

# **Mach-NX SFB Hardware Usage Guide**

# **Technical Note**



#### **Disclaimers**

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.



## **Contents**

| Acronyms in This Document                                                            |    |
|--------------------------------------------------------------------------------------|----|
| Register Access Definitions                                                          |    |
| 1. SoC Function Block Overview                                                       | 10 |
| 1.1. Root of Trust                                                                   | 10 |
| 1.2. SoC Function Block Diagram                                                      | 11 |
| 1.3. SoC Function Block Memory Map                                                   |    |
| 2. CPU Subsystem                                                                     | 13 |
| 2.1. Overview                                                                        | 13 |
| 2.2. Modules Description                                                             | 14 |
| 2.2.1. RISC-V Processor Core                                                         | 14 |
| 2.2.1.1. Interrupt                                                                   |    |
| 2.2.1.2. Exception                                                                   | 14 |
| 2.2.1.3. Debug                                                                       | 14 |
| 2.2.1.4. Control and status registers                                                | 14 |
| 2.2.2. Submodule (PIC/Timer)                                                         | 15 |
| 2.2.2.1. PIC                                                                         | 15 |
| 2.2.2.2. Timer                                                                       | 17 |
| 3. System Memory                                                                     |    |
| 3.1. Overview                                                                        | 18 |
| 3.2. Features                                                                        | 18 |
| 3.3. Block Diagram                                                                   | 18 |
| Figure 3.1. System Memory Block Diagram                                              | 18 |
| 3.3.1. AHB-Lite Interface                                                            | 18 |
| 3.3.2. FIFO Interface                                                                | 18 |
| 3.3.3. System Memory Timing Information                                              | 18 |
| 4. QSPI Monitor                                                                      | 19 |
| 4.1. Overview                                                                        |    |
| 4.2. Features                                                                        |    |
| 4.3. Block Diagram                                                                   |    |
| 4.4. Signal Description                                                              |    |
| 4.5. QSPI Command List                                                               |    |
| 4.6. Register Description                                                            |    |
| 4.7. Initialization Command Filtering                                                |    |
| 4.8. Address Filtering                                                               |    |
| 4.9. Command Disable                                                                 |    |
| 4.9.1. 24/32-Bit Addressing                                                          |    |
| 4.10. Unrecognized Command Filtering                                                 | 28 |
| 4.11. Timing Sequence                                                                |    |
| 4.11.1. Illegal Command Blocking                                                     |    |
| 4.11.2. Illegal Erase Command Breaking (3-Byte Address)                              |    |
| 4.11.3. Illegal Program Command Breaking (3-Byte Address, Illegal Start Address)     |    |
| 4.11.4. Illegal Read Command Breaking (3-Byte Address, Illegal Start Address)        |    |
| 4.11.5. Illegal Read Command Breaking (3-Byte Address, Incremental Address Overflow) |    |
| 4.11.6. Illegal 4-Byte Command Breaking                                              |    |
| 4.12. Mux/Demux Functionality                                                        |    |
| 4.13. Internal Switching                                                             |    |
| 5. QSPI Master Streamer                                                              |    |
| 5.1. Features                                                                        |    |
| 5.2. Block Diagram                                                                   |    |
| 5.3. FIFO Configuration                                                              |    |
| 5.4. Register Description                                                            |    |
| 5.5. Secure Enclave FIFO Interface                                                   | 38 |



| 5.6.                | Operation                                   | 38 |
|---------------------|---------------------------------------------|----|
| 5.6                 | .1. Transaction Phases                      | 38 |
| 5.6                 | .2. Width Conversion                        | 40 |
| 5.6                 | .3. FIFO Empty/Full Behavior                | 40 |
| 5.6.4.              | Typical Flash Read/Program Flow             | 41 |
| 6. I <sup>2</sup> C | Monitor                                     | 42 |
| 6.1.                | Features                                    | 42 |
| 6.2.                | Block Diagram                               | 42 |
| 6.3.                | Signal Description                          | 43 |
| 6.4.                | Register Description                        | 43 |
| 6.5.                | Module Description                          | 46 |
| 6.5                 | .1. I2CBF_SCI                               | 46 |
| 6.5                 |                                             |    |
| 6.5                 |                                             |    |
| 6.5                 | =                                           |    |
| 6.6.                | Programming Flow                            |    |
| 6.6                 | , •                                         |    |
| 6.6                 | , •                                         |    |
| -                   | /SMBus Slave                                |    |
| 7.1.                | Overview                                    |    |
| 7.2.                | Features                                    |    |
| 7.3.                | Signal Description                          |    |
| 7.4.                | Register Description                        |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 |                                             |    |
| 7.4                 | 1 0 1 = 7 = 7                               |    |
| 7.4                 | , , , , , , , , , , , , , , , , , , , ,     |    |
|                     | .10. FIFO Status Register (FIFO_STATUS_REG) |    |
| 7.5.<br>7.5         | Operations Details                          |    |
| 7.5<br>7.5          | ·                                           |    |
| 7.5<br>7.5          |                                             |    |
| 7.5<br>7.5          |                                             |    |
| 7.5<br>7.6.         | Programming Flow                            |    |
| 7.0.<br>7.6         |                                             |    |
| 7.6                 |                                             |    |
| 7.6                 | ·                                           |    |
| 7.7.                | SMBus Slave Support                         |    |
| 7.7.<br>7.7         |                                             |    |
| 7.7                 |                                             |    |
|                     | 7.7.2.1. SMBAlert Operation                 |    |
|                     | PI Slave                                    |    |
| 8.1.                | Features                                    |    |
| 8.2.                | Block Diagram                               |    |
| 8.2                 | _                                           |    |
| 8.2                 |                                             |    |
| 8.2                 |                                             |    |
| 8.3.                | Signal Description                          |    |
| 8.4.                | Channel FIFOs.                              |    |
| ی. ۲.               |                                             | 04 |



| 8.5. |           | Register Description                       | 64 |
|------|-----------|--------------------------------------------|----|
| 9.   |           |                                            |    |
|      | 9.1.      | GPIO Features                              | 74 |
|      | 9.2.      | Register Description                       |    |
|      | 9.2.1.    | Read Data Register (RD_DATA_REG)           | 75 |
|      | 9.2.2.    |                                            |    |
|      | 9.2.3.    | Set Data Register (SET_DATA_REG)           | 75 |
|      | 9.2.4.    | Clear Data Register (CLEAR_DATA_REG)       | 75 |
|      | 9.2.5.    | Direction Register (DIRECTION_REG)         | 75 |
|      | 9.2.6.    | Interrupt Type Register (INT_TYPE_REG)     | 76 |
|      | 9.2.7.    |                                            |    |
|      | 9.2.8.    | Interrupt Status Register (INT_STATUS_REG) | 76 |
|      | 9.2.9.    | Interrupt Enable Register (INT_ENABLE_REG) | 76 |
|      | 9.2.10    |                                            | 76 |
|      | 9.3.      | Programming Flow                           | 77 |
|      | 9.3.1.    |                                            |    |
|      | 9.3.2.    | Data Transfer (Transmit/Receive Operation) | 77 |
| 10   | ). Secur  | e Enclave                                  | 78 |
|      |           | S                                          |    |
| Te   | chnical S | Support Assistance                         | 80 |
|      |           | istory                                     |    |



# **Figures**

| Figure 1.1. Mach-NX SoC Function Block Diagram                              | 1      |
|-----------------------------------------------------------------------------|--------|
| Figure 2.1. RISC-V MC CPU Diagram                                           | 13     |
| Figure 3.1. System Memory Block Diagram                                     | 18     |
| Figure 4.1. QSPI Monitor Block Diagram                                      | 20     |
| Figure 4.2. One Illegal Command                                             |        |
| Figure 4.3. Illegal Erase Command                                           | 30     |
| Figure 4.4. Illegal Program Command (3-Byte Address, Illegal Start Address) | 30     |
| Figure 4.5. Illegal Read Command (3-Byte Address, Illegal Start Address)    | 3      |
| Figure 4.6. Illegal Read Command (3-Byte Address, Incremental Address Overf | low)3: |
| Figure 4.7. Illegal 4-Byte Command Breaking                                 | 32     |
| Figure 4.8. QSPI Internal Switch                                            | 33     |
| Figure 5.1. QSPI Master Streamer Block Diagram                              | 34     |
| Figure 5.2. QSPI Master Streamer Programmable Phases                        | 38     |
| Figure 5.3. Example for PP Program Sequence                                 | 39     |
| Figure 5.4. Example for FAST_READ Sequence                                  | 40     |
| Figure 5.5. Example for RDID Sequence                                       | 40     |
| Figure 5.6. Example for QREAD4B Sequence                                    | 40     |
| Figure 5.7. Typical Flash Read/Program Flow                                 |        |
| Figure 6.1. I <sup>2</sup> C Monitor Block Diagram                          | 42     |
| Figure 6.2. Check Mode 1 and Mode 2 Data Alignment                          | 4      |
| Figure 6.3. Check Mode 3 and Mode 4 Data Alignment                          |        |
| Figure 7.1. START and STOP Conditions                                       |        |
| Figure 7.2. SMBus 7-Bit Addressable Device Response                         | 62     |
| Figure 8.1. eSPI Slave Block Diagram                                        | 65     |



## **Tables**

| Table 1.1. SoC Function Block Memory Map                        | 12 |
|-----------------------------------------------------------------|----|
| Table 2.1. RISC-V Processor Core Control and Status Registers   | 14 |
| Table 2.2. PIC Registers                                        | 15 |
| Table 2.3. Timer Registers                                      | 17 |
| Table 4.1. QSPI Monitor Signal Description                      | 21 |
| Table 4.2. QSPI Command List Table                              | 21 |
| Table 4.3. QSPI Monitor Address Space Mapping for each Monitor  | 23 |
| Table 4.4. QSPI Monitor Core Registers                          |    |
| Table 4.5. QSPI Monitor Command Disable Register Fields         |    |
| Table 5.1. QSPI Streamer FIFO Configuration                     | 35 |
| Table 5.2. QSPI Master Streamer IP Core Registers               |    |
| Table 6.1. I <sup>2</sup> C Monitor Signal Description          |    |
| Table 6.2. I <sup>2</sup> C Monitor Core Registers              |    |
| Table 6.3. Check Mode Table                                     |    |
| Table 6.4. Data Entry Format                                    | 46 |
| Table 7.1. I <sup>2</sup> C Slave IP Core Signal Description    |    |
| Table 7.2. I <sup>2</sup> C Slave Registers Address Map         |    |
| Table 7.3. Write Data Register                                  |    |
| Table 7.4. Read Data Register                                   |    |
| Table 7.5. Slave Address Lower Register                         |    |
| Table 7.6. Slave Address Higher Register                        |    |
| Table 7.7. Control Register                                     |    |
| Table 7.8. Target Byte Count Register                           |    |
| Table 7.9. Interrupt Status First Register                      |    |
| Table 7.10. Interrupt Status Second Register                    |    |
| Table 7.11. Interrupt Enable First Register                     |    |
| Table 7.12. Interrupt Enable Second Register                    |    |
| Table 7.13. Interrupt Set First Register                        |    |
| Table 7.14. Interrupt Set Second Register                       | 57 |
| Table 7.15. FIFO Status Register                                | 58 |
| Table 7.16. SMBus Register Address Map                          | 62 |
| Table 7.17. SMB Control and Status Register                     | 62 |
| Table 8.1. eSPI Slave External Signal Description               | 64 |
| Table 8.2. Channel FIFO Size Table                              | 64 |
| Table 8.3. Summary of eSPI Slave Registers                      | 64 |
| Table 8.4. Interrupt Bit Fields for IRQ_ENABLE1 and IRQ_STATUS1 | 73 |
| Table 8.5. Interrupt Bit Fields for IRQ_ENABLE2 and IRQ_STATUS2 | 73 |
| Table 9.1. External GPIO Signal Descriptions                    | 74 |
| Table 9.2. PLD Interface Signal Descriptions                    | 74 |
| Table 9.3. Register Address Map                                 | 74 |
| Table 9.4. Read Data Register                                   | 75 |
| Table 9.5. Write Data Register                                  | 75 |
| Table 9.6. Set Data Register                                    | 75 |
| Table 9.7. Clear Data Register                                  | 75 |
| Table 9.8. Direction Register                                   | 75 |
| Table 9.9. Interrupt Type Register                              |    |
| Table 9.10. Interrupt Method Register                           | 76 |
| Table 9.11. Interrupt Status Register                           | 76 |
| Table 9.12. Interrupt Enable Register                           | 76 |
| Table 9.13. Interrupt Set Register                              | 76 |



# **Acronyms in This Document**

A list of acronyms used in this document.

| Acronym          | Definition                                  |  |  |  |
|------------------|---------------------------------------------|--|--|--|
| AES              | Advanced Encryption Standard                |  |  |  |
| АНВ              | Advanced High Performance                   |  |  |  |
| APB              | Advanced Peripheral Bus                     |  |  |  |
| CPU              | Central Processing Unit                     |  |  |  |
| CSR              | Control and Status Registers                |  |  |  |
| EAR              | Extended Address Register                   |  |  |  |
| ECDSA            | Elliptic Curve Digital Signature Algorithm  |  |  |  |
| ECIES            | Elliptic Curve Integrated Encryption Scheme |  |  |  |
| eSPI             | Enhanced Serial Peripheral Interface        |  |  |  |
| FIFO             | First In, First Out                         |  |  |  |
| GPIO             | General Purpose Input/Output                |  |  |  |
| HMAC             | Hash Message Authentication Code            |  |  |  |
| I <sup>2</sup> C | Inter-Integrated Circuit                    |  |  |  |
| OOB              | Out-of-Band                                 |  |  |  |
| PFR              | Platform Firmware Resiliency                |  |  |  |
| PKC              | Public Key Cryptography                     |  |  |  |
| PLD              | Programmable Logic Device                   |  |  |  |
| QSPI             | Quad Serial Peripheral Interface            |  |  |  |
| RISC             | Reduced Instruction Set Computer            |  |  |  |
| RoT              | Root of Trust                               |  |  |  |
| SCI              | System Configuration Interface              |  |  |  |
| SFB              | SoC Function Block                          |  |  |  |
| SHA              | Secure Hash Algorithm                       |  |  |  |
| SoC              | System on Chip                              |  |  |  |
| SPI              | Serial Peripheral Interface                 |  |  |  |
| TRNG             | True Random Number Generator                |  |  |  |



# **Register Access Definitions**

| Access Type | Behavior on Read Access | Behavior on Write Access                                                                      |
|-------------|-------------------------|-----------------------------------------------------------------------------------------------|
| RO          | Returns register value  | Ignores write access                                                                          |
| WO          | Returns 0               | Updates register value                                                                        |
| RW          | Returns register value  | Updates register value                                                                        |
| RW1C        | Returns register value  | Writing 1'b1 on register bit clears the bit to 1'b0. Writing 1'b0 on register bit is ignored. |
| RSVD        | Returns 0               | Ignores write access                                                                          |



## 1. SoC Function Block Overview

The Mach™-NX device family is the next generation of Lattice Semiconductor Low Density PLDs including enhanced security features and a Platform Firmware Resiliency SoC Function Block (SFB). The enhanced security features include Advanced Encryption Standard (AES) AES-128/256, Secure Hash Algorithm (SHA) SHA-256/384, Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve Integrated Encryption Scheme (ECIES), Hash Message Authentication Code (HMAC) HMAC-SHA256/384, Public Key Cryptography, True Random Number Generator (TRNG) and Unique Secure ID.

The Mach-NX family is a Root-of-Trust hardware solution that can easily scale to protect the whole system with its enhanced bitstream security and user mode functions. With Lattice Mach-NX device, you can implement a Platform Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193. The purpose of this document is to describe the individual IP in the Mach-NX SoC Function Block.

#### 1.1. Root of Trust

The Lattice Mach-NX FPGA can serve as the Root of Trust and provide the following services:

- Image Authentication On system power-up or reset, the Mach-NX device holds the protected devices in reset while it authenticates their boot images in SPI flash. After each signature authentication passes, the Mach-NX device releases each resets, and those devices can boot from their authenticated SPI flash image. Image authentication can also be requested at any time through the I<sup>2</sup>C Out of Band (OOB) communication path.
- Image Recovery If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX device can restore it to a known good state by copying from an authenticated backup image.
- SPI Flash Monitoring and Protection The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
  activity and block unauthorized accesses using external SPI quick switches. The monitors can be configured to
  watch for specific SPI flash commands and address ranges defined by the system designer and designate them as
  authorized (whitelisted) or unauthorized (blacklisted).
- Event Logging The Mach-NX device logs security events, such as unauthorized flash accesses and notifies the BMC.
- I<sup>2</sup>C Monitoring The Mach-NX device can monitor an I<sup>2</sup>C bus for unauthorized activity and block unauthorized transactions by disabling the I<sup>2</sup>C bus. The monitor can be configured with multiple whitelist or blacklist filters to watch for specific byte or bit patterns defined by the system designer and designate them as authorized or unauthorized I<sup>2</sup>C transactions.



## 1.2. SoC Function Block Diagram

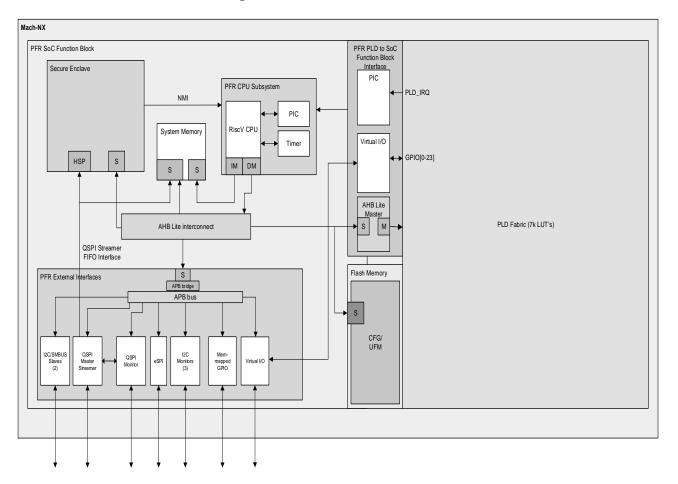



Figure 1.1. Mach-NX SoC Function Block Diagram



# 1.3. SoC Function Block Memory Map

### **Table 1.1. SoC Function Block Memory Map**

| Subsystem Base Address End Address |           | End Address | Block                            |  |  |  |
|------------------------------------|-----------|-------------|----------------------------------|--|--|--|
|                                    | 00000000  | 0001FFFF    | CPU Instruction RAM and Data RAM |  |  |  |
|                                    | 00020000  | 0007FFFF    | RESERVED                         |  |  |  |
|                                    | 00080000  | 000807FF    | CPU PIC TIMER                    |  |  |  |
|                                    | 000808000 | 000BFFFF    | RESERVED                         |  |  |  |
|                                    | 000C0000  | 000C1FFF    | Memory Mapped GPIO               |  |  |  |
| PFR                                | 000C2000  | 000C3FFF    | I <sup>2</sup> C Monitor         |  |  |  |
| 1110                               | 000C4000  | 000C7FFF    | QSPI Monitor                     |  |  |  |
|                                    | 000C8000  | 000C9FFF    | QSPI Master Streamer             |  |  |  |
|                                    | 000CA000  | 000CBFFF    | RESERVED                         |  |  |  |
|                                    | 000CC000  | 000CFFFF    | eSPI                             |  |  |  |
|                                    | 000D0000  | 000DFFFF    | I <sup>2</sup> C/SMBus Slave     |  |  |  |
|                                    | 000E0000  | 000FFFFF    | RESERVED                         |  |  |  |
|                                    | 00100000  | 0013FFFF    | RESERVED                         |  |  |  |
| FPGA                               | 00140000  | 001400FF    | PLD Logic                        |  |  |  |
|                                    | 00140100  | 001FFFFF    | RESERVED                         |  |  |  |
| Cocurity                           | 00200000  | 003BFFFF    | Security Enclave                 |  |  |  |
| Security                           | 003C0000  | FFFFFFF     | RESERVED                         |  |  |  |



# 2. CPU Subsystem

#### 2.1. Overview

The RISC-V MC processes data and instruction by considering the timer interrupt and external interrupt. As shown in Figure 2.1, the CPU core module has a 32-bit processor core and optional submodules. It uses two interfaces, one AHB-L interface (Read-Only) for instruction and one AHB-L interface (Read/Write Access) for data memory. RISC-V core, PIC, Timer, and AHB-L multiplex are run in the system clock domain. The RISC-V core debug runs in two clock domains: the system clock domain and the JTAG clock domain.

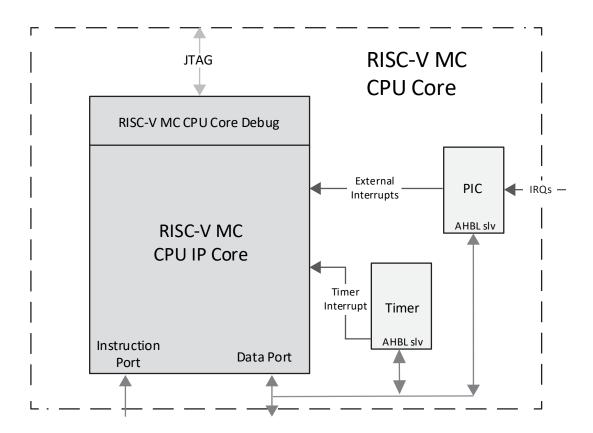



Figure 2.1. RISC-V MC CPU Diagram



## 2.2. Modules Description

#### 2.2.1. RISC-V Processor Core

The processor core follows the RV32I instruction set.

#### 2.2.1.1. Interrupt

Whenever an interrupt occurs, it has to remain in its active level until it is cleared by the processor core interrupt service routine.

If an interrupt occurs before jumping to the interrupt service routine, the processor core stops the prefetch stage and waits for all instructions in the later pipeline stages to complete their execution.

#### 2.2.1.2. **Exception**

If an exception occurs, the processor core stops the corresponding instruction, flushes all previous instructions, and waits until the terminated instruction reaches the writeback stage before jumping to the exception service routine.

#### 2.2.1.3. Debug

The processor core supports the IEEE-1149.1 JTAG debug logic with two hardware breakpoints.

#### 2.2.1.4. Control and status registers

The processor core supports the Control and Status Registers (CSR) listed in Table 2.1.

**Table 2.1. RISC-V Processor Core Control and Status Registers** 

| addr  | CSR Name                                       | Access | Reset<br>Value | Fields                                                                                                                                                                                                                                                                                                                                  |
|-------|------------------------------------------------|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x300 | mstatus<br>(machine status<br>register)        | RW     | 0x0            | bits[12:11] mpp: privilege mode before entering trap , should always be 2'b11 (m mode) bit [7] mpie: updated to mie value when entering to trap bit [3] mie: global interrupt enable                                                                                                                                                    |
| 0x304 | mie<br>(machine interrupt<br>enable register)  | RW     | 0x0            | bit[11] meie: m mode external interrupt enable bit[7] mtie: m mode timer interrupt enable bit[3] msie: m mode software interrupt enable                                                                                                                                                                                                 |
| 0x341 | mepc<br>(machine exception<br>program counter) | RO     | 0x0            | bits[31:0]: When trap in taken into m mode, mepc is used to store the address of the instruction that encountered exception.                                                                                                                                                                                                            |
| 0x342 | mcause<br>(machine cause<br>register)          | RO     | 0x0            | bit[31]: 1'b1: interrupt 1'b0: exception bit[3:0]: exception code for interrupt:  • 3-machine software interrupt  • 7-machine timer interrupt  • 11-machine external interrupt For exception: 0 – instruction address misaligned 1 – instruction access fault 2 – illegal instruction 4 – load address misaligned 5 – load access fault |
| 0x343 | mtval<br>(machine trap<br>value register)      | RO     | 0x0            | bits[31:0]: When a hardware breakpoint is triggered, or an instruction-fetch, load, or store address is misaligned or access exception occurs, mtval is written with the faulting address. It may also be written with illegal instruction when an illegal instruction exception occurs.                                                |
| 0x344 | mip<br>(machine interrupt<br>pending register) | RO     | 0x0            | bit[11] meip: m mode external interrupt pending bit[7] mtip: m mode timer interrupt pending bit[3] msip: m mode software interrupt pending                                                                                                                                                                                              |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



## 2.2.2. Submodule (PIC/Timer)

The CPU contains submodules: PIC and Timer. The PIC and Timer share the same start address in memory map and a fixed 2 kB address range is allocated if any of them are enabled.

#### 2.2.2.1. PIC

The PIC aggregates up to eight external interrupt inputs (IRQs) into one interrupt output to processor core. The interrupt status register and can be used to read the values of IRQs. Individual IRQs can be configured by programming the corresponding enable and polarity registers. Table 2.2 provides the descriptions of PIC registers.

**Table 2.2. PIC Registers** 

| Offset                                         | Name     | Access | Reset<br>Value | Description                     | on                             |                     |                   |               |
|------------------------------------------------|----------|--------|----------------|---------------------------------|--------------------------------|---------------------|-------------------|---------------|
| 0x000                                          | PIC_ISRC | wo     | 0x0            | Interrupt Status Register Clear |                                |                     |                   |               |
|                                                |          |        |                | Field                           | Name                           | Access              | Width             | Reset         |
|                                                |          |        |                | [7]                             | PIC_ISRC [7]                   | W                   | 1                 | 0x0           |
|                                                |          |        |                |                                 |                                |                     |                   |               |
|                                                |          |        |                | [1]                             | PIC_ISRC [1]                   | W                   | 1                 | 0x0           |
|                                                |          |        |                | [0]                             | PIC_ISRC [0]                   | W                   | 1                 | 0x0           |
| 0x004                                          | PIC_ISRS | wo     | 0x0            | Interrupt                       | Status Register Set            |                     |                   |               |
|                                                |          |        |                | Field                           | Name                           | Access              | Width             | Reset         |
|                                                |          |        |                | [7]                             | PIC_ISRS [7]                   | W                   | 1                 | 0x0           |
|                                                |          |        |                |                                 |                                |                     |                   |               |
|                                                |          |        |                | [1]                             | PIC_ISRS [1]                   | W                   | 1                 | 0x0           |
|                                                |          |        |                | [0]                             | PIC_ISRS [0]                   | W                   | 1                 | 0x0           |
| 0x008 PIC_ISR RO 0x0 Interrupt Status Register |          |        |                |                                 |                                |                     |                   |               |
|                                                |          |        |                | Field                           | Name                           | Access              | Width             | Reset         |
|                                                |          |        |                | [7]                             | PIC_ISR [7]                    | R                   | 1                 | 0x0           |
|                                                |          |        |                |                                 |                                |                     |                   |               |
|                                                |          |        |                | [1]                             | PIC_ISR [1]                    | R                   | 1                 | 0x0           |
|                                                |          |        |                | [0]                             | PIC_ISR [0]                    | R                   | 1                 | 0x0           |
| 0x010                                          | PIC_IERC | WO     | 0x0            | Interrupt                       | Enable Register Clear          |                     |                   |               |
|                                                |          |        |                | Field                           | Name                           | Access              | Width             | Reset         |
|                                                |          |        |                | [7]                             | PIC_IERC[7]                    | W                   | 1                 | 0x0           |
|                                                |          |        |                |                                 |                                |                     |                   |               |
|                                                |          |        |                | [1]                             | PIC_IERC[1]                    | W                   | 1                 | 0x0           |
|                                                |          |        |                | [0]                             | PIC_IERC[0]                    | W                   | 1                 | 0x0           |
|                                                |          |        |                | PIC_IERC[                       | i]<br>Disable the interrupt re | oguest (ira[i]) ne  | rt from the ag    | gragation of  |
|                                                |          |        |                | interrupts                      | (core_meip).                   | equest (II q[i]) po | it iioiii tile ag | gi egation oi |
|                                                |          |        |                |                                 | isable irq[i]                  |                     |                   |               |
|                                                |          |        |                | • 1−e                           | nable irq[i]                   |                     |                   |               |



| Offset | Name     | Access | Reset<br>Value | Description                           |                                                                                 |                  |       |       |
|--------|----------|--------|----------------|---------------------------------------|---------------------------------------------------------------------------------|------------------|-------|-------|
| 0x014  | PIC_IERS | WO     | 0x0            | Interrupt Enable Register Set         |                                                                                 |                  |       |       |
|        |          |        |                | Field                                 | Name                                                                            | Access           | Width | Reset |
|        |          |        |                | [7]                                   | PIC_IERS[7]                                                                     | W                | 1     | 0x0   |
|        |          |        |                |                                       |                                                                                 |                  |       |       |
|        |          |        |                | [1]                                   | PIC_IERS[1]                                                                     | W                | 1     | 0x0   |
|        |          |        |                | [0]                                   | PIC_IERS[0]                                                                     | W                | 1     | 0x0   |
| 0x018  | PIC_IER  | RO     | 0x0            | Interrupt Enable Register             |                                                                                 |                  |       |       |
|        |          |        |                | Field                                 | Name                                                                            | Access           | Width | Reset |
|        |          |        |                | [7]                                   | PIC_IERS[7]                                                                     | R                | 1     | 0x0   |
|        |          |        |                |                                       |                                                                                 |                  |       |       |
|        |          |        |                | [1]                                   | PIC_IERS[1]                                                                     | R                | 1     | 0x0   |
|        |          |        |                | [0]                                   | PIC_IERS[0]                                                                     | R                | 1     | 0x0   |
| 0x020  | PIC_POLC | WO     | 0x0            | PIC Interrupt Polarity Register Clear |                                                                                 |                  |       |       |
|        |          |        |                | Field                                 | Name                                                                            | Access           | Width | Reset |
|        |          |        |                | [7]                                   | PIC_POLC [7]                                                                    | W                | 1     | 0x0   |
|        |          |        |                |                                       |                                                                                 |                  |       |       |
|        |          |        |                | [1]                                   | PIC_POLC I[1]                                                                   | W                | 1     | 0x0   |
|        |          |        |                | [0]                                   | PIC_POLC [0]                                                                    | W                | 1     | 0x0   |
| 0x024  | PIC_POLS | WO     | 0x0            | PIC Interru                           | pt Polarity Register Set                                                        |                  |       |       |
|        |          |        |                | Field                                 | Name                                                                            | Access           | Width | Reset |
|        |          |        |                | [7]                                   | PIC_POLC [7]                                                                    | W                | 1     | 0x0   |
|        |          |        |                |                                       |                                                                                 |                  |       |       |
|        |          |        |                | [1]                                   | PIC_POLC I[1]                                                                   | W                | 1     | 0x0   |
|        |          |        |                | [0]                                   | PIC_POLC [0]                                                                    | W                | 1     | 0x0   |
| 0x028  | PIC_POL  | RO     | 0x0            | PIC Interru                           | pt Polarity register                                                            |                  |       |       |
|        |          |        |                | Field                                 | Name                                                                            | Access           | Width | Reset |
|        |          |        |                | [7]                                   | PIC_POLC [7]                                                                    | R                | 1     | 0x0   |
|        |          |        |                |                                       |                                                                                 |                  |       |       |
|        |          |        |                | [1]                                   | PIC_POLC I[1]                                                                   | R                | 1     | 0x0   |
|        |          |        |                | [0]                                   | PIC_POLC [0]                                                                    | R                | 1     | 0x0   |
|        |          |        |                | • 0 – ird                             | i]<br>he polarity of interrupt red<br>a[i] is active high<br>a[i] is active low | quest (irq[i]) p | oort. |       |



#### 2.2.2.2. Timer

The Timer module provides a 64-bit real-time counter register (mtime) and time compare register (mtimecmp). An output interrupt signal notices the RISC-V processor core when the value of mtime is greater than or equal to the value of mtimecmp. Table 2.3 provides the descriptions of Timer registers.

#### **Table 2.3. Timer Registers**

| able 2.3. Tiller Registers                                                                                                                                                                                                                                                                                            |                                                                                                                   |        |             |                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------------------------------------|--|--|--|--|--|
| Offset                                                                                                                                                                                                                                                                                                                | Name                                                                                                              | Access | Reset Value | Description                                |  |  |  |  |  |
| mtime                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |        |             |                                            |  |  |  |  |  |
| A 64-bit                                                                                                                                                                                                                                                                                                              | A 64-bit real-time counter register. You must set the register to a non-zero value to start the counting process. |        |             |                                            |  |  |  |  |  |
| 0x400                                                                                                                                                                                                                                                                                                                 | TIMER_CNT_L                                                                                                       | RW     | 0x0         | Lower 32 bits of <i>mtime</i> register     |  |  |  |  |  |
| 0x404                                                                                                                                                                                                                                                                                                                 | TIMER_CNT_H                                                                                                       | RW     | 0x0         | Higher 32 bits of <i>mtime</i> register    |  |  |  |  |  |
| mtimeci                                                                                                                                                                                                                                                                                                               | тр                                                                                                                |        |             |                                            |  |  |  |  |  |
| This register is used to generate or clear the timer interrupt (mtip). When the value of mtime register is greater than or equal to the value of mtimecmp register, the cpu_mtip_o is asserted and remains asserted until it is cleared by writing to mtimecmp register. Lower 32 bit for Timer time compare register |                                                                                                                   |        |             |                                            |  |  |  |  |  |
| 0x410                                                                                                                                                                                                                                                                                                                 | TIMER_CMP_L                                                                                                       | RW     | 0x0         | Lower 32-bit for <i>mtimecmp</i> register. |  |  |  |  |  |
| 0x414                                                                                                                                                                                                                                                                                                                 | TIMER_CMP_H                                                                                                       | RW     | 0x0         | Higher 32-bit for mtimecmp register        |  |  |  |  |  |



# 3. System Memory

#### 3.1. Overview

The System Memory is used for code execution and temporary data storage.

#### 3.2. Features

The key features of the System Memory are:

- 128 KB SRAM
- Dual AHB Lite Slave interface
- FIFO interface connected to QSPI Master Streamer

## 3.3. Block Diagram

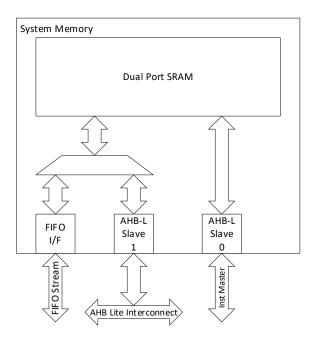



Figure 3.1. System Memory Block Diagram

### 3.3.1. AHB-Lite Interface

The System Memory has two AHB Lite slave interfaces. Slave 0 interface is read only and connected directly to the Instruction Master of the CPU. Slave 1 interface is connected to the SoC Function Block AHB Lite Interconnect.

#### 3.3.2. FIFO Interface

The dedicated FIFO interface is shared with the AHB-L port S1. This interface is used by the QSPI Master Streamer to upload firmware values to the core memory.

### 3.3.3. System Memory Timing Information

When a port reads and the other port writes on the same address, the read transaction completes first and the old data is propagated into the output before the new data is written on the selected address. After which, the new data is made available on both ports and can be read on the next read transaction.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



# 4. QSPI Monitor

#### 4.1. Overview

The QSPI Monitor is an SPI access and command monitoring module that can monitor up to three SPI, DSPI, or QSPI buses for unauthorized activity and prevent transactions from completing by controlling internal or external switches. In addition to monitoring, the QSPI Monitor connects the external SPI/DSPI/QSPI buses to internal QSPI Master Streamer through a programmable mux/demux block.

#### 4.2. Features

The key features of the QSPI monitor are:

- Supports three external SPI, DSPI, or QSPI buses to monitor illegal activity
- Enable/disable dynamically the flash initialization commands per monitor
- Flash commands (program, read, erase) are monitored based on address ranges
- Supports up to eight dynamically configurable address ranges for filtering per monitor
- Supports both 24-bit and 32-bit flash addressing modes/commands
- Supports single and dual flash configurations
- Supports internal and external switching



# 4.3. Block Diagram

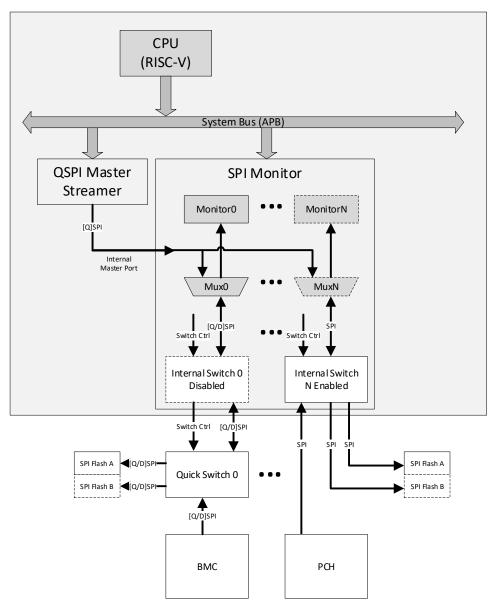



Figure 4.1. QSPI Monitor Block Diagram



## 4.4. Signal Description

**Table 4.1. QSPI Monitor Signal Description** 

| Signal                | Direction | Description                                                                                                                                            |
|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| QSPI Monitor External | Signal    |                                                                                                                                                        |
| QSPI_MONx_CLK         | Bidir     | SPI/QSPI clock (High Impedance during monitoring)                                                                                                      |
| QSPI_MONx_CSN         | Output    | Chip select (High Impedance during monitoring)                                                                                                         |
| QSPI_MONx_DIS_A       | Output    | Quick Switch Disable Flash A (0=enabled, 1=disabled)                                                                                                   |
| QSPI_MONx_DIS_B       | Output    | Quick Switch Disable Flash B (0=enabled, 1=disabled)                                                                                                   |
|                       | Bidir     | SPI: MOSI                                                                                                                                              |
| QSPI_MONx_DQ0         |           | QSPI: serial data input and output                                                                                                                     |
|                       |           | (High Impedance during monitoring)                                                                                                                     |
|                       | Bidir     | SPI: MISO                                                                                                                                              |
| QSPI_MONx_DQ1         |           | QSPI: serial data input and output                                                                                                                     |
|                       |           | (High Impedance during monitoring)                                                                                                                     |
|                       | Bidir     | SPI: unused                                                                                                                                            |
| QSPI_MONx_DQ2         |           | QSPI: serial data input and output                                                                                                                     |
|                       |           | (High Impedance during monitoring)                                                                                                                     |
|                       | Bidir     | SPI: unused                                                                                                                                            |
| QSPI_MONx_DQ3         |           | QSPI: serial data input and output                                                                                                                     |
|                       |           | (High Impedance during monitoring)                                                                                                                     |
| QSPI_MONx_PRE_CSN     | Input     | QSPI/SPI Chip select before quick switch                                                                                                               |
| QSPI_MONx_RST_O       | Output    | Reset                                                                                                                                                  |
|                       | Output    | Quick Switch Output Enable (0=disabled, 1=enabled). This signal is enabled when the QSPI                                                               |
| QSPI_MONx_SWI_EN      |           | Monitor is protecting the SPI Flash and when the QSPI Monitor is switched to the internal master.                                                      |
|                       | Output    | Quick Switch Isolation (0=disabled, 1=enabled), this optional signal is used when a flash has                                                          |
| QSPI_MONx_SWI_ISO     |           | switching logic to select between multiple SPI Masters (BMC and PCH). This signal is enabled when the QSPI Monitor is switched to the internal master. |

## 4.5. QSPI Command List

The allowed QSPI commands are shown in Table 4.2. All other commands are blocked.

**Table 4.2. QSPI Command List Table** 

| Command                                        | Default         | Description                                                                                            |
|------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|
| Initialization Command 0                       | 01 (WRSR)       | Initialization Command 0                                                                               |
| Initialization Command 1                       | 04 (WRDI)       | Initialization Command 1                                                                               |
| Initialization Command 2                       | 05 (RDSR)       | Initialization Command 2                                                                               |
| Initialization Command 3                       | 06 (WREN)       | Initialization Command 3                                                                               |
| Initialization Command 4                       | 50<br>(WRSR_EN) | Initialization Command 4                                                                               |
| Initialization Command 5                       | 9F (RDID)       | Initialization Command 5                                                                               |
| Page Program Command                           | 02              | Page Program Command Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.        |
| Page Program Quad Address<br>Quad Data Command | 38              | Page Program Quad Address Quad Data Command Command width is 1-bit. Address and Data widths are 4-bit. |
| Erase 4KB Command                              | 20              | Erase 4 KB Command                                                                                     |
| Erase 32KB Command                             | 52              | Erase 32 KB Command                                                                                    |
| Erase 64KB Command                             | D8              | Erase 64 KB Command                                                                                    |
| Read Command                                   | 03              | Read Command.                                                                                          |



| Command                                                  | Default | Description                                                                                                                           |  |  |
|----------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fast Read Command                                        | ОВ      | Fast Read Command                                                                                                                     |  |  |
|                                                          |         | Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.                                                            |  |  |
| Read Dual Data                                           | 3B      | Read Dual Data Command                                                                                                                |  |  |
|                                                          |         | Command/Address widths are 1-bit. Data width is 2-bit.                                                                                |  |  |
| Read Dual Address Dual Data                              | BB      | Read Dual Address Dual Data Command                                                                                                   |  |  |
| Command                                                  |         | Command width is 1-bit. Address and Data widths are 2-bit.                                                                            |  |  |
| Read Quad Data Command                                   | 6B      | Read Quad Data Command  Command/Address widths are 1-bit in SPI mode, 4-bit in QSPI mode. Data width is 4-bit.                        |  |  |
| Read Quad Address Quad                                   | EB      | Read Quad Address Quad Data Command                                                                                                   |  |  |
| Data Command                                             |         | Command width is 1-bit in SPI mode, 4-bit in QSPI mode. Address and Data widths are 4-bit.                                            |  |  |
| Quad SPI Mode Enter<br>Command                           | 35      | Quad SPI Mode Enter Command                                                                                                           |  |  |
| Quad SPI Mode Exit<br>Command                            | F5      | Quad SPI Mode Exit Command                                                                                                            |  |  |
| 4-byte Mode Enter Command                                | В7      | 4-Byte Mode Enter Command                                                                                                             |  |  |
| 4-byte Mode Exit Command                                 | E9      | 4-Byte Mode Exit Command                                                                                                              |  |  |
| 4-byte Read Extended<br>Address Command                  | C8      | 4-Byte Read Extended Address Register Command                                                                                         |  |  |
| 4-byte Write Extended<br>Address Command                 | C5      | 4-Byte Write Extended Address Register Command                                                                                        |  |  |
| 4-byte Page Program<br>Command                           | 12      | 4-Byte Page Program Command                                                                                                           |  |  |
| 4-byte Page Program Quad<br>Address Quad Data<br>Command | 3E      | 4-Byte Page Program Quad Address Quad Data Command.                                                                                   |  |  |
| 4-byte Erase 4KB Command                                 | 21      | 4-Byte Erase 4 KB Command                                                                                                             |  |  |
| 4-byte Erase 32KB Command                                | 5C      | 4-Byte Erase 32 KB Command                                                                                                            |  |  |
| 4-byte Erase 64KB Command                                | DC      | 4-Byte Erase 64 KB Command                                                                                                            |  |  |
| 4-byte Read Command                                      | 13      | 4-Byte Read Command                                                                                                                   |  |  |
| 4-byte Fast Read Command                                 | 0C      | 4-Byte Fast Read Command Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.                                   |  |  |
| 4-byte Read Dual Data<br>Command                         | 3C      | 4-Byte Read Dual Data Command Command/Address widths are 1-bit. Data width is 2-bit.                                                  |  |  |
| 4-byte Read Dual Address<br>Quad Data Command            | ВС      | 4-Byte Read Dual Address Dual Data Command Command width is 1-bit. Address and Data widths are 2-bit.                                 |  |  |
| 4-byte Read Quad Data<br>Command                         | 6C      | 4-Byte Read Quad Data Command Command/Address widths are 1-bit in SPI mode, 4-bit in QSPI mode. Data width is 4-bit.                  |  |  |
| 4-byte Read Quad Address<br>Quad Data Command            | EC      | 4-Byte Read Quad Address Quad Data Command Command width is 1-bit in SPI mode, 4-bit in QSPI mode. Address and Data widths are 4-bit. |  |  |



## 4.6. Register Description

A summary of the QSPI Monitor Core Registers is shown in Table 4.4. Global registers are mapped to offsets 0x000-0x0FC and per-monitor registers are mapped to 0x000-0xNFF, where N corresponds to the monitor number, in the range of 1 to 3. For example, registers of the first monitor are at offsets 0x100-0x1FC and registers of the second monitor are at 0x200-0x2FC. The registers for Address Space 7 are mapped from 0xM00-0xMFF, where M is equal to (5 + N), see Table 4.3.

Table 4.3. QSPI Monitor Address Space Mapping for each Monitor

| Monitor  | Register Offsets for Address Spaces 0 to 6 | Register Offsets for Address Space 7 | N | М |
|----------|--------------------------------------------|--------------------------------------|---|---|
| Monitor0 | 0x100-0x1FF                                | 0x600-0x6FF                          | 1 | 6 |
| Monitor1 | 0x200-0x2FF                                | 0x700-0x7FF                          | 2 | 7 |
| Monitor2 | 0x300-0x3FF                                | 0x800-0x8FF                          | 3 | 8 |

**Table 4.4. QSPI Monitor Core Registers** 

| Offset | Register Name    | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|--------|------------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x000  | MONITOR_CFG      | RO     | 0x03        | num_bus_monitors[1:0] – Number of bus monitors reserved[31:42]                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0x004  | MONITOR_CTRL     | RW     | 0x00        | monitor0_en[0] – Enable/disable Monitor0 monitor1_en[1] – Enable/disable Monitor1 monitor2_en[2] – Enable/disable Monitor2 reserved[31:3]                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0x008  | MONITOR_SPI_MODE | RW     | 0x00        | monitor0_spi_mode[1:0] – Monitor0 SPI Mode (0 or 3) reserved[3:2] monitor1_spi_mode[5:4] – Monitor1 SPI Mode (0 or 3) reserved[7:6] monitor2_spi_mode[9:8] – Monitor2 SPI Mode (0 or 3) reserved[31:10]                                                                                                                                                                                                                                                                                                                  |  |
| 0x010  | INT_STATUS       | RW     | 0x00        | Interrupt Status Interrupt status: illegal_op0_int[0] - Bus 0 Illegal Operation interrupt illegal_op0_overflow_int[1] - Bus 0 Illegal Operation Overflow interrupt reserved[3:2] illegal_op1_int[4] - Bus 1 Illegal Operation interrupt illegal_op1_overflow_int[5] - Bus 1 Illegal Operation Overflow interrupt reserved[7:6] illegal_op2_int[8] - Bus 2 Illegal Operation interrupt illegal_op2_overflow_int[9] - Bus 2 Illegal Operation Overflow interrupt reserved[31:10] Writing 1 to a bit clears that interrupt. |  |



| Offset | Register Name  | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|----------------|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x014  | INT_ENABLE     | RW     | 0x00        | Interrupt Enable: illegal_op0_en[0] - Enable Bus 0 Illegal Operation interrupt illegal_op0_overflow_en[1] - Enable Bus 0 Illegal Operation Overflow interrupt reserved[3:2] illegal_op1_en[4] - Enable Bus 1 Illegal Operation interrupt illegal_op1_overflow_en[5] - Enable Bus 1 Illegal Operation Overflow interrupt reserved[7:6] illegal_op2_en[8] - Enable Bus 2 Illegal Operation interrupt illegal_op2_overflow_en[9] - Enable Bus 2 Illegal Operation Overflow interrupt reserved[31:10]                                                                            |
| 0x018  | INT_SET        | RW     | 0x00        | Interrupt Set: illegal_op0_set[0] - Set Bus 0 Illegal Operation interrupt illegal_op0_overflow_set[1] - Set Bus 0 Illegal Operation Overflow interrupt reserved[3:2] illegal_op1_set[4] - Set Bus 1 Illegal Operation interrupt illegal_op1_overflow_set[5] - Set Bus 1 Illegal Operation Overflow interrupt reserved[7:6] illegal_op2_set[8] - Set Bus 2 Illegal Operation interrupt illegal_op2_overflow_set[9] - Set Bus 2 Illegal Operation Overflow interrupt reserved[31:10] Writing 1 to a bit sets that interrupt                                                    |
| 0xN00  | CONTROL        | RW     | 0x00        | mux_sel[3:0] – Select which internal client is connected to the external SPI/QSPI pins  0: SPI/QSPI Monitor  1: Internal master interface 0  2-7: reserved  flash_a_en[4] – Flash A is disabled (0) or enabled (1)  flash_b_en[5] – Flash B is disabled (0) or enabled (1)  reserved[7:6]  init_cmd_filter[8] – Block initialization commands  allow_4byte_addr[9] – Allow 4-byte addressing commands  reserved[31:10]                                                                                                                                                       |
| 0xN04  | SPACE_EN       | RW     | 0x00        | Space monitoring enable bits  space0_en[0] – Disable (0) or enable (1) monitoring of space 0  space1_en[1] – Disable (0) or enable (1) monitoring of space 1  space2_en[2] – Disable (0) or enable (1) monitoring of space 2  space3_en[3] – Disable (0) or enable (1) monitoring of space 3  space4_en[4] – Disable (0) or enable (1) monitoring of space 4  space5_en[5] – Disable (0) or enable (1) monitoring of space 5  space6_en[6] – Disable (0) or enable (1) monitoring of space 6  space7_en[7] – Disable (0) or enable (1) monitoring of space 7  reserved[31:8] |
| 0xN08  | READ_DUMMY_NUM | RW     | 0x08        | Number of dummy cycles in an SPI flash read The minimum allowed value is 1. See the flash device data sheet for details. num_dummy_cycles[4:0] reserved[31:5]                                                                                                                                                                                                                                                                                                                                                                                                                |



| Offset | Register Name      | Access | Reset Value | Description                                                                                                                                                                                                     |
|--------|--------------------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xN10  | MAXIMUM_ADDRESS    | RW     | 0xFFFFFFF   | max_addr[31:0] – SPI transaction starting addresses and incremental addresses are masked with this value before comparison with address space ranges.                                                           |
| 0xN14  | COMMAND_DISABLE0   | RW     | 0x00000000  | command_disable[31:0] – When set to 1, this field disables individual command checking. Each bit corresponds to a specific parameter command. See Table 4.5 for details on each bit field.                      |
| 0xN18  | COMMAND_DISABLE1   | RW     | 0x00000000  | command_disable[8:0] — When set to 1, this field disables individual command checking. Each bit corresponds to a specific parameter command. See Table 4.5 for details on each bit field.  reserved[31:9]       |
| 0xN20  | SPACEO_FILTER_CTRL | RW     | 0x03        | prg_cmd_allow[0] – Allow (whitelist) program commands in space 0 erase_cmd_allow[1] – Allow (whitelist) erase commands in space 0 read_cmd_block[2] – Block (blacklist) read commands in space 0 reserved[31:3] |
| 0xN24  | SPACEO_START_ADDR  | RW     | 0x00000000  | page_start_addr[31:8] – Start address for space 0, aligned to 256-byte page boundary reserved[7:0] – Writes are ignored; Reads return 0                                                                         |
| 0xN28  | SPACEO_END_ADDR    | RW     | 0x000000FF  | page_end_addr[31:8] – End address for space 0, aligned to 256-byte page boundary reserved_ff[7:0] – Writes are ignored; Reads return 0xFF.                                                                      |
| 0xN40  | SPACE1_FILTER_CTRL | RW     | 0x03        | prg_cmd_allow[0] – Allow (whitelist) program commands in space 1 erase_cmd_allow[1] – Allow (whitelist) erase commands in space 1 read_cmd_block[2] – Block (blacklist) read commands in space 1 reserved[31:3] |
| 0xN44  | SPACE1_START_ADDR  | RW     | 0x00000000  | page_start_addr[31:8] – Start address for space 1, aligned to 256-byte page boundary reserved[7:0] – Writes are ignored; Reads return 0.                                                                        |
| 0xN48  | SPACE1_END_ADDR    | RW     | 0x000000FF  | page_end_addr[31:8] – End address for space 1, aligned to 256-byte page boundary reserved_ff[7:0] – Writes are ignored; Reads return 0xFF.                                                                      |
| 0xN60  | SPACE2_FILTER_CTRL | RW     | 0x03        | prg_cmd_allow[0] – Allow (whitelist) program commands in space 2 erase_cmd_allow[1] – Allow (whitelist) erase commands in space 2 read_cmd_block[2] – Block (blacklist) read commands in space 2 reserved[31:3] |
| 0xN64  | SPACE2_START_ADDR  | RW     | 0x00000000  | page_start_addr[31:8] – Start address for space 2, aligned to 256-byte page boundary. reserved[7:0] – Writes are ignored; Reads return 0.                                                                       |
| 0xN68  | SPACE2_END_ADDR    | RW     | 0x000000FF  | page_end_addr[31:8] – End address for space 2, aligned to 256-byte page boundary. reserved_ff[7:0] – Writes are ignored; Reads return 0xFF.                                                                     |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



| Offset | Register Name      | Access | Reset Value | Description                                                                          |
|--------|--------------------|--------|-------------|--------------------------------------------------------------------------------------|
| 0xN80  | SPACE3_FILTER_CTRL | RW     | 0x03        | prg_cmd_allow[0] – Allow (whitelist) program commands in space 3                     |
|        |                    |        |             | erase_cmd_allow[1] – Allow (whitelist) erase commands in space 3                     |
|        |                    |        |             | read_cmd_block[2] – Block (blacklist) read commands in space 3                       |
|        |                    |        |             | reserved[31:3]                                                                       |
| 0xN84  | SPACE3_START_ADDR  | RW     | 0x00000000  | page_start_addr[31:8] – Start address for space 3, aligned to 256-byte page boundary |
|        |                    |        |             | reserved[7:0] – Writes are ignored; Reads return 0.                                  |
| 0xN88  | SPACE3_END_ADDR    | RW     | 0x000000FF  | page_end_addr[31:8] – End address for space 3, aligned to 256-byte page boundary     |
|        |                    |        |             | reserved_ff[7:0] – Writes are ignored; Reads return 0xFF.                            |
| 0xNF0  | ILLEGAL_CMD        | RO     | 0x00        | illegal_cmd[7:0]: Illegal operation command                                          |
|        |                    |        |             | reserved[31:8]                                                                       |
| 0xNF4  | ILLEGAL_ADDR       | RO     | 0x00000000  | Illegal operation address                                                            |

#### 4.7. **Initialization Command Filtering**

When initialization command filtering is enabled, the QSPI Monitor watches for all of the Initializations commands (see Table 4.2). If one of these commands is detected, the transaction is terminated immediately, the command is recorded in the illegal\_cmd register, illegal\_addr is set to 0, and an illegal operation interrupt is sent.

By default, filtering for initialization commands is disabled. In a typical use case, initialization commands are allowed for a certain period of time (such as during boot up) and then filtering can be enabled through the register interface.

#### 4.8. **Address Filtering**

The QSPI Monitor can filter program, erase, and read commands based on address ranges. Up to four address ranges (also called spaces) can be monitored, and filtering can be enabled independently for program, erase, and read commands for each space. Each space consists of a start address, end address, and whitelist/blacklist indicators for each type of command. Address spaces are aligned on 256-byte page boundaries. The default setting for all spaces is to allow (whitelist) program, erase, and read operations in that space. The settings for each space can be modified to block (blacklist) program, erase, or read operations. Each type of operation (program, erase, or read) has a separate whitelist/blacklist setting.

Program/erase operations are considered illegal for all addresses except spaces that have been whitelisted.

- If a program operation starts from a page address that is not inside a whitelisted address space, it is considered illegal.
- If an erase operation starts from an address that is not inside a whitelisted address space, or starts from an address inside a whitelisted address space but the address range goes outside the whitelisted address space, it is considered illegal.

Read operations are allowed for all addresses except spaces that have been blacklisted.

If a read operation starts from an address that is inside a blacklisted address space, or starts from an address outside a blacklisted address space and the incremental address crosses into a blacklisted address space, it is considered illegal.

When an illegal operation is detected, the transaction is terminated immediately, the command and address are saved in the illegal cmd and illegal addr registers, and an illegal operation interrupt is generated.

Because program/erase operations are blacklisted by default and read operations are whitelisted by default, the recommended usage model is to only define whitelist areas for program/erase operations and blacklist areas for read operations as address spaces.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal FPGA-TN-02222-1 0



Overlapping program/erase whitelist and read blacklist address spaces should be avoided because it can lead to unintended consequences, such as an address range being writable but not readable. This prevents common use cases such as the host verifying data written to flash by reading it back.

### 4.9. Command Disable

Filtering for individual commands can be disabled by writing to the COMMAND\_DISABLE0 and COMMAND\_DISABLE1 register (see Table 4.5). By default, all commands are enabled.

**Table 4.5. QSPI Monitor Command Disable Register Fields** 

| Command Register | Field Index | Command                                            |  |  |  |  |  |
|------------------|-------------|----------------------------------------------------|--|--|--|--|--|
| COMMAND_DISABLE0 | 0           | Initialization Command 0                           |  |  |  |  |  |
|                  | 1           | Initialization Command 1                           |  |  |  |  |  |
|                  | 2           | Initialization Command 2                           |  |  |  |  |  |
|                  | 3           | Initialization Command 3                           |  |  |  |  |  |
|                  | 4           | Initialization Command 4                           |  |  |  |  |  |
|                  | 5           | Initialization Command 5                           |  |  |  |  |  |
|                  | 6           | Initialization Command 6                           |  |  |  |  |  |
|                  | 7           | Initialization Command 7                           |  |  |  |  |  |
|                  | 8           | Initialization Command 8                           |  |  |  |  |  |
|                  | 9           | Initialization Command 9                           |  |  |  |  |  |
|                  | 10          | Page Program Command                               |  |  |  |  |  |
|                  | 11          | Page Program Quad Address Quad Data Command        |  |  |  |  |  |
|                  | 12          | Erase 4KB Command                                  |  |  |  |  |  |
|                  | 13          | Erase 32KB Command                                 |  |  |  |  |  |
|                  | 14          | Erase 64KB Command                                 |  |  |  |  |  |
|                  | 15          | Read Command                                       |  |  |  |  |  |
|                  | 16          | Fast Read Command                                  |  |  |  |  |  |
|                  | 17          | Read Dual Data                                     |  |  |  |  |  |
|                  | 18          | Read Dual Address Dual Data Command                |  |  |  |  |  |
|                  | 19          | Read Quad Data Command                             |  |  |  |  |  |
|                  | 20          | Read Quad Address Quad Data Command                |  |  |  |  |  |
|                  | 21          | Quad SPI Mode Enter Command                        |  |  |  |  |  |
|                  | 22          | Quad SPI Mode Exit Command                         |  |  |  |  |  |
|                  | 23          | 4-byte Mode Enter Command                          |  |  |  |  |  |
|                  | 24          | 4-byte Mode Exit Command                           |  |  |  |  |  |
|                  | 25          | 4-byte Read Extended Address Command               |  |  |  |  |  |
|                  | 26          | 4-byte Write Extended Address Command              |  |  |  |  |  |
|                  | 27          | 4-byte Page Program Command                        |  |  |  |  |  |
|                  | 28          | 4-byte Page Program Quad Address Quad Data Command |  |  |  |  |  |
|                  | 29          | 4-byte Erase 4KB Command                           |  |  |  |  |  |
|                  | 30          | 4-byte Erase 32KB Command                          |  |  |  |  |  |
|                  | 31          | 4-byte Erase 64KB Command                          |  |  |  |  |  |
| COMMAND_DISABLE1 | 0           | 4-byte Read Command                                |  |  |  |  |  |
|                  | 1           | 4-byte Fast Read Command                           |  |  |  |  |  |
|                  | 2           | 4-byte Read Dual Data Command                      |  |  |  |  |  |
|                  | 3           | 4-byte Read Dual Address Dual Data Command         |  |  |  |  |  |
|                  | 4           | 4-byte Read Quad Data Command                      |  |  |  |  |  |
|                  | 5           | 4-byte Read Quad Address Quad Data Command         |  |  |  |  |  |
|                  | Others      | Reserved                                           |  |  |  |  |  |



#### 4.9.1. 24/32-Bit Addressing

Flash devices larger than 128 Mb (16 MB) provide three separate mechanisms for addressing beyond the traditional 24-bit address space:

- Commands to enter/exit 4-byte mode (EN4B/EX4B)
   When the flash is in 4-byte mode, commands which normally take a 3-Byte address (read, erase, program, and others) expect 4-byte addresses instead of 3-byte addresses. The default is 3-byte mode.
- Extended Address Register (EAR)
  The EAR is an 8-bit register in the flash, which can be read and written using special commands (RDEAR/WREAR).
  When the flash is in 3-byte mode, the EAR is used to select which 128 Mbit segment is addressed by the 3-byte address. In other words, the value in EAR is used as the upper 8 bits of the 32-bit flash address (flash\_addr[31:0] = {EAR, addr[23:16], addr[15:8], addr[7:0]} ). The EAR default value is 0.
- 4-byte Address Commands
  The 4-byte commands, such as READ4B, FAST\_READ4B, are separate commands from the standard 3-byte commands, such as READ, FAST\_READ. The 4-byte commands always take 4-byte addresses, regardless of whether the flash is in 4-byte or 3-byte mode, and do not use the EAR.

When the monitor is configured to allow 32-bit addressing, the monitor internally tracks the addressing status of the flash (3-byte/4-byte mode, EAR) based on commands observed on the SPI/QSPI bus and uses this information to filter addresses observed on the bus. When the flash is in 4-byte mode or a 4-byte command is detected, the monitor compares the 32-bit address on the bus with the configured address spaces to determine if the operation is illegal or allowed. When the flash is in 3-byte mode, the monitor compares the 32-bit value comprised of EAR and the 24-bit address on the bus with the configured address spaces to determine if the operation is illegal or allowed.

All address comparisons are performed with the full 32-bits to prevent aliasing between 24-bit and 32-bit addresses which could result in security holes or false illegal operation detection.

When the monitor is configured to not allow 32-bit addressing (allow\_4byte\_addr = 0), the monitor is set to 3-byte mode, EAR is set to 0, and all of the 4-byte commands defined in the QSPI Command List Table are considered illegal operations. If one of these commands is detected, the transaction is terminated immediately, the command and address are recorded in the illegal\_cmd and illegal\_addr registers, and an illegal operation interrupt is sent.

## 4.10. Unrecognized Command Filtering

If a command is detected that does not match any of the commands defined in the QSPI Command List Table (see Table 4.2), the transaction is terminated immediately, the command is recorded in the illegal\_cmd register, illegal\_addr is set to 0, and an illegal operation interrupt is sent.



## 4.11. Timing Sequence

## 4.11.1. Illegal Command Blocking

If one of the illegal commands is detected (Figure 4.2), the transaction is terminated immediately by extending chip select and adding a clock pulse to confuse the SPI flash.

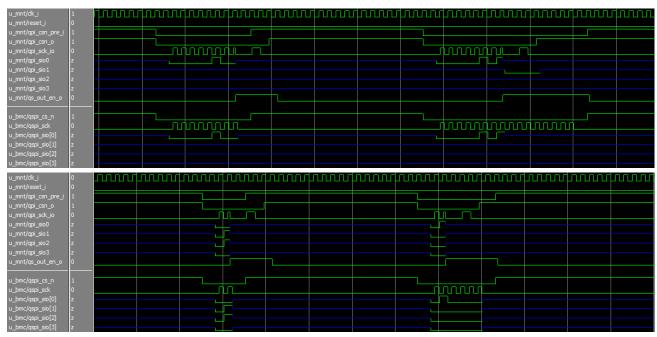
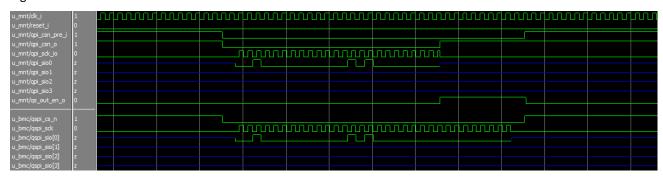




Figure 4.2. One Illegal Command

## 4.11.2. Illegal Erase Command Breaking (3-Byte Address)

If an illegal erase command is detected (Figure 4.3), the transaction is terminated immediately by driving chip select high.





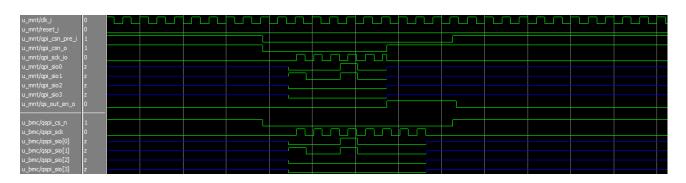



Figure 4.3. Illegal Erase Command

### 4.11.3. Illegal Program Command Breaking (3-Byte Address, Illegal Start Address)

If an illegal program command is detected (Figure 4.4), the transaction is terminated immediately by driving chip select high.

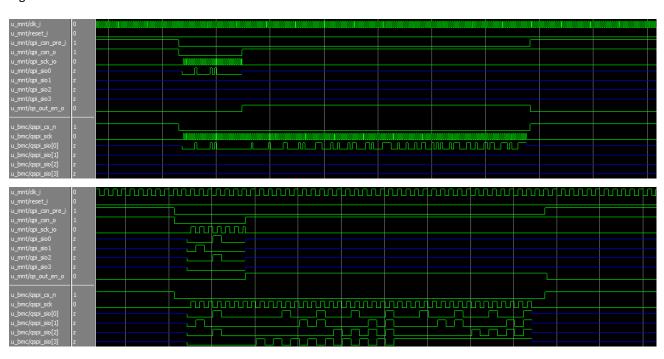



Figure 4.4. Illegal Program Command (3-Byte Address, Illegal Start Address)

## 4.11.4. Illegal Read Command Breaking (3-Byte Address, Illegal Start Address)

If an illegal read command is detected (Figure 4.5), the transaction is terminated immediately by driving chip select high.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



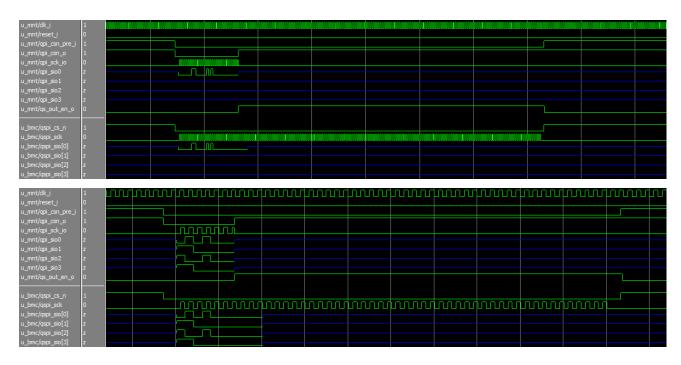



Figure 4.5. Illegal Read Command (3-Byte Address, Illegal Start Address)

### 4.11.5. Illegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)

If a read command incremental address overflow is detected (Figure 4.6), the transaction is terminated immediately by driving chip select high.

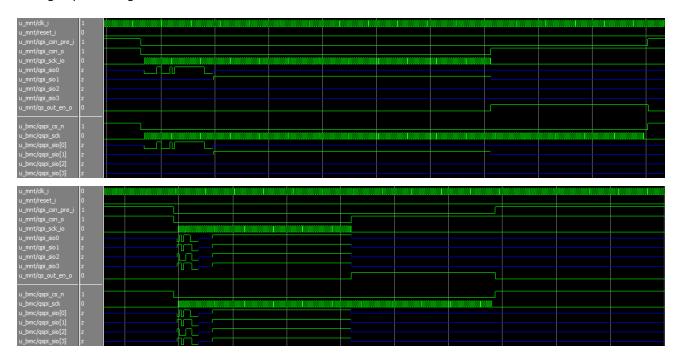



Figure 4.6. Illegal Read Command (3-Byte Address, Incremental Address Overflow)



#### 4.11.6. Illegal 4-Byte Command Breaking

If a 4-byte command is disabled and a 4-byte command is detected (Figure 4.7), the transaction is terminated immediately by driving chip select high.

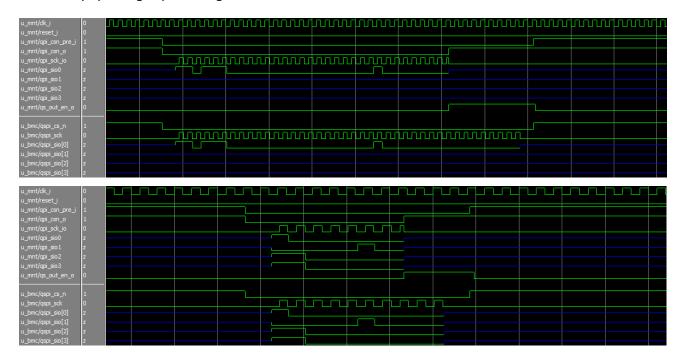



Figure 4.7. Illegal 4-Byte Command Breaking

## 4.12. Mux/Demux Functionality

Each external SPI/QSPI bus can be connected either to its corresponding monitor, or to the QSPI Master Streamer through a mux/demux block. This allows the QSPI Master Streamer to disable the monitor and access the external flash. Each bus/monitor/mux combination is independent of the others. It is the responsibility of the firmware to manage the muxes appropriately to prevent the internal SPI/QSPI master from being connected to more than one external bus at a time.

## 4.13. Internal Switching

When internal switching is enabled, the switch which connects the external SPI Master (BMC, PCH, and others) to the SPI flash is implemented inside the FPGA soft logic instead of being implemented externally on the board with a quick switch device. Regardless of whether the switch is internal or external, the SPI bus is still monitored by the QSPI Monitor. When any illegal activity is detected on the SPI bus, the internal switch is disabled, disconnecting the external SPI master from the slave. The internal switch only supports SPI communications; DSPI and QSPI are not supported. For DSPI and QSPI, an external quick switch device is required.

Figure 4.8 shows the diagram for the internal switch.



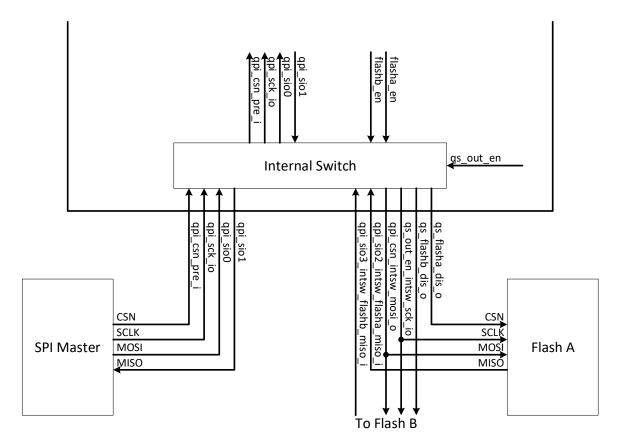



Figure 4.8. QSPI Internal Switch



# 5. QSPI Master Streamer

The QSPI Master Streamer is a configurable SPI master, which can support SPI, DSPI, and QSPI slaves. It contains FIFOs for Tx and Rx data, which support page read and page program (256 bytes). It also provides an external Rx FIFO output interface (8-bit) which is connected to the Secure Enclave and System Memory.

The QSPI Master Streamer provides significant performance improvement by supporting data read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI transaction. The Secure Enclave FIFO output interface (8-bit) also enables direct transmission of input data from the SPI slave to the High Speed Port of the Secure Enclave, without tying up the CPU or system bus.

#### 5.1. Features

The key features of the QSPI Master Streamer include:

- Generation of SPI, DSPI, and QSPI transactions
- Support for long SPI transactions (up to 256-byte write and 4 Gb read) with no CPU interactions
- Programmable transaction type and length
- Provision of external 8-bit FIFO interface for connecting to other blocks

## 5.2. Block Diagram

QSPI Master Streamer Block Diagram is shown in Figure 5.1. There are Tx and Rx FIFOs with each having a 32-bit access port for the system bus (APB) and an 8-bit access port for the SPI Master state machine. 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs.

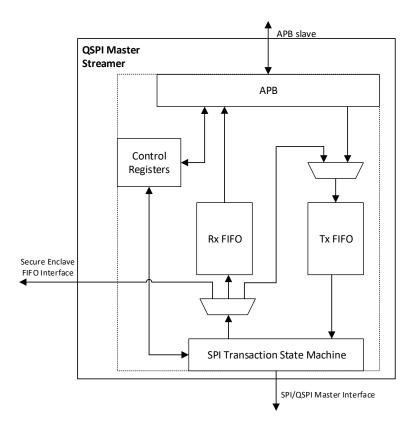



Figure 5.1. QSPI Master Streamer Block Diagram



## 5.3. FIFO Configuration

The QSPI Master Streamer FIFO configuration is shown in Table 5.1.

**Table 5.1. QSPI Streamer FIFO Configuration** 

| Attribute                 | Configuration | Notes                     |           |           |          |           |
|---------------------------|---------------|---------------------------|-----------|-----------|----------|-----------|
| Tx FIFO Size              | 512           | _                         |           |           |          |           |
| Tx FIFO Almost Full Flag  | 256           | _                         |           |           |          |           |
| Tx FIFO Almost Empty Flag | 4             | _                         |           |           |          |           |
| Tx FIFO Endianness        |               | APB Tx FIFO Data          | 31:24     | 23:16     | 15:8     | 7:0       |
|                           | Big           | Big endian                | 0         | 1         | 2        | 3         |
| Rx FIFO Size              | 256           | _                         |           |           |          |           |
| Rx FIFO Almost Full Flag  | 252           | _                         |           |           |          |           |
| Rx FIFO Almost Empty Flag | 4             | _                         |           |           |          |           |
| Rx FIFO Endianness        |               | Received bytes from SPI a | are packe | d in this | order (f | rom 0-3): |
|                           | Big           | APB Rx FIFO Data          | 31:24     | 23:16     | 15:8     | 7:0       |
|                           | -             | Big endian                | 0         | 1         | 2        | 3         |

## 5.4. Register Description

The QSPI Master Streamer IP core register map is shown in the Table 5.2.

**Table 5.2. QSPI Master Streamer IP Core Registers** 

| Offset | Name         | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|--------------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00   | QSPI_CTRL    | RW     | 0x0000004   | spi_mode[1:0]  O0: SPI mode 0  10: reserved  10: reserved  11: SPI mode 3  sck_div[4:2]:  O: Fqpi_sck_o = Fclk_i  1: Fqpi_sck_o = Fclk_i/2  2: Fqpi_sck_o = Fclk_i/4  3: Fqpi_sck_o = Fclk_i/8  4: Fqpi_sck_o = Fclk_i/16  5: Fqpi_sck_o = Fclk_i/32  reserved[30:5]  soft_reset[31]  Writing 1 to this bit resets all of the internal logic, flushes the FIFOs (resets the read/write pointers), and restores all registers to their default settings. |
| 0x04   | CMD_DATA     | RW     | 0x0         | Reads return 0. Intended for error recovery.  Command data to transmit in transaction phase 1 (always big endian)                                                                                                                                                                                                                                                                                                                                       |
| 0x08   | TX_FIFO_DATA | WO     | 0x0         | Data to transmit in transaction phase 2 When the Tx FIFO is full, register writes to this address is blocked until the FIFO is no longer full. Tx FIFO status is available in the fifo_ctrl and int_status registers.                                                                                                                                                                                                                                   |
| 0x0C   | RX_FIFO_DATA | RO     | 0x0         | Data received in transaction phase 4  If the Rx FIFO contains less than four bytes when a 32-bit read is received on the system bus and there is a SPI transaction currently in progress, the read is blocked until 4 bytes are received or the SPI transaction completes.                                                                                                                                                                              |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice



| Offset         | Name                   | Access       | Reset Value      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|------------------------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Offset<br>0x10 | Name TRANSACTION_CTRL1 | Access<br>RW | Reset Value  0x0 | ph1_num_bytes[2:0] – Number of bytes from cmd_data to transmit in transaction phase 1 (legal values: 0-4) ph2_num_bytes[11:3] – Number of bytes from Tx FIFO to transmit in transaction phase 2 (legal values: 0- Tx FIFO Size) ph3_dummy_cycles[16:12] – Number of dummy cycles to transmit in transaction phase 3 ph1_mode[18:17] – Transmit phase 1 data in:                                                                                                                                                                                                  |
|                |                        |              |                  | rxfifo_last_en[25] – Enable(1)/Disable(0) assertion of rxfifo_last_o for the last received byte of the SPI transaction                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                        |              |                  | reserved[30:26] start[31] – Write 1 to start an SPI transaction (reads return 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x14           | TRANSACTION_CTRL2      | RW           | 0x0              | ph4_num_bytes[31:0] – Number of bytes to receive in transaction phase 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x18           | STATUS                 | RO           | 0x0              | tx_fifo_empty[0] – Tx FIFO is empty tx_fifo_almost_empty[1] – Tx FIFO is not empty and has less than Tx FIFO Almost Empty Flag bytes tx_fifo_almost_full[2] – Tx FIFO is not full and has more than Tx FIFO Almost Full Flag bytes tx_fifo_full[3] – Tx FIFO is full rx_fifo_empty[4] – Rx FIFO is empty rx_fifo_almost_empty[5] – Rx FIFO is not empty and has less than Rx FIFO Almost Empty Flag bytes rx_fifo_almost_full[6] – Rx FIFO is not full and has more than Rx FIFO Almost Full Flag bytes reserved[30:8] busy[31] – SPI transaction is in progress |
| 0x1C           | FIFO_CTRL              | RW           | 0x0              | reserved[6:0]  tx_fifo_flush[7] – Flush contents of Tx FIFO (reset read and write pointers)  rx_fifo_dest[9:8]:  0: internal Rx FIFO  1: external Rx FIFO interface  2: reserved  3: internal Tx FIFO                                                                                                                                                                                                                                                                                                                                                            |



| Offset | Name       | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|------------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |            |        |             | reserved[14:10] rx_fifo_flush[15]: flush contents of Rx FIFO (reset read and write pointers) reserved[31:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x20   | INT_STATUS | RW     | 0x0         | Interrupt status: done_int[0] - Done interrupt (SPI transaction completed) tx_fifo_empty_int[1] - Tx FIFO Empty interrupt tx_fifo_almost_empty_int[2] - Tx FIFO Almost Empty interrupt tx_fifo_almost_full_int[3] - Tx FIFO Almost Full interrupt tx_fifo_empty_int[4] - Tx FIFO Full interrupt rx_fifo_empty_int[5] - Rx FIFO Empty interrupt rx_fifo_almost_empty_int[6] - Rx FIFO Almost Empty interrupt rx_fifo_almost_full_int[7] - Rx FIFO Almost Full interrupt rx_fifo_full_int[8] - Rx FIFO Full interrupt reserved[31:9] Writing 1 to a bit clears that interrupt FIFO interrupts are triggered on the rising edge of the corresponding FIFO condition (empty, full, etc.) and stay asserted until cleared by writing a 1 to this register to clear the interrupt. Current status of the FIFO conditions is always available in the status register. |
| 0x24   | INT_ENABLE | RW     | 0x0         | Interrupt enable: done_en[0] - Enable Done interrupt (SPI transaction completed) tx_fifo_empty_en[1] - Enable Tx FIFO Empty interrupt tx_fifo_almost_empty_en[2] - Enable Tx FIFO Almost Empty interrupt tx_fifo_almost_full_en[3] - Enable Tx FIFO Almost Full interrupt tx_fifo_full_en[4] - Enable Tx FIFO Full interrupt rx_fifo_empty_en[5] - Enable Rx FIFO Empty interrupt rx_fifo_almost_empty_en[6] - Enable Rx FIFO Almost Empty interrupt rx_fifo_almost_full_en[7] - Enable Rx FIFO Almost Full interrupt rx_fifo_full_en[8] - Enable Rx FIFO Full interrupt reserved[31:9]                                                                                                                                                                                                                                                                        |
| 0x28   | INT_SET    | RW     | 0x0         | Interrupt set: done_set[0] - Set Done interrupt (SPI transaction completed) tx_fifo_empty_set[1] - Set Tx FIFO Empty interrupt tx_fifo_almost_empty_set[2] - Set Tx FIFO Almost Empty interrupt tx_fifo_almost_full_set[3] - Set Tx FIFO Almost Full interrupt tx_fifo_full_set[4] - Set Tx FIFO Full interrupt rx_fifo_empty_set[5] - Set Rx FIFO Empty interrupt rx_fifo_almost_empty_set[6] - Set Rx FIFO Almost Empty interrupt rx_fifo_almost_full_set[7] - Set Rx FIFO Almost Full interrupt rx_fifo_full_set[8] - Set Rx FIFO Full interrupt reserved[31:9]                                                                                                                                                                                                                                                                                             |



## 5.5. Secure Enclave FIFO Interface

The Secure Enclave FIFO interface supports the transfer of large streams of data from SPI flash to the Secure Enclave and System Memory. This allows firmware images to be loaded in the High Speed Port of the Security Enclave for faster authentication and the CPU firmware image being loaded into System Memory.

# 5.6. Operation

#### 5.6.1. Transaction Phases

The QSPI Master Streamer generates an SPI or a QSPI transaction in multiple phases, as shown in Figure 5.2. Each phase is controlled by separate register settings. In the typical usage model, the CPU programs all of the transaction phase registers with the settings for the desired transaction, then write 1 to bit[31] of the TRANSACTION\_CTRL1 register to initiate SPI transactions. For transactions which use data, the CPU should write data to the FIFO before starting the transaction (see examples sequence below for details).

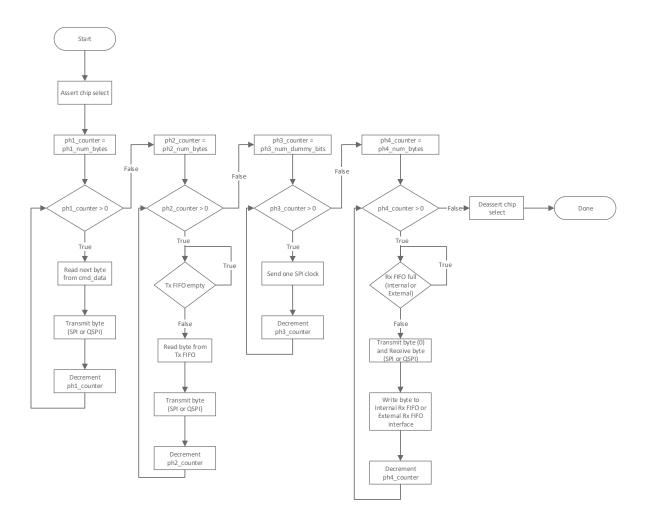



Figure 5.2. QSPI Master Streamer Programmable Phases

39



Phase 1: Transmit ph1 num bytes (0-4) bytes from cmd data register

- For SPI flash devices, this normally includes 1 command byte and 0 or 3 address bytes.
- Data is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph1\_mode setting in transaction\_ctrl1.
- Serial data input is ignored

Phase 2: Transmit ph2 num bytes (0-1028) bytes from Tx FIFO

- For SPI flash devices, this is normally used for page program data and/or 4 byte addressing.
- Data is transmitted in SPI mode DSPI mode, or QSPI mode depending on the ph2\_mode setting in transaction\_ctrl1.
- Serial data input is ignored.

Phase 3: Transmit ph3 num dummy bits (0-15) bits

- For SPI flash devices, this is normally used to generate dummy cycles for read data commands.
- Dummy data (0) is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph3 mode setting.
- Serial data input is ignored.

Phase 4: Receive ph4\_num\_bytes (0-4GB) bytes and send to Rx FIFO

- For SPI flash devices, this is normally used for read commands.
- Data is received in SPI mode, DSPI mode, or QSPI mode depending on the ph4\_mode setting.
- Received data is stored in Rx FIFO or sent out the External Rx FIFO interface depending on the rx\_fifo\_dest.
- Serial data output is 0 for SPI or high impedance for QSPI.
- SPI slave ignores the data.

#### SPI Flash Page Program example:

```
cmd_data = 0x02xxxxxx (where xxxxxx = 24-bit Flash address).
Tx FIFO contains DataByte1...DataByte16 values
ph1_num_bytes = 4, ph1_mode = 0
ph2_num_bytes = N, ph2_mode = 0 (N=16 in example)
ph3_num_dummy_bits = 0, ph3_mode = 0
ph4_num_bytes = 0, ph4_mode = 0
```

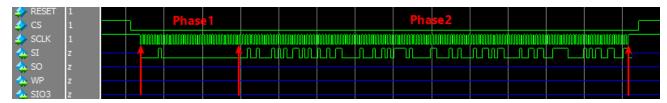
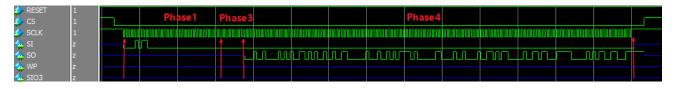




Figure 5.3. Example for PP Program Sequence

#### SPI Flash FAST\_READ example:



All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02222-1 0



Figure 5.4. Example for FAST\_READ Sequence

#### SPI RDID example:

```
cmd_data = 0x9F000000
ph1_num_bytes = 1, ph1_mode = 0
ph2_num_bytes = 0, ph2_mode = 0
ph3_num_dummy_bits = 0, ph3_mode = 0
ph4_num_bytes = 3, ph4_mode = 0
```

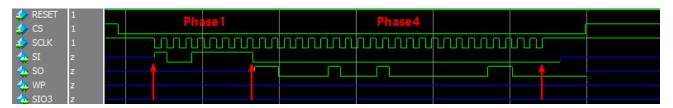



Figure 5.5. Example for RDID Sequence

#### SPI Flash QREAD4B example:



Figure 5.6. Example for QREAD4B Sequence

#### 5.6.2. Width Conversion

Each Tx and Rx FIFO has a 32-bit access port for the system bus (APB) and an 8-bit access port for the SPI Master state machine. The 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs. The endianness of the 32-bit data is big endian, see Table 5.1.

Wherever possible, the implementation should avoid stalling the system bus while doing width conversions. For example, on the Tx FIFO, the 32-bit write value should be stored in a local register and the system bus write cycle should be terminated before doing the four 8-bit writes to the Tx FIFO. On the Rx FIFO, the logic should read bytes from the Rx FIFO into a local 32-bit register whenever the Rx FIFO is not empty, so that the 32-bit value can be returned immediately whenever a system bus read is received. This avoids tying up the system bus and stalling the CPU while the width conversions are being performed.

#### 5.6.3. FIFO Empty/Full Behavior

40

The recommended usage model is for the CPU to write all of the data for a transaction to the Tx FIFO (for example, a full 256-byte page) before starting the transaction so that the Tx FIFO does not become empty in the middle of a transaction.

If the Rx FIFO indicates that it is full before the transaction is completed, then the SPI/QSPI state machine stalls until the Rx FIFO is no longer full. When this stall occurs, qpi\_csn\_o is held asserted but the SPI/QSPI clock is gated off (held in the inactive state). When the Rx FIFO is not full, the clock is gated back on and data is received over SPI/QSPI.



# 5.6.4. Typical Flash Read/Program Flow

The typical flash (MX25L12845G, MACRONIX, CO, Ltd) read/program flow is shown in Figure 5.7.

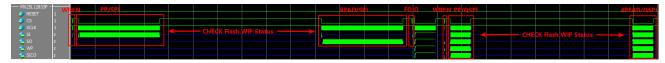



Figure 5.7. Typical Flash Read/Program Flow



# 6. I<sup>2</sup>C Monitor

The I<sup>2</sup>C Monitor is an I<sup>2</sup>C access and command module that can monitor the traffic on the I<sup>2</sup>C bus to identify potential illegal traffic based on a pre-defined library. Once illegal traffic is detected, this I<sup>2</sup>C Monitor informs the host through the status flag and/or interrupt. With user option, the current communication can be disrupted by disabling the I<sup>2</sup>C bus.

The I<sup>2</sup>C Monitor compares the first eight bytes of I<sup>2</sup>C bus traffic immediately after the slave I<sup>2</sup>C address with the pre-defined filters in the database. The filters are set up by the system host through the APB Bus. Once a matching event is detected, it informs the host using status sampling through the APB Bus or dedicated interrupt. Meanwhile, according to user setup, it disables the current I<sup>2</sup>C communication to prevent catastrophic damage to the system. The block diagram of the I<sup>2</sup>C Monitor is shown in Figure 6.1.

## 6.1. Features

The key features of the I<sup>2</sup>C Monitor include:

- Monitoring of traffic on an I<sup>2</sup>C bus for illegal activity based on programmable filter conditions
- Protects bus from illegal activity by driving bus low

# 6.2. Block Diagram

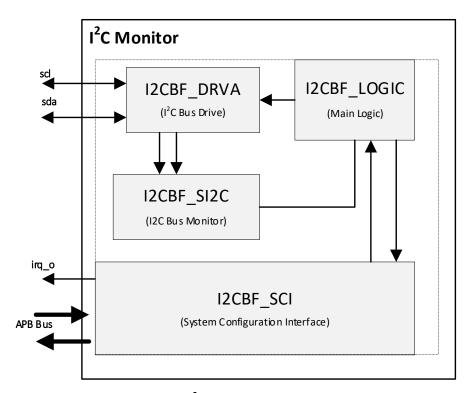



Figure 6.1. I<sup>2</sup>C Monitor Block Diagram

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



# 6.3. Signal Description

Table 6.1. I<sup>2</sup>C Monitor Signal Description

| Signal                   | Direction | Description                                             |
|--------------------------|-----------|---------------------------------------------------------|
| I <sup>2</sup> C Monitor |           |                                                         |
| I2C_MONx_SCL             | Bidir     | Clock (Input during monitor, drives low when exception) |
| I2C_MONx_SDA             | Bidir     | Data (Input during monitor, drives low when exception)  |

# 6.4. Register Description

The register address map specifies the available I<sup>2</sup>C Monitor core registers and which are accessible through APB.

Table 6.2. I<sup>2</sup>C Monitor Core Registers

| Offset | Register Name | Access | Default value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|---------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x1FC  | I2CBF_CR      | R/W    | 32'H00000000  | <ul> <li>Control Register</li> <li>Bit [31:8]: Unused</li> <li>Bit [7]: i2cbf_en – This bit enables the I2CBF IP to perform the I2C bus traffic event detection.</li> <li>Bit [6]: bus_stop – If asserted, this bit allows the host to unconditionally disable the I2C bus by driving both SCL and SDA low. The bus is released after this bit is written with 0.</li> <li>Bit [5]: bus_dis_en – This bit enables the I2CBF IP to disable the I2C bus in case an event is detected.</li> <li>Bit [4:0]: total_number_of_entry</li> <li>These five bits allow the host to inform the I2CBF IP of the number entries defined for the event detection. The current maximum number is 20.</li> </ul> |
| 0x1F8  | I2CBF_INTENR  | R/W    | 32'H00000000  | Interrupt Enable Register  Bit [31:8]: Unused  Bit[7:6]: Reserved  Bit[5]: int_en – This bit enables the interrupt from the I2CBF IP to the system host in case an I <sup>2</sup> C traffic event is detected.  Bit [4:0]: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x1F4  | I2CBF_INTSETR | R/W    | 32'H00000000  | Interrupt Set Register  Bit [31:8]: Unused  Bit[7:6]: Reserved  Bit[5]: int_set – This bit enables the interrupt from the I2CBF IP to the system host in case an I <sup>2</sup> C traffic event is detected.  Bit [4:0]: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x1F0  | I2CBF_SR      | R      | 32'H00000000  | <ul> <li>Status Register</li> <li>Bit [31:8]: Unused</li> <li>Bit [7:6]: Reserved</li> <li>Bit [5]: event_detected – This bit indicates that there is an event detected from the I<sup>2</sup>C bus traffic based on the entry table setup.</li> <li>Bit [4:0]: entry_number_for_current_event</li> <li>These four bits indicate the entry number for the current event. It is stable once an event is detected until the I2CBF IP is reset by the host.</li> </ul>                                                                                                                                                                                                                              |



| Offset | Register Name | Access | Default value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|---------------|--------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x140  | Reserved      | _      | _             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x13C  | ENTRY20_D     | R/W    | 32'H00000000  | ENTRY 20 [127:96]  • Bit [31]: entry_enable – This bit enables this particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |               |        |               | <ul> <li>entry for the event detection.</li> <li>Bit [30]: 10_bits_address – This bit enables the 10 bits address for I<sup>2</sup>C slave address checking.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |
|        |               |        |               | Bit [29:27]: i2c_10_bits_address_msb – These bits are the MSB 3 bits of the 10 bits address if the bit [126] is set.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |               |        |               | Bit [26:20]: 7_bits_address – These bits are the I <sup>2</sup> C Slave Address for I <sup>2</sup> C bus traffic checking.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |               |        |               | Bit [19]: rw – This bit is the RW checking bit for I <sup>2</sup> C bus traffic monitoring. The same as the I <sup>2</sup> C Bus Specification, 1 is for read and 0 for write.                                                                                                                                                                                                                                                                                                                                                                            |
|        |               |        |               | Bit [18]: rw_nc — This bit is used to disable the RW bit checking. Once set, the RW bit is ignored for I <sup>2</sup> C bus traffic checking, hence, both I <sup>2</sup> C bus read and write are monitored.                                                                                                                                                                                                                                                                                                                                              |
|        |               |        |               | Bit [17:16]: check_mode – These two bits are used to set up the checking mode for this entry. The provided modes are shown in Table 6.3.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |               |        |               | Bit [15:8]: detection_enable_mask – These eight bits are the active High Mask to enable corresponding received byte(s) among the eight bytes immediately after the I <sup>2</sup> C slave address for event detection.                                                                                                                                                                                                                                                                                                                                    |
|        |               |        |               | Bit [7:0]: bit_wide_operation_selection_mask – These eight bits are the active High Mask to alter corresponding byte event detection from pattern matching to bit detection against the corresponding Check Data Byte.  See the detailed format in Table 6.4.                                                                                                                                                                                                                                                                                             |
| 0x138  | ENTRY20_C     | R/W    | 32'H00000000  | ENTRY 20 [95:64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |               |        |               | Bit [31:0]: check_data_mask_byte – These four bytes are the checking data for the event detection or Bit Mask bytes depending on the entry check mode setup.                                                                                                                                                                                                                                                                                                                                                                                              |
|        |               |        |               | For Mode 00 and Mode 01, these four bytes serve as Bit Mask bytes for bitwise checking selection. The mask bytes order corresponds to the position of the SET bit (1) within the Bit-Wide Operation Selection Mask (Entry Bit [103:96]). The larger mask number index corresponds to the MSB side of the Bit-Wide Operation Selection Mask. A maximum of four Bit Mask bytes can be selectively enabled per entry. For Mode 10 and Mode 11, these four bytes are part of the check data bytes (total of 12 bytes).  See the detailed format in Table 6.4. |
| 0x134  | ENTRY20_B     | R/W    | 32'H00000000  | ENTRY20 [63:32] Bit [31:0]: check_data_byte – These first four bytes of data are the checking data for the event detection. See the detailed format in Table 6.4.                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x130  | ENTRY20_A     | R/W    | 32'H00000000  | ENTRY20 [31:0] Bit [31:0]: check_data_byte – These next four bytes of data are the checking data for the event detection. See the detailed format in Table 6.4.                                                                                                                                                                                                                                                                                                                                                                                           |



| Offset | Register Name | Access | Default value | Description               |
|--------|---------------|--------|---------------|---------------------------|
| 0x12C  | ENTRY19_D     | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x128  | ENTRY19_C     | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x124  | ENTRY19_B     | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x120  | ENTRY19_A     | R/W    | 32'H00000000  | Refer to Entry20 Register |
| _      | _             | _      | _             | ENTRY2_A – ENTRY18_D      |
| _      | _             | _      | _             | Refer to Entry20 Register |
| _      | _             | _      | _             |                           |
| _      | _             | _      | _             |                           |
| 0x0C   | ENTRY1_D      | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x08   | ENTRY1_C      | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x04   | ENTRY1_B      | R/W    | 32'H00000000  | Refer to Entry20 Register |
| 0x00   | ENTRY1_A      | R/W    | 32'H00000000  | Refer to Entry20 Register |

#### **Table 6.3. Check Mode Table**

| Check Mode            | Description                                                                                                                                                                                                                                                                                  | Detection Enable<br>Mask  | Bit-Wide Operation<br>Selection Mask | Data Byte<br>Utilized         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|-------------------------------|
| 2'b00<br>Check Mode 1 | <ul> <li>Multiple byte checking against Data Byte 1–8 based on the Detection Enable Mask and Bit- Wide Operation Selection Mask setting</li> <li>Event trigger by ALL enabled bytes matching to the corresponding receiving bytes</li> </ul>                                                 | Utilized,<br>Multiple Hot | Utilized,<br>Max 4 Hot               | Data Byte 1–8<br>Bit Mask 1–4 |
| 2'b01<br>Check Mode 2 | <ul> <li>Multiple byte checking against         Data Byte 1–8 based on the         Detection Enable Mask and Bit-         Wide Operation Selection Mask         setting</li> <li>Event trigger by ANY enabled         bytes matching to the         corresponding receiving bytes</li> </ul> | Utilized,<br>Multiple Hot | Utilized,<br>Max 4 Hot               | Data Byte 1–8<br>Bit Mask 1–4 |
| 2'b10<br>Check Mode 3 | <ul> <li>Single byte checking against entry Data Byte 1–12, based on the Detection Enable Mask setting</li> <li>Event is triggered if the specified receiving byte DOES NOT match any byte among the entry Data Byte 1–12.</li> </ul>                                                        | Utilized,<br>One Hot      |                                      | Data Byte 1–12                |
| 2'b11<br>Check Mode 4 | <ul> <li>Single byte checking against the entry Data Byte 1–12 based on the Detection Enable Mask Setting.</li> <li>Event is triggered if the specified receiving byte DOES match one of the entry Data Byte 1–12.</li> </ul>                                                                | Utilized,<br>One Hot      |                                      | Data Byte 1–12                |



Each Entry Data is 128 bits in length. The field's assignments for each I<sup>2</sup>C Monitor Entry Data is shown Table 6.4. The APB host, through the 32 bits APB Bus, can read/write this True Dual Port memory.

**Table 6.4. Data Entry Format** 

| Bits | 127               | 126                | 125           | 124     | 123 | 122                  | 121               | 120  | 119                          | 118               | 117     | 116      | 115     | 114      | 113   | 112  |
|------|-------------------|--------------------|---------------|---------|-----|----------------------|-------------------|------|------------------------------|-------------------|---------|----------|---------|----------|-------|------|
| Name | Entry<br>Enable   | 10 Bits<br>Address | 10 Bit<br>MSB | s Addre | ess | I <sup>2</sup> C 7 I | Bits Addı         | ress |                              |                   |         |          | RW      | RW<br>NC | Check | Mode |
| Bits | 111               | 110                | 109           | 108     | 107 | 106                  | 105               | 104  | 103                          | 102               | 101     | 100      | 99      | 98       | 97    | 96   |
| Name | Detection         | Enable Ma          | ask           |         |     |                      |                   |      | Bit-W                        | ide Ope           | ration  | Selectio | on Masl | <        |       |      |
| Bits | 95                | 94                 | 93            | 92      | 91  | 90                   | 89                | 88   | 87                           | 86                | 85      | 84       | 83      | 82       | 81    | 80   |
| Name | Check Dat         | a Byte 12/         | Bit Mas       | sk 4    |     |                      |                   |      | Check                        | Data B            | yte 11/ | Bit Mas  | sk 3    |          |       |      |
| Bits | 79                | 78                 | 77            | 76      | 75  | 74                   | 73                | 72   | 71                           | 70                | 69      | 68       | 67      | 66       | 65    | 64   |
| Name | Check Dat         | a Byte 10/         | Bit Mas       | sk 2    |     |                      |                   |      | Check Data Byte 9/Bit Mask 1 |                   |         |          |         |          |       |      |
| Bits | 63                | 62                 | 61            | 60      | 59  | 58                   | 57                | 56   | 55                           | 54                | 53      | 52       | 51      | 50       | 49    | 48   |
| Name | Check Dat         | a Byte 8           |               |         |     |                      |                   |      | Check Data Byte 7            |                   |         |          |         |          |       |      |
| Bits | 47                | 46                 | 45            | 44      | 43  | 42                   | 41                | 40   | 39                           | 38                | 37      | 36       | 35      | 34       | 33    | 32   |
| Name | Check Dat         | a Byte 6           |               |         |     |                      |                   |      | Check                        | Check Data Byte 5 |         |          |         |          |       |      |
| Bits | 31                | 30                 | 29            | 28      | 27  | 26                   | 25                | 24   | 23                           | 22                | 21      | 20       | 19      | 18       | 17    | 16   |
| Name | Check Data Byte 4 |                    |               |         |     |                      | Check Data Byte 3 |      |                              |                   |         |          |         |          |       |      |
| Bits | 15                | 14                 | 13            | 12      | 11  | 10                   | 9                 | 8    | 7                            | 6                 | 5       | 4        | 3       | 2        | 1     | 0    |
| Name | Check Dat         | a Byte 2           | •             | •       |     |                      |                   |      | Check                        | Data B            | yte 1   | •        | •       | •        |       |      |

# 6.5. Module Description

## 6.5.1. I2CBF\_SCI

I2CBF\_SCI is the System Configuration Interface for the I<sup>2</sup>C Monitor, which contains the configurable memory for the IP. The system host can access this memory through the 32 bits APB bus. The memory/registers are:

- Control register, read and write access.
- Status register, read-only.
- True Dual Port memory for the entry data for event detection, which can be read/written by the host through the 32-bit APB bus, and read by the I2CBF\_LOGIC through the 128-bit internal data bus.

# 6.5.2. I2CBF\_SI2C

The I2CBF\_SI2C module monitors the I<sup>2</sup>C bus activities, detects the START/STOP conditions, examines the I<sup>2</sup>C slave address, and fetches the first eight data bytes. It provides the received address, RW bits, received data bytes along with the data byte count number to the I2CBF\_LOGIC module for event detection. Also, for some application scenarios, it can provide the receiving bit count and acknowledge information to I2CBF\_DRVX block for I<sup>2</sup>C bus disable control.

## 6.5.3. **I2CBF\_LOGIC**

The I2CBF\_LOGIC module gets the current I<sup>2</sup>C bus activities from the I2CBF\_SI2C module and the entry data from the I2CBF\_SCI module. It then performs event detection based on the control register and entry data settings for every data byte received from the I<sup>2</sup>C bus traffic. Once an event is detected, it sets up corresponding status register bit and sends out interrupt to the host if control register setting allows.



#### 6.5.4. I2CBF DRVA

This I2CBF\_DRVA module is controlled by the output of the I2CBF\_LOGIC module to disable the I<sup>2</sup>C bus by driving both SCL and SDA low. This disrupts the I<sup>2</sup>C communication. Once the I<sup>2</sup>C bus is disabled, it could only be released by writing to the status register of the I<sup>2</sup>C Monitor from the host or by cycling the power supply. To only disrupt the I<sup>2</sup>C communication on the slave side without disabling the whole I<sup>2</sup>C bus, a different module, such as I2CBF\_DRVB with bus multiplexer, can be deployed to replace the I2CBF\_DRVA module.

## 6.6. Programming Flow

During the system initialization phase, the system host should download the Entry Table into the True Dual Port Memory inside the I2CBF\_SCI block through the APB bus. To start the I<sup>2</sup>C bus monitoring process, the host should write the I2CBF\_CR through the APB bus with the I2CBF\_EN bit set to 1. The host should receive interrupt if an event is detected, if the INT\_EN bit is set inside I2CBF\_CR, or the host has to pull the I2CBF\_SR to identify the I<sup>2</sup>C bus status.

If the BUS\_DIS\_EN bit inside the I2CBF\_CR is set, the I<sup>2</sup>C bus is disabled for further communication between master and slave. To resume the I<sup>2</sup>C bus communication, the host should perform a write operation to the I2CBF\_SR through the APB bus.

To stop I<sup>2</sup>C bus monitoring, the host should write the I2CBF CR with the I2CBF EN bit set to 0.

## 6.6.1. Example Data Alignment for Check Mode 1 and Mode 2

For Check Mode 1 and Check Mode 2, the I<sup>2</sup>C Monitor checks every time a new byte (for the first eight bytes immediately after the I<sup>2</sup>C Slave Address) is received for all available entries. For each entry, the Data and Mask alignment is shown in Figure 6.2.

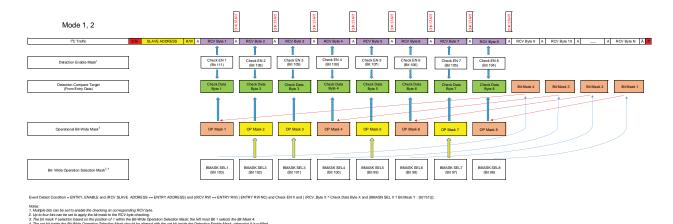



Figure 6.2. Check Mode 1 and Mode 2 Data Alignment



## 6.6.2. Example Data Alignment for Check Mode 3 and Mode 4

For Check Mode 3 and Check Mode 4, the I<sup>2</sup>C Monitor checks every time a new byte (for the first eight bytes immediately after the I<sup>2</sup>C Slave Address) is received for all available entries. However, the data arrangement is different. For each entry, the data alignment in Check Mode 3 and Check Mode 4 are demonstrated in Figure 6.3.

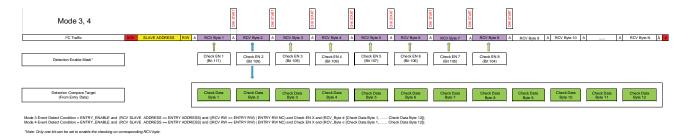



Figure 6.3. Check Mode 3 and Mode 4 Data Alignment



# 7. I<sup>2</sup>C/SMBus Slave

## 7.1. Overview

The I<sup>2</sup>C Slave provides device addressing, read/write operation and an acknowledgement mechanism.

# 7.2. Features

The key features of I<sup>2</sup>C Slave include:

- Supports 7-bit and 10-bit Addressing Mode
- Supports the following bus speeds:
  - Standard-mode (Sm) up to 100 kbit/s
  - Fast-mode (Fm) up to 400 kbit/s
  - Fast-mode Plus (Fm+) up to 1 Mbit/s
- Supports Clock stretching
- Configurable ACK/NACK response on address and data phases
- Integrated Pull-up
- Integrated Glitch filter
- Polling and Out-of-band Interrupt Modes
- 8-byte Tx FIFO
- 16-byte Rx FIFO
- SMBus Support

# 7.3. Signal Description

Table 7.1. I<sup>2</sup>C Slave IP Core Signal Description

|                              |           | ·                                             |  |  |
|------------------------------|-----------|-----------------------------------------------|--|--|
| Signal                       | Direction | Description                                   |  |  |
| I <sup>2</sup> C/SMBus Slave |           |                                               |  |  |
| SMBUSx_INT                   | Output    | SMBus Alert signal/I <sup>2</sup> C Interrupt |  |  |
| SMBUSx_SCL                   | Input     | SMBus/I <sup>2</sup> C Serial Clock           |  |  |
| SMBUSx_SDA                   | Bidir     | SMBus/I <sup>2</sup> C Data                   |  |  |



# 7.4. Register Description

#### 7.4.1. Overview

The I<sup>2</sup>C Slave Core configuration registers are located at the addresses shown in Table 7.2.

Table 7.2. I<sup>2</sup>C Slave Registers Address Map

| Offset | Register Name    | Access Type | Description                                               |
|--------|------------------|-------------|-----------------------------------------------------------|
| 0x00   | RD_DATA_REG      | RO          | Read Data Register                                        |
| 0x00   | WR_DATA_REG      | WO          | Write Data Register                                       |
| 0x04   | SLVADR_L_REG     | R/W         | Slave Address Lower Register                              |
| 0x08   | SLVADR_H_REG     | R/W         | Slave Address Higher Register                             |
| 0x0C   | CONTROL_REG      | R/W         | Control Register                                          |
| 0x10   | TGT_BYTE_CNT_REG | R/W         | Target Byte Count Register                                |
| 0x14   | INT_STATUS1_REG  | RW1C        | Interrupt Status First Register                           |
| 0x18   | INT_ENABLE1_REG  | R/W         | Interrupt Enable First Register                           |
| 0x1C   | INT_SET1_REG     | WO          | Interrupt Set First Register                              |
| 0x20   | INT_STATUS2_REG  | RW1C        | Interrupt Status Second Register                          |
| 0x24   | INT_ENABLE2_REG  | R/W         | Interrupt Enable Second Register                          |
| 0x28   | INT_SET2_REG     | WO          | Interrupt Set Second Register                             |
| 0x2C   | FIFO_STATUS_REG  | RO          | FIFO Status Register                                      |
| 0x30-  | Reserved         | RSVD        | Reserved                                                  |
| 0x3C   | Neser ved        | 1.572       | Write access is ignored and 0 is returned on read access. |

The RD\_DATA\_REG and WR\_DATA\_REG share the same offset. Write access to this offset goes to WR\_DATA\_REG while read access goes to RD\_DATA\_REG.

# 7.4.2. Write Data Register (WR\_DATA\_REG)

Table 7.3 shows the Write Data Register. This is the interface to Transmit FIFO. Writing to WR\_DATA\_REG pushes a word to Transmit FIFO. When writing to WR\_DATA\_REG, the host should ensure that Transmit FIFO is not full. This can be done by reading FIFO\_STATUS\_REG. Data is popped WR\_DATA\_REG during I<sup>2</sup>C read transaction. When reset is performed, the contents of Transmit FIFO are not reset but the FIFO control logic is reset. Thus, content is not guaranteed after reset.

**Table 7.3. Write Data Register** 

| Field | Name    | Access | Width | Reset          |
|-------|---------|--------|-------|----------------|
| [7:0] | tx_fifo | WO     | 8     | not guaranteed |

## 7.4.3. Read Data Register (RD DATA REG)

Table 7.4 shows the Read Data register. This is the interface to Receive FIFO. After a data is received from I<sup>2</sup>C bus during I<sup>2</sup>C write transaction, the received data is pushed to Receive FIFO. Reading from RD\_DATA\_REG pops a word from Receive FIFO. The host should ensure that Receive FIFO has data before reading RD\_DATA\_REG, data is not guaranteed when this register is read during Receive FIFO empty condition. On the other hand, if Receive FIFO is full but I<sup>2</sup>C Slave continues to receive data, new data is lost. Read FIFO\_STATUS\_REG to determine the status of Receive FIFO. Similar to Transmit FIFO, the reset value of Receive FIFO is also not guaranteed after reset.

Table 7.4. Read Data Register

| Field | d Name  |    | Width | Reset          |
|-------|---------|----|-------|----------------|
| [7:0] | rx_fifo | RO | 8     | not guaranteed |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



## 7.4.4. Slave Address Registers (SLAVE\_ADDRL\_REG, SLAVE\_ADDRH\_REG)

The Slave Address Lower Register (SLAVE\_ADDRL\_REG) shown in Table 7.5 is a 7-bit Slave address. This is used for 7-bit and 10-bit addressing mode as follows:

- For 7-bit Addressing Mode, it is the Slave address
- For 10-bit Addressing Mode, it is the lower 7 bits of the Slave address

#### **Table 7.5. Slave Address Lower Register**

| Field | Name             | Access | Width | Reset |
|-------|------------------|--------|-------|-------|
| [7]   | Reserved         | RSVD   | 1     | _     |
| [6:0] | slave_addr_l_reg | RW     | 7     | 0x51  |

The Slave Address Higher Register (SLAVE\_ADDRH\_REG) shown in Table 7.6 is the upper 3 bits of 10-bit Slave address. This is not used in 7-bit addressing mode.

#### **Table 7.6. Slave Address Higher Register**

| Field | Name             | Access | Width | Reset |
|-------|------------------|--------|-------|-------|
| [7:3] | Reserved         | RSVD   | 5     | -     |
| [2:0] | slave_addr_h_reg | RW     | 3     | 0x0   |

## 7.4.5. Control Register (CONTROL\_REG)

Table 7.7 shows the summary of Control Register. This each bit of this register controls the behavior of I<sup>2</sup>C Slave Core.

#### **Table 7.7. Control Register**

| Field | Name           | Access | Width | Reset |
|-------|----------------|--------|-------|-------|
| [7:5] | Reserved       | RSVD   | 3     | _     |
| [4]   | nack_data      | RW     | 1     | 1'b0  |
| [3]   | nack_addr      | RW     | 1     | 1'b0  |
| [2]   | Reset          | WO     | 1     | 1'b0  |
| [1]   | clk_stretch_en | RW     | 1     | 1'b0  |
| [0]   | addr_10bit_en  | RW     | 1     | 1'b0  |

#### nack data

NACK on Data Phase. Specifies ACK/NACK response on I<sup>2</sup>C data phase.

1'b0 - Sends ACK to received data

1'b1 - Sends NACK to received data

#### nack\_addr

NACK on Address Phase. Specifies ACK/NACK response on I<sup>2</sup>C address phase.

1'b0 - Sends ACK to received address if it matches the programmed slave address

1'b1 - Sends NACK to received data

### reset

Reset. Resets I<sup>2</sup>C Slave Core for 1 clock cycle. The registers and APB interface are not affected by this reset. This is write-only bit because it has auto clear feature; it is cleared to 1'b0 after 1 clock cycle.

1'b0 - No action.

1'b1 - Resets I<sup>2</sup>C Slave Core.

## clk\_stretch\_en

Clock Stretch Enable. Enables clock stretching on ACK bit of data.

1'b0 – I<sup>2</sup>C Slave Core releases SCL signal



 $1'b1 - I^2C$  Slave Core pulls down SCL signal on the next ACK bit of data phase and keeps pulling down until the host writes 1'b0 on this bit.

## • addr\_10bit\_en

10-bit Address Mode Enable. Enables the reception of 10-bit I<sup>2</sup>C address.

1'b0 – I<sup>2</sup>C Slave Core rejects the 10-bit I<sup>2</sup>C address, it sends NACK.

 $1'b1 - I^2C$  Slave Core responds to 10-bit  $I^2C$  address. If SLAVE\_ADDRH\_REG.slave\_addr\_h\_reg is 3'h0, it also responds to 7-bit address.

# 7.4.6. Target Byte Count Register (TGT\_BYTE\_CNT\_REG)

Table 7.8 shows the summary of Target Byte Count Register. The desired number of bytes to transfer (read/write) in I<sup>2</sup>C bus should be written to this register. This is used for Transfer Complete interrupt generation – asserts when the target byte count is achieved.

**Table 7.8. Target Byte Count Register** 

| Field | Name     | Access | Width | Reset |
|-------|----------|--------|-------|-------|
| [7:0] | byte_cnt | RSVD   | 8     | 8'h00 |

## 7.4.7. Interrupt Status Registers (INT\_STATUS1\_REG, INT\_STATUS2\_REG)

Table 7.9 and Table 7.10 show the Interrupt Status Register (INT\_STATUS1\_REG and INT\_STATUS2\_REG) which contains all the interrupts currently pending in the I<sup>2</sup>C Slave Core. When an interrupt bit asserts, it remains asserted until it is cleared by the host by writing 1'b1 to the corresponding bit.

The interrupt status bits are independent of the interrupt enable bits; in other words, status bits may indicate pending interrupts, even though those interrupts are disabled in the Interrupt Enable Register, see the Interrupt Enable Registers (INT\_ENABLE1\_REG, INT\_ENABLE2\_REG) section for details. The logic which handles interrupts should mask (bitwise and logic) the contents of INT\_STATUS1\_REG and INT\_ENABLE1\_REG registers as well as INT\_STATUS2\_REG and INT\_ENABLE2\_REG to determine the interrupts to service. The int\_o interrupt signal is asserted whenever both an interrupt status bit and the corresponding interrupt enable bits are set.

53



**Table 7.9. Interrupt Status First Register** 

| Field | Name               | Access | Width | Reset |
|-------|--------------------|--------|-------|-------|
| [7]   | tr_cmp_int         | RW1C   | 1     | 1'b0  |
| [6]   | stop_det_int       | RW1C   | 1     | 1'b0  |
| [5]   | tx_fifo_full_int   | RW1C   | 1     | 1'b0  |
| [4]   | tx_fifo_aempty_int | RW1C   | 1     | 1'b0  |
| [3]   | tx_fifo_empty_int  | RW1C   | 1     | 1'b0  |
| [2]   | rx_fifo_full_int   | RW1C   | 1     | 1'b0  |
| [1]   | rx_fifo_afull_int  | RW1C   | 1     | 1'b0  |
| [0]   | rx_fifo_ready_int  | RW1C   | 1     | 1'b0  |

#### tr\_cmp\_int

Transfer Complete Interrupt Status. This interrupt status bit asserts when the number of bytes transferred in I<sup>2</sup>C interface is equal to TGT BYTE CNT.byte cnt.

1'b0 – No interrupt

1'b1 - Interrupt pending

#### stop\_det\_int

STOP Condition Detected Interrupt Status. This interrupt status bit asserts when STOP condition is detected after an ACK/NACK bit.

1'b0 - No interrupt

1'b1 - Interrupt pending

## tx\_fifo\_full\_int

Transmit FIFO Full Interrupt Status. This interrupt status bit asserts when Transmit FIFO changes from not full state to full state.

1'b0 - No interrupt

1'b1 - Interrupt pending

## • tx\_fifo\_aempty\_int

Transmit FIFO Almost Empty Interrupt Status. This interrupt status bit asserts when the amount of data words in Transmit FIFO changes from 3 to 2.

1'b0 – No interrupt

1'b1 - Interrupt pending

## • tx\_fifo\_empty\_int

Transmit FIFO Empty Interrupt Status. This interrupt status bit asserts when the last data in Transmit FIFO is popped-out, causing the FIFO to become empty.

1'b0 - No interrupt

1'b1 - Interrupt pending

#### rx fifo full int

Receive FIFO Full Interrupt Status. This interrupt status bit asserts when RX FIFO full status changes from not full to full state.

1'b0 - No interrupt

1'b1 - Interrupt pending

## rx\_fifo\_afull\_int



Receive FIFO Almost Full Interrupt Status. This interrupt status bit asserts when the amount of data words in Receive FIFO changes from 13 to 14.

1'b0 – No interrupt

1'b1 - Interrupt pending

#### rx\_fifo\_ready\_int

Receive FIFO Ready Interrupt Status. This interrupt status bit asserts when Receive FIFO is empty and receives a data word from I<sup>2</sup>C interface.

1'b0 - No interrupt

1'b1 - Interrupt pending

**Table 7.10. Interrupt Status Second Register** 

| Field | Name          | Access | Width | Reset |
|-------|---------------|--------|-------|-------|
| [7:2] | reserved      | RSVD   | 6     |       |
| [1]   | stop_err_int  | RW1C   | 1     | 1'b0  |
| [0]   | start_err_int | RW1C   | 1     | 1'b0  |

#### stop\_err\_int

STOP Condition Error Interrupt Status. This interrupt status bit asserts after detecting a STOP condition when it is not expected. STOP condition is expected to occur only after the ACK/NACK bit. The stop\_err\_int and stop\_det\_int do not assert at the same time.

1'b0 - No interrupt

1'b1 - Interrupt pending

#### start\_err\_int

START Condition Error Interrupt Status. This interrupt status bit asserts after detecting a START condition when it is not expected. START condition is expected to occur only when I<sup>2</sup>C bus is idle and after receiving an ACK or a NACK (repeated START condition).

1'b0 - No interrupt

1'b1 - Interrupt pending

## 7.4.8. Interrupt Enable Registers (INT\_ENABLE1\_REG, INT\_ENABLE2\_REG)

Table 7.11 and Table 7.12 show the summary of Interrupt Enable Registers that corresponds to interrupts status bits in INT\_STATUS1\_REG and INT\_STATUS2\_REG. They do not affect the contents of the INT\_STATUS1\_REG and INT\_STATUS2\_REG. If one of the INT\_STATUS1\_REG/INT\_STATUS2\_REG bits asserts, and the corresponding bit of INT\_ENABLE1\_REG/INT\_ENABLE2\_REG is 1'b1, the interrupt signal int\_o asserts.

Table 7.11. Interrupt Enable First Register

| Field | Name              | Access | Width | Reset |
|-------|-------------------|--------|-------|-------|
| [7]   | tr_cmp_en         | RW     | 1     | 1'b0  |
| [6]   | stop_det_en       | RW     | 1     | 1'b0  |
| [5]   | tx_fifo_full_en   | RW     | 1     | 1'b0  |
| [4]   | tx_fifo_aempty_en | RW     | 1     | 1'b0  |
| [3]   | tx_fifo_empty_en  | RW     | 1     | 1'b0  |
| [2]   | rx_fifo_full_en   | RW     | 1     | 1'b0  |
| [1]   | rx_fifo_afull_en  | RW     | 1     | 1'b0  |
| [0]   | rx_fifo_ready_en  | RW     | 1     | 1'b0  |

#### tr\_cmp\_en

Transfer Complete Interrupt Enable. Interrupt enable bit corresponded to Transfer Complete Interrupt Status.



1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

#### stop\_det\_en

STOP Condition Detected Interrupt Enable. Interrupt enable bit corresponded to STOP Condition Detected Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

#### • tx fifo full en

Transmit FIFO Full Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Full Interrupt Status.

1'b0 - Interrupt disabled

1'b1 – Interrupt enabled

## • tx\_fifo\_aempty\_en

Transmit FIFO Almost Empty Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Almost Empty Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

## • tx\_fifo\_empty\_en

Transmit FIFO Empty Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Empty Interrupt Status.

1'b0 – Interrupt disabled

1'b1 - Interrupt enabled

## • rx\_fifo\_full\_en

Receive FIFO Full Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Full Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

## rx\_fifo\_afull\_en

Receive FIFO Almost Full Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Almost Full Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

### rx\_fifo\_ready\_en

Receive FIFO Ready Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Ready Interrupt Status.

1'b0 – Interrupt disabled

1'b1 – Interrupt enabled



Table 7.12. Interrupt Enable Second Register

| Field | Name         | Access | Width | Reset |
|-------|--------------|--------|-------|-------|
| [7:2] | reserved     | RSVD   | 6     | _     |
| [1]   | stop_err_en  | RW     | 1     | 1'b0  |
| [0]   | start_err_en | RW     | 1     | 1'b0  |

#### stop\_err\_en

STOP Condition Error Interrupt Enable. Interrupt enable bit corresponded to STOP Condition Error Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

#### start\_err\_en

START Condition Error Interrupt Enable. Interrupt enable bit corresponded to START Condition Error Interrupt Status.

1'b0 - Interrupt disabled

1'b1 - Interrupt enabled

# 7.4.9. Interrupt Set Registers (INT\_SET1\_REG, INT\_SET2\_REG)

Table 7.13 and Table 7.14 show the summary of Interrupt Set Registers. Writing 1'b1 to a register bit in INT\_SET1\_REG or INT\_SET2\_REG asserts the corresponding interrupts status bit in INT\_STATUS1\_REG or INT\_STATUS2\_REG while writing 1'b0 is ignored. This is intended for testing purposes only.

Table 7.13. Interrupt Set First Register

| Field | Name               | Access | Width | Reset |
|-------|--------------------|--------|-------|-------|
| [7]   | tr_cmp_set         | WO     | 1     | 1'b0  |
| [6]   | stop_det_set       | WO     | 1     | 1'b0  |
| [5]   | tx_fifo_full_set   | WO     | 1     | 1'b0  |
| [4]   | tx_fifo_aempty_set | WO     | 1     | 1'b0  |
| [3]   | tx_fifo_empty_set  | WO     | 1     | 1'b0  |
| [2]   | rx_fifo_full_set   | WO     | 1     | 1'b0  |
| [1]   | rx_fifo_afull_set  | WO     | 1     | 1'b0  |
| [0]   | rx_fifo_ready_set  | WO     | 1     | 1'b0  |

#### tr\_cmp\_set

Transfer Complete Interrupt Set. Interrupt set bit corresponded to Transfer Complete Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.tr\_cmp\_int

#### stop det set

STOP Condition Detected Interrupt Set. Interrupt set bit corresponded to STOP Condition Detected Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.stop\_det\_int

## tx\_fifo\_full\_set

Transmit FIFO Full Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Full Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.tx\_fifo\_full\_int



#### tx fifo aempty set

Transmit FIFO Almost Empty Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Almost Empty Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.tx\_fifo\_aempty\_int

## tx\_fifo\_empty\_set

Transmit FIFO Empty Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Empty Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.tx\_fifo\_empty\_int

## rx\_fifo\_full\_set

Receive FIFO Full Interrupt Set. Interrupt set bit corresponded to Receive FIFO Full Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT STATUS1 REG.rx fifo full int

#### rx\_fifo\_afull\_set

Receive FIFO Almost Full Interrupt Set. Interrupt set bit corresponded to Receive FIFO Almost Full Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.rx\_fifo\_afull\_int

## rx\_fifo\_ready\_set

Receive FIFO Ready Interrupt Set. Interrupt set bit corresponded to Receive FIFO Ready Interrupt Status.

1'b0 - No action

1'b1 - Asserts INT\_STATUS1\_REG.rx\_fifo\_ready\_int

### **Table 7.14. Interrupt Set Second Register**

| Field | Name          | Access | Width | Reset |
|-------|---------------|--------|-------|-------|
| [7:2] | reserved      | RSVD   | 6     | _     |
| [1]   | stop_err_set  | WO     | 1     | 1'b0  |
| [0]   | start_err_set | WO     | 1     | 1'b0  |

#### • stop err set

STOP Condition Error Interrupt Set. Interrupt set bit corresponded to STOP Condition Error Interrupt Status.

- 0 No action.
- 1 Asserts INT\_STATUS2\_REG.stop\_err\_set.

#### start err set

START Condition Error Interrupt Set. Interrupt set bit corresponded to START Condition Error Interrupt Status.

- 0 No action.
- $1-Asserts\ INT\_STATUS2\_REG.start\_err\_set.$



## 7.4.10. FIFO Status Register (FIFO\_STATUS\_REG)

FIFO Status Register reflects the status of Transmit FIFO and Receive FIFO as shown in Table 7.15.

#### Table 7.15. FIFO Status Register

| Field | Name           | Access | Width | Reset |
|-------|----------------|--------|-------|-------|
| [7:6] | reserved       | RSVD   | 2     | _     |
| [5]   | tx_fifo_full   | RO     | 1     | 1'b0  |
| [4]   | tx_fifo_aempty | RO     | 1     | 1'b1  |
| [3]   | tx_fifo_empty  | RO     | 1     | 1'b1  |
| [2]   | rx_fifo_full   | RO     | 1     | 1'b0  |
| [1]   | rx_fifo_afull  | RO     | 1     | 1'b0  |
| [0]   | rx_fifo_empty  | RO     | 1     | 1'b1  |

## tx\_fifo\_full

Transmit FIFO Full. This bit reflects the full condition of Transmit FIFO.

1'b0 - Transmit FIFO is not full

1'b1 - Transmit FIFO is full

#### tx\_fifo\_aempty

Transmit FIFO Almost Empty. This bit reflects the almost empty condition of Transmit FIFO.

1'b0 - Data words in Transmit FIFO is greater than TX FIFO Almost Empty Flag attribute

1'b1 - Data words in Transmit FIFO is less than or equal to TX FIFO Almost Empty Flag attribute

## tx\_fifo\_empty

Transmit FIFO Empty. This bit reflects the empty condition of Transmit FIFO.

1'b0 – Transmit FIFO is not empty – has at least 1 data word

1'b1 - Transmit FIFO is empty

#### rx\_fifo\_full

Receive FIFO Full. This bit reflects the full condition of Receive FIFO.

1'b0 - Receive FIFO is not full

1'b1 - Receive FIFO is full

#### rx fifo afull

Receive FIFO Full. This bit reflects the almost full condition of Receive FIFO.

1'b0 - Data words in Receive FIFO is less than RX FIFO Almost Full Flag attribute

1'b1 - Data words in Receive FIFO is greater than or equal to RX FIFO Almost Full Flag attribute

## rx\_fifo\_empty

Receive FIFO Full. This bit reflects the empty condition of Receive FIFO.

1'b0 - Receive FIFO is not empty - has at least 1 data word

1'b1 – Receive FIFO is empty



# 7.5. Operations Details

## 7.5.1. General I<sup>2</sup>C Operation

In the I<sup>2</sup>C bus, the transaction is always initiated by the master. A slave may not transmit data unless it has been addressed by the master. Each device on the I<sup>2</sup>C bus has a specific device address to differentiate between other devices that are on the same I<sup>2</sup>C bus. Data transfer is initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are high after a STOP condition.

The general procedure for an I<sup>2</sup>C transaction is as follows:

- 1. Master wants to send data to a slave:
  - Master-transmitter sends a START condition and addresses the slave-receiver
  - Master-transmitter sends data to slave-receiver
  - Master-transmitter terminates the transfer with a STOP condition
- 2. Master wants to receive/read data from a slave:
  - Master-receiver sends a START condition and addresses the slave-transmitter
  - Master-receiver sends the requested register to read to slave-transmitter
  - Master-receiver receives data from the slave-transmitter
  - Master-receiver terminates the transfer with a STOP condition

I<sup>2</sup>C communication is initiated by the master sending a START condition and terminated by the master sending a STOP condition. Normal data on the SDA line must be stable during the high level of the SCL line. The High or Low state of the data line can only change when SCL is Low. The Start condition is a unique case and is defined by a High-to-Low transition on the SDA line while SCL is High. The Stop condition is a unique case and is defined by a Low-to-High transition on the SDA line while SCL is High. These are shown in Figure 7.1.

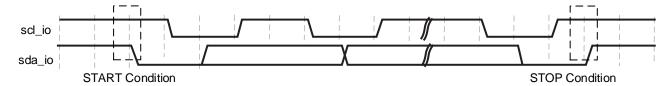



Figure 7.1. START and STOP Conditions

Each data packet on the I<sup>2</sup>C bus consists of eight bits of data followed by an acknowledge bit (ACK) so one complete data byte transfer requires nine clock pulses. Data is transferred with the most significant bit (MSB) first. The transmitter releases the SDA line during the ACK bit and the receiver of the data transfer must drive the SDA line low during the ACK bit to acknowledge the data receipt. If a Slave-receiver does not drive the SDA line low during the ACK bit, this indicates that the Slave-receiver was unable to accept the data and the Master can then generate a Stop condition to abort the transfer. If the Master-receiver does not generate an ACK, this indicates to the Slave-transmitter that this byte was the last byte of the transfer.

For more information on I<sup>2</sup>C bus, refer to I<sup>2</sup>C Bus Specification and User Manual.

#### 7.5.2. Glitch Filter

I<sup>2</sup>C Slave IP Core has integrated glitch filter to remove 50ns noise/spike as recommended by the I<sup>2</sup>C Bus Spec for Standard Mode, Fast Mode, and Fast Mode Plus. The glitch filter is applied to both the SCL and SDA signals before they are fed to internal logic. Thus, the I<sup>2</sup>C signals seen by the IP Core is delayed by a number of clock cycles (~50 ns +1 clock cycle). The filter depth is automatically adjusted based on the *System Clock Frequency* attribute.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



FPGA-TN-02222-1 0

## 7.5.3. Clock Stretching

Clock Stretching allows the I<sup>2</sup>C slave to pause a transaction by holding the SCL line Low. The transaction cannot continue until the line is released high again. On the byte level, a slave device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the SCL line Low after reception and acknowledgment (ACK bit) of a byte to force the master into a wait state until the slave is ready for the next byte transfer.

 $I^2C$  Slave Core performs clock stretching on the byte level (during ACK/NACK bit) if CONTROL\_REG.clk\_stretch\_en is set to 1. Clock stretching is only performed during data phase. Clock stretching is normally performed when the host need more time before it can address the request of  $I^2C$  master.

## 7.5.4. ACK/NACK Response

 $I^2C$  Slave Core can be configured to send an ACK or a NACK based on settings of CONTROL\_REG.nack\_data and CONTROL\_REG.nack\_addr, refer to Control Register (CONTROL\_REG) section for details. If the host would like to temporarily disable the access to  $I^2C$  Slave Core, it should set CONTROL\_REG.nack\_addr = 1'b1. In this case,  $I^2C$  Slave Core sends NACK when it is addressed by the external  $I^2C$  Master.

If the host would like to terminate an on-going  $I^2C$  write transaction to the  $I^2C$  Slave Core, it should set CONTROL\_REG.nack\_data = 1'b1. In this case,  $I^2C$  Slave Core sends NACK on the next ACK bit for a data byte. Note that the ACK bit is always sent by the receiver, the CONTROL\_REG.nack\_data has no effect on  $I^2C$  read transaction.

# 7.6. Programming Flow

#### 7.6.1. Initialization

To perform initialization, load the appropriate registers of the I<sup>2</sup>C Slave Controller namely:

- SLAVE\_ADDRL\_REG, SLAVE\_ADDRH\_REG This step is optional. In most cases, initial value set in I<sup>2</sup>C Slave
  Addresses attribute of the user interface does not need to be changed.
- CONTROL\_REG

60

- TGT\_BYTE\_CNT\_REG It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number of bytes to transfer is not known, that is receiving unknown amount of data.
- INT\_ENABLE1\_REG It is recommended to enable only the following interrupts when receiving commands from
  master.
  - Transfer Complete Interrupt If the size of data is known
  - Receive FIFO Data Interrupt if the size of data is unknown
- INT\_ENABLE2\_REG it is recommended to enable both error interrupts

## 7.6.2. Data Transfer in response to I<sup>2</sup>C Master Read

The following are the recommended steps to perform data transfer in response to read request of I<sup>2</sup>C Master. This assumes that the amount of data to send is known.

To perform data transfer in response to read request of I<sup>2</sup>C Master:

- 1. Write data to WR\_DATA\_REG, amounting to <= FIFO Depth.
- 2. Enable only Transfer Complete Interrupt. If transmit data is > FIFO Depth, enable also TX FIFO Almost Empty interrupt. If no more data to transfer, otherwise, proceed to step 7.
- 3. Wait for TX FIFO Almost Empty Interrupt.
  - If polling mode is desired, read INT\_STATUS1\_REG until tx\_fifo\_aempty\_int asserts.
  - If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT\_STATUS1\_REG and check that tx\_fifo\_aempt\_int is asserted.
  - Read INT STATUS2 REG also to check that no error occurred.
- 4. Clear TX FIFO Almost Empty Interrupt, it also okay to clear all interrupts.
- 5. Write data byte to WR\_DATA\_REG, amounting to less than or equal to (FIFO Depth TX FIFO Almost Empty Setting).

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



- 6. If there are remaining data to transfer, go back to Step 3, otherwise, disable TX FIFO Almost Empty Interrupt.
- 7. Wait for Transfer Complete Interrupt
  - If polling mode is desired, read INT\_STATUS1\_REG until tr\_cmp\_int asserts.
  - If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT\_STATUS1\_REG and check that tr cmp int is asserted.
  - Read INT\_STATUS2\_REG also to check that no error occurred.
- 8. Clear all interrupts.

## 7.6.3. Data Transfer in response to I<sup>2</sup>C Master Write

The following are the recommended steps to perform data transfer in response to write request of I<sup>2</sup>C Master. This assumes that the amount of data to receive is known.

To perform data transfer in response to write request of I<sup>2</sup>C Master:

- 1. Enable only Transfer Complete Interrupt. If data to receive is > FIFO Depth, enable also RX FIFO Almost Full interrupt. If data to receive is <= FIFO Depth, proceed to Step 7.
- 2. Wait for RX FIFO Almost Full Interrupt.
  - If polling mode is desired, read INT STATUS2 REG until rx fifo afull int asserts.
  - If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT\_STATUS2\_REG and check that rx\_fifo\_afull\_int is asserted.
  - Read INT\_STATUS2\_REG also to check that no error occurred.
- 3. Clear RX FIFO Almost Full Interrupt, it also okay to clear all interrupts.
- 4. Read data byte from RD\_DATA\_REG, amounting to less than or equal to (FIFO Depth TX FIFO Almost Empty Setting).
- 5. If there are remaining data to receive, go back to Step 2, otherwise, disable RX FIFO Almost Full Interrupt.
- 6. Wait for Transfer Complete Interrupt
  - If polling mode is desired, read INT STATUS1 REG until tr cmp int asserts.
  - If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT\_STATUS1\_REG and check that tr cmp int is asserted.
  - Read INT\_STATUS2\_REG also to check that no error occurred.
- 7. Clear all interrupts.
- 8. Read all data from RD DATA REG.



# 7.7. SMBus Slave Support

The I<sup>2</sup>C Slave Core provides SMBus support by including the smb\_alert signal.

## 7.7.1. SMBus Control and Status Register

## Table 7.16. SMBus Register Address Map

| Offset | Register Name   | Access Type | Description                       |
|--------|-----------------|-------------|-----------------------------------|
| 0x30   | SMB_CONTROL_REG | RW          | SMBus control and status register |

#### Table 7.17. SMB Control and Status Register

| Field | Name      | Access | Width | Reset |
|-------|-----------|--------|-------|-------|
| [7:1] | Reserved  | RSVD   | 7     | _     |
| [0]   | smb_alert | RW     | 1     | 1'b0  |

#### smb alert

Transmits the alert interrupt to SMBus Master

1'b0 - No interrupt to Master

1'b1 - SMBus slave sent alert interrupt to Master

## 7.7.2. Operation Details

#### 7.7.2.1. SMBAlert Operation

A Slave device can signal the Master through SMBUSx\_INTinterrupt line that it wants to talk. The Master processes the interrupt and simultaneously accesses all the smbalert devices through the Alert Response Address. Only the Slave device which pulled SMBUSx\_INTLow acknowledges the Alert Response Address (0001 100b). The host performs a modified Receive Byte operation. The 7-bit device address provided by the Slave transmit device is placed in the seven most significant bits of the byte. The eighth bit can be zero or one.

If more than one device pulls SMBUSx\_INTLow, the highest priority device (lowest address) device wins the communication rights.

After receiving an acknowledge (ACK) from the Master in response to its address, the device stops pulling down the SMBUSx\_INTsignal. If the Master still sees the SMBUSx\_INTLow when the message transfer is complete, the same process repeats again. The SMBus Slave controller monitors the data bus to see if any other Slave is responding to the Alert Response Address. This can be achieved by checking the input and output of SMBUSx\_SDA. When there is match, the smb\_alert register bit is cleared and the controller generates an interrupt signal to the RISC-V processor.

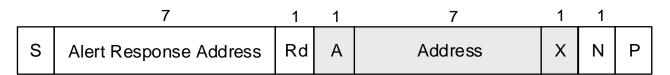



Figure 7.2. SMBus 7-Bit Addressable Device Response

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

63



# 8. eSPI Slave

The Enhanced Serial Peripheral Interface (eSPI) is a synchronous serial interface compatible with SPI. The eSPI Slave includes an ALERT pin to inform the eSPI Master that the eSPI Slave needs to be serviced. The eSPI slave is a configurable Slave which supports multiple channels. The eSPI Slave also allows Slave triggered transactions.

## 8.1. Features

The key features of the eSPI Slave are:

- Compliant with eSPI base specification as defined in Enhanced Serial Peripheral Interface Specification rev.1.0
- Supports Single, Dual and Quad modes
- Supports Slave triggered transaction
- Supports the following channels:
- Peripheral Channel
- Virtual Wires Channel
- OOB Message (Tunneled SMBus) Channel
- Run-time Flash Access Channel
- Supports CRC Checking

# 8.2. Block Diagram

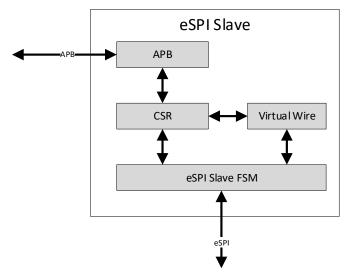



Figure 8.1. eSPI Slave Block Diagram

## 8.2.1. CSR

CSR contains the configuration and status registers which are written either by the system Master through the APB Interface or by the eSPI Master through the eSPI bus.

#### 8.2.2. Virtual Wire

The virtual wire channel is used to communicate the state of the sideband pins or GPIO tunneled through eSPI as inband messages.

## 8.2.3. eSPI Slave FSM

This blocks contains the main FSM of the eSPI Slave and the other channels supported by the Slave. The FIFO for these channels are also contained in this block.



# 8.3. Signal Description

**Table 8.1. eSPI Slave External Signal Description** 

| Port                     | Width | Direction | Description                                  |  |  |
|--------------------------|-------|-----------|----------------------------------------------|--|--|
| eSPI Slave I/O Interface |       |           |                                              |  |  |
| espi_clk                 | 1     | Input     | eSPI Clock input driven by eSPI Master       |  |  |
| espi_data                | 4     | Bidir     | eSPI serial data                             |  |  |
| espi_cs                  | 1     | Input     | eSPI chip select input driven by eSPI Master |  |  |
| espi_alert               | 1     | Output    | eSPI Slave alert output                      |  |  |

# 8.4. Channel FIFOs

The eSPI Slave provides RX and TX FIFO's for the different channels. The FIFO sizes are shown in Table 8.2.

Table 8.2. Channel FIFO Size Table

| Peripheral Channel FIFO         |           |
|---------------------------------|-----------|
| Posted completion RX FIFO depth | 128 bytes |
| Posted completion TX FIFO depth | 128 bytes |
| Non posted RX FIFO depth        | 16 bytes  |
| Non posted TX FIFO depth        | 16 bytes  |
| OOB Channel FIFO                |           |
| OOB RX FIFO depth               | 256 bytes |
| OOB TX FIFO depth               | 256 bytes |
| Flash Channel FIFO              |           |
| Flash non posted RX FIFO depth  | 256 bytes |
| Flash completion RX FIFO depth  | 256 bytes |
| Flash non posted TX FIFO depth  | 256 bytes |
| Flash completion TX FIFO depth  | 256 bytes |

# 8.5. Register Description

The eSPI slave registers are shown in Table 8.3.

**Table 8.3. Summary of eSPI Slave Registers** 

| Offset | Register Name       | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|---------------------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00   | ESPI_DEVICE_ID      | RO     | 0x0000_0001 | reserved[31:8] version_id[7:0] – Indicates compliance to specific eSPI specification revision. Slaves compliant to this revision of the specification must advertise a value of <i>01h</i> in this field. The value for this register is loaded from PARAMETER                                                                                                                                                                                                                                                                                                          |
| 0x04   | ESPI_GEN_CAP_CONFIG | RW     | 0x0000_0000 | crc_check_en[31] —This bit is set to 1 by eSPI master to enable the CRC checking on the eSPI bus. By default, CRC checking is disabled. resp_modifier_en[30] — This bit is set to 1 to enable the use of Response Modifier by eSPI slave to append either a peripheral (channel 0) completion, a virtual wire (channel 1) packet or a flash access (channel 3) completion to the GET_STATUS response phase. When this bit is a 0, eSPI slave must only use the Response Modifier of 00, which is no append. By default, the Response Modifier is disabled. reserved[29] |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



| the slave to initiate a transaction on the eSPI intert  0 bi: I/O[1] pin is used to signal the Alert e  1 bi: Alertt pin is used to signal the Alert e  1 bi: Alertt pin is used to signal the Alert e  io_mode_sel[27:26] – eSPI master programs this fi enable the appropriate mode of operation, which effect at the deassertion edge of the Chip Select. T Mode configured in this field must be supported b  the master and the slave. Single I/O mode is supported b  the master and the slave. Single I/O mode is supported b  2 'b100 Single I/O  2 'b101 Dual I/O  2 'b101 Dual I/O  2 'b101 Single and Quad I/O  2 'b101 Single and Quad I/O  2 'b101 Single and Quad I/O  4 2'b11 Single, Dual and Quad  open_drain_slert_sel[23] – Set to 1 by eSPI master  configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support  the slave. The bit must be valid when Alert Mode t  indicating Alert pin is used for signaling the Alert e  operating, freq[22:20] – Identifies the frequency o  operation.  3 'b000 20 MHz  3 'b000 20 MHz  3 'b000 33 MHz  3 'b010 66MHz  Others Reserved  cfg_nose_freq[28:26] – Identifies the maximum fre  of operation supported by the slave.  3 'b000 25 MHz  3 'b000 35 MHz  3 'b000 25 MHz  3 'b000 35 MHz  3 'b000 25 MHz  3 'b000 35 MHz  3 'b000 35 MHz  3 'b000 35 MHz  3 'b000 36 MHz  4 's000 36 MHz  5 's000 30 MHz  5 's000 30 MHz  5 's000 30 MHz  6 's000 30 MHz  7 's000 30 MHz  7 's000 30 MHz  8 's000 30 MHz  9 's000 30 MHz  9 's000 30 MHz  10 ' | Offset | Register Name | Access | Reset Value | Description                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 b: Alert# pin is used to signal the Alert to io_mode_sel[27:26] – eSPI master programs this in enable the appropriate mode of operation, which effect at the deassertion edge of the Chip Select. The Mode configured in this field must be supported by the master and the slave. Single I/O mode is supported by the master and the slave. Single I/O mode is supported of aut.  2 'b00 Single I/O 2 'b100 Jual I/O 2 'b101 Quad IO 2 'b11 Reserved (rg_io_mode[25:24] – Indicates the I/O modes supported by the slave.  2 'b00 Single I/O 2 'b11 Single and Quad I/O 4 'b11 Single and Quad I/O 4 'b11 Single and power of the slave in t  |        |               |        |             | alert_mode[28] – Configures the Alert mechanism used by the slave to initiate a transaction on the eSPI interface.                                                                                                                                                                         |
| io, mode, self.27.26] — SPI master programs this enable the appropriate mode of operation, which effect at the deassertion edge of the Chip Select. T Mode configured in this field must be supported by the master and the slave. Single I/O mode is supported by the master and the slave. Single I/O mode is supported by the slave.  2 '2000 Single I/O 2 '2010 Quad IO 2 '2010 Quad IO 2 '2010 Single I/O 2 '2010 Single I/O 2 '2010 Single I/O 2 '2010 Single and Quad I/O 2 '2010 Single and Quad I/O 2 '2011 Single, Dual and Quad open_drain_alert_sel[23] — Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode the indicating Alert pin is used for signaling the Alert experating_freq[22:20] – Identifies the frequency operation.  3 '2000 20 MHz 3 '2001 25 MHz 3 '2010 33 MHz 3 '2010 50 MHz 3 '2010 75 MHz 3 '2010  |        |               |        |             | Ob: I/O[1] pin is used to signal the Alert event                                                                                                                                                                                                                                           |
| enable the appropriate mode of operation, which effect at the deassertion edge of the Chip Select. I Mode configured in this field must be supported by the master and the slave. Single I/O mode is supported by the slave.  2 '2'b00 Single I/O 2 '2'b10 Quad IO 2 '2'b11 Reserved cfg_io_mode[25:24] - Indicates the I/O modes sup by the slave.  2 '2'b00 Single and Dual I/O 2 '2'b10 Single and Quad I/O 3 '2'b10 Single and Quad I/O 4 '2'b10 Single and Quad I/O 4 '2'b10 Single and Quad I/O 4 '2'b10 Single and Quad I/O 5 '2'b11 Single, Dual and Quad open_drain_alert_sel[22] - Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Model to indicating Alert pin is used for signaling the Alert operating_freq[22:20] - Identifies the frequency operation.  3 '5000 20 MHz 3 '5000 20 MHz 3 '5000 20 MHz 3 '5001 33 MHz 3 '5010 33 MHz 3 '5010 35 MHz 3 '5010 36 MHz 3 '5010 36 MHz 3 '5010 36 MHz 3 '5010 37 MHz 3 '5010 37 MHz 3 '5010 38 MHz 3 '5010 58 MHz 3 '5010 |        |               |        |             | 1b: Alert# pin is used to signal the Alert event                                                                                                                                                                                                                                           |
| 2 '2b00 Single I/O 2 '2b10 Quad IO 2 '2b11 Reserved cfg_io_mode[25:24] – Indicates the I/O modes sup by the slave. 2 '2b00 Single I/O 2 '2b11 Single and Dual I/O 2 '2b15 Single and Quad I/O 2 '2b15 Single and Quad I/O 2 '2b15 Single and Aud I/O 2 '2b15 Single and Aud I/O 2 '2b15 Single and Aud I/O 3 '2b15 Single and Aud I/O 4 '2b15 Single and Aud I/O 4 '2b15 Single and Aud I/O 5 '2b15 Single and Aud I/O 6 '2b15 Single and  |        |               |        |             | io_mode_sel[27:26] — eSPI master programs this field to enable the appropriate mode of operation, which takes effect at the deassertion edge of the Chip Select. The I/O Mode configured in this field must be supported by both the master and the slave. Single I/O mode is supported by |
| e. 2'b01 Dual I/O e. 2'b11 Reserved cfg_io_mode[25:24] – Indicates the I/O modes sup by the slave. e. 2'b00 Single I/O e. 2'b11 Single and Dual I/O e. 2'b10 Single and Quad I/O e. 2'b11 Single, Dual and Quad open_drain_alert_sel[23] – Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode t indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation. e. 3'b000 20 MHz e. 3'b000 25 MHz e. 3'b010 33 MHz e. 3'b010 33 MHz e. 3'b010 SOMHz e. Others Reserved cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum fre of operation supported by the slave. e. 3'b000 20 MHz e. 3'b010 33 MHz e. 3'b010 34 MHz e. 3'b010 34 MHz e. 3'b010 35 MHz e. 3'b010 36 MH |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 2/b10 Quad IO 2/b11 Reserved cfg_io_mode[25:24] - Indicates the I/O modes sup by the slave. 2/b00 Single I/O 2/b11 Single and Quad I/O 2/b11 Single and Quad I/O 2/b11 Single, Dual and Quad open_drain_alert_sel[23] - Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be wild when Alert Mode t indicating Alert pin is used for signaling the Alert e operating_freq[22:20] - Identifies the frequency o operation. 3/b000 20 MHz 3/b001 35 MHz 3/b010 33 MHz 3/b010 33 MHz 3/b010 33 MHz 3/b0166MHz Others Reserved cfg_open_drain_alert[19] - Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] - Identifies the maximum fre of operation supported by the slave. 3/b001 25 MHz 3/b010 33 MHz 3/b010 35 MHz                         |        |               |        |             | _                                                                                                                                                                                                                                                                                          |
| 2'b11 Reserved cfg_io_mode[25:24] – Indicates the I/O modes sup by the slave. 2'b00 Single I/O 2'b10 Single and Dual I/O 2'b11 Single, Dual and Quad I/O 2'b11 Single, Dual and Quad I/O 2'b11 Single, Dual and Quad open_drain_alert_sel[23] – Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode t indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation. 3'b000 20 MHz 3'b010 53 MHz 3'b010 53 MHz 3'b011 50MHz 3'b101 50MHz 3'b101 50MHz 3'b101 50MHz 3'b101 50MHz 3'b11 50MHz 3'b11 50MHz 3'b11 50MHz 3'b11 50MHz 3'b11 50MHz 3'b11 50 MHz 3'b11 50 MHz 3'b100 66 MHz 0'd1 55 MHz 3'b100 66 MHz 1'd1 50 MHz 3'b100 66 MHz 1'd1 50 MHz 3'b100 66 MHz 1'd1 50 MHz 3'b100 67 MHz 3'b100 67 MHz 3'b100 66 MHz 1'd1 50 MHz 3'b100 67 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |        |             | •                                                                                                                                                                                                                                                                                          |
| cfg_io_mode[25:24] – Indicates the I/O modes sup by the slave.  2'b00 Single I/O  2'b01 Single and Dual I/O  2'b10 Single and Quad I/O  2'b11 Single, Dual and Quad open_drain_alert_sel[23]. Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain alert pin is support the slave. The bit must be valid when Alert Mode i indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation.  3'b000 20 MHz  3'b010 25 MHz  3'b010 33 MHz  3'b010 56MHz  Others Reserved  cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.  3'b010 25 MHz  3'b010 33 MHz  3'b010 33 MHz  0 Others Reserved  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.  3'b010 35 MHz  4'b010 35 MHz  4'b010 35 MHz  5'b010 35 MHz  6'b010 35 MHz  1'b010 35 |        |               |        |             | 1                                                                                                                                                                                                                                                                                          |
| by the slave.  2/b00 single I/O  2/b01 single and Dual I/O  2/b10 single and Quad I/O  2/b11 single, Dual and Quad open_drain_alert_sel[23] - Set to 2 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode be indicating Alert pin is used for signaling the Alert e operating_freq[22:20] - Identifies the frequency of operation.  3/b000 20 MHz  3/b010 33 MHz  3/b010 33 MHz  3/b011 50MHz  3/b010 66MHz  Others Reserved  cfg_open_drain_alert[19] - Indicates the support Alert pin as an open drain output by the slave.  cfg_max_freq[18:16] - Identifies the maximum freof operation supported by the slave.  a/b000 20 MHz  3/b010 33 MHz  3/b010 33 MHz  0/bone deliance of the slave.  cfg_max_freq[18:16] - Identifies the maximum freof operation supported by the slave.  a/b001 25 MHz  3/b010 66 MHz  0/bone seerved  max_wait_state[15:12] - eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the pit time corresponds to eight serial clocks in the UsI/O mode, four serial clocks in the Dual I/O mode contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 2'b00 Single I/O 2'b01 Single and Dual I/O 2'b10 Single and Quad I/O 2'b11 Single, Dual and Quad open_drain_alert_sel[23] – Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode be indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation.  3'b000 20 MHz 3'b010 33 MHz 3'b011 50MHz 3'b010 66MHz Others Reserved cfg_open_drain_alert[19] – Indicates the support of Alertit pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum fre of operation supported by the slave.  3'b000 20 MHz 3'b001 25 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b010 30 MHz 3'b010 56 MHz 3'b010 56 MHz 0'does Reserved max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When O, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 2'bo1 Single and Dual I/O 2'b10 Single and Quad I/O 2'b11 Single, Dual and Quad open_drain_alert_sel[23] - Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode t indicating Alert pin is used for signaling the Alert e operating_freq[22:20] - Identifies the frequency o operation.  3'b000 20 MHz 3'b001 25 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b010 36 MHz Others Reserved cfg_open_drain_alert[19] - Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] - Identifies the maximum fre of operation supported by the slave. 3'b000 20 MHz 3'b000 20 MHz 3'b000 25 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b010 35 MHz 3'b010 56 MHz Others Reserved max_wait_state[15:12] - eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the U/O mode, four serial clocks in the Dual I/O modee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |        |             | ·                                                                                                                                                                                                                                                                                          |
| 2 'b10 Single and Quad I/O 2 'b11 Single, Dual and Quad open_drain_alert_sel[23] — Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode is indicating Alert pin is used for signaling the Alert e operating_freq[22:20] — Identifies the frequency o operation.  3 'b000 20 MHz 3 'b001 25 MHz 3 'b010 33 MHz 3 'b011 50MHz 3 'b100 66MHz Others Reserved cfg_open_drain_alert[19] — Indicates the support of the slave is a signal alert file of operation supported by the slave. cfg_max_freq[18:16] — Identifies the maximum fre of operation supported by the slave.  4 3'b001 25 MHz 3 'b001 25 MHz 3 'b001 25 MHz 3 'b001 25 MHz 3 'b001 33 MHz 3 'b010 33 MHz 3 'b011 50 MHz 3 'b010 33 MHz 3 'b011 50 MHz 3 'b011 50 MHz 3 'b015 MHz 3 'b015 MHz 3 'b015 MHz 3 'b015 MHz 3 'b016 MHz 4 Alert file allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the bud I/O mode, four serial clocks in the bual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |               |        |             | _                                                                                                                                                                                                                                                                                          |
| 2'b11 Single, Dual and Quad     open_drain_alert_sel[23] — Set to 1 by eSPI master     configure the Alert pin as an open drain output. By     Alert pin operates as a driven output. This bit must     programmed to 1 if open drain Alert pin is support     the slave. The bit must be valid when Alert Mode &     indicating Alert pin is used for signaling the Alert e     operating_freq[22:20] — Identifies the frequency o     operation.          3'b000 20 MHz         3'b010 25 MHz         3'b010 33 MHz         3'b010 33 MHz         3'b011 50MHz         0thers Reserved     cfg_open_drain_alert[19] — Indicates the support of the slave.          Cfg_max_freq[18:16] — Identifies the maximum freo of operation supported by the slave.          cfg_max_freq[18:16] — Identifies the maximum freo of operation supported by the slave.          3'b001 25 MHz         3'b001 25 MHz         3'b010 33 MHz         3'b010 33 MHz         3'b010 50 MHz         3'b015 0 MHz         3'b015 0 MHz         3'b015 50 MHz         3'b015 50 MHz         3'b015 50 MHz         3'b015 50 MHz         3'b017 50 MHz         6 Others Reserved         max_wait_state[15:12] — eSPI master sets the max_wait_state[15:12]       |        |               |        |             | _                                                                                                                                                                                                                                                                                          |
| open_drain_alert_sel[23] – Set to 1 by eSPI master configure the Alert pin as an open drain output. By Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode & indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation.  a 3'b000 20 MHz a 3'b001 25 MHz a 3'b010 33 MHz a 3'b010 33 MHz a 3'b100 66MHz Others Reserved cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave. a 3'b000 20 MHz a 3'b000 20 MHz a 3'b000 20 MHz a 3'b010 33 MHz a 3'b010 33 MHz a 3'b010 33 MHz a 3'b010 35 MHz a 3'b010 36 MHz a 3'b11 50 MHz b 3'b11 50 MHz a 3'b11 50 MHz b 3'b11 50 MHz |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| Alert pin operates as a driven output. This bit must programmed to 1 if open drain Alert pin is support the slave. The bit must be valid when Alert Mode be indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency of operation.  a 3'b000 20 MHz a 3'b010 25 MHz b 3'b010 33 MHz b 3'b010 33 MHz b 3'b011 50MHz b 3'b010 66MHz b 0 Others Reserved cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave. b 3'b000 20 MHz b 3'b010 33 MHz b 3'b010 33 MHz b 3'b010 33 MHz b 3'b011 50 M |        |               |        |             | open_drain_alert_sel[23] – Set to 1 by eSPI master to                                                                                                                                                                                                                                      |
| indicating Alert pin is used for signaling the Alert e operating_freq[22:20] – Identifies the frequency o operation.  3'b000 20 MHz 3'b001 25 MHz 3'b010 33 MHz 3'b100 66MHz 3'b100 66MHz Others Reserved cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum fre of operation supported by the slave. 3'b000 20 MHz 3'b001 25 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b010 33 MHz 3'b100 66 MHz Others Reserved max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |        |             | Alert pin operates as a driven output. This bit must only be programmed to 1 if open drain Alert pin is supported by the slave. The bit must be valid when Alert Mode bit is a 1                                                                                                           |
| operation.  3/b000 20 MHz 3/b001 25 MHz 3/b010 33 MHz 3/b011 50MHz 3/b100 66MHz Others Reserved cfg_open_drain_alert[19] - Indicates the support of Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] - Identifies the maximum free of operation supported by the slave.  3/b000 20 MHz 3/b000 25 MHz 3/b010 33 MHz 3/b010 33 MHz 3/b010 50 MHz 3/b010 66 MHz Others Reserved max_wait_state[15:12] - eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the lyO mode, four serial clocks in the lyO mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |        |             | indicating Alert pin is used for signaling the Alert event.                                                                                                                                                                                                                                |
| a 3'b000 20 MHz  3'b001 25 MHz  3'b010 33 MHz  3'b011 50MHz  3'b100 66MHz  Others Reserved  cfg_open_drain_alert[19] – Indicates the support of alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.  3'b000 20 MHz  3'b000 20 MHz  3'b010 33 MHz  3'b010 33 MHz  3'b010 66 MHz  Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL Erresponse code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 3'b001 25 MHz     3'b010 33 MHz     3'b010 66MHz     Others Reserved     cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.     cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.     3'b000 20 MHz     3'b000 20 MHz     3'b010 33 MHz     3'b010 33 MHz     3'b011 50 MHz     3'b011 50 MHz     3'b100 66 MHz     Others Reserved     max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |               |        |             | · ·                                                                                                                                                                                                                                                                                        |
| 3'b010 33 MHz     3'b011 50MHz     3'b100 66MHz     Others Reserved     cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.     cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.     3'b000 20 MHz     3'b000 20 MHz     3'b001 25 MHz     3'b010 33 MHz     3'b011 50 MHz     3'b100 66 MHz     Others Reserved     max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL Eresponse code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 3'b011 50MHz     3'b100 66MHz     Others Reserved  cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.      3'b000 20 MHz     3'b001 25 MHz     3'b010 33 MHz     3'b010 33 MHz     3'b015 0 MHz     3'b100 66 MHz     Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 3'b100 66MHz     Others Reserved  cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.      3'b000 20 MHz     3'b001 25 MHz     3'b010 33 MHz     3'b010 33 MHz     3'b015 00 MHz     0thers Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL Erroponse code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of the serial clocks in the Dual I/O mode, four serial clocks in the Dual I/O mode of the serial clocks in the Dual I/O mode of the serial clocks in the Dual I/O mode of the Dual       |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| Others Reserved  cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.  3'b000 20 MHz  3'b001 25 MHz  3'b010 33 MHz  3'b011 50 MHz  3'b100 66 MHz  Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| cfg_open_drain_alert[19] – Indicates the support of Alert# pin as an open drain output by the slave.  cfg_max_freq[18:16] – Identifies the maximum free of operation supported by the slave.  3'b000 20 MHz  3'b001 25 MHz  3'b010 33 MHz  3'b010 33 MHz  3'b100 66 MHz  Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| <ul> <li>3'b000 20 MHz</li> <li>3'b001 25 MHz</li> <li>3'b010 33 MHz</li> <li>3'b101 50 MHz</li> <li>3'b100 66 MHz</li> <li>Others Reserved</li> <li>max_wait_state[15:12] – eSPI master sets the max</li> <li>WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte time. When 0, it indicates a value of 16-byte time corresponds to eight serial clocks in the 1/O mode, four serial clocks in the Dual I/O mode of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |        |             | cfg_open_drain_alert[19] – Indicates the support of the Alert# pin as an open drain output by the slave. cfg_max_freq[18:16] – Identifies the maximum frequency                                                                                                                            |
| <ul> <li>3'b001 25 MHz</li> <li>3'b010 33 MHz</li> <li>3'b011 50 MHz</li> <li>3'b100 66 MHz</li> <li>Others Reserved</li> <li>max_wait_state[15:12] – eSPI master sets the max</li> <li>WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte time corresponds to eight serial clocks in the lyto mode, four serial clocks in the Dual I/O mode of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| <ul> <li>3'b010 33 MHz</li> <li>3'b011 50 MHz</li> <li>3'b100 66 MHz</li> <li>Others Reserved</li> <li>max_wait_state[15:12] – eSPI master sets the max</li> <li>WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte the byte time corresponds to eight serial clocks in the lift of mode, four serial clocks in the Dual I/O mode.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| <ul> <li>3'b011 50 MHz</li> <li>3'b100 66 MHz</li> <li>Others Reserved</li> <li>max_wait_state[15:12] – eSPI master sets the max</li> <li>WAIT STATE allowed before the slave must respon</li> <li>an ACCEPT, DEFER, NON FATAL ERROR or FATAL ER</li> <li>response code. This is a 1-based field in the granul</li> <li>byte time. When 0, it indicates a value of 16-byte t</li> <li>byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| 3'b100 66 MHz     Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the 1 I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| Others Reserved  max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| max_wait_state[15:12] – eSPI master sets the max WAIT STATE allowed before the slave must respon an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the 1 I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| an ACCEPT, DEFER, NON FATAL ERROR or FATAL EF response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |        |             | max_wait_state[15:12] – eSPI master sets the maximum                                                                                                                                                                                                                                       |
| response code. This is a 1-based field in the granul byte time. When 0, it indicates a value of 16-byte t byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| byte time. When 0, it indicates a value of 16-byte to byte time corresponds to eight serial clocks in the I/O mode, four serial clocks in the Dual I/O mode of the Dual I/O mode  |        |               |        |             | response code. This is a 1-based field in the granularity of                                                                                                                                                                                                                               |
| I/O mode, four serial clocks in the Dual I/O mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |               |        |             | byte time. When 0, it indicates a value of 16-byte time. A                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |        |             | byte time corresponds to eight serial clocks in the Single                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |        |             |                                                                                                                                                                                                                                                                                            |
| reserved[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |               |        |             | reserved[11:8]                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |        |             | cfg_channel[7:0] – Indicates that the corresponding                                                                                                                                                                                                                                        |



| Offset | Register Name       | Access | Reset Value | Description                                                                                                                                                                                                                                                               |
|--------|---------------------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                     |        |             | channel is supported by the slave.                                                                                                                                                                                                                                        |
|        |                     |        |             | Bits 0 Peripheral Channel                                                                                                                                                                                                                                                 |
|        |                     |        |             | Bits 1 Virtual Wire Channel                                                                                                                                                                                                                                               |
|        |                     |        |             | Bits 2 OOB Message Channel                                                                                                                                                                                                                                                |
|        |                     |        |             | Bits 3 Flash Access Channel                                                                                                                                                                                                                                               |
|        |                     |        |             | - Bits 7:4 Reserved for platform specific channels                                                                                                                                                                                                                        |
| 0x08   | ESPI CHO CAP CONFIG | RW     | 0x0000_1101 | reserved[31:15]                                                                                                                                                                                                                                                           |
|        |                     |        | _           | peri_ch_max_read_req_size[14:12] – Maximum read request size for the Peripheral channel. The length of the read request must not cross the naturally aligned address boundary of the corresponding Maximum Read Request Size.  • 000b Reserved                            |
|        |                     |        |             | 001b 64 bytes address aligned                                                                                                                                                                                                                                             |
|        |                     |        |             | 010b 128 bytes address aligned                                                                                                                                                                                                                                            |
|        |                     |        |             | 011b 256 bytes address aligned                                                                                                                                                                                                                                            |
|        |                     |        |             | <ul> <li>100b 512 bytes address aligned</li> </ul>                                                                                                                                                                                                                        |
|        |                     |        |             | <ul> <li>100b 512 bytes address aligned</li> <li>101b 1024 bytes address aligned</li> </ul>                                                                                                                                                                               |
|        |                     |        |             | <ul> <li>110b 2048 bytes address aligned</li> </ul>                                                                                                                                                                                                                       |
|        |                     |        |             | <ul> <li>110b 2046 bytes address aligned</li> <li>111b 4096 bytes address aligned</li> </ul>                                                                                                                                                                              |
|        |                     |        |             | reserved[11]                                                                                                                                                                                                                                                              |
|        |                     |        |             | peri_ch_max_payload_size_sel[10:8] – Maximum payload size for the Peripheral channel. The value set by the eSPI master must never be more than the value advertised in the Max Payload Size Supported field.  The payload of the transaction must not cross the naturally |
|        |                     |        |             | aligned address boundary of the corresponding Maximum Payload Size.                                                                                                                                                                                                       |
|        |                     |        |             | 000b: Reserved                                                                                                                                                                                                                                                            |
|        |                     |        |             | <ul> <li>001b: 64 bytes address aligned max payload size</li> </ul>                                                                                                                                                                                                       |
|        |                     |        |             | 010b: 128 bytes address aligned max payload size                                                                                                                                                                                                                          |
|        |                     |        |             | 011b: 256 bytes address aligned max payload size                                                                                                                                                                                                                          |
|        |                     |        |             | • 100b 111b: Reserved                                                                                                                                                                                                                                                     |
|        |                     |        |             | reserved[7]                                                                                                                                                                                                                                                               |
|        |                     |        |             | cfg_peri_max_payload[6:4] – This field advertises the Maximum Payload Size supported by the slave.                                                                                                                                                                        |
|        |                     |        |             | 000b Reserved                                                                                                                                                                                                                                                             |
|        |                     |        |             | 001b 64 bytes address aligned max payload size                                                                                                                                                                                                                            |
|        |                     |        |             | 010b 128 bytes address aligned max payload size                                                                                                                                                                                                                           |
|        |                     |        |             | 011b 256 bytes address aligned max payload size                                                                                                                                                                                                                           |
|        |                     |        |             | • 100b 111b : Reserved                                                                                                                                                                                                                                                    |
|        |                     |        |             | reserved[3]                                                                                                                                                                                                                                                               |
|        |                     |        |             | peri_ch_bus_master_en[2] — When this bit is a 0, it disables the slave from generating bus mastering cycles on the Peripheral channel. When this bit is a 1, it allows the slave to generate bus mastering cycles on the Peripheral channel.                              |
|        |                     |        |             | Prior to clearing the Bus Master Enable bit from 1 to 0, there must be no outstanding non posted cycle pending completion from the slave.                                                                                                                                 |
|        |                     |        |             | cfg_peri_channel_ready[1] – When this bit is a 1, it indicates that the slave is ready to accept transactions on the Peripheral                                                                                                                                           |



| Offset | Register Name       | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|---------------------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                     |        |             | channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                     |        |             | eSPI master should poll this bit after the channel is enabled before running any transaction on this channel to the slave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                     |        |             | peri_ch_en[0] – The channel is by default enabled after the eSPI Reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | This bit is cleared to 0 by eSPI master to disable the Peripheral channel. Besides, clearing this bit from 1 to 0 triggers a reset to the Peripheral channel. The channel                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                     |        |             | remains disabled until this bit is set to 1 again.  Prior to disabling the Peripheral channel, the Bus Master Enable bit should be cleared to 0 to disable the bus mastering cycles.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x0C   | ESPI_CH1_CAP_CONFIG | RW     | 0x0000_0000 | reserved[31:22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                     |        |             | vw_max_count[21:16] — The maximum number of Virtual Wire groups that can be sent in a single Virtual Wire packet. This is a 0 based count. The default value of 0 indicates count of 1. The value configured in this field must never be more than the value advertised in the Maximum Virtual Wire Count Supported field.  reserved[15:14]                                                                                                                                                                                                                                                 |
|        |                     |        |             | cfg_max_vw_count[13:8] – Advertises the Maximum Virtual Wire Count supported by the slave. If the slave supports different count value as initiator and as receiver of the Virtual Wires, this field indicates the lower of the two. The Virtual Wire Count specifies the maximum number of Virtual Wire groups being communicated in a single Virtual Wire packet. eSPI slave must advertise a value of 000111b or more in this field to indicate the support of at least 8 Virtual Wire groups being communicated in a single Virtual Wire packet. This is a 0-based count. reserved[7:2] |
|        |                     |        |             | cfg_vw_channel_ready[1] – When this bit is a 1, it indicates that the slave is ready to accept transactions on the Virtual Wire channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                     |        |             | eSPI master should poll this bit after the channel is enabled before running any transaction on this channel to the slave. vw_ch_en[0] – This bit is set to 1 by eSPI master to enable the Virtual Wire channel.                                                                                                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | Clearing this bit from 1 to 0 do not reset the Virtual Wire channel whereby the state of all the Virtual Wires must continue to be maintained internally.  When this bit is 0, no transaction shall occur on the Virtual Wire channel. The channel is by default disabled after the eSPI Reset.                                                                                                                                                                                                                                                                                             |
| 0x10   | ESPI_CH2_CAP_CONFIG | RW     | 0x0000_0100 | reserved[31:11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                     |        |             | oob_msg_ch_max_payload_size_sel[10:8] – eSPI master sets the maximum payload size for the OOB Message channel. The value set by the eSPI master must never be more than the value advertised in the Max Payload Size Supported field. The Maximum Payload Size applies to the actual payload of the protocol embedded in the OOB packet.  • 000b – Reserved                                                                                                                                                                                                                                 |
|        |                     |        |             | 001b – 64 bytes max payload size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                     | ]      |             | 010b – 128 bytes max payload size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Offset | Register Name       | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                  |
|--------|---------------------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                     |        |             | 011b – 256 bytes max payload size                                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | • 100b - 111b – Reserved                                                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | reserved[7]                                                                                                                                                                                                                                                                                                                                  |
|        |                     |        |             | cfg_oob_max_payload[6:4] – Advertises the Maximum                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | Payload Size supported by the slave. The Maximum                                                                                                                                                                                                                                                                                             |
|        |                     |        |             | Payload Size applies to the actual payload of the protocol embedded in the OOB packet.                                                                                                                                                                                                                                                       |
|        |                     |        |             | • 000b – Reserved                                                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | 001b – 64 bytes max payload size                                                                                                                                                                                                                                                                                                             |
|        |                     |        |             | 010b – 128 bytes max payload size                                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | 011b – 256 bytes max payload size                                                                                                                                                                                                                                                                                                            |
|        |                     |        |             | • 100b - 111b – Reserved                                                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | reserved[3:2]                                                                                                                                                                                                                                                                                                                                |
|        |                     |        |             | cfg_oob_channel_ready[1] –When this bit is a 1, it                                                                                                                                                                                                                                                                                           |
|        |                     |        |             | indicates that the slave is ready to accept transactions on the OOB                                                                                                                                                                                                                                                                          |
|        |                     |        |             | Message channel. eSPI master should poll this bit after the channel is enabled before running any transaction on this                                                                                                                                                                                                                        |
|        |                     |        |             | channel to the slave.                                                                                                                                                                                                                                                                                                                        |
|        |                     |        |             | oob_msg_ch_en[0] – This bit is set to 1 by eSPI master to                                                                                                                                                                                                                                                                                    |
|        |                     |        |             | enable the OOB Message channel. Clearing this bit from 1                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | to <i>0</i> triggers a reset to the OOB Message channel such as during error handling. The channel remains disabled until                                                                                                                                                                                                                    |
|        |                     |        |             | this bit is set to 1 again. The channel is by default disabled                                                                                                                                                                                                                                                                               |
|        |                     |        |             | after the eSPI Reset.                                                                                                                                                                                                                                                                                                                        |
| 0x14   | ESPI_CH3_CAP_CONFIG | RW     | 0x0000_1104 | reserved[31:15]                                                                                                                                                                                                                                                                                                                              |
|        |                     |        |             | flash_ch_max_read_req_size[14:12] – eSPI master sets the                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | maximum read request size for the Flash Access channel.                                                                                                                                                                                                                                                                                      |
|        |                     |        |             | The length of the read request must not exceed the                                                                                                                                                                                                                                                                                           |
|        |                     |        |             | corresponding Maximum Read Request Size with no                                                                                                                                                                                                                                                                                              |
|        |                     |        |             | address alignment requirement.                                                                                                                                                                                                                                                                                                               |
|        |                     |        |             | 000b: Reserved.                                                                                                                                                                                                                                                                                                                              |
|        |                     |        |             | <ul> <li>001b: 64 bytes max read request size</li> </ul>                                                                                                                                                                                                                                                                                     |
|        |                     |        |             | 010b: 128 bytes max read request size                                                                                                                                                                                                                                                                                                        |
|        |                     |        |             | 011b: 256 bytes max read request size                                                                                                                                                                                                                                                                                                        |
|        |                     |        |             | <ul> <li>100b: 512 bytes max read request size</li> </ul>                                                                                                                                                                                                                                                                                    |
|        |                     |        |             | <ul> <li>101b: 1024 bytes max rea d request size</li> </ul>                                                                                                                                                                                                                                                                                  |
|        |                     |        |             | <ul> <li>110b: 2048 bytes max read request size</li> </ul>                                                                                                                                                                                                                                                                                   |
|        |                     |        |             | <ul> <li>111b: 4096 bytes max read request size</li> </ul>                                                                                                                                                                                                                                                                                   |
|        |                     |        |             | cfg_flash_sharing_mode[11] – When Flash Access channel                                                                                                                                                                                                                                                                                       |
|        |                     |        |             | is supported, this bit advertises the flash sharing scheme intended by the slave.                                                                                                                                                                                                                                                            |
|        |                     |        |             | Ob: Master attached flash sharing                                                                                                                                                                                                                                                                                                            |
|        | ĺ                   | ı      | 1           | 1b: Slave attached flash sharing                                                                                                                                                                                                                                                                                                             |
|        |                     |        |             | 10. Slave attached hash sharing                                                                                                                                                                                                                                                                                                              |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only                                                                                                                                                                                                                                                                                |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined.                                                                                                                                                                                                                                      |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined.  flash_ch_max_payload_size_sel[10:8] — eSPI master sets                                                                                                                                                                              |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined. flash_ch_max_payload_size_sel[10:8] – eSPI master sets the maximum payload size for the Flash Access channel.                                                                                                                        |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined.  flash_ch_max_payload_size_sel[10:8] – eSPI master sets the maximum payload size for the Flash Access channel.  The value set by the eSPI master must never be more than                                                             |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined. flash_ch_max_payload_size_sel[10:8] – eSPI master sets the maximum payload size for the Flash Access channel.                                                                                                                        |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined. flash_ch_max_payload_size_sel[10:8] — eSPI master sets the maximum payload size for the Flash Access channel. The value set by the eSPI master must never be more than the value advertised in the Max Payload Size Supported        |
|        |                     |        |             | This bit is a Read Only '0' in the base specification as only master attached flash sharing is defined. flash_ch_max_payload_size_sel[10:8] — eSPI master sets the maximum payload size for the Flash Access channel. The value set by the eSPI master must never be more than the value advertised in the Max Payload Size Supported field. |



| Offset | Register Name         | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                   |
|--------|-----------------------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                       |        |             | 011b: 256 bytes max payload size                                                                                                                                                                                                                                                                                                              |
|        |                       |        |             | • 100b 111b: Reserved                                                                                                                                                                                                                                                                                                                         |
|        |                       |        |             | cfg_flash_max_payload[7:5] - Advertises the Maximum                                                                                                                                                                                                                                                                                           |
|        |                       |        |             | Payload Size supported by the slave.                                                                                                                                                                                                                                                                                                          |
|        |                       |        |             | 000b: Reserved                                                                                                                                                                                                                                                                                                                                |
|        |                       |        |             | <ul> <li>001b: 64 bytes max payload size</li> </ul>                                                                                                                                                                                                                                                                                           |
|        |                       |        |             | <ul> <li>010b: 128 bytes max payload size</li> </ul>                                                                                                                                                                                                                                                                                          |
|        |                       |        |             | 011b: 256 bytes max payload size                                                                                                                                                                                                                                                                                                              |
|        |                       |        |             | • 100b 111b: Reserved                                                                                                                                                                                                                                                                                                                         |
|        |                       |        |             | flash_ch_block_erase_size[4:2] – eSPI master sets this field to communicate the block erase size to the slave. This field is applicable only to master attached flash sharing scheme.                                                                                                                                                         |
|        |                       |        |             | 000b: Reserved                                                                                                                                                                                                                                                                                                                                |
|        |                       |        |             |                                                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | • 001b: 4 Kbytes                                                                                                                                                                                                                                                                                                                              |
|        |                       |        |             | • 010b: 64 Kbytes                                                                                                                                                                                                                                                                                                                             |
|        |                       |        |             | 011b: Both 4 Kbytes and 64 Kbytes are supported                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | • 100b: 128 Kbytes                                                                                                                                                                                                                                                                                                                            |
|        |                       |        |             | • 101b: 256 Kbytes                                                                                                                                                                                                                                                                                                                            |
|        |                       |        |             | • 110b 111b: Reserved                                                                                                                                                                                                                                                                                                                         |
|        |                       |        |             | cfg_flash_channel_ready[1] – When this bit is a 1, it indicates that the slave is ready to accept transactions on the Flash Access channel. eSPI master should poll this bit after the channel is enabled before running any transaction                                                                                                      |
|        |                       |        |             | on this channel to the slave.                                                                                                                                                                                                                                                                                                                 |
|        |                       |        |             | flash_ch_en[0] – This bit is set to 1 by eSPI master to                                                                                                                                                                                                                                                                                       |
|        |                       |        |             | enable the Flash Access channel.                                                                                                                                                                                                                                                                                                              |
|        |                       |        |             | Clearing this bit from 1 to 0 triggers a reset to the Flash Access channel such as during error handling. The channel remains disabled until this bit is set to 1 again. The channel is by default, disabled after the eSPI Reset.                                                                                                            |
| 0x18   | ESPI_CH3_CAP_CONFIG_2 | RO     | 0x0000_0000 | reserved[31:22]                                                                                                                                                                                                                                                                                                                               |
|        |                       |        | _           | cfg_flash_trgt_rpmc[21:16] – Indicates the total number of Replay Protected Monotonic Counters (RPMC) supported by the Slave. It is a 1-based field.                                                                                                                                                                                          |
|        |                       |        |             | <ul> <li>Oh: Slave does not support RPMC</li> </ul>                                                                                                                                                                                                                                                                                           |
|        |                       |        |             | <ul> <li>1h: Slave supports up to 1 RPMC</li> </ul>                                                                                                                                                                                                                                                                                           |
|        |                       |        |             | 2h: Slave supports up to 2 RPMC                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | • 3Fh: Slave supports up to 63 RPMC  cfg_flash_trgt_blk_erase_size[15:8] – Indicates the sizes of the erase commands the master may issue. If multiple bits are set then the master may issue an erase using any of the indicated sizes. If multiple regions are accessible by the master this field advertices the common areas block sizes. |
|        |                       |        |             | master, this field advertises the common erase block sizes for these regions. This field is only applicable when slave                                                                                                                                                                                                                        |
|        |                       |        |             | attached flash sharing scheme is selected.                                                                                                                                                                                                                                                                                                    |
|        |                       |        |             | Bit 0: Reserved                                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | Bit 1: Reserved                                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | <ul> <li>Bit 2: 4 Kbytes EBS supported</li> </ul>                                                                                                                                                                                                                                                                                             |
|        |                       |        |             | Bit 3: Reserved                                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | Bit 4: Reserved                                                                                                                                                                                                                                                                                                                               |
|        |                       |        |             | <ul> <li>Bit 5: 32 Kbytes EBS supported</li> </ul>                                                                                                                                                                                                                                                                                            |
|        |                       |        |             | <ul> <li>Bit 6: 64 Kbytes EBS supported</li> </ul>                                                                                                                                                                                                                                                                                            |
|        |                       |        |             | <ul> <li>Bit 7: 128 Kbytes EBS supported</li> </ul>                                                                                                                                                                                                                                                                                           |



| Offset | Register Name         | Access | Reset Value | Description                                                                                         |
|--------|-----------------------|--------|-------------|-----------------------------------------------------------------------------------------------------|
|        |                       |        |             | reserved[7:3]                                                                                       |
|        |                       |        |             | cfg_flash_trgt_max_rd_size[2:0] – Indicates the maximum                                             |
|        |                       |        |             | read request size supported by the slave as the Target on                                           |
|        |                       |        |             | the Flash                                                                                           |
|        |                       |        |             | Access channel. This field is only applicable when slave attached flash sharing scheme is selected. |
|        |                       |        |             | <ul> <li>000b, 001b: 64 bytes max read request size.</li> </ul>                                     |
|        |                       |        |             | <ul> <li>010b: 128 bytes max read request size</li> </ul>                                           |
|        |                       |        |             | 011b: 256 bytes max read request size                                                               |
|        |                       |        |             | <ul> <li>100b: 512 bytes max read request size</li> </ul>                                           |
|        |                       |        |             | <ul> <li>101b: 1024 bytes max read request size</li> </ul>                                          |
|        |                       |        |             | <ul> <li>110b: 2048 bytes max read request size</li> </ul>                                          |
|        |                       |        |             | 111b: 4096 bytes max read request size                                                              |
| 0x1C   | PUT_PC_RX_FIFO_DATA   | RO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | put_pc_rx_fifo_data[7:0] – FIFO to store incoming Peripheral PC receive packets                     |
| 0x20   | GET_PC_TX_FIFO_DATA   | WO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        | _           | get_pc_tx_fifo_data[7:0] – FIFO to store outgoing Peripheral PC transmit packets                    |
| 0x24   | PUT NP RX FIFO DATA   | RO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        | _           | put_np_rx_fifo_data[7:0] – FIFO to store incoming                                                   |
|        |                       |        |             | Peripheral NP receive packets                                                                       |
| 0x28   | GET_NP_TX_FIFO_DATA   | WO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | get_np_tx_fifo_data[7:0] – FIFO to s tore outgoing                                                  |
|        |                       |        |             | Peripheral NP transmit packets                                                                      |
| 0x2C   | PUT_OOB_RX_FIFO_DATA  | RO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | put_oob_rx_fifo_data[7:0] — FIFO to store incoming OOB                                              |
|        |                       |        |             | receive packets                                                                                     |
| 0x30   | GET_OOB_TX_FIFO_DATA  | wo     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | get_oob_tx_fifo_data[7:0] – FIFO to store outgoing OOB                                              |
|        |                       |        |             | transmit packets                                                                                    |
| 0x34   | GET_FLASH_NP_TX_FIFO  | WO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | get_flash_np_tx_fifo[7:0] – FIFO to store TX flash NP                                               |
|        |                       |        |             | packets                                                                                             |
| 0x38   | PUT_FLASH_C_RX_FIFO   | RO     | 0x0000_0000 | reserved[31:8]                                                                                      |
|        |                       |        |             | put_flash_c_rx_fifo[7:0] – FIFO to store RX flash                                                   |
| 0x3C   | DIT FIACH ND DV FIFO  | RO     | 0x0000 0000 | Completion packets                                                                                  |
| UXSC   | PUT_FLASH_NP_RX_FIFO  | NO.    | 0x0000_0000 | reserved[31:8] put_flash_np_rx_fifo[7:0] – FIFO to store RX flash NP                                |
|        |                       |        |             | put_nash_np_rx_mo[7:0] = FIFO to store RX hash NP<br>packets                                        |
| 0x40   | GET FLASH C TX FIFO   | WO     | 0x0000_0000 | reserved[31:8]                                                                                      |
| 5A 70  | 021_12/011_0_1/\_1110 |        | 5.0000_0000 | get_flash_c_tx_fifo[7:0] – FIFO to store T X flash                                                  |
|        |                       |        |             | Completion packets                                                                                  |
| 0x44   | IRQ ENABLE1           | RW     | 0x0000_0000 | This register controls the masking of interrupt. When the                                           |
|        |                       |        |             | particular bit in this register is <i>0</i> , then the corresponding                                |
|        |                       |        |             | Interrupt in the IRQ_STATUS1 register is masked.                                                    |
|        |                       |        |             | See Table 8.4 for details on the fields.                                                            |
| 0x48   | IRQ_STATUS1           | RW1C   | 0x0000_0000 | See Table 8.4 for details on the fields.                                                            |
| 0x4C   | IRQ_ENABLE2           | RW     | 0x0000_0000 | This register controls the masking of interrupt. When the                                           |
|        |                       |        | _           | particular bit in this register is 0, then the corresponding                                        |
|        |                       |        |             | interrupt in the IRQ_STATUS2 register is masked.                                                    |
|        |                       |        |             | See Table 8.5 for details on the fields.                                                            |
| 0x50   | IRQ_STATUS2           | RW1C   | 0x0000_0000 | See Table 8.5 for details on the fields.                                                            |



| Offset | Register Name     | Access | Reset Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|-------------------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x54   | TX_CHN_AVAIL_REQ  | WO     | 0x0000_0000 | Writing this register triggers the IP to generate the alert request to get the attention of Master. These bits are cleared by the IP on the reception of corresponding GET_* commands.  reserved[31:5]  flash_np_tx_avail_req[4] – GET FLASH NP Avail request flash_c_tx_avail_req[3] – GET FLASH C Avail request oob_tx_avail_req[2] – GET OOB Avail request np_tx_avail_req[1] – GET NP Avail request pc_tx_avail_req[0] – GET PC Avail request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x58   | ESPI_QUEUE_STATUS | RO     | 0x0000_0000 | reserved[31:11]  fl_np_avail[10] – Available Alert for Flash NP commands  fl_c_avail[9] – Available Alert for Flash NP commands  fl_np_free[8] – Free Alert for Flash NP commands  fl_c_free[7] – Free Alert for Flash Completion commands  oob_avail[6] – Available Alert for OOB commands  vw_avail[5] – Available Alert for Virtual wire commands  np_avail[4] – Available Alert for Peripheral NP commands  pc_avail[3] – Available Alert Peripheral PC command  oob_free[2] – Free Alert for OOB commands  np_free[1] – Free Alert for Peripheral NP command  pc_free[0] – Free Alert for Peripheral PC commands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ox5C   | FIFO_STATUS       | RO     | 0x0000_0000 | reserved[31:20] get_flash_c_tx_fifo_empty[19] - GET Flash C TX FIFO Empty indication put_flash_np_rx_fifo_empty[18] - PUT Flash NP RX FIFO Empty indication put_flash_c_rx_fifo_empty[17] - PUT Flash C RX FIFO Empty indication get_flash_np_tx_fifo_empty[16] - GET Flash NP TX FIFO Empty indication get_oob_tx_fifo_empty[15] - OOB TX FIFO Empty indication put_oob_rx_fifo_empty[14] - OOB RX FIFO Empty indication get_np_tx_fifo_empty[13] - Peripheral NP RX FIFO Empty indication put_np_rx_fifo_empty[12] - Peripheral NP RX FIFO Empty indication get_pc_tx_fifo_empty[11] - Peripheral PC TX FIFO Empty indication get_flash_c_tx_fifo_full[9] - Flash C TX FIFO Full indication put_flash_np_rx_fifo_full[8] - PUT Flash NP RX FIFO Full indication get_flash_c_rx_fifo_full[6] - Flash NP TX FIFO Full indication get_flash_np_tx_fifo_full[6] - Flash NP TX FIFO Full indication get_oob_tx_fifo_full[5] - OOB TX FIFO Full indication put_oob_rx_fifo_full[3] - Peripheral PC TX FIFO Full indication get_np_tx_fifo_full[3] - Peripheral PC TX FIFO Full indication put_np_rx_fifo_full[2] - Peripheral NP RX FIFO Full |



| Offset | Register Name    | Access | Reset Value | Description                                                                                  |
|--------|------------------|--------|-------------|----------------------------------------------------------------------------------------------|
|        |                  |        |             | indication                                                                                   |
|        |                  |        |             | get_pc_tx_fifo_full[1] – Peripheral PC TX FIFO Full indication                               |
|        |                  |        |             | put_pc_rx_fifo_full[0] – Peripheral PC RX FIFO Full indication                               |
| 0x60   | FIFO_FLUSH       | WO     | 0x0000_0000 | reserved[31:10]                                                                              |
|        |                  |        |             | get_flash_c_tx_fifo_flush[9] – Flush the                                                     |
|        |                  |        |             | GET_FLASH_C_TX_FIFO                                                                          |
|        |                  |        |             | put_flash_np_rx_fifo_flush[8] — Flush the PUT_FLASH_NP_RX_FIFO                               |
|        |                  |        |             | put_flash_c_rx_fifo_flush[7] – Flush the                                                     |
|        |                  |        |             | PUT_FLASH_C_RX_FIFO                                                                          |
|        |                  |        |             | get_flash_np_tx_fifo_flush[6] — Flush the GET_FLASH_NP_TX_FIFO                               |
|        |                  |        |             | get_oob_tx_fifo_flush[5] – Flush the GET_OOB_TX_FIFO                                         |
|        |                  |        |             | put_oob_rx_fifo_flush[4] – Flush the PUT_OOB_RX_FIFO                                         |
|        |                  |        |             | get_np_tx_fifo_flush[3] – Flush the GET NP TX FIFO                                           |
|        |                  |        |             | put_np_rx_fifo_flush[2] – Flush the PUT NP RX FIFO                                           |
|        |                  |        |             | get_pc_tx_fifo_flush[1] – Flush the GET PC TX FIFO                                           |
|        |                  | 511110 |             | put_pc_rx_fifo_flush[0] – Flush the PUT PC RX FIFO                                           |
| 0x64   | ERROR_STATUS     | RW1C   | 0x0000_0000 | reserved[31:9] page err[8] – Register to indicate Address Page Error                         |
|        |                  |        |             | mal_vw_channel[7] – Register to indicate Address rage Error                                  |
|        |                  |        |             | detected in VW channel                                                                       |
|        |                  |        |             | mal_peri_channel[6] – Register to indicate Malformed<br>Error detected in Peripheral channel |
|        |                  |        |             | get_wout_avail[5] – Register to indicate GET Without Available Error is detected             |
|        |                  |        |             | put_wout_free[4] – Register to indicate PUT Without Error is detected                        |
|        |                  |        |             | unexpec_cs_deassert[3] – Register to indicate Unexpected CS Deassert Error is detected       |
|        |                  |        |             | invalid_crc[2] – Register to indicate Invalid CRC Error is detected                          |
|        |                  |        |             | invalid_ctype[1] – Register to indicate Invalid Cycle type<br>Error is detected              |
|        |                  |        |             | invalid_cmd[0] – Register to indicate Invalid Command<br>Error is detected                   |
| 0x68   | VW_IDX0_TX_DATA  | RW     | 0x0000_0000 | vw_idx0_tx_data[31:0] – Register for VW_IDX0_TX_DATA                                         |
| 0x6C   | VW_IDX1_TX_DATA  | RW     | 0x0000_0000 | vw_idx1_tx_data[31:0] – Register for VW_IDX1_TX_DATA                                         |
| 0x70   | VW_IDX4_TX_DATA  | RW     | 0x0000_0000 | vw_idx4_tx_data[31:0] – Register for VW_IDX4_TX_DATA                                         |
| 0x74   | VW_IDX5_TX_DATA  | RW     | 0x0000_0000 | vw_idx5_tx_data[31:0] – Register for VW_IDX5_TX_DATA                                         |
| 0x78   | VW_IDX6_TX_DATA  | RW     | 0x0000_0000 | vw_idx6_tx_data[31:0] – Register for VW_IDX6_TX_DATA                                         |
| 0x7C   | VW_IDX2_RX_DATA  | RO     | 0x0000_0000 | vw_idx2_rx_data[31:0] – Register for VW_IDX2_RX_DATA                                         |
| 0x80   | VW_IDX3_RX_DATA  | RO     | 0x0000_0000 | vw_idx3_rx_data[31:0] – Register for VW_IDX3_RX_DATA                                         |
| 0x84   | VW_IDX7_RX_DATA  | RO     | 0x0000_0000 | vw_idx7_rx_data[31:0] – Register for VW_IDX7_RX_DATA                                         |
| 0x88   | VW_IDX64_RX_DATA | RO     | 0x0000_0000 | vw_idx64_rx_data[31:0] – Register for VW_IDX64_RX_DATA                                       |



## Table 8.4. Interrupt Bit Fields for IRQ\_ENABLE1 and IRQ\_STATUS1

| Bit Index | Field Name                | Description                                                         |
|-----------|---------------------------|---------------------------------------------------------------------|
| 31        | IRQ_GET_FLASH_C_CMD_DONE  | Enable register to indicate get flash np command done               |
| 30        | IRQ_GET_FLASH_NP_CMD_DONE | Enable register to indicate FLASH NP Command done                   |
| 29        | IRQ_FLASH_C_RX_FIFO_URUN  | Enable register to indicate FLASH C RX FIFO Underrun detected       |
| 28        | IRQ_FLASH_C_RX_FIFO_ORUN  | Enable register to indicate FLASH C RX FIFO Overrun detected        |
| 27        | IRQ_PUT_FLASH_C_CMD_DONE  | Enable register to indicate PUT Flash C Command done                |
| 26        | IRQ_FLASH_NP_RX_FIFO_URUN | Enable register to indicate FLASH NP RX FIFO Underrun detected      |
| 25        | IRQ_FLASH_NP_RX_FIFO_ORUN | Enable register to indicate FLASH NP RX FIFO Overrun detected       |
| 24        | IRQ_PUT_FLASH_NP_CMD_DONE | Enable register to indicate PUT Flash NP command done               |
| 23        | IRQ_GET_VW_CMD_DONE       | Enable register to indicate get vw command done                     |
| 22        | IRQ_PUT_VW_CMD            | Enable register to indicate put vw command done                     |
| 21        | IRQ_OOB_TX_FIFO_URUN      | Enable register to indicate OOB TX FIFO Underrun detected           |
| 20        | IRQ_OOB_TX_FIFO_ORUN      | Enable register to indicate OOB TX FIFO Overrun detected            |
| 19        | IRQ_GET_OOB_CMD_DONE      | Enable register to indicate GET oob command done                    |
| 18        | IRQ_OOB_RX_FIFO_URUN      | Enable register to indicate OOB RX FIFO Underrun detected           |
| 17        | IRQ_OOB_RX_FIFO_ORUN      | Enable register to indicate OOB RX FIFO Overrun detected            |
| 16        | IRQ_PUT_OOB_CMD_DONE      | Enable register to indicate Bit for indicating put oob command done |
| 15        | IRQ_NP_TX_FIFO_URUN       | Enable register to indicate NP TX FIFO Underrun condition detected  |
| 14        | IRQ_NP_TX_FIFO_ORUN       | Enable register to indicate NP TX FIFO Overrun condition detected   |
| 13        | IRQ_GET_NP_CMD            | Enable register to indicate GET NP Command is received              |
| 12        | IRQ_PC_TX_FIFO_URUN       | Enable register to indicate PC TX FIFO Underrun condition detected  |
| 11        | IRQ_PC_TX_FIFO_ORUN       | Enable register to indicate PC TX FIFO Overrun condition detected   |
| 10        | IRQ_GET_PC_CMD            | Enable register to indicate GET PC Command is received              |
| 9         | IRQ_NP_RX_FIFO_URUN       | Enable register to indicate NP RX FIFO Underrun detected            |
| 8         | IRQ_NP_RX_FIFO_ORUN       | Enable register to indicate NP RX FIFO Overrun detected             |
| 7         | IRQ_PUT_MEMRD32_SHORT     | Enable register to indicate PUT MEMRD32 RD Short command received   |
| 6         | IRQ_PUT_IORD_SHORT        | Enable register to indicate PUT IO RD Short command received        |
| 5         | IRQ_PUT_IOWR_SHORT        | Enable register to indicate PUT IO WR Short command received        |
| 4         | IRQ_PUT_NP_CMD            | Enable register to indicate PUT NP Command is received              |
| 3         | IRQ_SHORT_MEMWR           | Enable register to indicate SHORT IO Command is received            |
| 2         | IRQ_PC_RX_FIFO_URUN       | Enable register to indicate PC RX FIFO Underrun interrupt           |
| 1         | IRQ_PC_RX_FIFO_ORUN       | Enable register to indicate PC RX FIFO Overrun interrupt            |
| 0         | IRQ_PUT_PC_CMD            | Enable register to indicate PUT PC Command is received              |

# Table 8.5. Interrupt Bit Fields for IRQ\_ENABLE2 and IRQ\_STATUS2

| Bit Index | Field Name                | Description                                                    |
|-----------|---------------------------|----------------------------------------------------------------|
| 31:5      | RESERVED                  | Reserved fields                                                |
| 4         | IRQ_ESPI_ERR_DET          | Enable register to indicate IRQ eSPI Error detection           |
| 3         | IRQ_FLASH_C_TX_FIFO_URUN  | Enable register to indicate FLASH C TX FIFO Underrun detected  |
| 2         | IRQ_FLASH_C_TX_FIFO_ORUN  | Enable register to indicate FLASH C TX FIFO Overrun detected   |
| 1         | IRQ_FLASH_NP_TX_FIFO_URUN | Enable register to indicate FLASH NP TX FIFO Underrun detected |
| 0         | IRQ_FLASH_NP_TX_FIFO_ORUN | Enable register to indicate FLASH NP TX FIFO Overrun detected  |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



# 9. GPIO

The GPIO provides a dedicated interface to configure each GPIO as either an input or an output. When configured as an input, it can detect the state of a GPIO by reading the state of the associated register. When configured as an output, it takes the value written into the associated register and controls the state of the controlled GPIO. The SoC Function Block provides two types of GPIO, see Table 9.1. The Memory Mapped GPIO are registered based and controlled by the CPU. The Virtual GPIO are controlled by the PLD logic, see Table 9.2.

The GPIO core consists of registers for reading and writing the GPIO channel. It also includes the necessary logic to identify an interrupt event, when the port input changes.

**Table 9.1. External GPIO Signal Descriptions** 

| Signal             | Direction | Description                                    |  |
|--------------------|-----------|------------------------------------------------|--|
| Memory Mapped GPIO |           |                                                |  |
| GPIO_MMxx          | Bidir     | 16 General Purpose Memory Mapped I/O           |  |
| Virtual GPIO       |           |                                                |  |
| GPIO_xx            | Bidir     | 24 General Purpose I/O controlled from the PLD |  |

**Table 9.2. PLD Interface Signal Descriptions** 

| Signal               | Direction | Description                                                                                                                                                                                                                                                                        |
|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gpio_input[23:0]     | Output    | Read data from GPIO                                                                                                                                                                                                                                                                |
| gpio_output[23:0]    | Input     | Write data to GPIO                                                                                                                                                                                                                                                                 |
| gpio_direction[23:0] | Input     | Set direction of the Virtual GPIO as input (0) or output (1)                                                                                                                                                                                                                       |
| ready_gpio           | Output    | When high, the Virtual I/O are ready to read gpio_direction and gpio_output inputs. When a change has occurred on the gpio_direction and gpio_output inputs, the ready_gpio signal goes low until the changes have been updated and returns to high when the changes are complete. |
| reset_n_gpio         | Input     | Active low reset  When asserted, the reset_n_gpio signal places the Virtual GPIO in reset condition (tri-stated inputs) and deasserts ready_gpio.                                                                                                                                  |

## 9.1. GPIO Features

The GPIO IP features are:

- Setting or clearing an output through a single register to allow parallel control of the outputs
- Setting or clearing an output by writing Set Data and Clear Data registers
- Output register reflects the output driven status
- Input register reflects the input status
- All inputs may be configured as an interrupt source with configurable edge or level detection

# 9.2. Register Description

Table 9.3 shows the summary of GPIO registers.

**Table 9.3. Register Address Map** 

| Offset | Register Name  | Access Type | Description                       |
|--------|----------------|-------------|-----------------------------------|
| 0x00   | RD_DATA_REG    | R           | Read Data Register                |
| 0x04   | WR_DATA_REG    | R/W         | Write Data Register               |
| 0x08   | SET_DATA_REG   | W           | Set Data Register                 |
| 0x0C   | CLEAR_DATA_REG | W           | Clear Data Register               |
| 0x10   | DIRECTION_REG  | R/W         | Direction Control Register        |
| 0x14   | INT_TYPE_REG   | R/W         | Interrupt Type Configure Register |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

75



| Offset | Register Name  | Access Type | Description                         |
|--------|----------------|-------------|-------------------------------------|
| 0x18   | INT_METHOD_REG | R/W         | Interrupt Method Configure Register |
| 0x1C   | INT_STATUS_REG | R/W         | Interrupt Status Register           |
| 0x20   | IN_ENABLE_REG  | R/W         | Interrupt Enable Register           |
| 0x24   | INT_SET_REG    | W           | Interrupt Set Register              |

## 9.2.1. Read Data Register (RD\_DATA\_REG)

Reading the Read Data Register returns the data from the input pins, see Table 9.4. Reset value is not observable because value is updated immediately after reset.

#### **Table 9.4. Read Data Register**

| Name    | Access | Width | Reset |
|---------|--------|-------|-------|
| rd_data | R      | 16    | NA    |

## 9.2.2. Write Data Register (WR\_DATA\_REG)

Writing in the Write Data Register changes the data of the output pins, see Table 9.5.

## **Table 9.5. Write Data Register**

| Name    | Access | Width | Reset |
|---------|--------|-------|-------|
| wr_data | R/W    | 16    | 0     |

# 9.2.3. Set Data Register (SET\_DATA\_REG)

If any bit of the Set Data Register is set to 1, the corresponding bit of wr\_data gets set to 1, see Table 9.6.

## Table 9.6. Set Data Register

| Name     | Access | Width | Reset |
|----------|--------|-------|-------|
| set_data | W      | 16    | 0     |

## 9.2.4. Clear Data Register (CLEAR DATA REG)

If any bit of the Clear Data Register is set to 1, the corresponding bit of wr\_data gets cleared set to 0, see Table 9.7.

#### **Table 9.7. Clear Data Register**

| Name       | Access | Width | Reset |
|------------|--------|-------|-------|
| clear_data | W      | 16    | 0     |

## 9.2.5. Direction Register (DIRECTION\_REG)

The Direction Register determines the direction of pins. If any bit of this register is set to 0, the corresponding pin is configured as an input, otherwise as an output, see Table 9.8.

### **Table 9.8. Direction Register**

| Name          | Access | Width | Reset |
|---------------|--------|-------|-------|
| direction_reg | R/W    | 16    | 0     |

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice FPGA-TN-02222-1.0

<sup>© 2020-2021</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice



## 9.2.6. Interrupt Type Register (INT\_TYPE\_REG)

The Interrupt Type Registers sets the type as edge (0) or level (1), see Table 9.9.

## **Table 9.9. Interrupt Type Register**

| Name     | Access | Width | Reset |
|----------|--------|-------|-------|
| int_type | R/W    | 16    | 0     |

## 9.2.7. Interrupt Method Register (INT\_METHOD\_REG)

The Interrupt Method Registers set the mode as rising (1) or falling (0) in for edge type interrupt or high (1) or low (0) for level type interrupt, see Table 9.10.

#### **Table 9.10. Interrupt Method Register**

| Name       | Access | Width | Reset |
|------------|--------|-------|-------|
| int_method | R/W    | 16    | 0     |

## 9.2.8. Interrupt Status Register (INT STATUS REG)

The Interrupt Status Register (see Table 9.11) shows the interrupt status for each input, regardless of whether it is enabled or not. If any bit of this register is set to 1 and the corresponding bit of INT\_ENABLE\_REG is set as well, interrupt happens on the corresponding input. In order to clear interrupt, you must write 1 to the corresponding bit.

#### **Table 9.11. Interrupt Status Register**

| Name       | Access | Width | Reset |
|------------|--------|-------|-------|
| int_status | R/W    | 16    | 0     |

## 9.2.9. Interrupt Enable Register (INT\_ENABLE\_REG)

In the Interrupt Enable Register (see Table 9.12), each bit that is set to 1 enables interrupt for the corresponding port when it is configured as an input.

## Table 9.12. Interrupt Enable Register

| Name       | Access | Width | Reset |
|------------|--------|-------|-------|
| int_enable | R/W    | 16    | 0     |

## 9.2.10. Interrupt Set Register (INT\_SET\_REG)

In the Interrupt Set Register (see Table 9.13), you can generate interrupt by writing 1 to the corresponding bit of this register. This also sets the corresponding bit of the int\_status register to 1.

## Table 9.13. Interrupt Set Register

| Name    | Access | Width | Reset |
|---------|--------|-------|-------|
| int_set | W      | 16    | 0     |

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



# 9.3. Programming Flow

#### 9.3.1. Initialization

Initial values for all registers come from the user interface. To change default configuration, the following GPIO registers should be set properly before performing Read or Write operation:

- Direction Register
- Interrupt Type Register
- Interrupt Method Register
- Interrupt Enable Register

In case any of the interrupts are enabled, these must first be cleared by writing 1s to the corresponding bits of the Interrupt Status Register.

## 9.3.2. Data Transfer (Transmit/Receive Operation)

Assuming that the module is not currently performing any operation, below are recommended steps for performing a GPIO transaction.

- To read from inputs, read the Read Data Register.
- To write to outputs, write to the Write Data Register.

If an interrupt occurs and you want to clear that interrupt, write 1s to corresponding bits of the Interrupt Status Register.



# 10. Secure Enclave

For information on the Secure Enclave, please contact your local sales representative.



# **References**

For more information, refer to the following documents:

- Lattice Propel 1.0 User Guide
- Lattice Diamond Software 3.11 User Guide



# **Technical Support Assistance**

Submit a technical support case through www.latticesemi.com/techsupport.



# **Revision History**

## Revision 1.0, October 2021

| Section | Change Summary      |
|---------|---------------------|
| All     | Production release. |

## **Revision 0.82, June 2021**

| Section                       | Change Summary                                                                                                                                                                                                                                                                                                             |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SoC Function Block Memory Map | In Table 1.1, changed PFR Base Address to 00080800 for RESERVED Block, and PFR End Address to 000807FF for CPU PIC TIMER Block.                                                                                                                                                                                            |  |
| CPU Subsystem                 | In Table 2.3, changed the last Offset to 0x414, TIMER_CMP_H.                                                                                                                                                                                                                                                               |  |
| QSPI Monitor                  | <ul> <li>In the overview description, changed the QSPI monitor definition to an SPI access and command monitoring module.</li> <li>In Table 4.4:         <ul> <li>changed Register Name to SPACE2_END_ADDR for 0xN68 Offset;</li> <li>changed Register Name to SPACE3_FILTER_CTRL for 0xN80 Offset.</li> </ul> </li> </ul> |  |
| QSPI Master Streamer          | Modified the description regarding initiating the SPI transactions In the Transaction Phases section.                                                                                                                                                                                                                      |  |
| I <sup>2</sup> C Monitor      | Changed the I <sup>2</sup> C monitor definition to an I <sup>2</sup> C access and command module in the introduction.                                                                                                                                                                                                      |  |

## Revision 0.81, February 2021

| Section                   | Change Summary                                                      |  |
|---------------------------|---------------------------------------------------------------------|--|
| All                       | Changed document title to Mach-NX SFB Hardware Usage Guide.         |  |
|                           | Updated document to change all SoC reference to SoC Function Block. |  |
| Acronyms in This Document | Updated content.                                                    |  |

## Revision 0.80, December 2020

| Section | Change Summary       |
|---------|----------------------|
| All     | Preliminary release. |



www.latticesemi.com