input data 3 (in case of 4-lane configuration)		
rx1_clk_p_i	I	Positive differential RX Ch1 D-PHY input clock		
rx1_clk_n_i	I	Negative differential RX Ch1 D-PHY input clock		
rx1_d0_p_i	I	Positive differential RX Ch1 D-PHY input data 0		
rx1_d0_n_i	I	Negative differential RX Ch1 D-PHY input data 0		
rx1_d1_p_i	I	Positive differential RX Ch1 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx1_d1_n_i	I	Negative differential RX Ch1 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx1_d2_p_i	I	Positive differential RX Ch1 D-PHY input data 2 (in case of 4-lane configuration)		
rx1_d2_n_i	I	Negative differential RX Ch1 D-PHY input data 2 (in case of 4-lane configuration)		
rx1_d3_p_i	I	Positive differential RX Ch1 D-PHY input data 3 (in case of 4-lane configuration)		
rx1_d3_n_i	I	Negative differential RX Ch1 D-PHY input data 3 (in case of 4-lane configuration)		
rx2_clk_p_i	I	Positive differential RX Ch2 D-PHY input clock		
rx2_clk_n_i	I	Negative differential RX Ch2 D-PHY input clock		
rx2_d0_p_i	I	Positive differential RX Ch2 D-PHY input data 0		
rx2_d0_n_i	I	Negative differential RX Ch2 D-PHY input data 0		
rx2_d1_p_i	I	Positive differential RX Ch2 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx2_d1_n_i	I	Negative differential RX Ch2 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx2_d2_p_i	I	Positive differential RX Ch2 D-PHY input data 2 (in case of 4-lane configuration)		
rx2_d2_n_i	I	Negative differential RX Ch2 D-PHY input data 2 (in case of 4-lane configuration)		
rx2_d3_p_i	I	Positive differential RX Ch2 D-PHY input data 3 (in case of 4-lane configuration)		
rx2_d3_n_i	I	Negative differential RX Ch2 D-PHY input data 3 (in case of 4-lane configuration)		
rx3_clk_p_i	I	Positive differential RX Ch3 D-PHY input clock		
rx3_clk_n_i	I	Negative differential RX Ch3 D-PHY input clock		
rx3_d0_p_i	I	Positive differential RX Ch3 D-PHY input data 0		
rx3_d0_n_i	I	Negative differential RX Ch3 D-PHY input data 0		
rx3_d1_p_i	I	Positive differential RX Ch3 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx3_d1_n_i	I	Negative differential RX Ch3 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)		
rx3_d2_p_i	ı	Positive differential RX Ch3 D-PHY input data 2 (in case of 4-lane configuration)		

Port Name	Direction	Description	
rx3_d2_n_i	I	Negative differential RX Ch3 D-PHY input data 2 (in case of 4 lane configuration)	
rx3_d3_p_i	I	Positive differential RX Ch3 D-PHY input data 3 (in case of 4 lane configuration)	
rx3_d3_n_i	I	Negative differential RX Ch3 D-PHY input data 3 (in case of 4 lane configuration)	
rx4_clk_p_i	I	Positive differential RX Ch4 D-PHY input clock	
rx4_clk_n_i	I	Negative differential RX Ch4 D-PHY input clock	
rx4_d0_p_i	1	Positive differential RX Ch4 D-PHY input data 0	
rx4_d0_n_i	I	Negative differential RX Ch4 D-PHY input data 0	
rx4_d1_p_i	I	Positive differential RX Ch4 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx4_d1_n_i	I	Negative differential RX Ch4 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx4_d2_p_i	I	Positive differential RX Ch4 D-PHY input data 2 (in case of 4-lane configuration)	
rx4_d2_n_i	I	Negative differential RX Ch4 D-PHY input data 2 (in case of 4-lane configuration)	
rx4_d3_p_i	I	Positive differential RX Ch4 D-PHY input data 3 (in case of 4-lane configuration)	
rx4_d3_n_i	I	Negative differential RX Ch4 D-PHY input data 3 (in case of 4-lane configuration)	
rx5_clk_p_i	1	Positive differential RX Ch5 D-PHY input clock	
rx5_clk_n_i	1	Negative differential RX Ch5 D-PHY input clock	
rx5_d0_p_i	I	Positive differential RX Ch5 D-PHY input data 0	
rx5_d0_n_i	I	Negative differential RX Ch5 D-PHY input data 0	
rx5_d1_p_i	I	Positive differential RX Ch5 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx5_d1_n_i	1	Negative differential RX Ch5 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx5_d2_p_i	I	Positive differential RX Ch5 D-PHY input data 2 (in case of 4-lane configuration)	
rx5_d2_n_i	1	Negative differential RX Ch5 D-PHY input data 2 (in case of 4-lane configuration)	
rx5_d3_p_i	I	Positive differential RX Ch5 D-PHY input data 3 (in case of 4-lane configuration)	
rx5_d3_n_i	I	Negative differential RX Ch5 D-PHY input data 3 (in case of 4-lane configuration)	
rx6_clk_p_i	I	Positive differential RX Ch6 D-PHY input clock	
rx6_clk_n_i	1	Negative differential RX Ch6 D-PHY input clock	
rx6_d0_p_i	I	Positive differential RX Ch6 D-PHY input data 0	
rx6_d0_n_i	I	Negative differential RX Ch6 D-PHY input data 0	
rx6_d1_p_i	I	Positive differential RX Ch6 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx6_d1_n_i	I	Negative differential RX Ch6 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx6_d2_p_i	I	Positive differential RX Ch6 D-PHY input data 2 (in case of 4-lane configuration)	
rx6_d2_n_i	I	Negative differential RX Ch6 D-PHY input data 2 (in case of 4-lane configuration)	
rx6_d3_p_i	Ţ	Positive differential RX Ch6 D-PHY input data 3 (in case of 4-lane configuration)	
rx6_d3_n_i	I	Negative differential RX Ch6 D-PHY input data 3 (in case of 4-lane configuration)	
rx7_clk_p_i	Ţ	Positive differential RX Ch7 D-PHY input clock	
rx7_clk_n_i	I	Negative differential RX Ch7 D-PHY input clock	
rx7_d0_p_i	I	Positive differential RX Ch7 D-PHY input data 0	
rx7_d0_n_i	I	Negative differential RX Ch7 D-PHY input data 0	
rx7_d1_p_i	I	Positive differential RX Ch7 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx7_d1_n_i	I	Negative differential RX Ch7 D-PHY input data 1 (in case of 2-lane or 4-lane configuration)	
rx7_d2_p_i	I	Positive differential RX Ch7 D-PHY input data 2 (in case of 4-lane configuration)	
rx7_d2_n_i	I	Negative differential RX Ch7 D-PHY input data 2 (in case of 4-lane configuration)	
rx7_d3_p_i	1	Positive differential RX Ch7 D-PHY input data 3 (in case of 4-lane configuration)	
rx7_d3_n_i	I	Negative differential RX Ch7 D-PHY input data 3 (in case of 4-lane configuration)	

Port Name	Direction	Description		
CSI-2 TX Interface				
tx_clk_p_o	0	Positive differential TX D-PHY output clock		
tx_clk_n_o	0	Negative differential TX D-PHY output clock		
tx_d0_p_o	0	Positive differential TX D-PHY output data 0		
tx_d0_n_o	0	Negative differential TX D-PHY output data 0		
tx_d1_p_o	0	Positive differential TX D-PHY output data 1 (in case of 2-lane or 4-lane configuration)		
tx_d1_n_o	0	Negative differential TX D-PHY output data 1 (in case of 2-lane or 4-lane configuration)		
tx_d2_p_o	0	Positive differential TX D-PHY output data 2 (in case of 4-lane configuration)		
tx_d2_n_o	0	Negative differential TX D-PHY output data 2 (in case of 4-lane configuration)		
tx_d3_p_o	0	Positive differential TX D-PHY output data 3 (in case of 4-lane configuration)		
tx_d3_n_o	0	Negative differential TX D-PHY output data 3 (in case of 4-lane configuration)		

20

3. Design and Module Description

The top-level design (csi2_aggr_ss_NX.v) consists of the following modules:

- rx0*_unit (* is 0 7)
- rx_dphy (rx_dphy_h or rx_dphy_s)
- line buf
- merge ctrl
- tx_dphy

The top-level design has a reset synchronization logic. In addition, GPLL may be added if necessary according to RX and TX configurations. When FS_OUT is defined, Frame Sync pulse (fs_o) is generated. This could be useful to give the frame timing synchronization to multiple camera sensors.

3.1. rx0*_unit

This module is instantiated for each RX channel as a wrapper module to include rx_dphy (rx_dphy_h or rx_dphy_s) and line_buf modules.

3.1.1. rx_dphy

Since all RX channels must be in the same configuration, a single module can cover all RX channels when Hard D-PHY is not in use. Assuming one of RX channels uses a Hard D-PHY IP, two modules are considered; rx_dphy_h for Hard D-PHY RX IP and rx_dphy_s for Soft D-PHY RX IP. Figure 3.1 shows an example of IP interface settings in Radiant for the CSI-2/DSI D-PHY Receiver Submodule IP. Refer to CSI/DSI D-PHY Rx IP Core User Guide (FPGA-IPUG-02081) for details.

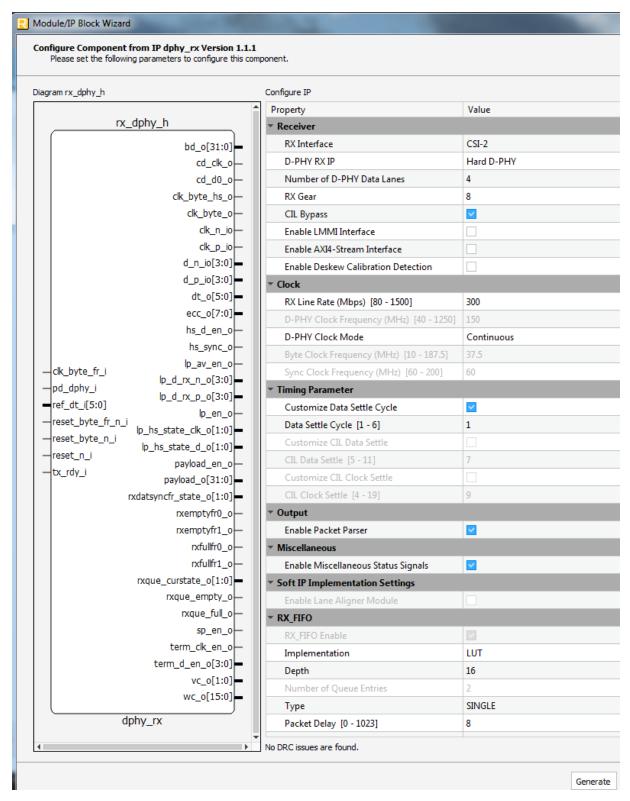


Figure 3.1. rx_dphy IP Creation in Lattice Radiant

The following shows guidelines and parameter settings required for this reference design.

- RX Interface Select CSI-2.
- DPHY RX IP Hard D-PHY is selected for rx_dphy_h and Soft D-PHY is selected for rx_dphy_s. rx_dphy_h is used for only one RX channel specified by RX*_D-PHY_HARD setting.
- Number of RX Lanes Set according to channel configuration. The value must match NUM_RX_LANE_* setting.
- RX Gear Select 8 or 16; 16 is supported for 1-lane and 2-lane configurations only. 16 is recommended when the RX byte clock speed exceeds 150 MHz or STA fails with Gear 8.
- CIL Bypass Select Enabled.
- Enable LMMI Interface Select Disabled (unchecked).
- Enable AXI4-Stream Interface Select Disabled (unchecked).
- RX Line Rate Set according to channel configuration. Must be 1250 or below for 4 lane configuration.
- DPHY Clock Mode Select Continuous or Non-continuous. Must match RX_CLK_MODE_* setting (Continuous = HS ONLY, Non-continuous = HS LP).
- Customize Data Settle Cycle Select Disabled (unchecked) for initial HW test and select Enabled (checked) for simulation.
- Data Settle Cycle Select the smallest value for simulation.
- Sync Clock Frequency Enter the value of sync_clk in case of Soft D-PHY.
- Enable Packet Parser Select Enabled.
- Enable Miscellaneous Status Signals Select Enabled.
- Enable Lane Aligner Module Select Enabled in case of Soft D-PHY in 2-lane and 4-lane configurations.

Refer to RX FIFO section for RX FIFO related settings.

This module takes serial CSI-2 data and outputs byte data after de-serialization in CSI-2 High Speed mode. It is recommended to set the module names to rx_dphy_h and rx_dphy_s so that you do not need to modify the instance names of these IPs in rx0*_unit as well as the simulation setup file. Otherwise, you have to modify the names accordingly.

RX Gear 16 is supported for only 1-lane and 2-lane configurations in this design.

Data Settle Cycle determines when this module begins hunting SoT (start of Transmission) code (0xB8) on each lane after LP to HS transition is detected. The suggested value is around the middle of the allowable timing range defined by MIPI D-PHY specification so that this module does not work properly when SoT begins earlier than the timing obtained by this parameter. Therefore, reducing this value is one of the option you can try when this module is not working.

3.1.2. RX FIFO

RX FIFO is useful especially in non-continuous clock mode and the continuous byte clock cannot have the exactly same frequency as the non-continuous byte clock used in D-PHY RX IP. Also it is useful in this design even in continuous clock mode since the continuous byte clock can be shared among all RX channels by utilizing this FIFO. It resides after the word aligner in case of Hard D-PHY RX IP and resides before the word aligner in case of Soft D-PHY RX IP.

RX FIFO Enable and Misc Signals options must be enabled in all cases.

3.1.2.1. Hard D-PHY in Continuous Clock Mode

In this case, the minimum configuration of RX FIFO is recommended (LUT based, Depth = 16, *Type* Implementation = SINGLE, Packet Delay = 4, *Clock* Implementation = Dual Clock).

3.1.2.2. Soft D-PHY in Continuous Clock Mode

In this case, RX FIFO is not necessary and can be set to OFF when the read clock is the same as write clock. In this application, read clocks on RX channels are often unified and the read clock might come from different RX channels even though the frequency is same. In such cases, LUT based RX FIFO must be used with Depth = 16, *Type* Implementation = SINGLE, Packet Delay = 4, Clock Implementation = Dual Clock.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02212-1 0

23

3.1.2.3. Non-Continuous Clock Mode

In this case, RX FIFO configuration depends on the relationship between the non-continuous byte clock in D-PHY RX IP and the continuous byte clock, which is most likely generated by GPLL. The non-continuous byte clock is used to write the data to RX FIFO and the continuous byte clock is used to read the data from RX FIFO.

- Continuous byte clock frequency = non-continuous byte clock frequency
 In this case, the minimum configuration of RX FIFO is recommended (LUT based, Depth = 16, Type Implementation = SINGLE, Packet Delay = 4, Clock Implementation = Dual Clock).
- Continuous byte clock frequency < non-continuous byte clock frequency
 In this case, *Type* Implementation = SINGLE and Packet Delay = 1 is recommended and others depend on the frequency ratio between these two clocks. When the clock speed difference gets larger, the required depth of RX FIFO gets larger. First, it is important to know the horizontal blanking period of the incoming RX channel. For example, in case that one-line active video period is 40 μs and the horizontal blanking is 4 μs, then we have 10 % of extra time to process the active data. This means the continuous byte clock can be as slow as ~-10% comparing to the non-continuous byte clock to avoid RX FIFO overflow.
- Continuous byte clock frequency > non-continuous byte clock frequency
 There are two options in this case:
 - Use Type Implementation = SINGLE with large Packet Delay
 Set the Depth large enough to store the enough amount of data to avoid RX FIFO underflow after FIFO read begins after the time specified by Packet Delay. In general, Packet Delay must be set close the depth of the RX FIFO. This configuration can be used when we have enough time interval between the last active line and the frame end short packet so that the frame end short packet is not written to RX FIFO while it still contains the last active line of video data.
 - Use *Type* Implementation = QUEUE with Number of Queue Entries = 2

 This is useful when the time interval between the last active line and frame end short packet is short or unknown. Depth must be set large enough to contain one active line data (plus some more for short packet data). This mode is also useful when line start and the line end short packets exist in the incoming RX stream. In this case, Number of Queue Entries = 4 and extra depth is required (one line plus two short packet data). FIFO read begins after each HS data transaction is completed. EBR must be used. Counter Width is determined by the amount of the one-line video data plus extra overheads by preceding HS zero data and trail byte in the end of HS transmission.
- Frequency relationship is unknown
 - When the continuous byte clock is within the certain range against the non-continuous byte clock (for example, two clocks come from different clock sources which have ppm tolerance), we have no idea which clock is faster. The simplest way is to use *Type* Implementation = SINGLE with setting Packet Delay to the midpoint of FIFO depth when the tolerance is in ppm level. For example, assuming the clock tolerance is within +/- 500ppm for 2 lane Gear 8 RAW10 with 1920 horizontal pixels. The payload byte count is $1920 \times 5/4 = 2400$ so that each lane takes 1200 bytes. 1200×500 ppm = 0.6, which means small FIFO with middle point read delay (for example, FIFO depth = 16 with read delay of 8-byte clock cycles) works fine. Using LUT is preferable as long as FIFO depth is small since using EBR here might cause the shortage of EBR in line_buf modules. QUEUE can also be used as described above even though it requires more EBR.

In case you do not have detailed information regarding RX data (whether containing line start/end short packet, interval of the horizontal blanking period against active line period), the safest way is to set the continuous byte clock faster than the non-continuous byte clock. You may use *Type* Implementation = QUEUE with Number of Queue Entries = 4, even though it may require more EBR resources comparing to *Type* Implementation = SINGLE. You have to make sure that total number of EBR used in the device does not exceed 84.

3.2. line_buf

This module is instantiated for each RX channel. It contains a dual clock FIFO to store payload data of active video lines. Data write is based on RX byte clock and data read is based on TX byte clock for merging. Data widths of write and read sides depend on bus width of RX and TX side respectively, which means bus widths could be different. Several things have to be considered regarding FIFO operation.

3.2.1. Buffer Size

The required buffer size is obtained as shown below:

$$Buffer\,Size[CH\ \#n]\cong \frac{(N+n-1)}{N}*(Payload\ byte\ count\ per\ line)\ bytes,$$

where n is a channel number (0 to 7) and N is a number of RX channels (2 to 8).

The above equation shows that the required buffer size for the first channel is less than 1-line data, the one for the second channel equals to 1-line data and rests are between 1 line and 2 line data. Required sizes for third and later channels are substantially smaller than the above calculated values due to the existence of horizontal blanking period. Figure 3.2 shows an example of brief buffer write and read timings in case of 3-channel aggregation.

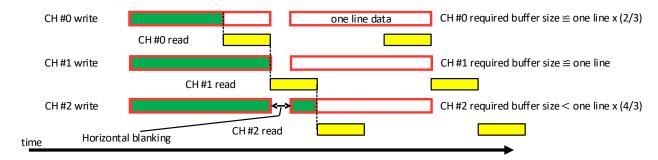


Figure 3.2. Buffer Size and Brief Write/Read Timings

On the other hand, the minimum count of EBR (Embedded Block RAM) to form the FIFO depends on the wider bus width between RX and TX, where bus width is derived by (lane count) x Gear. Table 3.1 shows the relationship between RX/TX bus width and unit count of EBR and payload byte count. The number of EBR per RX channel is a multiple of the unit count shown in Table 3.1.

Table 3.1. Unit EBR and Payload Byte Count of RX Buffer

RX Bus Width	TX Bus Width	Unit EBR Count	Unit Payload Byte Count
8	8	1	2048
	16	1	2048
	32	1	2048
	64	2	4096
	8	1	2048
16	16	1	2048
	32	1	2048
	64	2	4096
	8	1	2048
22	16	1	2048
32	32	1	2048
	64	2	4096

Example: In case of 4 RX Channels with 2 lanes, Gear 8, RAW10, 3840 pixels per line to TX with 4 lanes, Gear 8:

Required RX Buffer Size [CH #0] = $(4+0-1)/4 \times (3840 \times 10/8) = 3600$ bytes,

Required RX Buffer Size [CH #1] = $(4+1-1)/4 \times (3840 \times 10/8) = 4800$ bytes,

Required RX Buffer Size [CH #2] = $(4+2-1)/4 \times (3840 \times 10/8) = 6000$ bytes,

Required RX Buffer Size [CH #3] = $(4+3-1)/4 \times (3840 \times 10/8) = 7200$ bytes.

Unit EBR count = 1, unit payload byte count = 2048.

Therefore, CH #0 requires 2 EBR and CH #1 - CH #3 require 4 EBR, which means 14 EBR are required in total.

Note that the total number of EBR in the device cannot exceed 84. Since the buffer read timing might vary depending on TX side status, it might be safe to raise the buffer size in case that the required buffer size is close to the byte count you get from Table 3.1. For example, if the pixel count is changed from 1920 to 2180 in the above example, the required RX Buffer size of CH #3 changes to 4087.5 bytes, which is closer to 4096 bytes using 2 EBR and it might be better to raise the buffer size. On the other hand, if the horizontal blanking is long enough, it is possible to handle larger payload byte count by the EBR, which can contain less number of byte than the value obtained by the equation shown above. For these reasons, the values specified by RX*_BUF_SIZE_* you can get from the above equations are reference only and you need to determine the actual values.

3.2.2. RX Buffer Offset Control

In case that the payload byte count does not match a multiple of RX bus width and/or TX bus width in the unit of byte, some considerations are necessary regarding RX buffer write and read. Figure 3.3 shows an example of (RX bus width) < (TX bus width). If WC (payload byte count) is not a multiple of TX bus width, RX side has to write some dummy data to the FIFO, otherwise the final data cannot read out from TX side. In this example, in the end of CH #0 data write transaction, bd #n is written to the FIFO with dummy data. Also, one extra dummy write cycle is necessary (RXO_POST_WRITE = 1) to make this data readable from TX side. The amount of the residual byte info (RXO_POST_OFFSET= 1) is used by merge_ctrl module to make a proper concatenation of the previous channel data and the current channel data. In the beginning of the write transaction of CH #1, the write data has to be shifted according to the offset info (RX1_PRE_OFFSET = 1). This makes the concatenation process easier on TX side by merge_ctrl. In the beginning of the write transaction of CH #2, one dummy write cycle is necessary (RX2_PRE_WRITE = 1) to make a necessary data shift since the offset in the end of previous channel write (RX1_POST_OFFSET = 2) is equal to the RX bus width. Figure 3.4 shows another example. In this case, RX*_PRE_OFFSET is always 0 and RX*_POST_OFFSET of the current channel always equals to RX*_PRE_WRITE of the next channel since RX bus width = 8.

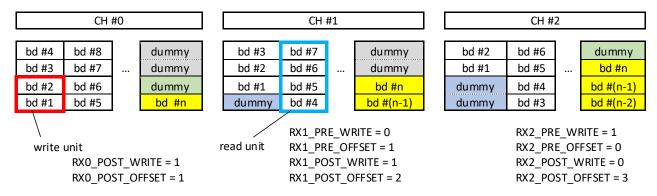


Figure 3.3. RX Buffer Offset Example #1 (RX bus_width = 16, TX bus_width = 32, WC residual = 1)

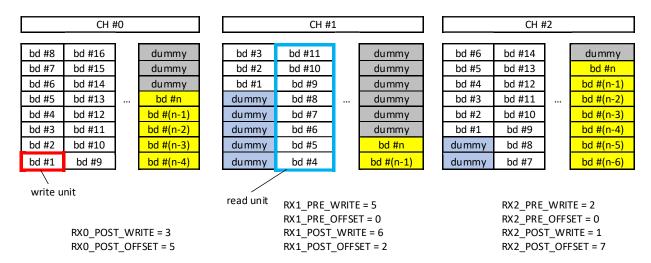


Figure 3.4. RX Buffer Offset Example #2 (RX_bus width = 8, TX bus_width = 64, WC residual = 5)

Figure 3.5 shows an example of (RX bus width) > (TX bus width). In this case, TX side has to have an extra dummy reads cycle to match the amount of write data and read data by the parameter RX* EXT R = 1.

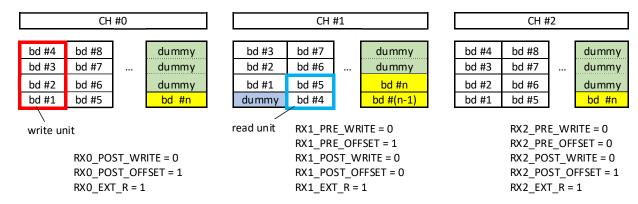


Figure 3.5. RX Buffer Offset Example #2 (RX bus width = 32, TX bus width = 16, WC residual = 1)

These FIFO related parameter values are automatically obtained using the provided Excel sheet shown in Figure 1.4.

3.3. merge_ctrl

This module monitors the read ready flag of line_buf of RX channel 0, then reads RX Buffer data from channel 0 followed by channel 1, 2, ... The read data are concatenated and sent to tx_dphy as single line data along with a new WC value. This module uses two FIFO related parameters; RX*_POST_OFFSET are used to make a necessary data shift when the new channel data are concatenated after finishing the previous channel data read. RX*_EXT_R is used to make an extra read in some cases when (RX bus width) > (TX bus width).

3.3.1. LP-HS Control in Non-Continuous Clock Mode

This module controls LP-HS-LP transition of tx_dphy module as shown in Figure 3.6 and Figure 3.7 with a following sequence in case of non-continuous clock mode:

- Check tx_c2d_rdy = 1, then assert clk_hs_en and txfr_req (at least one tx_clk_byte cycle).
- Clock lane goes into HS mode.
- 3. Data lane goes into HS mode.
- 4. Wait for txfr_en = 1, then assert tx_sp_en or tx_lp_en for one tx_clk_byte cycle.
- 5. In case of Long Packet data, assert tx bd en along with tx bd two cycles after ld pyld = 1.
- 6. HS data transmission.
- 7. After HS data transmission is done, txfr_en goes 0 and data lane goes into LP mode.
- 8. Clock lane goes into LP mode.
- 9. After all HS transaction ends, tx_c2d_rdy becomes 1, which means tx_dphy is ready to handle the next HS transaction.

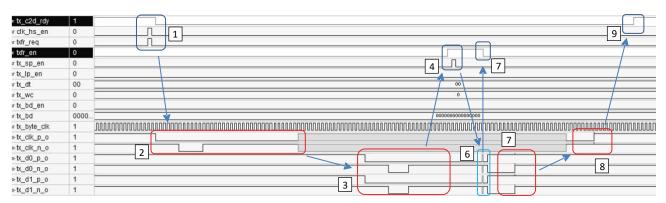


Figure 3.6. LP-HS-LP Transition in Non-Continuous Clock Mode (Short Packet)

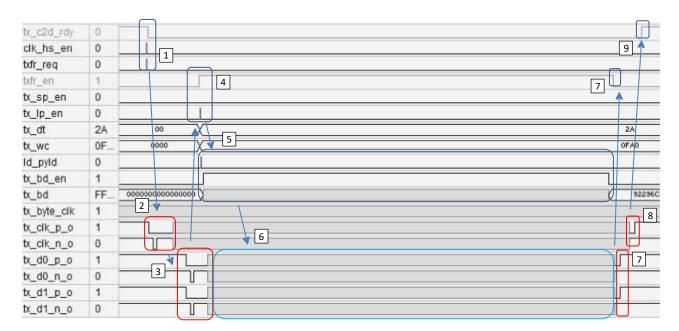


Figure 3.7. LP-HS-LP Transition in Non-Continuous Clock Mode (Long Packet)

In case of non-continuous clock mode, it is possible to keep the clock lane in HS mode during active video period. By enabling 'define KEEP_HS in synthesis_directives.v, the clock lane goes into LP mode only between frame end short packet and frame start short packet as shown in Figure 3.8. clk_hs_en stays 1 from Frame Start to Frame End that makes clock lane in HS mode without going in to LP mode during horizontal blanking periods. This is useful when the horizontal blanking period is too short to make both clock lane and data lane go into LP mode, which requires more overhead time.

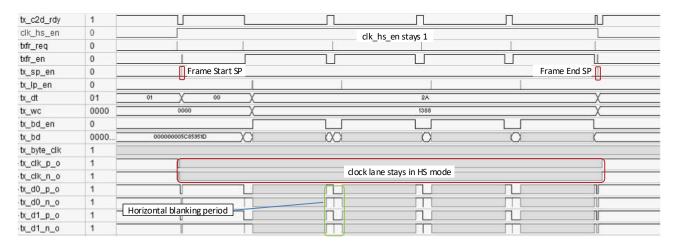


Figure 3.8. LP-HS-LP Transition in Non-Continuous Clock Mode with KEEP_HS

3.3.2. LP-HS Control in Continuous Clock Mode

Figure 3.9 shows LP-HS-LP transition in continuous clock mode for Short Packet transaction. The control scheme by this module is the same as non-continuous clock mode. The only difference from Figure 3.6 is clock lane stays in HS mode all the time and does not go into LP mode.

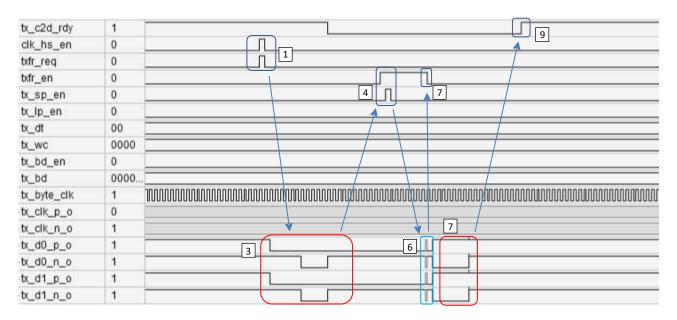


Figure 3.9. LP-HS-LP Transition in Continuous Clock Mode (Short Packet)

3.3.3. Line Buffer Read and Data Merge Operation

Figure 3.10 shows the global timing of the 5-channel merge operation. Only RX channel 0 signals are shown before Line Buffer module since timing are almost same in all RX channels. This module begins to read RX0 data when rx0_bufd_rdy is asserted followed by RX1, RX2... RX4 data reads for concatenation. The concatenated data are sent to tx_dphy as tx_bd. As described in line_buf section, rx0_bufd_rdy is asserted when ~4/5 of one line data are written to the line buffer FIFO in case of 5-channel aggregation. On the other hand, tx_dphy must be in HS mode before this module begins sending concatenated video data. To make this happen, the parameter *LP_TX_REQ_DLY* is provided. This value determines the delay time from rx0_lp_av_en assertion to txfr_req assertion in tx_clk_byte cycles. The value is automatically calculated by the design. This calculation considers the transition time from LP to HS mode for data lane in case of continuous clock mode and both clock lane and data lane in case of non-continuous clock mode. When KEEP HS is defined in non-continuous clock mode, only data lane transition is considered.

You can set your own value by enabling `define LP_TX_REQ_DLY xxx in synthesis_directives.v to overwrite the automatically calculated value. The smaller value makes data lane (and clock lane in case of non-continuous clock mode) goes into HS mode earlier, but that leads to higher power consumption. The larger value makes power consumption lower, but video data is corrupted if the value is too big and timing overlap happens between LP to HS transition and RXO buffer read.

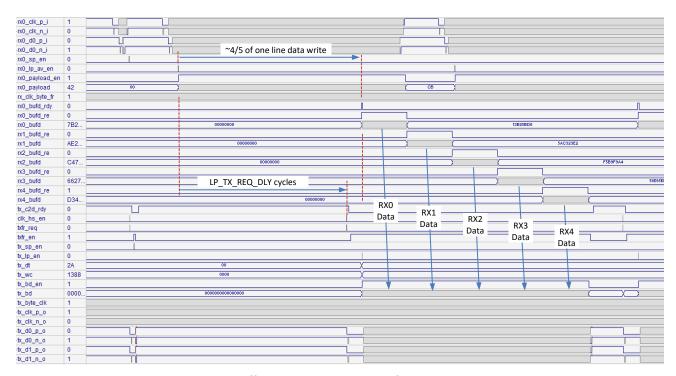


Figure 3.10. Line Buffer Read and Data Merge for 5-Channel Aggregation

Regarding Word Count (payload video data byte count per active line), this module takes the original WC value on RX channel 0 and multiplies it by the number of RX channels. The result is sent to tx_dphy as the final WC value of the aggregated video data.

Regarding VC (Virtual Channel ID), the value specified by `define VC x is used if defined, otherwise VC of RX channel 0 is sent to tx_dphy .

3.4. tx_dphy

You must create this module according to channel conditions, such as number of lanes, bandwidth, and others. Figure 3.11 shows an example IP interface setting in Clarity Designer for the CSI-2/DSI D-PHY Transmitter Submodule IP. Refer to CSI-2/DSI DPHY Tx IP Core User Guide (FPGA-IPUG-02080) for details.

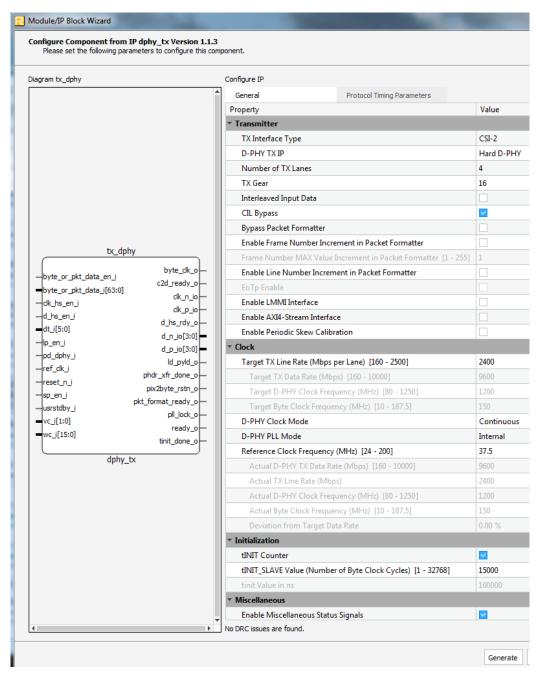


Figure 3.11. tx_dphy IP Creation in Lattice Radiant

The following shows guidelines and parameter settings required for this reference design.

- TX Interface Select CSI-2.
- DPHY TX IP Select Hard DPHY
- Number of TX Lanes Set according to channel configuration. Must match NUM_TX_LANE_* setting.
- TX Gear Set according to TX Line Rate. In general, 16 must be selected when TX Line Rate is 1500 or higher.
- Bypass Packet Formatter Must be disabled (unchecked).
- Enable Frame Number Increment Set according to the preference.
- Enable Line Number Increment Must be disabled (unchecked).
- Enable LMMI Interface Must be disabled (unchecked).
- Enable freq change Must be disabled (unchecked).
- Enable AXI4-Stream Interface Must be disabled (unchecked).
- TX Line Rate per Lane Set according to channel configuration. This value must be equal to (number of RX channel) x (RX channel bandwidth) / (number of TX lanes).
- DPHY Clock Mode Set according to channel configuration. Must select Continuous when the horizontal blanking period is short.
- DPHY PLL Mode Select Internal.
- Reference Clock Frequency Set the appropriate value, which can be obtained from ref_clk_i pin, continuous rx0_byte_clk, or on-chip GPLL. This clock frequency must be between 24 and 200 MHz.
- tINIT Counter Enabled (checked) is recommended.
- tINIT SLAVE Value the value to make tinit Value over 100 µs is recommended.
- Enable Miscellaneous Status Signals must be set to enabled (checked).
- Protocol Timing Parameters tab Default values are recommended.

This module takes the byte data and outputs CSI-2 data after serialization in CSI-2 High Speed mode. It is recommended to set the module name to tx_dphy so that you do not need to modify the instance name of this IP in the top-level design as well as the simulation setup file. Otherwise, you need to modify the names accordingly.

General guideline of TX Gear setting is to set 8 when the lane bandwidth is less than 1500 Mbps, which means TX byte clock could be ~187.5 MHz. If this causes timing violations in Static Timing Analysis (STA), TX Gear should be changed to 16.

You also should be aware of the relationship between the reference clock and DPHY clock. DPHY clock is generated by the internal PLL of TX D-PHY IP. Following is the equation to generate DPHY clock:

$$TX_Line_Rate_per_lane = \frac{1}{NI} * ref_clk_frequency * \frac{M}{NO}$$

where NI = 1, 2, 3, or 4; M = 16, 17, ..., 255; NO = 1, 2, 4, 8, or 16. The following restrictions also exist:

$$24MHz \le \frac{1}{NI} * ref_clk_frequency \le 50 MHz,$$

$$1250MHz \le \frac{1}{NI} * ref_clk_frequency * M \le 2500MHz$$

You must set the appropriate TX Line Rate (per lane) which can be obtained by the above equations applying the given reference clock frequency.

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.5. Clock Distribution

34

In this design, a single continuous byte clock is used in all RX channels to obtain the byte data from rx_dphy modules. If the original RX byte clocks among RX channels have slight frequency differences, RX FIFO inside RX D-PHY IP must be used to absorb the tolerance as described in RX FIFO section.

In case that non-continuous clock is used in RX channels, the continuous RX byte clock has to be obtained from the external clock source, either directly or indirectly. The following are possible candidates of the continuous clock:

- PLL outputs driven by the external reference clock
- Clock divider driven by the external reference clock
- The external clock itself when its frequency matches RX byte clock

The sample design (csi2_aggr_ss_NX.v) assumes that RX channels are in HS_LP mode. In that case, the continuous byte clock for RX channels and TX byte clock are generated by the on-chip GPLL taking the external clock as a reference clock. The code snippets are shown below. rx_clk_lp_ctrl (clock signal for LP and HS mode control module for clock lane) could be different from rx0_clk_byte_fr (continuous byte clock for RX channels), but recommended to be the same to save the primary clock tree resources. *int_gpll* is the name used in this top-level design. This name has to be changed if the different name is used.

```
//// Reference Clock generation to TX D-PHY
//// Customer has to modify here according to the available clock for TX-DPHY
//// tx refclk must be in the range of 24-200 MHz.
//// Crosslink-NX GPLL must be used if ref clk i nor rx0_clk_byte_fr is in this range.
`ifdef RX CLK MODE HS ONLY
     assign rx0 clk byte fr = rx0 clk byte hs;
      `ifdef USE GPLL
           int gpll int_gpll (
                 .CLKI (rx0 clk byte fr),
                 .CLKOP (pll clkop),
                 .LOCK (gpll_lock)
           );
           assign tx ref clk = pll clkop;
      `else
           assign tx ref clk = rx0 clk byte fr;
           assign gpll lock = 1'b1;
      `endif
elsif RX CLK MODE HS LP
      `ifdef USE GPLL
           int gpll int gpll (
                 .CLKI (ref clk i),
                 .CLKOP (pll clkop),
                 .LOCK (gpll lock)
           );
           assign rx clk byte fr = pll clkop;
           assign tx ref clk = pll clkop;
      `else // very rare case!!!
           assign tx_ref_clk = ref clk i;
           assign rx clk byte fr = ref clk i;
           assign gpll lock = 1'b1;
      `endif
`endif
```

On the TX side, using continuous or non-continuous clock mode does not affect the number of necessary clock trees (always uses one clock tree). To feed a clock to TX D-PHY IP, the external clock is necessary if the continuous RX byte clock is not appropriate to generate the desired clock for TX D-PHY. The clock to TX D-PHY must be continuous and within 24 to 200 MHz.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02212-1.0

4. Design and File Modifications

Some modifications are required depending on user configuration in addition to two directive files (synthesis_directives.v, simulation_directives.v).

4.1. Top-Level RTL

The current top-level file (csi2_aggr_ss_NX.v) takes the primary GPLL clock to feed a clock to TX D-PHY when USE_GPLL is defined in synthesis_directives.v and takes the byte clock of RX channel 0 or external clock when USE_GPLL is not defined as shown in Clock Distribution section. This part must be modified, if the different clocking scheme is necessary.

In addition, instance names of RX/TX D-PHY (rx_dphy_h, rx_dphy_s, tx_dphy) have to be modified if you created these IP with different names.

5. Design Simulation

The script file (csi2_aggr_ss_NX_fsim.do) and testbench files are provided to run the functional simulation by Active HDL. You have to launch Active HDL from Lattice Radiant 2.1 or above. If you follow the naming recommendations regarding instance name when RX and TX D-PHY IPs are created by Lattice Radiant, the following are the only changes required in the script file:

- User project directory
- Remove a line for GPLL if not in use
- Remove a line for the oscillator if not in use
- Remove a line for Hard D-PHY IP if not in use

```
### Set Customer's simulation directory ###
set sim_dir C:/Users/ csi2_aggr_ss_RD_NX/simulation/lifel

cd $sim_dir

own project directory
```

Figure 5.1. Script Modification #1

```
vlog -v2k5 -dbg ¥
+incdir+"./.././source/verilog/lifcl"+"./"+"./.././testbench/verilog"./.././testbench/verilog/csi2_aggr_ss_NX_tb.v ¥
./.././source/verilog/lifcl/csi2_aggr_ss_NX.v ¥
./.././source/verilog/lifcl/line_buf.v ¥
./.././source/verilog/lifcl/line_buf.v ¥
./.././source/verilog/lifcl/merge_ctrl.v ¥
./.././int_gpll/int_gpll.v ¥
./.././int_osc/int_osc.v ¥
./.././rx_dphy_h/rtl/rx_dphy_b.v ¥
./.././rx_dphy_s/rtl/rx_dphy_s.v ¥
./.././rx_dphy_s/rtl/rx_dphy.v ¥

vsim +access +r top -L pmi_work -L ovi_lifcl
wave /top/dut/*
remove if Hard D-PHY RX is not in use
```

Figure 5.2. Script Modification #2

You need to modify simulation_directives.v according to your configuration (refer to Simulation Directives for details). By executing the script in Modelsim, compilation and simulation are executed automatically. The testbench takes all data comparison between the expected data and output data from the RD, including CRC data. In the beginning, the following statements should appear before the testbench starts feeding the CSI-2 data:

```
# 127257560 tinit done detected
#
             127307560 Activating dphy models
             127307561 DPHY CH 1 model activated
             127307564 DPHY CH 4 model activated
             127307565 DPHY CH 5 model activated
             127307567 DPHY CH 6 model activated
             127307568 DPHY CH 7 model activated
             127307569 DPHY CH 2 model activated
             127307569 DPHY CH 3 model activated
             127307571 DPHY CH 0 model activated
             207308561 DPHY CH 1 CLK : Driving HS-CLK-RQST
             207308564 DPHY CH 4 CLK: Driving HS-CLK-RQST
             207308565 DPHY CH 5 CLK: Driving HS-CLK-RQST
             207308567 DPHY CH 6 CLK : Driving HS-CLK-RQST
             207308568 DPHY CH 7 CLK : Driving HS-CLK-RQST
             207308569 DPHY CH 2 CLK : Driving HS-CLK-RQST
             207308569 DPHY CH 3 CLK : Driving HS-CLK-RQST
             207308571 DPHY CH 0 CLK : Driving HS-CLK-RQST
             207358561 DPHY CH 1 CLK : Driving HS-Prpr
             207358564 DPHY CH 4 CLK : Driving HS-Prpr
             207358565 DPHY CH 5 CLK : Driving HS-Prpr
#
             207358567 DPHY CH 6 CLK : Driving HS-Prpr
             207358568 DPHY CH 7 CLK : Driving HS-Prpr
#
             207358569 DPHY CH 2 CLK : Driving HS-Prpr
             207358569 DPHY CH 3 CLK: Driving HS-Prpr
             207358571 DPHY CH 0 CLK : Driving HS-Prpr
             207396561 DPHY CH 1 CLK : Driving HS-Go
             207396564 DPHY CH 4 CLK: Driving HS-Go
             207396565 DPHY CH 5 CLK : Driving HS-Go
             207396567 DPHY CH 6 CLK : Driving HS-Go
             207396568 DPHY CH 7 CLK : Driving HS-Go
             207396569 DPHY CH 2 CLK: Driving HS-Go
             207396569 DPHY CH 3 CLK : Driving HS-Go
             207396571 DPHY CH 0 CLK : Driving HS-Go
             207658561 DPHY CH 1 CLK : Driving HS-0/HS-1
             207658564 DPHY CH 4 CLK : Driving HS-0/HS-1
             207658565 DPHY CH 5 CLK : Driving HS-0/HS-1
             207658567 DPHY CH 6 CLK : Driving HS-0/HS-1
             207658568 DPHY CH 7 CLK : Driving HS-0/HS-1
             207658569 DPHY CH 2 CLK : Driving HS-0/HS-1
             207658569 DPHY CH 3 CLK : Driving HS-0/HS-1
             207658571 DPHY CH 0 CLK : Driving HS-0/HS-1
             207685225 DPHY CH 3 DATA : Driving HS-RQST
             207685229 DPHY CH 1 DATA : Driving HS-RQST
```

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
207685229 DPHY CH 2 DATA : Driving HS-RQST
             207685235 DPHY CH 0 DATA : Driving HS-RQST
#
             207685236 DPHY CH 4 DATA : Driving HS-RQST
#
             207685237 DPHY CH 5 DATA : Driving HS-RQST
#
#
             207685239 DPHY CH 6 DATA : Driving HS-RQST
            207685240 DPHY CH 7 DATA : Driving HS-RQST
            207735225 DPHY CH 3 DATA: Driving HS-Prpr
            207735229 DPHY CH 1 DATA: Driving HS-Prpr
            207735229 DPHY CH 2 DATA: Driving HS-Prpr
#
            207735235 DPHY CH 0 DATA : Driving HS-Prpr
#
             207735236 DPHY CH 4 DATA: Driving HS-Prpr
#
             207735237 DPHY CH 5 DATA : Driving HS-Prpr
             207735239 DPHY CH 6 DATA: Driving HS-Prpr
            207735240 DPHY CH 7 DATA : Driving HS-Prpr
            207788553 DPHY CH 3 CLK : Driving HS-Go
            207788559 DPHY CH 2 CLK : Driving HS-Go
            207788563 DPHY CH 1 CLK : Driving HS-Go
            207788567 DPHY CH 0 CLK : Driving HS-Go
            207788572 DPHY CH 4 CLK : Driving HS-Go
             207788573 DPHY CH 5 CLK : Driving HS-Go
             207788575 DPHY CH 6 CLK : Driving HS-Go
            207788576 DPHY CH 7 CLK : Driving HS-Go
            207915874 DPHY CH 0 CLK : Driving SYNC Data
            207915874 DPHY CH 0 Lane 0 : Driving with data = b8
            207915874 DPHY CH 0 Lane 1 : Driving with data = b8
            207915874 DPHY CH 0 Lane 2 : Driving with data = b8
            207915874 DPHY CH 0 Lane 3: Driving with data = b8
#
             207915874 DPHY CH 1 CLK : Driving SYNC Data
```

The following messages show an example of the end of the successful simulation:

```
# [411001592][DPHY CHK] Frame 2, Line 4, Byte Count 19137 - 19140, Payload Data matches 9e,
21, c5, d1 from CH#7
# [411004920][DPHY CHK] Frame 2, Line 4, Byte Count 19141 - 19144, Payload Data matches e6,
b4, 74, 3b from CH#7
# [411008248][DPHY CHK] Frame 2, Line 4, Byte Count 19145 - 19148, Payload Data matches bc,
62, 37, fc from CH#7
# [411011576][DPHY CHK] Frame 2, Line 4, Byte Count 19149 - 19152, Payload Data matches 42,
61, 53, 6c from CH#7
# [411014904][DPHY CHK] Frame 2, Line 4, Byte Count 19153 - 19156, Payload Data matches af,
1f, eb, db from CH#7
# [411018232][DPHY CHK] Frame 2, Line 4, Byte Count 19157 - 19160, Payload Data matches 53,
43, f4, 91 from CH#7
# [411021560][DPHY CHK] Frame 2, Line 4, Byte Count 19161 - 19164, Payload Data matches 97,
ab, 3f, cf from CH#7
# [411024888][DPHY CHK] Frame 2, Line 4, Byte Count 19165 - 19168, Payload Data matches fb,
6e, 73, cb from CH#7
# [411028216][DPHY CHK] Frame 2, Line 4, Byte Count 19169 - 19172, Payload Data matches 16,
da, 11, b5 from CH#7
# [411031544][DPHY CHK] Frame 2, Line 4, Byte Count 19173 - 19176, Payload Data matches 9a,
76, 6f, b7 from CH#7
# [411034872][DPHY CHK] Frame 2, Line 4, Byte Count 19177 - 19180, Payload Data matches 4e,
00, be, ef from CH#7
# [411038200][DPHY CHK] Frame 2, Line 4, Byte Count 19181 - 19184, Payload Data matches 12,
6e, 05, 76 from CH#7
# [411041528][DPHY CHK] Frame 2, Line 4, Byte Count 19185 - 19188, Payload Data matches df,
f0, 23, 5b from CH#7
# [411044856][DPHY CHK] Frame 2, Line 4, Byte Count 19189 - 19192, Payload Data matches 06,
4c, 3c, 79 from CH#7
```

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
# [411048184][DPHY CHK] Frame 2, Line 4, Byte Count 19193 - 19196, Payload Data matches 17,
d8, 9f, 9e from CH#7
# [411051512][DPHY CHK] Frame 2, Line 4, Byte Count 19197 - 19200, Payload Data matches ec,
fd, 9f, 5a from CH#7
\# [411054840][DPHY CHK] CRC = bd0e, matches
# [411149272][DPHY HS LP CHK] HS to LP11 Transition on DO lane with HS-TRAIL period = 94 ns
# [411275736][DPHY HS LP CHK] LP11 to LP01 Transition on D0 lane
# [411328984][DPHY HS LP CHK] LP01 to LP00 Transition on D0 lane with LP01 period = 53 ns
# [411375576][DPHY_HS_LP_CHK] LP00 to HS00 Transition on D0 lane with LP00 period = 46 ns
# [411531784][DPHY HS LP CHK] HS00 to HS Transition on D0 lane with LP00+HS00 period = 202 ns
# [411537400][DPHY CHK] Short Packet detected : Data type = 01
# [411537400][DPHY CHK] 01 00 00 07 matches Expected Short Packet Data
# [411628504][DPHY HS LP CHK] HS to LP11 Transition on D0 lane with HS-TRAIL period = 91 ns
             441659694 TEST END
##### 2 Frames x 4 Lines x 19200 Payload Bytes comparison succeeded!!! #####
### Simulation Success ###
```

You should set small values in NUM_LINES and NUM_FRAMES directives in simulation_directives.v file, especially in the first simulation trial to minimize the simulation time. On the other hand, it is very important to set the actual value to RX_WC directives in synthesis_directives.v since this directly affects the design parameters. Also, you need to set the actual (or close to the actual) value of RX_DPHY_LPS_GAP in simulation_directives.v, especially RX buffer FIFO size is close to the value obtained by the equation in line_buf section, so that FIFO overflow could be detected when the margin is not long enough.

When the simulation does not advance as expected, the most common issue is related to PLL setting.

[case #1] Reference clock to D-PHY TX IP is not in the required range

As described in tx_dphy and Clock Distribution sections, the reference clock to tx_dphy must be in the range of 24 - 200 MHz or its multiple. Following is an example of the error message when the PLL's input clock is out of the range:

Assuming the external clock drives directly this reference clock and the frequency is 24 MHz, the clock setting of this external clock can be `define REF_CLK_PERIOD 41667 in simulation_directives.v, but this fails since the clock period of 41.667 ns leads the clock frequency slightly lower than 24.000 MHz. PLL model of D-PHY TX IP cannot accept this and PLL does not work. Therefore, the value must be 41666 or smaller in this case.

[case #2] PLL's VCO frequency is out of range

As described in tx_dphy section, VCO output frequency of TX D-PHY PLL must be 1250 – 2500 MHz. Following is an example of the error message when PLL's VCO frequency is out of the range:

Assuming the RX lane bandwidth is 500 Mbps with Gear 8 in continuous clock mode and TX lane bandwidth is 2500 Mbps. The continuous byte clock is 62.5 MHz and this can drive the reference clock of tx_dphy. RX0 D-PHY clock frequency of 250 MHz (= 500/2) can be set by `define RX0_DPHY_CLK_PERIOD 4000 in simulation_directives.v, but it will fail if the clock period is set to 3999 since it will leads the byte clock frequency slightly higher than 62.500 MHz and PLL's VCO frequency will be above 2500 MHz. PLL model of D-PHY TX IP cannot accept this and PLL does not work. Therefore, the value must be 4000 or larger in this case.

Figure 5.3 shows an example of 5-channel aggregation. Signals timings before line_buf are almost same among all RX channels and only RX channel 0 signals are shown. Both RX and TX channels uses non-continuous clock mode and `define KEEP_HS is enabled. TX clock lane goes into LP mode only during the vertical blanking period.

Figure 5.3. Functional Simulation Example

6. Design Debug on Hardware

Hardware debug on MIPI related design is a challenge when the system is not working and no idea where the issue comes from, including it is by FPGA or not. This section shows some guidelines to find where the problem is happening. Note that what described here gives some ideas how to debug the system including FPGA functionality, but that does not mean this can cover all possible scenarios.

6.1. Top-Level

In any design cases, the following are essential checkpoints you should check first:

- Power Supply or any board related issues
- Pin assignments / Signal Connections
- Reset Signals
- Clock Signals including PLL outputs
- Parameter and/or Mode mismatch

6.2. MIPI Clock Lane Transactions in D-PHY RX IP

After the initial checking is done, the typical way to check the behavior is to start from the module closest to the incoming signals, which is D-PHY RX IP. In case of continuous clock mode, MIPI clock is always alive in HS mode and usually a problem doesn't occur. In case of non-continuous clock mode, MIPI clock changes its mode between LP (Low Power) and HS (High Speed). Figure 6.2 shows MIPI Clock lane transition between LP and HS mode with debug signals. If you don't see rx*_clk_byte_hs toggles, you can check rx*_lp_hs_state_clk and rx*_term_clk_en to see those signals behaves as expected. If not, you might need to probe MIPI clock signals to check its timings. Figure 6.2 and Table 6.1 show MIPI clock lane transition and its timing requirements defined by MIPI. Figure 6.3 shows the clock lane transition from LP to HS mode captured by a scope using single-end probes.

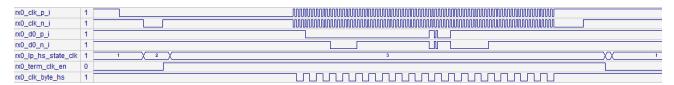


Figure 6.1. MIPI Clock Lane Transition and Expected Debug Signal Behaviors

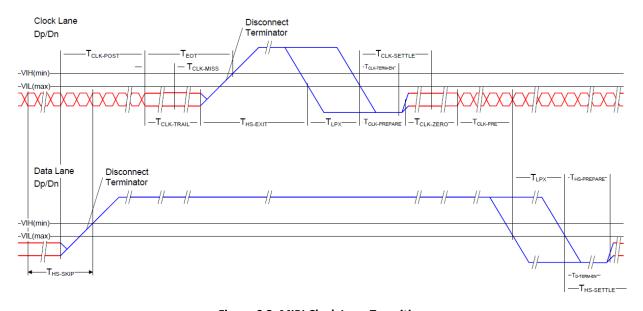


Figure 6.2. MIPI Clock Lane Transition

Table 6.1. Timing Parameters for Clock Lane Signal Transitions

Parameter	Description	Min	Тур	Max	Unit
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX.			60	ns
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data lane has transitioned to LP Mode. Interval is defined as the period from the end of T _{HS-TRAIL} to the beginning of T _{CLK-TRAIL} .	60 ns + 52*UI			ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns
T _{CLK} -SETTLE	Time interval during which HS receiver should ignore any Clock Lane HS transition, starting from the beginning of T _{CLK-PREPARE} .	95		300	ns
T _{CLK} -term-en	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} .	Time for Vn to reach V _{TERM-EN}	38		ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns
T _{CLK-PREPARE +} T _{CLK-ZERO}	T _{CLOCK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock.	300	300		ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses $V_{\text{IL,MAX}}$.	Time for Vn to reach V _{TERM-EN}			
ТЕОТ	Transmitted time interval from the start of T _{HS-TRAIL} or T _{CLK-TRAIL} , to the start of the LP-11 state following an HS burst.			105 ns + n*12*UI	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following an HS burst.	100			ns

Note: UI is Unit Interval (= 1 HS Data Period = ½ of MIPI HS Clock Cycle)

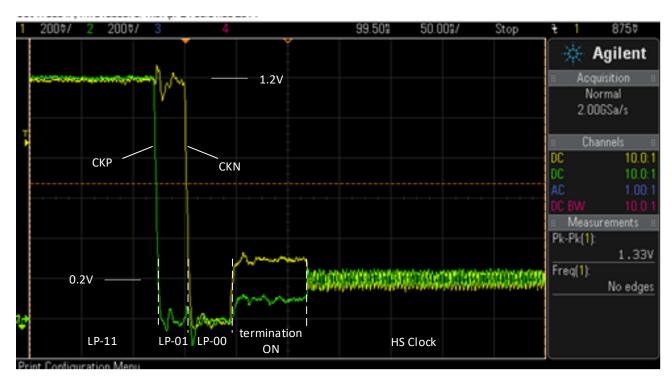


Figure 6.3. MIPI Clock Lane Transition from LP to HS Mode

6.3. MIPI Data Lane Transactions in D-PHY RX IP

In case of MIPI data lane checking, the global operation can be checked by monitoring rx*_sp_en, rx*_lp_av_en, and rx*_payload_en shown in Figure 5.3 since these signals indicate the detection of the expected HS mode transactions. sp_en must be asserted twice every frame and lp_av_en and payload_en must be asserted as many times as active line counts every frame with even intervals. In case that you see sp_en assertions, but no lp_av_en assertion, there is high possibility of Data Type (RAW10, RAW12, etc.) mismatch between the sensor and FPGA design (Data Type directives in synthesis_driectives.v).

When these signals are not asserted at all or asserted irregularly, then following are two most common scenarios: [SoT Detection failure]

SoT (Start of Transmission) sync word (0xB8) exists in all lanes preceding Short Packet or Long Packet header. You can check the signal rx*_hs_sync comes out from RX D-PHY IP. Figure 6.4 shows a typical signal behavior of rx*_hs_sync along with other signals in Short Packet transaction. rx*_hs_sync is asserted as a result of B8 detection and kept high until the end of HS transmissions. If hs_sync assertion doesn't happen, no HS transaction including sp_en, lp_av_en will happen. When this issue occurs, most probable cause is missing the detection of B8 due to long waiting time, which is led by an improper value of Data Settle Cycle set in RX D-PHY IP (rx_dphy_s/rx_dphy_s) GUI on Lattice Radiant when this IP was created. In that case, you can expect to make it work by decreasing this value.

When Data Settle Cycle adjustment still does not solve the issue, you might have to check the MIPI signal themselves to confirm those are not violating MIPI spec. Figure 6.5 shows the data lane signal transitions from LP mode to HS mode and HS mode to LP mode. Also Table 6.2 shows timing parameters used in Figure 6.5. These timings are defined by data lane bandwidth (= 2x of MIPI clock frequency).

44

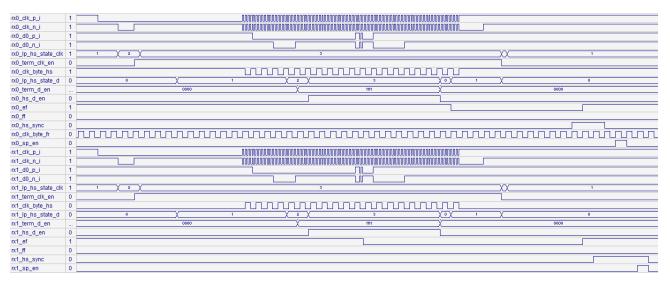


Figure 6.4. Debug Signals of D-PHY RX IP

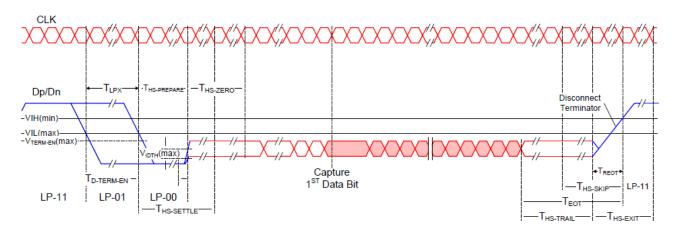


Figure 6.5. MIPI Data Lane Signal Transitions

FPGA-RD-02212-1.0

Table 6.2. Timing Parameters for Data Lane Signal Transitions

Parameter	Description	Min	Тур	Max	Unit
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	40 ns + 4*UI		85 ns + 6*UI	ns
T _{HS-PREPARE +} T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 ns + 10*UI			ns
T _{HS-SETTLE}	Time interval during which HS receiver shall ignore any Data Lane HS transitions, starting from the beginning of T _{HS-PREPARE} . The HS receiver shall ignore any Data Lane transitions before the minimum value, and the HS receiver shall respond to any Data Lane transitions after the maximum value.	85 ns + 6*UI		145 ns + 10*UI	ns
T _{HS-SKIP}	Time interval during which the HS-RX should ignore any transitions on the Data lane, following an HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40		55 ns + 4*UI	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of an HS transmission burst.	max(n*8*UI, 60 ns + n*4*UI)			ns

Note: UI is Unit Interval (= 1 HS Data Period = ½ of MIPI HS Clock Cycle)

[RX FIFO Underflow / Overflow]

Another possible case related to RX D-PHY IP is underflow or overflow of RX FIFO. As described in RX FIFO section, proper parameter settings are required to avoid underflow/overflow of RX FIFO according to the frequency relationship between the original byte clock and the continuous byte clock in case of non-continuous clock mode. Figure 6.6 shows an example of one Short Packet and one Long Packet transaction. rx*_ef and rx*_ff are RX FIFO Empty flag and Full flag respectively. As a global operation, rx*_ef behaves oppositely against rx*_hs_sync and rx*_ff stays 0 all the time.

46

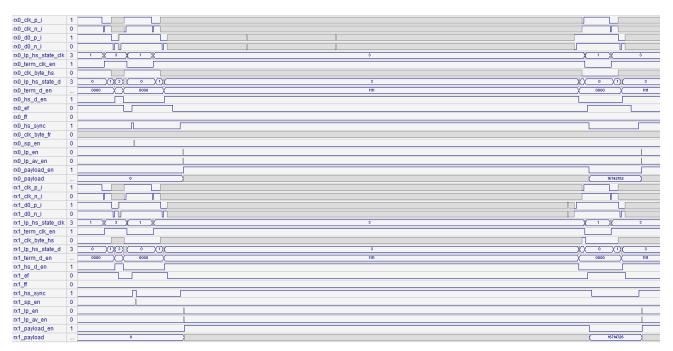


Figure 6.6. Short Packet and Long Packet Transaction Example with Debug Signals

6.4. Inter-Channel Synchronization and Line Buffer Control

Figure 6.7 shows the Line Buffer controls in case of 6 channel aggregation. lb*_uf and lb*_of are underflow and overflow flags of line buffers in respective channels. In this case, each read enable (lb*_lbd_re) must be asserted for 1/6 period against rx*_payload_en and asserted sequentially. All lb*_uf and lb*_of should not be asserted. In this example, all channel data come in almost at the same time, which results in semi-synchronous assertion of all rx*_payload_en. Since line buffers are read out from CH #0 to CH #5 in sequential, it is fine that payload_en assertion of CH #n happens before that of CH #(n+1), but the other way will cause the problem if the timing difference is too large and that makes line buffer underflow and/or overflow. Therefore, monitoring lb*_uf and lb*_of is one way to check whether line buffer control is properly working or not.

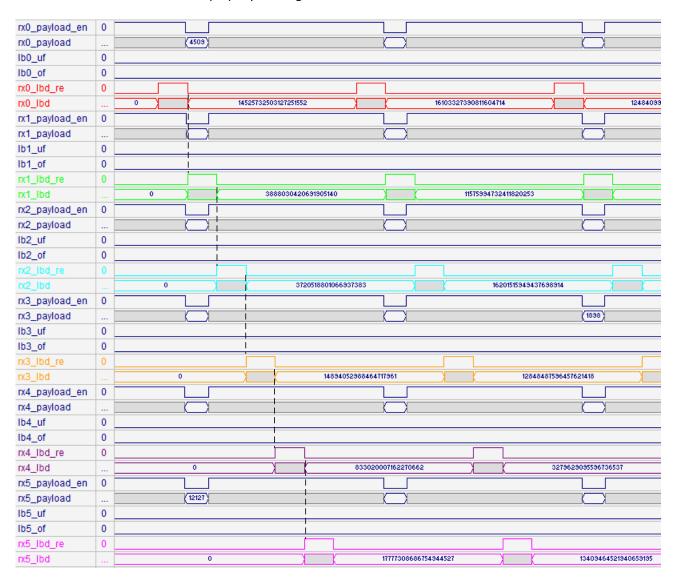


Figure 6.7. Line Buffer Control

6.5. D-PHY TX Control

At least two scenarios exist in case that the system doesn't work related to D-PHY TX IP.

[continuous clock mode operation]

Some downstream devices need LP to HS transition on clock lane even though stating to support continuous clock mode. Using non-continuous clock mode is a way to eliminate this potential issue. You can enable `define KEEP_HS in synthesis_directives.v as described in merge_ctrl section in case that you cannot let clock lane go into LP mode during the horizontal blanking period.

[timing parameter modification]

As described in MIPI Clock Lane Transactions in D-PHY RX IP and MIPI Data Lane Transactions in D-PHY RX IP sections, there exist timing requirements on MIPI signals. The simulation testbench includes the timing checker and issues an error when outgoing MIPI signals violates the MIPI timing specs, but you might want to give some more timing margins when the timing is close to the minimum or maximum values specified by the spec. In that case, you can modify the timing parameters shown in Figure 6.8 on Lattice Radiant GUI to recreate D-PHY TX IP. These values are based on the byte clock cycles.

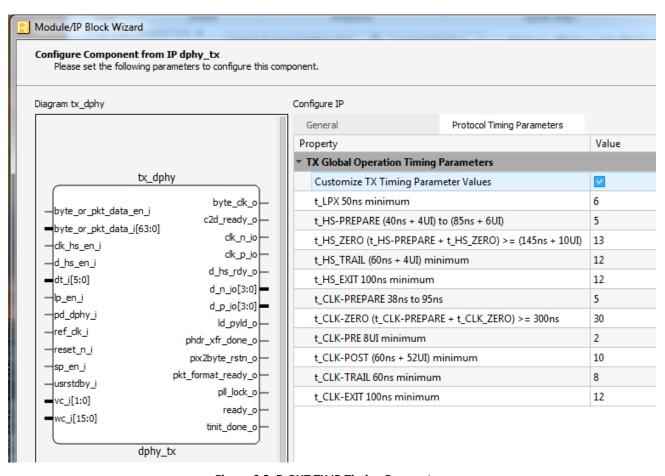


Figure 6.8. D-PHT TX IP Timing Parameters

7. Known Limitations

The following are the limitations of this reference design:

- RX Gear 16 with 4-lane configuration is not supported.
- This design does not support the data type, which changes the amount of video data line by line, like YUV420 8-bit, YUV420 10-bit.

8. Design Package and Project Setup

N Input to 1 Output MIPI CSI-2 Side-by-Side Aggregation with CrossLink-NX Reference Design is available on www.latticesemi.com. Figure 8.1 shows the directory structure. The design is targeted for LIFCL-40. synthesis_directives.v and simulation_directives.v are set to configure eight RX channels as an example shown below:

- RX CH #0: 4 lanes with Hard D-PHY with Gear 8 in non-continuous clock mode
- RX CH #1 7 : Same configuration as CH #0 except for using Soft D-PHY
- TX: 4 lanes with Gear 16

You can modify the directives for your own configuration.

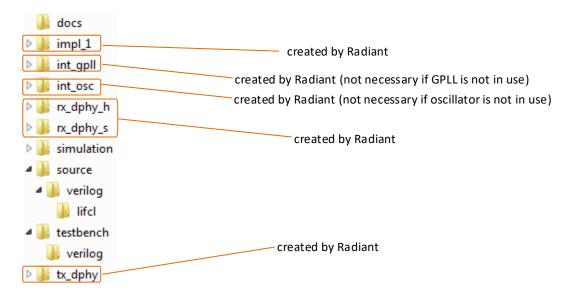


Figure 8.1. Directory Structure

Figure 8.2 shows design files used in the lattice Radiant project. Including PLL and oscillator modules, Lattice Radiant creates five .ipx files. By specifying csi2_aggr_ss_NX as a top-level design, all unnecessary files are ignored.

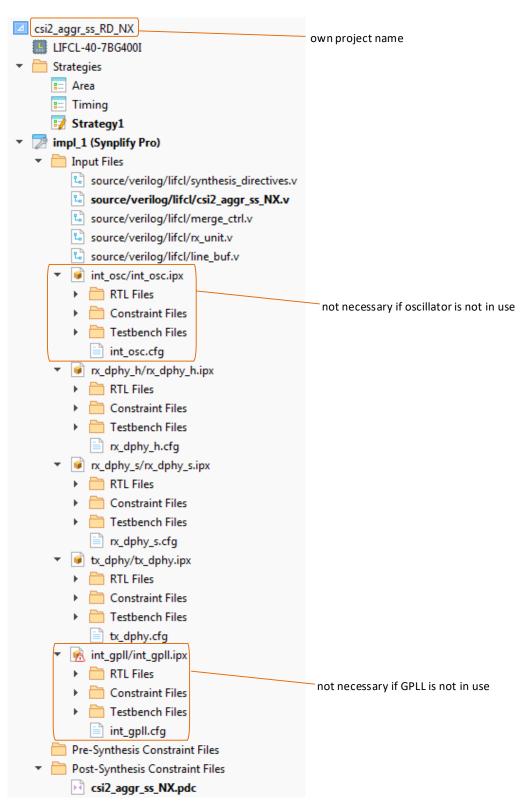


Figure 8.2. Project Files

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

9. Resource Utilization

Resource utilization depends on the configurations. Table 9.1 shows resource utilization examples under certain configurations targeting LIFCL-40. This is just a reference and actual usage varies. Especially, EBR usage depends on the horizontal resolution of each RX channels and clock frequency relationship between non-continuous byte clock and continuous byte clock when non-continuous clock mode is used.

Table 9.1. Resource Utilization Examples

Configuration		FF %	EBR	1/0
4 RX Channels with 2 lanes Gear 8 in continuous clock mode, TX 4 lanes Gear 16, RAW8 x 1000 x pixels per line	26	14	14	37
2 RX Channels with 2 lanes Gear 8 in continuous clock mode, TX 1 lane Gear 8, RAW8 x 1000 pixels per line	6	4	4	17
5 RX Channels with 2 lane Gear 8 in continuous clock mode, TX 4 lanes Gear 16, RAW10 x 1920 pixels per line	14	9	17	41
8 RX Channels with 4 lane Gear 8 in non-continuous clock mode, TX 4 lanes Gear 16, RAW10 x 1920 pixels per line	39	21	46	92

10. References

- MIPI® Alliance Specification for D-PHY Version 1.2
- MIPI® Alliance Specification for Camera Serial Interface 2 (CSI-2) Version 1.2
- CSI/DSI DPHY Rx IP User Guide (FPGA-IPUG-02081)
- CSI/DSI DPHY Tx IP User Guide (FPGA-IPUG-02080)

For more information on the CrossLink-NX FPGA device, visit http://www.latticesemi.com/Products/FPGAandCPLD/CrossLink-NX.

For complete information on Lattice Radiant Project-Based Environment, Design Flow, Implementation Flow, Tasks, and Simulation Flow, see the Lattice Radiant User Guide.

54

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.0, February 2021

Section	Change Summary
All	Initial release.

www.latticesemi.com