s=LATTICE

Using MachXO3D ESB to Implement
ECC-based Authentication

Reference Design

FPGA-RD-02065-1.0

September 2019

Using MachX0.3D ESB to Implement ECC-based Authentication .':LATT’CE
Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02065-1.0

http://www.latticesemi.com/legal

= LATTICE

Contents
ACTONYMS N THiS DOCUMENTiiiiiciiiiecieee ettt e e ettt e e ettt e e e sttt e e e s treeessasseeessaeeeassteeeaasssaeesssaeeeanssseesanseaeesssaneeanseeesanssnsesnssnens 4
R [o T ¥ ot o o TR 5
2. DEMONSIIAtiON OVEIVIEWeiiiiiiiiiiiiitee e e ettt e e e e ettt e e e e e s aae et eeeeaesaaansbeteeeeeaaaassbbeeeeeeeaannbabeeeeeeesansbeneeeaeeesannnnneen 6
2.1. 2] [oTol QDI - o TP PP P ST PP OPPTOPPPI 6
2.2. OVEIVIBW ..eeeeetteee e e ettt e e e e ettt et e e e e e aab ettt e e e e e e aua b et e e e e e e e s s se et e eee e e s ss e e e e e e e e e s nnnsbeeeeeeeeaansbebeeeeeeeaansseneeaeeeesannnnneen 6
K JR S V] Vot o o F=1 D =Ty ol 4T o] £ o Yo VO PP UUT U 8
4. Demonstration DeSiGN DeSCriPTiON.cci it e e e e e e s e e e e e e s s bt e e e e e e e saabaraeeeeeesenarraeeeeeeaanans 9
4.1. Detailed Input/Output of the DemMONSTIAtiON.....ccc.eiivieeiiccie ettt et s e e erre e sare e te e s aaeesbeeesaaeennes 9
4.2. Input/Output Ports Description Of the DESIZNccveieiieeiteete ettt ettt eee e ste e sbeesbeeereeaeeaeesteeereebeenbeen 9
4.3. DAt FIOW ..ttt ettt ettt st et e bt e e bt e be e e bt e bt e e bt e e bt e e bt e e bt e e ehe e e heeenaeeeshbeennbeennreenaeeens 10
4.4, Data Storage of the ECC-based Authentication DemONStrationccceceiiiieriiiinieesieeeeee e 11
5. Verification USING LAattiCE REVEAIceiiuiiiieeeiei ettt ettt e ettt e sttt e e e et e e e e s abe e e eeabaeeestaeeeesbeeesensreeeesaeens 12
ST 1 oY o1 (=T o T=T oY = 4o o OSSR PSP R 16
(0] £=T =T o 1o T T TSSO PUTUPPTSPRPPN 17
TeChNICAl SUPPOIT ASSISTANCEuviiieciiieeccieee ettt et e et e e e et e e s tae e e et teeeeetteeeeassaeeasseeeaasssaeessnseeeasssaeesasssesesnssnaesssseeenannns 18
=AY K o] o I o 1] o o PP PUPPPTRRPINt 19
Figures
Figure 2.1. TOP-LeVEl BIOCK DIQBIamceiiiiiiecciiee e ciiee e ettt e ettt e s e e e et e e e ettt e e e saeaeeeesteeeeassaeeesasseaeanstaeesansessesnssneeassanennnnns 6
Figure 4.1. 1/0 Diagram of ECC-based Authentication DEMONSIrAtioNc.ccvveerierieeiieeireeie et e sre et eereeeeeee e eere e beenreas 9
Figure 4.2. ECC-based Authentication DemonStration FIOWccceiiiiiiiiieiier et ee e ssee e see e e s e svee e e saaeeeens 11
Figure 5.1. Trig8er SETUP iN REVEAIco.uiiiiiiiii ettt ettt e s et e st e s it e e sbb e e ae e e sabeesateesmneennneens 12
Figure 5.2. Signals in REVEAI ANGIYZET.....cocuuiiiiiiiieet ettt ettt e sa e e st e e st e s st e e sbbe e at e e smbeesateesmneenneeens 13
Figure 5.3. AES COMPATiSON RESUIL......uuiiiiiiiieeeitie e eciie e ettt e eeit e e ette e e e stbeeeeetaeeeseabaeeesabaeeeasseseeassaseesassseeassaeeeassaeeessseaaans 14
Figure 5.4. ECDSA Signature VerifiCatioN........occcciii ettt ettt e e tte e st e e e sttt e e e e tte e e eataeeesataeeeansseeesnsaeeesnsenaanns 14
Figure 5.5. ECDSA ENGINE P OIMaNCE ...ccciuiiieccitie ettt ettt e ettt e ettt e e e sttt e e e e tte e e sataeeesataeeeassteeeessaeeesntaeeeansseeesnnsaeeesssaeaaans 15
Tables
Table 3.1. ECC-based Authentication Demonstration DefiNe........cocuiiiiiriiiiiiiniiiieec e 8
Table 4.1, Pin DESCIIPLIONS «...eiitieeieieiteette ettt ettt et e e et e ettt et e e s bt e bt e e bt e e sbeeeabeesbee e bt e s beesabeeebeeeabeesbeesabeeeneenanees 9
Table 4.2. Data StOrage DESCIIPTIONS.cccuti ittt ettt sb e st e st e s b e sabe e s bt e sabeesbeesabeesseesabeesbeesabeesneenane 11
Table 6.1. Performance and RESoUrce ULIIZatioNncciocieiciiriiieniie ettt ste e st e st e s aeessbe e saeesnbeesneesnne 16

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Acronyms in This Document

A list of acronyms used in this document.

= LATTICE

Acronym Definition

AES Advanced Encryption Standard

DSA Digital Signature Algorithm

ECC Elliptic Curve Cipher

ECDSA Elliptic Curve Digital Signature Algorithm
ESB Embedded Security Block

EBR Embedded Block RAM

HSP High Speed Port

NIST National Institute of Standards and Technology
osc Oscillator

SHA Secure Hash Algorithm

TRNG True Random Number Generator

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm
(DSA) that uses Elliptic Curve Cryptography (ECC).

In ECC, the private key can be used to create a digital signature for any piece of data using a DSA. This typically involves
taking a cryptographic hash of the data and operating on it mathematically using a private key. Anyone with the paired
public key can check if this signature is created using the private key.

This ECC-based authentication demonstration shows the general flow as follows:

Generate a firmware image and encrypt/decrypt key using True Random Number Generator (TRNG) engine;
Generate the Public-Private ECC key pair using ECC Key Generation engine;

Encrypt the image using Advanced Encryption Standard (AES) engine;

Generate the digest of the encrypted image with SHA256 engine;

Generate the digital signature with ECDSA generator engine;

Verify the digital signature with ECDSA verification engine;

NoukrwnNe

Decrypt the encrypted image using AES to recover the original image.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2. Demonstration Overview

This demonstration shows a flow of ECC-based authentication using the MachXO3D ESB engine. The flow includes
TRNG, AES encryption/decryption, SHA256, ECC key generating, ECDSA generating, and ECDSA verification.

2.1. Block Diagram

Figure 2.1 shows the block diagram of the ECC-based authentication design flow.

HH .
Sender ii Receiver
[}
— H g ~~,
i ! Emulated 1
] Decryption i Firmware 1 AES —p>
>
AES Key ' vp] [Comparison
1 Result \ Image — AES
True Random — Y) FPRpE Ry, 4 Comparison
Number P — i Result
L [e ——
Generator Emulated i \.
Firmware i AES !
Image 1 Encryption
[} 1
N 1 Result i
b i Y2 P R S J
— E E Decryption | | se-cecccaaaa ~
AES AES il :
Encryption P Encryption = i’ AES Key 1
Result 1 H
[} 4
" Neeccaaaas -
[}
v i [P .
4 \ () ’ (Y
SHA256 i i] H Sienat
SHA256 > Digest — i C?Iculated ! Signature |} Colrinaa:gzn —
Result i Signature :‘ —> pari Signature
N ' ;f—/ Smmmmmm——— s Comparison
1 Result
v SR i o N
" ! SHA256
[}]
ECDSA .
ECDSA P Signature i e i Digest 1
Generation K Verification i Resul 1
(W] 1 esult 1
N/ i R S
T HH Process
[}
s 3 il J S
i Stored Data
. < ECC Key 1 .
Private Key |® Generation HH Public Key Y
[N { | |Mirrored Data
N~ i -/ e
[}
[}
[}
[}
11

Figure 2.1. Top-Level Block Diagram

2.2. Overview
The ECC-based authentication demonstration consists of five major blocks:

e TRNG
TRNG is used in most of the security functions to generate a random number. In this demonstration, we use TRNG
to generate 1024-byte data as plain text, which is used as the firmware image to be signed and verified. We also
use TRNG to generate the AES key.

e AES encryption/decryption
AES is an encryption standard based on symmetric key algorithm, using the same key for encryption and
decryption, issued by National Institute of Standards and Technology (NIST) in 2001. The firmware image
generated by TRNG is encrypted by AES.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

- . : -
e LATT’CE Using MachXO3D ESB to Implement ECC-based Authentlcatl.on
Reference Design

e SHA256
SHA256 is one of the Secure Hash Signature Standards (SHS) provided by NIST and published in Federal
Information Processing Standard Publications (FIPS PUBS). The purpose of this standard is to provide a condensed
representation of electronic data or message. The 1024-byte AES encryption result is condensed to 256-bit
message digest through the Embedded Security Block (ESB).

e ECCkey generating

The ESB is capable of generating an ECC-based public and private key pair. This function used in this demonstration
is to generate the public and private keys for ECDSA generation and verification.

e ECDSA

The ECDSA generation engine generates the digital signature for a given input data which are consist of the private
key and the message digest. ECDSA verification engine are used to verify the digital signature using the public key.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02065-1.0 7

http://www.latticesemi.com/legal

= LATTICE

3. Functional Description

In this ECC-based authentication demonstration, the following define compiler directive is used:

‘define SIM_MODE

When in none SIM_MODE, this directive is not defined. All functions are implemented, including TRNG, AES encryption,
AES decryption, SHA256, ECC key pair generation, ECDSA generation, and ECDSA verification. You can check the result
by running the Lattice Reveal™ software.

When in SIM_MODE, this directive is defined. The TRNG and ECC key pair generation functions are not included to
avoid the long simulation time. Instead, we use the predefined data for the keys and the firmware images.

Table 3.1 provides ECC-based authentication reference design directive usage.

Table 3.1. ECC-based Authentication Demonstration Define

Directive Define Name Defined Function
Yes Simulation mode
SIM_MODE R .
- No None simulation mode

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Demonstration Design Description

As shown in Figure 4.1, there is only one input rst_n in this reference design. To trigger the start of the design, we need
to provide one active low pulse to the rst_n input. There is no input clock pin. The on-chip oscillator (OSC) generates
the system clock for the design.

The design automatically initiates a state machine to run through the necessary process for the ECC-based
authentication. Refer to the Data Flow section for details. When the whole flow is completed, the signal
sig_r_compare_done indicates the ECDSA verification is finished. The calculated signature is compared with the
expected signature. You can check the compared result by signal sig_r_compare_result.

e Output HIGH means the signature is verified and confirmed to be genuine.
e Output LOW means the signature does not match the message. The message source should not be trusted.

The signal aes_compare_done indicates the AES comparison is completed. The decrypted message is compared with
the original message. You can check the result by signal aes_compare_result.

e Output HIGH means the decrypted firmware data matches the original message.

e Output LOW means data mismatches.

With the compared results, we can verify the whole data flow functionality.

4.1. Detailed Input/Output of the Demonstration
Figure 4.1 is the I/O diagram of the ECC-based authentication demonstration.

aes_compare_done

aes_compare_result
rst_n >
Y ECC-based
Authentication sig_r_compare_done

sig_r_compare_result

[
»

Figure 4.1. 1/0 Diagram of ECC-based Authentication Demonstration

4.2. Input/Output Ports Description of the Design

Table 4.1 lists input and output ports of the demonstration.

Table 4.1. Pin Descriptions

Signal Width (bit) 1/0 Type Description
rst_n 1 Input Global reset
aes_compare_done 1 Output AES comparison is finished.
aes_compare_result 1 Output AES .comparison result

0: failed 1: passed
sig_r_compare_done 1 Output Signature comparison is finished.
sig_r_compare_result 1 Output Signature comparison result

0: failed 1: passed

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3. Data Flow

Figure 4.2 shows the ECC-based authentication demonstration flow.

The demonstration begins with the firmware image generation. We use different ways to generate the data for
simulation and hardware implementation. To save the simulation time, we use the Verilog system Srandom function to
create the data for simulation. With four bytes per call, we repeat 256 times to get the 1024 kB image files. For
hardware implementation, we use the TRNG function of the ESB. TRNG generates four bytes per call, and we repeat
that 256 times. The raw data is stored in the EBR named plain_txt.

We generate the 256-bit AES key for the AES encryption and decryption process. For simulation, we use the fixed value
256’h5555_6666_3333_4444_1111_2222_9999_0000_7777_8888_5555_6666_3333_4444 1111_2222. For hardware
implementation, we can use the TRNG to get the 256-bit key. The key is stored in the aes_key_buff register.

When the firmware image and AES key are ready, they are sent to the AES engine to perform the AES encryption. We
use the HSP mode to provide better throughput performance. After the encryption, the result is stored in two EBRs:
one named aes_result, which is 32-bit oriented for ease of AES decryption and plain text comparison; the other named
aes_result2, which is 8-bit oriented for ease of SHA256 operation, since the SHA256 function is byte-oriented.

We use the ECC Key Generation function to generate the public-private key pair. They are used for the ECDSA process.
The public key is stored at register public_key_x/y. The private key is stored at private_key.

The SHA256 engine takes the input data file from the EBR aes_result2. It generates the corresponding 256-bit digest file
for the input data file. The digest is stored in the register sha_res.

The digest sha_res and private key private_key are sent to the ECDSA Generation function to get the signature. The
signature is stored in the register sig_r.

With all the above steps, we get the encrypted files together with its signature. Next, we check that from the
recipient’s view.

To save the simulation and hardware run-time, we reuse the digest sha_res together with the public_key_x/y public
key, and send them to the ECDSA verification function. We get the calculated signature. It is stored in register c_sig_r.
We compare it with sig_r. If they match, it means the message is authenticated. Otherwise, we should discard the
message as it can be compromised.

Finally, we send the encrypted data to the AES decryption engine, and run decryption. The result is stored in the EBR
named aes_de_result. We compare it with the data stored in EBR plain_txt to verify the decryption is correct or not.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Firmware

Image
Generating

A 4
AES AES AES Result
Encryption Comparison |~~~
y
A 4
ECCKey AES
Generation Decryption
A
A 4
i Signature Result
SHA256 Slgnatgre ______
Comparison
A
A 4
ECDSA ECDSA
Generation Verification

f

Figure 4.2. ECC-based Authentication Demonstration Flow

4.4. Data Storage of the ECC-based Authentication Demonstration

Table 4.2 lists the data storage of the demonstration.

Table 4.2. Data Storage Descriptions

Storage Type Data Name Purpose

aes_key_buff Store AES key

public_key x Store public key X

public_key_y Store public key Y
Register private_key Store private key

sig_r Store signature generated by ECDSA

c_sig_r Store calculated signature during the ECDSA verification

sha_res Store SHA256 result

plain_txt Store 1024-byte plain text

aes result Store 1024-byte AES encryption result. Output data width is 32 bits, which is used for the
EBR - AES decryption and plain text comparison.

aes_ result2 Store 10?4-byte AES encryption result. Output data width is 8 bits, which is used as the

SHA256 input.
aes_de_result Store 1024-byte AES decryption result

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Using MachXO.3D ESB to Implement ECC-based Authentication .':LATT’CE
Reference Design

5. Verification Using Lattice Reveal

Due to the long simulation time for the ESB related functions, especially for the ECDSA functions, such as the ECC Key
generation, ECDSA generation and verification, we use Lattice Reveal tool to check the overall functionality and
performance. We provide the simulation testbench and simulation script in the demonstration design files. You can run
the simulation to check implementation details.

As shown in Figure 5.1, we set up the trigger signals for the Reveal inserter. We capture the waveform when the AES
decryption starts. We can observe all the final output results.

@} Reveal Inserter - F:/Diamond/MachX03D/ECC_Based_Authentication/reveal/test1.rvl - O X
File View Debug Window Help s
-
X
By o=t = Trigger Unit
& v ™5 Datasets
p name Signals (MSB:LSB) Operator Radix Value
1 TN aes_compare_en == v Dec v 1
2 TU2 sig_r_compare_en == Y|Bn ¥Y|[1
Design Tree g X
A
HSE_bridge_inst(HSE_bridge_
0SCJ(OSC)_unig_1)
aes_d e_{esult(pmi_ra m_dp) Add Remove Default Trigger Radix Bin v
aes_result(pmi_ram_dp)
aes_result2(pmi_ram_dp) Trigger Expression
plain_tct(pmi_ram_dp)
ESB_osc g Expression RAM Sequence ix Sequer Vlax Evenr
> "la STM[3:0] Type Depth Depth Counter
> "la aes_cmd[31:0] 1 TE1 TU1 1EBR ¥ 1 1 v 1 v
"la aes_cmd_en
"la aes_compare_cnt[8:0]
aes_compare_done@Tc
“La aes_compare_en@Tc¢,Tg
"la aes_compare_en_rl
"la aes_compare_error_recod , Add Ramove
< >
Signal Search Event Counter
Search | [[] Enable final trigger counter Event Counter Value 8 V.
Trigger Output B X Trigger Out
[] Enable Trigger Out Net NET ¥ reveal_debug_top_LAO_net
Polarity Active High + Minimum pulse width 0

Trace Signal Setup Trigger Signal Setup

Figure 5.1. Trigger Setup in Reveal

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02065-1.0

http://www.latticesemi.com/legal

= LATTICE

Using MachX03D ESB to Implement ECC-based Authentication
Reference Design

As shown in Figure 5.2, we can observe all these signals in the Lattice Reveal Analyzer windows.

@@ Reveal Inserter - F:/Diamond/MachXO3D/ECC_Based_Authentication/reveal/test1.rvl = O
File View Debug Window Help
on |
Q Dataset & X
. v & v @ Trace
- Jl aes_compare_done
I aes_compare_result
> £ plain_tdt_q
L > {0 aes_de_res_q
\Design Tree & X Jin sig_r_compare_en
JII sig_r_compare_done
v A top A JUI sig_r_compare_result
> I HSE_bridge_inst(HSE_bridge_ > O current_c_sig_r
3.E 0SCI(OSCI_uniq_1) > O current_sig_r
3% aes_de_result(pmi_ram_dp) > O tmg_cnt
 : aes_result(pmi_ram_dp) » £ ecc key gen cnt
3% aes_result2(pmi_ram_dp) > S ecdsa.gen.ct
<> ¥ p =Ioech > £ ecdsa_vrf_cnt
S plain.bad(pmi.ram, dp) > O aes_encryption_cnt
“1a ESB_osc > {0r sha256_cnt
> "la STM[3:0]
> ™. aes_cmd([31:0]
"1la aes_cmd_en
> ™la aes_compare_cnt[8:0]
aes_compare_done@Tc Sample Clock dk | implementation [EBR v 9EBRs
“la aes_compare_en@Tc,Tg — 3
" Buffer Depth |512 v| [OTimestamp 10 v sits
“la aes_compare_error_recod Sample Enable Data Capture Mode
< 2 [sample Enable (® Single Trigger Capture
Signal Search Active High +
: (O Multiple Trigger Capture
| | l Search |
i FLNEZIL Minimum samples per trigger |8
Trigger Output g X Trigger Enable
5 5 Number of triggers for POR 1
Active High
[[] indlude trigger signals in trace data Disable all Distributed RAMs

Trace Signal Setup Trigger Signal Setup

Figure 5.2. Signals in Reveal Analyzer

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02065-1.0

13

http://www.latticesemi.com/legal

= LATTICE

Figure 5.3 shows the AES comparison result. When aes_compare_done goes from 0 to 1, aes_compare_result is 1,
which indicates the comparison passes with matched data of plain_txt_q and aes_de_res_q.

Bus/Signal Data 032 064 096 ”128 160 0192 &m 0:256 028
aes_compare_en 0
aes_compare_done
aes_compare_result | 1
plain_txt_q - e
aes_de_res_q SEY
sig_r_compare_en 0
sig_r_compare_done
sig_r_compare_result, 0

current_c_sig_r 0:

1
1 current_sig_r 0:
Figure 5.3. AES Comparison Result

Figure 5.4 shows the ECDSA signature verification result. When sig_r_compare_done goes from 0 to 1,
sig_r_compare_result is 1, which indicated the comparison passes with matched data of current_c_sig_r and
current_sig_q. The signal sig_r_compare_en is used as the trigger signal for Reveal.

Bus/Signal Data 025 I 0257 0258 0250 2260 2261 0282 0263 2264 0265 026
aes_compare_en 0

aes_compare_done

aes_compare_result

e

plan_txt_q
aes de res q o
sig_r_compare_en

S0, compare_done
Sig_r_compare_resuit
currem ¢ sigr 7¢

current_sig.r 7¢

Figure 5.4. ECDSA Signature Verification

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 5.5 shows the performance for each of the ESB functions.

For True Random Number Generator, it uses 8597 cycles to generate 256-bit data per call. Similarly, around 3.4M
cycles are needed for the ECC Key generation, 3.6M cycles for the ECC generation, 6.9M cycles for the ECC verification.
For the AES and SHA function, they use pipelined structure. The total cycles depend on the input data file size. For the
demonstration, the file size is 1024 kB. The AES encryption and decryption take 977 cycles. The SHA256 takes 1221
cycles. All the cycles here are based on the system clock with nominal frequency of 66 MHz.

Bus/Signal
aes_compare_en
aes_compare_done
aes_compare_result
plain_txt_q
aes_de_res_q
sig_r_compare_en
sig_r_compare_done
sig_r_compare_result
current_c_sig_r
current_sig_r
trng_cnt
ecc_key_gen_cnt
ecdsa_gen_cnt
ecdsa_vrf_cnt

aes_encryption_cnt

sha256_cnt

Data o 0:64 0:96: 2128 2160 2192 0:224 0:256 0:288 0:320 0:352: 0384

0

Figure 5.5. ECDSA Engine Performance

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Using MachX03D ESB to Implement ECC-based Authentication

Reference Design

= LATTICE

6. Implementation

This demonstration design is implemented in Verilog HDL using Lattice Diamond® software. The synthesis tool is set to
Synplify Pro®. When using this design in a different device, density, speed, or grade, performance, and utilization may

vary.
Table 6.1. Performance and Resource Utilization
Family Language Utilization For ZZLaetri:::i ESB Primitive | OSC Primitive 1/0
LCMXO3D-9400HC Verilog HDL 3084 LUT4s >50 MHz Yes Yes 5

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16

FPGA-RD-02065-1.0

http://www.latticesemi.com/legal

- . : N
HH LATTICE Using MachX03D ESB to Implement ECC-based Authentlcat|.0n
Reference Design

References
MachX03D Embedded Security Block (FPGA-TN-02091)

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02065-1.0 17

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52607

Using MachXO.3D ESB to Implement ECC-based Authentication .':LATTICE
Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02065-1.0

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

- . : N
HH LATTICE Using MachXO3D ESB to Implement ECC-based Authentlcatl.on
Reference Design

Revision History

Revision 1.0, September 2019
Section Change Summary

All Production release.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02065-1.0 19

http://www.latticesemi.com/legal

WWWWWWWWWWWWWWWWWW

http://www.latticesemi.com/

	Using MachXO3D ESB to Implement ECC-based Authentication
	Acronyms in This Document
	1. Introduction
	2. Demonstration Overview
	2.1. Block Diagram
	2.2. Overview

	3. Functional Description
	4. Demonstration Design Description
	4.1. Detailed Input/Output of the Demonstration
	4.2. Input/Output Ports Description of the Design
	4.3. Data Flow
	4.4. Data Storage of the ECC-based Authentication Demonstration

	5. Verification Using Lattice Reveal
	6. Implementation
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, September 2019

