s LATTICE

Mach-NX SFB Hardware Usage Guide

Technical Note

FPGA-TN-02222-1.0

October 2021

Mach-NX SFB Hardware Usage Guide .':LATT’CE

Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice
products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a
situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-TN-02222-1.0

http://www.latticesemi.com/legal

= LATTICE

Contents
ACTONYMS N THiS DOCUMENTiiiiiciiiiecieee ettt e e ettt e e ettt e e e sttt e e e s treeessasseeessaeeeassteeeaasssaeesssaeeeanssseesanseaeesssaneeanseeesanssnsesnssnens 8
REGISTEr ACCESS DEFINITIONSeiiiieiieeee ettt s e e s bt e st e e sa bt e sab e e sa b e e sas e e sa bt e sabeesabeesaseesabeesaneesabeesnneesane 9
1. SOC FUNCLION BIOCK OVEIVIEWeeiiiieiiiieeiiee ettt ettt ettt ettt e sttt e e st e e e s b be e e s abteessabbeeesnbaeessanbeessnsaeesnsbeeesnnnes 10
1.1. [20eTo) o B I VT SR PPPTROPPUPTPPRRRRIRt 10
1.2. SOC FUNCEION BIOCK DIGEIAM ..ueiiiiiiieeeiiie e ettt e ettt e et e e e e tte e e e tt e e e eeabbaeestaeaeestaeeeassseeeesbaaeesstasasansraeesssnens 11
1.3. SOC FUNCLION BIOCK IMEMOIY IMMAP c.eiiiiiiiieeeiiee ettt ettt e et e ettt e e e et e e eetbe e e stbee e e abaeeeenssaeeensbaaeesataeasansseeesssnens 12
N O o U B U1 o3V =T o IS 13
2.1. OVEBIVIBW ..ttt eeiitee e ettt e ettt e e sttt e e s ube e e s auetee e sabaeeeenb e e e s aseeeesasseee s s beee s asbeeesaseeeeeasbeee s nsbeeesanbeeesanbeeesannseeenannnens 13
2.2. 1Yo Yo [T LT B LYo T o] d o [PPSRt 14
2.2. 1. RISC-V PrOCESSON COMEuuiiiiiiiiiiiiieteeet ettt e et e e s r e e e s e s ae et et e s e s bt et et e s s se bt aeeeeessesnnraneeeeess 14
2.2.1.1. LN =T o VT o PPN 14
2.2.1.2. [CoL=Y o { o] o PPN 14
2.2.1.3. [DL=] o1V = PR USURR PP 14
2.2.1.4. (@fo] A oY =T a o I = L I =T =] T PSSRt 14
2.2.2. SUDMOAUIE (PIC/TIME) cuviitiieitieeetee ettt ettt eette et e eeteeetee e taeebeeebaeebaeebaesabesesaesabeesnsaeeasasenseesnsasensaesnsessseennns 15
2.2.2.1.] [P PO PP PP OPRROPPTOPPRPI 15
2.2.2.2. LI L84 1= P PP PP PRSPPI 17
YLy (=T o 1Y/ [T o 4T YR T OO PP PRTPPPI 18
3.1. OVEIVIBW ..eeetetteee ettt et e ettt e e e e e st b bt e et e e e e a bbbt e e e e e e aaaas b e eeeeeeeaaaasb e e e eeeeaennbeeeeeeeees nnbenteeeeaesannnnbaeeeesesannsnnaen 18
3.2 2T LU =TSSP PP PP PPPPPUPTNN 18
3.3. BIOCK DIABIAIM .. .ctiieiiiie ettt ettt e e ettt e e e e te e e e etae e e eabaeeeeabaeeeesssseeeaasaaaeasbasaaanssseessssaaastaseeanssaeesssaaeansteeesanses 18
Figure 3.1. System Memory BIOCK Diagramcc.uuiiiuiiieiiiiieeeiee e eetee e seee e et e e s eea e e e staeesesstaeeesnsaeessnnseeesssseeesnnnns 18
3.3.1. AHB-Lite Interface
33,2, FIFO INTOITACE ettt ettt ettt s a e st be e bt s bt e s bt e e bt e st e e s bt e e b e e e be e e beeebeesabeeeneenane
3.3.3. System Memory Timing INfOrmMationcoceeiiiiiiiiiie ettt e e 18
N © 1Y o 1Y o] o1 (o TSP PP TP UPPPRNN
4.1. OVEIVIBW ..eeeeteee e ettt e e e e ettt e e e e e et ta et e e e e e e s aube et e et e e e aaans b et e e e e e e e ans b e e e eeeeaeaannbeeeeaeeeesnnbeneeeeeeeaannbnneeeeeeeaannnnnann
4.2. FOATUIES ittt ettt ettt e e e e ettt et e e e e e s b be et e e e e e e e aan b et et e e e aaanbbteeeeeeaeannteeeeeeeaeannteeeeeeeaaaans
4.3. (211 Yol QDI F=Y = =1 o KPPt
4.4, YT o = I D =T ol o] 4 o] o USSR

4.5. QSPI Command List
4.6. Register Description

4.7. Initialization ComMmMaNd FIlLEIINGcoouiiiiei ittt st et sabeesae e e sabeesaee e 26
4.8. AAArESS FIEEIINE oottt e et e et e e e et e e e eette e e e aaaeeesbaeeaesbeeeeaasaeeeesseaaassasesessseaesssseaensseeeeannes 26
4.9. (0o Y0 0] o g Y aTo I DT ISF: 1 o] 1 TP 27
4.9, 24/32-Bit ADAIESSING....ccveeirieerieiitieeiteeciteeeite e st eeiteesbeesteesbeeebeesabeaesseesabeessseessraessseessseeasseesareessseesaseensseens 28
900 (O N VT o T Yolo 4 a1 d=To M@l aaTa g T Y oo I a1 1 =T o1 o ¥ - PSS 28
I O T 011 T= Y=Y [0 =] o ol PP PPPPPPSRPRY 29
7 0 S V1 1= ==Y o =T T I =] o ol 14 o= SRS 29
4.11.2. lllegal Erase Command Breaking (3-Byte AArESS)coveerirriiiiiinieniienieeie ettt sttt e s 29
4.11.3. lllegal Program Command Breaking (3-Byte Address, lllegal Start Address)cccoveeveeniineniieneeneeniennene 30
4.11.4. lllegal Read Command Breaking (3-Byte Address, lllegal Start Address)ccceccueeeeeiieeeeciee e 30
4.11.5. lllegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)ccccceeevciieeeiiieeenns 31
4.11.6. lllegal 4-Byte ComMMaNd BrEakingcceccuiiiiiiiiie e e ettt e stte e e e rre e e e eate e e s taeeeeataeesessaeeesasaeeeenssaeesnnens 32
4,12, MUX/DEMUX FUNCEIONAIITY....ecovieireeiieiecee ittt et ettt eteeteebeebeeaaesaeesbeesbeeseenseenseesseeseebeenbeensesssesasesaeenns 32
0 . TR 1 oY =T =Y IR}V ol o1 - PSS 32
T O N o B 1V o =] N A =T 4[] OO PP PPPUPPPPRRRPIRt 34
5.1. [LU =TSP PR PO TP PRPRPRPRPRPRPION 34
5.2. 21 Lo Yol QB =Y ={ = 1 o USSP UUPTN 34
5.3. FIFO CONTIGUIATION c...etiiiieeiee ettt e e et e e et e e e ettt e e eetbeeeeeaaaeeeeabeeeeesseeesasssaeeantasaeansteeeessaaeeasteeasannes 35
5.4. =T oA T =T gl D= T ol 4 o1 Ao] o SO RPPRPRPRN 35
5.5. SECUIe ENCIaVve FIFO INTEITACEuiitii ittt ettt et ettt et sb e s bt e s bt e e bb e e be e s sbaeesbeesnbteeneas 38

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6. (@] o<1 4 o TP PSP 38
LTS T0 =Y 17 Vot o T 2 o F= TSRS 38
5.6.2. WiIdth CONVEISION ...uiiiiiiiieieiiit ettt ettt et e e tee e e sttt e e st e e e e eatae e e s baeeeesteee s nseaeesnsaeeeansseeesnssteeessseeeansseeennnes 40
5.6.3. FIFO EMPLY/FUI BERAVIOT ...c.uviietiiiitieceiee ettt ettt e eteeeetee e etaeeetee e etaeeeteeestaeeetesessaeensesensseensesesseeensesenseeensees 40

5.6.4. Typical FIash REAA/PrOZram FIOWccoviiiiiieieiiiieeeteeeetee et e eeteeeeteeesteeeeteeestveesteeesabeeesesessseessseesareessseessseenseeees 41
[2C IMIONIEOL <.vviiieeieteteieete et et ete et et ete et et eteebeseete et essete et essesessasseseebaaseseebaaseseebeasessebe s essebe b enseba b ensebabenseseabenseseabenseseatensns 42

6.1. 2T LU =TT P PP PPTP RPN 42

6.2. 21 Tol QDI F=Y = =1 o o SRS 42

6.3. YT o F= I DT ol o] 4 o] o USSR 43

6.4. T R (=] gl DI=TYol] o] A o] o ST PPRP RSP 43

6.5. Voo 1] F=l D T=E Yol e d Lo o FS SR 46
TR TS R 1y 01 |] O STPR 46
T 1 @1 |] 7 ORI 46
B.5.3. 12CBF_LOGIC..cuutiiitiieiiieiiieeiiteesiteestteesteeestteesteeesbaeesbaeesseeesaeeesseeebaeesseensae e saeenbeeesaeenbeeebee e bee e baeenbaeenaeeerae s 46
B.5.4. 12CBF_DRVA. ...ttt ettt ettt ettt e s e e ste e e b ae e be e s bt e e bt e e a bt e e b et e b te e b et e bt e e b ee e bbe e b et e bae e beeebaeebaeeateebae s 47

6.6. (o= {1 a0 a1 1Y o1 USSP 47
6.6.1. Example Data Alignment for Check Mode 1 and MOdE 2uuiviiiiieeeiiiie e e s e e saee e e 47
6.6.2. Example Data Alignment for Check Mode 3 and MOE 4ueviiiiieieiiiee e ctee e e e saee e saee e e 48
[2C/SIMIBUS SIAVE ...ttt ettt ettt ettt e at et et e st et e et e sae e st e st ese et e stesae st e eaeeseene et et e seeebeeneessente s estesessbeereeneensententees 49

7.1. OVBIVIBW ittt ettt et e ettt et e e ettt e e e e e e e s e tb et eeeee e s s ab bt eeeeeesaaas bt aeeeeeseauanbeaeeeeeeaaassbaneeeeeeesanssnnaeaeeaaan 49

7.2. F AU S . ..ttt e e e ettt e e e e e bbbt e e e e e e e e b be e e e e e e e e e b hanteeeeeeaanbe et e e e e e e aannrreeeeeeeaannnreeeeas 49

7.3. YT o F= I D=t ol g o] 4 o] o TSP 49

7.4. 0T R = gl D I=TYol] o 4 o] o PSPPI 50
S T O 1V T oV T TP PSP PRSPPSO PRPRRN 50
7.4.2. Write Data Register (WR_DATA _REG).....ccceccuieiieeeieieireestreesteesteeestteesseeessaeessesesssessesesssesnsssesssssnsesesssesnsnes 50
7.4.3. Read Data Register (RD_DATA_REG)....c.iiutiieitieieiieeie ettt ettt et sttt ettt et satesbtesbeenbeeabeeabesaeesaeas 50
7.4.4. Slave Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)ccceertireiniiiiinieniieneeieeie e 51
7.4.5. Control Register (CONTROL_REG)cccuuiiieiiiieeiiiee ettt e eecite e e ettt e e staeeeestbeeeeetaeeesbaeaeessbeeesessaeaessseaaensteeenanns 51
7.4.6. Target Byte Count Register (TGT_BYTE_CNT _REG)cciiiiiiiiiiiiieeciieeeeciteeeeeteeeeetreeeeeate e e eeaaee e etaeeeenaveeeenns 52
7.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG).....ccceeeciveeiiiieeeeiieeeeeiree e eireeeesivee e 52
7.4.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)cceeeeuieiiiiiieeeeieeecciiee e cireeeeree e 54
7.4.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG).....ccccceeurerrrerrreerreentreesteesreeestneesseeeseneenseeessnessnees 56
7.4.10. FIFO Status Register (FIFO_STATUS_REG) ..cc.ciiiirierieeierienitenieesteeteetesitesaeesaeesaeesaesntesaeesseasseenseensesasesnsesaees 58

7.5. OPEIAtIONS DELAIISueeiieieiite ittt et s et e sa e st e s bt e st e e sh bt e at e e shbeeeat e e sareesneeesareennnee e 59
0 T P Y=Y U= = | O @ Y=Y = o TR 59
=T N €1 11 ol o I 1 =T oS POPR 59
2 T T O o Yol] =1 e o 11 V-SSR SSPSRN 60
7.5.4. ACK/NACK RESPONSE ...oeeveieireeeteeeiteestteeiteesteeestaeesteeessseeaseeestaeeasssessssessssesssseasssesssssasesessssensesessssensesesssesssess 60

7.6. (oo == 1 0T 0 ¥ =40 o1 SR 60
N 7% T 10 11 4 =1 [-1 o o H P TP PP P P OPPTOPPPI 60
7.6.2. Data Transfer in response to I2C MaSter REAAccccveueeeveviiiieeiieretesesietee ettt ss et s et sseseaneaas 60
7.6.3. Data Transfer in response t0 12C IMASter WLcoveueieeieiieieiiiteceeeieteeesee st st etesesstesresreeneesseseeseeas 61

7.7. SIMIBUS SIaVE SUP PO .. eieiiitieeeeiiie e et e e ettt e eeett e e e ettt e e e s beeeeetaeeeeeasaeeesabaeaaestsseeassseaessssaaastasasansssaessssaaeassanesanes 62
7.7.1. SMBUS CoNtrol and STatus REGISTEIuiiecciieieciiiee e ciee ettt e s tte e e e rtte e e e ta e e e s treeeestteeesessaeeesnsaeeeasteeennnes 62
B TR O o T=T =Y Lo T T B 1= 7 11 PR SSPSRN 62

7.7.2.1.)LV LT @ o =T - [o I 62
ESPI SIAVE ..ttt h et e h et bt e b e e e bt e be e e bt e e bt e e b e e e hee e he e e bae e be e e hee e be e e beeebaeeaeeebae s 63

8.1. F AU S e 63

8.2. 2] [oTol QDY = - T o O T T TP PP P TP PTOPROUPTOPRO 63
S0 61 SRR 63
< B VA T AU F- | IV T O PP PP T TUPPRRUPPPRRRIN 63
8.2.3. ESPISIAVE FSIM..uiiiiiiiiie ettt ettt ettt et ettt et et e bt s bt e e b et e h e e e b et e b et e b et e b beebe e e bee e bee e baeebaeetaeebaeen 63

8.3. YT 0 F= I =T ol o] 4 o] o TSR 64

8.4. CRANNEL FIFOS...cttiiieeiieeete ettt ettt ettt et sat e e s te e s at e e s ateesate e sabeesateesabeesabeessbeasabeessbeenseeesabeennseesasaansseenns 64

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8.5. =T R (= gl D T=TYol] o [o PP PUPRN 64

9 [2L N 74
9.1. (O[O =T | (U <P PP PPPPPTTRRRPRE 74
9.2. =T oA T =T gl DT ol o) [o PN 74
9.2.1. Read Data Register (RD_DATA REG)....ccccieiueeirireitieeiieeesteesiesestteestesssseessesessaessesssseesssessnsessssessssessssesssseennne 75
9.2.2. Write Data Register (WR_DATA REG).......cciiiiiieeiiieeeeiiiee e eiteeeeetteeeeeite e e eetteeeesataeeeesteeessssaasantaeeeasreeesssneas 75
9.2.3. Set Data Register (SET_DATA _REG) ..oeeiciiii ittt eeitee ettt e e ettt e e eette e e eateeeesabaeeeebteeeenssseesntaeeeesreeesnsneas 75
9.2.4. Clear Data Register (CLEAR_DATA_REG)cccouiieiiiiieeeiiee e citee e e st e e eette e e stae e e e sataeesessae e snnaaeessntaeeennnsesesnnneas 75
9.2.5. Direction Register (DIRECTION_REG)c.uttiiiuuieeiiiieeeeiieeeciteeeesiteeesesteeesassesesstaeesessesessssseessssesssanssesesnssens 75
9.2.6. Interrupt Type Register (INT_TYPE_REG)cccuieiieeiieeieeeieeesteeesteeesteesteeesaeesteessaeensaessaeensassnsaesnsessnseennns 76
9.2.7. Interrupt Method Register (INT_METHOD_REG)ccccciuieiuiieiieeitieciteeeiteeesteeeteesreeeteeessaesnbeessaesnsessnnnennns 76
9.2.8. Interrupt Status Register (INT_STATUS_REG)coocttririierienieniesiee st ettt et e b e besatesatesbeesaeenaeeeesaeenne 76
9.2.9. Interrupt Enable Register (INT_ENABLE_REG)c.uceiiiiuiiiiiiiiee et e ceitee e eitee e e st e e eette e e eaaaeessataeeeennaeeeennneas 76
9.2.10. Interrupt Set Register (INT_SET _REG)ciiiiiiieeiiieeeeiiee e eitee e ettt eeeeite e e eeateeeesateeeeesteeeenasseesentaeeeansreeesnsneas 76

9.3. PrOZIramIMING FIOWuviiiiiiie ettt et e et e e e tte e e et e e e e easte e e saseeeestaeeeanseaeesnsseaeasstaeeeanssesesnssaaesssseeennnens 77
TR 20 B 1011 4 =11 21 o o F OO OO PO PORUPRPPRRTPPROE 77
9.3.2. Data Transfer (Transmit/ReCeivVe OPEIation)ccueceeireeireiieeieeieesteenteeireeresteesteesteeteesesssesseesseesseesseensens 77

10, SECUIE ENCIAVE .. .tiiieieeitie ettt sttt st s bt e st e e s a bt e s bt e sa b e e sabeesab e e saseesabeeeaseesabeesabeesabeesabeesabeesaneesabeesneenane 78
[0=Y =] =T o 1ol TSP UP RPN 79
TeChNiCal SUPPOIT ASSISTANCE . .eeiiuiiiiiieetee ettt ettt e s bt e b e sttt s bt e s bt e s bt e st e e e bt e sabeeeabeesabeeenbeesabeesneenane 80
REVISION HiSTOIY ciiiiiiiiiiiici et e e e e e e e e e e eaeeeaeaaaaaens 81

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1. Mach-NX SOC FUNCtiON BIOCK DI@BIramccueeiiiiiieieiiie e ceiiee e stee e et ee e e tre e s tae e e enta e e esaeee e e snneeeeesntaeeeenneeeesnnenes 11
Figure 2.1. RISC-V IMC CPU DI ...cceiouiieiiiriieiiiiee e sttt ettt e s et e s st e e s ssneee s e st e e smeaeessasaeesenreeesanneeessanaeeeeanreeesannneeesannnes 13
Figure 3.1. System Memory BlOCK DIagram.......cuc it e e e ettt e e e e e ettt e e e e e e eestbta e e e e e e sesanstaeeeaaeeesnstanseaeeeenansres 18
Figure 4.1. QSPI MoONitor BIOCK DI@ZIamcoiueiiuiiiiieeiieeiieeeite e sttt sit e st e sit e st e st e st e e st e e eabeesabeesabeesabeesaseesabeeenseesares 20
Figure 4.2. ONne [1egal COMMEANG.oiiiiiiieiiiiie ettt ettt e e ettt e e e ettt e e e s tb e e e et teeeeeabaeeesabasaeastasesansssseassasaaasteeeeanssneesssees 29
Figure 4.3. lllegal Erase COMMEAN........ccciuiiiiiiiieeeiiiee e eeiee e e ettt e e ettt e e eeateeeestaeaeessteeeeessassessaseeaastaseeansssseassseaeastaeeeanssasesssees 30
Figure 4.4. lllegal Program Command (3-Byte Address, Illegal Start Address)c.cccvvevcieeeeiiieeeeiiie e 30
Figure 4.5. lllegal Read Command (3-Byte Address, lllegal Start Address)......cccuveeecceeeicieee e e 31
Figure 4.6. lllegal Read Command (3-Byte Address, Incremental Address OVerflow).........ccocveeceercieeeieeccieeccee e 31
Figure 4.7. lllegal 4-Byte CommMaNnd Breakingcuei ittt e et e s e e et e e e st e e e saae e e e snteeeeennaeeesnneeas 32
Figure 4.8. QSPI INtErNAl SWItCReiiiiiiiiee ettt sa e st e st e et e e sab e sabe e st e e sabeesabeesbeesares 33
Figure 5.1. QSPI Master Streamer BIOCK DI@gIamccuuiiiiuiieieiiie e ceiiee e ceee et e et e e e etae e e e abe e e eeatbeeesabaeeesabaeeeenseeeesnnses 34
Figure 5.2. QSPI Master Streamer Programmable PRasEs........ccccuiiiiiiiieiiiiiie e et e ettt e e sttee e et e e eeare e e sataeeesabaeeeesaeeeenneeas 38
Figure 5.3. EXample fOr PP Program SEOQUENCE.........ciiicveeeeiiieeeeitteeeeetteeestteeeessteeessssesesssseasasssasesassesessssesessssseesssssesesnnsees 39
Figure 5.4. EXample fOr FAST_READ SEOUENCEueiiiceeeeeiiieeeeitteeeeeereeestteeeassreeesssseeesssssaeasssasesassesessssessssssssesasssesesnnsees 40
Figure 5.5. EXample fOr RDID SEQUENCEccciuiiieieiieieectteeeiiteeeestteeeseatteeesstaeeessteeesessaeeesssaeeeanstaeesanssesessseeeessseeesnssnsssnssees 40
Figure 5.6. EXample fOr QREADAB SEQUENCEcccccuiii i ittt eiiteeeectee e eetteeesteeeeessteeeesseeeesssaeeeasstaeesassesesnsseeeessseneessssesesnssees 40
Figure 5.7. Typical Flash REad/Program FIOWccc.eieririririnieieteie sttt sttt ettt te st st seeestesae e e besaesbesseeseensensenseseens 41
Figure 6.1. 12C MONItOr BIOCK DIGIam......c.cueirieveeirieteresieteeiseteseeesesessetesestesessssesesessesesessesesessesasesesesessesasesesesessasesssseseseses 42
Figure 6.2. Check Mode 1 and Mode 2 Data AlIZNMENT..........coieiiiiiiiiiie ettt e et e e e et e e e et e e e e aba e e eetaeeeenneeas 47
Figure 6.3. Check Mode 3 and Mode 4 Data AlIZNMENT..........oeieiiiiiiciiee et e e e e et e e e et e e e s abeeeesateeeeesaeeeennseas 48
Figure 7.1. START @nd STOP CONAItIONS....uuiiiiiiieieiiiieicieee e sttt e e ettt e e seereeestaeeeetreeesesseeesasseeeassaeesansseeesssaeeesssaneeassesesnsees 59
Figure 7.2. SMBuUs 7-Bit Addressable DEVICE RESPONSEcciuiieieiiiieeciteeeiiteeeesiteeeeereeesraeeeessteeesssteeessseeeessseeesnseesesnnsees 62
Figure 8.1. @SPI SIaVe BIOCK DIGBIamuueiiiieiiieeeiieeecite e e sttee s ettt e e eette e e satae e e e s teeeesnaaeeesssaeeeassteeesanseeeeansseeeensseeeennsensesssees 63

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Tables

Table 1.1. SOC FUNCtiON BIOCK IMEMOIY IMAPuiiiiiiiieecciieeeetiee e ette e et e e e et e e e staae e e s teeeeansaeeesnaeeaessaeesansseeesnnaneesnsseeennnnns 12
Table 2.1. RISC-V Processor Core Control and Status REGISTENSc..eiiiuiiiiiiiiieiii ettt 14
LI] o] LI o (O =T = {1 =T USSR 15
Table 2.3, TIMEI REGISTEIS ...ttt ettt sttt e s bt e s bt e s bt e e bt e s bt e s bt e sabeeeabeesabeesabeesabeeeabeesabeesneenane 17
Table 4.1. QSPI MoNItor SigNal DESCIIPTION ...cccviii ettt ettt et ctt e e et e e e etee e e st e e e eebbeeeeabeeeesstaeeeensseeesssneeeasteeenanses 21
Table 4.2. QSPI CoOMMAND LISt TADIE c..viiiiiiiiieciet ettt sttt e st e st e e s be e s beesabe e ebeesabeesbeesabeesnseesaseesseennns 21
Table 4.3. QSPI Monitor Address Space Mapping for @ach IMONIOrcocuiiiiieriiiiieeee e s 23
Table 4.4. QSPI MONITOr COME REGISTEIS....uuiiiuieiiiiiiieetieette st esrite sttt e s be e s teesbe e sbeesbe e sbeesabeesbaesabeessaesabaesaseesabeesnseesane 23
Table 4.5. QSPI Monitor Command Disable RegiSter FIEldSccuiiiiiiiiiieiii ettt see e e e e s e e e e e e 27
Table 5.1. QSPI Streamer FIFO CONfigUIatioNcccuiiiiiiieeeciee et e sttt e e ettt e e saaee e e s e e s saee e e saaeeeesstaeeesnnneeesnsanesesnseeenannns 35
Table 5.2. QSPI Master Streamer 1P Core REGISTEIS.uiiiiiiiiieieeiee ettt ettt e st sbee s e s beesareesneenane 35
Table 6.1. 12C MONItOr SiGNal DESCIIPLIONveuveevieicieite ettt ettt et et e et e stesteere e st esae st et estssbeereenssnseseteseestesreeneanes 43
Table 6.2, 12C MIONItOr COIe REGISTEIS......icviiviieieeeeeiete ittt ete et et e st eeteste st e eteeseesa et s tesassteeseeseesee st eabesbssteereeneenseseteseestesreeneanes 43
Table 6.3. CheCK MOTE TabI......oiiiiiiiieeiee et sttt e st e st e e s be e sbeesabeesabaesabeessaesabeesabaesabeesneesans 45
Table 6.4. Data ENtry FOMMAt. .o ittt e e e e e st e e e e tt e e e s aaaee e steeeeansaeeesansaeeessaeesansseeesnsanesenstseenansns 46
Table 7.1. 12C Slave IP Core SigNal DESCIIPLIONc.ccveivicvieeieeeereeteete ettt et et eeteeteeteeteeteeaeeseesesseesesseeteesseneensenseesesseereeseensenes 49
Table 7.2. 12C Slave Registers AQArESS VAPcoveevieveevecreeeeeeeereeteetecteeteeteeeeesesteeseeteeteeseessensesseesessseseessensensessessesssereeseensenes 50
Table 7.3. WIHEE Data REGISTON .. .ci ittt ettt st e bt e s bt e s bt e st e e s bt e sabe e s bt e sabeesabeesabeesneenane 50
Table 7.4. REAd Data REGISTOIci ittt ettt ettt e b e e bt s b e s bt e bt e st e e e bt e sabe e s bt e sabeesabeesabeesneenane 50
Table 7.5. SIave AdAress LOWET REEISTEIccccciiiieiiie et e ettt e ettt e e e sttt e e e e tte e e e etaaeeesabeeeeesbaseessssaeeastaseeanssessssssaeeasteeenanses 51
Table 7.6. Slave Address HIGher REEISTENcccuvii ittt ettt e e ettt e e e ettee e e s te e e eebaeeesabeaeessbaeeeensseeesnsaneeeasteeennnses 51
LI Lo [2 AR o T 14 o I =Y =4 1] = USSR 51
Table 7.8. Target Byte COUNT REGISTEI ...iiiiiiie i ettt e ettt e e st e e etaee e e s te e e e eabeeeesaaeaeessseeesansneeessanesensseeennnnes 52
Table 7.9. INterrupt STAtUS FirSt REEISTEIuii i ciii ettt e e e stee e e st e e e ebt e e e saaeeeessteeessnseeeesnsanasennseeenannns 53
Table 7.10. Interrupt Status SECONT REGISTENccoiuiiiiiiiiieiie ettt sttt e st e s b e sab e sbeesareesneenane 54
Table 7.11. Interrupt ENable First REGISTEIcciuiiiiieiiie ittt sttt s e s b e s e s b e sareeeneesane 54
Table 7.12. Interrupt ENable SECONA REGISTENcccuuiieeiiee ettt ette e e e ettee e e ettt e e e e bt e e e eabeeeesabeeeeesseeeesseeeeasteeeeannes 56
Table 7.13. INtErrUPt SET FIrsSt REGISTEI ... iiii ettt ettt e et e e e et e e e e bt e e e e etaaeeestbeeeeesbeeeeaseaaeasbaeeeesseseessaaeeasteeasannes 56
Table 7.14. INterrupt SET SECONT REGISTENccccviii ettt et e et e e e rte e e e et ee e e s tte e e e etaeeesabaeeestaeesanssaeessseaeessteeenansns 57
Table 7.15. FIFO STatUS REEISTEviiiciiieiiiieeeeitee e ettt e rtee e e ettt e e ette e e e tteeeeetteeesaasaeeesstaeeeasssasesssaseastasesasssesessseaesssteeennnsns 58
Table 7.16. SMBUS ReiStEr AAAIESS IMIAPcecccuieieiieeeeiiieeeeittee e eeete e e st e e e e tte e e s eaaeeeessteeesasseeeesnseeeesssaeesansseeessaneeensseeesnnnns 62
Table 7.17. SMB Control and STatus REGISTEIciiiuiiiiiiiiieeiee ettt ettt st e b e e st esnee st e s bt e sabeesneesane 62
Table 8.1. eSPI Slave External Signal DeSCIIPLIONceivii ittt st b e st s nee st esneesareesneesane 64
Table 8.2. ChanNel FIFO Size TabIEccuiiiiiii ettt ettt st e et e et e st eeebe e s aeesabeeebeesabeeensaesnbeesnseesnbesenseesnns 64
Table 8.3. SUMMary Of @SPI SIAVE REGISTEISviiiiiiee ettt ettt ett e e e et e e e et ee e e e beeeeetteeeeeaseaeesabaeeeesseeessseaasasteeeeannes 64
Table 8.4. Interrupt Bit Fields for IRQ_ENABLEL and IRQ_STATUSLuiiiiiiiiiieiiieiiiiesiee e sreeenreesbeessaeesbeesneesareesnnnesane 73
Table 8.5. Interrupt Bit Fields for IRQ_ENABLE2 and IRQ_STATUSZciiiiiiiiieiiieeiiiesiieeenreesieesnseesbeessseessbessseesasessnneesane 73
Table 9.1. External GPIO Signal DESCIiPTIONS.uiiicieeeiiiieeeeitee e eeee e e st e e e ette e e e saaee e e s teeeeaseeeesnseeeessseeesasreeessseesessseeenannns 74
Table 9.2. PLD Interface Signal DESCIIPLIONSciiicuiieeiiieeeeiiee e eeite e e stte e s etee e e s staeeeessteeeessseeeesnaeeeesssaeesasssesessseessssseeenannns 74
Table 9.3. REGIStEr ACArESS IMIAPeiiiieiiieiiie ettt ettt ettt st e st e st e s bt e st e e s bt e s bt e sabeesabeesabeesaneesabeesaneesabeesneesane 74
Table 9.4. REAA Data REGISTOIci ittt ettt st e st e sttt e bt e s bt e s bt e sabeesabeesabeesseesabeesaseesabeesneenane 75
Table 9.5. WIte Data REGISTON.......oiiceiiee ittt ettt ettt e ettt e e e ettt e e e etteeeeetaaeeeaabeeeeeasaeeeesssaaeasbasesanssseessseeeeasteeenannes 75
LI Lo [Y) = T A=Y d 1 =T oS USPPRSOE 75
Table 9.7. Clear Data REEISTEN......uviiiicieeecciiee et e ettt e et e e e et e e e e ette e e e s teeeestteeeeassaeeesstaeeaassaasesssaeeassasesasssaeessseaeessteeennnsns 75
LI Lo][IR =Tt o] o TN 2= =4] Y S SRPRRNE 75
Table 9.9. INtEITUPT TYPE REEISTEI ..cceeeieeiiiiee ettt e et e et e e e sttt e e e st e e e s enaae e e s teeesansseeesnaeeeassaeesansseeesnsaneeesnseeenannns 76
Table 9.10. INterrupt METNOT REGISTEIciiiieiiii ittt ettt e st e s bt e st e e s bt e sabeesbeesabeesneenane 76
Table 9.11. INTerrupt STAtUS REGISTEIcciiiiiiieeie ettt ettt e b e s bt s rb e st e e s be e st e e sseesabeesbeesabeesneesane 76
Table 9.12. INterrUPt ENADIE REEISTOIueiiiii ittt e ettt e e e e e e et et e e e e e e e seaaataeeeeeseesnstaaeeaeeeesanntanseaaens 76
BRI T o] Ll T T o A=Y 0T o ATy Al 2 U=T 4) A= USRI 76

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Acronyms in This Document

A list of acronyms used in this document.

= LATTICE

Acronym Definition

AES Advanced Encryption Standard

AHB Advanced High Performance

APB Advanced Peripheral Bus

CPU Central Processing Unit

CSR Control and Status Registers

EAR Extended Address Register

ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
eSPI Enhanced Serial Peripheral Interface
FIFO First In, First Out

GPIO General Purpose Input/Output
HMAC Hash Message Authentication Code
12C Inter-Integrated Circuit

(o]6]:) Out-of-Band

PFR Platform Firmware Resiliency

PKC Public Key Cryptography

PLD Programmable Logic Device

QSPI Quad Serial Peripheral Interface
RISC Reduced Instruction Set Computer
RoT Root of Trust

SCI System Configuration Interface

SFB SoC Function Block

SHA Secure Hash Algorithm

SoC System on Chip

SPI Serial Peripheral Interface

TRNG True Random Number Generator

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Mach-NX SFB Hardware Usage Guide
Technical Note

Register Access Definitions

Access Type Behavior on Read Access Behavior on Write Access

RO Returns register value Ignores write access

WO Returns 0 Updates register value

RW Returns register value Updates register value

RW1C Returns register value Writing 1’b1 on register bit clears the bit to
1’b0.
Writing 1’b0 on register bit is ignored.

RSVD Returns O Ignores write access

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02222-1.0

http://www.latticesemi.com/legal

= LATTICE

1. SoC Function Block Overview

The Mach™-NX device family is the next generation of Lattice Semiconductor Low Density PLDs including enhanced
security features and a Platform Firmware Resiliency SoC Function Block (SFB). The enhanced security features include
Advanced Encryption Standard (AES) AES-128/256, Secure Hash Algorithm (SHA) SHA-256/384, Elliptic Curve Digital
Signature Algorithm (ECDSA), Elliptic Curve Integrated Encryption Scheme (ECIES), Hash Message Authentication Code
(HMAC) HMAC-SHA256/384, Public Key Cryptography, True Random Number Generator (TRNG) and Unique Secure ID.

The Mach-NX family is a Root-of-Trust hardware solution that can easily scale to protect the whole system with its
enhanced bitstream security and user mode functions. With Lattice Mach-NX device, you can implement a Platform
Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193. The purpose of this
document is to describe the individual IP in the Mach-NX SoC Function Block.

1.1. Root of Trust

The Lattice Mach-NX FPGA can serve as the Root of Trust and provide the following services:

e Image Authentication — On system power-up or reset, the Mach-NX device holds the protected devices in reset
while it authenticates their boot images in SPI flash. After each signature authentication passes, the Mach-NX
device releases each resets, and those devices can boot from their authenticated SPI flash image. Image
authentication can also be requested at any time through the 1°C Out of Band (OOB) communication path.

o Image Recovery — If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX
device can restore it to a known good state by copying from an authenticated backup image.

e SPI Flash Monitoring and Protection — The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external SPI quick switches. The monitors can be configured to
watch for specific SPI flash commands and address ranges defined by the system designer and designate them as
authorized (whitelisted) or unauthorized (blacklisted).

e Event Logging — The Mach-NX device logs security events, such as unauthorized flash accesses and notifies the
BMC.

e |2C Monitoring — The Mach-NX device can monitor an I2C bus for unauthorized activity and block unauthorized
transactions by disabling the I2C bus. The monitor can be configured with multiple whitelist or blacklist filters to
watch for specific byte or bit patterns defined by the system designer and designate them as authorized or
unauthorized I12C transactions.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE Mach-NX SFB Hardware Usage Guide

Technical Note

1.2. SoC Function Block Diagram

Mach-NX
PFR SoC Function Block PFR PLD to SoC
Function Block
Secure Enclave Interface
PIC
PFR CPU Subsystem .
NMI L
4—» PIC
System Memory RiscV CPU
l—>» Timer Virtual 1/0
GPIO[0-23]
HSP S] >
s S IM | DM
T T AHB Lite
Master
U AHB Lite i EI IE_; PLD Fabric (7k LUT's)
QSPI Streamer

FIFO Interface

\ I

PFR Extemal Iterfaces S I i
APB bridge
{ APB bus
— T
12CISMBUS QsPI oSl 12c Mem-
Slaves Vaster =N S| [espl || woniors mapped | | Viual o [¢
@ Steamer [€) GPIO
\J \J \ \ \ \ \

Figure 1.1. Mach-NX SoC Function Block Diagram

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02222-1.0 11

http://www.latticesemi.com/legal

1.3. SoC Function Block Memory Map
Table 1.1. SoC Function Block Memory Map

= LATTICE

Subsystem Base Address End Address Block
00000000 0001FFFF CPU Instruction RAM and Data RAM
00020000 0007FFFF RESERVED
00080000 000807FF CPU PIC TIMER
00080800 00O0BFFFF RESERVED
000C0000 000C1FFF Memory Mapped GPIO
PER 000C2000 000C3FFF I2C Monitor
000C4000 000C7FFF QSPI Monitor
000C8000 O0OOCSFFF QSPI Master Streamer
000CA000 000CBFFF RESERVED
000CC000 0O0O0CFFFF eSPI
000D0000 OOODFFFF I2C/SMBus Slave
000E0000 OOOFFFFF RESERVED
00100000 0013FFFF RESERVED
FPGA 00140000 001400FF PLD Logic
00140100 001FFFFF RESERVED
Security 00200000 O003BFFFF Security Enclave
003C0000 FFFFFFFF RESERVED

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Mach-NX SFB Hardware Usage Guide

Technical Note

2. CPU Subsystem

2.1. Overview

The RISC-V MC processes data and instruction by considering the timer interrupt and external interrupt. As shown in
Figure 2.1, the CPU core module has a 32-bit processor core and optional submodules. It uses two interfaces, one

AHB-L interface (Read-Only) for instruction and one AHB-L interface (Read/Write Access) for data memory. RISC-V core,
PIC, Timer, and AHB-L multiplex are run in the system clock domain. The RISC-V core debug runs in two clock domains:

the system clock domain and the JTAG clock domain.

RISC-V MC
CPU Core

RISC-V MC CPU Core Debug

RISC-V MC
CPU IP Core

Instruction

Port Data Port

*

External
¢ Interrupts PIC € Ras —

AHBL slv |
+ |
Timer |
Interrupt | Timer |
L AHBL slv |

h 4

L. — — ____+ ________ _|

Figure 2.1. RISC-V MC CPU Diagram

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02222-1.0

13

http://www.latticesemi.com/legal

= LATTICE

2.2. Modules Description

2.2.1. RISC-V Processor Core

The processor core follows the RV32l instruction set.

2.2.1.1. Interrupt

Whenever an interrupt occurs, it has to remain in its active level until it is cleared by the processor core interrupt
service routine.

If an interrupt occurs before jumping to the interrupt service routine, the processor core stops the prefetch stage and
waits for all instructions in the later pipeline stages to complete their execution.

2.2.1.2. Exception

If an exception occurs, the processor core stops the corresponding instruction, flushes all previous instructions, and
waits until the terminated instruction reaches the writeback stage before jumping to the exception service routine.

2.2.1.3. Debug
The processor core supports the IEEE-1149.1 JTAG debug logic with two hardware breakpoints.

2.2.1.4. Control and status registers

The processor core supports the Control and Status Registers (CSR) listed in Table 2.1.

Table 2.1. RISC-V Processor Core Control and Status Registers

addr CSR Name Access Reset Fields
Value
0x300 mstatus RW 0x0 bits[12:11] mpp: privilege mode before entering trap , should
(machine status always be 2’b11 (m mode)
register) bit [7] mpie: updated to mie value when entering to trap
bit [3] mie: global interrupt enable
0x304 mie RW 0x0 bit[11] meie: m mode external interrupt enable
(machine interrupt bit[7] mtie: m mode timer interrupt enable
enable register) bit[3] msie: m mode software interrupt enable
0x341 mepc RO 0x0 bits[31:0]: When trap in taken into m mode, mepc is used to
(machine exception store the address of the instruction that encountered exception.
program counter)
0x342 mcause RO 0x0 bit[31]: 1’b1: interrupt 1’b0: exception
(machine cause bit[3:0]: exception code
register) for interrupt:

e 3-machine software interrupt
e 7-machine timer interrupt

e 11-machine external interrupt
For exception:

0 —instruction address misaligned
1 —instruction access fault

2 —illegal instruction

4 —load address misaligned

5 —load access fault

0x343 mtval RO 0x0 bits[31:0]: When a hardware breakpoint is triggered, or an
(machine trap instruction-fetch, load, or store address is misaligned or access
value register) exception occurs, mtval is written with the faulting address. It

may also be written with illegal instruction when an illegal
instruction exception occurs.

0x344 mip RO 0x0 bit[11] meip: m mode external interrupt pending
(machine interrupt bit[7] mtip: m mode timer interrupt pending
pending register) bit[3] msip: m mode software interrupt pending

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2.2. Submodule (PIC/Timer)

The CPU contains submodules: PIC and Timer. The PIC and Timer share the same start address in memory map and a
fixed 2 kB address range is allocated if any of them are enabled.

2.2.2.1. PIC

The PIC aggregates up to eight external interrupt inputs (IRQs) into one interrupt output to processor core. The
interrupt status register and can be used to read the values of IRQs. Individual IRQs can be configured by programming
the corresponding enable and polarity registers. Table 2.2 provides the descriptions of PIC registers.

Table 2.2. PIC Registers

Reset -
Offset | Name Access Description
Value
0x000 | PIC_ISRC | WO 0x0 Interrupt Status Register Clear
Field Name Access Width Reset
(7] PIC_ISRC [7] w 1 0x0
[1] PIC_ISRC [1] w 1 0x0
[0] PIC_ISRC [0] w 1 0x0
0x004 | PIC_ISRS WO 0x0 Interrupt Status Register Set
Field Name Access Width Reset
[7] PIC_ISRS [7] W 1 0x0
[1] PIC_ISRS [1] w 1 0x0
[0] PIC_ISRS [0] w 1 0x0
0x008 | PIC_ISR RO 0x0 Interrupt Status Register
Field Name Access Width Reset
[7] PIC_ISR [7] R 1 0x0
[1] PIC_ISR [1] R 1 0x0
[0] PIC_ISR [0] R 1 0x0
0x010 | PIC_IERC | WO 0x0 Interrupt Enable Register Clear
Field Name Access Width Reset
[7] PIC_IERC[7] w 1 0x0
[1] PIC_IERC[1] w 1 0x0
[0] PIC_IERC[O] w 1 0x0
PIC_IERC]i]
Enable or Disable the interrupt request (irq[i]) port from the aggregation of
interrupts (core_meip).
e 0-—disable irqli]
e 1-enableirq[i]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Reset s
Offset | Name Access Description
Value
0x014 | PIC_IERS | WO 0x0 Interrupt Enable Register Set
Field Name Access Width Reset
[7] PIC_IERS[7] W 1 0x0
[1] PIC_IERS[1] w 1 0x0
[0] PIC_IERS[O] w 1 0x0
0x018 | PIC_IER RO 0x0 Interrupt Enable Register
Field Name Access Width Reset
[7] PIC_IERS[7] R 1 0x0
[1] PIC_IERS[1] R 1 0x0
[0] PIC_IERS[O] R 1 0x0
0x020 | PIC_POLC | WO 0x0 PIC Interrupt Polarity Register Clear
Field Name Access Width Reset
[7] PIC_POLC [7] W 1 0x0
[1] PIC_POLC I[1] w 1 0x0
[0] PIC_POLC [0] w 1 0x0
0x024 | PIC_POLS | WO 0x0 PIC Interrupt Polarity Register Set
Field Name Access Width Reset
[7] PIC_POLC [7] w 1 0x0
[1] PIC_POLC I[1] w 1 0x0
[0] PIC_POLC [0] w 1 0x0
0x028 | PIC_POL RO 0x0 PIC Interrupt Polarity register

Field Name Access Width Reset
[7]1 PIC_POLC [7] R 1 0x0
[1] PIC_POLC I[1] R 1 0x0
[0] PIC_POLC [0] R 1 0x0

PIC_POLC]i]

Indicates the polarity of interrupt request (irq[i]) port.
e 0-irq[i] is active high

° 1 —irq[i] is active low

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2.2.2. Timer

The Timer module provides a 64-bit real-time counter register (mtime) and time compare register (mtimecmp). An
output interrupt signal notices the RISC-V processor core when the value of mtime is greater than or equal to the value
of mtimecmp. Table 2.3 provides the descriptions of Timer registers.

Table 2.3. Timer Registers

Offset Name | Access | Reset Value Description

mtime

A 64-bit real-time counter register. You must set the register to a non-zero value to start the counting process.

0x400 | TIMER_CNT_L RW 0x0 Lower 32 bits of mtime register
0x404 | TIMER_CNT_H RW 0x0 Higher 32 bits of mtime register
mtimecmp

This register is used to generate or clear the timer interrupt (mtip). When the value of mtime register is greater than or equal to
the value of mtimecmp register, the cpu_mtip_o is asserted and remains asserted until it is cleared by writing to mtimecmp
register. Lower 32 bit for Timer time compare register

0x410 | TIMER_CMP_L RW 0x0 Lower 32-bit for mtimecmp register.

0x414 | TIMER_CMP_H RW 0x0 Higher 32-bit for mtimecmp register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

3. System Memory

3.1. Overview

The System Memory is used for code execution and temporary data storage.

3.2. Features

The key features of the System Memory are:
e 128 KB SRAM
e Dual AHB Lite Slave interface

e FIFO interface connected to QSPI Master Streamer

3.3. Block Diagram

System Memory

Dual Port SRAM

g

4’

FIFO

<
=

AHB-L
Slave

AHB-L
Slave

o

FIFO Stream

3.3.1. AHB-Lite Interface

AHB Lite Interconnect

Figure 3.1. System Memory Block Diagram

Inst Master

= LATTICE

The System Memory has two AHB Lite slave interfaces. Slave 0 interface is read only and connected directly to the
Instruction Master of the CPU. Slave 1 interface is connected to the SoC Function Block AHB Lite Interconnect.

3.3.2. FIFO Interface

The dedicated FIFO interface is shared with the AHB-L port S1. This interface is used by the QSPI Master Streamer to

upload firmware values to the core memory.

3.3.3. System Memory Timing Information

When a port reads and the other port writes on the same address, the read transaction completes first and the old
data is propagated into the output before the new data is written on the selected address. After which, the new data is

made available on both ports and can be read on the next read transaction.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. QSPI Monitor

4.1. Overview

The QSPI Monitor is an SPI access and command monitoring module that can monitor up to three SPI, DSPI, or QSPI
buses for unauthorized activity and prevent transactions from completing by controlling internal or external switches.
In addition to monitoring, the QSPI Monitor connects the external SPI/DSPI/QSPI buses to internal QSPI Master
Streamer through a programmable mux/demux block.

4.2. Features

The key features of the QSPI monitor are:

e Supports three external SPI, DSPI, or QSPI buses to monitor illegal activity

e Enable/disable dynamically the flash initialization commands per monitor

e Flash commands (program, read, erase) are monitored based on address ranges

e Supports up to eight dynamically configurable address ranges for filtering per monitor
e Supports both 24-bit and 32-bit flash addressing modes/commands

e Supports single and dual flash configurations

e Supports internal and external switching

www.latticesemi.com/legal

http://www.latticesemi.com/legal

4.3.

Block Diagram

= LATTICE

CPU
(RISC-V)

System Bus (APB)

QSPI Master
Streamer

[QJsPI

SPI Monitor

Monitor0

Internal
Master Port

Internal Switch 0

Internal Switch

SPI Flash A [Q/D]S Pl

Quick Switch 0 see

[Q/DIsPI

Disabled N Enabled
4
Switch Ctrl [Q/D]SPI
SPI SPI SPI

BMC

PCH

Figure 4.1. QSPI Monitor Block Diagram

SPI Flash A

i
——————Jp SPIFlashB |
! I

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4. Signal Description
Table 4.1. QSPI Monitor Signal Description

Signal | Direction | Description
QSPI Monitor External Signal
QSPI_MONx_CLK Bidir SP1/QSPI clock (High Impedance during monitoring)
QSPI_MONx_CSN Output Chip select (High Impedance during monitoring)
QSPI_MONx_DIS_A Output Quick Switch Disable Flash A (O=enabled, 1=disabled)
QSPI_MONx_DIS_B Output Quick Switch Disable Flash B (O=enabled, 1=disabled)
Bidir SPI: MOSI
QSPI_MONx_DQO QSPI: serial data input and output
(High Impedance during monitoring)
Bidir SPI: MISO
QSPI_MONx_DQ1 QSPI: serial data input and output
(High Impedance during monitoring)
Bidir SPI: unused
QSPI_MONx_DQ2 QSPI: serial data input and output
(High Impedance during monitoring)
Bidir SPI: unused
QSPI_MONx_DQ3 QSPI: serial data input and output
(High Impedance during monitoring)
QSPI_MONx_PRE_CSN | Input QSPI/SPI Chip select before quick switch
QSPI_MONx_RST_O Output Reset
Output Quick Switch Output Enable (O=disabled, 1=enabled). This signal is enabled when the QSPI
QSPI_MONx_SWI_EN Monitor is protecting the SPI Flash and when the QSPI Monitor is switched to the internal
master.
Output Quick Switch Isolation (O=disabled, 1=enabled), this optional signal is used when a flash has
QSPI_MONx_SWI_ISO switching logic to select between multiple SPI Masters (BMC and PCH). This signal is
enabled when the QSPI Monitor is switched to the internal master.

4.5. QSPI Command List

The allowed QSPI commands are shown in Table 4.2. All other commands are blocked.

Table 4.2. QSPI Command List Table

Command Default Description

Initialization Command 0 01 (WRSR) Initialization Command 0
Initialization Command 1 04 (WRDI) Initialization Command 1
Initialization Command 2 05 (RDSR) Initialization Command 2
Initialization Command 3 06 (WREN) Initialization Command 3
Initialization Command 4 50 Initialization Command 4

(WRSR_EN)

Initialization Command 5 9F (RDID) Initialization Command 5
Page Program Command 02 Page Program Command

Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.

Page Program Quad Address 38 Page Program Quad Address Quad Data Command

Quad Data Command Command width is 1-bit. Address and Data widths are 4-bit.
Erase 4KB Command 20 Erase 4 KB Command

Erase 32KB Command 52 Erase 32 KB Command

Erase 64KB Command D8 Erase 64 KB Command

Read Command 03 Read Command.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Command Default Description

Fast Read Command 0B Fast Read Command
Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.

Read Dual Data 3B Read Dual Data Command
Command/Address widths are 1-bit. Data width is 2-bit.

Read Dual Address Dual Data BB Read Dual Address Dual Data Command

Command Command width is 1-bit. Address and Data widths are 2-bit.

Read Quad Data Command 6B Read Quad Data Command
Command/Address widths are 1-bit in SPI mode, 4-bit in QSPI mode. Data
width is 4-bit.

Read Quad Address Quad EB Read Quad Address Quad Data Command

Data Command Command width is 1-bit in SPI mode, 4-bit in QSPI mode. Address and Data
widths are 4-bit.

Quad SPI Mode Enter 35 Quad SPI Mode Enter Command

Command

Quad SPI Mode Exit F5 Quad SPI Mode Exit Command

Command

4-byte Mode Enter Command | B7 4-Byte Mode Enter Command

4-byte Mode Exit Command E9 4-Byte Mode Exit Command

4-byte Read Extended c8 4-Byte Read Extended Address Register Command

Address Command

4-byte Write Extended Cc5 4-Byte Write Extended Address Register Command

Address Command

4-byte Page Program 12 4-Byte Page Program Command

Command

4-byte Page Program Quad 3E 4-Byte Page Program Quad Address Quad Data Command.

Address Quad Data

Command

4-byte Erase 4KB Command 21 4-Byte Erase 4 KB Command

4-byte Erase 32KB Command 5C 4-Byte Erase 32 KB Command

4-byte Erase 64KB Command DC 4-Byte Erase 64 KB Command

4-byte Read Command 13 4-Byte Read Command

4-byte Fast Read Command oC 4-Byte Fast Read Command
Command/Address/Data widths are all 1-bit in SPI mode, 4-bit in QSPI mode.

4-byte Read Dual Data 3C 4-Byte Read Dual Data Command

Command Command/Address widths are 1-bit. Data width is 2-bit.

4-byte Read Dual Address BC 4-Byte Read Dual Address Dual Data Command

Quad Data Command Command width is 1-bit. Address and Data widths are 2-bit.

4-byte Read Quad Data 6C 4-Byte Read Quad Data Command

Command Command/Address widths are 1-bit in SPI mode, 4-bit in QSPI mode. Data
width is 4-bit.

4-byte Read Quad Address EC 4-Byte Read Quad Address Quad Data Command

Quad Data Command

Command width is 1-bit in SPI mode, 4-bit in QSPI mode. Address and Data
widths are 4-bit.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.6. Register Description

A summary of the QSPI Monitor Core Registers is shown in Table 4.4. Global registers are mapped to offsets 0x000—
O0xOFC and per-monitor registers are mapped to 0OxXNOO—OxNFF, where N corresponds to the monitor number, in the
range of 1 to 3. For example, registers of the first monitor are at offsets 0x100-0x1FC and registers of the second
monitor are at 0x200—0x2FC. The registers for Address Space 7 are mapped from 0xM0O0—0xMFF, where M is equal to
(5 + N), see Table 4.3.

Table 4.3. QSPI Monitor Address Space Mapping for each Monitor

Monitor Register Offsets for Address Spaces 0 to 6 | Register Offsets for Address Space 7 N M
Monitor0 0x100-0x1FF 0x600-0x6FF 1 6
Monitorl 0x200-0x2FF 0x700-0x7FF 2 7
Monitor2 0x300-0x3FF 0x800-0x8FF 3 8

Table 4.4. QSPI Monitor Core Registers

Offset Register Name Access Reset Value | Description

0x000 MONITOR_CFG RO 0x03 num_bus_monitors[1:0] — Number of bus monitors
reserved[31:42]

0x004 MONITOR_CTRL RW 0x00 monitor0_en[0] — Enable/disable Monitor0
monitorl_en[1] — Enable/disable Monitorl
monitor2_en[2] — Enable/disable Monitor2
reserved[31:3]

0x008 MONITOR_SPI_MODE | RW 0x00 monitor0_spi_mode[1:0] — Monitor0 SPI Mode (0 or 3)
reserved[3:2]
monitorl_spi_mode[5:4] — Monitorl SPI Mode (0 or 3)
reserved[7:6]
monitor2_spi_mode[9:8] — Monitor2 SPI Mode (0 or 3)
reserved[31:10]

0x010 INT_STATUS RW 0x00 Interrupt Status

Interrupt status:

illegal_opO_int[0] — Bus O lllegal Operation interrupt
illegal_op0_overflow_int[1] — Bus O lllegal Operation Overflow
interrupt

reserved[3:2]

illegal_op1_int[4] — Bus 1 lllegal Operation interrupt
illegal_op1_overflow_int[5] — Bus 1 lllegal Operation Overflow
interrupt

reserved[7:6]

illegal_op2_int[8] — Bus 2 lllegal Operation interrupt
illegal_op2_overflow_int[9] — Bus 2 lllegal Operation Overflow
interrupt

reserved[31:10]

Writing 1 to a bit clears that interrupt.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Reset Value | Description
0x014 INT_ENABLE RW 0x00 Interrupt Enable:
illegal_op0_en[0] — Enable Bus 0O lllegal Operation interrupt
illegal_ opO_overflow_en[1] — Enable Bus O Illegal Operation
Overflow interrupt
reserved[3:2]
illegal_op1_en[4] — Enable Bus 1 lllegal Operation interrupt
illegal_op1_overflow_en[5] — Enable Bus 1 lllegal Operation
Overflow interrupt
reserved[7:6]
illegal_op2_en[8] — Enable Bus 2 Illegal Operation interrupt
illegal_op2_overflow_en[9] — Enable Bus 2 lllegal Operation
Overflow interrupt
reserved[31:10]
0x018 INT_SET RW 0x00 Interrupt Set:
illegal_op0_set[0] — Set Bus 0 Illegal Operation interrupt
illegal_opO_overflow_set[1] — Set Bus 0 lllegal Operation
Overflow interrupt
reserved[3:2]
illegal_op1_set[4] — Set Bus 1 lllegal Operation interrupt
illegal_op1_overflow_set[5] — Set Bus 1 lllegal Operation
Overflow interrupt
reserved[7:6]
illegal_op2_set[8] — Set Bus 2 Illegal Operation interrupt
illegal_op2_overflow_set[9] — Set Bus 2 lllegal Operation
Overflow interrupt
reserved[31:10]
Writing 1 to a bit sets that interrupt
0xNO0O0 CONTROL RW 0x00 mux_sel[3:0] — Select which internal client is connected to the
external SPI/QSPI pins
0: SPI/QSPI Monitor
1: Internal master interface 0
2-7: reserved
flash_a_en[4] — Flash A is disabled (0) or enabled (1)
flash_b_en[5] — Flash B is disabled (0) or enabled (1)
reserved[7:6]
init_cmd_filter[8] — Block initialization commands
allow_4byte_addr[9] — Allow 4-byte addressing commands
reserved[31:10]
0xN04 SPACE_EN RW 0x00 Space monitoring enable bits
space0_en[0] — Disable (0) or enable (1) monitoring of space 0
spacel_en[1] — Disable (0) or enable (1) monitoring of space 1
space2_en[2] — Disable (0) or enable (1) monitoring of space 2
space3_en[3] — Disable (0) or enable (1) monitoring of space 3
spaced_en[4] — Disable (0) or enable (1) monitoring of space 4
space5_en[5] — Disable (0) or enable (1) monitoring of space 5
space6_en[6] — Disable (0) or enable (1) monitoring of space 6
space7_en[7] — Disable (0) or enable (1) monitoring of space 7
reserved[31:8]
0xNO08 READ_DUMMY_NUM | RW 0x08 Number of dummy cycles in an SPI flash read

The minimum allowed value is 1. See the flash device data
sheet for details.

num_dummy_cycles[4:0]
reserved[31:5]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Reset Value | Description

OxN10 MAXIMUM_ADDRESS | RW OxFFFFFFFF max_addr[31:0] — SPI transaction starting addresses and
incremental addresses are masked with this value before
comparison with address space ranges.

OxN14 COMMAND_DISABLEO | RW 0x00000000 | command_disable[31:0] — When set to 1, this field disables
individual command checking. Each bit corresponds to a
specific parameter command. See Table 4.5 for details on each
bit field.

OxN18 COMMAND_DISABLE1 | RW 0x00000000 command_disable[8:0] — When set to 1, this field disables
individual command checking. Each bit corresponds to a
specific parameter command. See Table 4.5 for details on each
bit field.
reserved[31:9]

0xN20 SPACEO_FILTER_CTRL | RW 0x03 prg_cmd_allow[0] — Allow (whitelist) program commands in
space 0
erase_cmd_allow[1] — Allow (whitelist) erase commands in
space 0
read_cmd_block[2] — Block (blacklist) read commands in space
0
reserved[31:3]

OxN24 SPACEO_START_ADDR | RW 0x00000000 | page start_addr[31:8] — Start address for space 0, aligned to
256-byte page boundary
reserved[7:0] — Writes are ignored; Reads return 0

OxN28 SPACEO_END_ADDR RW 0x000000FF | page end_addr[31:8] — End address for space 0, aligned to
256-byte page boundary
reserved_ff[7:0] — Writes are ignored; Reads return OxFF.

O0xN40 SPACEL_FILTER_CTRL | RW 0x03 prg_cmd_allow[0] — Allow (whitelist) program commands in
space 1
erase_cmd_allow[1] — Allow (whitelist) erase commands in
space 1
read_cmd_block[2] — Block (blacklist) read commands in space
1
reserved[31:3]

OxN44 SPACE1_START_ADDR | RW 0x00000000 | page start_addr[31:8] — Start address for space 1, aligned to
256-byte page boundary
reserved[7:0] — Writes are ignored; Reads return 0.

0xN48 SPACE1_END_ADDR RW 0xO00000FF | page_end_addr[31:8] — End address for space 1, aligned to
256-byte page boundary
reserved_ff[7:0] — Writes are ignored; Reads return OxFF.

0xN60 SPACE2_FILTER_CTRL | RW 0x03 prg_cmd_allow[0] — Allow (whitelist) program commands in
space 2
erase_cmd_allow[1] — Allow (whitelist) erase commands in
space 2
read_cmd_block[2] — Block (blacklist) read commands in space
2
reserved[31:3]

0xN64 SPACE2_START_ADDR | RW 0x00000000 | page_start_addr[31:8] — Start address for space 2, aligned to
256-byte page boundary.
reserved[7:0] — Writes are ignored; Reads return 0.

0xN68 SPACE2_END_ADDR RW 0x000000FF | page_end_addr[31:8] — End address for space 2, aligned to

256-byte page boundary.
reserved_ff[7:0] — Writes are ignored; Reads return OxFF.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Reset Value | Description

0xN80 SPACE3_FILTER_CTRL | RW 0x03 prg_cmd_allow[0] — Allow (whitelist) program commands in
space 3

erase_cmd_allow[1] — Allow (whitelist) erase commands in
space 3

read_cmd_block[2] — Block (blacklist) read commands in space
3
reserved[31:3]

0xN84 SPACE3_START_ADDR | RW 0x00000000 | page_start_addr[31:8] — Start address for space 3, aligned to
256-byte page boundary
reserved[7:0] — Writes are ignored; Reads return 0.

0xN88 SPACE3_END_ADDR RW 0x000000FF | page_end_addr[31:8] — End address for space 3, aligned to
256-byte page boundary
reserved_ff[7:0] — Writes are ignored; Reads return OxFF.

OxNFO ILLEGAL_CMD RO 0x00 illegal_cmd[7:0]: Illegal operation command
reserved[31:8]
OxNF4 ILLEGAL_ADDR RO 0x00000000 | lllegal operation address

4.7. Initialization Command Filtering

When initialization command filtering is enabled, the QSPI Monitor watches for all of the Initializations commands (see
Table 4.2). If one of these commands is detected, the transaction is terminated immediately, the command is recorded
in the illegal_cmd register, illegal_addr is set to 0, and an illegal operation interrupt is sent.

By default, filtering for initialization commands is disabled. In a typical use case, initialization commands are allowed
for a certain period of time (such as during boot up) and then filtering can be enabled through the register interface.

4.8. Address Filtering

The QSPI Monitor can filter program, erase, and read commands based on address ranges. Up to four address ranges
(also called spaces) can be monitored, and filtering can be enabled independently for program, erase, and read
commands for each space. Each space consists of a start address, end address, and whitelist/blacklist indicators for
each type of command. Address spaces are aligned on 256-byte page boundaries. The default setting for all spaces is to
allow (whitelist) program, erase, and read operations in that space. The settings for each space can be modified to
block (blacklist) program, erase, or read operations. Each type of operation (program, erase, or read) has a separate
whitelist/blacklist setting.

Program/erase operations are considered illegal for all addresses except spaces that have been whitelisted.

e If a program operation starts from a page address that is not inside a whitelisted address space, it is considered
illegal.

e If an erase operation starts from an address that is not inside a whitelisted address space, or starts from an
address inside a whitelisted address space but the address range goes outside the whitelisted address space, it is
considered illegal.

Read operations are allowed for all addresses except spaces that have been blacklisted.

e If aread operation starts from an address that is inside a blacklisted address space, or starts from an address
outside a blacklisted address space and the incremental address crosses into a blacklisted address space, it is
considered illegal.

When an illegal operation is detected, the transaction is terminated immediately, the command and address are saved
in the illegal_cmd and illegal_addr registers, and an illegal operation interrupt is generated.

Because program/erase operations are blacklisted by default and read operations are whitelisted by default, the
recommended usage model is to only define whitelist areas for program/erase operations and blacklist areas for read
operations as address spaces.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Overlapping program/erase whitelist and read blacklist address spaces should be avoided because it can lead to
unintended consequences, such as an address range being writable but not readable. This prevents common use cases
such as the host verifying data written to flash by reading it back.

4.9. Command Disable

Filtering for individual commands can be disabled by writing to the COMMAND_DISABLEO and COMMAND_DISABLE1
register (see Table 4.5). By default, all commands are enabled.

Table 4.5. QSPI Monitor Command Disable Register Fields

Command Register Field Index | Command

COMMAND_DISABLEO 0 Initialization Command 0
1 Initialization Command 1
2 Initialization Command 2
3 Initialization Command 3
4 Initialization Command 4
5 Initialization Command 5
6 Initialization Command 6
7 Initialization Command 7
8 Initialization Command 8
9 Initialization Command 9
10 Page Program Command
11 Page Program Quad Address Quad Data Command
12 Erase 4KB Command
13 Erase 32KB Command
14 Erase 64KB Command
15 Read Command
16 Fast Read Command
17 Read Dual Data
18 Read Dual Address Dual Data Command
19 Read Quad Data Command
20 Read Quad Address Quad Data Command
21 Quad SPI Mode Enter Command
22 Quad SPI Mode Exit Command
23 4-byte Mode Enter Command
24 4-byte Mode Exit Command
25 4-byte Read Extended Address Command
26 4-byte Write Extended Address Command
27 4-byte Page Program Command
28 4-byte Page Program Quad Address Quad Data Command
29 4-byte Erase 4KB Command
30 4-byte Erase 32KB Command
31 4-byte Erase 64KB Command

COMMAND_DISABLE1 4-byte Read Command

4-byte Fast Read Command

4-byte Read Dual Address Dual Data Command

0
1
2 4-byte Read Dual Data Command
3
4

4-byte Read Quad Data Command

5 4-byte Read Quad Address Quad Data Command

Others Reserved

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.9.1. 24/32-Bit Addressing

Flash devices larger than 128 Mb (16 MB) provide three separate mechanisms for addressing beyond the traditional

24-bit address space:

e Commands to enter/exit 4-byte mode (EN4B/EX4B)
When the flash is in 4-byte mode, commands which normally take a 3-Byte address (read, erase, program, and
others) expect 4-byte addresses instead of 3-byte addresses. The default is 3-byte mode.

e Extended Address Register (EAR)
The EAR is an 8-bit register in the flash, which can be read and written using special commands (RDEAR/WREAR).
When the flash is in 3-byte mode, the EAR is used to select which 128 Mbit segment is addressed by the 3-byte
address. In other words, the value in EAR is used as the upper 8 bits of the 32-bit flash address (flash_addr[31:0] =
{EAR, addr[23:16], addr[15:8], addr[7:0]}). The EAR default value is 0.

e 4-byte Address Commands
The 4-byte commands, such as READ4B, FAST_READ4B, are separate commands from the standard 3-byte
commands, such as READ, FAST_READ. The 4-byte commands always take 4-byte addresses, regardless of whether
the flash is in 4-byte or 3-byte mode, and do not use the EAR.

When the monitor is configured to allow 32-bit addressing, the monitor internally tracks the addressing status of the
flash (3-byte/4-byte mode, EAR) based on commands observed on the SPI/QSPI bus and uses this information to filter
addresses observed on the bus. When the flash is in 4-byte mode or a 4-byte command is detected, the monitor
compares the 32-bit address on the bus with the configured address spaces to determine if the operation is illegal or
allowed. When the flash is in 3-byte mode, the monitor compares the 32-bit value comprised of EAR and the 24-bit
address on the bus with the configured address spaces to determine if the operation is illegal or allowed.

All address comparisons are performed with the full 32-bits to prevent aliasing between 24-bit and 32-bit addresses
which could result in security holes or false illegal operation detection.

When the monitor is configured to not allow 32-bit addressing (allow_4byte_addr = 0), the monitor is set to 3-byte
mode, EAR is set to 0, and all of the 4-byte commands defined in the QSPI Command List Table are considered illegal
operations. If one of these commands is detected, the transaction is terminated immediately, the command and
address are recorded in the illegal_cmd and illegal_addr registers, and an illegal operation interrupt is sent.

4.10. Unrecognized Command Filtering

If a command is detected that does not match any of the commands defined in the QSPI Command List Table (see
Table 4.2), the transaction is terminated immediately, the command is recorded in the illegal_cmd register, illegal_addr
is set to 0, and an illegal operation interrupt is sent.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.11. Timing Sequence

4.11.1. lllegal Command Blocking

If one of the illegal commands is detected (Figure 4.2), the transaction is terminated immediately by extending chip
select and adding a clock pulse to confuse the SPI flash.

Figure 4.2. One lllegal Command

4.11.2. lllegal Erase Command Breaking (3-Byte Address)

If an illegal erase command is detected (Figure 4.3), the transaction is terminated immediately by driving chip select
high.

[I

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5y ey oy Y)y Y Y Yy) Y Yy Y Y Y Iy Y 0

e N S |
e O S

Figure 4.3. lllegal Erase Command

4.11.3. lllegal Program Command Breaking (3-Byte Address, lllegal Start Address)

If an illegal program command is detected (Figure 4.4), the transaction is terminated immediately by driving chip select
high.

T
.+ 4 1 |
[—
PR 1T A
PR | 11

Figure 4.4. lllegal Program Command (3-Byte Address, lllegal Start Address)

4.11.4. lllegal Read Command Breaking (3-Byte Address, lllegal Start Address)

If an illegal read command is detected (Figure 4.5), the transaction is terminated immediately by driving chip select
high.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

UL

Figure 4.5. lllegal Read Command (3-Byte Address, lllegal Start Address)

4.11.5. lllegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)

If a read command incremental address overflow is detected (Figure 4.6), the transaction is terminated immediately by

driving chip select high.

L. —

i T e e
| |
| | |

Figure 4.6. lllegal Read Command (3-Byte Address, Incremental Address Overflow)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.11.6. lllegal 4-Byte Command Breaking

If a 4-byte command is disabled and a 4-byte command is detected (Figure 4.7), the transaction is terminated
immediately by driving chip select high.

Figure 4.7. lllegal 4-Byte Command Breaking

4.12. Mux/Demux Functionality

Each external SPI/QSPI bus can be connected either to its corresponding monitor, or to the QSPI Master Streamer
through a mux/demux block. This allows the QSPI Master Streamer to disable the monitor and access the external
flash. Each bus/monitor/mux combination is independent of the others. It is the responsibility of the firmware to
manage the muxes appropriately to prevent the internal SPI/QSPI master from being connected to more than one
external bus at a time.

4.13. Internal Switching

When internal switching is enabled, the switch which connects the external SPI Master (BMC, PCH, and others) to the
SPI flash is implemented inside the FPGA soft logic instead of being implemented externally on the board with a quick
switch device. Regardless of whether the switch is internal or external, the SPI bus is still monitored by the QSPI
Monitor. When any illegal activity is detected on the SPI bus, the internal switch is disabled, disconnecting the external
SPI master from the slave. The internal switch only supports SPI communications; DSPI and QSPI are not supported. For
DSPI and QSPI, an external quick switch device is required.

Figure 4.8 shows the diagram for the internal switch.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Flash A

AA—A
5 ZIFIEIE
g nlz|=
(]
o
gs_flasha_dis_o
gs_flashb_dis_o o
gs_out_en_intsw_sck_io M ”
flasha_en qpi_csn_intsw_mosi_o i A
—_ » ©
flashb_en gpi_sio2_intsw_flasha_miso_i (.
—_— <
) qpi_sio3_intsw_flashb_miso_i 2
h «
O
fpmd
3
()
gpi_siol s
gpi_sio0 W
———
gpi_sck_io c
A|. —
gpi_csn_pre_i
—
qpi_siol
P qpi_sio0
) qpi_sck_io
) qgpi_csn_pre_i

CSN
SCLK

MOSI
MISO

SPI Master

Figure 4.8. QSPI Internal Switch

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. QSPI Master Streamer

The QSPI Master Streamer is a configurable SPI master, which can support SPI, DSPI, and QSPI slaves. It contains FIFOs
for Tx and Rx data, which support page read and page program (256 bytes). It also provides an external Rx FIFO output
interface (8-bit) which is connected to the Secure Enclave and System Memory.

The QSPI Master Streamer provides significant performance improvement by supporting data read and write
transactions of programmable length, allowing an entire SPI flash device to be read in one SPI transaction. The Secure
Enclave FIFO output interface (8-bit) also enables direct transmission of input data from the SPI slave to the High Speed
Port of the Secure Enclave, without tying up the CPU or system bus.

5.1. Features

The key features of the QSPI Master Streamer include:

e Generation of SPI, DSPI, and QSPI transactions

e Support for long SPI transactions (up to 256-byte write and 4 Gb read) with no CPU interactions
e Programmable transaction type and length

e Provision of external 8-bit FIFO interface for connecting to other blocks

5.2. Block Diagram

QSPI Master Streamer Block Diagram is shown in Figure 5.1. There are Tx and Rx FIFOs with each having a 32-bit access
port for the system bus (APB) and an 8-bit access port for the SPI Master state machine. 8-bit data is packed or
unpacked into 32-bit chunks as it enters or leaves the FIFOs.

A
APB slave
QSPI Master
Streamer ,
APB
A A
Control | A
Registers /
A
A
Rx FIFO Tx FIFO
Secure Enclave
FIFO Interface 7Y

‘ N

A

A 4

\ 4

SPI Transaction State Machine

SP1/QSPI Master Interface

v

Figure 5.1. QSPI Master Streamer Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.3. FIFO Configuration
The QSPI Master Streamer FIFO configuration is shown in Table 5.1.

Table 5.1. QSPI Streamer FIFO Configuration

Attribute Configuration | Notes

Tx FIFO Size 512 —

Tx FIFO Almost Full Flag 256 —

Tx FIFO Almost Empty Flag 4 —

Tx FIFO Endianness] APB Tx FIFO Data 31:24 | 23:16 | 15:8 | 7:0
Big Big endian 0 1 2

Rx FIFO Size 256 —

Rx FIFO Almost Full Flag 252 —

Rx FIFO Almost Empty Flag 4 —

Rx FIFO Endianness Received bytes from SPI are packed in this order (from 0-3):
Big APB Rx FIFO Data 31:24 | 23:16 | 15:8 | 7:0

Big endian 0 1 2 3

5.4. Register Description

The QSPI Master Streamer IP core register map is shown in the Table 5.2.

Table 5.2. QSPI Master Streamer IP Core Registers

Offset | Name

Access

Reset Value

Description

0x00 QSPI_CTRL

RW

0x00000004

spi_mode[1:0]
00: SPI mode 0
e 01:reserved

e 10:reserved

11: SPI mode 3

sck_div[4:2]:

e 0:Fqgpi_sck_o=Fclk_i

: Fgpi_sck_o = Fclk_i/2

: Fqpi_sck_o = Fclk_i/4

: Fqpi_sck_o =Fclk_i/8

: Fqpi_sck_o =Fclk_i/16

e 5:Fqgpi_sck_o = Fclk_i/32

reserved[30:5]

soft_reset[31]

Writing 1 to this bit resets all of the internal logic, flushes the FIFOs
(resets the read/write pointers), and restores all registers to their
default settings.

Reads return 0. Intended for error recovery.

A W N R

0x04 CMD_DATA

RW

0x0

Command data to transmit in transaction phase 1 (always big
endian)

0x08 TX_FIFO_DATA

WO

0x0

Data to transmit in transaction phase 2

When the Tx FIFO is full, register writes to this address is blocked
until the FIFO is no longer full. Tx FIFO status is available in the
fifo_ctrl and int_status registers.

0x0C | RX_FIFO_DATA

RO

0x0

Data received in transaction phase 4

If the Rx FIFO contains less than four bytes when a 32-bit read is
received on the system bus and there is a SPI transaction currently
in progress, the read is blocked until 4 bytes are received or the SPI
transaction completes.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Name

Access

Reset Value

Description

0x10

TRANSACTION_CTRL1

RW

0x0

ph1_num_bytes[2:0] — Number of bytes from cmd_data to transmit
in transaction phase 1 (legal values: 0-4)

ph2_num_bytes[11:3] — Number of bytes from Tx FIFO to transmit
in transaction phase 2 (legal values: 0- Tx FIFO Size)
ph3_dummy_cycles[16:12] — Number of dummy cycles to transmit
in transaction phase 3

phl_mode[18:17] — Transmit phase 1 data in:

e 0:SPImode

e 1:DSPI mode

e 2:QSPI mode

e 3:reserved

ph2_mode[20:19] — Transmit phase 2 data in:

e 0:SPImode

e 1:DSPI mode

e 2:QSPI mode

e 3:reserved

ph3_mode[22:21] — Transmit phase 3 dummy cycles in:

e 0:SPImode

e 1:DSPI mode

e 2:QSPI mode

e 3:reserved

ph4_mode[24:23] — Receive phase 4 data in:

e 0:SPImode

e 1:DSPI mode

e 2:QSPI mode

e 3:reserved

rxfifo_last_en[25] — Enable(1)/Disable(0) assertion of rxfifo_last_o
for the last received byte of the SPI transaction

reserved[30:26]

start[31] — Write 1 to start an SPI transaction (reads return 0)

0x14

TRANSACTION_CTRL2

RW

0x0

ph4_num_bytes[31:0] — Number of bytes to receive in transaction
phase 4

0x18

STATUS

RO

0x0

tx_fifo_empty[0] — Tx FIFO is empty

tx_fifo_almost_empty[1] — Tx FIFO is not empty and has less than Tx
FIFO Almost Empty Flag bytes

tx_fifo_almost_full[2] — Tx FIFO is not full and has more than Tx
FIFO Almost Full Flag bytes

tx_fifo_full[3] — Tx FIFO is full

rx_fifo_empty[4] — Rx FIFO is empty

rx_fifo_almost_empty[5] — Rx FIFO is not empty and has less than
Rx FIFO Almost Empty Flag bytes

rx_fifo_almost_full[6] — Rx FIFO is not full and has more than Rx
FIFO Almost Full Flag bytes

reserved[30:8]

busy[31] — SPI transaction is in progress

0x1C

FIFO_CTRL

RW

0x0

reserved[6:0]

tx_fifo_flush[7] — Flush contents of Tx FIFO (reset read and write
pointers)

rx_fifo_dest[9:8]:

e 0:internal Rx FIFO

e 1:external Rx FIFO interface

e 2:reserved

e 3:internal Tx FIFO

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Name

Access

Reset Value

Description

reserved[14:10]

rx_fifo_flush[15]: flush contents of Rx FIFO (reset read and write
pointers)

reserved[31:16]

0x20

INT_STATUS

RW

0x0

Interrupt status:

done_int[0] — Done interrupt (SPI transaction completed)
tx_fifo_empty_int[1] — Tx FIFO Empty interrupt
tx_fifo_almost_empty_int[2] — Tx FIFO Almost Empty interrupt
tx_fifo_almost_full_int[3] — Tx FIFO Almost Full interrupt
tx_fifo_full_int[4] — Tx FIFO Full interrupt

rx_fifo_empty_int[5] — Rx FIFO Empty interrupt
rx_fifo_almost_empty_int[6] — Rx FIFO Almost Empty interrupt
rx_fifo_almost_full_int[7] — Rx FIFO Almost Full interrupt
rx_fifo_full_int[8] — Rx FIFO Full interrupt

reserved[31:9]

Writing 1 to a bit clears that interrupt

FIFO interrupts are triggered on the rising edge of the
corresponding FIFO condition (empty, full, etc.) and stay asserted
until cleared by writing a 1 to this register to clear the interrupt.
Current status of the FIFO conditions is always available in the
status register.

0x24

INT_ENABLE

RW

0x0

Interrupt enable:

done_en[0] — Enable Done interrupt (SPI transaction completed)
tx_fifo_empty_en[1] — Enable Tx FIFO Empty interrupt
tx_fifo_almost_empty_en[2] — Enable Tx FIFO Almost Empty
interrupt

tx_fifo_almost_full_en[3] — Enable Tx FIFO Almost Full interrupt
tx_fifo_full_en[4] — Enable Tx FIFO Full interrupt
rx_fifo_empty_en[5] — Enable Rx FIFO Empty interrupt
rx_fifo_almost_empty_en[6] — Enable Rx FIFO Almost Empty
interrupt

rx_fifo_almost_full_en[7] — Enable Rx FIFO Almost Full interrupt
rx_fifo_full_en[8] — Enable Rx FIFO Full interrupt

reserved[31:9]

0x28

INT_SET

RW

0x0

Interrupt set:

done_set[0] — Set Done interrupt (SPI transaction completed)
tx_fifo_empty_set[1] — Set Tx FIFO Empty interrupt
tx_fifo_almost_empty_set[2] — Set Tx FIFO Almost Empty interrupt
tx_fifo_almost_full_set[3] — Set Tx FIFO Almost Full interrupt
tx_fifo_full_set[4] — Set Tx FIFO Full interrupt

rx_fifo_empty_set[5] — Set Rx FIFO Empty interrupt
rx_fifo_almost_empty_set[6] — Set Rx FIFO Almost Empty interrupt
rx_fifo_almost_full_set[7] — Set Rx FIFO Almost Full interrupt
rx_fifo_full_set[8] — Set Rx FIFO Full interrupt

reserved[31:9]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Mach-NX SFB Hardware Usage Guide .':LATT’CE

Technical Note

5.5. Secure Enclave FIFO Interface

The Secure Enclave FIFO interface supports the transfer of large streams of data from SPI flash to the Secure Enclave
and System Memory. This allows firmware images to be loaded in the High Speed Port of the Security Enclave for faster
authentication and the CPU firmware image being loaded into System Memory.

5.6. Operation

5.6.1. Transaction Phases

The QSPI Master Streamer generates an SPI or a QSPI transaction in multiple phases, as shown in Figure 5.2. Each
phase is controlled by separate register settings. In the typical usage model, the CPU programs all of the transaction
phase registers with the settings for the desired transaction, then write 1 to bit[31] of the TRANSACTION_CTRL1
register to initiate SPI transactions. For transactions which use data, the CPU should write data to the FIFO before
starting the transaction (see examples sequence below for details).

Assert chip select

A 4
phl_counter =
phl_num_bytes

phl_counter >0

ph2_counter = ph3_counter =
ph2_num_bytes ph3_num_dummy_bits

ph4_counter =
ph4_num_bytes

False False

False

ph2_counter >0 ph3_counter >0

ph4_counter >0 False Deassert chip Done
select

True

True

True True
True True
Read next byte
from cmd_data Send one SPl clock Rx FIFO full
(Internalor
Extemnal)
Y A 4

False

Transmit byte False Decrement

(SPI or QSPI) ph3_counter

Read byte from
Tx FIFO

Transmit byte (0)
and Receive byte

Ly

SPI or QSPI
A 4
Decrement
phl_counter v v
Transmit byte Write byte to
(SPI or QSPI) Internal Rx FIFO or
External Rx FIFO
interface
A 4
Decrement v

ph2_counter

Decrement
ph4_counter

i

Figure 5.2. QSPI Master Streamer Programmable Phases

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-TN-02222-1.0

http://www.latticesemi.com/legal

= LATTICE

Phase 1: Transmit phl_num_bytes (0-4) bytes from cmd_data register

e For SPI flash devices, this normally includes 1 command byte and 0 or 3 address bytes.

e Datais transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph1l_mode setting in
transaction_ctrll.

e Serial data input is ignored

Phase 2: Transmit ph2_num_bytes (0-1028) bytes from Tx FIFO

e For SPI flash devices, this is normally used for page program data and/or 4 byte addressing.

e Datais transmitted in SPI mode DSPI mode, or QSPI mode depending on the ph2_mode setting in
transaction_ctrll.

e Serial data input is ignored.

Phase 3: Transmit ph3_num_dummy_bits (0-15) bits
e For SPI flash devices, this is normally used to generate dummy cycles for read data commands.
e Dummy data (0) is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph3_mode setting.
e Serial data input is ignored.
Phase 4: Receive ph4_num_bytes (0-4GB) bytes and send to Rx FIFO
e For SPI flash devices, this is normally used for read commands.
e Datais received in SPI mode, DSPI mode, or QSPI mode depending on the ph4_mode setting.
e Received data is stored in Rx FIFO or sent out the External Rx FIFO interface depending on the rx_fifo_dest.
e Serial data output is O for SPI or high impedance for QSPI.
e SPIslave ignores the data.
SPI Flash Page Program example:
cmd_data = 0x02xxxxxx (where xxxxxx = 24-bit Flash address).
Tx FIFO contains DataBytel...DataBytel6 values
phl_num_bytes =4, phl_mode=0
ph2_num_bytes = N, ph2_mode =0 (N=16 in example)
ph3_num_dummy_bits =0, ph3_mode =0
ph4_num_bytes =0, ph4_mode =0

A | S IS 8 T 1 0 6 W

Figure 5.3. Example for PP Program Sequence

SPI Flash FAST_READ example:
cmd_data = 0x0Bxxxxxx (where xxxxxx = 24-bit address).
phl_num_bytes =4, phl_mode =0
ph2_num_bytes =0, ph2_mode =0
ph3_num_dummy_bits =N, ph3_mode =0 (N=8 in example)
ph4_num_bytes =M, ph4_mode=0 (M=16 in example)

P ¢ B A Ty B 1 [T W

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 5.4. Example for FAST_READ Sequence

SPI RDID example:
cmd_data = 0x9F000000
phl_num_bytes =1, phl_mode =0
ph2_num_bytes =0, ph2_mode =0
ph3_num_dummy_bits =0, ph3_mode =0
ph4_num_bytes = 3, ph4_mode =0

S N A I
(N S N S A A I | S

Figure 5.5. Example for RDID Sequence

SPI Flash QREAD4B example:
cmd_data = 0x6C000000
Tx FIFO contains 4-byte Read Address
phl_num_bytes =1, phl_mode =0
ph2_num_bytes =4, ph2_mode =0
ph3_num_dummy_bits =N, ph3_mode =0 (N=8 in example)
ph4_num_bytes =M, ph4_mode =2 (M=64 in example)

[VI

[
o e I
RSBy 8y 1 1 g T T
I W S R AR T 1] Iy s I % [S v

Figure 5.6. Example for QREAD4B Sequence

5.6.2. Width Conversion

Each Tx and Rx FIFO has a 32-bit access port for the system bus (APB) and an 8-bit access port for the SPI Master state
machine. The 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs. The endianness of the
32-bit data is big endian, see Table 5.1.

Wherever possible, the implementation should avoid stalling the system bus while doing width conversions. For
example, on the Tx FIFO, the 32-bit write value should be stored in a local register and the system bus write cycle
should be terminated before doing the four 8-bit writes to the Tx FIFO. On the Rx FIFO, the logic should read bytes from
the Rx FIFO into a local 32-bit register whenever the Rx FIFO is not empty, so that the 32-bit value can be returned
immediately whenever a system bus read is received. This avoids tying up the system bus and stalling the CPU while
the width conversions are being performed.

5.6.3. FIFO Empty/Full Behavior

The recommended usage model is for the CPU to write all of the data for a transaction to the Tx FIFO (for example, a
full 256-byte page) before starting the transaction so that the Tx FIFO does not become empty in the middle of a
transaction.

If the Rx FIFO indicates that it is full before the transaction is completed, then the SPI/QSPI state machine stalls until
the Rx FIFO is no longer full. When this stall occurs, gpi_csn_o is held asserted but the SPI/QSPI clock is gated off (held
in the inactive state). When the Rx FIFO is not full, the clock is gated back on and data is received over SPI/QSPI.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6.4. Typical Flash Read/Program Flow
The typical flash (MX25L12845G, MACRONIX, CO, Ltd) read/program flow is shown in Figure 5.7.

Figure 5.7. Typical Flash Read/Program Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6. I°C Monitor

The 1°C Monitor is an I2C access and command module that can monitor the traffic on the I2C bus to identify potential
illegal traffic based on a pre-defined library. Once illegal traffic is detected, this I2C Monitor informs the host through
the status flag and/or interrupt. With user option, the current communication can be disrupted by disabling the I1>C bus.

The I2C Monitor compares the first eight bytes of I2C bus traffic immediately after the slave I2C address with the
pre-defined filters in the database. The filters are set up by the system host through the APB Bus. Once a matching
event is detected, it informs the host using status sampling through the APB Bus or dedicated interrupt. Meanwhile,
according to user setup, it disables the current 12C communication to prevent catastrophic damage to the system.

The block diagram of the I2C Monitor is shown in Figure 6.1.

6.1. Features

The key features of the 1°C Monitor include:
e Monitoring of traffic on an I2C bus for illegal activity based on programmable filter conditions
e Protects bus from illegal activity by driving bus low

6.2. Block Diagram

I°C Monitor
scl >
< I2CBF_DRVA |2CBF_LOGIC
> > (I°C Bus Drive) (Main Logic)
il i
12CBF_SI2C
(12C Bus Monitor)
‘ v
irqg_o
<
I2CBF_SCI
APBW (System Configuration Interface)
«-

Figure 6.1. I>C Monitor Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.3. Signal Description

Table 6.1. I>°C Monitor Signal Description

Signal | Direction | Description

12C Monitor

12C_MONXx_SCL Bidir Clock (Input during monitor, drives low when exception)
12C_MONXx_SDA Bidir Data (Input during monitor, drives low when exception)

6.4. Register Description

The register address map specifies the available 12C Monitor core registers and which are accessible through APB.

Table 6.2. I>°C Monitor Core Registers

Offset Register Name Access Default value Description
Ox1FC 12CBF_CR R/W 32’H00000000 Control Register
e Bit[31:8]: Unused
e Bit [7]: i2cbf_en — This bit enables the I2CBF IP to perform
the 12C bus traffic event detection.
e Bit [6]: bus_stop — If asserted, this bit allows the host to
unconditionally disable the 12C bus by driving both SCL and
SDA low. The bus is released after this bit is written with 0.
e Bit [5]: bus_dis_en — This bit enables the I2CBF IP to
disable the 12C bus in case an event is detected.
e Bit [4:0]: total_number_of_entry
These five bits allow the host to inform the I2CBF IP of the
number entries defined for the event detection. The current
maximum number is 20.
Ox1F8 I2CBF_INTENR R/W 32’H00000000 Interrupt Enable Register
e Bit[31:8]: Unused
. Bit[7:6]: Reserved
. Bit[5]: int_en — This bit enables the interrupt from the
I2CBF IP to the system host in case an I2C traffic event is
detected.
e Bit [4:0]: Reserved
Ox1F4 I2CBF_INTSETR R/W 32’H00000000 Interrupt Set Register
e Bit[31:8]: Unused
e Bit[7:6]: Reserved
Bit[5]: int_set — This bit enables the interrupt from the
I12CBF IP to the system host in case an I2C traffic event is
detected.
e Bit [4:0]: Reserved
Ox1FO0 12CBF_SR R 32’H00000000 Status Register
. Bit [31:8]: Unused
. Bit [7:6]: Reserved
. Bit [5]: event_detected — This bit indicates that there is an
event detected from the 12C bus traffic based on the entry
table setup.
e Bit [4:0]: entry_number_for_current_event
These four bits indicate the entry number for the current event.
It is stable once an event is detected until the I2CBF IP is reset
by the host.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Default value

Description

0x140

Reserved

0x13C

ENTRY20_D

R/W

32’H00000000

ENTRY 20 [127:96]

e Bit [31]: entry_enable — This bit enables this particular
entry for the event detection.

e Bit[30]: 10_bits_address — This bit enables the 10 bits
address for I12C slave address checking.

e Bit[29:27]:i2c_10_bits_address_msb — These bits are the
MSB 3 bits of the 10 bits address if the bit [126] is set.

e Bit[26:20]: 7_bits_address — These bits are the I2C Slave
Address for I12C bus traffic checking.

e Bit [19]: rw — This bit is the RW checking bit for I°C bus
traffic monitoring. The same as the 12C Bus Specification, 1
is for read and O for write.

e Bit [18]: rw_nc —This bit is used to disable the RW bit
checking. Once set, the RW bit is ighored for I°C bus traffic
checking, hence, both I12C bus read and write are
monitored.

e Bit[17:16]: check_mode — These two bits are used to set
up the checking mode for this entry. The provided modes
are shown in Table 6.3.

e Bit [15:8]: detection_enable_mask — These eight bits are
the active High Mask to enable corresponding received
byte(s) among the eight bytes immediately after the 1°C
slave address for event detection.

e Bit [7:0]: bit_wide_operation_selection_mask — These
eight bits are the active High Mask to alter corresponding
byte event detection from pattern matching to bit
detection against the corresponding Check Data Byte.

See the detailed format in Table 6.4.

0x138

ENTRY20_C

R/W

32’HO0000000

ENTRY 20 [95:64]

Bit [31:0]: check_data_mask_byte — These four bytes are the
checking data for the event detection or Bit Mask bytes
depending on the entry check mode setup.

For Mode 00 and Mode 01, these four bytes serve as Bit Mask
bytes for bitwise checking selection. The mask bytes order
corresponds to the position of the SET bit (1) within the Bit-
Wide Operation Selection Mask (Entry Bit [103:96]). The larger
mask number index corresponds to the MSB side of the Bit-
Wide Operation Selection Mask. A maximum of four Bit Mask
bytes can be selectively enabled per entry. For Mode 10 and
Mode 11, these four bytes are part of the check data bytes
(total of 12 bytes).

See the detailed format in Table 6.4.

0x134

ENTRY20_B

R/W

32’H00000000

ENTRY20 [63:32]

Bit [31:0]: check_data_byte — These first four bytes of data are
the checking data for the event detection.

See the detailed format in Table 6.4.

0x130

ENTRY20_A

R/W

32’H00000000

ENTRY20 [31:0]

Bit [31:0]: check_data_byte — These next four bytes of data are
the checking data for the event detection.

See the detailed format in Table 6.4.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Default value Description

0x12C ENTRY19_D R/W 32’H00000000 Refer to Entry20 Register
0x128 ENTRY19 _C R/W 32’H00000000 Refer to Entry20 Register
0x124 ENTRY19 B R/W 32’H00000000 Refer to Entry20 Register
0x120 ENTRY19_A R/W 32’H00000000 Refer to Entry20 Register
— — — — ENTRY2_A —ENTRY18_D
— — — — Refer to Entry20 Register
0x0C ENTRY1_D R/W 32’H00000000 Refer to Entry20 Register
0x08 ENTRY1_C R/W 32’H00000000 Refer to Entry20 Register
0x04 ENTRY1_B R/W 32’H00000000 Refer to Entry20 Register
0x00 ENTRY1_A R/W 32’H00000000 Refer to Entry20 Register

Table 6.3. Check Mode Table

Check Mode Description

Detection Enable
Mask

Bit-Wide Operation
Selection Mask

Data Byte
Utilized

2’b00 .
Check Mode 1

Multiple byte checking against
Data Byte 1-8 based on the
Detection Enable Mask and Bit-
Wide Operation Selection Mask
setting

e Event trigger by ALL enabled
bytes matching to the
corresponding receiving bytes

Utilized,
Multiple Hot

Utilized,
Max 4 Hot

Data Byte 1-8
Bit Mask 1-4

2'b01 .
Check Mode 2

Multiple byte checking against
Data Byte 1-8 based on the
Detection Enable Mask and Bit-
Wide Operation Selection Mask
setting

e Event trigger by ANY enabled
bytes matching to the
corresponding receiving bytes

Utilized,
Multiple Hot

Utilized,
Max 4 Hot

Data Byte 1-8
Bit Mask 1-4

2’b10 .
Check Mode 3

Single byte checking against
entry Data Byte 1-12, based on
the Detection Enable Mask
setting

e Eventis triggered if the
specified receiving byte DOES
NOT match any byte among the
entry Data Byte 1-12.

Utilized,
One Hot

Data Byte 1-12

2’b11 °
Check Mode 4

Single byte checking against the
entry Data Byte 1-12 based on
the Detection Enable Mask
Setting.

e Eventis triggered if the
specified receiving byte DOES
match one of the entry Data
Byte 1-12.

Utilized,
One Hot

Data Byte 1-12

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Each Entry Data is 128 bits in length. The field’s assignments for each 12C Monitor Entry Data is shown Table 6.4. The
APB host, through the 32 bits APB Bus, can read/write this True Dual Port memory.

Table 6.4. Data Entry Format

Bits | 127 126 [125 [124 [123 [122 [121 [120 |119 118 |117 |116 [115 [114 [113 [112

Name | Entry 10 Bits | 10 Bits Address I2C 7 Bits Address RW | RW Check Mode
Enable | Address | MSB NC

Bits | 111 120 [109 [108 107 [106 [105 [104 |103 [102 [101 [100 [99 [98 [97 |96

Name | Detection Enable Mask Bit-Wide Operation Selection Mask

Bits | 95 |94 |93 [92 |91 [o0 |89 |88 [87 |86 |85 [s4 [83 [82 |81 |80

Name | Check Data Byte 12/Bit Mask 4 Check Data Byte 11/Bit Mask 3

Bits | 79 |78 |77 |76 |75 |74 |13 |72 |71 |70 |e9 |68 [67 [66 |65 |64

Name | Check Data Byte 10/Bit Mask 2 Check Data Byte 9/Bit Mask 1

Bits | 63 |62 |61 |60 |59 |58 [57 |56 |55 |54 [s53 [s52 [51 |50 [49 |48

Name | Check Data Byte 8 Check Data Byte 7

Bits | 47 a6 a5 |44 |43 |42 |41 |40 |39 [38 [37 [36 [35 [34 (33 |32

Name | Check Data Byte 6 Check Data Byte 5

Bits |31 |30 290 [28 |27 |26 [25 |24 |23 |22 |21 [20 [19 [18 |17 |16

Name | Check Data Byte 4 Check Data Byte 3

Bits | 15 14 13 12 |11 10 |9 [8 [7 [s [5 [a [3 [2 [1 Jo

Name | Check Data Byte 2 Check Data Byte 1

6.5. Module Description

6.5.1. 12CBF_SCI

I2CBF_SCl is the System Configuration Interface for the 12C Monitor, which contains the configurable memory for the IP.
The system host can access this memory through the 32 bits APB bus. The memory/registers are:

e Control register, read and write access.

e Status register, read-only.

e True Dual Port memory for the entry data for event detection, which can be read/written by the host through the
32-bit APB bus, and read by the I2CBF_LOGIC through the 128-bit internal data bus.

6.5.2. 12CBF_SI2C

The 12CBF_SI2C module monitors the I2C bus activities, detects the START/STOP conditions, examines the 12C slave
address, and fetches the first eight data bytes. It provides the received address, RW bits, received data bytes along with
the data byte count number to the I2CBF_LOGIC module for event detection. Also, for some application scenarios, it
can provide the receiving bit count and acknowledge information to 12CBF_DRVX block for I12C bus disable control.

6.5.3. 12CBF_LOGIC

The 12CBF_LOGIC module gets the current I°C bus activities from the 12CBF_SI2C module and the entry data from the
12CBF_SCI module. It then performs event detection based on the control register and entry data settings for every
data byte received from the 12C bus traffic. Once an event is detected, it sets up corresponding status register bit and
sends out interrupt to the host if control register setting allows.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATTICE Mach-NX SFB Hardware Usage Guide

Technical Note

6.5.4. 12CBF_DRVA

This I2CBF_DRVA module is controlled by the output of the I2CBF_LOGIC module to disable the I>C bus by driving both
SCL and SDA low. This disrupts the 1°C communication. Once the I2C bus is disabled, it could only be released by writing
to the status register of the 1°C Monitor from the host or by cycling the power supply. To only disrupt the I12C
communication on the slave side without disabling the whole I12C bus, a different module, such as I2CBF_DRVB with bus
multiplexer, can be deployed to replace the I2CBF_DRVA module.

6.6. Programming Flow

During the system initialization phase, the system host should download the Entry Table into the True Dual Port
Memory inside the I2CBF_SCI block through the APB bus. To start the 12C bus monitoring process, the host should write
the I2CBF_CR through the APB bus with the I2CBF_EN bit set to 1. The host should receive interrupt if an event is
detected, if the INT_EN bit is set inside I2CBF_CR, or the host has to pull the I2CBF_SR to identify the I12C bus status.

If the BUS_DIS_EN bit inside the I2CBF_CR is set, the I>C bus is disabled for further communication between master and
slave. To resume the I°C bus communication, the host should perform a write operation to the 12CBF_SR through the
APB bus.

To stop I2C bus monitoring, the host should write the I2CBF_CR with the I2CBF_EN bit set to 0.

6.6.1. Example Data Alignment for Check Mode 1 and Mode 2

For Check Mode 1 and Check Mode 2, the I2C Monitor checks every time a new byte (for the first eight bytes
immediately after the I12C Slave Address) is received for all available entries. For each entry, the Data and Mask
alignment is shown in Figure 6.2.

Mode 1, 2
[7C Tratie BBl s roess [rw]] ReveyeT Roveyez [A] Rovenes [A] Roveyea A Reveyes Roveyes [A] Roveye? ROVEy@8IN] A] Roveyes [A] Roveyeto [a] Al reveyen [AIE
Detection Enable Mask Check EN 1 Check EN 2 Check EN 3 Check EN 4. Check EN 5 Check EN 6 Check EN 7 Check EN 8
(Bit111) (Bit 109) (8it 109) (Bit 109) (Bit 107) (Bit 106) (8it 105) (8t 104)
Detecton Campare Target CheckDaim CheckDaa CheckData Gheck Data Check Data CheckDaa CheckData CreckDam v
[eecmemen | == B e et e et e s | e | [monena | o | [s
,,———"'["7 | I¢] I4 1 <
[e | Il el el
it Wide Operaton Seecton Mask* BMASK SELL BMASK SELS BMASK SELS BMASK SELS BUASK SELS BUASK SELG BUASK SELT BUASK SELS
P 1a (Bit103) (Bit 102) (Bit 101) (8it 100) (Bit99) (Bito8) (Bit97) (8it96)
Exvent Detect Condition = ENTRY_ENABLE and (RC SLAVE ADDRESS == ENTRY ADDRESS) and ((RCV RW == ENTRY RW) | ENTRY RW NC) e Check EN X and | (RCV_Byte X ~ Check Data By X and (SMASN SEL X 7 BitMask ¥ (B(Ib1)):
Notes
1. Multpl bis can b e the chec spondng RCV byte.
2Up e check
™ Masi he 1s the Bt ask 4
it

o
3 The bi

Figure 6.2. Check Mode 1 and Mode 2 Data Alighment

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02222-1.0 47

http://www.latticesemi.com/legal

Mach-NX SFB Hardware Usage Guide .':LATT’CE

Technical Note

6.6.2. Example Data Alignment for Check Mode 3 and Mode 4

For Check Mode 3 and Check Mode 4, the 12C Monitor checks every time a new byte (for the first eight bytes
immediately after the I12C Slave Address) is received for all available entries. However, the data arrangement is
different. For each entry, the data alignment in Check Mode 3 and Check Mode 4 are demonstrated in Figure 6.3.

Mode 3, 4
[e Tt BBl siave rovress [ww [] RoVEyed [] Roveez || Roveyes ROV Byte’s RGVEyEa] A ReVEAET] Al RGVEVEB] A] rovenes [A] Roveneio [A] . [A] roveyen [AJH
X CheckEN T CheckEnz CheckEN3 Crecken s CheckENS CheckEN G Chocken T CheckEN®
Detection Enable Mask (Bit 111) (8t 109) (Bit109) (8t 109) (8it 107) (Bit 106) (8it105) (8t 104)
Detection Compare Target CreckDam CrecicDam CheckDaia Check Data CheckData CheckDaia CheckDaia Chock Data CheckData, Check Data CheckData CheckDaa,
(From Enry Data) Byte 1 Byte 2 Bye3 Byte 4 Byte5 Byte 6. Byte 7. Byes Byte 9 Byte 10 Byte 11 Byle 12

Mode 3 Event Detect Condtion = ENTRY_ENABLE and (RCV SLAVE ADDRESS == ENTRY ADDRESS) and ((RCV RW == ENTRY RW) | ENTRY RW NC) and Check EN X and (RCV_Byte ¢ [Check Data Byte 1, Check Data Byte 12));
Mode 4 Event Detect Condition = ENTRY_ENABLE and (RCV SLAVE ADDRESS == ENTRY ADDRESS) and ((RCV RW == ENTRY RW) | ENTRY RW NC) and Check EN X and (RCV_Byte & [Check Data Byte 1, Check Data Byte 12])

set ROV byte.

Figure 6.3. Check Mode 3 and Mode 4 Data Alighment

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-TN-02222-1.0

http://www.latticesemi.com/legal

= LATTICE

7. 12C/SMBus Slave

7.1. Overview

The I°C Slave provides device addressing, read/write operation and an acknowledgement mechanism.

7.2. Features

The key features of 12C Slave include:
e Supports 7-bit and 10-bit Addressing Mode
e Supports the following bus speeds:
e Standard-mode (Sm) — up to 100 kbit/s
e Fast-mode (Fm) — up to 400 kbit/s
e Fast-mode Plus (Fm+) — up to 1 Mbit/s
e Supports Clock stretching

e Configurable ACK/NACK response on address and data phases

e Integrated Pull-up

e Integrated Glitch filter
e Polling and Out-of-band Interrupt Modes

e 8-byte Tx FIFO
e 16-byte Rx FIFO
e SMBus Support

7.3. Signal Description

Table 7.1. IC Slave IP Core Signal Description

Signal | Direction | Description

12C/SMBus Slave

SMBUSx_INT Output SMBus Alert signal/I>C Interrupt
SMBUSx_SCL Input SMBus/I%C Serial Clock
SMBUSx_SDA Bidir SMBus/I>C Data

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.4. Register Description

7.4.1. Overview

The I2C Slave Core configuration registers are located at the addresses shown in Table 7.2.

Table 7.2. I?C Slave Registers Address Map

Offset Register Name Access Type Description
0x00 RD_DATA_REG RO Read Data Register
0x00 WR_DATA_REG WO Write Data Register
0x04 SLVADR_L_REG R/W Slave Address Lower Register
0x08 SLVADR_H_REG R/W Slave Address Higher Register
0x0C CONTROL_REG R/W Control Register
0x10 TGT_BYTE_CNT_REG R/W Target Byte Count Register
0x14 INT_STATUS1_REG RW1C Interrupt Status First Register
0x18 INT_ENABLE1_REG R/W Interrupt Enable First Register
0x1C INT_SET1_REG WO Interrupt Set First Register
0x20 INT_STATUS2_REG RW1C Interrupt Status Second Register
0x24 INT_ENABLE2_REG R/W Interrupt Enable Second Register
0x28 INT_SET2_REG wo Interrupt Set Second Register
0x2C FIFO_STATUS_REG RO FIFO Status Register

— Reserved
8:;2 Reserved RSVD Write access is ignored and 0 is returned on read access.

The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while
read access goes to RD_DATA_REG.

7.4.2. Write Data Register (WR_DATA_REG)

Table 7.3 shows the Write Data Register. This is the interface to Transmit FIFO. Writing to WR_DATA_REG pushes a
word to Transmit FIFO. When writing to WR_DATA_REG, the host should ensure that Transmit FIFO is not full. This can
be done by reading FIFO_STATUS_REG. Data is popped WR_DATA_REG during I>C read transaction. When reset is
performed, the contents of Transmit FIFO are not reset but the FIFO control logic is reset. Thus, content is not
guaranteed after reset.

Table 7.3. Write Data Register

Field Name Access Width Reset

[7:0] tx_fifo \"Y/e] 8 not guaranteed

7.4.3. Read Data Register (RD_DATA_REG)

Table 7.4 shows the Read Data register. This is the interface to Receive FIFO. After a data is received from 1°C bus
during I12C write transaction, the received data is pushed to Receive FIFO. Reading from RD_DATA_REG pops a word
from Receive FIFO. The host should ensure that Receive FIFO has data before reading RD_DATA_REG, data is not
guaranteed when this register is read during Receive FIFO empty condition. On the other hand, if Receive FIFO is full
but I2C Slave continues to receive data, new data is lost. Read FIFO_STATUS_REG to determine the status of Receive
FIFO. Similar to Transmit FIFO, the reset value of Receive FIFO is also not guaranteed after reset.

Table 7.4. Read Data Register

Field Name Access Width Reset

[7:0] rx_fifo RO 8 not guaranteed

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.4.4. Slave Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)

The Slave Address Lower Register (SLAVE_ADDRL_REG) shown in Table 7.5 is a 7-bit Slave address. This is used for 7-bit
and 10-bit addressing mode as follows:

e For 7-bit Addressing Mode, it is the Slave address
e For 10-bit Addressing Mode, it is the lower 7 bits of the Slave address

Table 7.5. Slave Address Lower Register

Field Name Access Width Reset
[7] Reserved RSVD 1 -
[6:0] slave_addr_|_reg RW 7 0x51

The Slave Address Higher Register (SLAVE_ADDRH_REG) shown in Table 7.6 is the upper 3 bits of 10-bit Slave address.
This is not used in 7-bit addressing mode.

Table 7.6. Slave Address Higher Register

Field Name Access Width Reset
[7:3] Reserved RSVD 5 -
[2:0] slave_addr_h_reg RW 3 0x0

7.4.5. Control Register (CONTROL_REG)

Table 7.7 shows the summary of Control Register. This each bit of this register controls the behavior of I2C Slave Core.

Table 7.7. Control Register

Field Name Access Width Reset
[7:5] Reserved RSVD 3 —

[4] nack_data RW 1 1’b0
[3] nack_addr RW 1 1’b0
[2] Reset \"Y/e] 1 1’b0
[1] clk_stretch_en RW 1 1'b0
[0] addr_10bit_en RW 1 1'b0

e nack_data

NACK on Data Phase. Specifies ACK/NACK response on I>C data phase.
1’b0 — Sends ACK to received data
1’b1 — Sends NACK to received data

e nack_addr

NACK on Address Phase. Specifies ACK/NACK response on I2C address phase.
1’b0 — Sends ACK to received address if it matches the programmed slave address
1’b1 — Sends NACK to received data

o reset

Reset. Resets I2C Slave Core for 1 clock cycle. The registers and APB interface are not affected by this reset. This is
write-only bit because it has auto clear feature; it is cleared to 1'b0 after 1 clock cycle.

1’b0 — No action.

1’b1 — Resets I2C Slave Core.

o clk_stretch_en
Clock Stretch Enable. Enables clock stretching on ACK bit of data.

1’b0 — I2C Slave Core releases SCL signal

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1’b1 — I2C Slave Core pulls down SCL signal on the next ACK bit of data phase and keeps pulling down until
the host writes 1’b0 on this bit.

e addr_10bit_en

10-bit Address Mode Enable. Enables the reception of 10-bit I1?C address.
1’b0 — I°C Slave Core rejects the 10-bit I>C address, it sends NACK.
1’b1 — I?C Slave Core responds to 10-bit I2C address. If SLAVE_ADDRH_REG.slave_addr_h_reg is 3'h0, it also
responds to 7-bit address.

7.4.6. Target Byte Count Register (TGT_BYTE_CNT_REG)

Table 7.8 shows the summary of Target Byte Count Register. The desired number of bytes to transfer (read/write) in I2C
bus should be written to this register. This is used for Transfer Complete interrupt generation — asserts when the target
byte count is achieved.

Table 7.8. Target Byte Count Register
Field Name Access Width Reset
[7:0] byte_cnt RSVD 8 8’h00

7.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG)

Table 7.9 and Table 7.10 show the Interrupt Status Register (INT_STATUS1_REG and INT_STATUS2_REG) which contains
all the interrupts currently pending in the I12C Slave Core. When an interrupt bit asserts, it remains asserted until it is
cleared by the host by writing 1’b1 to the corresponding bit.

The interrupt status bits are independent of the interrupt enable bits; in other words, status bits may indicate pending
interrupts, even though those interrupts are disabled in the Interrupt Enable Register, see the Interrupt Enable
Registers (INT_ENABLE1_REG, INT_ENABLE2_REG) section for details. The logic which handles interrupts should mask
(bitwise and logic) the contents of INT_STATUS1_REG and INT_ENABLE1_REG registers as well as INT_STATUS2_REG
and INT_ENABLE2_REG to determine the interrupts to service. The int_o interrupt signal is asserted whenever both an
interrupt status bit and the corresponding interrupt enable bits are set.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 7.9. Interrupt Status First Register

Field Name Access Width Reset
[7] tr_cmp_int RW1C 1 1'b0
[6] stop_det_int RW1C 1 1'b0
[5] tx_fifo_full_int RW1C 1 1'b0
[4] tx_fifo_aempty_int RW1C 1 1'b0
[3] tx_fifo_empty_int RW1C 1 1'b0
2] rx_fifo_full_int RW1C 1 1'b0
[1] rx_fifo_afull_int RW1C 1 1’b0
[0] rx_fifo_ready_int RW1C 1 1'b0

tr_cmp_int
Transfer Complete Interrupt Status. This interrupt status bit asserts when the number of bytes transferred in I12C
interface is equal to TGT_BYTE_CNT.byte_cnt.

1’b0 — No interrupt

1’b1 - Interrupt pending

stop_det_int
STOP Condition Detected Interrupt Status. This interrupt status bit asserts when STOP condition is detected after
an ACK/NACK bit.

1’b0 — No interrupt

1’b1 — Interrupt pending

tx_fifo_full_int
Transmit FIFO Full Interrupt Status. This interrupt status bit asserts when Transmit FIFO changes from not full state
to full state.

1’b0 — No interrupt

1’b1 - Interrupt pending

tx_fifo_aempty_int
Transmit FIFO Almost Empty Interrupt Status. This interrupt status bit asserts when the amount of data words in
Transmit FIFO changes from 3 to 2.

1’b0 — No interrupt

1’b1 — Interrupt pending

tx_fifo_empty_int

Transmit FIFO Empty Interrupt Status. This interrupt status bit asserts when the last data in Transmit FIFO is
popped-out, causing the FIFO to become empty.

1’b0 — No interrupt

1’b1 - Interrupt pending

rx_fifo_full_int

Receive FIFO Full Interrupt Status. This interrupt status bit asserts when RX FIFO full status changes from not full to
full state.

1’b0 — No interrupt

1’b1 — Interrupt pending

rx_fifo_afull_int

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Receive FIFO Almost Full Interrupt Status. This interrupt status bit asserts when the amount of data words in
Receive FIFO changes from 13 to 14.

1’b0 — No interrupt

1’b1 - Interrupt pending

rx_fifo_ready_int

Receive FIFO Ready Interrupt Status. This interrupt status bit asserts when Receive FIFO is empty and receives a
data word from I2C interface.

1’b0 — No interrupt

1’b1 — Interrupt pending

Table 7.10. Interrupt Status Second Register

Field Name Access Width Reset

[7:2] reserved RSVD 6 —

[1] stop_err_int RW1C 1 1’b0

[0] start_err_int RW1C 1 1'b0
e stop_err_int

STOP Condition Error Interrupt Status. This interrupt status bit asserts after detecting a STOP condition when it is
not expected. STOP condition is expected to occur only after the ACK/NACK bit. The stop_err_int and stop_det_int
do not assert at the same time.

1’b0 — No interrupt

1’b1 — Interrupt pending

start_err_int

START Condition Error Interrupt Status. This interrupt status bit asserts after detecting a START condition when it is
not expected. START condition is expected to occur only when I2C bus is idle and after receiving an ACK or a NACK
(repeated START condition).

1’b0 — No interrupt

1’b1 - Interrupt pending

7.4.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)

Table 7.11 and Table 7.12 show the summary of Interrupt Enable Registers that corresponds to interrupts status bits in
INT_STATUS1_REG and INT_STATUS2_REG. They do not affect the contents of the INT_STATUS1_REG and
INT_STATUS2_REG. If one of the INT_STATUS1_REG/ INT_STATUS2_REG bits asserts, and the corresponding bit of
INT_ENABLE1_REG/INT_ENABLE2_REG is 1’b1, the interrupt signal int_o asserts.

Table 7.11. Interrupt Enable First Register

Field Name Access Width Reset
[7] tr_cmp_en RW 1 1’b0
[6] stop_det_en RW 1 1'b0
[5] tx_fifo_full_en RW 1 1'b0
[4] tx_fifo_aempty_en RW 1 1'b0
[3] tx_fifo_empty_en RW 1 1’b0
[2] rx_fifo_full_en RW 1 1’b0
[1] rx_fifo_afull_en RW 1 1'b0
[0] rx_fifo_ready_en RW 1 1'b0
e tr_cmp_en

Transfer Complete Interrupt Enable. Interrupt enable bit corresponded to Transfer Complete Interrupt Status.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1’b0 — Interrupt disabled
1’b1 — Interrupt enabled

stop_det_en
STOP Condition Detected Interrupt Enable. Interrupt enable bit corresponded to STOP Condition Detected
Interrupt Status.

1’b0 — Interrupt disabled

1’b1 — Interrupt enabled

tx_fifo_full_en
Transmit FIFO Full Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Full Interrupt Status.

1’b0 — Interrupt disabled
1’b1 - Interrupt enabled

tx_fifo_aempty_en
Transmit FIFO Almost Empty Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Almost Empty
Interrupt Status.

1’b0 — Interrupt disabled

1’b1 — Interrupt enabled

tx_fifo_empty_en

Transmit FIFO Empty Interrupt Enable. Interrupt enable bit corresponded to Transmit FIFO Empty Interrupt Status.
1’b0 — Interrupt disabled
1’b1 - Interrupt enabled

rx_fifo_full_en

Receive FIFO Full Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Full Interrupt Status.
1’b0 - Interrupt disabled
1’b1 - Interrupt enabled

rx_fifo_afull_en

Receive FIFO Almost Full Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Almost Full Interrupt
Status.

1’b0 — Interrupt disabled

1’b1 - Interrupt enabled

rx_fifo_ready_en

Receive FIFO Ready Interrupt Enable. Interrupt enable bit corresponded to Receive FIFO Ready Interrupt Status.
1’b0 — Interrupt disabled
1’b1 - Interrupt enabled

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 7.12. Interrupt Enable Second Register

Field Name Access Width Reset

[7:2] reserved RSVD 6 -

[1] stop_err_en RW 1 1’b0

[0] start_err_en RW 1 1'b0
e stop_err_en

STOP Condition Error Interrupt Enable. Interrupt enable bit corresponded to STOP Condition Error Interrupt Status.
1’b0 — Interrupt disabled
1’b1 - Interrupt enabled

start_err_en

START Condition Error Interrupt Enable. Interrupt enable bit corresponded to START Condition Error Interrupt
Status.

1’b0 — Interrupt disabled

1’b1 — Interrupt enabled

7.4.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG)

Table 7.13 and Table 7.14 show the summary of Interrupt Set Registers. Writing 1’b1 to a register bit in INT_SET1_REG
or INT_SET2_REG asserts the corresponding interrupts status bit in INT_STATUS1_REG or INT_STATUS2_REG while
writing 1'b0 is ignored. This is intended for testing purposes only.

Table 7.13. Interrupt Set First Register

Field Name Access Width Reset
[7] tr_cmp_set wo 1 1'b0
[6] stop_det_set wo 1 1'b0
[5] tx_fifo_full_set WO 1 1'b0
[4] tx_fifo_aempty_set WO 1 1’b0
[3] tx_fifo_empty_set wo 1 1’b0
[2] rx_fifo_full_set wo 1 1’b0
[1] rx_fifo_afull_set wo 1 1'b0
[0] rx_fifo_ready_set WO 1 1'b0
e tr_cmp_set

Transfer Complete Interrupt Set. Interrupt set bit corresponded to Transfer Complete Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.tr_cmp_int

stop_det_set

STOP Condition Detected Interrupt Set. Interrupt set bit corresponded to STOP Condition Detected Interrupt
Status.

1’b0 — No action

1’b1 — Asserts INT_STATUS1_REG.stop_det_int

tx_fifo_full_set

Transmit FIFO Full Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Full Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.tx_fifo_full_int

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e tx_fifo_aempty_set

Transmit FIFO Almost Empty Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Almost Empty Interrupt
Status.

1’b0 — No action

1’b1 — Asserts INT_STATUS1_REG.tx_fifo_aempty_int

o tx_fifo_empty_set

Transmit FIFO Empty Interrupt Set. Interrupt set bit corresponded to Transmit FIFO Empty Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.tx_fifo_empty_int

o rx_fifo_full_set

Receive FIFO Full Interrupt Set. Interrupt set bit corresponded to Receive FIFO Full Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.rx_fifo_full_int

o rx_fifo_afull_set

Receive FIFO Almost Full Interrupt Set. Interrupt set bit corresponded to Receive FIFO Almost Full Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.rx_fifo_afull_int

e rx_fifo_ready_set

Receive FIFO Ready Interrupt Set. Interrupt set bit corresponded to Receive FIFO Ready Interrupt Status.
1’b0 — No action
1’b1 — Asserts INT_STATUS1_REG.rx_fifo_ready_int

Table 7.14. Interrupt Set Second Register

Field Name Access Width Reset
[7:2] reserved RSVD 6 -

[1] stop_err_set wo 1 1'b0
[0] start_err_set WO 1 1'b0

e stop_err_set

STOP Condition Error Interrupt Set. Interrupt set bit corresponded to STOP Condition Error Interrupt Status.
0 - No action.
1 —Asserts INT_STATUS2_REG.stop_err_set.

e start_err_set

START Condition Error Interrupt Set. Interrupt set bit corresponded to START Condition Error Interrupt Status.
0 - No action.
1 —Asserts INT_STATUS2_REG.start_err_set.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.4.10. FIFO Status Register (FIFO_STATUS_REG)

FIFO Status Register reflects the status of Transmit FIFO and Receive FIFO as shown in Table 7.15.

Table 7.15. FIFO Status Register

Field Name Access Width Reset
[7:6] reserved RSVD 2 —

[5] tx_fifo_full RO 1 1'b0
[4] tx_fifo_aempty RO 1 1'bl
[3] tx_fifo_empty RO 1 1'bl
[2] rx_fifo_full RO 1 1'b0
[1] rx_fifo_afull RO 1 1'b0
[0] rx_fifo_empty RO 1 1'bl

o tx_fifo_full

Transmit FIFO Full. This bit reflects the full condition of Transmit FIFO.
1’b0 — Transmit FIFO is not full
1’b1 — Transmit FIFO is full

tx_fifo_aempty

Transmit FIFO Almost Empty. This bit reflects the almost empty condition of Transmit FIFO.
1’b0 — Data words in Transmit FIFO is greater than TX FIFO Almost Empty Flag attribute
1’b1 — Data words in Transmit FIFO is less than or equal to TX FIFO Almost Empty Flag attribute

tx_fifo_empty

Transmit FIFO Empty. This bit reflects the empty condition of Transmit FIFO.
1’b0 — Transmit FIFO is not empty — has at least 1 data word
1’b1 — Transmit FIFO is empty

rx_fifo_full

Receive FIFO Full. This bit reflects the full condition of Receive FIFO.
1’b0 — Receive FIFO is not full
1’b1 — Receive FIFO is full

rx_fifo_afull

Receive FIFO Full. This bit reflects the almost full condition of Receive FIFO.
1’b0 — Data words in Receive FIFO is less than RX FIFO Almost Full Flag attribute
1’b1 — Data words in Receive FIFO is greater than or equal to RX FIFO Almost Full Flag attribute

rx_fifo_empty

Receive FIFO Full. This bit reflects the empty condition of Receive FIFO.
1’b0 — Receive FIFO is not empty — has at least 1 data word
1’b1 — Receive FIFO is empty

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.5. Operations Details

7.5.1. General I’C Operation

In the I2C bus, the transaction is always initiated by the master. A slave may not transmit data unless it has been
addressed by the master. Each device on the I2C bus has a specific device address to differentiate between other
devices that are on the same I12C bus. Data transfer is initiated only when the bus is idle. A bus is considered idle if both
SDA and SCL lines are high after a STOP condition.
The general procedure for an I12C transaction is as follows:
1. Master wants to send data to a slave:

e Master-transmitter sends a START condition and addresses the slave-receiver

e Master-transmitter sends data to slave-receiver

e Master-transmitter terminates the transfer with a STOP condition
2. Master wants to receive/read data from a slave:

e Master-receiver sends a START condition and addresses the slave-transmitter

e Master-receiver sends the requested register to read to slave-transmitter

e Master-receiver receives data from the slave-transmitter

e Master-receiver terminates the transfer with a STOP condition
I2C communication is initiated by the master sending a START condition and terminated by the master sending a STOP
condition. Normal data on the SDA line must be stable during the high level of the SCL line. The High or Low state of the
data line can only change when SCL is Low. The Start condition is a unique case and is defined by a High-to-Low
transition on the SDA line while SCL is High. The Stop condition is a unique case and is defined by a Low-to-High
transition on the SDA line while SCL is High. These are shown in Figure 7.1.

scl_io | i [/7 _/: |
sda_io '——\-'I / X ” \ L./,

START Condition STOP Condition

Figure 7.1. START and STOP Conditions

Each data packet on the I2C bus consists of eight bits of data followed by an acknowledge bit (ACK) so one complete
data byte transfer requires nine clock pulses. Data is transferred with the most significant bit (MSB) first. The
transmitter releases the SDA line during the ACK bit and the receiver of the data transfer must drive the SDA line low
during the ACK bit to acknowledge the data receipt. If a Slave-receiver does not drive the SDA line low during the ACK
bit, this indicates that the Slave-receiver was unable to accept the data and the Master can then generate a Stop
condition to abort the transfer. If the Master-receiver does not generate an ACK, this indicates to the Slave-transmitter
that this byte was the last byte of the transfer.

For more information on I12C bus, refer to I1°C Bus Specification and User Manual.

7.5.2. Glitch Filter

I2C Slave IP Core has integrated glitch filter to remove 50ns noise/spike as recommended by the 12C Bus Spec for
Standard Mode, Fast Mode, and Fast Mode Plus. The glitch filter is applied to both the SCL and SDA signals before they
are fed to internal logic. Thus, the I12C signals seen by the IP Core is delayed by a number of clock cycles (~50 ns +1 clock
cycle). The filter depth is automatically adjusted based on the System Clock Frequency attribute.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

= LATTICE

7.5.3. Clock Stretching

Clock Stretching allows the I2C slave to pause a transaction by holding the SCL line Low. The transaction cannot
continue until the line is released high again. On the byte level, a slave device may be able to receive bytes of data at a
fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold
the SCL line Low after reception and acknowledgment (ACK bit) of a byte to force the master into a wait state until the
slave is ready for the next byte transfer.

12C Slave Core performs clock stretching on the byte level (during ACK/NACK bit) if CONTROL_REG.clk_stretch_en is set
to 1. Clock stretching is only performed during data phase. Clock stretching is normally performed when the host need
more time before it can address the request of 1°C master.

7.5.4. ACK/NACK Response

I2C Slave Core can be configured to send an ACK or a NACK based on settings of CONTROL_REG.nack_data and
CONTROL_REG.nack_addr, refer to Control Register (CONTROL_REG) section for details. If the host would like to
temporarily disable the access to 1°C Slave Core, it should set CONTROL_REG.nack_addr = 1’b1. In this case, I°C Slave
Core sends NACK when it is addressed by the external 1°C Master.

If the host would like to terminate an on-going I1>C write transaction to the I>C Slave Core, it should set
CONTROL_REG.nack_data = 1’b1. In this case, I2C Slave Core sends NACK on the next ACK bit for a data byte. Note that
the ACK bit is always sent by the receiver, the CONTROL_REG.nack_data has no effect on I?C read transaction.

7.6. Programming Flow

7.6.1. Initialization

To perform initialization, load the appropriate registers of the I2C Slave Controller namely:

e SLAVE_ADDRL_REG, SLAVE_ADDRH_REG - This step is optional. In most cases, initial value set in I1>C Slave
Addresses attribute of the user interface does not need to be changed.

e CONTROL_REG

e TGT_BYTE_CNT_REG — It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number
of bytes to transfer is not known, that is receiving unknown amount of data.

e INT_ENABLE1_REG - It is recommended to enable only the following interrupts when receiving commands from
master.

o Transfer Complete Interrupt — If the size of data is known
e Receive FIFO Data Interrupt — if the size of data is unknown
e INT_ENABLE2_REG - it is recommended to enable both error interrupts

7.6.2. Data Transfer in response to 12C Master Read

The following are the recommended steps to perform data transfer in response to read request of I1°C Master. This
assumes that the amount of data to send is known.

To perform data transfer in response to read request of I1°C Master:

1. Write data to WR_DATA_REG, amounting to <= FIFO Depth.

2. Enable only Transfer Complete Interrupt. If transmit data is > FIFO Depth, enable also TX FIFO Almost Empty
interrupt. If no more data to transfer, otherwise, proceed to step 7.

3. Wait for TX FIFO Almost Empty Interrupt.
If polling mode is desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts.
If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS1_REG and check that
tx_fifo_aempt_int is asserted.
Read INT_STATUS2_REG also to check that no error occurred.

Clear TX FIFO Almost Empty Interrupt, it also okay to clear all interrupts.
Write data byte to WR_DATA_REG, amounting to less than or equal to (FIFO Depth - TX FIFO Almost Empty Setting).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

If there are remaining data to transfer, go back to Step 3, otherwise, disable TX FIFO Almost Empty Interrupt.

Wait for Transfer Complete Interrupt

If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS1_REG and check that
tr_cmp_int is asserted.

Read INT_STATUS2_REG also to check that no error occurred.

8. Clear all interrupts.

7.6.3. Data Transfer in response to 12C Master Write

The following are the recommended steps to perform data transfer in response to write request of 12C Master. This

assumes that the amount of data to receive is known.

To perform data transfer in response to write request of 1°C Master:

1. Enable only Transfer Complete Interrupt. If data to receive is > FIFO Depth, enable also RX FIFO Almost Full
interrupt. If data to receive is <= FIFO Depth, proceed to Step 7.

2. Wait for RX FIFO Almost Full Interrupt.
If polling mode is desired, read INT_STATUS2_REG until rx_fifo_afull_int asserts.
If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS2_REG and check that
rx_fifo_afull_int is asserted.
Read INT_STATUS2_REG also to check that no error occurred.
Clear RX FIFO Almost Full Interrupt, it also okay to clear all interrupts.

Read data byte from RD_DATA_REG, amounting to less than or equal to (FIFO Depth - TX FIFO Almost Empty
Setting).

If there are remaining data to receive, go back to Step 2, otherwise, disable RX FIFO Almost Full Interrupt.

Wait for Transfer Complete Interrupt

If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS1_REG and check that
tr_cmp_int is asserted.

Read INT_STATUS2_REG also to check that no error occurred.

Clear all interrupts.
Read all data from RD_DATA_REG.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

7.7.

SMBus Slave Support

The I2C Slave Core provides SMBus support by including the smb_alert signal.

7.7.1. SMBus Control and Status Register

Table 7.16.

SMBus Register Address Map

= LATTICE

Offset Register Name Access Type Description
0x30 SMB_CONTROL_REG RW SMBus control and status register
Table 7.17. SMB Control and Status Register
Field Name Access Width Reset
[7:1] Reserved RSVD 7 -
[0] smb_alert RW 1 1’b0

e smb_alert

Transmits the alert interrupt to SMBus Master
1’b0 — No interrupt to Master
1’b1 — SMBus slave sent alert interrupt to Master

7.7.2. Operation Details

7.7.2.1. SMBAlert Operation

A Slave device can signal the Master through SMBUSx_INTinterrupt line that it wants to talk. The Master processes the
interrupt and simultaneously accesses all the smbalert devices through the Alert Response Address. Only the Slave
device which pulled SMBUSx_INTLow acknowledges the Alert Response Address (0001 100b). The host performs a
modified Receive Byte operation. The 7-bit device address provided by the Slave transmit device is placed in the seven
most significant bits of the byte. The eighth bit can be zero or one.

If more than one device pulls SMBUSx_INTLow, the highest priority device (lowest address) device wins the
communication rights.

After receiving an acknowledge (ACK) from the Master in response to its address, the device stops pulling down the
SMBUSx_INTsignal. If the Master still sees the SMBUSx_INTLow when the message transfer is complete, the same
process repeats again. The SMBus Slave controller monitors the data bus to see if any other Slave is responding to the
Alert Response Address. This can be achieved by checking the input and output of SMBUSx_SDA. When there is match,
the smb_alert register bit is cleared and the controller generates an interrupt signal to the RISC-V processor.

7 1 1 I 1 1

S | Alert Response Address | Rd| A Address X|IN|P

Figure 7.2. SMBus 7-Bit Addressable Device Response

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8. eSPIl Slave

The Enhanced Serial Peripheral Interface (eSPl) is a synchronous serial interface compatible with SPI. The eSPI Slave
includes an ALERT pin to inform the eSPI Master that the eSPI Slave needs to be serviced. The eSPI slave is a
configurable Slave which supports multiple channels. The eSPI Slave also allows Slave triggered transactions.

8.1. Features

The key features of the eSPI Slave are:

e Compliant with eSPI base specification as defined in Enhanced Serial Peripheral Interface Specification rev.1.0
e Supports Single, Dual and Quad modes

e Supports Slave triggered transaction

e Supports the following channels:

e Peripheral Channel

e Virtual Wires Channel

e 0OOB Message (Tunneled SMBus) Channel

e Run-time Flash Access Channel

e Supports CRC Checking

8.2. Block Diagram

eSPI Slave

4——1PB——p APB

!

CSR @—p> Virtual Wire

! v

eSPI Slave FSM

4
|

eSPl

Figure 8.1. eSPI Slave Block Diagram

8.2.1. CSR

CSR contains the configuration and status registers which are written either by the system Master through the APB
Interface or by the eSPI Master through the eSPI bus.

8.2.2. Virtual Wire

The virtual wire channel is used to communicate the state of the sideband pins or GPIO tunneled through eSPI as in-
band messages.

8.2.3. eSPI Slave FSM

This blocks contains the main FSM of the eSPI Slave and the other channels supported by the Slave. The FIFO for these
channels are also contained in this block.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

8.3. Signal Description

Table 8.1. eSPI Slave External Signal Description

= LATTICE

Port | Width Direction Description

eSPI Slave 1/0 Interface

espi_clk 1 Input eSPI Clock input driven by eSPI Master
espi_data 4 Bidir eSPI serial data

espi_cs 1 Input eSPI chip select input driven by eSPI Master
espi_alert 1 Output eSPI Slave alert output

8.4. Channel FIFOs

The eSPI Slave provides RX and TX FIFQ’s for the different channels. The FIFO sizes are shown in Table 8.2.

Table 8.2. Channel FIFO Size Table

Peripheral Channel FIFO

Posted completion RX FIFO depth 128 bytes
Posted completion TX FIFO depth 128 bytes
Non posted RX FIFO depth 16 bytes
Non posted TX FIFO depth 16 bytes
0O0B Channel FIFO

OOB RX FIFO depth 256 bytes
OOB TX FIFO depth 256 bytes
Flash Channel FIFO

Flash non posted RX FIFO depth 256 bytes
Flash completion RX FIFO depth 256 bytes
Flash non posted TX FIFO depth 256 bytes
Flash completion TX FIFO depth 256 bytes

8.5. Register Description

The eSPI slave registers are shown in Table 8.3.

Table 8.3. Summary of eSPI Slave Registers

Offset Register Name Access | Reset Value Description

0x00 ESPI_DEVICE_ID RO 0x0000_0001 | reserved[31:8]
version_id[7:0] — Indicates compliance to specific eSPI
specification revision. Slaves compliant to this revision of
the specification must advertise a value of 01h in this field.
The value for this register is loaded from PARAMETER

0x04 ESPI_GEN_CAP_CONFIG RW 0x0000_0000 | crc_check_en[31] —This bit is set to 1 by eSPI master to

enable the CRC checking on the eSPI bus. By default, CRC
checking is disabled.

resp_modifier_en[30] — This bit is set to 1 to enable the use
of Response Modifier by eSPI slave to append either a
peripheral (channel 0) completion, a virtual wire (channel
1) packet or a flash access (channel 3) completion to the
GET_STATUS response phase.

When this bit is a 0, eSPI slave must only use the Response
Modifier of 00, which is no append. By default, the
Response Modifier is disabled.

reserved[29]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name

Access

Reset Value

Description

alert_mode[28] — Configures the Alert mechanism used by
the slave to initiate a transaction on the eSPI interface.

e 0Ob:1/0[1] pin is used to signal the Alert event

e 1b: Alert# pin is used to signal the Alert event
io_mode_sel[27:26] — eSPI master programs this field to
enable the appropriate mode of operation, which takes
effect at the deassertion edge of the Chip Select. The I/O
Mode configured in this field must be supported by both
the master and the slave. Single I/0 mode is supported by
default.

e 2’b00 Single 1/0

e 2’b01 Dual I/O

e 2’b10QuadIO

e 2’bl1 Reserved
cfg_io_mode[25:24] — Indicates the 1/0 modes supported
by the slave.

e 2’b00 Single 1/0

e 2’b01 Single and Dual I/0

e 2’b10Single and Quad I/0

e 2’b11 Single, Dual and Quad
open_drain_alert_sel[23] — Set to 1 by eSPI master to
configure the Alert pin as an open drain output. By default,
Alert pin operates as a driven output. This bit must only be
programmed to 1 if open drain Alert pin is supported by
the slave. The bit must be valid when Alert Mode bitis a 1
indicating Alert pin is used for signaling the Alert event.
operating_freq[22:20] — Identifies the frequency of
operation.

. 3’b000 20 MHz

. 3’b001 25 MHz

. 3’b010 33 MHz

. 3’b011 50MHz

. 3’b100 66MHz

e Others Reserved
cfg_open_drain_alert[19] — Indicates the support of the
Alert# pin as an open drain output by the slave.
cfg_max_freq[18:16] — Identifies the maximum frequency
of operation supported by the slave.

. 3’b000 20 MHz

. 3’b001 25 MHz

. 3’b010 33 MHz

. 3’b011 50 MHz

. 3’b100 66 MHz

e Others Reserved
max_wait_state[15:12] — eSPI master sets the maximum
WAIT STATE allowed before the slave must respond with
an ACCEPT, DEFER, NON FATAL ERROR or FATAL ERROR
response code. This is a 1-based field in the granularity of
byte time. When 0, it indicates a value of 16-byte time. A
byte time corresponds to eight serial clocks in the Single
1/0 mode, four serial clocks in the Dual I/O mode or two
serial clocks in the Quad /0 mode.

reserved[11:8]
cfg_channel[7:0] — Indicates that the corresponding

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access | Reset Value Description
channel is supported by the slave.

* Bits 0 Peripheral Channel

e Bits 1 Virtual Wire Channel

e Bits 2 OOB Message Channel

e Bits 3 Flash Access Channel

e - Bits 7:4 Reserved for platform specific channels
0x08 ESPI_CHO_CAP_CONFIG RW 0x0000_1101 | reserved[31:15]

peri_ch_max_read_req_size[14:12] — Maximum read
request size for the Peripheral channel. The length of the
read request must not cross the naturally aligned address
boundary of the corresponding Maximum Read Request
Size.
e 000b Reserved
¢ 001b 64 bytes address aligned
e 010b 128 bytes address aligned
e 011b 256 bytes address aligned
e 100b 512 bytes address aligned
e 101b 1024 bytes address aligned
e 110b 2048 bytes address aligned
e 111b 4096 bytes address aligned
reserved[11]
peri_ch_max_payload_size_sel[10:8] — Maximum payload
size for the Peripheral channel. The value set by the eSPI
master must never be more than the value advertised in
the Max Payload Size Supported field.
The payload of the transaction must not cross the naturally
aligned address boundary of the corresponding Maximum
Payload Size.
¢ 000b: Reserved
e 001b: 64 bytes address aligned max payload size
e 010b: 128 bytes address aligned max payload size
e 011b: 256 bytes address aligned max payload size
e 100b 111b: Reserved
reserved[7]
cfg_peri_max_payload[6:4] — This field advertises the
Maximum Payload Size supported by the slave.
¢ 000b Reserved
e 001b 64 bytes address aligned max payload size
e 010b 128 bytes address aligned max payload size
e 011b 256 bytes address aligned max payload size
¢ 100b 111b : Reserved
reserved[3]
peri_ch_bus_master_en[2] — When this bit is a 0, it disables
the slave from generating bus mastering cycles on the
Peripheral channel. When this bit is a 1, it allows the slave
to generate bus mastering cycles on the Peripheral
channel.
Prior to clearing the Bus Master Enable bit from 1 to 0,
there must be no outstanding non posted cycle pending
completion from the slave.

cfg_peri_channel_ready[1] — When this bitis a 1, it
indicates that the slave is ready to accept transactions on
the Peripheral

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Reset Value

Description

channel.

eSPI master should poll this bit after the channel is enabled
before running any transaction on this channel to the slave.
peri_ch_en[0] — The channel is by default enabled

after the eSPI Reset.

This bit is cleared to 0 by eSPI master to disable the
Peripheral channel. Besides, clearing this bit from 1 to 0
triggers a reset to the Peripheral channel. The channel
remains disabled until this bit is set to 1 again.

Prior to disabling the Peripheral channel, the Bus Master
Enable bit should be cleared to 0 to disable the bus
mastering cycles.

0x0C

ESPI_CH1_CAP_CONFIG

RW

0x0000_0000

reserved[31:22]

VW_max_count[21:16] — The maximum number of Virtual
Wire groups that can be sent in a single Virtual Wire
packet. This is a 0 based count. The default value of 0
indicates count of 1. The value configured in this field must
never be more than the value advertised in the Maximum
Virtual Wire Count Supported field.

reserved[15:14]

cfg_max_vw_count[13:8] — Advertises the Maximum
Virtual Wire Count supported by the slave. If the slave
supports different count value as initiator and as receiver
of the Virtual Wires, this field indicates the lower of the
two. The Virtual Wire Count specifies the maximum
number of Virtual Wire groups being communicated in a
single Virtual Wire packet. eSPI slave must advertise a
value of 000111b or more in this field to indicate the
support of at least 8 Virtual Wire groups being
communicated in a single Virtual Wire packet. This is a
0-based count.

reserved[7:2]

cfg_vw_channel_ready[1] — When this bit is a 1, it indicates
that the slave is ready to accept transactions on the Virtual
Wire channel.

eSPI master should poll this bit after the channel is enabled
before running any transaction on this channel to the slave.
vw_ch_en[0] — This bit is set to 1 by eSPI master to enable
the Virtual Wire channel.

Clearing this bit from 1 to 0 do not reset the Virtual Wire
channel whereby the state of all the Virtual Wires must
continue to be maintained internally.

When this bit is 0, no transaction shall occur on the Virtual
Wire channel. The channel is by default disabled after the
eSPI Reset.

0x10

ESPI_CH2_CAP_CONFIG

RW

0x0000_0100

reserved[31:11]
oob_msg_ch_max_payload_size_sel[10:8] — eSPI master
sets the maximum payload size for the OOB Message
channel. The value set by the eSPI master must never be
more than the value advertised in the Max Payload Size
Supported field. The Maximum Payload Size applies to the
actual payload of the protocol embedded in the OOB
packet.

e 000b — Reserved

e (001b - 64 bytes max payload size

e 010b — 128 bytes max payload size

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access | Reset Value Description

e 011b - 256 bytes max payload size

e 100b-111b - Reserved
reserved[7]
cfg_oob_max_payload[6:4] — Advertises the Maximum
Payload Size supported by the slave. The Maximum
Payload Size applies to the actual payload of the protocol
embedded in the OOB packet.

¢ 000b - Reserved

e 001b - 64 bytes max payload size

e 010b - 128 bytes max payload size

e 011b - 256 bytes max payload size

e 100b-111b - Reserved
reserved[3:2]
cfg_oob_channel_ready[1] -When this bitis a 1, it
indicates that the slave is ready to accept transactions on
the OOB
Message channel. eSPI master should poll this bit after the
channel is enabled before running any transaction on this
channel to the slave.
oob_msg_ch_en[0] — This bit is set to 1 by eSPI master to
enable the OOB Message channel. Clearing this bit from 1
to O triggers a reset to the OOB Message channel such as
during error handling. The channel remains disabled until
this bit is set to 1 again. The channel is by default disabled
after the eSPI Reset.

0x14 ESPI_CH3_CAP_CONFIG RW 0x0000_1104 | reserved[31:15]

flash_ch_max_read_req_size[14:12] — eSPI master sets the
maximum read request size for the Flash Access channel.
The length of the read request must not exceed the
corresponding Maximum Read Request Size with no
address alignment requirement.

e 000b: Reserved.

e 001b: 64 bytes max read request size

e 010b: 128 bytes max read request size

e 011b: 256 bytes max read request size

e 100b: 512 bytes max read request size

e 101b: 1024 bytes max rea d request size

e 110b: 2048 bytes max read request size

e 111b: 4096 bytes max read request size
cfg_flash_sharing_mode[11] — When Flash Access channel
is supported, this bit advertises the flash sharing scheme
intended by the slave.

e Ob: Master attached flash sharing

e 1b: Slave attached flash sharing
This bit is a Read Only ‘0’ in the base specification as only
master attached flash sharing is defined.
flash_ch_max_payload_size_sel[10:8] — eSPI master sets
the maximum payload size for the Flash Access channel.
The value set by the eSPI master must never be more than
the value advertised in the Max Payload Size Supported
field.

¢ 000b: Reserved.
e 001b: 64 bytes max payload size
e 010b: 128 bytes max payload size

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Reset Value

Description

¢ 011b: 256 bytes max payload size

¢ 100b 111b: Reserved
cfg_flash_max_payload[7:5] — Advertises the Maximum
Payload Size supported by the slave.

¢ 000b: Reserved

¢ 001b: 64 bytes max payload size

e 010b: 128 bytes max payload size

e 011b: 256 bytes max payload size

¢ 100b 111b: Reserved
flash_ch_block_erase_size[4:2] — eSPI master sets this field

to communicate the block erase size to the slave. This field
is applicable only to master attached flash sharing scheme.

e 000b: Reserved

e 001b: 4 Kbytes

¢ 010b: 64 Kbytes

¢ 011b: Both 4 Kbytes and 64 Kbytes are supported

¢ 100b: 128 Kbytes

e 101b: 256 Kbytes

¢ 110b 111b: Reserved
cfg_flash_channel_ready[1] — When this bitisa 1, it
indicates that the slave is ready to accept transactions on
the Flash Access channel. eSPI master should poll this bit
after the channel is enabled before running any transaction
on this channel to the slave.
flash_ch_en[0] — This bit is set to 1 by eSPI master to
enable the Flash Access channel.
Clearing this bit from 1 to 0 triggers a reset to the Flash
Access channel such as during error handling. The channel
remains disabled until this bit is set to 1 again. The channel
is by default, disabled after the eSPI Reset.

0x18

ESPI_CH3_CAP_CONFIG_2

RO

0x0000_0000

reserved[31:22]

cfg_flash_trgt_rpmc[21:16] — Indicates the total number of
Replay Protected Monotonic Counters (RPMC) supported
by the Slave. It is a 1-based field.

e 0Oh: Slave does not support RPMC
e 1h: Slave supports up to 1 RPMC
e 2h: Slave supports up to 2 RPMC

e 3Fh: Slave supports up to 63 RPMC
cfg_flash_trgt_blk_erase_size[15:8] — Indicates the sizes of
the erase commands the master may issue. If multiple bits
are set then the master may issue an erase using any of the
indicated sizes. If multiple regions are accessible by the
master, this field advertises the common erase block sizes
for these regions. This field is only applicable when slave
attached flash sharing scheme is selected.

s Bit 0: Reserved

s Bit 1: Reserved

e Bit 2: 4 Kbytes EBS supported

s Bit 3: Reserved

e Bit 4: Reserved

e Bit 5: 32 Kbytes EBS supported
e Bit 6: 64 Kbytes EBS supported
e Bit 7: 128 Kbytes EBS supported

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Reset Value

Description

reserved[7:3]

cfg_flash_trgt_max_rd_size[2:0] — Indicates the maximum
read request size supported by the slave as the Target on
the Flash

Access channel. This field is only applicable when slave
attached flash sharing scheme is selected.

e 000b, 001b: 64 bytes max read request size.
e 010b: 128 bytes max read request size

e 011b: 256 bytes max read request size

e 100b: 512 bytes max read request size

e 101b: 1024 bytes max read request size

e 110b: 2048 bytes max read request size

e 111b: 4096 bytes max read request size

0x1C

PUT_PC_RX_FIFO_DATA

RO

0x0000_0000

reserved[31:8]
put_pc_rx_fifo_data[7:0] — FIFO to store incoming
Peripheral PC receive packets

0x20

GET_PC_TX_FIFO_DATA

WO

0x0000_0000

reserved[31:8]
get_pc_tx_fifo_data[7:0] — FIFO to store outgoing
Peripheral PC transmit packets

0x24

PUT_NP_RX_FIFO_DATA

RO

0x0000_0000

reserved[31:8]
put_np_rx_fifo_data[7:0] — FIFO to store incoming
Peripheral NP receive packets

0x28

GET_NP_TX_FIFO_DATA

WO

0x0000_0000

reserved[31:8]
get_np_tx_fifo_data[7:0] — FIFO to s tore outgoing
Peripheral NP transmit packets

0x2C

PUT_OOB_RX_FIFO_DATA

RO

0x0000_0000

reserved[31:8]
put_oob_rx_fifo_data[7:0] — FIFO to store incoming OOB
receive packets

0x30

GET_OOB_TX_FIFO_DATA

WO

0x0000_0000

reserved[31:8]
get_oob_tx_fifo_data[7:0] — FIFO to store outgoing OOB
transmit packets

0x34

GET_FLASH_NP_TX_FIFO

WO

0x0000_0000

reserved[31:8]
get_flash_np_tx_fifo[7:0] — FIFO to store TX flash NP
packets

0x38

PUT_FLASH_C_RX_FIFO

RO

0x0000_0000

reserved[31:8]
put_flash_c_rx_fifo[7:0] — FIFO to store RX flash
Completion packets

0x3C

PUT_FLASH_NP_RX_FIFO

RO

0x0000_0000

reserved[31:8]
put_flash_np_rx_fifo[7:0] — FIFO to store RX flash NP
packets

0x40

GET_FLASH_C_TX_FIFO

WO

0x0000_0000

reserved[31:8]
get_flash_c_tx_fifo[7:0] — FIFO to store T X flash

Completion packets

0x44

IRQ_ENABLE1

RW

0x0000_0000

This register controls the masking of interrupt. When the
particular bit in this register is 0, then the corresponding
Interrupt in the IRQ_STATUS1 register is masked.

See Table 8.4 for details on the fields.

0x48

IRQ_STATUS1

RW1C

0x0000_0000

See Table 8.4 for details on the fields.

0x4C

IRQ_ENABLE2

RW

0x0000_0000

This register controls the masking of interrupt. When the
particular bit in this register is 0, then the corresponding
interrupt in the IRQ_STATUS2 register is masked.

See Table 8.5 for details on the fields.

0x50

IRQ_STATUS2

RW1C

0x0000_0000

See Table 8.5 for details on the fields.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Reset Value

Description

0x54

TX_CHN_AVAIL_REQ

WO

0x0000_0000

Writing this register triggers the IP to generate the alert
request to get the attention of Master. These bits are
cleared by the IP on the reception of corresponding
GET_* commands.

reserved[31:5]

flash_np_tx_avail_req[4] — GET FLASH NP Avail request
flash_c_tx_avail_req[3] — GET FLASH C Avail request
oob_tx_avail_req[2] — GET OOB Avail request
np_tx_avail_req[1] — GET NP Avail request
pc_tx_avail_req[0] — GET PC Avail request

0x58

ESPI_QUEUE_STATUS

RO

0x0000_0000

reserved[31:11]

fl_np_avail[10] — Available Alert for Flash NP commands
fl_c_avail[9] — Available Alert for Flash NP commands
fl_np_free[8] — Free Alert for Flash NP commands
fl_c_free[7] — Free Alert for Flash Completion commands
oob_avail[6] — Available Alert for OOB commands
vw_avail[5] — Available Alert for Virtual wire commands
np_avail[4] — Available Alert for Peripheral NP commands
pc_avail[3] — Available Alert Peripheral PC command
oob_free[2] — Free Alert for OOB commands

np_free[1] — Free Alert for Peripheral NP command
pc_free[0] — Free Alert for Peripheral PC commands

0x5C

FIFO_STATUS

RO

0x0000_0000

reserved[31:20]

get_flash_c_tx_fifo_empty[19] — GET Flash C TX FIFO
Empty indication

put_flash_np_rx_fifo_empty[18] — PUT Flash NP RX FIFO
Empty indication

put_flash_c_rx_fifo_empty[17] — PUT Flash C RX FIFO
Empty indication

get_flash_np_tx_fifo_empty[16] — GET Flash NP TX FIFO
Empty indication

get_oob_tx_fifo_empty[15] — OOB TX FIFO Empty
indication

put_oob_rx_fifo_empty[14] — OOB RX FIFO Empty
indication

get_np_tx_fifo_empty[13] — Peripheral NP RX FIFO Empty
indication

put_np_rx_fifo_empty[12] — Peripheral NP RX FIFO Empty
indication

get_pc_tx_fifo_empty[11] — Peripheral PC TX FIFO Empty
indication

put_pc_rx_fifo_empty[10] — Peripheral PC RX FIFO Empty
indication

get_flash_c_tx_fifo_full[9] — Flash C TX FIFO Full indication
put_flash_np_rx_fifo_full[8] — PUT Flash NP RX FIFO Full
indication

put_flash_c_rx_fifo_full[7] — PUT Flash C RX FIFO Full
indication

get_flash_np_tx_fifo_full[6] — Flash NP TX FIFO Full
indication

get_oob_tx_fifo_full[5] — OOB TX FIFO Full indication
put_oob_rx_fifo_full[4] — OOB RX FIFO Full indication
get_np_tx_fifo_full[3] — Peripheral PC TX FIFO Full
indication

put_np_rx_fifo_full[2] — Peripheral NP RX FIFO Full

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access | Reset Value Description
indication
get_pc_tx_fifo_full[1] — Peripheral PC TX FIFO Full
indication
put_pc_rx_fifo_full[0] — Peripheral PC RX FIFO Full
indication
0x60 FIFO_FLUSH wo 0x0000_0000 | reserved[31:10]
get_flash_c_tx_fifo_flush[9] — Flush the
GET_FLASH_C_TX_FIFO
put_flash_np_rx_fifo_flush[8] — Flush the
PUT_FLASH_NP_RX_FIFO
put_flash_c_rx_fifo_flush[7] — Flush the
PUT_FLASH_C_RX_FIFO
get_flash_np_tx_fifo_flush[6] — Flush the
GET_FLASH_NP_TX_FIFO
get_oob_tx_fifo_flush[5] — Flush the GET_OOB_TX_FIFO
put_oob_rx_fifo_flush[4] — Flush the PUT_OOB_RX_FIFO
get_np_tx_fifo_flush[3] — Flush the GET NP TX FIFO
put_np_rx_fifo_flush[2] — Flush the PUT NP RX FIFO
get_pc_tx_fifo_flush[1] — Flush the GET PC TX FIFO
put_pc_rx_fifo_flush[0] — Flush the PUT PC RX FIFO
0x64 ERROR_STATUS RW1C | 0x0000_0000 | reserved[31:9]
page_err[8] — Register to indicate Address Page Error
mal_vw_channel[7] — Register to indicate Malformed Error
detected in VW channel
mal_peri_channel[6] — Register to indicate Malformed
Error detected in Peripheral channel
get_wout_avail[5] — Register to indicate GET Without
Available Error is detected
put_wout_free[4] — Register to indicate PUT Without Error
is detected
unexpec_cs_deassert[3] — Register to indicate Unexpected
CS Deassert Error is detected
invalid_crc[2] — Register to indicate Invalid CRC Error is
detected
invalid_ctype[1] — Register to indicate Invalid Cycle type
Error is detected
invalid_cmd[0] — Register to indicate Invalid Command
Error is detected
0x68 VW_IDX0_TX_DATA RW 0x0000_0000 | vw_idx0_tx_data[31:0] — Register for VW_IDX0_TX_DATA
0x6C VW_IDX1_TX_DATA RW 0x0000_0000 | vw_idx1_tx_data[31:0] — Register for VW_IDX1_TX_DATA
0x70 VW_IDX4_TX_DATA RW 0x0000_0000 | vw_idx4_tx_data[31:0] - Register for VW_IDX4_TX_DATA
0x74 VW_IDX5_TX_DATA RW 0x0000_0000 | vw_idx5_tx_data[31:0] — Register for VW_IDX5_TX_DATA
0x78 VW_IDX6_TX_DATA RW 0x0000_0000 | vw_idx6_tx_data[31:0] — Register for VW_IDX6_TX_DATA
0x7C VW_IDX2_RX_DATA RO 0x0000_0000 | vw_idx2_rx_data[31:0] — Register for VW_IDX2_RX_DATA
0x80 VW_IDX3_RX_DATA RO 0x0000_0000 | vw_idx3_rx_data[31:0] — Register for VW_IDX3_RX_DATA
0x84 VW._IDX7_RX_DATA RO 0x0000_0000 | vw_idx7_rx_data[31:0] - Register for VW_IDX7_RX_DATA
0x88 VW_IDX64_RX_DATA RO 0x0000_0000 | vw_idx64_rx_data[31:0] — Register for

VW_IDX64_RX_DATA

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 8.4. Interrupt Bit Fields for IRQ_ENABLE1 and IRQ_STATUS1

Bit Index Field Name Description
31 IRQ_GET_FLASH_C_CMD_DONE Enable register to indicate get flash np command done
30 IRQ_GET_FLASH_NP_CMD_DONE Enable register to indicate FLASH NP Command done
29 IRQ_FLASH_C_RX_FIFO_URUN Enable register to indicate FLASH C RX FIFO Underrun detected
28 IRQ_FLASH_C_RX_FIFO_ORUN Enable register to indicate FLASH C RX FIFO Overrun detected
27 IRQ_PUT_FLASH_C_CMD_DONE Enable register to indicate PUT Flash C Command done
26 IRQ_FLASH_NP_RX_FIFO_URUN Enable register to indicate FLASH NP RX FIFO Underrun detected
25 IRQ_FLASH_NP_RX_FIFO_ORUN Enable register to indicate FLASH NP RX FIFO Overrun detected
24 IRQ_PUT_FLASH_NP_CMD_DONE Enable register to indicate PUT Flash NP command done
23 IRQ_GET_VW_CMD_DONE Enable register to indicate get vw command done
22 IRQ_PUT_VW_CMD Enable register to indicate put vw command done
21 IRQ_OOB_TX_FIFO_URUN Enable register to indicate OOB TX FIFO Underrun detected
20 IRQ_OOB_TX_FIFO_ORUN Enable register to indicate OOB TX FIFO Overrun detected
19 IRQ_GET_OOB_CMD_DONE Enable register to indicate GET oob command done
18 IRQ_OOB_RX_FIFO_URUN Enable register to indicate OOB RX FIFO Underrun detected
17 IRQ_OOB_RX_FIFO_ORUN Enable register to indicate OOB RX FIFO Overrun detected
16 IRQ_PUT_OOB_CMD_DONE Enable register to indicate Bit for indicating put oob command done
15 IRQ_NP_TX_FIFO_URUN Enable register to indicate NP TX FIFO Underrun condition detected
14 IRQ_NP_TX_FIFO_ORUN Enable register to indicate NP TX FIFO Overrun condition detected
13 IRQ_GET_NP_CMD Enable register to indicate GET NP Command is received
12 IRQ_PC_TX_FIFO_URUN Enable register to indicate PC TX FIFO Underrun condition detected
11 IRQ_PC_TX_FIFO_ORUN Enable register to indicate PC TX FIFO Overrun condition detected
10 IRQ_GET_PC_CMD Enable register to indicate GET PC Command is received
9 IRQ_NP_RX_FIFO_URUN Enable register to indicate NP RX FIFO Underrun detected
8 IRQ_NP_RX_FIFO_ORUN Enable register to indicate NP RX FIFO Overrun detected
7 IRQ_PUT_MEMRD32_SHORT Enable register to indicate PUT MEMRD32 RD Short command received
6 IRQ_PUT_IORD_SHORT Enable register to indicate PUT IO RD Short command received
5 IRQ_PUT_IOWR_SHORT Enable register to indicate PUT IO WR Short command received
4 IRQ_PUT_NP_CMD Enable register to indicate PUT NP Command is received
3 IRQ_SHORT_MEMWR Enable register to indicate SHORT 10 Command is received
2 IRQ_PC_RX_FIFO_URUN Enable register to indicate PC RX FIFO Underrun interrupt
1 IRQ_PC_RX_FIFO_ORUN Enable register to indicate PC RX FIFO Overrun interrupt
0 IRQ_PUT_PC_CMD Enable register to indicate PUT PC Command is received
Table 8.5. Interrupt Bit Fields for IRQ_ENABLE2 and IRQ_STATUS2
Bit Index Field Name Description
31:5 RESERVED Reserved fields
4 IRQ_ESPI_ERR_DET Enable register to indicate IRQ eSPI Error detection
3 IRQ_FLASH_C_TX_FIFO_URUN Enable register to indicate FLASH C TX FIFO Underrun detected
2 IRQ_FLASH_C_TX_FIFO_ORUN Enable register to indicate FLASH C TX FIFO Overrun detected
1 IRQ_FLASH_NP_TX_FIFO_URUN Enable register to indicate FLASH NP TX FIFO Underrun detected
0 IRQ_FLASH_NP_TX_FIFO_ORUN Enable register to indicate FLASH NP TX FIFO Overrun detected

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

9. GPIO

The GPIO provides a dedicated interface to configure each GPIO as either an input or an output. When configured as an
input, it can detect the state of a GPIO by reading the state of the associated register. When configured as an output, it
takes the value written into the associated register and controls the state of the controlled GPIO. The SoC Function
Block provides two types of GPIO, see Table 9.1. The Memory Mapped GPIO are registered based and controlled by the
CPU. The Virtual GPIO are controlled by the PLD logic, see Table 9.2.

The GPIO core consists of registers for reading and writing the GPIO channel. It also includes the necessary logic to
identify an interrupt event, when the port input changes.

Table 9.1. External GPIO Signal Descriptions

Signal | Direction | Description

Memory Mapped GPIO

GPIO_MMxx | Bidir | 16 General Purpose Memory Mapped I/O
Virtual GPIO

GPIO_xx | Bidir | 24 General Purpose 1/0 controlled from the PLD

Table 9.2. PLD Interface Signal Descriptions

Signal Direction | Description

gpio_input[23:0] Output Read data from GPIO

gpio_output[23:0] Input Write data to GPIO

gpio_direction[23:0] Input Set direction of the Virtual GPIO as input (0) or output (1)

Output When high, the Virtual I/O are ready to read gpio_direction and gpio_output inputs. When
a change has occurred on the gpio_direction and gpio_output inputs, the ready_gpio signal

ready_gpio goes low until the changes have been updated and returns to high when the changes are
complete.
Input Active low reset
reset_n_gpio When asserted, the reset_n_gpio signal places the Virtual GPIO in reset condition

(tri-stated inputs) and deasserts ready_gpio.

9.1. GPIO Features

The GPIO IP features are:

e Setting or clearing an output through a single register to allow parallel control of the outputs
e Setting or clearing an output by writing Set Data and Clear Data registers

e Output register reflects the output driven status

e Input register reflects the input status

e Allinputs may be configured as an interrupt source with configurable edge or level detection

9.2. Register Description

Table 9.3 shows the summary of GPIO registers.

Table 9.3. Register Address Map

Offset Register Name Access Type Description

0x00 RD_DATA_REG R Read Data Register

0x04 WR_DATA_REG R/W Write Data Register

0x08 SET_DATA_REG W Set Data Register

0x0C CLEAR_DATA_REG W Clear Data Register

0x10 DIRECTION_REG R/W Direction Control Register

0x14 INT_TYPE_REG R/W Interrupt Type Configure Register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Type Description

0x18 INT_METHOD_REG R/W Interrupt Method Configure Register
0x1C INT_STATUS_REG R/W Interrupt Status Register

0x20 IN_ENABLE_REG R/W Interrupt Enable Register

0x24 INT_SET_REG W Interrupt Set Register

9.2.1. Read Data Register (RD_DATA_REG)

Reading the Read Data Register returns the data from the input pins, see Table 9.4. Reset value is not observable

because value is updated immediately after reset.

Table 9.4. Read Data Register

Name Access Width Reset
rd_data R 16 NA
9.2.2. Write Data Register (WR_DATA_REG)
Writing in the Write Data Register changes the data of the output pins, see Table 9.5.
Table 9.5. Write Data Register
Name Access Width Reset
wr_data R/W 16 0

9.2.3. Set Data Register (SET_DATA_REG)

If any bit of the Set Data Register is set to 1, the corresponding bit of wr_data gets set to 1, see Table 9.6.

Table 9.6. Set Data Register

Name

Access

Width

Reset

set_data

W

16

9.2.4. Clear Data Register (CLEAR_DATA_REG)

If any bit of the Clear Data Register is set to 1, the corresponding bit of wr_data gets cleared set to 0, see Table 9.7.

Table 9.7. Clear Data Register

Name

Access

Width

Reset

clear_data

W

16

9.2.5. Direction Register (DIRECTION_REG)

The Direction Register determines the direction of pins. If any bit of this register is set to 0, the corresponding pin is

configured as an input, otherwise as an output, see Table 9.8.

Table 9.8. Direction Register

Name

Access

Width

Reset

direction_reg

R/W

16

www.latticesemi.com/legal

http://www.latticesemi.com/legal

9.2.6. Interrupt Type Register (INT_TYPE_REG)
The Interrupt Type Registers sets the type as edge (0) or level (1), see Table 9.9.

Table 9.9. Interrupt Type Register

= LATTICE

Name

Access

Width

Reset

int_type

R/W

16

9.2.7. Interrupt Method Register (INT_METHOD_REG)

The Interrupt Method Registers set the mode as rising (1) or falling (0) in for edge type interrupt or high (1) or low (0)
for level type interrupt, see Table 9.10.

Table 9.10. Interrupt Method Register

Name Access Width Reset

int_method R/W 16 0

9.2.8. Interrupt Status Register (INT_STATUS_REG)

The Interrupt Status Register (see Table 9.11) shows the interrupt status for each input, regardless of whether it is
enabled or not. If any bit of this register is set to 1 and the corresponding bit of INT_ENABLE_REG is set as well,
interrupt happens on the corresponding input. In order to clear interrupt, you must write 1 to the corresponding bit.

Table 9.11. Interrupt Status Register

Name Access Width Reset

int_status R/W 16 0

9.2.9. Interrupt Enable Register (INT_ENABLE_REG)

In the Interrupt Enable Register (see Table 9.12), each bit that is set to 1 enables interrupt for the corresponding port
when it is configured as an input.

Table 9.12. Interrupt Enable Register

Name Access Width Reset

int_enable R/W 16 0

9.2.10. Interrupt Set Register (INT_SET_REG)

In the Interrupt Set Register (see Table 9.13), you can generate interrupt by writing 1 to the corresponding bit of this
register. This also sets the corresponding bit of the int_status register to 1.

Table 9.13. Interrupt Set Register

Name Access Width Reset

int_set w 16 0

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

9.3. Programming Flow

9.3.1. Initialization

Initial values for all registers come from the user interface. To change default configuration, the following GPIO
registers should be set properly before performing Read or Write operation:

e Direction Register

e Interrupt Type Register

e Interrupt Method Register

e Interrupt Enable Register

In case any of the interrupts are enabled, these must first be cleared by writing 1s to the corresponding bits of the
Interrupt Status Register.

9.3.2. Data Transfer (Transmit/Receive Operation)

Assuming that the module is not currently performing any operation, below are recommended steps for performing a
GPIO transaction.

e Toread from inputs, read the Read Data Register.

e To write to outputs, write to the Write Data Register.

If an interrupt occurs and you want to clear that interrupt, write 1s to corresponding bits of the Interrupt Status
Register.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Mach-NX SFB Hardware Usage Guide ::LATTICE

Technical Note

10. Secure Enclave

For information on the Secure Enclave, please contact your local sales representative.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

78 FPGA-TN-02222-1.0

http://www.latticesemi.com/legal

Mach-NX SFB Hardware Usage Guide

=LATTICE .
Technical Note

References

For more information, refer to the following documents:
e Lattice Propel 1.0 User Guide
e Lattice Diamond Software 3.11 User Guide

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02222-1.0

79

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52910
http://www.latticesemi.com/view_document?document_id=52655

Mach-NX SFB Hardware Usage Guide ::LATTICE

Technical Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2020-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

80 FPGA-TN-02222-1.0

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

= LATTICE

Revision History

Revision 1.0, October 2021

Section

Change Summary

All Production release.
Revision 0.82, June 2021
Section Change Summary

SoC Function Block Memory Map

In Table 1.1, changed PFR Base Address to 00080800 for RESERVED Block, and PFR End
Address to 000807FF for CPU PIC TIMER Block.

CPU Subsystem

In Table 2.3, changed the last Offset to 0x414, TIMER_CMP_H.

QSPI Monitor

e Inthe overview description, changed the QSPI monitor definition to an SPI access and
command monitoring module.

e InTable 4.4
e changed Register Name to SPACE2_END_ADDR for 0xN68 Offset;
e changed Register Name to SPACE3_FILTER_CTRL for 0xN80 Offset.

QSPI Master Streamer

Modified the description regarding initiating the SPI transactions In the Transaction Phases
section.

I2C Monitor

Changed the I12C monitor definition to an 12C access and command module in the
introduction.

Revision 0.81, February 2021

Section

Change Summary

All

e Changed document title to Mach-NX SFB Hardware Usage Guide.
e Updated document to change all SoC reference to SoC Function Block.

Acronyms in This Document

Updated content.

Revision 0.80, December 2020

Section

Change Summary

All

Preliminary release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Mach-NX SFB Hardware Usage Guide
	Acronyms in This Document
	Register Access Definitions
	1. SoC Function Block Overview
	1.1. Root of Trust
	1.2. SoC Function Block Diagram
	1.3. SoC Function Block Memory Map

	2. CPU Subsystem
	2.1. Overview
	2.2. Modules Description
	2.2.1. RISC-V Processor Core
	2.2.1.1. Interrupt
	2.2.1.2. Exception
	2.2.1.3. Debug
	2.2.1.4. Control and status registers

	2.2.2. Submodule (PIC/Timer)
	2.2.2.1. PIC
	2.2.2.2. Timer

	3. System Memory
	3.1. Overview
	3.2. Features
	3.3. Block Diagram
	Figure 3.1. System Memory Block Diagram
	3.3.1. AHB-Lite Interface
	3.3.2. FIFO Interface
	3.3.3. System Memory Timing Information

	4. QSPI Monitor
	4.1. Overview
	4.2. Features
	4.3. Block Diagram
	4.4. Signal Description
	4.5. QSPI Command List
	4.6. Register Description
	4.7. Initialization Command Filtering
	4.8. Address Filtering
	4.9. Command Disable
	4.9.1. 24/32-Bit Addressing

	4.10. Unrecognized Command Filtering
	4.11. Timing Sequence
	4.11.1. Illegal Command Blocking
	4.11.2. Illegal Erase Command Breaking (3-Byte Address)
	4.11.3. Illegal Program Command Breaking (3-Byte Address, Illegal Start Address)
	4.11.4. Illegal Read Command Breaking (3-Byte Address, Illegal Start Address)
	4.11.5. Illegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)
	4.11.6. Illegal 4-Byte Command Breaking

	4.12. Mux/Demux Functionality
	4.13. Internal Switching

	5. QSPI Master Streamer
	5.1. Features
	5.2. Block Diagram
	5.3. FIFO Configuration
	5.4. Register Description
	5.5. Secure Enclave FIFO Interface
	5.6. Operation
	5.6.1. Transaction Phases
	5.6.2. Width Conversion
	5.6.3. FIFO Empty/Full Behavior

	5.6.4. Typical Flash Read/Program Flow

	6. I2C Monitor
	6.1. Features
	6.2. Block Diagram
	6.3. Signal Description
	6.4. Register Description
	6.5. Module Description
	6.5.1. I2CBF_SCI
	6.5.2. I2CBF_SI2C
	6.5.3. I2CBF_LOGIC
	6.5.4. I2CBF_DRVA

	6.6. Programming Flow
	6.6.1. Example Data Alignment for Check Mode 1 and Mode 2
	6.6.2. Example Data Alignment for Check Mode 3 and Mode 4

	7. I2C/SMBus Slave
	7.1. Overview
	7.2. Features
	7.3. Signal Description
	7.4. Register Description
	7.4.1. Overview
	7.4.2. Write Data Register (WR_DATA_REG)
	7.4.3. Read Data Register (RD_DATA_REG)
	7.4.4. Slave Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)
	7.4.5. Control Register (CONTROL_REG)
	7.4.6. Target Byte Count Register (TGT_BYTE_CNT_REG)
	7.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG)
	7.4.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)
	7.4.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG)
	7.4.10. FIFO Status Register (FIFO_STATUS_REG)

	7.5. Operations Details
	7.5.1. General I2C Operation
	7.5.2. Glitch Filter
	7.5.3. Clock Stretching
	7.5.4. ACK/NACK Response

	7.6. Programming Flow
	7.6.1. Initialization
	7.6.2. Data Transfer in response to I2C Master Read
	7.6.3. Data Transfer in response to I2C Master Write

	7.7. SMBus Slave Support
	7.7.1. SMBus Control and Status Register
	7.7.2. Operation Details
	7.7.2.1. SMBAlert Operation

	8. eSPI Slave
	8.1. Features
	8.2. Block Diagram
	8.2.1. CSR
	8.2.2. Virtual Wire
	8.2.3. eSPI Slave FSM

	8.3. Signal Description
	8.4. Channel FIFOs
	8.5. Register Description

	9. GPIO
	9.1. GPIO Features
	9.2. Register Description
	9.2.1. Read Data Register (RD_DATA_REG)
	9.2.2. Write Data Register (WR_DATA_REG)
	9.2.3. Set Data Register (SET_DATA_REG)
	9.2.4. Clear Data Register (CLEAR_DATA_REG)
	9.2.5. Direction Register (DIRECTION_REG)
	9.2.6. Interrupt Type Register (INT_TYPE_REG)
	9.2.7. Interrupt Method Register (INT_METHOD_REG)
	9.2.8. Interrupt Status Register (INT_STATUS_REG)
	9.2.9. Interrupt Enable Register (INT_ENABLE_REG)
	9.2.10. Interrupt Set Register (INT_SET_REG)

	9.3. Programming Flow
	9.3.1. Initialization
	9.3.2. Data Transfer (Transmit/Receive Operation)

	10. Secure Enclave
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, October 2021
	Revision 0.82, June 2021
	Revision 0.81, February 2021
	Revision 0.80, December 2020

