ICEcube2 User Guide

eeeeeeeeeeeeee

= LATTICE

= LATTICE

Copyright

Copyright © 2020 Lattice Semiconductor Corporation. All rights reserved. This document may
not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior
written consent from Lattice Semiconductor Corporation (“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are
trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. ModelSim and
Questa are trademarks or registered trademarks of Siemens Industry Software Inc. or its
subsidiaries in the United States or other countries. All other trademarks are the property of their
respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY
DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF
OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF
LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the products
described herein, at any time without notice. Lattice makes no commitment to update this
documentation. Lattice reserves the right to discontinue any product or service without notice and
assumes no obligation to correct any errors contained herein or to advise any user of this
document of any correction if such be made. Lattice recommends its customers obtain the latest
version of the relevant information to establish that the information being relied upon is current
and before ordering any products.

Contact Information

Lattice Semiconductor Corporation
5555 N.E. Moore Court

Hillsboro, Oregon 97124-6421

United States of America

Tel: +1 503 268 8000

Fax: +1 503 268 8347
http://www.latticesemi.com.

iCEcube2 User Guide www.latticesemi.com 2

http://www.latticesemi.com/
http://www.latticesemi.com/legal
http://www.latticesemi.com./

= LATTICE

TABLE OF CONTENTS

Preface . e 7
ADOUL thisS DOCUMENT ... e nas 7
Yo) 1T LY L=T €T 1o Y o PP PPPPPPPPPRt 7
Platform REQUITEMENTS . ..eiiiiiiiie ittt e e st e e e sbb e e e e sbr e e e e sbbeeeeane 7
Programming HArAWAIEc..eiiiiiiiiiiiiiiee ittt e e et e e s st e e e e abneeeeaaes 7
Programming SOFtWEAIEcooiuiiiiiiiiiee ettt e e st e e s st e e e e abreeeeaaes 8

Chapter 1 OVeIVIEWu ittt ettt e e e e ei e e eeeeses 9
ICECUDE2 TOOI SUITE....ueiiiiiiie ettt e e e e st e e e e e e s e snnbbeeeeeaeeeeannes 9
DESIGN FIOW ...ttt ekttt e skttt e s bbbt e s bt et e e e nb e e e e s nneeee s 10

Chapter 2 Quick Start GUIJe......ovveeeiiiieeiiieeeiee e, 11
L1 =T LA o = o o] =T o PSSR 11
YA e =T AT g Yo T TN =S Ko | o PP PPPPINt 15
Programming the DeVICE ... 25
Yo [0 1=T o o [T 1 o LA TP PP PPPUPUPPPPTPOE 29

Importing Physical Constraints from iCEcube to ICECUb2..........cccooiiiiiiiiiiiiiceccce 29

Chapter 3 iCEcube2 Project Setup and Navigation 34
TaN (e Te [UTox 1 To] o E TP PP PUPUPPPRPTRN 34
Project Manager GUI ... 34
Adding/Deleting Design and Constraint Filescccoooioiiiiiiiiiiiciccrccr s 34
Selecting the Synthesis Tool and Setting Synthesis OptioNS..........cuvvvvviiiiiieeeeieeeieiiiiieiens 36
Selecting the Target Device and Operating ConditioNSevvvviiiiieiiiiiiiiieiieeeeeeeerereeeeeeenns 39
L 10 1 o 11 AT o o 1 PPNt 40
PLL MOOUIE GENEBIALON ..ceiiiieiiiiiteeie ettt ettt e e et e e e e e s bt e et e e e e e aannbnbreeeeeee s 40
PLL Dynamic Reconfiguration ... 49
SPI/12C MOAUIE GENEIALOT .ceieiiiiiiiieiie ettt e e e et e e e s e s e e e e e e e e e e snnbeeneeas 51

Chapter 4 Lattice Synthesis ENQINe.......ccuiiieeiiieeiiiiiiiiiiiieeeeen 59
Changing the LSE TOOI OPLIONSuuiiiiiiiiiiiiiiieee ettt 59

BRAM ULITIZALION ...ttt ettt e e e e et e e e e e e s bnb e eeaae e s 59
L0214 Y2 @3 o T= 11 T 1= o o | 1 [PPSRt 59
CommaNnd LiNE OPLIONScovviiiiiiiiiiiieiiieeeieeeee ettt ettt et e eeeeeeeeeeaeasesaeseassessssssssssssssssssnennnes 59
FIX GAted ClIOCKS. ittt e e et e e e e e e e bbb e eaaae e s 59
FSM ENCOAING StYIE ... 60
INtermediate File DUMP s 60
MEAX FANOUL LIMIE ..ttt e e ettt e et e e e s ettt e e e e e s e nbnbeeeaaee e s 60
Memory Initial Value File Search Path.................cc 60
Number Of CritiCal PathS ... 60
L@ o] 110 T2 1o] 4 I ©T 0 - 1 PRSPPIt 60
Propagate CONSLANTS ...uuuiiiiiii i e e e e e s e e et e e e tb s e e e aaeeeeraannaeeaaee 60
L AN S 4 = PR PRT 60
Remove DUPlCAte REGISIEISeeiiiieeiiie ettt e e e eaa e e 61
RESOIVE MIXEA DIIVEIS ... 61
RESOUICE SNATING ...ttt e e e et e et e e e e s st e et e e e e e e s e bnbaeeeaaaaeas 61
L@ 1Y S 3 L= PR PRT 61
RW CheCk ON RAM ... 61
LU0 [0 o £=To (U =T o (o TSP PP PP PPPPUPPPPPPPPPPPPPPRt 62
TOP-LEVEI UNIL....eeeeeeeee ettt e ettt et e e e s e s bbb et e e e e e e e nbbbeeeeaaeeeaannnes 62
USE CAITY CRAIN ...ttt e e e e ettt e et e e e s e s bbb et e e e e e e s e nbnbeeeaaae e an 62
USE IO INSEIION ... 62

iCEcube2 User Guide www.latticesemi.com 3

http://www.latticesemi.com/

= LATTICE

USE 1O REGISIEIS ...ttt ettt e et e e e et e e e e aa bt e e e anbe e e e e aabe e e e enrnas 62
Optimizing LSE for Area and SPEEU........uuiiiiiiiii ittt 62
FSM ENCOUING STYIE ..ottt e s 63
MEX FANOUL LIMIT ..ttt e et e e e e e e 63
OPLIMIZALION GO ...ttt ettt e et e et e e st e e e aabr e e e e sbbeeeeabneeeeaaes 63
Remove DUPliCAte REGISTEISccciiiiiieiiiiie ettt 63
RESOUICE SNANG .ttt ettt e et e e aab e e et e e e sabr e e e e e 64
TArGEE FIEOUEINCY ...eeiiiiiiiiitiie ettt ettt e et e e e e s e e e e e e e s e brr e e e e e e s e saanens 64
LSE Options Versus SYNPIIfY Pro ... 64
COAING TIPS TOF LSE ...ttt et et e s e e e e nbn e e e e 65
LSE Differences With SYynplify Pro ... 65
ADOUL INTEITING MEIMOIYeiiiiiie ettt e e s e e e annnas 66
INTEITING RAMttt et e e e st e e e st e e e e sbreeeeanes 67
Inferring RAM with Synchronous REaAdcc.eeeiiiiiiiiiiiiii e 68
Inferring Pseudo DUal-Port RAM ...t 70
Initializing INfErred RAM ..ottt e e sbr e e e e 72
INFEITING ROM ...ttt e et e e et e e s sbr e e e e abneeeeanes 73
About Verilog BIOCKING ASSIGNIMENTSuuiiiiiiiiieiiiie ettt 74
INFErring DSP MUILIPHEISooiiiiiiie it 75
VErilog EXAMPIESoi o 75
VHDL EXGMPIES ...ttt ettt e e st e e e sab e e e sab e e e e anbae e e e nnns 77
INTEITING 1O .ttt et e ettt e e e bt e e e e nbe e e e enreas 79
EVENE INSIAE AN EVENT ...ttt e e 80
HDL Attributes and DIFECHIVEScoueiiiiiiiiiie ittt sttt nenn e s 81
BIACK _DOX_PAA_PIN ..t 81
SYN_DIACK _DOX ittt n 82
L3I =TTeTe o [T T U PP PP PP PPN 82
53 T 1= S PO PP PP PO PPRPPP 83
ST = o TP T PRSP PP PPOPPP 84
SYN_IMAXFAN ... ar e s 85
SYN_IMUIESTYIE L.ttt ettt sttt e e bbb e e e s abb e e e s anbneae s 85
SYN_NOPIUINE ... eeeeeeeeteeeteeeeeeeee e e e e e e e e e e e eesess e essesessseeesessseeeessnsesneesnenennnnnnnnnnnnnnnnnnnnnnnnnnne 87
SYN_PIPEIINE e b e s 88
SYN_TESEIVEeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeaeeeeeeeseeeee e sseeeesesesesesesessseesensnsenneesnennnnnnnnnnennnnnnnnnnnnnnnnnne 89
SYN_TAMSIYIE ..ttt e b bt et e e s e b et et r e aaaeae s 90
SYN_TOMSEYIE ..ottt ettt e s bbbt e st e e s bbbt e e s b e e e nnreae s 91
SYN_USE_CAITY_CRAINeeiiiiiiiiie ettt e e sanee s 92
SYN_USEIOT et s 93
SYNNESIS MACTO ...ciiiieie ettt s bt e e et e e e sba e e e abaeeeeaaes 94
translate_off/tranSIate_ONooo i 94
Synopsys Design CoNSLraiNtS (SDC)ocuuuiiiiiiiieiiiie ettt 95
CIEALE_CIOCK ...ttt ettt e et e e e et e e e sba e e e e anbaeeeeanes 95
Set_fAlSE PALN ... e e 96
S INPUE_ABIAY ...t et e e e s 96
ST A 00T Do (== PSPPI 97
Set_MUILICYCIE_PAth ... e 97
L1 A o111 o TV L o (== PP PP 98
Chapter 5 iCEcube2 Physical Implementation Tools 99
OVEBIVIBW ...ttt ettt s et e e skttt e 4 ettt a4 a bt e e s mb et e e nb bt e e e emnb e e e s annbe e e e ennbeeeeennbeas 99
Tools for Physical Implementation ... 99
Placing and ROUtING the DESIGNeiiiiiiiiiiiiiie e 100
[Lo Yo gl = 1o o 1= TR 101
PACKAGE VIBW ...ttt et ettt e s skt e e e e bt e e e e bt e e e e e nbe e e e enaeas 108

iCEcube2 User Guide www.latticesemi.com 4

http://www.latticesemi.com/

= LATTICE

e I OTeT ¢ 1] A = U1 | K3 =T 1] o PP 110
POWET ESTIMALOT ..t e et e e e e e e s st b e e e e e e e s e nbnbeeeeaaeeean 111
GeNerating @ BilIMaP ...ccoo i 113
Programming the DEVICEuiiiiiiiii e 115
[D]F: Lo glelaTo I ad (o o] £= o 1] 1L O PO PPPPRPPPPPPPN 115
MEMOTY INTTIAIIZET ...ttt e e e e e e 117
Memory initialization file FOrmat (.Mem) ... 119
Simulating the ROULEA DESITN ...ccciiiiiiiiiiiie ettt 120
Chapter 6 Timing Constraints and Static Timing Analysis 121
OVEBIVIBW .ttt ettt et e ettt et e e e e e s e et et et e e e e e s aabebeeeeeee e e s nnbeteeeeaaeseannbebeeeaaeeseannbnneeeas 121
Specifying Constraints Using the Timing Constraints Editor (TCE)cccceevviiveennnn. 121
SDC CONSLrAINTS IN TCEueiiiiiiiiiie ettt e s s e e e s nnreee s 123

(01 (o031 @0 1511 =11 1 PP PPPRRT 123
Generated ClOCK CONSIIAINTSoiiiiiiiie i 123
Source Clock LatenCy CONSIIAINTS.ceiiiiiiiiiiiiiie ettt 124
INPUL DElAY CONSIIAINTS.....eiiiiiiiiie ittt et e e st e b e e e e ennns 124
OutpUt Delay CONSIIAINTSceiiiiiiiieiiiiie ettt e et eesenbr e e e snnreee s 125

MaX Delay CONSIIAINTSeiiiiiiiiei ittt ettt e e e st e e e sbe e e e sbreeeesbneeeeane 125
False Path EXCEPLIONSeeiiiiiiiie ittt e st e e e sbn e e e e sbneeeeane 126
Multi Cycle Path EXCEPLIONSeeiiiiiiieiiiiiee ettt ettt ettt e et e e e sbe e e e e sbneeeeanes 127
Analyzing Reports Generated by the Static Timing Analyzer (STA).....ccccooeiiieeniineeen. 128
ClOCK SUMMANY PANEcooiiiiiiiiiiiie ettt e e e e annreee s 128
Clock RelationsShip SUMMATYooiiiiiiiiiiiiiie ettt 132
[z U= B == PP 132
Analyzing Constrained PathS............oooiiiiiiiiiii e 134

BY SIACK ...ttt 134

BY PALNS ... aaes 136

Lo TT) 8 (o N o1 | PSPPSR 138

OLNEE FRAIUMESeiii ettt ekt e bbbt e e st e e e e s bbbt e e s bbb e e e snneeae s 139
Detailed TiMING REPOIToiiiiiiiiieiit et e e e e s nbe e e e e e 142
Chapter 7 Physical Constraints in iCEcube2cccceeveenne..... 146
Specifying Physical Constraints after Design Import and Before Placement 146
ADSOIULE PIACEMENT ...ttt e e e neees 146
Constraining LOGIC OF RAMScouuiiiiiiiiie ettt 146
CONSLIAINING TOS ...ttt ettt e e e b e e et e e e e e anbae e e e snnes 147
Constraining SP1 Configuration 1OS..........coiuiiiiiiiiie e 147
REIALVE PIACEIMENTeiiiiiiiie ittt e et e e et e e e sbbeeeeaaes 148
REGION CONSIIAINTSeiiiiiiiiie ittt e e st e e e st bt e e e sabb e e e sbbeeeesbbeeeeaaes 151

JIFF MBI ..ottt e e e et e e e ab et e e e n b e e e et e e e e nbeas 152
Global Buffer Promotion/DemMOLIONcocuueiiiiiiiiieiiiiie et 154
Modifying the Device Floor Plan after Placement.........cccooiiiiiiiiiie e 156
Chapter 8 Generating/Integrating Fixed Placement IP Blocks. 159
| e o T=T = 1T Y o T o RS 159
SYSEEM DESIGN FIOW ..eeiiiiiiiiii ettt 163
Chapter 9 Hierarchical Project FIOWvveeeeeieeieiiiii 168
Create TOP LEVEI PrOJECT ... ettt e e e e 168
Create Sub-Projects for IP DIOCKS ..o 172
SYNthesize TOP LEVEI PrOJECT ...ttt 174
Chapter 10 iCEcube2 Command Line Interface 177

iCEcube2 User Guide www.latticesemi.com 5

http://www.latticesemi.com/

= LATTICE

(@)Y Z= VAT T 177
RUNNING LSE iN DAICh MOTE ...ooiiiiiie e 177
Running Synplify-pro in batch mode ... 178
Running iCEcube2 Backend tools in batch modecccooiiiii e, 180
BaCKENd tOO] OPLIONSccitieeeiiiiiee ettt e et e e st e e e sbe e e e abe e e e e abreeeeanes 181

Lo [} L 2= T E-T=] (T 181

[od F= Y01 Y 181
01U (=] ST 182
=10 0= o BT PR PPPTPPPRTPRN 182
CommMAaNd LiNE EXECULIONiiitiieieie ettt e e e e e e e e e s et e e e e et s e e esaa e e s et e eseanss 182
Chapter 11 High Drive 10 with Configurable Drive Strengths.. 184
Chapter 12 Open Drain LED 1O . ..t iiiiesieiiiieisenieireenaens 186
APPENdiX A: PCE SYNTaAX tiituieuiiniieieniesiieieeieuiieireiesrietieizeeiieeienss 187

iCEcube2 User Guide www.latticesemi.com 6

http://www.latticesemi.com/

= LATTICE

Preface

About this Document

The iCEcube2 User Guide provides iCE FPGA designers with an overview of the software tools
and the design process using iCEcube2. This document covers the iCEcube2 tools for Project
Setup, Navigation, Synthesis and Physical Implementation on the iCE FGPA device.

For information on the Synopsys® Synplify Pro® software, please refer to the Synplify Pro
documentation provided in the synpbase/doc directory in the iCEcube2 software installation
(<icecube?2_install_dir>/synpbase/doc), and on the Lattice website.

For information on the Mentor® ModelSim® simulation tool, please refer to the ModelSim online
Help.

Software Version
This User Guide documents the features of iCEcube2 Software Version 2020.12.

For more information about acquiring the iICEcube2 software, please visit the Lattice
Semiconductor website: http://www.latticesemi.com.

Platform Requirements

The iCEcube2 software can be installed on a platform satisfying the following minimum
requirements.

A Pentium 4 computer (500 MHz) with 256 MB of RAM, 256MB of Virtual Memory, and running
one of the following Operating Systems :

e Windows 10 OS, 32-bit / 64-bit

e Windows 8/8.1 OS, 32-hit / 64-bit
e Windows 7 OS, 32-bit / 64-bit

e Windows XP Professional

¢ Red Hat Enterprise Linux WS v4, 5, and 6

Programming Hardware
Here are the following ways to program iCE FPGA devices:

e A third party programmer or a processor, using the programming files generated by the
iCEcube2 Physical Implementation Tools. Consult the third party programmer user
manual for instructions.

e The ICEblink and iCEman evaluation Board, which not only serves as a vehicle to
evaluate iICE FPGAs, but also includes an integrated device programmer. This
programmer can be used to program devices on the evaluation board, or it can be used
to program devices in a target system. Please visit Lattice Semiconductor website:
http://www.latticesemi.com for additional information on the Evaluation Boards.

e Digilent USB cables to program the external SPI Flash.

iCEcube2 User Guide www.latticesemi.com 7

http://www.latticesemi.com/
http://www.latticesemi.com./

= LATTICE

e The iCE Programming hardware: iCEcable, iCEprog (Programmer base module) and
iCEsab (socket adaptor). Refer to lattice website: http://www.latticesemi.com for more
details on programming hardware.

Programming Software

Standalone Lattice Diamond Programmer software is required to program iCE40 FPGA devices
or SPI flash. Download and install the latest standalone programmer from
http://www.latticesemi.com/ispvm.

For more information about Diamond Programmer, refer “Diamond Programmer” on page 116.

iCEcube2 User Guide www.latticesemi.com 8

http://www.latticesemi.com/
http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

= LATTICE

Chapter 1 Overview

iCEcube?2 Tool Suite

The iCEcube2 Tool Suite is comprised of several integrated components, running under either
the Microsoft Windows or the Red Hat Linux environments. Please refer to Platform
Requirements for additional information on supported operating systems.

Figure 1-1 below depicts the design flow using the iCEcube2 Tool Suite. The components in blue
signify functionality supported by Lattice Semiconductor’s proprietary Lattice Synthesis Engine
(LSE) and iCEcube2 place and route software. The components in purple indicate the
functionality supported by the Synopsys Synplify Pro synthesis tools and the Mentor ModelSim
simulation tool. The iCEcube2 software, Synopsys Synplify Pro, and the Mentor ModelSim
software constitutes the iCEcube2 Tool Suite.

Note: The Mentor ModelSim tool is available only in Windows environments.

Verilog, VHDL
Design Files

Synplify Pro ﬁlmmmm

Post Synthesized
VHDL or Veri#iog
Nethists EDIF Nethst,
Timing Constraints

Post PAR 5
Verilog or
VHOL Netist,
SOF
Mentor Modelsim

Simulation Tools

Figure 1-1: The iCEcube2 Design Flow

iCEcube2 User Guide www.latticesemi.com 9

http://www.latticesemi.com/

= LATTICE

Design Flow
The following steps provide an overview of the design flow using the iCEcube2 Tool Suite.

1. Create a new project in the iCEcube2 Project Navigator and specify a target device and its
operating conditions. Add your HDL (Verilog or VHDL) design files and your Constraint files
to the project.

2. iCEcube?2 software supports the Synplify Pro synthesis tool and the Lattice Synthesis Engine
(LSE) tool. Synplify Pro is the default synthesis tool in iCEcube2. Synthesize your design
using the selected synthesis tool.

3. Perform Placement and Routing using the iCEcube2 place and route tools. iCEcube2 also
supports physical implementation tools such as floor planning, allowing users to manually
place logic cells and 1/Os.

4. Perform timing simulation of your design using the Mentor ModelSim simulation tool or any
industry-standard HDL simulation tool. The files necessary for simulation are automatically
generated by the iCEcube2 Physical Implementation tools, after the routing phase.

5. Perform Static Timing Analysis using the iCEcube?2 static timing analyzer.

6. Generate the device programming and configuration files from the iCEcube2 Physical
Implementation tools.

7. Program your device using the device programming hardware provided by Lattice.

iCEcube2 User Guide www.latticesemi.com 10

http://www.latticesemi.com/

= LATTICE

Chapter 2 Quick Start Guide

This chapter provides a brief introduction to the iCEcube2 design flow. The goal of this chapter is
to familiarize the user with the fundamental steps needed to create a design project, synthesize
and implement the design, generate the necessary device configuration files, and program the
target device.

Detailed information on tool features and use is provided in the following chapters.

Creating a Project

Starting the iCEcube2 software for the first time, you will see the following interface shown in
Figure 2-1.

W Lattice iCEcube2 = O X
File View Tool Window Help

D&l
Design \ & X
= Project i
~New Proje

Open Project
~Close Project Creg

= Synthesis Tool
=-Add Synthesis Files

~ Design Files
“ Constraint Files
> Run LSE Synthesis w
~Reports L]
= P&R Flow BN sEmMmiIcONDUCT

B> Select Implementat... —
Add P&R Files
-~Run P&R
~P> Import P&R Input ...
B> Run Placer
> Run Router
~[> Generate Bitmap

IP Exporter L]

Ready

Figure 2-1 : Create a New Project

The first step is to create a new design project and add the appropriate design files to your
project. You can create a new project by either choosing File > New Project, or by clicking the
Create a New Project icon as seen in Figure 2-1. The New Project Wizard GUI is displayed in
Figure 2-2.

iCEcube2 User Guide www.latticesemi.com 11

http://www.latticesemi.com/

= LATTICE

[W New Project |M1

Project

Project Mame: |

Project Directory: C:\SbiTools\examples\blnky []
Device

Device Family: [iCE40 ']
Device: |LPIK v)
Device Package: [CM121 v)
Operating Condition

Ambient Temperature (in degrees Celsius)

Range: Best: Typical: Worst:
Commeraal - | 7

Core Voltage(V)

Voltage Tolerance Range: Best: Typical: Worst:

| #/-5%{datasheet defau = | 1.26 1.2 = 1.1
10Bank Voltage(V)

topBank [2.5 - bottomBank 2.5 -

lefiBank 2.5 ¥| rightBank (25 -

Perform timing analysis based on
Best Typical @/Worst

@ Start From Synthesis
Start From BackEnd
IF Generation

MNext Cancel

Figure 2-2: New Project Setup Wizard for iCE40 Family

This example is targeted for an iCE40 family device. Follow these steps to setup the project
properties:

1. Project Name Field: Specify a project name (quick_start) in the Project Name field.

2. Project Directory Field: Specify any directory where you want to place the project directory
in the Project Directory field.

3. Device Family Fields: This section allows you to specify the Lattice iCE device family you
are targeting. For this example, change the Device Family to iCE40.

4. Device Fields: This section allows you to specify the Lattice device and package you are
targeting. For this example, change the Device to HX1K and change the device package to
the VQ100.

5. Operating Condition Fields: This section allows you to specify the operating conditions of
the device which will be used for timing and power analysis.

iCEcube2 User Guide www.latticesemi.com 12

http://www.latticesemi.com/

= LATTICE

6. Start From Synthesis: This option allows you to start the flow from Synthesis. For the
current example, select this option.

7. Start From BackEnd: This option allows you to start from Post Synthesis flow.

After the above selections, the New Project GUI Wizard has the following settings as shown in
Figure 2-3.

W New Project L9 [

Project

Project Mame: qucik_start
Project Directory: C:\ShtTools \examples \blinky

Device
Device Famly: (KCE%0 -
Device: '_.H:(IK -r]
Device Package: | V100 ']
Operating Condition
Ambient Temperature (in degrees Celsius)
Range: Best: Typical: Worsk:
[cmml -]
Core Voltage(V)
Violtage Tolerance Range: Best: Typical: Worst:
+{-5%{datasheet defau + 1.2% 1.2 - 1.14
I0Bank Voltage(V)
topBank [2.5 - battomBank ;zs -
leftBank 2.5 i rightBank 25 -
Perform tming analysis based on

| Best Typical @ Worst

@ Start From Synthesis
Start From BackEnd
IP Generation

[et][conen

Figure 2-3: Tutorial Project Settings

8. Click Next to go to the Add Files dialog box shown in Figure 2-4. You will be prompted to
create a new project directory. Click Yes.

9. Inthe Add Files dialog box, navigate to: <iCEcube? installation directory>/examples/blinky
Highlight the following files:
blinky.vhd
blinky _syn.sdc

iCEcube2 User Guide www.latticesemi.com 13

http://www.latticesemi.com/

= LATTICE

Select each file and click >> to add the selected file, or click >>> to add all the files in the
open directory to your project. Files can be removed using << and <<<. Click Finish to create

the project.

The SDC file is a Synopsys constraint file, which contains timing constraint information.

W Add Files -8 [
Files to add
Look in: [C:,.fSbtTooIs,."e)(ampls_-s,.fblink\-I > | || | @ E]
blinky_syn.sdc
T blinky.vhd
e (2| blinkywvhd -_>>
}&-, || blinky_cm225.pcf
My Computer | blinky_iceblink40_vql00.pcf
— || blinky_iceman65_cb284.pcf
! = blinky_syn.sdc
'
Home
File name: blinky. vhd
Files of type: [AII Files{*) V]
[Back] [Einish] [Cancel]

Figure 2-4: Add Files Dialog Box

After successfully setting up your project, you will return to the iCEcube2 Project Navigator

screen shown in Figure 2-5.

iCEcube2 User Guide www.latticesemi.com

14

http://www.latticesemi.com/

= LATTICE

W Lattice KEcube? - [Duiput]
W Al Yiew Tod Wirdow

1
Frogact Mara: gt _ttwt
Project
P Pt
Dpen Progect
Cluse Profit
Fynthess Tool
* A Syrihisis Fles

Deugn Files
Elinkgted

& Congtraint Fies
Edinky_aym .k

Faparts
PR Flow

Add PBR Filex

& Cutpuk Fikes
Fapots
Bimap
Simulation hatlist

Halp

Synthesis input files are

now added to the project.

Fur Latics LSE Symbesi

Devce/Dpersting Condition

Dgsace [nfio
OeaceFamiy E4D
E‘““ - "x;; Device information and
poE e VU7 e~ gperating conditions are
4 Dpssrating Concition now set
Core Wokageds) 114
Temperstyre(C] 83

Figure 2-5: iCECube2 Project Navigator View after Completing Project Setup

Synthesizing the Design

After a successful project setup, select a synthesis tool:

1. Inthe iCEcube2 window, right-click Synthesis Tool and choose Select Synthesis Tools.
The Select Synthesis Tool dialog box opens.

2. Select a tool: Synplify Pro or Lattice LSE.

3. Click OK.
The Run <Tool> Synthesis command changes to show the selected tool.

For this tutorial, select Lattice LSE.

Next, set options for the synthesis tool. Choose Tool > Tool Options. In the Tool Options dialog
box, click the tab of the tool. To change the value of an option, either click in its Value cell and
start typing to replace the value, or double-click to edit the value or to see a menu of values. In
the Synplify Pro tab, click on the word “here” to open Synplify Pro. Then, in the Synplify Pro
window, click Implementation Options.

For now, do not change any option settings. Click Cancel.

Double-click Run Lattice LSE Synthesis in the Project Navigator window. See Figure 2-6. This
starts the Lattice Synthesis Engine running. See Figure 2-7.

iCEcube2 User Guide www.latticesemi.com 15

http://www.latticesemi.com/

= LATTICE

W Laiiice KEoube? - [Duipat)
W Al Yew Teodl Wardow Halp

1
Frogmct Mama: quct_ttact &
& Project
Pl Projiact
Open Project
Closi Profist
* Syrthess Tl
add syrihesis Fies
[Diesign Files
Elinky.shed
4 Constram Fles
Blinky_om.sekc
[# Fun Lattics L5E Symihesis st
Rapots
& PRR Floaw

&cid PR Files

I

@ Quiput Fikes
Fapots
Bémap
Simulation hathst
Omace/Opersting Condiion
* Divice Info
DeviceFamily WE4D
Disdci HiiK
Dedce Packsge VOII0D
Posad Gracka
Cperating Condtion
Core Wolages 114
TempersturaC] 23

Double-click Run
Lattice LSE Synthesis

Figure 2-6: Launch Synthesis Tool

Once synthesis is complete, you will see a green checkmark next to the Run Lattice LSE
Synthesis command. The Output tab shows the actions taken along with any warning or error
messages. Scroll down toward the bottom to see the area, clock, and timing reports. See Figure

2-7.

iCEcube2 User Guide

www.latticesemi.com

16

http://www.latticesemi.com/

= LATTICE

W Lattice KEcubed - [Duiput] [E=E=E)
W Filn Yew kol Wirdow Hap =

)@ T LCE R
Project Narw: quick,_gtart & % =
s Proied - - —
P Projit
Opeen Progect
o Projed
4 Synthens ool
Add Synihicis Flis
& Dengn Files
Einkgxhd
Constrami Fies

& Fun Lattice L5E Syniteses

& PIA Flow SESPEEEEEEETETERELE
o Sl vl Gt ot -
quck_sterladi
Add PER Files
Fun PR
P imgeont PR Ingen Files

[

— L

|
[——
Cutput Fikis
Reports
Bitmas
Smulstion Metist
* Dot Operating Condition

Deare Info
DisdtaFumiy KEAD
Deace HHIE -
Disdce Packega VOI00
Poswer Grace

+ Oparating Condiion
Core Wokagedsy 114
Syt aucossd.

Figure 2-7: Synthesis Run Status

View Timing Constraints

Double-click on the blinky_syn.sdc file under the Constraint Files folder. See Figure 2-8. It will
open the timing constraints for the project shown in Figure 2-9.

iCEcube2 User Guide www.latticesemi.com 17

http://www.latticesemi.com/

= LATTICE

W Lattics KEcube? - [Duipat)

Project
Pdiw Projid
Cpeen Progect
€lose Prejed

& Synthens Tool

Add Synihicis Fles
Cengn Fileg
Blinkgehd

Constraim Fles

+F Fun Lattios L5E Syntheses
Faports
PER Flow

quick_startadi
F &dd PER Fles

Fun RER
P gt PR Ingant Fles

Fun Placer

¢ Generste Btmap
Culput Fikis
Feport:
Bibmap
Simuistinn Petiist
Dedce/Operaing Condiion
Oeare Info
DisceFamiy
Deace
Disdci Packega
Poswer Grace
Oparating Condiion
Core Wokageds
Synthemin nucomsd.

Biinky_syn.sde =] |

2 o Sedind ol et adi o nopaR -

LE
HX1E
VR And

114

guizk_srarc_Implmachaic

Figure 2-8: Open the SDC File to View Timing Constraints

W Laitioe KEcube? - [blnky_smsde]

W Rl Edi Ve

kol Wirdow Halp

D THEEFLCE A BXxOBb 2™ A
|Projuct s quick_tart 8% gt
4 Proget *| f Syropaya, Ino. oon =
Pl Projed 8 O ERT ik gy bl e,
t Wrizcar ca Toe Feb g
1Opeen Progect 8 by Symplify Brs, D-38 4 Socps Edizex
Close Projied
& Synbheus Tool $
Zallac
Ad Syriveais Fles : e
& Dengn Files
. H
bh!l:'.lhd —
Constramt Fles i
dinky_symn.ade Ssfirs clock [CLF_BSOHz} -rems [CZE JSH2} -freg 8330 -olockgroup defsulr_sligroup 0
oF Fun Latfics L5E he Shfird oloti =2iiknls [} d#r_to LRI COTWITR[R]) -nesd (ncDivider co L3 COTHIER[8]} =-clockgrodp defsolc
e L5E Symibeses Safira_olock -&lsnle ey, COTWTER[40] | -same |=:DTVIDE SIMGE COONTIR(3]} -sloctgroup dafaclc_cl
Faports Ssfira_clock -Sisabls " 5SMHa. COTWTRA[37] | -same {=:DT7I08 saMar. COINTIR(37]} -clackgroup defaclc_ol
& PERA Flow Ssfirs_clock [CLE_SSMEHI} -rems [CSE_JSMHI} -freg 35 —clockgroup defanlc alkgmocy 4
o Sl vl Gt o Ao - . o
quick_startedi § Cloak ta Clack
© sdd PER Fles e
Fan PBR I .
P Bt PAR Inpat Fles P P a——
[:
D- H
b+ Generas Bitm P -
Ouipuk Fikis t
Feports H
Bimas & Dalay Pacha
Simulation Retist f
Disvice/Opiratng Condiion '
DOmare Info 2 Rinsuboed
DisateFamiy KEA £
Deace HX1K i
Disdce Mackaga VQind 8 100 Erancacds
Poswer Grade £
+ Oparating Condition B -
Core Wolkage™) 104 = 4 i d ¥

Lnl Coll

iCEcube2 User Guide

Figure 2-9: View Timing Constraints

www.latticesemi.com

18

http://www.latticesemi.com/

= LATTICE

Select Implementation

Double-click Select Implementation. See Figure 2-10. This will tell iCEcube2 which synthesis
implementation to process for place and route. If you have different synthesis implementations,
you will be able to select the synthesis implementation you wish to place and route. Since we only
have one implementation, click OK when the Select Synthesis Implementation dialog box
appears.

Figure 2-10: Select Synthesis Implementation

Importing Physical Constraints

Physical constraints such as pin assignments are stored in a .pcf file (Physical Constraint File).
Add the .PCF file to your project.

In the iCEcube2 Project Navigator, right-click Constraint Files. Choose Add File. See Figure
2-11.

Note: For information on importing physical constraints from iCEcube to iCEcube2, please refer to
the “Importing Physical Constraints from iCEcube to iCEcube2” section at the end of this quick
start guide.

iCEcube2 User Guide www.latticesemi.com 19

http://www.latticesemi.com/

= LATTICE

W Shiconiiue KEcube2 = el
e — Py
W Fie View Tool Wodew Help

J v -
Project Name: quck_start ax oot
“ Pregect

New Project

4 Add Syrehesis Fies
Design Fles
Constrant Fles

o Lisnch Synthesis ool

+ PAR Flow

o Selet Implemertation{quik s
+ Add PER Fies
Design Fies
 Dessgn Fiks
Constrars e
Ren A3 Add Fes.
D wmpot pAR Input Fes

4 Output Fles
Reports
Btmap
Simutation Nethst
+ Device/Operating Condion

+ Device fo
Devicefamdy KE4O
Dece XK
Devce Package VQI00
Power Geade

Operating Condeicn
Core VoRage(V) 114

TemperaturelQ 70

284 tdes

Figure 2-11: Add Constraints Files for Place and Route

Navigate to the <iCEcube2 Installation Directory>/examples/blinky directory and Add the
blinky.pcf file. See Figure 2-12.

W Add Files \4.“?‘. &

< = e y . Fles to add
Look in: | C:/SbiTocks examples binky IR (+) (=)
. = blinky_iceblink40_vql00.pcf
| blinky em225.pcf
L blinky,_iceblink40_vq100.pcf|

My Computer blinky_icemant5_cb284 pcf
< blinky_synsdc

22>
- b quick_start
Desktop <<
‘ <<<
Home
Flename: binky_keblnk90_vq100,pcf fet
Fies of type: |Constraint(*.sdc *.scf *.pcf *.cb *.mtd)) -

Qe | Cancel

Figure 2-12: Add .pcf File

iCEcube2 User Guide www.latticesemi.com 20

http://www.latticesemi.com/

= LATTICE

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click Import P&R Input Files in
the Project Navigator. See Figure 2-13. Once completed you will see a green check next to
Import P&R Input Files. See Figure 2-14.

W Sconbies CrceT TN
— =

- "S-
St
W Fle Ve ool Windew Melp

v

Promct Revme: 950_st) & x

Figure 2-13: Import P&R Input Files

Figure 2-14: Successful Import of P&R Input Files

iCEcube2 User Guide www.latticesemi.com 21

http://www.latticesemi.com/

= LATTICE

Place the Design

Double-click Run Placer.

Once placement is complete, a green check will appear and the Output window will show
information about the placement of the design. See Figure 2-15.

W Sikconiive Clcibe | OU

W Bl Yen Jool findew ey

-

Promct Nme: auc_ytw1

S Information regarding placement
:’E@, -
” e.g.-Clock Summary
Place Complete e

Figure 2-15: Placer Run Status Display

View Floor Planner

At this point, since placement has been completed, you can view the placement of the design by
opening the Floor Planner. You can open the Floor Planner by going to the menu and choosing
Tool > Floor Planner or you can also select the Floor Planner Icon. See Figure 2-16.

iCEcube2 User Guide www.latticesemi.com 22

http://www.latticesemi.com/

= LATTICE

ke

Floorplanner Icon

o0 Y

ekt vql00 et

i
o rpont PR Inpet Fles -
o Fun Pacer -
D hoter

@ run

4 Devce/Operatng Conditon
+ Device o

Owncefamdy e

6 0FFR
56 DFFR

R L e L)

Device
Dwnce Package
Powse Grade

* Operating Condtion
Core VoRagetv) 118 e
WnperatureiC) 0

1
il
[
[
[
[
il
il

N . . -

Figure 2-16: Floor Planner View

View the Package View

You can also see how pins were placed for your design by selecting the Package View. You can
select the package viewer by going to the menu and choosing Tool > Package View or you can
also select the Package View Icon. See Figure 2-17.

4 Operatiog Condtion
Core Voltage(V) L.14
Temperature(C) 70

Bank 2
feloloTotel | 121) [e16] | [eleleImIBIOLT To10] |

iCE40HX1K - VQ100

Ele [t Yew Jool Vindow Help -i®%
Dp TS ZEosans-qf S
[Project Name: quick_start 8 x Outpnt oo Planoer Package View
+ project Port &% Package P Legend &%
New Project Name Deection O m
Open Project PMOD_B3T.. Output 9 9% % 95 0 9 d -- ? @ PO/GEIN
Gote roja P08 Ot CONEOOOONOOON00O 000000NN © SLsvsPSOPLSOHSHLSSS
 Synthesss Tool PMOD_BOR... Output @ Bank 0 = 1 a0
4 Add Synthesis Fles PMOD_B38... Output ® W vee
Design Fles PMOD_BIT.. Output (8] B VCCIoND00. 591
Corstrais Files PMOD BIE. Output @ O COONE/CRESET B/DRESET B
& Launch Synthesis Tool w:’:& Output o ') | vep/DOP
AR A o gt
‘ "RJ"" PMOD_B2L ... Output L O
+ o Select Imphemestation(quick 5. b i i) ™
qudamsd e ° 0
+ Add PER Fies Shaco ® O
ot &) |]
Design Fies
1P Design Fies ® o}
Coestraint Fles | | O
blinky_iceblink40_vq100.pcf . O ¢
fun AR @ Bark 3 Bark 1@
o Import PAR Inpus Fies = @
o Run Placer ® P
D Run Router u
B noke ® 0
+ Outpet Files]
Reports [&] m
Btmap @ O
Simutation Nethst
4 Device/Operating Condition O .'
 Device Info ® u
DeviceFamsly KEQ H O
Device HXIK 2
Device Package VQI00 | Werkd View s x O O
Power Grade . '

iCEcube2 User Guide

Figure 2-17: Package View

www.latticesemi.com

http://www.latticesemi.com/

= LATTICE

Route the Design

Double-click Run Router in the Project Navigation window. Place and Route have been
separated into different steps to allow you to re-route the design after making placement
modifications in the Floor Planner without having to re-run the placer.

Perform Static Timing Analysis

Now that you have routed the design, you can perform timing analysis to check to see if the
design meets your timing requirements. To launch the timing analyzer, go to the menu and
choose Tool > Timing Analysis. You can also select the Timing Analysis Icon. See Figure 2-18.

%cqnEive £ ovbel - [Floce Pian
W bl Vew Jool Wedow Help = |# %
@ T8 ‘LI‘O}{T—Timing Analysis lcon
Jainct Mare: gk _itar? Dl\r/ Cuipud Fiogr Plarnes Facage Yew netess_shiops T Ay e
& Picopit
New Preject ok Summary| |Cock Relwiorshg ey | Dalashest | | Arwiror Patfs T Cormur | |Gererate: brung report andudf | Full Sreen Hode:
Opsn Pr opt
Clatt Progial 3
» dyrehess Tool e ey = Customre Cobrrg
* Add Synthesis Fles Clowke Mame Wostst Slackip) FRAXIMHI) Target FrequesscyMHI) Failing Fath #
Ousign Fles 1 CLE_IHE 40T ET) 083 0
Congiramt Fles I
o Lisnch Synthesis Tosl CLEIMHZ 2753 m* il 0
4 PAR Flow . — .
4 o Sabect Imphemantation/quick 5. b clock dvider Lal- S0 g "
Gk Rt e 4 choc dider 1ML, NS S]
quick_itartict
4 Add PAR Filles
Dusign Filks
[P Detign Files
4 Constrant Fles
biliicy_joetlinka0 w100 pof
Run Al
o Import PER Input Files
o Bun Hacer
o Fun Router (=== o8
Lo Generate Bimap Cocal Pl Save fummary || Save Dol St | [Customre Cokomrs
< Output Fles -
Feports Seait Pt End Pt Saek Delay Shew Lawesch Clock Captue Clotk
Rimap 1 Drideto e Dividerte IMe. JLNMTZ 1847 [CLK_3HER CLK_IIKHzR
Sat 0 Mgty
4 Dence/Operating (ondbion
Dwwice Info
Dusicefamily ICE4D
Dewice HYIE
Device Package V100
Power Grade
Qperabng Condilion
Core Vetagen] 114
Temperatur e{C) nm
Lal Call

Figure 2-18: Timing Analysis Summary

You can see from the timing analysis that our 32-kHz design is running at over 395 MHz and our
32-MHz clock is running at over 222 MHz (worst case timing). If we were not meeting timing, the
timing analyzer would allow you to see your failing paths and do a more in-depth analysis. For
this tutorial, we won’t go into details on timing slack analysis.

Perform Power Analysis

iCEcube? also comes with the Power Estimator tool. To launch the Power Estimator, go to the
menu and choose Tool > Power Estimator. You can alternatively select the Power Estimator
icon. There are multiple tabs in the Power Estimator tool including Summary, 10, and Clock
Domain as shown in Figure 2-19. On the Summary tab, change Core Vdd to 1.2V and make sure
all IO Voltages are at 2.5V. Then click Calculate. Power Estimator will update with power

iCEcube2 User Guide www.latticesemi.com 24

http://www.latticesemi.com/

= LATTICE

information for both static and dynamic power. For more information on using the 10 and Clock

Domain tabs, refer to the detailed section on the Power Estimator tool.

-
™ Power Estimator

2.

SUmmary | 10 | Clock Domain |

Dynamic Power Breakdown

Core Vdd{V}:

10 voltage Core Power(mW): 2.11817
Left Bank 10 Voltage(V): [2.5 - 10 Power(mW): |4.25
Right Bank 10 Voltage(V): [2.5 - Power Consumption
Static Power(mW): 0.3204
Top Bank IO Voltage(V): | 2.5 -
Dynamic Power(mW): 6,36317
Bottom Bank 10 Voltage(V): |2.5 -

Total Power(mW): 6.68857

Reset Al

Calculate H Close

Figure 2-19: Power Estimator

Programming the Device

To program a device, you will need to generate a programming file. In the Project Navigator,

double-click Generate Bitmap.

You are now ready to program an iCE40 device with the generated bitmap.

Start the stand-alone Diamond Programmer. In Windows, from the Start menu, choose Lattice

Diamond Programmer > Diamond Programmer.

The Diamond Programmer Getting Started dialog box appears, as shown in Figure 2-20.

i Diamond Programmer - Getting Started

D[] |

Select an Action

@ Create a new project from a scan

Cable: [HW-USBN-2A ~ | port: [E2UsB-0 v| | Detect Cable
(7) Create a new blank project
(7) Open an existing programmer project
C:fmachxo2_design/disp_mux_eval/test3/impl/synplify fctrl_board_dema fimpl 1/impl 1. xcf

Ok] [Cancel

Figure 2-20 : Getting Started Dialog Box

iCEcube2 User Guide www.latticesemi.com

25

http://www.latticesemi.com/

= LATTICE

Select Create a New Project from a Scan and click OK. The Diamond Programmer main

window appears. In the Cable

Settings box in the upper-right, click Detect Cable.

Diamond Programmer will indicate in the bottom Output tab that the Lattice HW-USBN-2A USB
in

programming cable was detected, as shown
%, Diamond Programmer - Untitled * =] B [
File Edit View Design Help
F e @ @ e
Enable Status Device Family Device Operation File Name Cable Settings =
Generic JTAG Device JTAG-NOP Bypass
Cable: [wusma <)

< mn

Custom port (HEX):

1/O Settings

© Use default 1/O settings
©) Use custom 1/O settings

Cable and I/O Settings

Output

INFO - Scanning USB Port EzUSB-0...
Failed to scan board.

ERROR - Scan Failed - Creating Blank Programmer Project.
Cable Auto Detection Activated.

No Lattice HW-DLN-3C (parallel) cable detected.
Lattice HW-USBN-2A cable detected.
No Board with FTDI USB Host Chip detected.

INFO - Detected HW-USBN-2A cable at port E2USB-0

J—

Cable detected message in
Programmer output tab

| output [7d Console

Ready

2-21.

Figure

4,.# Diamond Programmer - Untitled *

File Edit View Design Help

Cable: HW-USBN-2A -

| port: E2US8-0 -

£| custom port (HEX):

3

O | 1/0settings

g © Use default 1/O settings

3 Use custom I/O settings

3

< I

Output

™ b (3 - e
Bl @ @@
Enable Status Device Family Device Operation File Name Cable Settings =
1 [} Generic JTAG Device JTAG-NOP Bypass Detect Cable

INFO - Scanning USB Port EzZUSB-0...
Failed to scan board.

Cable Auto Detection Activated.

No Lattice HW-DLN-3C (parallel) cable detected.
Lattice HW-USBN-2A cable detected.

No Board with FTDI USB Host Chip detected.

INFO - Detected HW-USBN-2A cable at port E2USB-0

ERROR - Scan Failed - Creating Blank Programmer Project.

Cable detected message in
Programmer output tab

L

Output | Td Console

Ready

Figure 2-21 : Diamond Programmer Main Window

In the Device Family field, click the Generic JTAG Device box and choose iCE40, as shown in

Figure 2-22 .

iCEcube2 User Guide

www.latticesemi.com

26

http://www.latticesemi.com/

4. Diamond Programmer - Untitled

File Edit View Design Help

bl s M R Mk

Enable Status Device Family Device Operation File Name Cable Settings =
l 1 Generic JTAG Device ~ | JTAG-NOP Bypass Detect Cable
Generic JTAG Device -
MachXO3L Cable: HVi-USBN-2A -
ICE40_ENG Part: E2UsB-0 -
ICE40LM . £
Platform Manager 2 & custom port (HEX):
sC Z
LatticeECP4UM @
LatticeECP4U g | (e setins
(O — b) Use default I/O settings
2| © Use custom 1O settings
3
INITN pin connected
DONE pin cannected
TRST pin connected
@ SetTRST high
ol i v -
Output
INFO - Scanning USB Port EzUSE-0...
Failed to scan board.

ERROR - Scan Failed - Creating Blank Programmer Project.
Cable Auto Detection Activated.

No Lattice HWW-DLN-3C (parallel) cable detected

m

Lattice HW-USBN-2A cable detected,
No Board with FTDI USB Host Chip detected,

I
||| INFO - Detected HW-USBN-24 cable at port EzUSB-0

Output | Td Console

Ready

Figure 2-22: Choosing iCE40 Device Family

In the Device column, choose iCE40HX1K, as shown in Figure 2-23.

[+ i Diamond Programmer - Untitled

File Edit View Design Help

el)= BEE R G
Enable Status Device Family Device Operation File Name Cable Settings |
1 iCE40 CE40HX 1K > | Fast Program Detect Cable
ICE40LP1K_SWG16
ICE40LP&40_SWG16 Cable: HW-USBN-24 A
iCE40LP334
ICE40LP 1K Port: EzUSE-0 b
ICE40LPAK B custom port (HEX):
ICE40HN 4 3
ICE40LPEK @ .
ICE40HXEK g| Uosettings
"% @ Use default 1/0 settings
,%;) Use custom 1/0 settings
G
INITN pin connected
DONE pin connected
TRST pin connected
@ Set TRST high
4 mn 3 -
Output
INFO - Scanning USE Port EzUSB-0... -
Failed to scan board.

ERROR - 5can Failed - Creating Blank Programmer Project.
Cable Auto Detection Activated.

No Lattice HW-DLN-3C (parallel) cable detected.
Lattice HW-USBN-2A cable detected.
Mo Board with FTDI USE Host Chip detected.

|
Ii| INFO - Detected HW-USBN-24 cable at port EzUSB-0

Output | Td Console

Ready

Figure 2-23 : Choosing iCE40HX1K Device

There are three basic programming flows for configuring the iCE40 device. This section explains
programming iCE40 device using an external SPI Flash device available in iCEblink40-HX1K
evaluation board.

iCEcube2 User Guide www.latticesemi.com 27

http://www.latticesemi.com/

= LATTICE

Choose Edit > Device Properties, or double-click the Operation box to display the Device
Properties dialog box, as shown in Figure 2-24.

In the Device Properties dialog box, set options as follows:

e Access Mode: SPI Flash Programming
e Operation: SPI Flash Erease,Program,Verify

In the Programming File box, browse to the .hex file you generated with iCEcube?2.

In the SPI Flash Options box, choose the following options:
e Family: SPI Serial Flash
e Vendor: STMicro
e Device: SPI-M25P 10-A
e Package: 8-pin SOIC

The Device Properties dialog box should be configured as shown in Figure 2-24. In the Device
Properties dialog box, click OK.

.2k ICE4D - ICEAOHX1K - Device Properties [T [
Device Operation
Access mode: lSF'I Flash Programming - I
Operation: |SPI Flash Erase,Program,verify ~ |

Programming Options

Programming file: Jick_start_Impimntfsbtfoutputs/bitmap/ficeblink<40_demo_bitmap.hex 7

Device Options

|| Reinitialize part on program error

SPI Flash Options

Farmily: [sPI Serial Flash -
vendor: lSI'Micro -]
Device: [sPI-M25P10-a -
Package: [8-pin sOIC -
SPI Programming

Data file size (Bytes): 32303 Load from File

Start address {Hex): [oxoo000000 -

End address {(Hex): [ox00o08000 -]

[] Erase SPI part on programming error

Secure SPI flash golden pattern sectors
[Ok] I Cancel I

Figure 2-24 : Device Properties Dialog Box

In the Diamond Programmer main window, choose Design > Program, or click the Program icon
in the toolbar, as shown in Figure 2-25. Once the SPI Flash is programmed, the output tab in the
lower-left portion of Diamond Programmer indicates Operation successful.

iCEcube2 User Guide www.latticesemi.com 28

http://www.latticesemi.com/

= LATTICE

4.} Diamond Programmer - Untitled * = | B |
File Edit View Design Help
ped|eese e@E
Device Operat File Name File Date Cable Settings &
1 iCEA0HXIK SPLFlah Erase, Program, Ver, ntfsbt/outputs/bitmapjiceblink40_demo_bitmap.hex 8/13 14: [oetectcabe
Program icon g FRERRAIER S |
g_ 1/ Settings
Té @ Use default I/O settings
2| (O Use custom 1O settings
S
« [. * e i -
Output
Disabiing. .. -
Verifying...
Finalizing.
Execution time: 00 min : 02 sec
Operation Done. Mo Error. Output tab showing
Elapsed time: 00 min : uzse/ QOperation sucessful
Operation: succassful. =
Output | Td Console
Ready

Figure 2-25 : Program the Device.

The external SPI Flash on the Lattice iCEblink40-HX1K evaluation board has been programmed,
and the iICE40 is configured from the SPI flash.

Addendum:

Importing Physical Constraints from iCEcube to iCEcube2

For users who have created physical constraints using iCEcube, this section describes how to
import and convert those constraints for use in iCEcube2. This section will demonstrate how to
import an MTCL file from iCEcube and save it into the .pcf format used in iCEcube2.

In the iCEcube2 Project Navigator, right-click Constraint Files and choose Add Files. See
Figure 2-26.

iCEcube2 User Guide www.latticesemi.com 29

http://www.latticesemi.com/

- LATTICE

NEN sEMICONDUCTOR

W Larice Kcube : oetest . " Ty —— - - =)

|File View ool Window Hirlp - -

D@ THdZ 0B R
#x

fProjesct hiame: qudk_start

[Fun Placer
[Run Router
[Genecate Bamap
4 Output Files.
Répats
f Bmag
Semulation Metks
4 Deace/Operatag Conditica
Device Info
Devicefamily iCE40
Deiice 1K
Device Package VQI00
Power Grade
4 Operating Condition
| Core Voltageny] 114
WemperatareiC) 70

Figure 2-26: Add Constraint File

Navigate to <iCEcube?2 Installation Directory>/examples/blinky and add the blinky.mtcl file. See
Figure 2-27.

% Add Files
- — Files to add
Look in: |C:,I'Sthools,l'examples,l'blinky |VJ| 0 O @
i EI Blinky. pcf .
3 n blinky_constraints .mkcl
4| Blinky_syn.sde

My Computer I quick_start

_ =
Desktop <

<

Home

al
U

File name: |b|inky_c0nstraints.mtc| | Details

Files of type: |Constraint(*.sdc * scf *,pcf *.clb *.mtcl) v|

[Ok][Canicel J

Figure 2-27: Add .mtcl File

iCEcube2 User Guide www.latticesemi.com 30

http://www.latticesemi.com/

= LATTICE

Import Place & Route Input Files

The next step is to import the files for Place and Route. Double-click Import P&R Input Files in

the Project Navigator. See Figure 2-28. Once importing of files is completed you will see a green
check next to Import P&R Input Files. See Figure 2-29.

0 SiliconBlue iCEcube2 - [Dutput]

FEX
W Fle View Tool Window Hep

- 8x
Dy BB 0T QuIQ
Project Mame: quick_start: & x

[=-Project
Mew Project
Open Project
Close Project
= Synthesis Tool
(= Add Synthesis Files
= Design Files
bilinky.whid
= Constraint Files
bilinky_syn.sdc
o Launch Synthesis Toal
E-P&R Flow
= o Select Implementation(quick_sta...
quick_start.edf
quick_start.scf
= Add PAR Files
Design Files
IF Design Files
= Constraint Files
bilinky_constraints. rtcl
Run Al
B Irnport PRR Input Files
Run Placer
|> Run Router ‘Dnuh\e click to Import PRR Input Fllesh
|> Generate Bitmap
= Cutput Files
Reports
Bitmap
Sirnulation Metlist
(= Device/Operating Conditian

Oukput

= Device Infio
DeviceFarmily ICEGS
Device Lo4
Device Package CB284
Power Grace L

- Operating Condition
Core Yoltaga(y) 114
Termperature(C) 70 ™

Figure 2-28: Double-Click on Import P&R Input Files

iCEcube2 User Guide www.latticesemi.com 31

http://www.latticesemi.com/

= LATTICE

0 SiliconBlue iCEcube? - [Output]

W Fle View Tool Window Help _lalx
. e
IZ2Er T BIIDERD
Project Kame: quick_start & X Output
= Project ~
Mewi Project
Open Project "C:/8ETools_Mayl72011_Trunk/sht_backend/binfwin3Z/optiedifparser.exe” "C:)8BTools Mayl72011_Trunkisbt_backend|devices\ICES. dev"
Clnse Project “C:/SbtTools/exauples/blinky/quick_start/quick_start_Iuplont/quick_start.edf *
2 Synthesis Tool "C:/SbtTools/exanples /blinky/quick start/quick_start_Implunt)shbtinetlist" "-pCEZ84" "-
& Add Synthesis Files ne: /SbnTonls/exauples hlinky/hlinky constraincs wncl® —o
N §iliconBlue Tech Edif Parser
= Design Files Release: Z011.08. 16214
blinky.vhd Euild Date: May 17 2011 11:54:40
= Constraint Files
blinky_syn.sdc Parsing edif file: C:/ShtTools/examples/blinky/muick_start/quick_start_Inplunt/quick_start.edf. ..
o Launch Syrthesis Tool Parsing constraint file: C:/ShtTools/examples/blinky/blinky constraints. meel.. .
= PER Flow Srored edif neclist ar C:/ShtTools/exemples/blinky/quick_stare/quick_scart_Impluneishtinetlistioadb-icetest. .
& o Select Implementation{guick_sta... sdo_reader OK C:/8brTools/exauples/blinky/quick_start/quick_stere_Tmplmnc/quick_stert.scf

quick_start.edf

et et write Timing Constraint to C:/8btTools/examples/blinky/quick_start/quick_start_Inpluntisbt/Tenp/sbt_tenp.sdc
qQuick_start.sc

& Add PER Files EDIF Parser succeeded
Design Files Top module is: icetast
1P Design Files
B-Constraint Files EDF Parser rum-time: 1 (sea)

blinky_constrairts, rtcl
Run &ll
o Irmport PRR Input Files
B Rur Placer
Run Router
[» Gererate Bitmap
= Output Files
Reports
Bitmap
Simulation Metlist
(= Device,/Operating Condition

=-Device Info
DeviceFamily ICESS
Device: L04
Device Package CB294
Powier Grade L

= Operating Conditian
Core Voltagedv) 114
Temperature(C) 70 b
edif parser succesd.

Figure 2-29: Successful Import of P & R Input Files

Saving Physical Constraints into .pcf Format

Open the Pin Constraints Editor by choosing Tool > Pin Constraints Editor or you can also
select the Pin Constraints Editor Icon. See Figure 2-30. You will see a list of pin assignments that
are locked under the locked column. Uncheck and Recheck one of the pins under the locked
column. The save icon will now become an active icon. Click the Save physical constraints
icon. This will bring up a dialog box where you can save the PCF file. Click OK. See Figure 2-31.
The .pcf file contains physical constraints in the design used for place and route.

iCEcube2 User Guide www.latticesemi.com 32

http://www.latticesemi.com/

Core Voltage() 1.14
Temperature(C) 70 el

(W File Edit View window Help
B -
= = — <~ SavePhysical Constraints
D@ o Eed
==} w U »
Praject Name: quick_star 8 x Pin Constraints Editar
= Project Lo’ Type Pin Location Bank 10 Standard Pull Up
MNew Project § 1
H . 1 MOD_B3T_139[1, Output M7 Left
OpenProject Pin Constraints per_teeli] e .
Close Project
= Synthesis Tool Editorlcon 2 PRTS0_B3T_139(2] Output [Left
5 Add Snthesis Files 3 PMOD_B3T_I35(3 Output N7 Left
= Design Files - i i
blirky.vhd
4 PMOD_B3T_139[4] Output S Left
& Constraint Flles Uncheck and Técheck Focked Box
blinky_syn.sdc 5 PMOD_B2R_130[1] Qutput van Bottom
o Launch Synthesis Tool
= PER Flow & PMOD_B2R_130[2] Qutput Vg Battom
= o Select Implementationiquick _sta...
quick_start.edf 7 PMOD_B2R_130[3] Output 19 Eattom
quick_start.scf
= &dd PER Files 8 PMOD_B2R_130[4] Output it Bottom
Design Files
1P Design Files E] PMOD_BOR_J13{1] Output Hi4 Top
= Constraint Files
blinky_canstraints.mtc| 10 PMOD_BOR_J13[2] Output c14 Top
Run All
 Import PaR Input Files 1 PMOD_BOR_113[3] Output c1s Top
Run Placer
12 PMOD_BOR_J13[4 Output =T T
Run Router EOR 1304 e o
[>» Generate Bitmap 13 PMOD_B38_138[1] Output P3 Left
= Output Files
Reports 14 PMOD_B3B_138[2] Qutput u3 Left
Bitmap
Simulation Netlist 15 PMOD_B3B_138[3] Gutput i Left
= DeviceOperating Condition
& Device Info 16 PMOD_B38_138[4] Output v3 Left
DeviceFamily iCEBS
Device: 04 17 PMOD_B1T_120[1] Output D20 Right
Device Package CB284
Power Grade L 18 PMOD_B1T_120[2] Output G20 Right
= Operating Condition
P 9 19 PMOD_B1T_120[3] Output F1g Right

Figure 2-30: Pin Constraints Editor

Phwsical constraints File:

Phywsical constrainks save as

|:T1:u:u|s'l,examples'l,l:ulinky'|,|:||.|il:k_starI:'I,quil:k_starl:_ImpImnt'l,sbt'l,c-:unstraint'l,icetest J:":F_Sbt.pl:l:| E]

Ok H Cancel]

iCEcube2 User Guide

Figure 2-31: Save Physical Constraints File

www.latticesemi.com

= LATTICE

http://www.latticesemi.com/

amLATTICE

SEMI(

Chapter 3 iCEcube2 Project Setup and Navigation

Introduction

This chapter describes the features of the iCEcube2 Project Manager and how to set up a design
Project. The primary functions of the Project Manager include project setup, launching the Lattice
Synthesis Engine (LSE) or Synplify Pro for synthesis, placing and routing the design, launching
Mentor ModelSim for simulation, and launching the software required to program the target
device.

This chapter assumes that the reader is familiar with the New Project creation process as
described in Chapter 2 Quick Start.

Project Manager GUI

Figure 3-1 below displays the Project Manager. A new project can be opened by clicking on the
New Project icon or the File > New Project menu item. Similarly, an existing project can be
opened or closed using the Open Project and Close Project icons.

W Lattice iCEcube2

File View Tool ‘Window Help

PR

Design F X
=iProject
- Mewr Project

- (Open Proje
= Synthesis Taol
(= 4dd Synthesis Files

- Design Files

- Constraint Files
[P Run LSE Synthesis
- Reports
=P8R Flow
~[p Select Implementation
- Add PER Files
- Run P&R

- Import PSR Input Files
- Run Placer

Run Router
(Generate Bitmap

- IP Exporter

(= Output Files

- Reparts

- Bitrnap

- Simulation Metlist

(= Device/Operating Condition
= Davice Infa

Figure 3-1: iCEcube2 Project Flow Manager

Adding/Deleting Design and Constraint Files

Design and constraint files can be added or removed from the project by selecting Design Files
or Constraint Files respectively as displayed in Figure 3-2.

iCEcube2 User Guide www.latticesemi.com 34

http://www.latticesemi.com/

= LATTICE

W Lattice iCEcube? - [Output]

W File View Tool Window Help

g8 EsCE N

Project Mame: quick_start: & X | CQukput

= Project Project Directory is C:%iCEcubez\tutoriallquick start
Mew Project
Open Project

Close Project

= Synthesis Tool

(= &dd Synthesis Files
=)

- Congtraint Files Remove Files...
blirky_syn.sdc
[» Run Lattice LSE Synthesis
Reparts
= PBR. Flow
[select Implementation guick_...
Add PER Filas
Fun PER
[Import PER Input Files
[Run Placer
[» RunRouter
|> Generate Bitmap
- Output Files
Reports
Bitrmap
Simulation Netlist
= Device,/Operating Condition

o N

[Device Info
DeviceFarnily iCE40
Device LPaK

Device Package CM225

Figure 3-2 : Adding/Removing Design Files to the design project

Deleting a specific file can be accomplished by right-clicking the file name, as shown in Figure
3-3.

& Lattice iCEcube2 - [Output]

T File Wiew Tool Window Help

D odLEEsCcE R

Praject Mame: quick_start &5 X Cukpuk
= Project) Project Directory is CibviCEcubed'tutorialboquick astart
MNews Project

Cpen Project
Close Project
= Synthesis Tool
= &dd Synthesis Files
= Design Files
blinky.vhd
= Constraint Files
dc
[Run Lattice LSE Synthesig
Reports
=+ P&R. Flowy
B Select Irmplementationiquick_. .
&dd PSR Files

Figure 3-3: Removing Files from the Design Project

iCEcube2 User Guide www.latticesemi.com

35

http://www.latticesemi.com/

= LATTICE

Selecting the Synthesis Tool and Setting Synthesis Options

The iCEcube2 software supports the Synplify Pro synthesis tool and Lattice Synthesis Engine
(LSE) to synthesis the design. In order to change the synthesis tool, right-click Synthesis Tool
and select the synthesis tool as shown in Figure 3-5.

¥ Lattice iCEcube? - [Output]

W File View Tool ‘window Help

D [C 4 ol JH A

Project Mame: quick_skark (=4 2k
[=-Project) Project Directory is C:ysbtTools'tut
Mews Project “E:%installbhApr 26 2013 1303%1scohi
Open Project Copyright (C) 1992-2013 Lattice Semi

Close Project Information : Using arguments of sy
3 g J——— funtime 1751230315 seconds
= Add Synithesis Files — ynthesis Tools .| SR, quick_start_I
Design Files
Constraint Files
[Run Synplify Pro Synthesis
Reports
[=H PER Flaw
[» Select Implermentationiguick_...
Add PER Files
Fun FER
[Irnport PER Input Files
[Run Placer
[Run Router
|> Generate Bitmap
= Output Files
Reports
Bitrmap
Simulation Metlist
= Device /Operating Condition

Figure 3-4 : Select Synthesis Tool

¥ Select Synthesis Tool

Swnkthesis Tools:

) Synplify Pro
(%) Laktice LSE

T
| iOK ! | Cancel

Figure 3-5: Select Synthesis Tool Dialog Box

To set the LSE synthesis tool options, right-click Run LSE Synthesis as shown in Figure 3-6.

iCEcube2 User Guide www.latticesemi.com 36

http://www.latticesemi.com/

= LATTICE

¥ Lattice iCEcubeZ - [Output]

W File

D[T4

Project Mame: quick_start

View Tool

window

Help

LT R

B X

=+ Project
MNew Project
Open Project
Close Project
= Synthesis Tool
= Add Synthesis Files

Project Din
"E:%installl
Copyright |1
Information
SJynthesis o
Current Imp.

Design Files
Corstraint Files
» Fun Lattice LS
Reports
= PER Flow
[» sSelect Implermentationiguick_...

Figure 3-6 : Open LSE Tool Options Dialog Box

Cptions ... |

Set the LSE tool options and click OK to save the changes. Rerun the LSE synthesis.

Synplify Pro LSE Placer Router EBitmap Floor Planner Texk Editor
karne Twpe value B>
1 Use I Regiskers Lisk Auko
b= Use IO Inserkion TIF True
3 Use Carry Chain TIF True
4 | Top-Lewvel Unit Texk blinky_top|
= Target Frequency (MHz) Furn 200
& Resource Sharing TIF True
7 Fesalve Mixed Drivers TIF False
& Remowe Duplicate Registers TIF True
=} R Check on RAM TIF Fal=e
10 ROM Skyle Lisk Auko
11 RAM Stvle Lisk Auko
12 Propagate Constants TIF True
13 | Optimization Goal Lisk Area
14 | Mumber of Critical Paths Mum 3
15 Memory Initial Yalue File Search Path | Dir B
16 Max Fanout Limik RMurn 10000
17 Intermediate File Dump TIF True
15 Fix Gated Clocks TIF True =
. ——na i ot A "
I Ok] [Cancel]

Figure 3-7 : LSE Tool Options

To set the Synplify-Pro synthesis tool options, right-click Run Synplify-Pro Synthesis item. This
will open the Tool Options dialog box. In the Synplify Pro tab, select the word “here” to open
Synplify Pro.

iCEcube2 User Guide www.latticesemi.com 37

http://www.latticesemi.com/

= LATTICE

¥ Tool Options b4

ES';.-'aniF'y' P"'35| LSE " Placer || Router " Bitmap " Floor Planner || Textk Editar |

Tao set Swnplify Pro option

o | o]

Figure 3-8: Invoke Synplify Pro

In the Synplify Pro window, click Implementation Options. Set the tool options and save. Rerun
the Synplify Pro synthesis.

P[5 File Edit View Project Import Run Analysis HDL-dnalyst Options Window Web Heln

X TEIETT:.
w9 R

2Run

i

XR0FQARITIILIWER 0 00 1y &b n

¥ Implementation Options - quick_start_syn : quick_start_Implmnt ‘E|E|

Device | Options | Constraints | Implementation Results | TimingRepart | VHOL GOC | Placeand Route | Mplementations:

quick_start_Implmnt

Search SolvNet

quick_start_Implmnt

o Technology: Part Package:
£ Open Froject. | Latize cE40 +| [icedorcx +| [vo100 -
B Close Project
’W‘ Device Mapping Options
|% Change Fike... ‘ (Option Value =

1

4 acd Implementation...
REr—

Frequency (MHz):

& Autn Const, @

B quick_start_syn.prj

PLUMUCL IYPE: SYupLity_pru|

Update Compile Point Timing Data

Read Wirite Check on RaM

1
0
1

annotated Properties for Analyst

3

0= 0|=
3

Resobe Mized Drivers

Click on an option for description

Memory

Date/Time

4/6/203
2:45:12 PM @

System Designer Board Fils

| .
SYNOPSYS'

%

TCL Script | Messages

[x 5

iCEcube2 User

Figure 3-9: Set Implementation Options

Guide www.latticesemi.com

38

http://www.latticesemi.com/

= LATTICE

Selecting the Target Device and Operating Conditions

The iCEcube2 software provides the ability to specify the operating conditions for the target
device. To change the Target Family, Device, and the Operating Conditions, right-click in the
Device/Operating Condition window to display the Edit action. This is shown in Figure 3-10.

= Devicefogeratinﬁ Condition
=

DeviceFamily iCE40
Device HX 1K
Device Package %0100
Power Grade

= Operating Condition
Core Voltage) 114
Temperature(Cy 85

e]

Edit Device COptions

Figure 3-10 : Modifying the Device Selection/Operating Conditions

The Device Options dialog box is shown in Figure 3-11.

$ Device Options

Device
Devie Faniy: v
Device: |H><1K v|
Device Package: |VQIDD v|
Operating Condition
Junction Temperature (jin degrees Celsius)
Range: Eest: Typical: ‘Worsk:
|C0mmercial V| |D |25 | |85
Core Yoltageiy)
‘ioltage Tolerance Range: Typical: Worst:
[+/-5%(datashest defaul v | [tz ¥ [11s]
ICEBank voltagely)
topBank 25 battomBank 25 R
leftBank 25 rightBank 25 R
Perform timing analysis based on
CBest OiTypical
[Ok] [Cancel]

Figure 3-11: Device Options for iCE40 Family

To specify a suitable target Device, the following steps need to be performed:

1. Choose a Device

2. Choose a Device.

3. Choose a suitable Device Package for the device selected in the previous step.

Family.

iCEcube2 User Guide

www.latticesemi.com

39

http://www.latticesemi.com/

= LATTICE

Specifying the Operating Conditions for the target device involves the following steps:
1. Junction Temperature

a. Choose an appropriate Range from the options available. Depending on the Power
Grade selected for the target device, the software provides built-in options such as
Commercial and Industrial temperature ranges.

b. If the device’s operating conditions do not fall into either the Commercial or the Industrial
temperature ranges, the software also permits the user to specify a customized junction
temperature. This is accomplished by selecting the Custom option, and manually
specifying the Best, Typical or Worst Case junction temperatures.

2. Core Voltage: Choose a Voltage Tolerance Range from the provided options.

3. 10 Bank Voltage: This option is available only for the iCE40 family as shown in Figure 3-11.
Choose a bank voltage from the provided options for the top, bottom, left, right banks. The
specified 10 Voltage values are used by Power Estimator and Static Timing Analysis tools.

In order for Static Timing Analysis to be performed at the desired operating conditions, the
software provides the ability to select the Best, Typical or Worst Case conditions.

Output Window

The iCEcube2 Project Flow Manager software provides an Output window to display messages,
warnings, and errors.

PLL Module Generator

Certain devices of the iCE40 family include a Phase Lock Loop (PLL) function. The PLL function
requires configuration before it can be used in a design. To help configure the PLL, the iCEcube2
Project Flow Manager includes a PLL Module Generator, which can be launched from the Tool >
Configure > Configure PLL Module menu item, as displayed in Figure 3-12.

iCEcube2 User Guide www.latticesemi.com 40

http://www.latticesemi.com/

= LATTICE

% Lattice iCEcube 2
File Wiew MEEM Window Help

D @ E Timing Constrainks Editor

— — — | g§ FinConstraints Editar
Cesln | 2 Floor Planner

Package Yiew

"% Power Estimator

: Programmer ...

Zenerate Simulation Metlist
I'Cf Tirming Analysis

q PLL Parameter Editor

D 1 Configure PLL Module ...
Configure DVI Modudle ..

Yiew Report

w-add | [p Ron el Chrl+A
- FLIn E} Run 2vnplify+P+R,
Run Ta ...

R Tool Cptions ..,
Generate Bitmap
- 1P Exporter

Bitmap
- Simulation MNetlist
= Device/Operating Condition

Figure 3-12: Launching the PLL Module Generator

The PLL Module Generator allows the user to create a new PLL configuration, or edit an existing
one as shown in Figure 3-13.

The output of the PLL Module Generator is a PLL module file (Verilog), that instantiates a PLL, as
configured by the user. A secondary file (wrapper), that includes an instance of the PLL module,
is generated in order to help instantiate the PLL module in the user’s design. Note that the PLL
module file should be included in the list of design files.

Once a PLL module file has been generated, it can be edited, by selecting the “Modify an existing
PLL configuration” option (Figure 3-13).

iCEcube2 User Guide www.latticesemi.com 41

http://www.latticesemi.com/

= LATTICE

U PLL Module Generator X

Device Family: iCE40 v

Do you want to modify an existing PLL configuration or create a new one 7

(%) Create a new PLL configuration
PLL Module Name: | mypll
(O Modify an existing PLL configuration

PLL Module File:

[OK H Cancel]

Figure 3-13: Create/Modify a PLL configuration

Configuring the iCE65 PLL

In the PLL Module Generator wizard, select Device Family as iCE65 and provide the PLL
Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the
user configure the PLL as per the design requirements. This section describes the features of
iICE6G5 family PLL modules.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2
software supports the following PLL types. These PLL type options can be selected on the first
page of the wizard, as displayed in Figure 3-14.

1. General Purpose IO Pad or Core Logic: In this scenario, the PLL input (source clock) is
driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA
core, or it can be an external signal that was brought onto the FPGA using a General
Purpose 10 pad. The PLL output (generated clock) is available on the FPGA to drive a global
clock network, as well as regular routing.

2. Clock Pad: The PLL input clock (source) is driven by a dedicated clock pad located in 10
Bank 2

a. The PLL output (generated clock) is available to drive a global clock network, as well
as regular routing. The PLL source clock is not available on the FPGA.

b. The PLL output (generated clock) is available to drive a global clock network, as well
a regular routing. The PLL source clock is also available on the FPGA, and can drive
a global clock network, as well as regular routing.

iCEcube2 User Guide www.latticesemi.com 42

http://www.latticesemi.com/

= LATTICE

¥ PLL Module Generator.. E @

PLL type

How will the PLL Source Clock be driven ?
@ General Purpose 10 Pad or Core Logic

) Clock Pad

PLL Operation Modes ‘

How will the PLL output be generated ?
@ Using a feedback path internal to the PLL
_) Mo Compensation mode 1

_) Delay Compensation using only the Fine Delay Adjustment Block

@ Delay Compensation using the Phase Shifter and the Fine Delay Adjustment Block

) Using a feedback path external to the PLL

Ncude a aiviger iImpiemented DY the user In logic,

Fine Delay Adjustment / Phase Shift Settings

Which output of the Phase Shift Block will drive the PLL output ?

Do you want to dynamically control the delay of the Fine Delay Adjustment Block ?
) Yes
@ Mo

Fine delay adjustment setting (Enter a value in the range 0 - 15): &

Figure 3-14: Selecting the PLL Type and Operation Mode

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines
the feedback path of the PLL and enables phase alignment of the generated clock with respect to
the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1.

No Compensation mode: The PLL can be used for generating the desired output frequency,
without the ability to control the phase of the generated clock.

Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the
feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that
permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay
adjustment can be controlled dynamically through signals connected to the PLL, or it can be
fixed i.e. once configured, the delay contributed by the delay block can only be changed upon
re-programming the FPGA with a different bit configuration.

Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block:
The Phase Shifter provides four outputs corresponding to a phase shift of 0 degrees, 90
degrees, 180 degrees or 270 degrees. In addition, this feedback path provides additional
delay adjustment through the FDA block.

Delay Compensation using a feedback path external to the PLL: The feedback path traverses
through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)

iCEcube2 User Guide www.latticesemi.com 43

http://www.latticesemi.com/

= LATTICE

Block. Hence, in effect, two delay controls are available — the external path for coarse
adjustment and the FDA block for fine delay adjustment.

,
5 s s I ==

PLL Input/Output Frequency

Input frequency (Mhz):

Qutput frequency (Mhz):

Others

|:| Create a LOCK output port

[] Create a BYPASS port that will bypass the PLL reference dodk to the PLL output port
(Mote that the PLL requires re-locking when the BYPASS signal is de-asserted, for all modes other than the ™Mo Compensation mode™)
Low Power Mode
[Enable latching of PLL output clock ((CEGate)
(Mote that the PLL reguires re-locking after the latch signal is de-asserted, when the feedback path is external to the PLL)

Enable latching of PLL source dock

Mext = [Finish] [Cancel

Figure 3-15 : PLL Module Generator — Frequency Specification

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled
dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range

0-15 to specify the delay contributed to the feedback path. The delay for a setting “n” is calculated
as follows

@9

FDA delay = (n+1)*0.15 ps, where “n” is the value specified by the user,and 0 < n <15

Frequency Specification: The input and output frequency of the PLL should be specified in MHz
as shown in Figure 3-15. Depending on the values provided by the user, the PLL is internally
configured to generate the specified output frequency.

In case the frequency specified is not in the range permitted by the Operation Mode, the software
provides appropriate feedback, as displayed in Figure 3-16.

iCEcube2 User Guide www.latticesemi.com 44

http://www.latticesemi.com/

= LATTICE

PLL InputfCutput Frequency
Input Frequency (Mhz): s

Output Frequency (Mhz): |50

Others
D Create a LOCK output part
[] create a BYPASS port that will bypass the PLL reference clock ko the PLL output port
{ Moke that the PLL reguires re-locking when the BYPASS signal is de-asserted, For all modes other than the "ho Compensation mode")
Lows Power Mode
[[] Enable latching of PLL output: clock (CEGate)

{ Mate that the PLL requireggss

Eolisssiesu bs besise e sccsursd B LS L fs sk math is external ko the PLL)
ﬁi PLL Module Generator

[] Enable latching of PLL sourd

() Input Frequency must bebween 10 and 133.3333 (Mhz).
LI

Figure 3-16: Frequency Validation by PLL Configurator

Other options:

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.
Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it
such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode
through the iICEGate feature. The iCEGate feature latches the PLL Output signal, and prevents
unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required
to initialize the PLL functionality.

Configuring the iCE40 PLL

Most devices in the iCE40 family provide two PLL functions, each of which can be configured
independently.

In the PLL Module Generator wizard, select Device Family as iCE40 and provide the PLL
Module Name. Click on the OK button. The PLL Module Generator launches a wizard to help the
user configure the PLL as per the design requirements.

PLL Type

The connectivity of the PLL to its surrounding logic determines the PLL Type. The iCEcube2
software supports the following PLL types. These PLL type options can be selected on the first
page of the wizard, as displayed in Figure 3-17.

1. Select the number of global networks to be driven by the PLL output. Setting the value to “1”
generates a PLL which drives a single global clock network, as well as regular routing.
Setting the value to “2” generates a PLL which drives two global clock networks as well as
two regular routing resources.

2. Specify the input to the PLL:

iCEcube2 User Guide www.latticesemi.com 45

http://www.latticesemi.com/

= LATTICE

General Purpose |0 Pad or Core Logic: In this scenario, the PLL input (source clock) is
driven by a signal from the FPGA fabric. This signal can either be generated on the FPGA
core, or it can be an external signal that was brought onto the FPGA using a General
Purpose 10 pad.

Dedicated Clock Pad (Single Ended): The PLL input clock (source) is driven by a dedicated
single ended clock pad located in 10 Bank 2 (Bottom bank) or 10 Bank 0 (Top bank). (In case
two global networks were selected in the previous step, the input signal can be used as-is on
the logic fabric, i.e. it can bypass the PLL. In the rare situation that this is required, select the
check-box, “The PLL source clock will be used on chip without frequency/phase/delay
adjustments”.)

) PLL Module Generator ‘g}

PLL Type
Select the number of global networks to be driven by the PLL outputs: |1 v
How will the PLL Source Clock be driven 7

(& General Purpose IO Pad or Core Logic

O Dedicted Clock Pad (Single Ended)

The PLL source clock will be used on chip without frequency/phasefdelay adjustments

PLL Operation Modes

How will the PLL output be generated ?
(® Using a feedback path internal to the PLL
(& No Compensation mode
(O Delay Compensation using only the Fine Delay Adjustment Block

® Delay Compensation using the Phase Shifter and the Fine Delay Adjustment Block.
{Recommended mode For applications like LYDS Display Panel and DDR)

O Using a feedback path external to the PLL

The external fi ath will include a divider implemented by the user in logic, with default divide-by Factor of 1

Fine Delay Adjustment Settings

wamically control the delay of the Fine Delay Adjustment Black ?

Fine delay adjustment setting (Enter a value in the range O - 15):

Figure 3-17: iCE40 PLL - Selecting PLL Type and Operation Modes

PLL Operation Modes

The PLL can be configured to operate in one of multiple modes. An Operation Mode determines
the feedback path of the PLL, and enables phase alignment of the generated clock with respect
to the source clock.

The iCEcube2 software supports the following PLL Operation modes:

1. No Compensation mode: The PLL can be used for generating the desired output frequency,
without the ability to control the phase of the generated clock.

2. Delay Compensation using only the Fine Delay Adjustment (FDA) Block: In this mode, the
feedback path is internal to the PLL but traverses through a fine delay adjustment circuit that
permits user control of the feedback path delay in 16 steps of 0.15 ns each. The delay
adjustment can be controlled dynamically through signals connected to the PLL, or it can be
fixed i.e. once configured, the delay contributed by the delay block can only be changed upon
re-programming the FPGA with a different bit configuration.

3. Delay Compensation using the Phase Shifter and the Fine Delay Adjustment (FDA) Block.
For single port PLL types the Phase Shifter provides two outputs corresponding to a phase
shift of 0 degrees and 90 degrees. For two port PLL types, the Phase Shifter has two modes:
Divide-by-4 mode and Divide-by-7. In Divide-by-4 mode, the output of B port can be shifted

iCEcube2 User Guide www.latticesemi.com 46

http://www.latticesemi.com/

= LATTICE

either O degrees or 90 degrees w.r.t to A port outputs. In Divide-by-7 mode, the B port output
frequency can be set to have a frequency ratio of 3.5:1 or 7:1 w.r.t the port A output
frequency. In addition to the delay compensation provided by the phase shifter, this feedback
path provides additional delay adjustment through the FDA block.

4. Delay Compensation using a feedback path external to the PLL: The feedback path traverses
through FPGA routing (external to the PLL) followed by the Fine Delay Adjustment (FDA)
Block. Hence, in effect, two delay controls are available — the external path for coarse
adjustment and the FDA block for fine delay adjustment.

Fine Delay Adjustment: The delay contributed by the FDA block can be Fixed or controlled
dynamically during FPGA operation. If Fixed, it is necessary to provide a number (n) in the range
0-15 to specify the delay contributed to the feedback path. The delay for a setting “n” is calculated
as follows

FDA delay = (n+1)*0.15 ps, where “n” is the value specified by the user, and 0 < n < 15.

Additional Delay Adjustment: In addition to Fine Delay Adjustment in the feedback path, the user
can specify additional delay on the PLL output ports as shown in Figure 3-18. The delay
contributed by the delay block can be Fixed or controlled dynamically during FPGA operation. If
Fixed, it is necessary to provide a number (n) in the range 0-15 to specify the delay contributed to
the feedback path. The delay for a setting “n” is calculated as follows

FDA delay = (n+1)*0.15 ps, where “n” is the value specified by the user, and 0 < n < 15.
This additional delay is applied on the output of single port PLL and port A of two port PLL types.

Phase Shift Specification: Phase Shift specification allows the user to specify 0 degrees or 90
degrees phase shift.

& —_— » l
¥ PLL Module Generator [
Phase Shift Specification
Spedify the phase shift for the PLL output
Additional Deley Settings
Do you wish to specify additional delay on the PLL outputs ?
Yes
Do you want to dynamically control the delay of this Additional Delay Adjustment Block ?
Yes
No
Fine Delay Adjustment Block setting (Enter a value in the range 0 - 15)
| No
|
|
|
i
[
I

Figure 3-18: iCE40 PLL - Additional Delay and Phase Shift Options

iCEcube2 User Guide www.latticesemi.com 47

http://www.latticesemi.com/

= LATTICE

Frequency Specification: The input and output frequency of the PLL should be specified in MHz
as shown in Figure 3-19. Depending on the values provided by the user, the PLL is internally
configured to generate the specified output frequency.

Frequency Specification window also checks for the input and output frequencies given by the
user. If the specified frequencies are at a range that cannot be generated by the PLL, then a
popup dialog box is displayed as shown in Figure 3-16 asking the user to enter the frequencies in
valid range.

LOCK: A Lock signal is provided to indicate that the PLL has locked on to the incoming signal.
Lock asserts High to indicate that the PLL has achieved frequency lock with a good phase lock.

BYPASS: A BYPASS signal is provided which both powers-down the PLL core and bypasses it
such that the PLL output tracks the input reference frequency.

Low Power Mode: A control is provided to dynamically put the PLL into a Lower Power Mode
through the iICEGate feature. The iCEGate feature latches the PLL Output signal, and prevents
unnecessary toggling.

The RESET (Active Low) port is always generated, and an explicit PLL reset operation is required
to initialize the PLL functionality.

) PLL Module Generator |Z|

PLL Input/Oukput Frequency
Input frequency (Mhz): |50

Qutput fregquency (Mhzl: | 133

Others
Create a LOCK output port
[create a BYPASS port that will bypass the PLL reference clock ko the PLL output port
{ Mote that the PLL requires re-locking when the BYPASS signal is de-asserted, For all modes other than the "Mo Compensation mode”)
Low Power Mode
[Enable Iatching of PLL output clock (CEGate)
{ Mate that the PLL requires re-locking after the latch signal is de-asserted, when the Feedback path is external ko the PLL)

Enable |atching of PLL source clock

Mext = [Finish] [Cancel

Figure 3-19: iCE40 PLL - Frequency Specification

PLL Summary: The PLL Configuration summary is shown in Figure 3-20. Click on “Save” to
save the PLL configuration file.

iCEcube2 User Guide www.latticesemi.com 48

http://www.latticesemi.com/

= LATTICE

' PLL Module Generator

PLL Type: SB_PLL40_CORE

PLL Parameter

DivR:

DivF:

Diwly:

Filter Range:

Feedback Path:

Delay Adjustment Mode Feedback:
Delay Adjustment Mode Relative:
Fixed Delay Adjustment Feedback:
shiftreg Div Mode:

PLL Out Select:

Create a Reset port:

Create a LOCK output port:
Create a BYPASS port:

Enabls Icegate:

o010
0000111
001
(i)

PHASE_AND_DELAY

FIXED
DYMAMIC
15

o

Odeg

Yes

es

Mo

Mo

Actual Output Frequency | Phase Shift

Actual output Frequency(Mhz: 133,33 (Fout error: 0.25%)
Phase shift{deq): [u]

Next =
Figure 3-20 : PLL Summary

Save Cancel

PLL Dynamic Reconfiguration

iCES5LP devices supports dynamic reconfiguration of PLL to change the output frequency, phase
shift and clock delays at runtime. Reconfiguration of PLL directly accesses the configuration bits
and changes the configuration on the fly while the design is running. This allows the user to run
the design at different frequencies.

To enable dynamic PLL reconfiguration, user needs to set the TEST_MODE parameter of the
PLL instance. Reconfiguration of PLL is done using the serial data input pin SDI. The
configuration bits are latched in a 27 bit shift register (PLLCFGREG) in the PLL block by
configuration clock SCLK.

The user can reconfigure the PLL either by using a build in configuration load module or by using
external control signals connected to the device.

PLL Reconfiguration Process
1. Assertthe PLL RESET (Active low) signal.

2. Load the serial configuration bits via SDI pin. The data should be available at positive
edge of SCLK and the data is latched at negative edge of SCLK. The shift out bit is
available in SDO pin.

3. After 27 clock cycles stop the configuration clock signal. The recommended configuration
clock frequency range is 2 MHz to 12 MHz.

4. At the end of 27 clock cycles, the PLLCFGREG is loaded with 27 bit configuration bit.
The first data shifted in is available at PLLCFGREG [26].

5. De-assert the RESET signal after 10ns.
6. Wait for the PLL to lock.

iCEcube2 User Guide www.latticesemi.com 49

http://www.latticesemi.com/

= LATTICE

Dynamic configuration PLL instance model is given below. If the TEST_MODE is set, the PLL
output frequency is based on the PLLCFGREG settings.

Verilog:

SB_PLL40_PAD instSBPLL (

.PACKAGEPIN (REFCLK),

.EXTFEEDBACK (),

.DYNAMICDELAY (),

.BYPASS (BYPASS),

.RESETB (RESETB),

.LATCHINPUTVALUE (LATCHINPUTVALUE),
.LoCK (LOCK),

.PLLOUTCORE (PLLOUTCORE_net),
.PLLOUTGLOBAL (PLLOUTGLOBAL_net)

.SDI(SDI), // serial data in
.SDO(SDO) , // serial data out
.SCLK(SCLK), // Configuration clock

E

// INPUT Fin=20MHz, Fout=200MHz

defparam instSBPLL.DIVR = 4'b0001;

defparam instSBPLL.DIVF = 7'b1001111;
defparam instSBPLL.DIVQ = 3'b010;

defparam instSBPLL.FILTER_RANGE = 3'b001;
defparam instSBPLL.FEEDBACK_PATH = "SIMPLE";
defparam instSBPLL.DELAY_ADJUSTMENT_MODE_FEEDBACK= "FIXED";
defparam instSBPLL.FDA_RELATIVE = 4'b0000;
defparam instSBPLL.PLLOUT_SELECT = "GENCLK";
defparam instSBPLL.SHIFTREG_DIV_MODE = 2'b00;
defparam instSBPLL.ENABLE_ICEGATE = 1;

// Enable Dynamic PLL configuration
defparam instSBPLL.TEST_MODE = 1;

PLL Configuration Register Mapping

The following table maps the PLL configuration register bits to PLL parameter settings.

Configuration PLL Parameter Map Range/Values Description
Register
PLLCFGREG[3:0] DIVR 012,..15 | Hor EREHCECLK
PLLCFGREG[10:4] DIVE 0,1,..,.63 Feedback divider value
PLLCFGREG[13:11] DIVQ 12,6 | VCO Divider
PLLCFGREG[16:14] FILTER_RANGE 0.1,....7 | PLL Filter Range

iCEcube2 User Guide

www.latticesemi.com

50

http://www.latticesemi.com/

= LATTICE

PLLCFGREG[25,18,17] FEEDBACK_PATH Ixx SIMPLE Feedback
(Internal)
000 DELAY
010/001 PHASE_AND_DELAY
011 EXTERNAL
PLLCFGREG[26,21] SHIFTREG_DIV_MODE 00 Divide by 4
01 Divide by 7
10 Invalid setting
11 Divide by 5
PLLCFGREG[20:19], | PLLOUT_SELECT_PORTB, 00 GENCLK
PLLCFGREG[24:23] PLLOUT_SELECT_PORTA 01 GENCLK_HALF
10 SHIFTREG_90deg
11 SHIFTREG_0Odeg
PLLCFGREG[22] Set PLL Primitive type. 0 CORE PLL
1 PAD PLL

The sample configuration register setting for a PAD PLL with 20 MHz reference clock and 200

MHz output frequency is
PLLCFGREG [26:0] =27'b0_1_00_00_00_00_001_010_1001111_0001;

SPI/I2C Module Generator

iCE40LM and iCE5LP (iCE40 Ultra) device families contain hardened 12C and SPI IP blocks.
These devices do not pre-load the hard IP registers during configuration. A soft IP is required to
configure the 12C/SPI hard IP blocks in the design.

The iCEcube2 Project Flow Manager includes an 12C/SPI Module Generator to generate soft IP
modules. Launch the module generator from Tool > Configure > Configure SPI/I2C Module
menu item, as shown in Figure 3-21.

iCEcube2 User Guide

www.latticesemi.com

51

http://www.latticesemi.com/

= LATTICE

Lattice KCEcube2 -
[File View [Tool] Window Help

Output

Open Pr
Close Prl &
4 synthesis Td
4 Add sy
Desif

» Run Configure ... » Configure PLL Module ...
Reports Conf
4 P&R Flow badiniiine

> Selep, gunan

Jure DVI Module

Configure SPV2C Module ...

Add P&l
RunpP&f”
D> mp¢ o X
D> Rrun
> Run
[> Generate Bitmap
4 Output Files
Reports
Bitmap
Simulation Netlist
4 Device/Operating Condition
4 Device Info

R Ctrl+ A

Tool Options ...

Deviceramily ICEA0LM
Device a«
Device Package UMG225
Power Grade

4 Operating Condition
Core Voltage(V) 1.14
Temperature(C) 85

Figure 3-21 : Launch 12C/SPI Module Generator.

The 12C/SPI Module Generator allows the user to create a new configuration, or edit an existing
one as shown in Figure 3-22.

1 12C/5P Module Generator 19 el

Do you want to modify an existing I2C/SPI configuration or create a new one?

© Create anew I2C/SPI configuration

Module name: 12C_softlP

Outputtype: Vrog =

) Modify an existing I2C/SP configuration

f

fle: Browse.

Module

Figure 3-22: Create New I12C/SPI Module

The output of the Module Generator is a module file (Verilog), that instantiates a SPI/I2C, as
configured by the user. Note that the 12C/SPI module file should be included in the list of design
files.

Once an 12C/SPI module file has been generated, it can be edited, by selecting the “Modify an
existing PLL configuration” option (Figure 3-23).

iCEcube2 User Guide www.latticesemi.com 52

http://www.latticesemi.com/

= LATTICE

"
W 12C/5PI Module Generator IM

Do you want to modify an existing 12C/SPI configuration or create a new one?

Create a new 12C/SPI configuration

© Modify an existing I2C/SPI configuration

Module file: D: lscc/iCEcube2iCEcube2. 2013, 12/tutorial/12C_softiP.v| v | Browse... ‘

Figure 3-23: Modify Existing I2C/SPI configuration

Configuring 12C/SPI Hard IP

iCE40LM, iCE5LP (iCE40 Ultra) device contains two 12C and SPI hard IP blocks, each of which
can be configured independently.

In the 12C/SPI Module Generator wizard, select “Create a new 12C/SPI configuration” and provide
the module Name. Click on the OK button. The Module generator launches a wizard to help the
user configure the 12C/SPI as per the design requirements. This section explains the options in
the wizard to enable and configure the I12C/SPI soft IP wrappers.

Enable Hard IP

The ‘Hard IP Enables’ tab allows the user to enable the required left/right 12C, left/right SPI
instances in the wrapper and specify the system bus clock frequency. Selecting the hard IP type
enables the I12C and SPI Tabs in the wizard as shown in Figure 3-24.

W 12C/SPI Module Generator 2]
Configuraton | Genera telog |
Hard IP Enables | 12c | spr |
Enable Hard User IPs
[] Enable hard user 12C left
[¥] Enable hard user 12C right
[¥] Enable hard user SPI left
[¥] Enable hard user SPI right
System Clock
System bus dock frequency 50 MHz
12C 12C
SPI SPI

[oo

Figure 3-24 : Enable Hard IP
Enable hard user 12C left: This option allows the user to enable left I2C on the 12C Tab.
Enable hard user 12C Right: This option allows the user to enable right 12C on the 12C Tab.
Enable hard user SPI Left: This option allows the user to enable left SPI on the SPI Tab.
Enable hard user SPI Right: This option allows the user to enable right SPI on the SPI Tab.

iCEcube2 User Guide www.latticesemi.com 53

http://www.latticesemi.com/

= LATTICE

System Clock: Specify the system clock frequency in Mhz. This value is used to derive the
divider settings of the I12C and SPI hard IP master clocks. “Generate” button is enabled once the
value is set in this field.

Configure 12C

I2C Tab allows the user to configure the left and right 12C blocks independently as shown in
Figure 3-25. 12C Tab is enabled only when 12C hard IP is selected in the Hard IP Enables Tab.

- N
W 12C/SPI Module Generator 2 o]

Configuration | Generate Log |
| Herd 1P Enables | 12c [TSELT]
Left12C Right 12C
General General
[7] General call enable
[] wakeup enable

[¥] Indude 10 buffers

Master Clock Rate Master Clock Rate

Desired (100~ | kHz Desired
Actual KHz
12C Addressin g 12C Addressing
(78t Addressing ~ |
10000 01
2C 12C
Interrupts Interrupts
[Arbitration lost
[] Tx/Rx ready T
[] overrun or NACK
SPI SPI [©] General call

50ns delay on SDA 50ns delay on SDA
[¥] sDA input D
[] SDA output

—

Figure 3-25: Configure Left/Right 12C hard IP.

I2C Controller General Options:

General Call Enable: This setting enables the 12C General Call response (addresses all devices
on the bus using the 12C address 0) in Slave mode. This setting can be modified dynamically by
enabling the GCEN bit in the 12C Control Register [2CCR1.

Wakeup Enable: Turns on the I12C wakeup on address match. The WKUPEN bit in the [I2CCR1
can be modified dynamically allowing the Wake Up function to be enabled or disabled.

Include 10 Buffers: Include buffers to the 12C_SCL, 12C_SDA pins.

Master Clock (Desired): Specify the desired 12C master clock frequency. A calculation is then
made to determine a divider value to generate a clock close to this value from the input clock.
The frequency of the input System Bus clock is specified on the main/general tab. The divider
value is rounded to the nearest integer after dividing the input System Bus clock by the value
entered in this field.

iCEcube2 User Guide www.latticesemi.com 54

http://www.latticesemi.com/

= LATTICE

Master Clock (Actual): Since it is not always possible to divide the input System Bus clock to
the exact value requested by the user, the actual value will be returned in this read-only field.

I2C Addressing: This option allows the user to set 7-bit or 10-bit addressing and define the Hard
I2C address.

I2C Controller Interrupts:

Arbitration Lost Interrupts: An interrupt which indicates 12C lost arbitration. This interrupt is bit
IRQARBL of the register I2CIRQ. When enabled, it indicates that ARBL is asserted. Writing a ‘1’
to this bit clears the interrupt. This option can be changed dynamically by modifying the bit
IRQARBLEN in the register I2CIRQEN.

TX/RX Ready: An interrupt which indicates that the 12C transmit data register (I2CTXDR) is
empty or that the receive data register (I2CRXDR) is full. The interrupt bit is IRQTRRDY of the
register I2CIRQ. When enabled, it indicates that TRRDY is asserted. Writing a ‘1’ to this bit clears
the interrupt. This option can be changed dynamically by modifying the bit IRQTRRDYEN in the
register I2CIRQEN.

Overrun or NACK: An interrupt which indicates that the I2CRXDR received new data before the
previous data. The interrupt is bit IRQROE of the register I2CIRQ. When enabled, it indicates that
ROE is asserted. Writing a ‘1’ to this bit clears the interrupt. This option can be changed
dynamically by modifying the bit IRQROEEN in the register [I2CIRQEN.

General Call Interrupts: An interrupt which indicates that a general call has occurred. The
interrupt is bit IRQHGC of the register I2CIRQ. When enabled, it indicates that ROE is asserted.
Writing a ‘1’ to this bit clears the interrupt. This option can be changed dynamically by modifying
the bit IRQHGCEN in the register I2CIRQEN.

I2C SDA delays

This option is available only for iCESLP (iCE40 Ultra) devices. Using these options, the user can
add 50ns delay to the SDA input, output signals.

SDA input: By default 50ns is added to the SDA input. Turn off this option if delay is not required.
SDA output: Turn on this setting to add 50ns delay to the SDA output.

Configure SPI

SPI Tab allows the user to configure the left and right SPI blocks independently as shown in
Figure 3-26. SPI Tab is enabled only when SPI hard IP is selected in the Hard IP Enables Tab.

iCEcube2 User Guide www.latticesemi.com 55

http://www.latticesemi.com/

= LATTICE

W 12C/SPI Module Generator 2|
Configuration | Generate Log
[Hard 1P Enables | i2c | sPr |
Left SPI Right SPI
7] Enable slave interface 7] Enable slave interface
[¥] Enable master interface Enable master interface
Master Clock Rate Master Clock Rate
Desired 1 MHz Desired 1 MHz
Actual 1 MHz Actual L MHz
Master Chip Selects Master Chip Selects
1 =
12C 12C e ——
Interrupts Interrupts
~] Tx ready Tx ready
Tx overrun Tx overrun
Pl Rx ready Rx ready
SPI S Rx overrun Rx overrun

General General |
Wwakeup enable [] wakeup enable
LSB first | LsB first
] Phase adjust 7| Phase adjust
[] Inverted dock] Inverted dock
~| Slave handshake mode Slave handshake mode
7] Indude IO buffers ¥] Include IO buffers

Figure 3-26: Configure Left/Right SPI hard IP.

Enable Slave Interface: This option allows the user to enable Slave Mode interface for the initial
state of the SPI block. By default, Slave Mode interface is enabled.

Enable Master Interface: This option allows the user to enable Master Mode interface for the
initial state of the SPI block. This option can be updated dynamically by modifying the MSTR bit
of the register SPICR2.

Master Clock Rate (Desired): Specify the desired SPI master clock frequency. A calculation is
then made to determine a divider value to generate a clock close to this value from the input
System Bus clock frequency. The divider value is rounded to the nearest integer after dividing the
input System Bus clock by the value entered in this field.

Master Clock Rate (Actual): Since it is not always possible to divide the input System Bus clock
exactly to that requested by the user, the actual value will be returned in this read-only field.
When both the desired SPI clock and System Bus clock fields have valid data and either is
updated, this field returns the value (System Bus Frequency / SPI_CLK_DIVIDER), rounded to
two decimal places.

Master Chip Selects: The core has the ability to provide up to 4 individual chip select outputs for
master operation. This field allows the user to prevent extra chip selects from being brought out of
the core. This option can be updated dynamically by modifying the register SPICSR.

SPI Controller Interrupts

TX Ready: An interrupt which indicates the SPI transmit data register (SPITXDR) is empty. The
interrupt bit is IRQTRDY of the register SPIIRQ. When enabled, indicates TRDY was asserted.
Write “1” to this bit to clear the interrupt. This option can be change dynamically by modifying the
bit IRQTRDYEN in the register SPIIRQEN.

TX Overrun: An interrupt which indicates the Slave SPI chip select (SPI_SCSN) was driven low
while a SPI Master. The interrupt is bit IRQMDF of the register SPIIRQ. When enabled, indicates
MDF (Mode Fault) was asserted. Write “1” to this bit to clear the interrupt. This option can be
change dynamically by modifying the bit IRQMDFEN in the register SPIIRQEN.

RX Ready: An interrupt which indicates the receive data register (SPIRXDR) contains valid
receive data. The interrupt is bit IRQRRDY of the register SPIIRQ. When enabled, indicates

iCEcube2 User Guide www.latticesemi.com 56

http://www.latticesemi.com/

= LATTICE

RRDY was asserted. Write “1” to this bit to clear the interrupt. This option can be change
dynamically by modifying the bit IRQRRDYEN in the register SPICSR.

RX Overrun: An interrupt which indicates SPIRXDR received new data before the previous data.
The interrupt is bit IRQROE of the register SPIIRQ. When enabled, indicates ROE was asserted.
Write a “1” to this bit to clear the interrupt. This option can be change dynamically by modifying
the bit IRQROEEN in the register SPIIRQEN.

SPI Controller General Options:

Wakeup Enable: The core can optionally provide a wakeup signal to the device to resume from
low power mode. This option can be updated dynamically by modifying the bit WKUPEN_USER
in the register SPICRL1.

LSB First: This setting specifies the order of the serial shift of a byte of data. The data order
(MSB or LSB first) is programmable within the SPI core. This option can be updated dynamically
by modifying the LSBF bit in the register SPICR2.

Inverted Clock: Select this option to invert the clock polarity used to sample input and output
data. When selected the edge changes from the rising to the falling clock edge. This option can
be updated dynamically by accessing the CPOL bit of register SPICR2.

Phase Adjust: An alternate clock-data relationship is available for SPI devices with particular
requirements. This option allows the user to specify a phase change to match the application.
This option can be updated dynamically by accessing the CPHA bit in the register SPICR2.

Slave Handshake Mode: Enables Lattice proprietary extension to the SPI protocol. For use
when the internal sup-port circuit (e.g. WISHBONE host) cannot respond with initial data within
the time required, and to make the Slave read out data predictably available at high SPI clock
rates. This option can be updated dynamically by accessing the SDBRE bit in the register
SPICR2.

Include 10 Buffers: Include buffers to the SPI_MISO, SPI_MOSI, SPI_SCK, SPI_MCSNO [0]
pins.

Generate Module

Once the settings are done generate the soft IP module by selecting “Generate” button. The
wizard displays the status and the generated file details in the “Generate Log” tab as shown in
Figure 3-27.

iCEcube2 User Guide www.latticesemi.com 57

http://www.latticesemi.com/

«LATTICE

N
¥ 12C/SPI Module Generator u&
Configuration Generate Log

Issued command: D:

Vocal.ee207424\attice.odc\nstallb\2013. 12\Nov_15_2013_1312Betalscc\iCEcube 2\ SE\bin\nt\ipgen.exe -n
softIP -ang verilog -arch lightning -type serialbus -freq 50 -ck hsoc -i2c both -i2c_general_call_enable none -
i2c_wakeup_enable none -i2c_iobuffer both -i2c_rate_left 100 -i2c_rate_right 100 -i2c_addr_left 1000001 -
i2c_addr_right 1000010 -i2¢c_arbitration_lost none -i2c_txrx_ready none -i2c_overrun none -2c_general_call
none -spi both -spi_slave both -spi_master none -spi_rate_left 1 -spi_rate_right 1 -spi_cs_left 1 -spi_cs_right 1 -
spi_tx_ready none -spi_tx_overrun none -spi_rx_ready none -spi_rx_overrun none -spi_wakeup_enable none -
spi_lsb_first none -spi_phase_adj none -spi_inv_clk none -spi_hand_shake none -spi_iobuffer both

running command line: ipgen -n softIP Jang verilog -arch lightning -type serialbus -freq 50 -ck hsoc -i2c both -
i2c_general_call_enable none -i2c_wakeup_enable none -i2c_iobuffer both -i2c_rate_left 100 -i2c_rate_right 100
-i2c_addr_left 1000001 -i2c_addr_right 1000010 -i2c_arbitration_lost none -i2c_txrx_ready none -i2c_overrun
none -i2c_general_call none -spi both -spi_slave both -spi_master none -spi_rate_left 1 -spi_rate_right 1 -
spi_cs_left 1 -spi_cs_right 1 -spi_tx_ready none -spi_tx_overrun none -spi_rx_ready none -spi_rx_overrun none
-spi_wakeup_enable none -spi_lsb_first none -spi_phase_adj none -spi_inv_clk none -spi_hand_shake none -
spi_iobuffer both

12C_left_rate: 100

12C_right_rate: 100

SPI_left_rate: 1

SPI_right_rate: 1

File: D:\ocal.ee207424\attice \SW2013. 12 fsoftIP.v was created.

[Generate][Close]

Figure 3-27: 12C/SPI soft IP module generation.

iCEcube2 User Guide www.latticesemi.com

http://www.latticesemi.com/

= LATTICE

Chapter 4 Lattice Synthesis Engine
Lattice Synthesis Engine (LSE) is the integrated synthesis tool that comes with iCEcube?2.
This chapter describes:

e LSE tool options

e HDL coding tips

e Attributes and directives supported by LSE

e Synopsys design constraints (SDC) supported by LSE

LSE is a synthesis tool custom-built for Lattice products and fully integrated with iCEcube2.
Depending on the design, LSE may lead to a more compact or faster placement of the design
than another synthesis tool would do.

Also, LSE offers the following advantages:
e More granular control through the tool options
e Enhanced RAM and ROM inference and mapping, including:

o Dual-port RAM in write-through, normal, and read-before-write modes mapped to
BRAM

o Clock enable and read enable packing
o Mapping for the minimal number of BRAM blocks
o BRAM mapping for minimal timing

e Post-synthesis Verilog netlist suitable for simulation

Changing the LSE Tool Options

The LSE options can be changed by selecting Tool > Tool Options > LSE. This section lists all
the tool options associated with LSE. The following sections describe how to set the options to
optimize synthesis for either area or speed and some of the differences between LSE and
Synplify Pro options.

BRAM Utilization

Specifies BRAM utilization target setting in percent of total vacant sites. LSE will honor the setting
and do the resource computation accordingly. Default is 100 (in percentage).

Carry Chain Length

Specifies the maximum number of output bits that get mapped to a single carry chain. Default is
0, which is interpreted as infinite length.

Command Line Options

Enables additional command line options for the LSE synthesis process. Type in the option and
its value (if any) in the Value column.

Fix Gated Clocks

Turns on (True) or off (False) converting all gated clocks to data enables for best performance.
Turn off to save power. Default is True.

iCEcube2 User Guide www.latticesemi.com 59

http://www.latticesemi.com/

= LATTICE

FSM Encoding Style

Specifies the encoding style to use for finite state machines: Binary, Gray, or One-Hot. Default is
Auto, meaning that LSE chooses a style for each finite state machine.

Intermediate File Dump

If you set this to True, LSE will dump about 20 intermediate encrypted Verilog files. If you supply
Lattice with these files, they can be decrypted and analyzed for problems. This option is good for
analyzing simulation issues.

Max Fanout Limit

Specifies the maximum fanout setting. LSE will make sure that any net in the design does not
exceed this limit. Default is 10000 fanouts.

Memory Initial Value File Search Path

Allows you to specify a path to locate memory initialization files (.mem) used in the design. The
software will add the specified paths to the list of directories to search when resolving file
references.

To specify a search path, double-click the Value box, and directly enter the path.

Number of Critical Paths

Specifies the number of critical timing paths to be reported in the timing report.

Optimization Goal
Enables LSE to optimize the design for area, speed, or both. Valid options are:

o Area (default) — Optimizes the design for area by reducing the total amount of logic used
for design implementation.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and
uses 1 MHz instead.

e Timing — Optimizes the design for speed by reducing the levels of logic.

When Optimization Goal is set to Timing and a create_clock constraint is available in an
dc file, LSE ignores the Target Frequency setting and uses the value from the
create_clock constraint instead.

e Balanced — Optimizes the design for both area and timing.

Propagate Constants

When set to True (default), enables constant propagation to reduce area, where possible. LSE
will then eliminate the logic used when constant inputs to logic cause their outputs to be constant.
You can turn off the operation by setting this option to False.

RAM Style

Sets the type of random access memory globally to BRAM or registers.

The default is Auto which attempts to determine the best implementation. That is, LSE will map to
RAM resources based on the resource availability.

This option will apply a syn_ramstyle attribute globally in the source to a module or to a RAM
instance. To turn off RAM inference, set its value to Registers.

iCEcube2 User Guide www.latticesemi.com 60

http://www.latticesemi.com/

= LATTICE

Other options are:

e Registers — Causes an inferred RAM to be mapped to registers (flip-flops and logic)
rather than the technology-specific RAM resources.

e BRAM — Causes the RAM to be implemented using the dedicated RAM resources. If your
RAM resources are limited, for whatever reason, you can map additional RAMs to
registers instead of the dedicated BRAM resources using this attribute.

Remove Duplicate Registers

Specifies the removal of duplicate registers. When set to True (default), LSE removes a register if
it is identical to another register. If two registers generate the same logic, the second one will be
deleted and the first one will be made to fan out to the second one's destinations. LSE will not
remove duplicate registers if this option is set to False.

Resolve Mixed Drivers

If a net is driven by a VCC or GND and active drivers, setting this option to True connects the net
to the VCC or GND driver.

Resource Sharing

When this is set to True (default), the synthesis tool uses resource sharing techniques to optimize
for area. With resource sharing, synthesis uses the same arithmetic operators for mutually
exclusive statements; for example, with the branches of a case statement. Conversely, you can
improve timing by disabling resource sharing, but at the expense of increased area.

ROM Style

Allows you to globally implement ROM architectures using dedicated, distributed ROM, or a
combination of the two (Auto).

This applies the syn_romstyle attribute globally to the design by adding the attribute to the
module or entity. You can also specify this attribute on a single module or ROM instance.

This option specifies a syn_romstyle attribute globally or on a module or ROM instance with a
value of:

o Auto (default) — Allows the synthesis tool to choose the best implementation to meet the
design requirements for speed, size, and so on.

e BRAM — Causes the ROM to be mapped to dedicated BRAM resources. ROM address or
data should be registered to map it to an BRAM block. If your ROM resources are limited,
for whatever reason, you can map additional ROM to registers instead of the dedicated or
distributed RAM resources using this attribute.

e Logic — Causes the ROM to be implemented using the normal logic.

Infer ROM architectures using a CASE statement in your code. For the synthesis tool to
implement a ROM, at least half of the available addresses in the CASE statement must be
assigned a value. For example, consider a ROM with six address bits (64 unique addresses). The
CASE statement for this ROM must specify values for at least 32 of the available addresses.

RW Check on RAM

Adds (True) or does not add (False) the glue logic to resolve read/write conflicts wherever
needed. Default is False.

iCEcube2 User Guide www.latticesemi.com 61

http://www.latticesemi.com/

= LATTICE

Target Frequency

Specifies the target frequency setting. This frequency applies to all the clocks in the design. If
there are some clocks defined in an .sdc file, the remaining clocks will get this frequency setting.

When Optimization Goal is set to Area, LSE ignores the Target Frequency setting and uses
1 MHz instead.

When Optimization Goal is set to Timing and a create_clock constraint is available in an .sdc file,
LSE ignores the Target Frequency setting and uses the value from the create_clock constraint
instead.

Top-Level Unit

It is a good practice to specify the top-level unit (or module) of the design. If you don’t, LSE will try
to determine the top-level unit. While usually accurate, there is no guarantee that LSE will get the
correct unit.

You may also want to change the top-level unit when experimenting with different designs or
switching between simulation and synthesis.

If the design is mix of EDIF and Verilog or VHDL, you cannot set an EDIF module as the top-level
unit.

Use Carry Chain

Turns on (True) or off (False) carry chain implementation for adders. Default is True. This option
is equivalent to the “-use_carry_chain” command in LSE.

Use 10 Insertion

Turns on (True) or off (False) the use of I/O insertion. Default is True.

Use IO Registers

Enables (True) or disables (False) register packing. True forces the synthesis tool to pack all
input, output, and I/O registers into I/0 pad cells based on timing requirements. Default is Auto,
which selects True or False based on how Optimization Goal is set.

You can place the syn_useioff attribute on an individual register or port. When applied to a
register, the synthesis tool packs the register into the pad cell, and when applied to a port, packs
all registers attached to the port into the pad cell. The syn_useioff attribute can be set on a:

e Top-level port
¢ Register driving the top-level port

o Lower-level port if the register is specified as part of the port declaration

Optimizing LSE for Area and Speed

The following strategy settings for LSE can help reduce the amount of FPGA resources that your
design requires or increase the speed with which it runs. (For other synthesis tools, see those
tools’ documentation.) Use these methods along with other, generic coding methods to optimize
your design.

Minimizing area often produces larger delays, making it more difficult to meet timing
requirements. Maximizing frequency often produces larger designs, making it more difficult to
meet area requirements. Either goal, pushed to an extreme, may cause the place and route
process to run longer or not complete routing.

iCEcube2 User Guide www.latticesemi.com 62

http://www.latticesemi.com/

= LATTICE

To control the global performance of LSE, modify the tool options. Choose Tool > Tool Options.
In the Tool Options dialog box, set the following options, which are found in the LSE tab. See the
following text for explanations and more details.

LSE Tool Options for Area and Speed

Option Area Speed
FSM Encoding Style Binary or Gray One-Hot
Max Fanout Limit <maximum> <minimum>
Optimization Goal Area Timing
Remove Duplicate Registers True False
Resource Sharing True False
Target Frequency <minimum>

FSM Encoding Style

If your design includes large finite state machines, the Binary or Gray style may use fewer
resources than One-Hot. Which one is best depends on the design. One-Hot is usually the fastest
style. However, if the finite state machine is followed by a large output decoder, the Gray style
may be faster.

Max Fanout Limit

A larger fanout limit means less duplicated logic and fewer buffers. A lower fanout limit may
reduce delays. The default is 10000, which is essentially unlimited fanout. To minimize area, don'’t
lower this value any more than needed to meet other requirements. To maximize speed, try much
lower values, such as 50.

You can change the fanout limit for portions of the design by using the syn_maxfan attribute. See
“syn_maxfan” on page 85. Set Max Fanout Limit to meet your most demanding requirement.
Then add syn_maxfan to help other requirements.

Optimization Goal

If set to Area, LSE will choose smaller design forms over faster whenever possible. LSE will also
ignore the Target Frequency option, using a low 1 MHz target instead. If set to Timing, LSE will
choose faster design forms over smaller whenever possible. LSE will also use the timing
constraints in the design’s .sdc file to guide the optimization. If you are having trouble meeting
one requirement (area or speed) while optimizing for the other, try setting this option to
Balanced.

Remove Duplicate Registers

Removing duplicate registers reduces area, but keeping duplicate registers may reduce delays.

iCEcube2 User Guide www.latticesemi.com 63

http://www.latticesemi.com/

= LATTICE

Resource Sharing

If set to True, LSE will share arithmetic components such as adders, multipliers, and counters
whenever possible.

If the critical path includes such resources, turning this option off may reduce delays. However, it
may also increase delays elsewhere, possibly reducing the overall frequency.

Target Frequency

A lower frequency target means LSE can focus more on area. A higher frequency target may
force LSE to increase area. Try setting this value to about 10% higher than your minimum
requirement. However, if Optimization Goal is set to Area, LSE will ignore the Target Frequency
value, using a low 1 MHz target instead. If Optimization Goal is set to Timing and a create_clock
constraint is available in an .sdc file, LSE will use the value from the create clock constraint
instead.

LSE Options versus Synplify Pro

If you are moving from using Synplify Pro to LSE, there are many differences in the options to
consider. Many of the Synplify Pro options have similar LSE options. But many also do not. See
the following table. And there are many LSE options that have no Synplify Pro equivalents. See
the lists following the table. For more information about the options, see “Changing the LSE Tool
Options” on page 59.

Synplify Pro Tool Options and LSE Equivalents

Synplify Pro Option LSE Equivalent Synplify Pro LSE

Default Default

Allow Duplicate Modules None False

Area Optimization Goal False Balanced

Arrange VHDL Files None True

Clock Conversion None True

Command Line Options Command Line Options

Default Enum Encoding FSM Encoding Style Default Auto

Disable 10 Insertion Use 10 Insertion False True

Export Diamond Settings to Synplify Pro GUI None No

Fanout Guide Max Fanout Limit 10000 1000

Force GSR None False

Frequency Target Frequency 200

FSM Encoding None True

Number of Critical Paths Number of Critical Paths 3

Number of Start/End Points None

iCEcube2 User Guide www.latticesemi.com 64

http://www.latticesemi.com/

= LATTICE

Output Netlist Format None None

Output Preference File None True

Pipelining and Retiming None Pipelining Only

Push Tristates None True

Resolved Mixed Drivers Resolve Mixed Drivers False False
Resource Sharing Resource Sharing True True
Update Compile Point Timing Data None False

Use Clock Period for Unconstrained 1/0 None False

Verilog Input None Verilog 2001

VHDL 2008 None False

LSE has additional options that provide more granular control than Synplify Pro. These options
include:

e Carry Chain Length
¢ BRAM Utilization
o RAM Style
e ROM Style
Other LSE options without Synplify Pro equivalents:
e Intermediate File Dump
¢ Memory Initial Value Search Path
e Use Carry Chain
e Use IO Registers
e Propagate Constants

¢ Remove Duplicate Registers

Coding Tips for LSE

If you are going to use LSE to synthesize the design, the following coding tips may help. Mostly
the tips are about writing code so that blocks of memory are “inferred”: that is, automatically
implemented using logic cells or block RAM (BRAM) instead of registers. There are also tips
about inferring types of 1/0O ports and about style differences with Synplify Pro.

LSE Differences with Synplify Pro

LSE tends to apply the Verilog and VHDL specifications strictly, sometimes more strictly than
other synthesis tools including Synplify Pro. Following are some coding practices that can cause
problems with LSE:

e Semicolons (;) to separate ports in a Verilog module statement. For example:

iCEcube2 User Guide www.latticesemi.com 65

http://www.latticesemi.com/

= LATTICE

module COUNTER (

input CLK ,

input RESET ; // LSE error on semicolon.
output TIMEOUT

) -

e Spaces in the location path.
e Duplicate instantiation names (due to names in generate statements).
¢ Module instances without instance names.

o Multiple files with the same module names. Synplify Pro will error out but LSE will not.
This could cause designs in LSE to use the incorrect module.

e Global VHDL signals.
e Modules that have a port mismatch between instance and definition.

e Both ieee.std_logic_signed and unsigned packages in VHDL. When preparing VHDL
code for LSE, you can include either:

USE ieee.std_logic_signed.ALL;
or:
USE ieee.std_logic_unsigned.ALL;

Code with both signed and unsigned packages could fail to synthesize because
operators would have multiple definitions.

e Mismatched variable types in VHDL. A std_logic_vector signal cannot be assigned to a
std_logic signal and an unsigned type cannot be assigned to a std_logic_vector signal.
For example:

din : in unsigned (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
dout <= din; // I1legal, mismatched assignment.

Such mismatched assignments generate errors that stop synthesis.

About Inferring Memory

Inferring memory means that LSE, based on aspects of the code, implements a block of memory
using logic cells or block RAM (BRAM)—Ilogic cells for small memories, BRAM for large—instead
of registers. LSE can infer synchronous RAM that is:

e single-port or pseudo dual-port
e with or without asynchronous reset of the output
e with or without write enables
e with or without clock enables
LSE can also infer synchronous ROM.

In some old VHDL coding styles, one-dimensional memories and CASE statements were used to
create two-dimensional memories. This coding style does not translate to memories properly in
LSE.

The following sections describe how to write code to infer different kinds of memory with LSE.

iCEcube2 User Guide www.latticesemi.com 66

http://www.latticesemi.com/

= LATTICE

Inferring RAM

The basic inferred RAM is synchronous. It can have synchronous or asynchronous reads and can
be either single- or dual-port. You can also set initial values. Other features, such as resets and
clock enables, can be added as desired. The following text lists the rules for coding inferred RAM.
Following that, Figure 4-1 (Verilog) and Figure 4-2 (VHDL) show the code for a simple, single-port
RAM with asynchronous read.

To code RAM to be inferred, do the following:

Define the RAM as an indexed array of registers.

To control how the RAM is implemented (with block RAM), consider adding the
syn_ramstyle attribute. See “syn_ramstyle” on page 85.

Control the RAM with a clock edge and a write enable signal.

For synchronous reads, see “Inferring RAM with Synchronous Read” on page 68.
For single-port RAM, use the same address bus for reading and writing.

For pseudo dual-port RAM, see “Inferring Pseudo Dual-Port RAM on page 70.

If desired, assign initial values to the RAM as described in “Initializing Inferred RAM” on
page 72.

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
reg [data_width-1:0] mem [(l<<addr_width)-1:0];
// Define RAM as an indexed memory array.

always @(posedge clk) // control with a clock edge.
begin
if (write_en) // And control with a write enable.
mem[(addr)] <= din;
end
assign dout = mem[addr];
endmodule

Figure 4-1: Simple, Single-Port RAM in Verilog

Tibrary IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural
data_width : natural
port (
addr : in std_logic_vector (addr_width - 1 downto 0);

8;
8);

iCEcube2 User Guide www.latticesemi.com 67

http://www.latticesemi.com/

= LATTICE

write_en : in std_logic;

clk : in std_logic;

din : in std_logic_vector (data_width - 1 downto 0);

dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
-- Define RAM as an indexed memory array.

begin
process (clk)
begin
if (clk'event and clk = '1') then -- Control with clock
edge
if (write_en = '1') then -- cControl with a write
enable.
mem(conv_integer(addr)) <= din;
end if;
end if;

end process;
dout <= mem(conv_integer(addr));
end rtil;

Figure 4-2: Simple, Single-Port RAM in VHDL

Inferring RAM with Synchronous Read

For synchronous reads, add a register for the read address or for the data output. Load the
register inside the procedure or process that is controlled by the clock. See the following
examples. They show the simple RAM of “Inferring RAM” on page 67 modified for synchronous
reads. Changes are in bold text.

Verilog Examples

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] dout; // Register for output.
reg [data_width-1:0] mem [(1l<<addr_width)-1:0];

always @(posedge clk)
begin
if (write_en)
mem[(addr)] <= din;
dout = mem[addr]; // oOutput register controlled by
clock.
end
endmodule

Figure 4-3: RAM with Registered Output in Verilog

iCEcube2 User Guide www.latticesemi.com 68

http://www.latticesemi.com/

= LATTICE

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] raddr; // Register for read address.
reg [data_width-1:0] mem [(1l<<addr_width)-1:0];

always @(posedge clk)
begin
if (write_en)
begin
mem[(addr)] <= din;
end
raddr <= addr; // Read addr. register controlled by
clock.
end
assign dout = mem[raddr];
endmodule

Figure 4-4: RAM with Registered Read Address in Verilog

VHDL Examples

Tibrary IEEE;
use IEEE.std_logic_1164.al1l;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural
data_width : natural
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en : in std_logic;
clk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

8;
8);

architecture rtl of ram is
type mem_type 1is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
begin
process (clk)
begin
if (clk'event and clk = '"1') then
if (write_en = '1') then
mem(conv_integer(addr)) <= din;

iCEcube2 User Guide www.latticesemi.com 69

http://www.latticesemi.com/

= LATTICE

end if;
end if;
dout <= mem(conv_integer(addr));
-- Output register controlled by clock.

Figure 4-5: RAM with Registered Output in VHDL

Tibrary IEEE;
use IEEE.std_logic_1164.al1l;
use IEEE.std_logic_unsigned.all;

entity ram is

generic (
addr_width : natural := 8;
data_width : natural := 8);
port (

addr : in std_logic_vector (addr_width - 1 downto 0);

write_en : in std_logic;

clk : in std_logic;

din : in std_logic_vector (data_width - 1 downto 0);

dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

architecture rtl of ram is
type mem_type 1is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
begin
process (clk)
begin
if (clk'event and clk = '"1') then
if (write_en = '1') then
mem(conv_integer(addr)) <= din;
end if;
raddr <= addr;
-- Read address register controlled by clock.
end if;
end process;
dout <= mem(conv_integer(raddr));
end rtil;

Figure 4-6: RAM with Registered Read Address in VHDL

Inferring Pseudo Dual-Port RAM

For pseudo dual-port RAM:

Use two address buses.

If the design does not simultaneously read and write the same address, add the
syn_ramstyle attribute with the no_rw_check value to minimize overhead logic.

If writing in Verilog, use non-blocking assignments as described in “About Verilog
Blocking Assignments” on page 74.

iCEcube2 User Guide www.latticesemi.com 70

http://www.latticesemi.com/

= LATTICE

The following examples are based on the simple RAM of “Inferring RAM” on page 67.
Verilog Examples

module ram (din, write_en, waddr, wclk, raddr, rclk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] waddr, raddr;
input [data_width-1:0] din;
input write_en, wclk, rclk;
reg [data_width-1:0] dout;
reg [data_width-1:0] mem [(l<<addr_width)-1:0]
/* synthesis syn_ramstyle = "no_rw_check" */ ;

always @(posedge wclk) // Write memory.
begin

if (write_en)

mem[waddr] <= din; // Using write address bus.

end
always @(posedge rclk) // Read memory.
begin

dout <= mem[raddr]; // Using read address bus.
end

endmodule

Figure 4-7: Pseudo Dual-Port RAM in Verilog

VHDL Examples
library IEEE;
use IEEE.std_logic_1164.al1l;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (
addr_width : natural
data_width : natural
port (
write_en : in std_logic;
waddr : in std_logic_vector (addr_width - 1 downto 0);
wclk : in std_logic;
raddr : in std_logic_vector (addr_width - 1 downto 0);
rclk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram;

8;
8);

architecture rtl of ram is
type mem_type 1is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);
signal mem : mem_type;
attribute syn_ramstyle: string;
attribute syn_ramstyle of mem: signal is "no_rw_check";

begin
process (wclk) -- Write memory.
iCEcube2 User Guide www.latticesemi.com

71

http://www.latticesemi.com/

= LATTICE

begin
if (wclk'event and wclk = '"1') then
if (write_en = '1') then
mem(conv_integer(waddr)) <= din;
-- Using write address bus.
end if;
end if;
end process;
process (rclk) -- Read memory.
begin
if (rclk'event and rclk = '1') then
dout <= mem(conv_integer(raddr));
-- Using read address bus.
end if;
end process;
end rtil;

Figure 4-8: Pseudo Dual-Port RAM in VHDL

Initializing Inferred RAM
Create initial values for inferred RAM in the usual ways for initializing memory.
Verilog

In Verilog, initialize RAM with the standard $readmemb or $readmemh tasks in an initial block.
Create a separate file with the initial values in either binary or hexadecimal form. For example, to
initialize a RAM block named “ram”:

reg [7:0] ram [0:255];
initial
begin

$readmemh ("ram.ini", ram);
end

The data file has one word of data on each line. The data needs to be in the same order in which
the array was defined. That is, for “ram [0:255]" the data starts with address 0; for “ram [255:0]"
the data starts with address 255. The ram.ini file might start like this:

0A /* Address 0 */

23
5C

VHDL

In VHDL, initialize RAM with either signal declarations or variable declarations. Define an entity
with the same ports and architecture as the memory. Use this entity in either a signal or variable
statement with the initial values as shown below.

For example, to initialize a RAM block named “ram,” define an entity such as:

entity ram_init is
port (
clk : 1in std_logic;
addr : 1in std_logic_vector(7 downto 0);

iCEcube2 User Guide www.latticesemi.com 72

http://www.latticesemi.com/

= LATTICE

din : 1in std_logic_vector(7 downto 0);

we : in std_logic;

dout : out std_logic_vector(7 downto 0));
end;
architecture arch of ram_init is

type ram_init_arch is array(0 to 255)

of std_logic_vector (7 downto 0);

Then use the entity in a signal statement:

signal ram : ram_init_arch := (
"00001010",
"00100011",
"01011100",

others => (others => '0'));

Or use the entity in a variable statement:
variable ram : ram_init_arch := (
1 => "00001010",

others => (1=>'1', others => '0'));

Inferring ROM

To code ROM to be inferred, do the following:
o Define the ROM with a case statement or equivalent if statements.
e Assign constant values, all of the same width.

e Assign values for at least 16 addresses or half of the address space, whichever is
greater. For example, if the address has 6 bits, the address space is 64 words, and at
least 32 of them must be assigned values.

e To control how the ROM is implemented (with distributed or block ROM), consider adding
the syn_romstyle attribute. See “syn_romstyle” on page 91.

module rom(data, addr);
output [3:0] data;
input [4:0] addr;
always @(addr) begin
case (addr)
0 : data = 'h4;
1 : data = 'h9;
2 : data = 'hl;

15 : data 'h8;
16 : data = 'hl;
17 : data = '"hO;
default : data = 'hO;
endcase
end
endmodule

Figure 4-9: ROM Inferred with Case Statement in Verilog

iCEcube2 User Guide www.latticesemi.com 73

http://www.latticesemi.com/

= LATTICE

entity rom is

port (addr : in std_Tlogic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0));

end rom;

architecture behave of rom is
begin
process(addr)
begin
if addr = 0 then data <= "0100";
elsif addr then data <= "1001";
elsif addr = 2 then data <= "0001";

]
=

ST ? skl

= 15 then data <= "1000";
elsif addr = 16 then data <= "0001";
elsif addr = 17 then data <= "0000";
else data <= "0000";
end if;

end process;
end behave;

Figure 4-10: ROM Inferred with If Statement in VHDL

About Verilog Blocking Assignments

LSE support for Verilog blocking assignments to inferred RAM and ROM, such as
‘ram[(addr)] = data;,” is limited to a single such assignment. Multiple blocking assignments, such
as you might use for dual-port RAM (see Figure 4-11), or a mix of blocking and non-blocking
assignments are not supported. Instead, use non-blocking assignments (<=). See Figure 4-12.

always @(posedge clka)
begin
if (write_ena)
ram[addra] = dina; // Blocking assignment A
douta = ram[addra];
end
always @(posedge clkb)
begin
if (write_enb)
ram[addrb] = dinb; // Blocking assignment B
doutb = ram[addrb];
end

Figure 4-11: Example of RAM with Multiple Blocking Assignments (Wrong)

always @(posedge clka)
begin
if (write_ena)
ram[addra] <= dina;
douta <= ram[addra];
end

iCEcube2 User Guide www.latticesemi.com 74

http://www.latticesemi.com/

= LATTICE

always @(posedge clkb)
begin

if (write_enb)

ram[addrb] <= dinb;

doutb <= ram[addrb];

end

Inferring DSP Multipliers

Figure 4-12: Example Rewritten with Non-blocking Assignments (Right)

LSE can infer the following types of multipliers and map them to MAC16+ blocks:

e Multiplier

e Multiply/Add (multiplier followed by an addition)

e Multiply/Sub (multiplier followed by a subtraction)

¢ Multiply/Accumulate (multiplier followed by an accumulator)

Inferring works with multipliers with 3 to 16-bit inputs.

All multiplier types can have any combination of input, output, and pipeline registers.

Control signals (clock, enable, and reset) for any registers in a multiplier must be shared by all the
registers. That is, there can only be one clock, one enable, and one reset signal in a given

multiplier.

To control how the multiplier is implemented (with logic or DSP), consider adding the
syn_multstyle attribute. See syn_multstyle on page 85.

The following sections show code written to infer different kinds of DSP multipliers with LSE.

Verilog Examples
module mult_unsign_7_6(a,b,c);

parameter A_WIDTH = 7;

parameter B_WIDTH = 6;

input unsigned [(A_WIDTH - 1):0] a;

input unsigned [(B_WIDTH - 1):0] b;

output unsigned [(A_WIDTH + B_WIDTH - 1):0] c;

assign c = a * b;

endmodule

Figure 4-13 : Basic Multiplier without Registers

module multaddsub_add_unsign_7_6(a,b,c,din);

parameter A_WIDTH = 7;

parameter B_WIDTH = 6;

input unsigned [(A_WIDTH - 1):0] a;

input unsigned [(B_WIDTH - 1):0] b;

input unsigned [(A_WIDTH + B_WIDTH - 1):0] din;
output unsigned [(A_WIDTH + B_WIDTH - 1):0] c;

assign c = a * b + din;

endmodule

iCEcube2 User Guide www.latticesemi.com

75

http://www.latticesemi.com/

= LATTICE

Figure 4-14: Multiply/Add without Registers

module multaddsub_sub_sign_ir_7_6(clk,a,b,din,c,rst,set);
parameter A_WIDTH = 7;
parameter B_WIDTH 6;
input rst;
input set;
input clk;
input signed [(A_WIDTH - 1):0] a;
input signed [(B_WIDTH - 1):0] b;
input signed [(A_WIDTH + B_WIDTH - 1):0] din;
output signed [(A_WIDTH + B_WIDTH - 1):0] c;

reg signed [(A_WIDTH - 1):0] reg_a;
reg signed [(B_WIDTH - 1):0] reg_b;
reg signed [(A_WIDTH + B_WIDTH - 1):0] reg_din;

g

assign ¢ = reg_a * reg_b - reg_din;

always @(posedge clk)
begin
if(rst)
begin
reg_a <= 0;
reg_b <= 0;
reg_din <= 0;
end
else if(set)
begin
reg_a <= -1;
reg_b <= -1;
reg_din <= -1;
end
else
begin
reg_a <= a;
reg_b <= b;
reg_din <= din;
end
end
endmodule

Figure 4-15: Multiplier/Sub with Input Registers

module multacc_unsign_7_6(clk,a,b,c,set);
parameter A_WIDTH = 7;
parameter B_WIDTH = 6;
input set;
input clk;
input unsigned [(A_WIDTH - 1):0] a;
input unsigned [(B_WIDTH - 1):0] b;
output unsigned [(A_WIDTH + B_WIDTH - 1):0] c;

iCEcube2 User Guide www.latticesemi.com 76

http://www.latticesemi.com/

= LATTICE

reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;
assign c = reg_tmp_c;

always @(posedge clk)
begin
if(set)
begin
reg_tmp_c <= 0;
end
else
begin
reg_tmp_c <= a * b + c;
end
end
endmodule

Figure 4-16 : Multiplier/Accumulator without Registers

VHDL Examples

entity m_07x06 1is
generic (widtha : natural
widthb : natural

7,
6);

port (
ina : in std_logic_vector (0 to widtha - 1);
inb : in std_logic_vector (0 to widthb - 1);
mout : out std_logic_vector (0 to widtha+widthb - 1));

end m_07x06;
architecture rtl of m_07x06 is
begin
mout <= ina * inb ;
end rtl;

Figure 4-17 : Basic Multiplier without Registers

entity mult_add_07x06 is

generic (widtha : natural := 7;
widthb : natural := 6);
port (
ina : in std_logic_vector (widtha - 1 downto 0);
inb : in std_logic_vector (widthb - 1 downto 0);
mout : out std_logic_vector (widtha+widthb - 1 downto 0);
inc : in std_logic_vector (widtha+widthb - 1 downto 0)
)5

end mult_add_07x06;
architecture rtl of mult_add_07x06 is

begin
mout <= ina * inb + inc ;

iCEcube2 User Guide www.latticesemi.com 77

http://www.latticesemi.com/

= LATTICE

end rtl;
Figure 4-18 : Multiply/Add without Registers

entity mult_sub_07x06_ir_r is

generic (widtha : natural := 7;
widthb : natural := 6);
port (
ina : in std_logic_vector (widtha - 1 downto 0);

inb : in std_logic_vector (widthb - 1 downto 0);
clk : in std_logic;
reset: in std_logic;
mout : out std_logic_vector (widtha+widthb - 1 downto 0);
inc : in std_logic_vector (widtha+widthb - 1 downto 0)
J

end mult_sub_07x06_1ir_r;

architecture rtl of mult_sub_07x06_ir_r is
signal regl_ina : std_logic_vector(widtha - 1 downto 0);
signal regl_inb : std_logic_vector(widthb - 1 downto 0);

begin
mout <= regl_ina * regl_inb-inc;

process (clk,reset) begin
if(reset ="'1") then
regl_ina <= (others => '0');
regl_inb <= (others => '0');
elsif rising_edge (clk) then
regl_ina <= ina;
regl_inb <= inb;
end if;
end process;
end rtil;

Figure 4-19 : Multiplier/Sub with Input Registers

entity multacc_07x06_up is

generic (widtha : natural := 7;
widthb : natural := 6);
port (
ina : in std_logic_vector (widtha - 1 downto 0);
inb : in std_logic_vector (widthb - 1 downto 0);
clk : in std_logic;

reset : in std_logic;
mout : out std_logic_vector (widtha+widthb - 1 downto 0)
I

end multacc_07x06_up;

architecture rtl of multacc_07x06_up is

signal reg_mout:std_Tlogic_vector(widtha+widthb-1 downto 0);
signal mout_s :std_logic_vector(widtha+widthb-1 downto 0);

iCEcube2 User Guide www.latticesemi.com

http://www.latticesemi.com/

= LATTICE

begin
mout <= mout_s ;
mout_s <= reg_mout;

process (clk,reset) begin
if(reset ='1") then
reg_mout <= (others => '0');
elsif rising_edge (clk) then
reg_mout <= 1ina * inb + mout_s ;
end if;
end process;
end rtil;

Figure 4-20: Multiplier/Accumulator without Registers

Inferring 1/O

To specify types of /0O ports, follow these models.

Verilog
Open Drain:

output <port>;
wire <output_enable>;
assign <port> = <output_enable> ? 1'b0 : 1'bz;

Bidirectional:

inout <port>;

wire <output_enable>;

wire <output_driver>;

wire <input_signal>;

assign <port> = <output_enable> ? <output_driver> : 1'bz;
assign <input_signal> = <port>;

VHDL
Tristate:
library ieee;
use ieee.std_logic_1164.all;
entity <tbuf> is
port (
<enable> : std_logic;
<input_sig> : in std_logic_vector (1 downto 0);
<output_sig> : out std_logic_vector (1 downto 0));
end tbuf2;
architecture <port> of <tbuf> is
begin
<output_sig> <= <input_sig> when <enable> ="'1" else "ZZ";
end;
Open Drain:

Tibrary 1ieee;
use ieee.std_logic_1164.al1;
entity <od> is

iCEcube2 User Guide www.latticesemi.com

79

http://www.latticesemi.com/

= LATTICE

port (

<enable> : std_logic;

<output_sig> : out std_logic_vector (1 downto 0));
end od2;
architecture <port> of <od> is
begin

<output_sig> <= "00" when <enable> = '1l' else "zz",;
end;

Bidirectional:

Tibrary 1ieee;
use ieee.std_logic_1164.al1l;
entity <bidir> is
port (
<direction> : std_logic;
<input_sig> : in std_logic_vector (1 downto 0);
<output_sig> : out std_logic_vector (1 downto 0);
<bidir_sig> : inout std_logic_vector (1 downto 0));
end bidir2;
architecture <port> of <bidir> is
begin
<bidir_sig> <= <input_sig> when <direction> = '0'
"zz";
<output_sig> <= <bidir_sig>;
end;

Event Inside an Event
Do not code an event within another event such as shown below:

always begin :main
guess = 0;
@(posedge clk or posedge rst);
if (rst) disable main;
while(1) begin
while(!result) begin
guess = 0;
while(!result) begin
@(posedge clk or posedge rst);
if (rst) disable main;
end
@(posedge clk or posedge rst);
if (rst) disable main;

end
while(result) begin
guess = 1;

while(result) begin
@(posedge clk or posedge rst);
if (rst) disable main;

end

@(posedge clk or posedge rst);

if (rst) disable main;

end
end

iCEcube2 User Guide www.latticesemi.com

else

80

http://www.latticesemi.com/

= LATTICE

end

Figure 4-21: Event within an Event (Wrong)

HDL Attributes and Directives

This section describes the Synplify Lattice attributes and directives that are supported by LSE.
These attributes and directives are directly interpreted by the engine and influence the
optimization or structure of the output netlist. Traditional HDL attributes, such as UGROUP, are
also compatible with LSE and are passed into the netlist to direct place and route.

black_box_pad_pin

Directive. Specifies pins on a user-defined black-box component as 1/0 pads that are visible to
the environment outside of the black box. If there is more than one port that is an 1/O pad, list the
ports inside double-quotes ("), separated by commas (,), and without enclosed spaces.

Verilog Syntaxobject /* synthesis syn_black box black_box_pad_pin = "portList" */ ;

where portList is a spaceless, comma-separated list of the names of the ports on black boxes that
are 1/0O pads.

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q"
*/;

Figure 4-22: Verilog Example
VHDL Syntax
attribute black_box_pad_pin of object : objectType is "portList" ;

where object is an architecture or component declaration of a black box. Data type is string;
portList is a spaceless, comma-separated list of the black-box port names that are 1/0O pads.

Tibrary 1ieee;

use ieee.std_logic_1164.al1l;

package my_components s

component BBDLHS

port (D: in std_logic;

E: in std_logic;
GIN : in std_logic_vector(2 downto 0);
Q : out std_logic);

end component;

attribute syn_black_box : boolean;

attribute syn_black_box of BBDLHS : component 1is true;
attribute black_box_pad_pin : string;

attribute black_box_pad_pin of BBDLHS : component is
"GIN(2:0),Q";

end package my_components;

Figure 4-23: VHDL Example

iCEcube2 User Guide www.latticesemi.com 81

http://www.latticesemi.com/

= LATTICE

syn_black_box

Directive. Specifies that a module or component is a black box with only its interface defined for
synthesis. The contents of a black box cannot be optimized during synthesis. A module can be a
black box whether it is empty or not. This directive has an implicit Boolean value of 1 or true.

Verilog Syntax
object /* synthesis syn_black _box */;

where object is a module declaration.

module bl_box(out,data,clk) /* synthesis syn_black_box */;
Figure 4-24: Verilog Example

VHDL Syntax
attribute syn_black_box of object : objectType is true ;

where object is a component declaration, label of an instantiated component to define as a black
box, architecture, or component. Data type is Boolean.

architecture top of top-entity is
component ram4
port (myclk : 1in bit;
opcode : 1in bit_vector(2 downto 0);
a, b : in bit_vector(7 downto 0);
rambus : out bit_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of ram4: component 1is true;

Figure 4-25: VHDL Example

syn_encoding

Directive for VHDL designs. Defines how enumerated data types are implemented. The type of
implementation affects the performance and device utilization.

VHDL Syntax
attribute syn_encoding of object : objectType is "value" ;

Where object is an enumerated type and value is one of the following: default, sequential, onehot,
or gray.

package testpkg is
type mytype is (red, yellow, blue, green, white,
violet, indigo, orange);
attribute syn_encoding : string;
attribute syn_encoding of mytype : type is "sequential";
end package testpkg;
Tibrary IEEE;
use IEEE.std_logic_1164.al1;

iCEcube2 User Guide www.latticesemi.com 82

http://www.latticesemi.com/

= LATTICE

use work.testpkg.all;
entity decoder is
port (sel : in std_logic_vector(2 downto 0);
color : out mytype);
end decoder;
architecture rtl of decoder is
begin
process(sel)
begin
case sel is
when "000" => color <= red;
when "001" => color <= yellow;
when "010" => color <= blue;
when "011" => color <= green;
when "100" => color <= white;
when "101" => color <= violet;
when "110" => color <= indigo;
when others => color <= orange;
end case;
end process;
end rtl;

Figure 4-26: VHDL Example

syn_hier

Attribute. Allows you to control the amount of hierarchical transformation that occurs across
boundaries on module or component instances during optimization.

syn_hier Values
The following value can be used for syn_hier:

hard — Preserves the interface of the design unit with no exceptions. This attribute affects only the
specified design units.

object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values described in
syn_hier Values. Check the attribute values to determine where to attach the attribute.

module topl (Q, CLK, RST, LD, CE, D)
/* synthesis syn_hier = "hard" */;

Figure 4-27: Verilog Example

VHDL Syntax
attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values described in syn_hier
Values. Check the attribute values to determine the level at which to attach the attribute.

architecture struct of cpu is

iCEcube2 User Guide www.latticesemi.com 83

http://www.latticesemi.com/

= LATTICE

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

Figure 4-28: VHDL Example

syn_keep

Directive. Keeps the specified net intact during optimization and synthesis.
Verilog Syntax

object /* synthesis syn_keep =1 */;

where object is a wire or reg declaration. Make sure that there is a space between the object
name and the beginning of the comment slash (/).

module example2(outl, out2, clk, inl, in2);
output outl, out2;
input clk;
input inl, 1in2;
wire and_out;
wire keepl /* synthesis syn_keep=1 */;
wire keep2 /* synthesis syn_keep=1 */;
reg outl, out2;
assign and_out=inl&in2;
assign keepl=and_out;
assign keep2=and_out;
always @(posedge clk)begin;
outl<=keepl;
out2<=keep?2;
end
endmodule

Figure 4-29: Verilog Example

VHDL Syntax
attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal.

entity example2 is
port (inl, in2 : in bit;

clk : in bit;

outl, out2 : out bit);
end example?2;
architecture rtl of example2 is
attribute syn_keep : boolean;
signal and_out, keepl, keep2: bit;
attribute syn_keep of keepl, keep2 : signal is true;
begin
and_out <= inl and in2;
keepl <= and_out;

iCEcube2 User Guide www.latticesemi.com 84

http://www.latticesemi.com/

= LATTICE

keep2 <= and_out;
process(clk)
begin
if (clk'event and clk = '"1') then
outl <= keepl;
out2 <= keep2;
end if;
end process;
end rtl;

Figure 4-30: VHDL Example

syn_maxfan

Attribute. Overrides the default (global) fan-out guide for an individual input port, net, or register
output.

Verilog Syntax

object /* synthesis syn_maxfan = "value" */ ;

module test (registered_data_out, clock, data_in);

output [31:0] registered_data_out;

input clock;

input [31:0] data_in /* synthesis syn_maxfan=1000 */;

reg [31:0] registered_data_out /* synthesis syn_maxfan=1000
3

Figure 4-31: Verilog Example

VHDL Syntax

attribute syn_maxfan of object : objectType is "value" ;

entity test is
port (clock : 1in bit;
data_in : in bit_vector(31 downto 0);
registered_data_out: out bit_vector(31 downto 0)
)
attribute syn_maxfan : integer;
attribute syn_maxfan of data_in : signal is 1000;

Figure 4-32: VHDL Example

syn_multstyle

Attribute. Specifies whether to use logic or DSP blocks. Multiply, multiply/add, and
multiply/accumulate blocks are automatically implemented as MAC16+ blocks when available
unless the syn_multstyle attribute is used.

The following values can be specified globally or on a module:

iCEcube2 User Guide www.latticesemi.com 85

http://www.latticesemi.com/

= LATTICE

e Logic — Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped
to logic.

e DSP — Causes multiply, multiply/add, and multiply/accumulate blocks to be mapped
to DSP blocks.

Verilog Syntax

object /* synthesis syn_multstyle = "string" */ ;

Where object is a multiply, multiply/add, and multiply/accumulate definition. The data type is
string.

module mult(a,b,c,r,en);

input [7:0] a,b;

output [15:0] r;

input [15:0] c;

input en;

wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp: c;

endmodule
Figure 4-33: Verilog Example
VHDL Syntax

attribute syn_multstyle of object : objectType is "string" ;
Where obiject is a signal that defines a multiply, multiply/add, and multiply/accumulate block. The
data type is string.

Tibrary ieee ;
use ieee.std_logic_1164.all ;
USE ieee.numeric_std.all;

entity mult is
port (clk : in std_logic ;

a : in std_logic_vector(7 downto 0) ;

b : in std_logic_vector(7 downto 0) ;

c : out std_logic_vector(1l5 downto 0))
end mult ;
architecture rtl of mult is
signal mult_i : std_logic_vector(1l5 downto 0) ;
attribute syn_multstyle : string ;
attribute syn_multstyle of mult_i : signal is "logic" ;
begin
mult_i <= std_logic_vector(unsigned(a)*unsigned(b)) ;
process(clk)
begin

if (clk'event and clk = '"1') then

C <= mult_i ;

end if ;
end process

Figure 4-34 : VHDL Example

iCEcube2 User Guide www.latticesemi.com 86

http://www.latticesemi.com/

= LATTICE

syn_noprune

Directive. Prevents instance optimization for black-box modules (including technology-specific
primitives) with unused output ports.

Verilog Syntax
object /* synthesis syn_noprune =1 */;

where object is a module declaration or an instance. The data type is Boolean.

module top(al,bl,cl,dl,yl,clk);

output yl;

input al,bl,cl,dl;

input clk;

wire x2,y2;

reg yl;

syn_noprune ulCal,bl,cl,dl,x2,y2) /= synthesis
syn_noprune=1 */;

always @(posedge clk)
yl<= al;

endmodule

Figure 4-35: Verilog Example

VHDL Syntax
attribute syn_noprune of object : objectType is true ;

where the data type is boolean, and object is an architecture, a component, or a label of an
instantiated component.

Tibrary ieee;
use ieee.std_logic_1164.al1;
entity top is
port (al, bl : 1in std_logic;
cl,dl,clk : in std_logic;
yl :out std_logic);
end ;
architecture behave of top is
component noprune
port (a, b, ¢, d : in std_logic;
X,y : out std_logic);
end component;
signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of ul : label is true;
begin
ul: noprune port map(al, bl, cl, dl, x2, y2);
process begin
wait until (clk = '1') and clk'event;
yl <= al;

iCEcube2 User Guide www.latticesemi.com 87

http://www.latticesemi.com/

= LATTICE

end process;
end;

Figure 4-36: VHDL Example

syn_pipeline

This attribute permits registers to be moved to improve timing. Depending on the criticality of the
path, the tool move the suitable output registers to the input side to improve timing. If there is no
candidate register identified for pipelining, this attribute will not be honored.

syn_pipeline attribute is applicable only for Timing and Balance mode optimization. The tool
ignores the attribute in Area mode optimization.

Verilog Syntax
object /* synthesis syn_pipeline = {1|0} */ ;

where object is a register declaration.

module pipeline (a, b, clk,r);

input [3:0] a,b;

input clk;

output [7:0] r;

reg [3:0] a_reg,b_reg;

reg [7:0] temp2/* synthesis syn_pipeline = 1 */;
reg [7:0] temp3;

wire [7:0] templ;

assign templ = a_reg * b_reg;

always @(posedge clk)

begin
a_reg <= a;
b_reg <= b;

temp2 <= templ;
temp3 <= temp2;
end

assign r = temp3;
endmodule

Figure 4-37 : Verilog Example
VHDL Syntax

attribute syn_pipeline of object : objectType is {true|false} ;

Tibrary ieee ;
use ieee.std_logic_1164.al1l ;
USE ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity pipeline is
port (clk : in std_logic ;
a : in std_logic_vector(3 downto 0) ;
b : in std_logic_vector(3 downto 0) ;
r : out std_logic_vector(7 downto 0));

iCEcube2 User Guide www.latticesemi.com 88

http://www.latticesemi.com/

= LATTICE

end pipeline ;
architecture rt1 of pipeline is
signal a_reg : std_logic_vector(3 downto 0)
signal b_reg : std_logic_vector(3 downto 0)
signal templ : std_logic_vector(7 downto 0)
signal temp2 : std_logic_vector(7 downto 0)
signal temp3 : std_logic_vector(7 downto 0)
attribute syn_pipeline : string ;
attribute syn_pipeline of temp2 : signal 1is "true" ;
begin
process(clk)
begin
if (clk'event and clk = '1') then
templ <= a_reg * b_reg;
a_reg <= a;
b_reg <= b;
temp2 <= templ;
temp3 <= temp2;
r <= temp3;
end if ;
end process ;
end rtl ;

Figure 4-38 : VHDL Example

syn_preserve

Directive. Prevents sequential optimization such as constant propagation, inverter push-through,
and FSM extraction.

Verilog Syntax
object /* synthesis syn_preserve =1 */ ;

where object is a register definition signal or a module.

module syn_preserve (outl,out2,clk,inl,in2)/* synthesis
syn_preserve=1l */;

output outl, out2;

input clk;

input inl, 1in2;

reg outl;

reg out2;

reg regl;

reg reg2;

always@ (posedge clk)begin
regl <= inl &in2;

reg2 <= inl&in2;

outl <= !regl;

out2 <= lregl & reg?;

end

endmodule

Figure 4-39: Verilog Example

iCEcube2 User Guide www.latticesemi.com 89

http://www.latticesemi.com/

= LATTICE

VHDL Syntax
attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a state register or
architecture.

Tibrary 1ieee;
use ieee.std_logic_1164.al1l;
entity simpledff s
port (q : out std_logic_vector(7 downto 0);
d : in std_Tlogic_vector(7 downto 0);
clk : 1in std_logic);

-- Turn on flip-flop preservation for the g output
attribute syn_preserve : boolean;
attribute syn_preserve of q : signal is true;
end simpledff;
architecture behavior of simpledff is
begin
process(clk)
begin
if rising_edge(clk) then
-- Notice the continual assignment of "11111111" to (.
g <= (others => '1");
end if;
end process;
end behavior;

Figure 4-40: VHDL Example

syn_ramstyle

Attribute. The syn_ramstyle attribute specifies the implementation to use for an inferred RAM.
You apply syn_ramstyle globally to a module or to a RAM instance. To turn off RAM inference,
set its value to registers.

The following values can be specified globally or on a module or RAM instance:

e registers — Causes an inferred RAM to be mapped to registers (flip-flops and logic) rather
than the technology-specific RAM resources.

e block_ram — Causes the RAM to be implemented using the dedicated RAM resources. If
your RAM resources are limited, you can use this attribute to map additional RAMs to
registers instead of the dedicated or distributed RAM resources.

e no_rw_check (some modes, but all technologies). — You cannot specify this value alone.
Without no_rw_check, the synthesis tool inserts bypass logic around the RAM to prevent
the mismatch. If you know your design does not read and write to the same address
simultaneously, use no_rw_check to eliminate bypass logic. Use this value only when
you cannot simultaneously read and write to the same RAM location and you want to
minimize overhead logic.

Verilog Syntax

object /* synthesis syn_ramstyle = "string" */ ;

iCEcube2 User Guide www.latticesemi.com 90

http://www.latticesemi.com/

= LATTICE

where object is a register definition (reg) signal. The data type is string.

module ram4 (datain,dataout,clk);

output [31:0] dataout;

input clk;

input [31:0] datain;

reg [7:0] dataout[31:0] /* synthesis
syn_ramstyle="block_ram" */;

Figure 4-41: Verilog Example

VHDL Syntax
attribute syn_ramstyle of object : objectType is "string" ;

where object is a signal that defines a RAM or a label of a component instance. Data type is
string.

Tibrary 1ieee;
use ieee.std_logic_1164.al1l;
entity ram4 s
port (d : in std_logic_vector(7 downto 0);
addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : 1in std_logic;
ram_out : out std_logic_vector(7 downto 0));
end ram4;
Tibrary synplify;
architecture rtl of ram4 is
type mem_type is array (127 downto 0) of std_logic_vector
(7 downto 0);
signal mem : mem_type; -- mem 1is the signal that defines
the RAM
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

Figure 4-42: VHDL Example

syn_romstyle
Attribute. Allows you to implement ROM architectures using dedicated or distributed ROM. Infer
ROM architectures using a CASE statement in your code.

For the synthesis tool to implement a ROM, at least half of the available addresses in the CASE
statement must be assigned a value. For example, consider a ROM with six address bits (64
unique addresses). The case statement for this ROM must specify values for at least 32 of the
available addresses. You can apply the syn_romstyle attribute globally to the design by adding
the attribute to the module or entity.

The following values can be specified globally on a module or ROM instance:

e auto — (default) Allows the synthesis tool to chose the best implementation to meet the
design requirements for speed, size, and so on.

iCEcube2 User Guide www.latticesemi.com 91

http://www.latticesemi.com/

= LATTICE

¢ logic — Causes the ROM to be implemented using logic cells.

¢ BRAM - Causes the ROM to be implemented using the dedicated ROM resources. If
your ROM resources are limited, you can use this attribute to map additional ROM to

registers instead of the dedicated or distributed RAM resources.
Verilog Syntax
object /* syn_romstyle = "auto | logic | BRAM" */;

reg [8:0] z /* synthesis syn_romstyle = "BRAM" *

Figure 4-43: Verilog Example

VHDL Syntax

attribute syn_romstyle of object : object_type is "block_rom | logic" ;

signal z : std_logic_vector(8 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "logic";

Figure 4-44: VHDL Example

syn_use_carry_chain

Attribute. Used to turn on or off the carry chain implementation for adders.

Verilog Syntax

object synthesis syn_use_carry_chain={1 | 0} */;
Verilog Example

To use this attribute globally, apply it to the module.

module test (a, clk, rst, d) /*

b,
syn_use_carry_chain = 1 */;

VHDL Syntax

attribute syn_use_carry_chain of object : objectType is true | false ;

architecture archtest of test is

signal temp : std_logic;

signal templ : std_logic;

signal temp2 : std_logic;

signal temp3 : std_logic;

attribute syn_use_carry_chain : boolean;

iCEcube2 User Guide www.latticesemi.com

synthesis

92

http://www.latticesemi.com/

= LATTICE

attribute syn_use_carry_chain of archtest : architecture is
true;

Figure 4-45: VHDL Example

syn_useioff

Attribute. Overrides the default behavior to pack registers into I/O pad cells based on timing
requirements for the target Lattice families. Attribute syn_useioff is Boolean-valued: 1 enables
(default) and 0 disables register packing. You can place this attribute on an individual register or
port or apply it globally. When applied globally, the synthesis tool packs all input, output, and I/O
registers into 1/0 pad cells. When applied to a register, the synthesis tool packs the register into
the pad cell; and when applied to a port, it packs all registers attached to the port into the pad
cell.

The syn_useioff attribute can be set on the following ports:
e top-level port
e register driving the top-level port
o lower-level port, if the register is specified as part of the port declaration
Verilog Syntax
object synthesis syn_useioff = {1 | 0} */;
Verilog Example

To use this attribute globally, apply it to the module. To use this attribute on individual ports, apply
it to individual port declarations.

module test (a, b, clk, rst, d) /* synthesis syn_useioff =
l 7':/;
Figure 4-46: Verilog Example Applied Globally

module test (a, b, clk, rst, d);
input a;
input b /* synthesis syn_useioff = 1 */;

Figure 4-47: Verilog Example Applied to a Port

VHDL Syntax

attribute syn_useioff of object : objectType is true | false ;

architecture archtest of test is

signal temp : std_logic;

signal templ : std_logic;

signal temp2 : std_logic;

signal temp3 : std_logic;

attribute syn_useioff : boolean;

attribute syn_useioff of archtest : architecture is true;

Figure 4-48: VHDL Example

iCEcube2 User Guide www.latticesemi.com 93

http://www.latticesemi.com/

= LATTICE

Synthesis Macro

Use this text macro along with the Verilog “ifdef compiler directive to conditionally exclude part of
your Verilog code from being synthesized. The most common use of the synthesis macro is to
avoid synthesizing stimulus that only has meaning for logic simulation. The synthesis macro is
defined so that the statement “ifdef synthesis is true. The statements in the “ifdef branch are
compiled; the stimulus statements in the “else branch are ignored. Because Verilog simulators do
not recognize a synthesis macro, the compiler for your simulator will use the stimulus in the “else
branch.

module top (a,b,c);
input a,b;
output c;
“ifdef synthesis
assign ¢ = a & b;
“else
assign ¢ = a | b;
“endif
EndmoduTe

Figure 4-49: Verilog Example

translate_off/translate_on

Directive. Allows you to synthesize designs originally written for use with other synthesis tools
without needing to modify source code. All source code that is between these two directives is
ignored during synthesis.

Verilog Syntax
[* pragma translate_off */

[* pragma translate_on */

module real_time (ina, inb, out);
input ina, 1inb;

output out;

/* pragma translate_off */
realtime cur_time;

/* pragma translate_on */

assign out = ina & inb;

endmodule

Figure 4-50: Verilog Example
VHDL Syntax
pragma translate_off
pragma translate_on

Tibrary ieee;

iCEcube2 User Guide www.latticesemi.com 94

http://www.latticesemi.com/

= LATTICE

use ieee.std_logic_1164.al1l;
entity adder is

port (a, b, cin:in std_logic;

sum, cout:out std_logic);

end adder;
architecture behave of adder is
signal al:std_logic;
--pragma translate_off
constant al:std_logic:='0";
--pragma translate_on
begin

sum <= (a xor b xor cin);

cout <= (a and b) or (a and cin) or (b and cin); end
behave;

Figure 4-51: VHDL Example

Synopsys Design Constraints (SDC)

This section describes the Synopsys Design Constraint (SDC) language elements for timing-
driven synthesis that are supported by the Lattice Synthesis Engine (LSE). The SDC constraints
will drive optimization of the design if LSE’s Optimization Goal is set for either timing or Balanced
in the active strategy file. Furthermore, in Timing or Balanced Optimization Goal, the SDC
constraints are forward annotated to post P&R’s Static Timing Analysis (STA) software, thus
saving the need for users to create another set of timing constraints.

In the case of LSE’s optimization Goal is set to Area, SDC constraints will be ignored and not
forward annotated to STA. To enter timing constraints for STA, refer to “Timing Constraints and
Static Timing Analysis”.

To add SDC constraints to LSE, create the .sdc file using a text editor and add the file to
Synthesis Tool > Synthesis Input Files > Constraint Files. Do not use Timing Constraints Editor
as it used to enter timing constraints for STA for use with backend processes.

The current LSE timing does not take the PLL/DLL frequency or phase shift properties into
account. It also does not model the different I0O_TYPE in the PIO. Therefore, it is necessary to
adjust the timing constraint. For example, you can explicitly include a timing constraint on the PLL
outputs with the phase-shift property.

create_clock

Creates a clock and defines its characteristics.

Note

In LSE timing, interclock domain paths are always blocked for create_clock. However, the interclock domain
path is still valid for constraints such as set_false_path and set_multicycle_path.

Syntax

create_clock -name name -period period_value source
Arguments

-name name

Specifies the name of the clock constraint, which can be referenced by other constraints.

iCEcube2 User Guide www.latticesemi.com 95

http://www.latticesemi.com/

= LATTICE

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which
the clock waveform repeats. The period_value must be greater than zero.

source

Specifies the source of the clock constraint. The source can be ports or nets (signals) in the
design. If you specify a clock constraint on a port or net that already has a clock, the new clock
will replace the existing one. Only one source is accepted. Wildcards are accepted as long as the
resolution shows one port or net.

Example
The following example creates two clocks on ports CK1 and CK2 with a period of 6:

create_clock -name my_user_clock -period 6 [get_ports CK1

]

create_clock -name my_other_user_clock -period 6 [get_nets
CcK2]

set_false_path

Identifies paths that are considered false and excluded from timing analysis.

Syntax

set_false_path [-from port or cell] [-to port or cell]

or

set_false_path [-through through_net]

Arguments

-from port or cell

Specifies the timing path start point. A valid timing starting point is a clock, a primary input, a
combinational logic cell, or a sequential cell (clock-pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational
logic cell, or a sequential cell (data-pin).

-through through_net
Specifies a net through which the paths should be blocked.
Examples

The following example specifies all paths from clock pins of the registers in clock domain clkl to
data pins of a specific register in clock domain clk2 as false paths:

set_false_path -from [get_ports clkl] -to [get_cells reg_2]
The following example specifies all paths through the net UO/sigA as false:

set_false_path -through [get_nets UO/sigA]

set_input_delay
Defines the arrival time of an input relative to a clock.

Syntax

iCEcube2 User Guide www.latticesemi.com 96

http://www.latticesemi.com/

= LATTICE

set_input_delay delay_value -clock clock_ref input_port
Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal
is available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory
argument.

input_port

Provides one or more input ports in the current design to which delay_value is assigned. You can
also use the keyword “all_inputs” to include all input ports.

Example

The following example sets an input delay of 1.2 ns for port datal relative to the rising edge of
CLK1:

set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports
datal]

set_max_delay

Specifies the maximum delay for the timing paths.

Syntax

set_max_delay delay_value [-from port or cell] [-to port or cell]

Arguments

delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay
value for specified paths.

If the path ending point is on a sequential device, the tool includes library setup time in the
computed delay.

-from port or cell

Specifies the timing path start point. A valid timing start point is a clock, a primary input, a
combinational logic cell, or a sequential cell (clock pin).

-to port or cell

Specifies the timing path end point. A valid timing end point is a primary output, a combinational
logic cell, or a sequential cell (data pin).

Examples

The following example sets a maximum delay by constraining all paths from ffla:CLK to ff2e:D
with a delay less than 5 ns:

set_max_delay 5 -from [get_cells ffla] -to [get_cells ff2e]

set_multicycle_path

Defines a path that takes multiple clock cycles.

iCEcube2 User Guide www.latticesemi.com 97

http://www.latticesemi.com/

= LATTICE

Syntax

set_multicycle_path ncycles [-from net or cell] [-to net or cell]
Arguments

ncycles

Specifies a value that represents the number of cycles the data path must have for setup check.
The value is relative to the ending point clock and is defined as the delay required for arrival at
the ending point.

-from net or cell

Specifies the timing path start point. A valid timing start point is a sequential cell (clock pin) or a
clock net (signal). You can also use the keyword “all_registers” to include all registers’ clock
inputs.

-to net or cell

Specifies the timing path end point. A valid timing end point is a sequential cell (data-pin) or a
clock-net (signal). You can also use the keyword “all_registers” to include all registers’ data
inputs.

Example

The following example sets all paths between regl and reg2 to 3 cycles for setup check. Hold
check is measured at the previous edge of the clock at reg2.

set_multicycle_path 3 -from [get_cells regl] -to [get_cells
reg2]

set_output_delay

Defines the output delay of an output relative to a clock.

Syntax

set_output_delay delay_value -clock clock_ref output_port

Arguments

delay_value

Specifies the amount of time from a “clock_ref” to a primary “output_port.”

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory
argument.

output_port

Provides one or more (by wildcard) output ports in the current design to which delay_value is
assigned. You can also use the keyword “all_outputs” to include all output ports.

Example
The following example sets an output delay of 1.2 ns for all outputs relative to clki_c:

set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports
ouUT1]
set_output_delay 1.2 -clock [get_clocks cLK1] [all_outputs]

iCEcube2 User Guide www.latticesemi.com 98

http://www.latticesemi.com/

= LATTICE

Chapter 5 iCEcube2 Physical Implementation Tools

Overview

The iCEcube2 Physical Implementation software constitutes the second half of the iCE design
flow, and is used to implement the design on the iCE FPGA devices. The inputs to Physical
Implementation Tools are an EDIF netlist and SDC constraint files.

In addition, the software supports additional Timing Constraints in SDC format, as well as
Physical Constraints in PCF format, that can be passed directly to the Physical Implementation
tools.

The outputs are the device configuration files used to program the device, and Verilog/VHDL and
SDF files for timing simulation in an industry standard simulator.

In addition, the software also provides several powerful and useful back-end tools such as a
Timing Constraints Editor (SDC), a Floor Planner, a Pin Constraints Editor, a device Package
Viewer, a Power Estimator, and a Static Timing Analyzer.

Tools for Physical Implementation

In addition to the Placer and the Router, iCEcube2 provides the following tools to appropriately
constrain, analyze/verify the design and program the target device.

1. Timing Constraint Editor (TCE): This tool allows the user to specify timing constraints in the
SDC format, which can be used to constrain the Placer and Router. Additional details on
using TCE are provided in a subsequent chapter.

2. Timing Analysis: The Static Timing Analysis tool provides design performance analysis, to
help identify critical paths in the design. The usage of this tool is explained in subsequent
chapters.

3. Physical Constraints Editor / Floor Plan Viewer: This tool has a dual function: It allows the
user to create physical constraints after importing the design, which are honored by the
Placer. After the Placer has run, this tool allows the user to view the logic and pin placement
before final bitmap generation. At this stage of the design flow, it allows the user to modify the
placement of logic cells, 1/0 cells and RAM cells, before final routing.

4. Package View: This utility allows the user to view the pin assignments before final bitmap
generation. It also allows the user to modify the pin placement.

5. Pin Attributes Editor: This tool allows the user to view and configure pin properties, such as
pin location, the 1/0O standard and the optional pin Pull Up resistor.

6. Power Estimator: This utility assists users in estimating device power for a given design via
a spreadsheet listing the various utilized resources of the device, the estimated maximum
operating frequency, the core voltage etc.

7. Bitmap Generator: To support device programming, the iCEcube2 Physical Implementation
Tools include a utility for generating device configuration data, referred to as a bitmap.

8. Device Programmer: The iCEcube2 Physical Implementation Tools also include a utility for
programming the iCE FPGA device

iCEcube2 User Guide www.latticesemi.com 99

http://www.latticesemi.com/

= LATTICE

Placing and Routing the Design

Once the synthesized design is loaded into the iCEcube2 Physical Implementation software, the
next step is to place and route the design. The placement and routing process is started by
clicking on the Run Placer and Run Router icons respectively. Note that if the placer/router is yet
to be run, there is a green arrow next to the appropriate icon. Upon successful completion of the
operation, the green arrow changes into a green check mark.

Changing the Placer Options

The placer options can be changed by selecting Tool > Tool Options > Placer. The options are
shown in Figure 5-1.

1. Effort Level: Placer supports three effort levels for placement Optimization. Standard,
Medium and high.

2. Auto Lut Cascade: This option is “ON” by default and the placer cascades four input LUTs
via dedicated LUT output routing to implement larger logic functions in iCE40 Devices.

3. Auto Ram Cascade: This option is “ON” by default and the placer cascades the 4K RAM
Blocks to implement larger Block RAM in iCE40 Devices.

4. Power Driven: Enable this option to run the placer in power driven optimization mode.

5. Area Driven: Enable this option to pack for dense area. Default is for timing.

™ Tool Options P9
Synplify Pro | Flacer | Router Bitmap Floor Planner Text Editor ‘
Effort level: |standard - |
| Auto lut cascade
| Auto ram cascade
Power driven
[Area driven
0K Cancel

Figure 5-1: Placer Tool Options
Changing the Router Options

The router options can be changed by selecting Tool > Tool Options > Router. Note that all
changes to the options as shown in Figure 5-2 require the router to be rerun. The options are as
follows:

1. Timing Driven: The router algorithms try to honor the timing constraints specified by the
user.

iCEcube2 User Guide www.latticesemi.com 100

http://www.latticesemi.com/

= LATTICE

2. Pin Permutation: This option is ON by default, and aids the router in making intelligent
decisions when routing signals to the inputs of the Look-Up table Logic cell.

) Tool Options

Flacer R.ouker Bitrmap Floor Planner Text Editor

Invoke timing driven algorithms while routing
Permit pin permuktakion

o | [Comea]

Figure 5-2 : Router Options

Floor Planner

The device Floor Plan (Figure 5-3) can be viewed by selecting Tool > Floor Planner from the
Tool menu, by or clicking the Floor Planner icon in the Tools tree in the Project Name pane.

The subsequent details in this section pertain to the viewing capabilities of the Floor Planner.

The Floor Planner also allows the user to manually modify the placement of logic (Logic Cells and
RAM blocks) as well as I/0O pins. Additional details on the creation/application of Physical
Constraints are provided in Chapter 7 Physical Constraints in iCEcube2.

iCEcube2 User Guide www.latticesemi.com 101

http://www.latticesemi.com/

= LATTICE

View TJool Window Help

3 Q@lmg% v-Q

Floor Planner

g X
» I xnm_uart_topa_uart_rowr 1_data_reg 0_... »
» I Inst_uart_topa_uart_xmit_1_tx_data_reg_re...
» I uvart_data_ina_reg_ 4_ THRU_LUT4 0 [SB_L...
» I xnm_uart_topa_uart_control_1_wr_fifo_C4...
> I xnm_rt_topb_uart_control_1_wr_fifo_exp_...
> Inst_uart_topb_uart_xmit 1_C1 13 [SB_LU...
» I xnm_opa_uart_xmit_1_t«_data_reg_reg_6_...
> I Inst_uart_topb_uart_control_1_wr_fifo_C1_...
> i €112 bfv_26521_[SB_LUT4]
- xnm_rt_topa_uart_contrel 1_wr_fifo_exp 1.,
» I xnm_rt_topa_uart_control 1_rd fifo_exp 1.
» I Inst_uart_topb_uart_novr 1_C94_C1 3 [SB_...
» & Inst_uart_topa_uart_xmit_1_C95_C18_c2 [S...
» I xnm_rt_topa_uart_control_1_wr_fifo_exp_1...
» I xnm_art_nevr_1_r_data_reg_reg_h_data 0_..
» 4 Inst_uart_topb_uart_xmit_1_exp_10_C3_C5...
» 4 Inst_uart_topb_uart_revr 1_C1256_C10_c2 ...
» 4 Inst_uart_topa_uart_xmit_1_exp_10_C3_CL...
> I Inst_uart_topa_uart_nor 1_C94_MN63_THR...
» I Inst_uart_topa_uart_nor 1_C1279_C3_C8_..
> I uvart_data_inb_reg_3_THRU_LUT4 0 [SB_L...
» I Inst_uart_topb_uart_control_1_wr_fifo_C1_..
> g IN_MUK_bfv_26407_[SB_CARRY_IN_MUX]
N xnm_uart_topb_uart_centrol 1_rd fifo_C4...
N xnm_uart_topa_uart_control_1_rd_fifo_C4..
=N Inst_uart_topb_uart_xmit_1_C205_C7_c2 [S..
» I Inst_uart_topa_uart_nor_1_clk_ent_reg 8_ ...
=N xnm_rt_topb_uart_contrel_1_wr_fifo_exp_...
» I xnm_ontrol_1_write_fifo_data_in_reg_6_T...
» I Inst_uart_topa_uart_nor_1_sync_cnt_reg 0.
- IN_MUX_bfv_26393_ [SB_CARRY_IN_MUX]
> I Inst_uart_topb_uart_control_1_wr_fifo_C1_... -

World View

Figure 5-3 : The Floor Planner

Viewing the Device Floor Plan

The Floor Planner displays the placement of the netlist on the selected device, as shown in
Figure 5-4 with utilized resources depicted in green.

The 10 Tiles are depicted in grey, and are located along the periphery of the chip. Each 10 Tile
has two or three 10 Pin locations. Non-bonded I/Os, i.e. an 1/O cell that does not bond out to a pin
on the device package, is unusable. Such non-bonded 1/Os are depicted in a dark shade of grey.

The RAM block locations are depicted by the two brown columns, running vertically through the
Floor Plan. Utilized RAM blocks are depicted in green, and the corresponding RAM Tile in a dark
brown.

The Logic Tiles are depicted by the blue tiles, and contain eight rectangular blocks, each
signifying a Logic Cell (4-input LUT, a flip-flop, and Carry logic), and a small square in the bottom-
left corner of each tile, signifying the Carry-In from the Logic Tile directly below it.

iCEcube2 User Guide www.latticesemi.com 102

http://www.latticesemi.com/

= LATTICE

The layout of the cells follows an (X, Y, Z) co-ordinate numbering scheme, with the origin at the
bottom-left corner of the device. Mousing over the logic and 1/O tiles displays the location co-
ordinates of the tile as a two dimensional (X, Y) co-ordinate location. Since each 10 and Logic tile
has multiple 1/0O and logic cells respectively, the 10 and Logic cells within a tile are identified by
the Z co-ordinate, resulting in a (X, Y, Z) triplet that uniquely identifies each cell.

As mentioned above, the Logic Cell has multiple resources (LUT, flip-flop, Carry logic). It is
possible to view the utilized portions by performing a right-mouse-click > Show Content on a
selected Logic Cell, as displayed in Figure 5-4. This brings up a window that shows the portions
that have logic placed within. An example of a Logic Cell which contains a used LUT and flip-flop
but an unused Carry-In is displayed in Figure 5-5 below.

)
|
| ;
L] TMorve
Show Content
L Display Fan-in nets upon cell seleckion

Display Fan-ouk nets upon cell selection
Display Fan-in & Fan-out nets upon cell selaction

? Fin Permukation

Lock

Figure 5-4: Viewing the utilized portions of a Logic Cell

Figure 5-5: Example of the utilized portions of a Logic Cell

The View > Zoom In and View > Zoom Out menu items zoom in and out of the Floor Plan
respectively. Mousing over a cell or net also displays instance information for that cell or net.

A World View pane provides a view of the entire Floor Plan, and can be used to navigate the
floor plan when the Zoom In factor is high.

The placed Logic tiles in the Floor Planner have the following Color conventions. White color
represents an empty cell; Green color represents a placed cell. When you select a particular cell

iCEcube2 User Guide www.latticesemi.com 103

http://www.latticesemi.com/

= LATTICE

it would be highlighted in Yellow. A cell which was locked at a location would be highlighted in
green color with red checks. Also, a Lock symbol would be shown on the cell.

Navigating the Design Placement

Through the Floor Plan View, the user can trace the connectivity of an implemented design. This
can be achieved via a combination of the Logic/IO/RAM/Net pane and the Fan-in/Fan-out
functionality available for each used resource.

The Logic/IO/RAM/Net pane displays the used resources on the device. Selection of a node
within this pane highlights the corresponding cell/net in the Floor Plan view.

The right-button of the mouse brings up a context sensitive menu specific to the particular type of
resource selected. This menu allows the user to Search for specific nodes, or to Sort the listed
nodes. As an example, the menu for Logic Cells is displayed in Figure 5-6.

Qutput Flaor Planner
Logic 5 X

Logic Instance Instance Type Location e

Figure 5-6: Invoking the Sort and Search functionality in the Logic/IO/RAM/Net pane

HEHRE RN AR AR EEEE

¥

o+

) HuPedudn

o
$
$

Logic

GROUPO.GROUPDO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDO.COU...
GROUPO.GROUPOO.COU...
GROUPO.GROUPOO.COU....
GROUPO.GROUPO0O.COU...
GROUPO.GROUPO0D,COU..,
GROUPO.GROUPOD.COU...
GROUPO.GROUP0D.COU....
GROUPO.GROUPOO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDO.COU...
GROUPO.GROUPOOD.COU...
GROUPO.GROUPDD.COU...
GROUPO.GROUPOD.COU...
GROUPO.GROUPO0D.COU...
GROUPO.GROUPO0.COU...
GROUPO.GROUP0D.COU...

IN_MUX_bfv_3_9_0

GROUPO.GROLIPOO.COU...
GROUPO.GROUPOD,COU...
GROUPD.GROUPOO.COU...
GROUPO.GROUPO0.COU...
GROUPD.GROUPON.COU ..
GROUPO.GROUPO0.COU...
' GROUPO.GROUPOO,COU... 5B DFE
GPIO | Global | Ram

World View

SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4

SB_CARRY_IN...

SB_DFF
SB_CARRY
SB_LUT4
SB_DFF
SB_CARRY
SB_LUT4

A0 EEREREE O W0 W0 0 WD D D0 0 0 W0 D D 0D

WOLWWWOWEEEEMWWLWWOLWLOLWWWWWLW W

om0 00 PRI RO NARARELOOON NN

b e
R

3,102

Met

Group

Move

Lock
Pin Permutation

Sort By Name
Sort By Cell
Search ...
Copy Item Text

& X

Selecting the Sort by Name option sorts the Logic instances based on instance names as shown

below

iCEcube2 User Guide

www.latticesemi.com

104

http://www.latticesemi.com/

= LATTICE

Cukpuk Floor Flanner
Logic (=4
Logic Instance Instance Type | Locakion L
4 GROUPD,GROUPOL COUMTERDE.C_cry_c[7] SE_CARRY a, 17, 7
H 4 GROUPD,GROUPOL, COUNTERDG.Q_cry_c[&] SE_CARRY 9, 15,0
H - g GROUPD.GROUPDL, COUMTERDS.Q_cry_c[9] SE_CARRY 9,18, 1
#- I GROUPD.GROUPOL, COUMTERDE,Q_RMO[0] SE_LUT4 9,17, 0
+- L GROUPD,GROUPDL, COUNTERDS.Q_RMO[10] SE_LUT4 9,15, 2
+- I GROUPD.GROUPOL,COUNTERDG.Q_RMO[11] SE_LUTH 9,18, 3
+ I GROUPD.GROUPOLCOUNTERDG.Q_RMO[12] SE_LUT4 9,15, 4
+ L GROUPO.GROUPDL, COUNTERDG.Q_RMO[13] SE_LUT4 9,158, 5
+ I GROUPD.GROUPOL,COUNTERDG.Q_RMO[14] SE_LUT4 9,158, 6
+ L GROUPD.GROUPOL, COUNMTERDE.Q_RMO[15] SE_LUTH 9,15, 7
+ I GROUPD.GROUPOL,COUMTERDG.Q_RMO[1] SE_LUTH 9,17, 1
#- I GROUPOGROUPOL, COUMNTERDE.Q_RMNO[2] SE_LUT4 9,17, 2
#- I GROUPD.GROUPOL, COUMTERDE.G_RMO[3] SE_LUT4 9,17, 3
#- I GROUPOGROUPOL, COUMNTERDE,C_RMO[4] SE_LUT4 9, 17, 4
+- I GROUPD.GROUPOL, COUMTERDE. G_RMO[S] SE_LUT4 9,17, 5
#- I GROUPD.GROUPOL, COUMTERDE.Q_RMO[&] SE_LUT4 9,17, 6
#- I GROUPO,GROUPOL, COUMNTERDE . G_RMNO[7] SE_LUT4 9,17, 7
- T GROUPD.GROUPOL . COUMTERDG.G_RMO[E] SE_LUT4 9,18, 0
#- I GROUPOGROUPOL, COUMTERDE Q_RMO[2] SB_LUT4 9,18, 1
H I GROUPD.GROUPOL, COUMTERO?. QD] SE_DFF 9,19, 0
#- I GROUPOGROUPOL, COUMTERDZ, Q[10] SB_DFF 9,20, 2
+- T GROUPOGROUPOL, COUMTERDZ Q[11] SB_DFF 9, 20, 3
+H LT GROUPO.GROUPOL, COUNMTERDZ. Q12] SE_DFF 9, 20, 4
+- I GROUPOGROUPOL, COUMTERDZ, Q[13] SB_DFF 9,20, 5
#- LT GROUPD.GROUPDL, COUMTERDZ Q[14] SE_DFF 9, 20, &
#- I GROUPOGROUPOL, COUMTERDZ, Q[15] SB_DFF 9,20, 7
#- I GROUPO.GROUPOL, COUMTEROT. (1] SE_DFF 9,19, 1 ~
Logic GPIO Global RAM Met Group
whorld Visw 3 X

Figure 5-7: Sort by Name Option

Selecting Sort by Cell option sorts the panel display based on logic cell grouping as shown in
Figure 5-8.

Catpuk Floor Planner

Logic [

Logic Instance Instance Type Locakion fa
+ GROUPD, GROUPOL, COUNMTERDS, O _RMO[S] SE_LUT4 9,17, 5
GROUPD, GROUPOL, COUMNTERDE, Q[E] SBE_DFF 9,17, 6
GROUPO, GROUPOL . COUNTEROS. O _cry_c[6] SE_CARRY 9,17, 86
GROUPD, GROUPOL, COUNMTERDS, O _RMO[E] SE_LUT4 9,17, 86
GROUPD, GROUPOL, COUNMTERDS, Q[F] SBE_DFF 9,17, 7
GROUPO, GROUPOL, COUNMTERDS. O _cry_c[7] SBE_CARRY 9,17, 7
GROUPD, GROUPOL, COUNMTERDS, Q_RMO[F] SE_LUT4 9,17, 7
IM_MUE_bfv_9_17_0_ SE_CARRY_IM... 9,17, 8
GROUPD, GROUPOL, COUNMTERDS, O[] SBE_DFF 9,18, 0
GROUPO, GROUPOL, COUNMTERDS. O _cry_c[8] SBE_CARRY 9,18, 0
9,15, 0

GROUPD. GROUPOL . COUMTERDG . O _RMO[E] SE_LUT+

BB -B-E-E-E-E-E-E-E-E-E-E-E-EHE

JueItePtBrositiedte)tie

GROUFO1L =

1
1

GROUPO. GROUPOL . COUNMTERDS . [10] SE_DFF a, 18, 2

GROUPO, SROUPOL, COUNTERDS . C_cry_c[10] SE_CARRY a, 18, 2

GROUPO. SROUPOL, COUNTERDS . Q_RMO[10] SE_LUT4 a, 18, 2

GROUPO, GROUPOL . COUNMTERDS . [11] SE_DFF a, 18, 3

GROUPO, GROUPOL, COUMTERDG. O _cry_c[11] SE_CARRY 9,18, 3

GROUPO, GROUPOL . COUMTERDG, _RMO[11] SE_LUTH 9,18, 3

GROUPO, GROUPOL. COUMTEROG [12] SE_DFF 9,18, 4

GROUPO, GROUPOL, COUMTERDG. Q_cry_c[12] SE_CARRY 9,18, 4 e

Logic SPIC Global Ruara et Group

Figure 5-8: Sort by Cell Option

Select Lock option to fix the instance location in the floor planner view.

Selecting the Search menu item brings up the user interface displayed in Figure 5-9. Note that
the same dialog box can also be invoked from the Edit > Search menu item.

The type of design node (Logic, Net, 10, RAM, Port) should be specified, in order to filter the
search process. In addition, a search pattern with wildcards (*,?) to match the required node

iCEcube2 User Guide www.latticesemi.com 105

http://www.latticesemi.com/

= LATTICE

names, can be specified. Clicking on the Search Button identifies and lists the nodes whose
names match the search pattern, for the specified node type.

When a node from the Search Results window is selected, it is highlighted in the corresponding
tab of the Logic/IO/RAM/Net pane, as well as in the Floor Plan view.

Search Options

Search design for type: |Logic

Using search pattern: *mux®*ROM*C15_727

Case sensitive

Search results:

muw_if out ROM_0 ROM blk_muc 0 C16 10
muw_if out ROM_0_ROM_blk_mue 0 C16 1

Figure 5-9: Search Functionality in the Floor Planner

A Right-Mouse-Click on the selected node in the Floor Plan View invokes a menu that allows
the user to display the nets connected to the node. This menu can be invoked for Logic Cells,
Block RAM and 10 Cells. The resulting menu for a Block RAM cell is displayed in Figure 5-10.

iCEcube2 User Guide www.latticesemi.com 106

http://www.latticesemi.com/

= LATTICE

| | | |
]]]]
]]]]
]]]]
] —] —]]

[] [| [| | [] |

]]]]]]

]]]] E

Move —

]

Display fan-in nets -

Display fan-out nets —

Display fan-in & fan-out nets

]]]]

]]]] [|

]]]]]

]]] E E

| |

[|] | [|]

]]]]]

] —] —]] |]

[] [| [| [] [] []

]]]]]]

]]]]]]

L IRl B EE EE

Figure 5-10: Invoking the Move and Net Tracing Capability in the Floor Planner

The user now has the option to selectively display the nets connected to a cell. For example,
selecting the Display fan-in nets menu item displays only the nets that drive the node, i.e. the
fan-in nets. Similarly, if the user wishes to display only the nets that are driven by the selected
node, the Display fan-out nets menu item should be selected. Both, fan-in and fan-out nets, can
be displayed simultaneously, by selecting the Display fan-in & fan-out nets menu item.

As an example, both fan-in and fan-out nets of a Block RAM cell are shown in Figure 5-11. It
should be noted that the fan-in nets connect to the left side of the driven cell, and are depicted in
light yellow. Fan-out nets connect to the right side of the driver cell, and are depicted in dark pink.
Using fan-in and fan-out nets, the user can traverse the design from cell to cell, and make
appropriate decisions about modifying the placement manually.

SannnEme
([T LqF

Figure 5-11: Fan-in and Fan-out Nets displayed in Floor Plan

Note that by default, the fan-in and fan-out nets are displayed whenever a cell is selected. This
setting can be changed by disabling it in the Tool > Tool Options > Floor Planner tab, as
displayed in Figure 5-12 below.

iCEcube2 User Guide www.latticesemi.com 107

http://www.latticesemi.com/

= LATTICE
[Tool Options =

| Placer I Router Bitmap Floor Planner | Text Editor

Show fan-in nets after a cell is selected
Show fan-out nets after a cell is selected

0K Cancel

Figure 5-12: Floor Planner Options

Package View

The Package View tool (Figure 5-13) displays a pin map of the implemented design in the
targeted package, and allows the user to change Pin properties such as Location and IO
Standard. Note that these properties can also be modified from the Floor Planner and the Pin
Constraints Editor.

A Port pane is available and it permits the user to select a design pin, and highlight it in the
package view.

A World View pane provides a view of the entire package, and can be used to navigate the
package view when the Zoom In factor is high.

Mousing over a pin in the package view provides information on its usage, whether the pin is
available, the pin number and the pin name.

The package pins assigned to the user’s design ports are depicted in green, and in general can
be re-assigned to different locations.

iCEcube2 User Guide www.latticesemi.com 108

http://www.latticesemi.com/

= LATTICE

{41 SiliconBlue iCEcube - Version 2008

' File Edit View Tool Window Help
|i._J D N @l 00.92% ’@l @
Project Name: dpem_debug B x | Package View
4 Design Flow Port & %
& Route » mucell1:0] B . o o i T
o Bitmap 4 fudat(3:0] — 5 6 7 8 9 10 i1 12 13 14 15 16 19 20 21 22
4 Tools > 3 fudat(0] ..'.'.
& Clock Constraints Editor > T fudatfl]
& Pin Constraints Editor - T fudat[2]
& Floor Planner I’ = F;Eat[}] B
) Package View Imemin(7.0]
. + Imemout(7:0]
E Power Estimator L {7:0]
& Programmer s u[70]
> di[7:0] E
> yl7:0]
> B ulat
> B irst
> T ylat
> B calcen i
World View 8 x B
Files & X O
4 Input Files - O
dpcm_bfpga.edf e
dpem_bfpga.pcf I O
Constraint Files EEmmC O
4 Output Files . i oﬁ'}' oo e @]
a Dac:;ar . = q :ﬁ E: o O
pcm_info.log = -
dpem_sbt.mtcl Sl - A
. o AR
4 router waC Galas
dpcm.route : ___.,1 48
dpcm.rt_log i s . 12 3 4 5 & 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
dpem_rt_usage.log -
4 bitmap = czBsL04-Co20t .
dpcm_bitmap bin iCEB5L04 - CB284
dpem_bitmap.hex
dpcm_bitmap_inthex -

Figure 5-13 : Package View

The Package Pin Legend (Figure 5-14) shows the color coding of the various pins available on
the selected package, identifying the functions of the pins. For example: power (VCC, VCCIO,
GND, VPP/VDDP, VREF), user 10, and other special purpose pins which provide access to the
low-skew global network (GBIN).

Package PinLegend I o3
9]

SPLSIL/SPI_S0/SPT_SCK/SPI_55 B

B vcc

B vcco

[] CDOMNE/CRESET_B

[VPP/VDDP

I VREF

W TCK/TDITDO/TMS/TRST_B

Figure 5-14: Package Pin Legend

Editing Pin Properties

Modifying a pin’s placement is accomplished either by clicking the pin and dragging it to a desired
empty location, or by invoking the Pin Constraints dialog box (Figure 5-15) using the Right-

iCEcube2 User Guide www.latticesemi.com 109

http://www.latticesemi.com/

= LATTICE

Mouse-Click>Edit Pin Constraint. In addition to its location, the pin’s IO standard and Pull Up
resistor can also be configured from this dialog.

PortMame: Imemout_7

Pin Location: ['u'll

I0 Standard: |SB_LVCMOS

Pull Up: [Nu

Figure 5-15: The Pin Constraints dialog box invoked from the Package View

Undesired pin location changes can be reverted back to their initial state using the Edit > Undo
menu.

Once all changes are complete, the new pinout can be saved by clicking File > Save Package
View from the main menu.

Note: Any changes to the package pin assignment will require the router to be rerun.

Pin Constraints Editor

The Pin Constraints Editor (Figure 5-16) provides a table of all the pins in the design and their
attributes. The Editor allows the user to modify the location of the pin, assign an 10 Standard,
specify Load Capacitance on output pads, and set a Pull Up resistor.

In order to modify a cell value, click on the cell and select a value from the drop down box. The
drop-down selection for each cell presents only the relevant pin properties i.e. only those
destination pins that match the properties of the selected pin. Similarly, in the IO Standards
column, only the IO standards that are valid for the pin are available for selection. The same is
true for the Pull Up resistor column.

Once all changes are complete, the new pin-out can be saved by clicking File > Save Pin
Constraints Editor from the main menu.

Load Capacitance Entry: Pin Constraints Editor also allows specifying the output load
capacitance for output pads. The default value for load capacitance is 10pf (not displayed
explicitly in the cells) and the new desired value can be entered in the corresponding cells. The
capacitance values are used by Power Estimator and Static Timing Analysis tool to calculate
the power consumptions and paths delays based on output loads.

Once the router is run, a report file for the 1/O pins is generated. This file is named
<project> pin_table.CSV (Comma delimited text file), is located in the
<project_directory>/<project>_Impl/sbt/outputs/packer directory.

iCEcube2 User Guide www.latticesemi.com 110

http://www.latticesemi.com/

= LATTICE

) iliconBlue CEcube? - [Output] - [Pin Constraints Editor]

W Fle Edt View Tod Wndow Hep =l
J 10| e % " L}, ’ .
) V.0 Q‘-ﬁ B el B %) Load Capacfcance Entry
Project Name: quick_start 8 x Output I‘
= Project Objec Lit Tipe Pnloaton | Bk | 105tandad Pl Up
New Praject 1
Opganng[1 PMOD_BTUH].] Output Fs Left le
Close Project l
& Synifesis Too 2 PMoD BT _1342] Output £2 Left |
o Add Synthesis Files "‘
2 Desiy Fils 3 PMOD_BAT_J34(3) Output) Left '.
bliky yhd ‘.
p |
i Corsiabt Flks 4 PMOD BT J35(4] Output Dl Left ‘.
o Launch Synthesis Tool 5 o B 1] oupt Gl Lef "
= PRR Flow |
= of Select Implementabon(guick start Implrrt) 16 pwoo_ear_vuf2) ot @ Left ;
quick_start.edf |
Quick startsef 7 PHOD_ R JaN(3] oupt I Left |
4 Add PAR Files ¥
Run &l 8 PHOD_E2R_I(4] Output [Top SBLYCHOS e il
o Tmpart FAR Input Files
o RunPlcer 9 PMOD_BIR_IH1) Output % Left
Run Router
b (enerate Bltmep 10 PMOD}URJH?} ClIlDUt R I.Eh
=l Fil
ci”g;:mf 11 FMOD_BOR_)13(3) Output R Bottom 5B_LYCMOS e 1}
Bimap
P 4 4
St et 2 PHOD_BOR_)13(4) Output) Left
= DavicefOperating Condition 13 P00 638 751 ot @ it
& Device Info T

Figure 5-16: Pin Constraints Editor

Power Estimator

The iCEcube2 Tool Suite includes a utility for estimating device power consumption for a given

design. The Power Estimator (Figure 5-17) can be invoked by selecting Tools > Power Estimator
from the main menu.

The utility includes a listing of utilized device resources and power dissipated at the estimated
maximum operating frequency. The user can modify several design parameters to analyze their

impact on power consumption. These parameters can be modified on the various tabs of the
Power Estimator GUI.

The Summary tab displayed in Figure 5-17 below allows the specification of the following
operational parameters for the purpose of power calculation only. Note that the operating
conditions specified earlier for Timing Analysis are not impacted by changes to the Power
Estimation parameters.

Core Vdd: The voltage at which the core of the chip operates, in Volts.
¢ 10 Voltage: The voltage at which the 10 cells operate, in Volts. This can be specified
individually per bank.

Process: The process corner selection for power calculations.

Temperature: The temperature at which the chip operates, in degree Celsius. The
operating temperature can vary from -40°C to 100°C.

iCEcube2 User Guide www.latticesemi.com

111

http://www.latticesemi.com/

= LATTICE

Clicking on Calculate computes the estimated power dissipation and displays the results under
Dynamic Power Breakdown and Power Consumption.

Clicking Reset resets the values to the initial power estimates, and also resets all the changes
back to their default values.

 Power Estimator

SuUmmary | L] Clock Domnain

Core vdd(Y): Crenamic Power Breakdown
10 violkage Core Power(mi): |2.21476 |
Left Bank IO Vokage(¥): |2.5 - 10 Power(mit); |4.25 |

Right Banik 10 Woltage(¥): Power Consumption

Static Power(mi) |D.395534 |

Top Bank 10 Woltage(W): (2.5 w

Drynianiic Pawmer i |6.464?6 |

Bottom Bank 10 Yolkage(v): |25 w
Total Power(mW): |6,86022 |

Process: |Typical v Temperature(®C): | 25,00 5

To determine the iCE40 peak start-up current data, refer ko the datashest,

[Calculate H Close

Figure 5-17 : Power Estimator - Summary Tab

The 10 tab displayed in Figure 5-18 permits the user to specify the toggle rate for the design’s
input and output ports, as well as loading capacitance for output pins.

' Power Estimator

SuMmmary |T| Clack Damain
10 Port Mame Switching Frequency (MHz) | Output-Pin Load Capacitance (pF) &
1 PMOD_B3B_138(3] 4.00 10,00 3
2 PMOD_B3E_138[1] 4.00 30,01
3 PMOD B2L_J31[3] | 33.33 _
4 PMOD_BZR_IZ0[1] 3333 10,00
5 PMOD_B3T_139(Z] 4.00 10,00
& PMOD_BZL_131[4] 4.00 10,00
v
[Caloulate H Close

Figure 5-18: Power Estimator — 10 Tab

iCEcube2 User Guide www.latticesemi.com 112

http://www.latticesemi.com/

= LATTICE

0 Power Estimator @@

Surmary | [0 | Clock Domain

Clack. Clock Frequency (MHz) & of 5eq, LCs 9eq, LCs Swikching Frequency (MHz) # of Comb, LCs Comb, LCs Swikching Frequency (MHZ)

1 SCLK_SZKhz 1 9 0.06 1 0.06

clock_divider_1Hz|
COUNTER,_jnferred_clock[9]
clock_divider_320Hz|
COUMNTER inferred_clock[27]

Z Lo 9 0.06 1 0.0
100 9 0.06 0 0.0

¢ CLK_32he 3200 & 2 i 2m

Reset Al

Figure 5-19: Power Estimator — Clock Domain Frequency Specification

The Clock Domain tab allows the user to specify the clock frequency in MHz as shown in Figure
5-19. Note that changing this frequency adjusts the operating frequency of the individual logic
resources like the 10 Cells, LUTS, Flip-Flops and Block RAMs (BRAM), as per the built-in toggle
rate estimates. In addition, the switching frequencies of the Sequential Logic Cells (Logic cell in
which the flip-flop is utilized), as well as the Combinational Logic Cells (Logic cell in which only
the LUT is utilized), can be specified, on a per domain basis.

The user can save the current session’s input data while closing the Power Estimator. Next time
when the Power Estimator is open, the previous session’s input data are populated automatically.

Generating a Bitmap

After routing is complete, the last step in the flow is to generate the configuration files (bitmap) for
programming the target device. Clicking the Bitmap icon in the Flow tab generates the bitmap.

Changing the Bitmap Options
The user can change the Bitmap options by selecting Tool > Tool Options > Bitmap. See Figure
5-20.

1. SPI Flash Mode Options: Checking the option will place the PROM in low power mode after
configuration. (Note: This option is applicable only when the iICE FPGA is used as SPI
master mode for configuration)

2. RAM4K Initialization Option: The device configuration files will not include RAM4K
initialization pattern when this option is unchecked.

3. Internal Oscillator Frequency Range: Depending on the speed of the external PROM, this
option adjusts the frequency of the internal oscillator used by the iICE FPGA during
configuration (Note: This is only applicable when the iCE FPGA is used in SPI master mode
for configuration)

iCEcube2 User Guide www.latticesemi.com 113

http://www.latticesemi.com/

= LATTICE

4. Other

a. Enable Warm Boot: This option enables the Warm Boot functionality, provided
the design contains an instance of the SB_WARMBOOT primitive, and the
Multiple Image Files are specified as explained in the section Programming the
Device.

b. Set security: Selecting this option ensures that the contents of the Non Volatile
Configuration Memory (NVCM) are secure and the configuration data cannot be
read out of the device.

c. Set all unused IO no pullup: Selecting this option removes the pullup on the
unused I0s (except Bank 3 10s which do not have pullup)

W Tool Options l —]

| Placer | Router Bitmap Floor Planner Text Editor

SPI Flash Mode Options

In 5PI Flash mode, place PROM in low-power mode after configuration

RAM4K, Initialization Options
Initialize RAM4K blocks with contents specdified in the design or to '0' if unspecified
Select the quadants for RAM4K initizlization
RAM4Ks in Quadrant O
RAME in Quadrant 1
RAMKE in Quadrant 2

RAME in Quadrant 3

Internal Osdllator Frequency Range

[Iuw -

Other
Enable warm boot

|:| Set security
[] set all unused 10 no pullup

o o]

Figure 5-20 : Bitmap Options

iCEcube2 User Guide www.latticesemi.com 114

http://www.latticesemi.com/

= LATTICE

Programming the Device

Standalone Lattice Diamond programmer is the device programmer required to program iCE
devices.

Diamond Programmer

Diamond programmer is fully integrated into Lattice Diamond software and also available as a
standalone application. When Diamond programmer is run within the Diamond GUI, it can be only
used to program devices supported by Diamond Software. When Diamond Programmer is run
standalone it can be used to program iCE devices.

Download and install the latest standalone programmer from http://www.latticesemi.com/ispvm.

Launch the standalone programmer to program iCE devices. The following options are available
in the getting started Dialog box as shown in Figure 5-21.

B .
¢l Diamond Programmer - Getting Started @]ﬁ

Select an Action

@ Create a new project from a scan

Cable: [HW-USBN—ZA = | Port: [EZUSB-O 'J | Detect Cable

" Create a new blank project

) Open an existing programmer project

Figure 5-21: Diamond Programmer — Getting started Window.

e Create a new project from a scan: Use this option to create a project based on
scanning of the attached programming cable. Select the cable type, port and click on
detect cable button to create a new configuration project.

e Create a new blank project: Create a new blank project.

e Open an existing programmer project: Open an existing configuration project (.xcf)
file.

The following figure shows the programmer main windows. Main window shows the cable
settings, selected device and the programming mode options.

iCEcube2 User Guide www.latticesemi.com 115

http://www.latticesemi.com/
http://www.latticesemi.com/ispvm

= LATTICE

T Y
4.} Diamond Programmer - Untitled * l (o B
File Edit View Design Help
oY pe J &0 o T vl
o Ed 8 s o5 B
Status Device Family "y " Operation -
] \ Cable Settings
1 iCE40 A) Fast Program
A\, # Detect Cable
—{ Cable: HW-USBN-2A] |=
3
& -
g| Customport
‘ B| 1osettings
|2
i g @ Use default I/O settings
E ") Use custom I/O settings
INITN pin ted
{
DONEp ed
< il v SN / =
lloutput Warning 8 X
Lattice VM Drivers detected (HW-DLN-3C (Paralle])) D Message
|| Programmer device database loaded
|| INFO - Scanning USB Port E2USB-D...
£
| output | Td Console Info* | Waming | Error*

Figure 5-22 : Programmer Main Window

Click on Device Family tab and select the device family. Similarly select the target device.

There are three programming modes available to configure iCE40 devices. Click on Operation tab

in the main window or select Edit -> Device Properties to select the configuration mode.

[L% - . - @ g N
{..} iCE40 - iCE40HX1K - Device Properties M {.} iCE40 - ICE40HX1K - Device Properties M
General | Device i ‘ General | Device Informati \
Device Operation /‘\ Device Operation
Access mode: i Access mode:
! ogramming
Operation: NVCM Programming Mode Operation:
SPI Flash Programming
Programming Options 5 Programming Options
Programming file: E] Programming file:
Device Options Device Options
[7] Reinitialize part on program error [Reinitialize part on program error
o) (e]

& J

Access Mode:

Figure 5-23 : Device Programming Modes

CRAM Programming: Configuration Random Access Memory (CRAM) configuration is
accomplished by directly loading the iCE40 CRAM over the SPI bus. This flow use the iCEcube2
generated .hex, .bin files for programming the device.

NVCM Programming Mode: NCVM programming involves transmitting programming data over
the SPI bus to the NVCM array internal to the iCE40 device. The NVCM is one-time
programmable (OTP). This flow uses the .nvcm file.

SPI Flash Programming: iCE40 device is configured using an external SPI Flash device. In this

flow, the iICE40 device acts as the SPI bus master and will therefore control the data flow from the

iCEcube2 User Guide www.latticesemi.com 116

http://www.latticesemi.com/

= LATTICE

configuration device. This flow use the iCEcube2 generated .hex, .bin files for programming the

device.

Operation:

Each programming mode has various operation modes to erase, program and verify. Refer Help
-> Programming the FPGA -> Programmer Options -> Device Properties Dialog Box for the

supported operation modes.

Click on the program icon or select Design->Program to start program the device. The output

window displays the status of programming.

[E=E)

{.} Diamond Programmer *

File Edit View Design Help

-

Enable Status Device Famlly Operation £
Prcgram Cable Settings
A E—
Detect Cable F

Cable: HW-USBN-2A hA

&

i

@

2| Port: E2USB-0 v

E

g Custom port:

3

8

o 1/0 Settings

© Use default 1/O settings
I G Use custom I/0 settings M

Output Info & X
Lattice VM Drivers detected (HW-DLN-3C (Parallel)) D Message

Programmer device database loaded .
INFO - Scanring USB Port E2USB-0... 312002 INFO - Scanning USB Port EzUSB-0.
i

Output | Td Console Info | Waming | Error

Figure 5-24 : Program the device.

For more information on iCE40 Programming, refer Standalone Diamond programmer Help ->
Programming the FPGA > Programming and Configuring iCE40 Devices with Programmer.

Memory Initializer

iCEcube2 provides a command line utility to initialize the block memory primitives (BRAM) in the
design after placement and routing. The memory initialize utility directly updates the memory
contents in the post route OA database. This feature allows the user to initialize a single or
multiple memory contents without re-implementing the design. The post route simulation netlist
can be regenerated through Tools ->Generate Simulation Netlist menu item for functional
verifications.

Dos Command

<<icecube2_install_dir>>\sbt_backend\bin\win32\opt\mem
initializer.exe --des-1ib <design_OA_database> --mem-
Tist-file <mem-1list-file-name>

iCEcube2 User Guide www.latticesemi.com 117

http://www.latticesemi.com/
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/programmer_options.htm%231367177
file:///C:/lscc/Programmer/3.2/docs/webhelp/eng/Device%20Programming/about_programmer.htm

= LATTICE

Bash Command

export LD_LIBRARY_PATH =
<<icecube2_install_dir>>/sbt_backend/Tib/Tinux/opt/:
$LD_LIBRARY_PATH
<<icecube2_install_dir>>/sbt_backend/bin/1inux/opt/mem
initializer --des-1ib <design_OA_database> --mem-1ist-
file <mem-1list-file-name>

Options:
--des-lib <design_OA_database> : Specify the designh OA database (oadb-XXXX).

--meme-list-file <meme-list-file-name> : File specifying the post-synthesis logical BRAM name or
the post-routed physical BRAM instance name and the
associated memory initialization file.

Memory list file Format: Memory list file is a text file which specifies the post-synthesis logical
BRAM instance name or the post-routed physical BRAM instance name as in the post route
simulation netlist and the associated memory initialization file. The format of the file is shown
below

Format: < BRAM logical/physical Instance name> <mem init file>

Example: sample_mem.list

memory0 raml.mem
memoryl ram2.mem
memory2_physical ram3.mem

The floor planner view shows the post synthesis BRAM logical instance names.

iCEcube2 User Guide www.latticesemi.com 118

http://www.latticesemi.com/

= LATTICE

W Fle Edit View Tood Window Help

D)o« &

Project Name: mem nit_Instance

EERRC

B} Poject RAM 8 X
-~ New Pmoject

~Open Project Logic Instance Instance Type | Location

- Chse Pmoject imemory3 i SB_RAM40_4K 8,230

[=}- Synthesis Tool N} memory2 SB_RAM40_4K 8 21,0
- Add Synthesis Files i memonyl SB_RAM4O4K 8,190

[} Design Files T memon0 SB_RAM40_4K 817,0
{0 b mmlBK_1KX16.v
- Constraint Files

- of Run Lattice LSE Synthesis

[+ Reports

£} P&R Flow

[o Select Implementation(meminit_lnsta...

i meminit_Instance.edf

‘o meminit_Instance.scf

[+ Add P&R Files

~ Run P&R

e J Import P&R Input Files

- o Run Placer

HEEE

s Generate Bitmap
[=]- Output Files
[Reports

Lo Bif -
2} s:n"flzmn Netlist Loge 0) Sicniel | AN SN e

(o T VUSSP NSRS Sy SR TS

Figure 5-25 : Floor Planner view — BRAM logical instances

Memory initialization file Format (.mem) :

A memory initialization file (.mem) is an ASCII text file that contains memory initialization data in
hex format.

Data

The address and data must be in Hex (hexadecimal) Format. Each line consists of an address
followed by a colon and then any number of data words, separated by spaces. If the specified
address contains multiple data words, the data initialization starts at specified <address> and the
initialization continue for the next immediate sequential addresses till the last data word. If the
data has fewer bits than the expected data width then the most significant bits are filled with O.
Any address not specified in the .mem file will be filled with 0. Use pound sign (#) in the .mem file
to add comments or block an address for memory initialization.

Format : <address> :< data> <data> <data>...

Example: memory256x16.mem

A0:0003 O0F3 003E 004F
B2:3B 9F
#Set address B3 to “0”.

#B3:FF

iCEcube2 User Guide www.latticesemi.com 119

http://www.latticesemi.com/

= LATTICE

This initialize the address A0 with 0003, Al with O0F3, A2 with 003E, A3 with 004F, B2 with
003B, and B3 with 009F. Address B3 is not parsed and initialized to 0. The other addresses not
specified in the .mem file are initialized to 0.

Simulating the Routed Design

Once the design is routed successfully, the iCEcube2 Physical Implementation Software
generates post route Verilog and VHDL models and SDF files in the
<project_dir>/<project_name>_Impl/sbt/outputs/simulation_netlist directory.

Verilog Simulation

The post-route files used for Verilog timing simulation are as follows:
Post-Route Verilog netlist : <top_level_design_name>_sbt.v
Verilog SDF Timing file : <top_level_design_name>_sbt.sdf

The iCEcube2 software provides Verilog simulation libraries at the following location:
<iCEcube2_installation_directory>/Verilog

Using the above files, the design can be simulated in the Mentor ModelSim simulator or simulated
in an industry standard Verilog simulator, and verified for functionality and timing.

VHDL Simulation

The post-route files used for VHDL timing simulation are as follows:
Post-Route VHDL netlist: <top_level_design_name>_sbt.vhd
VHDL SDF Timing file : <top_level_design_name>_sbht_vital.sdf

The iCEcube?2 software provides VHDL simulation libraries at the following location:
<iCEcube2_installation_directory>/VHDL

Using the above files, the design can be simulated in the Mentor ModelSim simulator or simulated
in an industry standard VHDL simulator, and verified for functionality and timing.

iCEcube2 User Guide www.latticesemi.com 120

http://www.latticesemi.com/

= LATTICE

Chapter 6 Timing Constraints and Static Timing Analysis

Overview

The iCEcube2 Static Timing Analysis (STA) software is useful for analyzing, verifying and
debugging the timing performances of your design. Static Timing analysis along with functional
verification allows you to verify the overall design operation.

The STA tool accepts timing constraints in Synopsys Design Constraints (SDC) format. The SDC
constraints can be forward annotated by Synplify Pro or LSE. In LSE, SDC constraints are
forward annotated in all Optimization Goal settings except for “Area”. SDC constraints can also
be specified separately by the user through the Timing Constraints Editor (TCE).

This chapter focuses on the following aspects:

e Specifying Timing Constraints using the Timing Constraints Editor (TCE)
e Analyzing Reports generated by STA

Specifying Constraints Using the Timing Constraints Editor (TCE)

The Timing Constraints Editor can be invoked by clicking Tool > Timing Constraints Editor.
This launches a spread sheet type editor for specifying timing constraints in the SDC format.

© SiliconBlue iCEcube? - [Output] - [untitled? .sdc] FEX
- 8 x

W Fie view Tood Window Heb
= oo . = omp 1
U & a2 & g O =
Project Name: create_generated_.. & X . ouput untitiedi sdt
s =%
= Propct Enabled “Source e Period(ns) Waveform(ns)
New Project N, .
Open Project N (]
Close Project
= Synthesis Tool N
= &dd Synthesis Files ‘\
Design Files .
= Constraint Files ™
oreate_genclk_syns... N
o Launch Synthesis Tool N, -
S PAR Flow Save Constraints
= o Select Implementation(. . AN

[N

Cbnstraint Editor

create_generated_clock...
create_generated_clock...
% Add PER Filkes
Run All AN
jmﬁf'“m“ Open New Constraint File
o Run Router
> Generate Bitmap
= Output Filss
Reports
Bitrnap
Sirmulation Netlist
= Device/Operating Condition
= Device Info
DeviceFamily [
Device L.
Device Package C..
Power Grade
= Operating Condition
Core Voltage(V) .
Temperatre(C) 70 ConstraintSelector

Clock. Generated Clock Source Clock Latency Input Dekay Output Dedary Max-delay False Path Muki-cycle

Figure 6-1: Timing Constraints Editor

The user can select the type of constraint in Constraint Selector tab as displayed in Figure 6-1.
When invalid constraints are specified, the TCE editor displays them in RED color and does not
forward annotate the constraints to the Placer/Router/STA tools.

iCEcube2 User Guide www.latticesemi.com 121

http://www.latticesemi.com/

= LATTICE

Searching for Pins/Ports in the design

The Timing Constraints Editor provides the ability to specify the design object patterns using
wildcards or to search for design objects to which constraints are be applied.

Right-click on the appropriate field in TCE displays the option to ‘Search Design’, as displayed in
Figure 6-2

,

W File View Tool Window Help

D THEBESCR P

Project Name: test_accum g X untitledd,sdc* |

— | & %
I

4 Project Flow .
4 Specify Synthesis Input Files
> Design Files
Constraint Files
& Launch Synthesis Tool
4 P&R Input Files
4 of Select Implementation (. |
test_accum.edf

Enabled Sourc Search Design Pericd(ns) Waveformins)

1 ¥
2\

Add Row

m

Delete Row

test_accum.sef
> Specify Additional Files
«” Import P&R Input Files
«” Run Placer
<’ Run Router
«” Generate Bitmap + || Clock Generated Clock I Input Delay I Output Delay I Max-delay Falze Path I Multi-cycle

! i

Figure 6-2: Searching for objects in the design

Selecting this option opens a new window where the user can search pin/clock/cell pin names as
shown in Figure 6-3. The user can also use the “*” and “?” wildcards in the search pattern fields to
search for a specific pin/clock/cell pins.

) Search Design @

Search Options
Search design For bype: |Cell Fin v| Filters: in
out
Using se-arch pattern: |C1_10,|’ID | [] case sensitive inout
other
Search results: Selected to add:
C1_1010 =
<
<

’ Add ” Cancel]

Figure 6-3: Searching for object names to constrain

iCEcube2 User Guide www.latticesemi.com 122

http://www.latticesemi.com/

= LATTICE

SDC Constraints in TCE

Clock Constraints

To enter clock constraints, select the Clock tab in the Timing Constraints Editor GUI. The
following fields are displayed under the Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Enter the pin name or the port name for the clock in the Source field. The port or pin
name can be selected from the drop-down box. Alternately, the user can search for
ports/cell pins by using the search option. Right-clicking in source field gives the option of
searching ports/cell pins, as shown in Figure 6-2.

Name: Enter the name for the clock in the Name field. This is an optional field.
Period: Enter the period in ns, for the clock in Period field.

Waveform: Duty cycle for the clock can be specified in the Waveform field, with rising and falling
time edges of the clock.

For example, when a clock is specified as displayed in Figure 6-4, the following SDC command is
generated:

Timing_Constraints

Enabled Source Mame Periodins) Waveformins)

1 clock. vy _clk 10

z O

Figure 6-4: Specifying a Clock Constraint

create_clock —name my_clk —period 10.00 —waveform {0 3} [get_ports {clock}]

Generated Clock Constraints

To enter generated clock constraints, select the Generated Clock tab in the Timing Constraints
Editor GUI. The following fields are displayed under the Generated Clock tab.

Enabled: Use the Enable tab to enable or disable the constraint.

Source: Specify the port or pin name from which the clock is derived

Ref Clock Pin: Specify the generated clock pin name

Name: Enter the name of the generated clock in Name tab which is optional.

Select the option Divide by or multiply by or invert options and duty cycle according to constraint.

For example, when a generated clock is specified as displayed in Figure 6-5, the following SDC
command is generated:

create_generated_clock [get_pins {divby2clk_inst.SB_DFFSR_inst/Q}] —hame divbyclk —source [get_ports
{clk_i}] -divide_by 2

iCEcube2 User Guide www.latticesemi.com 123

http://www.latticesemi.com/

= LATTICE

c.<] timingconstraints.sdc
5 a Enabled Source Ref Clock Pin Name Drvide By Wakiply By Duty Cyde Invert
c 1 divby2clk_inst.5B_DFFSR _inst/Q) k. divbyck 2 |

k 2 D

Figure 6-5: Generated Clock Constraint

Source Clock Latency Constraints

To create source clock latency constraints, select the Source Clock latency tab of the TCE GUI.
The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.
Latency: Enter the source clock latency value.
Objects: Specify the clock source or the clock hame.

For example, when source clock latency is specified as displayed Figure 6-6, the following SDC
command is generated:

timingconstrainks . sdc®
Enabled Latency abjecks

CLE_A,

0 &
]

Figure 6-6: Clock Latency Constraints

set_clock_latency -source 2.00 [get_clocks {CLK_A}].

Input Delay Constraints

To enter Input Delay constraints, select the Input Delay tab in the Timing Constraints Editor GUI.
The following fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Input List: Enter the Input pin name in the Input List.

Clock: This is the reference clock w.r.t to which the input signal is delayed.
Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the input is delayed w.r.t. the negative edge of the reference
clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an input delay is specified as displayed in Figure 6-7, the following SDC
command is generated:

iCEcube2 User Guide www.latticesemi.com 124

http://www.latticesemi.com/

= LATTICE

timingconstraints, sdc
Enabled InputList Clock Delay Value(ns) Clock Fall Add Delay
1 din_i myck 1 O O

2 [0 O O
Figure 6-7: Input Delay Constraint

set_input_delay -clock [get_clocks {myclk}] 1.00 [get_ports {dins_i}]

Output Delay Constraints

To create output delay constraints, select the output delay tab of the TCE GUI. The following
fields are displayed:

Enabled: Use the enable tab to enable or disable the constraint.

Output List: Enter the Output pin name.

Clock: Specify the Reference clock edge with respect to which the output delay is specified.
Delay Value: Enter the Delay value in Delay Value field.

Clock Fall: Enable this field only if the output delay is specified w.r.t. the negative edge of the
reference clock.

Add Delay: Enable this field if multiple clocks or edges reach the same port.

For example, when an output delay is specified as displayed in Figure 6-8, the following SDC
command is generated:

timingconstraints.sdc
Enabled OutputList Clock Delay Value{ns) Clock Fall Add Delay
1 channellA_o myeclk 2 O

z O O O

Figure 6-8: Output Delay Constraints

set_output_delay -clock [get_clocks {myclk}] -add_delay 2.00 [get_ports {channellA o}]

Max Delay Constraints

To create Max Delay constraints, select the Max Delay tab. The following fields are displayed:
Enabled: Use the Enabled field to enable or disable the constraint.

Delay Value: Enter the delay value (non-negative number) in the Delay value field.

From: Enter the source pin or port of the constrained path. The constraint is applied for the data
paths launched on both rising and falling transitions.

Rise From: Enter the source pin or port of the constrained path. The constraint is applied only for
the paths launched on rising transitions.

Fall From: Enter the source pin or port of the constrained path. The constraint is applied only for
the paths launched on falling transitions.

iCEcube2 User Guide www.latticesemi.com 125

http://www.latticesemi.com/

= LATTICE

To: Enter destination pin or port, up to which the path is defined. The constraint is applied for the
paths captured on both rising and falling transitions.

Rise To: Enter destination pin or port, up to which the path is defined. The constraint is applied
only for the paths captured on rising transitions.

Fall To: Enter destination pin or port, up to which the path is defined. The constraint is applied
only for the paths captured on falling transitions. Through: Specify a pin to ensure that the
constrained path passes through this pin. This field is optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a Max Delay constraint is specified as displayed in Figure 6-9, the following
SDC command is generated:

set_max_delay -from [get_pins {pipel0/Q}] -to [get pins {pipell/D}] 3.00

Qutput timingconstraints.sdc
Enabled Delay Value{ns) From Rise From Fall From To Rise To Fal To Through
1 3 pipe10Q ppeL1fD
2 [

Figure 6-9: Max Delay Constraints

False Path Exceptions
To create False Path exceptions, select the False Path tab. The following fields are displayed:
Enabled: Use the Enable field to enable or disable the constraint.

From: Enter the port or pin from which the false path is defined. The exception is applied for the
data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the false path is defined. The exception is applied
only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the false path is defined. The exception is applied
only for the paths launched on falling transitions.

To: Enter the Port or pin up to which the false path is defined. The exception is applied for the
data paths captured on both rising and falling transitions.

Rise To: Enter the Port or pin up to which the false path is defined. The exception is applied only
for the paths captured on rising transitions.

Fall To: Enter the Port or pin up to which the false path is defined. The exception is applied only
for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is
optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a False Path exception is specified as displayed in Figure 6-10, the following
SDC command is generated:

iCEcube2 User Guide www.latticesemi.com 126

http://www.latticesemi.com/

= LATTICE

set_false_path -rise_from [get_clocks {CLK_A}] -to [get_clocks {CLK_B}]

timingconstraints,sdc*
Enabled From Rise From Fall From To Rise To Fall To Through
1 QKA ; i

20

Figure 6-10: False Path Exceptions

Multi Cycle Path Exceptions

To create Multi Cycle path exceptions, select the Multi-Cycle tab. The following fields are
displayed:

Enabled: Use the Enable field to enable or disable the exception.
Ncycles: Enter the number of clock cycles (non negative number) of the capture clock.

From: Enter the port or pin from which the exception is defined. The exception is applied for the
data paths launched on both rising and falling transitions.

Rise From: Enter the port or pin from which the exception is defined. The const exception rained
is applied only for the paths launched on rising transitions.

Fall From: Enter the port or pin from which the exception is defined. The exception is applied
only for the paths launched on falling transitions.

To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is applied
for the data paths captured on both rising and falling transitions.

Rise To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is
applied only for the paths captured on rising transitions.

Fall To: Enter the port or pin up to which the multi-cycle exception is defined. The exception is
applied only for the paths captured on falling transitions.

Through: Specify a pin to ensure that the constrained path passes through this pin. This field is
optional.

Note: The fields From, Rise From, Fall From are mutually exclusive. Similarly the fields To, Rise
To, Fall To are mutually exclusive.

For example, when a Multi Cycle exception is specified as displayed in Figure 6-11, the following
SDC command is generated:

set_multicycle_path -from [get_pins {pipel0/Q}] -to [get_pins {pipell/D}] 2

Oukput sdc_genclk.scf fimingeonstraints.sdc
Enabled Neyeles From Rise From Fall From To Rise To Fall To Thraugh

1 z pipelffg pipel1jD
2 0
Figure 6-11: Multi Cycle Path Exception

iCEcube2 User Guide www.latticesemi.com 127

http://www.latticesemi.com/

= LATTICE

Analyzing Reports Generated by the Static Timing Analyzer (STA)

The output of STA is a path report giving the details of each path in the design along with delays
along the paths. This section explains the timing reports generated by STA in the Timing Analyzer
window for a design targeted for iCE40 family and also provides directions on performing queries
on specific paths of interest.

The Timing Analyzer window can be opened by selecting the Timing Analysis tab on the top left
corner or through the Tools > Timing Analysis menu item.

The Timing Analyzer window provides the following features, each of which is explained below:
e Clock Summary
¢ Clock Relationship Summary
e Data Sheet
e Analyze Paths

Clock Summary Pane

The first window shown after opening the Timing Analyzer is the Clock Summary pane, as shown
in Figure 6-12. This section gives the details of computed frequency summaries and the
frequency defining paths for all clocks in the design. When a particular clock is selected, the
paths corresponding to that clock, and the path used for frequency computation, are displayed in
the path summary pane.

Qutput Timing Analyzer
[Chncksumnary]):\ock Relationship Summ&y] [Datashest] lﬂna!yze Paths] [Imlrg Cownerl [Gene;ate tirning report and sdf] [FLil Screen Mode
[che Surnmarv] | Sort | ‘Custumize Culumns‘ F
Clock Name Worst Slack(ps) FMAX(MHZ) Target Frequency(MHZ) Failing Path #
1 CLKA 5620 2283 100 Nf&
2 CLKE -9263 51.91 100 1
3 e 6722 305.1 100 i — List of Clocks
4 CLKD 6896 322,13 100 Hf&

Save Path Details Sort Results
- Max/Min Pane '

= == =2 E = et

Critical Path{1) (Save Summaryi Save Detal s E Sort bcustulnize Columns
“\-'-i——-—l-/

StartPoint EndPoint Slack Delay = Skew = Launch Clock Capture Clock

114 reg_[4_LC.. 5620 TE06 4188 CLKAR CLKAR

Frequency defining path for CLKA

Figure 6-12: Clock Summary Report

For every frequency defining path (one per clock), the following fields are displayed in the Critical
Path Summary section:

Start Point: This indicates the pin at which the data path initiates. It can be a top-level design
port (input package pin), the output of a flip-flop or the RDATA output of a RAM block.

iCEcube2 User Guide www.latticesemi.com 128

http://www.latticesemi.com/

= LATTICE

End Point: This indicates the pin at which the data path ends. It can be a top-level design port
(output package pin), the input of a flip-flop or an input of a RAM block.

Launch Clock: The clock and its polarity at which the data is launched.
Capture Clock: The clock and its polarity at which the data is captured.
Slack: The slack value computed for the path. The critical path has the lowest slack.

Delay: The delay of the path as computed by the sum of the logic and routing elements between
the Start and End Points. This includes the Clock-to-Out delay of the starting FF or RAM block.

Skew: The clock skew between the edges of the launch clock and the latch clock.

Save Summary and Save Detail sections are useful in saving the reported path details in a text
format. Save Summary option writes out the simple delay computation details used in computing
the path delay. Save Detail option writes out detailed path delay computation details.

Sort Option in the clock summary section helps the user to sort the generated path results.

By clicking on the sort option, a window would popup asking for the feature to be used for sorting.
User can sort the results hierarchically based on every filed displayed in the summary section.
So, the sort option in critical path report section would sort according to Start Point, End Point,
Slack, Delay, Skew, Start Edge and End Edge. Using the ‘Add Level’ feature user can add these
fields in priority basis and select their order in which the results need to be sorted.

(| AddLevel)Delete Level] [Move Up] [Move Down I [Add Level] lDeIetc Level] l Move Lip] l Mave Down]
S ——

Column Order Column Order
Sort by v Sortby Slack Largest bo Smallest
Start Edge Then by Start Edge AtoZ -

Start Point ‘

End Point

Drelay

Skew

Launch Clock
Capture Clack

= o —
Zto A

I Ok I Cancel I ok] [Cancel
Figure 6-13 Sorting Reported Paths

For example, in Figure 6-13 “Slack” was added first in ascending order. Then “Start Edge” was
added next in ascending order. So, the results are displayed with ascending order of slack first
and then, the results with same slack are sorted in ascending order of Start Edge.

It should be noted that:

1. Frequency computations are performed only on paths starting from input pads and flip-
flop/RAM outputs, and ending at output pads and flip-flop/RAM inputs.

2. If the paths triggered by a clock are not constrained (timing start point and timing end points),
then the columns Worst Slack, FMAX and Failing Paths are shown as “N/A”. Appropriate
constraints are required in order for clock frequencies to be reported.

3. Inthe clock summary pane, only the most critical path for each constrained clock is displayed
irrespective of constraints met or not.

4. If the constraints are not met, the “Failing Path #” column shows the no of paths failed
including the most critical path displayed in the summary pane. All the other failing paths can
be viewed through query path options as described in Analyzing Constrained Paths.

iCEcube2 User Guide www.latticesemi.com 129

http://www.latticesemi.com/

= LATTICE

5. Frequency calculations do not include paths involving 1/0s unless the I/Os are constrained
with Input and Output Delays.
6. Cross-clock domain paths are not reported in this pane.

Detailed Path Report
When a path in the Critical Path pane is selected, detailed path section for the path is displayed.

The detailed path report provides the following details as shown in Figure 6-14.

Path Detail: Gives the Timing Start Point, Timing End Point, reference clock used for slack
computation and the slack value. If the Timing Start Point or End Point is a register within an /O
pad, the summary panel displays either the default 1/O register name or the name of the user FF
that was originally in the logic fabric, but was merged into the 1/0O pad as shown in Figure 6-15 .

Data Required Time: Detailed path report for computing the data required time, at the capture
clock edge.

Data Arrival Time: Detailed path report for computing the data arrival time, starting from the
launch clock edge.

Launch Clock Arrival Time(CLK_3aMHzR#L) 0
-+ Launch Clack Source Latency 0

-+ Launch dock Path Delay 7130
+Clotk To 5

+Data Path Delay 5386

Arrival Time Computation

clack Summary] [clock Relstionstip surmary] [Datashest | [analyze Paths] [Timing Carer | [enerate timing report and sef | [Exit Ful sareen Made
Path Detail
’SEVE Summaryl l Sort] ’Cuslnrmze Cu|umrvs]
Clock Name wWorst Slack(ps) FMAX(MHZ) Target Fi é‘nz" LGSDCEgPU‘GROUPm'COUNTERZI QI2.1C 129 Aficout 1 i
N - . . - Reference CLK_32MHz — Path Start/End Points
— : Sebup Constraint 31250(p)
counter_power| Path Slark 18367(p) -
CLK_37ite 995527 22354 1
Capture Clock Arrival Time(CLE_S2MHziR#2) 31250
+ Capture Clock Source Latency i . . .
+ Capiure Ciack Path Delay o ~ Required Time Computation
- Cutput Delay i
End-of -path required time (ps) 31250 -

End-of-path arrival time {ps) 12683
Data path delay consists of logic delay (0 level(s}) 3744 ps, and routing delay 1643 ps.

Data Path Report

< > —ClockPath Report

= s o EDataPath)@""

crtical Path(1) [save Summary| [SveDetal | [sot | [customice Columns)

Start Point. o End Point Pin Name Model Name Delay ar Edge Fan|
GROUPO.GROUPDL, COUNTE. . | RISE LED[A] GROUPO.GROUPOT, COUNTERZ1,Q_12LC 1 2... LogicCelM0_SEQ_... 365 7495 RISE 2
Routing Delay 1644
LED_obuF_D_preinfD_OLIT_0 FREIOFINTV. 0 9136 RISE 1
. LED_obuf _1_preinfPADOLIT FRE_IO FIN_TVR.. 411 9549 RISE 1
Selected Critical path LED_pbuf _0_jopad/DIN 10_PAD 0 9549 RISE 1
LED_obuf _1_iopad/PACKAGE_PIN 0_PAD T334 12883 RISE 1
Lepfa] counter_power 0 12883 RISE 1

Routingdelay

Figure 6-14: Example of Detailed Path Summary for Frequency Computation

iCEcube2 User Guide www.latticesemi.com 130

http://www.latticesemi.com/

= LATTICE

Path Detail
Start PACKAGE_PIN:in A5
End inst_preio/PADIN{udff_inst1)
Reference inclk
Setup Constraint 10000{p) . .
Path Slack 8925(0) User DFF Merged with IO instance
Capture Clock Arrival Time(inclk:R#2) 10000
+ Capture Clock Source Latency o
+ Capture Clock Path Delay 1877
- Setup Time -152
End-of-path required time (ps) 11725
Launch Clock Arrival Time(inclk:R#1) o
+ Launch Clock Source Latency o
+ Launch Clock Path Delay o ~ |
— | Data Path Clock Paths
[Save Detail] [Customize Columns]
Pin Mame Model Mame Delay
PACKAGE_PIN:in dut 1000 1C
inst_iopad/PACKAGE_PIN 1O_PAD 0 1c
inst_jopad/DOUT 10_PAD S00 1£
inst_preio/PADIN[udff_inst1y| {PRE_IO_PIN_TYPE_110100 o 1g
(=3 Lo

Figure 6-15 : Path Summary Displaying User DFF Merged with 1/O

Detailed Path Report Pane gives the routing delays and delay of each cell involved in the path
and the slack values. For detailed analysis of Timing Path Reports, refer to “Detailed Timing
Path” section.

The detailed timing path report can be saved in text format by using “Save Detail” Option.

¥ ProjectNavigaton?

Shove Skretch
Firn Mame H |:|
rMaodel Mame L
Delay]
AT L
Edge Ll
Slack. Ll
Fanouk |:|
[Ok] [Reset to Defaults] [Cancel]

Figure 6-16: Customize Report Options

Customize Columns option enables the user to choose the parameters that need to be used while
displaying the timing report. A sample customization option menu is shown in Figure 6-16. It also
enables the user to adjust the width of each column. By using “Move Up” and “Move Down”, the
user can sort out the Columns.

iCEcube2 User Guide www.latticesemi.com 131

http://www.latticesemi.com/

= LATTICE

Clock Relationship Summary

The Clock Relationship Summary in the Timing Analyzer Window displays the constraints and
slack details for the critical clocked paths, which are in the same clock domain as well as cross-
clock domains. Clicking on “Clock Relationship Summary” in the timing analyzer pane generates
a report as shown in Figure 6-17.

“No Path” in the Slack Column indicates that there exists no Clock Path between mentioned
Launch Clock and Capture Clock. “False Path” in the Slack Column indicates that the path
between the mentioned Launch Clock and Capture Clock was constrained as False Path.

The Save Summary option saves the clock relationship summary in a text format.

Qutput Tinting Analyzer

[CIuckSummaryl |C\0ckRelat\unsh\pSummaryl | Datashest l lnna\yzePathsl [T\m\nqCumer] [Generate timing report and sdfl [FuH Sireenb

Launch Clack Capture Clock Constraint ~ Slack A

1 CLK&R CLEAR 10000 5620

2 |CLKAR CLRAF Mo Path No Path

3 [CLKAF CLEAR Mo Path No Path

4 | CLKAF CLEAF Mo Path Mo Path

5 kAR CLKER Fake Path Fake Path
6 CLKAR CUKBF False: Path False: Path

7 CIKAF (KRR Falsr Path Fale Path

Figure 6-17 Clock Relationship Summary

Data Sheet

The Data Sheet report summarizes the timing characteristics of the chip interface. It reports the
‘setup time’ and ‘hold time’ for the input pad to FF paths in the design, maximum and minimum
‘clock to out delays’ for the FF to output pad paths and maximum and minimum ‘path delay’ for
the pad to pad paths.

A sample Data Sheet report by the iCEcube2 software is shown in Figure 6-18.

Select “Input Pad to FF” tab and “Setup Time” sub tab to view the paths and the associated setup
delays. Similarly select the “FF to Output Pad” tab to view the maximum and minimum clock to
out delays and “Pad to Pad” tab to view the maximum and minimum path delays.

Setup Time: Reports the input setup time for each combination of input data port and clock port.
Setup time for an Input port wrt a clock is given by

Setup Time = (Maximum Data delay from Input Pad to FF) + (FF setup delay) - (Minimum Clock Path Delay)

Hold Time: Reports the hold times for design inputs, for each combination of input data port and
clock port. Hold time for the signal on an Input port wrt a clock is given by

Hold Time =(Maximum Clock Path Delay) + (FF hold delay) - (Minimum Data delay from Input
Pad to FF)

iCEcube2 User Guide www.latticesemi.com 132

http://www.latticesemi.com/

= LATTICE

Max Clock to out Delay: Reports the maximum clock_-to-out delays each combination of output
data port and clock port. Max Clock to out delay for an output port wrt a clock is given by

Max Clock to out delay = (Maximum Clock Path Delay) + (FF clock-to-out delay) + (Maximum
Data delay from FF to Output Pad)

Min Clock to out Delay Reports the maximum clock_-to-out delays each combination of output
data port and clock port. Min Clock to out delay for an output port wrt a clock is given by

Clock to out delay for an output port wrt a clock is given by

Min Clock to out delay = (Minimum Clock Path Delay) + (FF clock-to-out delay) + (Minimum Data
delay from FF to Output Pad)

Max Pad to Pad Delay: Reports the maximum Pad to Pad delay for a signal traversing a purely
combinational path from input pad (PI) to output pad (PO)

Max Pad to Pad delay = (Maximum Combinational Delay from Pl to PO)

Min Pad to Pad Delay: Reports the minimum Pad to Pad delay for a signal traversing a purely
combinational path from input pad (PI) to output pad (PO)

Min Pad to Pad delay = (Minimum Combinational Delay from PI to PO)

Cutput Timing Analyzer

CIockSummary] [C\ucKReIatlonshlp Summary] [Datasheet] [Ana\yze Paths Timing Corner] [Generate timing report and sdf] [Fu\l Screen Mode]

Input Padto FF | FFto OutputPad | Pad ko Pad
Setup Time | Hald Time

Data Port Clock Port Delay(ps) Clock Reference:Phase
1 BTH3 DIVIDE_32MHz COUNTER _27_LC_17_6_2flcout | 10923 clack_divider_32MHz| COUNTER_inferred_clack{27]:R
2 BTM3 CLK_32MHZ 10190 CLK_32MHZ:R
3 BTN Divider_to_1Hz COUNTER_9_LC_14_5_0/lcout | 7896 clock_divider_1Hz|COUMTER _inferred_dack{9]:R
4 Swe DIYIDE_32MHz. COUNTER _27_LC_17_6_2/lcaut | 9599 clock _divider_32MHz| COUNTER _inFerred_clack[27]:R.
5 w2 Divider_to_1Hz. COUMTER _9_LC_14 5_0flcout | 4853 clack_divider _1Hz|COUMTER _inferred_clock[%]:R
6 53 DIVIDE_32MHz COUNTER _27_LC_17_6_2flcout | 10300 clack_divider_32MHz| COUNTER_inferred_clack{27]:R
7 OSW3 Divider_to_IHz COUNTER_9_LC_14_5_0flcout 4737 clock_divider_1Hz|COUMTER _inferred_dack{9]:R

Figure 6-18 Data Sheet Report

Select the path shown in “Setup Time” sub tab to display the detailed path report as shown in
Figure 6-19.

iCEcube2 User Guide www.latticesemi.com 133

http://www.latticesemi.com/

= LATTICE

lock summary] [clock Relationship Summary | [Datasheet | [analyze paths Tining Corner | (Generate timing report and scf| [Exdt Full Sereen Mods
W path Detail
Savs Datasheet| U
X
InputPad to FF | FF to Output Pad | Pad ta Pad Dave Path Delay rarer
+ Setup Time 0
Setup Time | Hold Time - Capture Clock Path Delay -6243
Data Port Clock Port Delay(ps) Clock Refer Setup to Clock TE3E
1 B3 DIVIDE_32VMHz. COLNTER _27_LC_17_6_2/lcout 10923 clack,_dhvider_32MHz|COLI Setup Time Summary
2 BTH3 CuK_3zHz 10190 (LK _32MHZR
3 BTH3 Divider_to_1Hz COUNTER 9_LC_14.5 Dflcout 789 clock,_dvider_1He|COUNTE
e DIVIDE_32WMHz. COUNTER 27 LC_17_6 2jlect 9699 clock._dvider_32MHz|COLI

DataPath) ClockPaths
5 sz Divider_to_IHz. COUNTER_S_LC_14 5 Oficout 4853 clock_divider_1Hz| COUNTE

i Save Detall | |Custamize Calumns
6 53 DIVIDE_32MHz, COUNTER 27 LC_17_6_2flcout 10300 clock_divider_32MHz|COU Data Path Details

- Pin Hame Model Name Delay AT Edge Fanot
7 sw3 Divider_to_lHz COUNTER _9_LC_14_5 Oficout 4737 clock_divider_1Hz|COUNTE e cotest 5 5 - f
BTN3 ibuffP.. ICE_IO_PIN_TVP.. 0 i RISE 1
BTN3bUF/D... ICE_IO_FIN_TVR.. 4642 4642 RISE 1
= Routing Delay 2839
15751 Odrd i 4642 RISE
5750 Odrvd 875 5517 RISE
5261 LocalMux i 5517 RISE
5260 LocalMux 885 6402 RISE
[5271 Inux i 6402 RISE
[_S27j0 Inbux 1073 7480 RISE
BTN3 jbuf R.. LogicCell2_SEQ_... 0 7480 RISE 1
BTN3buf R... LogicCellZ SEQ_.. 1459 8939 RISE 44
= Routing Delay 5200
14881 Odrvd i 8939 RISE
4860 Odrvd 875 9814 RISE
I_488]1 Spandbux_h i 9814 RISE
I_488J0 Spandhux_h 765 10573 RISE
14931 Spandbux_v 0 10573 RISE
14930 Spandbu_v 953 11537 RISE
S04 Spandbux_v q 11537 RISE
[_S04j0 Spandbux_v 953 12496 RISE
ISI1 Localbux q 12496 RISE
[_S11j0 Localux 885 13381 RISE
I_SI191 SAMx i 13381 RISE
519/0 SRMUx 759 14133 RISE
FMOD_RIGHT... LogicCelz_SEQ_... 0 14133 RISE 1
< > < >

Figure 6-19: Setup to Clock Path Summary

Analyzing Constrained Paths

Clicking on the Analyze Paths button allows the user to query paths in the following ways:

1. Querying for the paths based on the “Slack” value.
2. Querying for the paths based on the “Paths Start/End” Points.
3. Querying for the combinational paths based on the “Start/End” Terminals.

By Slack

The By Slack option in the “Analyze Paths” window allows the user to list out all the paths in the
design with increasing slack values.

User can customize the number of paths reported by modifying the value in “Limit Report to n
Paths” option as shown in Figure 6-20.

The Advanced Options section helps the user to customize the paths reported.

The first option in this section is useful to limit the paths reports based on Launch Clock, Capture
Clock and their phases.

The second option helps in limiting the results reported based on the number of paths per start
point and number of paths per end point.

Using the third option the results can be restricted based on the maximum slack value.

The Save Summary and Save Detail provide the ability to save the report in a text format, for all
paths, or the details of the selected path, respectively.

iCEcube2 User Guide www.latticesemi.com 134

http://www.latticesemi.com/

LATTICE

Clock Summary | [clock Relotionship Summary] [Datasheet | [analyze Paths

By Slack | By Paths | Poink to Point

Timing Corner | [Generate timing report and sdf | [Exk Full Screen Mode

it Repert b pathe Maximum No of paths display option
Filter Clocks

Advanced Options

Launch Clock |CLK_32MHz 4

v| Phasz R

Capture Clock [CLK_32MHz

v| Phase

Paths per start point Paths per end point

O Mo Limit © Mo Limit
Masinnun Slack.

) Mo Limit

Filtering based on maximum slack value

Paths Summary(100) save Summary| [Save Detal | [sot | [customize Columns
Start Point Start Edge End Point slack Delay Skew LaunchClock Capture Clock ~
1 GROUPD, GROUPOL.COUNTE RISE LED[0] 18367 5388 -7130 CLK_32MHz:R CLE_32MHz:R 1
2 GROUPD,GROUPOL.COUNTE... RISE LED[2] 18785 4970 -7130 CLK_32MHz:R CLE_32MHz:R
3 GROUPD. GROUPOL.COUNTE RISE LED[3] 18830 4925 -7130 CLK_32MHz:R CLE_32MHz:R
: T
5 GROUPD. GROUPOL.COUNTE RISE GROUPD.GROUPOL.COUNTERID.Q_15 LC_7_20_ 26777 3687 o CLK_32MHz:R CLE_32MHz:R
5] GROUPD. GROUPOL.COUNTE RISE GROUPD.GROUPOL.COUNTERDS. Q_15_LC_7_16_ 26777 3667 o CLK_32MHz:R CLE_32MHz:R v

Figure 6-20: Analyze Paths using “By Slack”

Select one of the path in “Paths summary” panel to display the detailed path summary as shown

in Figure 6-21.

[ctock summear| [clock Relatianship Summary] [Datasheet | [Analyze Paths

BySlack | ByPaths | Poink to Paint

Tiing Corer] [senerate timing report and sdf] [Exit Full Sereen Mode

Path Detal |

E Sark GROUPALGROUPOL COUNTERZL.Q_13_LC_1 29 Sflcaut
End LED[1]

Reference CLK_32MHz

Setup Constraint 31250(n)

Path Slack 20032(0)

Capture Clock Arrival Time{CLK_32VMHziR#2) 31250
+ Capture Clack Source Latency 0

+ Capture Clack Path Delay 0

- Output Delay 0

End-of-path required time (ps) 31250

Launch Clock Arrival Time{CLK_32MHziR#1) 0

-+ Launch Clock Source Latency a
-+ Launch Clock Path Delay 7130
+Clock Ta Q 365

+ Data Path Delay 3723

~path arrival time (ps) 11216
Data path delay consists of logi delay (0 level{s)} 2779 ps, and routing delay 943 ps.

DataFath | Clack Paths

Customize Columns

Fin Name Wode! Narne Delay AT Edge Fanout
GROUP.GROUPOL.COUNTER21.Q_13 LC 1 2... LogicCel40_SEQ_.. 365 7435 RISE 2
= Routing Delay 944

1_100tf1 LacalPux 0 7455 RISE

1_100tjo LacalPux 472 7967 RISE

110031 Tolnbux 0 7967 RISE

1_1003jo ToInMux 472 8436 RISE
LED_ghuf_1 preinjD_OUT_D FRE_IO_PIN_TYP.. 0 8436 RISE 1
LED_obuf_1 preinfPADOLT PRE_IO_PIN_TYP.. 426 2864 FALL 1
LED_cbuf_1 jopad/DIN 10_PAD 0 8864 FaLL 1
LED_cbuf_1 Jopad/PACKAGE_PIN 10FAD 2353 11218 FALL 1
LECf1] conter_powsr 0 11218 FALL 1

Figure 6-21: Detailed Path Report of the Selected Path

iCEcube2 User Guide www.latticesemi.com

135

http://www.latticesemi.com/

= LATTICE

By Paths

The By Paths page in “Analyze Paths” window allows the user to limit the timing report to specific
Start (Source) and End (Destination) Points. See Figure 6-22.

Start points are limited to primary design inputs, flip-flop outputs and RAM outputs. End Points
are limited to primary outputs, flip-flop inputs and RAM inputs.

All the instances of the design are shown in “Resources” pane. User can search for specific set of
resources by using the “Find Resource” option. User can select the Start and End points from
“Resource” pane and can move them to “From” to “To” options pane as shown in Figure 6-22.

The Resources which are used in “From” or “To” options can be a Register, Register in 10, 10, or
RAM. Timing report will be generated for the set of paths beginning with nodes in the “From”
category and ending with nodes in the “To” category.

User can customize the number of paths reported by using “No Path Limit” and “Limit Report to
100 Paths” options.

“More Options” button gives user different filters to limit the timing reports. Various filters include,
filtering the reported paths based on Launch Clock, Latch (Capture) clock and their phases,
filtering the paths based on number of paths per start point and number of paths per end point,
and filtering paths based on maximum slack value.

“Full Screen Mode” allows the user to view all the paths and customize window lengths in Full
Screen.

Clock Summary | [Clock Relstionship Sunmry | [Datasheet | [analyze Paths Timing Corner | [Gensrat timing report and s [Exit Full Screen Mode

BySlack | ByPaths | Poirk to Point

) Mo Path Limit

(&) Limit Report to | 100 paths
More Options
Path Endpoints
Find Resource Resource Type
| |Find
Resources .
Query From / To list
Resources Canmerk @| From
B 10s : 5
& nputs Resource Type
- Qutputs =
5 odmt 1 GROUPD.GROUPDD.COUNTER1S.0[0] Register
Registers in 105 <
= Regsters
GROUPD, GROLPOD, COUNTEROD, Q0]
GROPD.GROLPOD.COUNTERDD.G[10]
GROUPD.GROLPOD.COUNTEROD.G[11] " [
GROLPD.GROLPOD.COUNTERDD.G[12] List of Resources| ©
GROLPD.GROLPOD.COUNTERDD.G[13] . =2
GROUPO,GROLPOD, COUNTERDD,G[14] Resource: Type
GROLPD.GROLPOD.COUNTERDD. G 15]
CROLPD.GROLPID COLNTERD.OT1] # |1 GROUPD.GROLPOD.COUNTER10.G{10] Regster
RAMs <
2| GROUPDLGROUROD. COUNTER18.G[6] Register
f— < v b}
[e ol
Paths
Paths Summary(2) save sunmary| [SaveDetal | [sot | [customize Columns
Start Point start Edge End Paint Slack Delay Skew Launch Clock | Capture Clock
1| GROUPO.GROUPOD.COUNTER19.9_0LC_2 17 Offcout RISE GROUPD.GROUPIO.COUNTER19.Q.6_LC 2 17 6fin3 28146 2298 0 CUK_ZEMHER CLK 32MHzR
2 GROUPO.GROUPOD.COUNTER19.0 0_LC 2 17 Ofcout RISE GROLUPO.GROLPOO.COUNTER1S.Q_6_LC_2 17 6jin3 996896 2298 0 Eﬂ;"é’;kﬁ;";ar‘ ;i“x”éegkﬁ;ﬁe"

Figure 6-22: Analyzing User Specific Paths

Please note that when the user searches from/to an 1/0, STA reports the paths as follows:

iCEcube2 User Guide www.latticesemi.com 136

http://www.latticesemi.com/

= LATTICE

9.

From a combinational INPUT/INOUT IO: STA reports the path originating from that top
module port.

To a combinational INPUT/INOUT 10: STA reports the path ending to that top module output
port.

From a Registered INPUT/INOUT 10: STA reports the path originating from the DINO/DIN1
pin of the corresponding 1/O.

To a Registered OUTPUT/INOUT IO: STA reports the path ending onto DOUTO/DOUT1 pin
of the corresponding 1/0.

To a Registered INPUT/INOUT IO: STA reports the path from the top module port to the
PACKAGE PIN of the I/O.

From a Registered OUTPUT/INOUT 10O: STA reports the path from the package pin of the IO
to the top module port of the 1/O.

If only the ‘From’ list is empty, then the STA returns all the paths from all possible ‘From’
source to given ‘To’ list.

If only the ‘To’ list is empty, then STA returns all the paths from the given ‘From’ list to all the
possible ‘To’ destinations.

If both ‘From’ and ‘To’ lists are empty then no paths are returned.

[Clnckﬁummary] [CInckRe\ahnnsh\p Summery] [Datashest] [Ana\yze Paths] [T\m\ng Cnmer] [Generate timing repart and sdf] [Exit Full Sereen Mode

BySlack | ByPaths | Paint to Point

|
)

Path Detai

Start GROLPO, GROUPOO, COUNTER19.0_0_LC_2_17_0/lcout
End GROUPO, GROUPOD,COUNTERLS.Q_6_LC_2 17 6find
Reference CLK_32MHz

Setup Constraint 31250(p)

Path Slack 28146(p)

Capture Clock Arrival Time(CLK_32MHz:R#2) 31250
+ Capture Clock Source Latency

0
+ Capture Clock Path Delay 7130
- i 1

Launch Clock Arrival Tme(CLK_32MHz:R#1) 0

+ Launch Clack Source Latency 0
+ Launch Clock Path Delay 7130
+ Clock To 365

+ Data Path Delay 2298
End-of-path arrival time {ps) 9753
Data path delay consists of logic delay (6 level(s)) 1095 ps, and routing delay 1202 ps.

| = al
DataPath | Clock Paths

save Detal | |Customize Columns

Pin Name Model Marne Delay AT Edge Fanaut
GROLIPO,GROLPON.COUNTER19.Q_0_LC_2_17... LogicCel40_SEQ)_MODE_1000 65 7495 RISE z
Rauting Delay 837
GROUPDLGROUPOD.COUNTER1S,Q_0_LC 2 17... LogicCel40_SEQ_MODE_1000 0 8332 RISE 1
GROUPO,GROUPOD.COUNTER19,Q_0_LC_2_17... LogicCel40_SEQ_MODE_1000 411 8743 RISE 2
GROLIPO,GROUPON.COLUNTER19.Q_L_LC_2_17... LagicCel40_5EQ)_MODE_1000 i 8743 RISE 1
GROLIPO,GROLPON.COLUNTER19.Q_t_LC_2_17... LogicCel40_SEQ)_MODE_1000 137 &880 RISE z
GROUPDLGROUPOD.COUNTER1S,Q_2 LC 2 17... LogicCel40_SEQ_MODE_1000 0 8880 RISE 1
GROUPO,GROUPOD.COUNTER19,Q_2_LC_2_17... LogicCel40_SEQ_MODE_1000 137 9017 RISE 2
GROLIPO,GROUPON.COLUNTER19.Q_3_LC_2_17... LagicCel40_5EQ)_MODE_1000 i 9017 RISE 1
GROLIPO,GROLPON.COLUNTER19.Q_3_LC_2_17... LogicCel40_SEQ)_MODE_1000 137 9154 RISE z
GROUPDLGROUPOD.COUNTER1S,Q_4_LC 2 17... LogicCel40_SEQ_MODE_1000 0 9154 RISE 1
GROUPO,GROUPOD.COUNTER19,Q_4_LC_2_17... LogicCel40_SEQ_MODE_1000 137 9290 RISE 2
GROLIPQLGROUPOD.COUNTER19.Q_5_LC_2_17... LogicCel40_SEQ_MODE_1000 0 9290 RISE 1
GROLIPO,GROUPON.COUNTER19.Q 5_LC_2_17... LagicCel40_5EQ)_MODE_1000 137 9427 RISE 2
- Routing Delay 35
GROUPDLGROUPOD.COUNTER1S,Q_6_LC 2 17... LogicCel40_SEQ_MODE_1000 0 9793 RISE 1

Figure 6-23: Detailed path Summary

iCEcube2 User Guide www.latticesemi.com 137

http://www.latticesemi.com/

= LATTICE

Point to Point

The Point to Point in “Analyze Paths” window allows the user to analyze the routed timing delays
of the combinational paths that exists between the specific Start (Source) and End (Destination)
Terminals. No timing constraints are necessary to report these combinational path delays. See
Figure 6-24.

All the terminals of the design are shown in “Terminals” pane. User can search for specific type of
terminal by using the “Find Terminal” option. User can select the Start and End points from
“Terminals” pane and can move them to “From” and “To” options pane as shown in Figure 5-22.

The terminals which are used in “From” or “To” options can be a terminal of a Port, LogicCell,
RAM or PLL. Point to Point delay report will be generated for the set of paths beginning with
terminals in the “From” category and ending with terminals in the “To” category.

In the Path Summary pane, the user can select a path and double-click it. A detailed delay report
of the path is displayed as shown in Figure 6-25.

User can customize the number of paths reported by using “No Path Limit” and “Limit Report to
100 Paths” options.

“More Options” button gives user different filters to limit the point to point delay reports. The
reports can be filtered based on number of paths per start point, number of paths per end point,
and minimum delay value settings.

“Full Screen Mode” allows the user to view all the paths and customize window lengths in Full
Screen.

clock sunmary] [clock Relationship summary] [Datasheet | [andlyze Paths [rining Corner | [Generate tiring report and scf | [Ext Fullscreen Mode

By Slsck | ByPaths | Poirkto Point

~
) No Path Limit
@ Linit Report to | 100 paths
Mers Options
Path Endpoints
Find Terrinal Terminal Type
v
Terminals .
. Query From / To list
Terminals Cormment e
= Port . =
o s Terminal Type
i CLK_32kHe (CLK_32kHz_buf) 5
) (2] |1 cik_soke_ibufipackacE_PIN Part
[CLK SELECT (CLK_SELECT_JbuF) <
[LOAD (LOAD_buf)
= Outputs
[CLK_OUT (CLK_OUT_abuf)
i LED[0] (LED:_cbuf[0]) _ o
& LED[1] {LED_abuf[1])
& LED[2] {LED_abuf[2])
& LED[3] {LED_obuf[3]) 2 Terminal Trpe
® Inouts
H H >
= el Terminal List (22] |1 cik_our_obuflpackace_pin Port
 Logic Cel "
RAM
- GlobalfpLL o
)
AT
Paths Summary1) Paths [save summary] [savepetal | [sot | [customies Columns
Start Point Start Edge End Point Delay
b iopsd[FACKAGE PIN (LK OUT_chif inpadFACKAGE_PIN 7545

Figure 6-24: Analyzing Point to Point Delays

iCEcube2 User Guide www.latticesemi.com 138

http://www.latticesemi.com/

= LATTICE

[C\ucksummary] [C\ackke\atmnsh\p Summavy] [Datashest] [Ana\yze Paths Timing Camer] [Generate timing report and sdfl [Ex\t Full Screen Made

By Slack | ByPaths | Paink ko Point

[Path Detal

ﬂ Statt CLK_32kHe_Ibuf lopadPACKAGE PIN

End CLK_OUT_obuf_jopad/PACKAGE_PIN
Delay 7946
|r - al
Path
Detailed Path Report
Pin Name Madel Name Delay ar Edge Fanout
CLK_32kHz_Jbuf_jopad[PACKAGE_PIN 10_PAD [[RISE 1
CLK_32kHz_ibuf_ipad/DOLIT 10_PAD ann 00 RISE 1
CLK_32kHz_ibuf_preiofPADIN PRE_IC_PIN_TVP.. O 00 RISE 1
CLK_32kHz_ibuf_preio/D_IN_0 PRE_IO_PIN_TVP.. 365 1165 RISE 1
= Routing Delay 23
¢ Cdrvd 0 1165 RISE
1_914/0 Odrvd 502 1667 RISE
1_015(1 SpandMu_v 0 1667 RISE
10150 SpandMin_y 502 2160 RISE
10181 SpandMiz v i 2169 RISE
1_916/0 SpandMiz v 502 2672 RISE
19 Localux 0 672 RISE
1_o7fo Localux 472 3143 RISE
1_918fT TnMux 0 3143 RISE
1_oisfo TnMux 365 3508 RISE
Clock_Output,un_ck_0_0_LC_1_15_5/ind LogicCel40_SEQ_.. 0 808 RISE 1
Clock_Output.unt_ck_0_0_LC_1_15 Sflout LogicCelWO_SEQ_... 715 4224 RISE 2
= RaLting Delay
1_897/1 LocalMusx 0 4224 RISE
1_8%fo Localux 472 4695 RISE
1_8%91 TolnMux 0 4695 RISE
1_8%0 TolnMux 47z sle7 RISE
CLK_OUT _abuf_preio/D_OUT 0 PRE_IO_PIN_TVP.. O 5167 RISE 1
CLK_OUT _obuf_preiofPADOLIT PRE_IO_PIN_TVP.. 426 5593 FALL 1
CLK_OUT_obuf_jopad/D! 10 _PAD 0 5593 FALL 1
[PACKAG 10 PAD 346 1

Figure 6-25: Detailed Delay Report of the Selected Path

Other Features
Various other features in Timing Analyzer include:

Timing Corner: The Timing Corner option in the “Timing Analyzer” allows the user to analyze the
timing performance of a routed design under different Power Grade/Operating Conditions, without
having to recompile the design. The Timing Corner window (Figure 6-26) is used to change the
power grade of the device, operating conditions like junction temperature, core voltage and 1/O
bank voltage. Along with these, user can also select the best, typical, worst cases corners at
which timing analysis should be performed.

Whenever the Operating Conditions/Power Grade are different from the settings used for design
compilation, the changes are highlighted in red. For example, in Figure 6-26, the timing analysis
condition is red, since the design was compiled for ‘Worst’ case timing analysis.

iCEcube2 User Guide www.latticesemi.com 139

http://www.latticesemi.com/

= LATTICE

[Clocksunmaryl Iclock Relationship Summary] I Datasheet] [Analyze Paths]

Device

Timing Corner
Selection.

Operating Condition

Junction Temperature (in degrees Celsius)

Range: Best: Typical: Worst:

Commercial v
Core Yoltage(V)
Yoltage Tolerance Range: Best: Typical: Worst:
+/-5%(datasheet defaul ¥ | |1.2 1.2 | [1.14
10Bank Yoktage(V)
Perform timing analysis based on

Ceest @rypical Oworst
Reset to Project Setting

Figure 6-26: Changing the Timing Corner in the Timing Viewer

Generate Timing Report and SDF: This option allows the user to save the generated timing
reports and SDF file for the Timing Corner selected in the Timing Viewer.

Cross Probing between the Timing Viewer and Floor Planner: A right-click on a pin name in
the detailed timing path report gives options to highlight the pin and the full path in floor planner.
When “Highlight in Floor-Planner” is selected, the selected pin and its connections would be
highlighted in the Floor Planner as shown in the Figure 6-27. When “Highlight Path in Floor-
Panner” option is selected the entire reported path is highlighted in the Floor Planner as shown in
the Figure 6-28. The delay of each instance in the path and the cumulative path delay are also
displayed for the selected path. “Zoom in” for a particular instance to see the delays. The number
displayed inside the instance is the absolute delay and the number on the path is the
accumulated total path delay. This feature helps the user to analyze the reported paths easily.

iCEcube2 User Guide www.latticesemi.com 140

http://www.latticesemi.com/

= LATTICE

Path Detai

Start BTNG_ibuf_jopad/PACKAGE_PIN
End PMOD_LEFTROTATE_4_LC_2_20_S/sr

ogic Cell (2, 19, 7)
B

Figure 6-27: Pin Corss Probing between the Timer and Floor Planner

Delay 7054
Path
Save Detal | |Customize Cnlumsl
Fin Name Mode] Name Dela
BTN3_ibuf_jopad|PACKAGE_PIN 10_PAD 1}
BTNG_ibuf_iopad/DOUT 10_PAD 800
BTN3_buf_preiojPACIN PRE_IO_PIN_TVP.. 0
BTM3_buf_preio/D_IN_0 PRE_IO_PIN_TVP.. 365
[Routing Delay 1932
BTN3_ibuf_RNI4BD_LC_1_5_6/in3 LogicCel40_SEQ_... 0
BTN3_ibuf_RNI4BD_LC_! _S_6/lcout LogicCel40_SEQ_... 472
Rout 3484
Highlight in Floor-planner
Highlight Path In Floor-planner
< i >
{ pathetai
N [+ Data path Delay 7054
+ Setup Time 346
- Capture Clack Path Delay -1628
Setup to Clock 5772

Highlight Path In Floor-planne

Save Detal | |Customize Columns
AT En#

0 RISE

0 RISE

600 RISE

800 RISE

1165 RISE

3098 RISE

3569 FALL

| >

$

EE

Figure 6-28: Path Cross Probing between the Timer and Floor Planner

iCEcube2 User Guide

www.latticesemi.com

141

http://www.latticesemi.com/

= LATTICE

Detailed Timing Report

A detailed timing report in text format is generated after running the Timing Analyzer. This section
explains about the timing report file generated by iCEcube2 STA tool and how to interpret them.
iCEcube2 STA can report timing paths at three corner cases: Best, Typical and Worst.

Various Kinds of Summary Reports generated by iCEcube2 STA tool are:
e Clock Summary
¢ Clock Relationship Summary
e Data Sheet Report
e Detailed Report of All Timing Paths

The Clock Summary, Clock Relationship Summary and Data Sheet Report are visible in the
Timing Viewer GUI, and explained in earlier sections. The All Timing Paths report is described
below.

Detailed Report of All Timing Paths

The “Detailed Report” section gives detailed slack report for all the constrained paths in the
design. Following section shows slack calculation for a Register to Register timing path by
iCEcube2 STA.

A detailed Timing Report contains three sections:

1. Reference Points
2. Slack computation
3. Detailed Clock path and Data path delays

Path start point Path end point

git +

D Q Routing
365 ps | delay - D Q
: ps Setup time
Launch Clock ’—l 836ps P
N 441ps

Clock to Q delay
Capture Clock

Figure 6-29: Flop to Flop Path

Reference Points:

Reference point section gives details about the start point; end point and reference launch clock
and the slack of the timing path. Typical Reference Points report is as shown below:

iCEcube2 User Guide www.latticesemi.com 142

http://www.latticesemi.com/

= LATTICE

Path Begin : reg_0 LC 1 4 0O/lcout
Path End : reg_1 LC 1 4 1/in3
Capture Clock : reg_1 LC 1 4 1/clk

Setup Constraint : 10000p

Path slack : 8357p

In this example, the starting point is the flop output (Icout) which is in the BLE reg_0_LC_1 4 0.
The end point is the flop input (in3 input pin of BLE which drives the flop) which is in the BLE
reg_1 LC 1 4 1. Capture Clock is the capture clock of the timing path and it is the clock pin
BLEreg 1 LC 1 4 1. The Setup Constraint between the launch and capture clock is 10000ps.
Slack computed for the path is 8357ps.

Slack Computation:

Slack is the difference between the signal required time and signal arrival time and is computed
using the below formula:

slack = End-of-path required time - End-of-path arrival time

= (Capture Clock Arrival Time + Clock Source latency +Clock Path Delay - Setup Time) -
(Launch clock Arrival Time + Clock Source latency + Clock Path delay + Clock to Q + Data Path
Delay)

Typical Slack Computation Report is as shown below:

Capture Clock Arrival Time (clk:R#2) 10000

+ Capture Clock Source Latency 0
+ Capture Clock Path Delay 1880
- Setup Time -441
End-of-path required time (ps) 11439
Launch Clock Arrival Time (clk:R#1) 0
+ Launch Clock Source Latency 0
+ Launch Clock Path Delay 1880
+ Clock To Q 365
+ Data Path Delay 836
End-of-path arrival time (ps) 3082

So, from the timing report Slack = (10000+1880 -441) - (1880 + 365 +836) = 8357ps.

Detailed Clock Path and Data Path delays:

The Launch and Capture clock path delays, Data path delays shown in “Slack Computation”
section are reported in detail here.

The detailed report is shown below. The “model name” indicates the type of cell involved in the
path. For example, the cells with PRE_IO_GBUF are the 1/O global buffers and the cells with
LOGIC_CELL* are the LUTs. Also the report gives the details of the LUT configuration mode.
Cells used for routing are defined using |__*. The “delay” column gives the amount of time
consumed by each cell unit. 'AT' gives the incremental time delay for the path upto the mentioned

iCEcube2 User Guide www.latticesemi.com 143

http://www.latticesemi.com/

= LATTICE

cell. “Edge” column gives the “RISE/FALL” delay edge of the cell. The number in “Fanout” column
gives the Fanout for the mentioned cell.

The path delays reporting order is Launch Clock Delay, Data Path Delay and Capture Clock
Delay.

Clock network delay is the delay from the clock port to the registered clock pin.

In this section, first path reported is detailed clock path report for the launch clock.

Launch Clock Path

pin name model name delay cumulative edge Fanout
delay
clk i2c_top 0 0 RISE 1
clk_ibuf_iopad/PACKAGEPIN:in I0_PAD 0 0 RISE 1
clk_ibuf_iopad/DOUT I0_PAD 800 800 RISE 1
clk_ibuf_preiogbuf/
PADSIGNALTOGLOBALBUFFER PRE_IO_GBUF 0 800 RISE 1
clk_ibuf_preiogbuf/
GLOBALBUFFEROUTPUT PRE_IO_GBUF 502 1302 RISE 1
I8/ gio2CtriBuf 0 1302 RISE 1
I__8/0 gio2CtriBuf 0 1302 RISE 1
9/ GlobalMux 0 1302 RISE 1
I__9/0 GlobalMux 335 1637 RISE 1
I__10/ ClkMux 0 1637 RISE 1
I__10/0 ClkMux 243 1880 RISE 1
reg_0_LC_1 4 0O/clk LogicCell40_SEQ_MODE_1000 0 1880 RISE 1

Here clk is the launch clock. The delay from port clk to Launch Flop clock pin
(reg_ 0 LC 1 4 0/clk) is shown here. The clock starts from clock port, traverse through global
buffer and reaches Launch Flop Clock Pin at 1880ps.

Second section is the Data Path Delay. Data delay is the delay from Flop output pin
(reg_ 0 LC 1 4 Oflcout) to Flop input pin (reg_1 LC_1 4 1/in3). From the report, the data path
delay is (3082-2246)=836ps.

Data path
Pin name model name delay cumulative slack edge Fanout
delay

reg_0_LC_1_4_0/lcout LogicCell40_SEQ_MODE_1000 365 2246 8357 RISE 1
I__ 15/ LocalMux 0 2246 8357 RISE 1
I|__15/0 LocalMux 472 2717 8357 RISE 1
|16/ INnMux 0 2717 8357 RISE 1
I__16/0 InMux 365 3082 8357 RISE 1
reg_1 LC_1 4 _1/in3 LogicCell40_SEQ_MODE_1000 0 3082 8357 RISE 1

Third section is the Clock path delay of Capture clock. The clock delay is the delay from clock
port to registered latch flop clock pin. From the report, this delay is 1880ps.

Capture Clock Path

pin name model name delay cumulative edge Fanout

iCEcube2 User Guide www.latticesemi.com 144

http://www.latticesemi.com/

= LATTICE

clk
clk_ibuf_iopad/PACKAGEPIN:in
clk_ibuf_iopad/DOUT
clk_ibuf_preiogbuf/
PADSIGNALTOGLOBALBUFFER
clk_ibuf_preiogbuf/
GLOBALBUFFEROUTPUT

8/

/O
/l
/O
10/1

10/0

reg_1 LC_1 4 1/ckk

© © ©

iCEcube2 User Guide

i2c_top
I0_PAD
I0_PAD

PRE_IO_GBUF

PRE_IO_GBUF

gio2CtrIBuf

gio2CtrIBuf

GlobalMux

GlobalMux

ClkMux

ClkMux
LogicCell40_SEQ_MODE_1000

www.latticesemi.com

800

502

o

335

243
0

800

800

1302
1302
1302
1302
1637
1637
1880
1880

RISE 1
RISE 1
RISE 1

RISE 1

RISE 1
RISE 1
RISE 1
RISE 1
RISE 1
RISE 1
RISE 1
RISE 1

145

http://www.latticesemi.com/

= LATTICE

Chapter 7 Physical Constraints in iCEcube?2

Physical constraints in iCEcube2 can be provided at 2 different stages of the design flow: before
Placement and after Placement. Details on both approaches are provided below.

Specifying Physical Constraints after Design Import and Before Placement

After importing the design into iCEcube2, the user can constrain the placement of the design to
desired locations on the physical device. This can be specified through the following physical
constraints:

= Absolute Placement

= Relative Placement

= SPI Configuration IO Placement.
= |O/FF Merge

= Global Promotion/Demotion

Absolute Placement

After importing the design into iCEcube2 using “Import P&R Files”, the user can set a placement
location for all the instances like LUTs, DFFs, RAMs, 10s and Carry etc. These constraints can be
applied in Floor Planner, which can be invoked through Tools > Floor Planner.

Constraining Logic or RAMs

In the Floor Planner, the logic or RAM instances can be placed by dragging the instances from
the instance menu to Floor Planner. The user can also perform the same action by the following
steps:

1. Select a logic/RAM instance from the instance menu and right-click it.
2. Select the Move Option
3. Go to the desired location in the Floor Plan, right-click and choose the option PUT.

The above steps are shown in Figure 7-1. Once constraining of all instances is done, you can
save these constraints in a PCF file by selecting the “Save” button on the top panel. Rerun the
placer to get the constraints honored.

Logic [
Logic Instance Instance Type | Location
1] data_obuf_RMO[3] SB_LUT4

T data_obuf_RNO[2] SE_LUT4

I data_obuf_RNO[4] SE_LUT4

{F data_obuf_RNO[0] SE_LUT4

{1 data_9_0_0_RADDR_req SE_DFFE
ER| data_obof_RMO[1] SE_LUT4

+ [

Add to logic group

Global Buffer PromotionfDemotion |
Sork By Marne | ‘
Sart By Cell
Search ... [

@” Pin Permutation

Logic GPIC Global RAM Met Group Region

Figure 7-1 Absolute placement of Logic Cells/ RAMs

iCEcube2 User Guide www.latticesemi.com 146

http://www.latticesemi.com/

= LATTICE

Constraining 10s

IOs can be constrained at desired locations by invoking the pin constraint editor box. This can be
invoked by a right-click the 1/0 and selecting “move” option. In the pop up “Pin Constraint editor”
box user can set the Pin location, 1/0 standard and pull up type for the 1/O as shown in the Figure
7-2. Also, user can constrain all the 1/Os in the “Pin Constraint Editor” or by selecting them and
dragging them to 10 locations in the Floor Plan View or the Package Viewer.

Detailed descriptions of the “Pin Constraints Editor” and “Package View” can be found in 0.

GPIC 5 X

Logic Instance Instance Type | Location
8 f=3 data[0] (data_obuf[0])]
address[1] (address_ibu...
datal7] (data_obuf[7])
address[0] (address_ibu... |
read_en {read_en_ibufy SB_I .
datale] (dats_obuf[e]) Sy +d tologic group IO Mame: | data_obuf 0 |
datal5] (data_obuf[S]) == M 1 FF i i

dataf 1] (dato_obuf[1]) SB_1_ OEIOMeErge EEEE) Finlocaton: A7]

address[2] (address_jbu... SB_I Sart By Mame
data[4] (data_obuf[4]) SB_I
address[5] (address_bu... SB_I Sort By Cell
data[3] (data_obuf[3]) SB_I
address[4] (address_bu... s8I ooah -
data[2] (data_obuf[2]) SE_IO

address[3] (address_ibu... SE_IO Ok l ’ Cancel]

i) Pin Constraint

Edit Pin Constraint

Port Mame: |data[D]

B
HODPORROAORRAN

Logic | GPIO | Global RAM Mek Group Region

Figure 7-2 Absolute Placement of IOs

Constraining SPI Configuration 10s

Each device contains 4 SPI Configuration 10 pins for programming the device. At the end of
device configuration, configuration controller will release the 4 configuration SPI pins, which will
become user 1/0. User can constrain I/Os in SPI pin locations in the “Pin Constraint Editor” or by

selecting them and dragging them to I/O locations in the Floor Plan View or in the Package
Viewer.

Nelel | [elelelelelele] | | [oF
: 0000000000000 e
c 00000000 ®OOOOOM <
5000000000 OMOOO0 o
MO0 00OEMEOOOMOOM ¢
@00 0OmOMOMO 0000 -
c000@ONEEEOO0®00 s
HO0O0O®OMEEEOE@OOM -
;00000 REEEO0O0000
COMOOCOMEEMOMOQO OO «_scomgurator
LOmMO0000OME 70N O
M 000000000 ®&FOO ~
1 (elelelelelc] oo mO) I I I
» OOMO 000000000 ¢
:00000OmMEMOOOOmMO0 +

Note: Placement of 1/Os into SPI locations are supported only through constraints.

iCEcube2 User Guide www.latticesemi.com 147

http://www.latticesemi.com/

= LATTICE

Relative Placement

Relative Placement Constraints helps the user to group logic, and to fix the placement of the
grouped logic cells relative to each other.

Group Constraints

User can create groups with different logic elements like LUT, FF, Carry Chain, RAM and IO.

The logic elements are placed relative each other based on the location constraint (x, y, z) given
to each element in the group.

The location constraint of every element can be a fixed value like (1, 2, 3) or a floating value (-1, -
1, -1). (%, y) gives the location of the instance on the device. In case of LUT/FF/Carry Chain, ‘Z’
value gives the location of a BLE in CLB. Since a CLB contains eight BLE’s, the valid values of Z
are 0 to 7. In case of I/O, ‘Z’ value gives the location of an IO in a tile. Since an /O tile contains
two values, the valid values of Z are 0 and 1. RAM instance contains only (X, y) location.

User can place the elements in a group relative to an origin location by constraining the group
elements to an origin.

When a group is set to an origin point, then the location constraint of an element in the group is
the sum of origin value and its location constraint value given in the group. For example, when a
LUT location constraint in a group is (1, 2, 3) and the group is set to origin (3, 4) then the location
constraint on the LUT becomes (4, 6, 3). By default, the origin point of any group is (0, 0).

In case of RAM/IO, the constraints are absolute. So, they will be placed at the location mentioned
in the group, origin constraint will be ignored.

Group creation and setting their origin point can be done from GUI. The following section explains
how to create the constraints from GUI.

i = I || € [sssn v|@ [§
Output
Group & X

LogicGroup Region

U Logic Group

Logic group name: | En_FFs

Origin point: 3.5
Region name: _ v
I OK I [Cancel]

Create Logic Group

Logic GPIO Global RAM Net Group Region

Figure 7-3 Creating a Logic Group

iCEcube2 User Guide www.latticesemi.com 148

http://www.latticesemi.com/

= LATTICE

Once the Synthesis is done and after importing the P&R files, user can create the relative
placement location constraints. User has to invoke the floor planner from Tools > Floor Planner
or by clicking the Floor Planner symbol on the left top corner tools pane.

Creating a Group from Floor Planner is shown in Figure 7-3. In order to create a group, go to the
Group tab in the Floor Planner window. Right-clicking the empty space provides an option to
“Create Logic Group”. On selecting this option, a popup comes out asking the user to give the
details of the Logic Group such as its name and its origin location.

Logic/RAM/IO tabs in the Floor Planner gives the list of all logical elements in the design. User
can add elements to a created logic group by right-clicking on any element and selecting the
option “Add to Logic Group” as shown in Figure 7-4. A popup will come out, asking the user to
select the group into which the element needs to be added.

ol E = A A k|| € [365% @
< Qutput
Logic g X

Logic Instance Instance Type Location

+ LT nxm_pwm_3_US.U2.pwm... SB_DFFER
{T nxm_pwm_3_US.U0.ram... SB_DFFN

{I U4.count_reg_RNO[3] SB_LUT4

+ {0 Ul.count_RNO[0] SB_LUT4 0 Add Logic To Group @
{T nxm_pwm_2_US.U2.pwm... SB_DFFER

+ {0 nxm_pwm_3_US.U2.un2... SB_LUT4 Group Name:

{T nxm_pwm_3_US.UZ.pwm... SB_DFFER

R EN) roan_pwm_3_LIS.LI2. g =
5 L1 nxm_pwm_2_Us.0. "OVe
LT nxm_pwm_1_US.rd_z S ! Cancel

LT nxm_pwm_1_US.Uz.p Global Buffer PromotionjDemotion

{0 nxm_pwm_1_US.UL.p

+ LT U4.count_reg[1] Sort: By Name

{1 U3.count_reg[3] Sort By Cell

T nxem_pwm_3_US.U2.1 Search ...

+ LT nxm_pwm_3_US.U2.p

LT rxm_pwm_1_US.UZ.E o2 Pin Permutation

O noen_pwen_1_US.U1L. pew—oo_cor

{1 Ul.count[3] SB_DFFS

1T nxm_pwm_2_US.U2.pwm... SB_DFFER

LT nxm_pwm_3_US.UO.ram... SB_DFFN v

Logic GPIO Global RAM Met Group Region

Figure 7-4 Adding Logic Elements to a Group

User can also delete the elements from logic elements from a group. Right-clicking on any logic
element in the ‘Group’ tab, gives the user the option to delete element from the logic group as
shown in Figure 7-5.

iCEcube2 User Guide www.latticesemi.com 149

http://www.latticesemi.com/

= LATTICE

TE @ o s v@ E
< Output ‘ Floor
Group g X

LogicGroup Region
= EN_FFs (0,0)

nxm_pwm_2_JS,U0,ram_data_din_tmp[2] (SB...
nxm_pwm_1_US.rd_addr_reg1[1] [SB_DFFR]

nxm_pwm_3_| Create Logic Group

Remove from Logic Group

< > |
Logic GPIO Global RAM Net Group Region

Figure 7-5: Removing Logic Elements from a Group

iCEcube2 User Guide www.latticesemi.com 150

http://www.latticesemi.com/

= LATTICE

Region Constraints
The Region Constraints enable the user to constrain a Group to a physical region on the device.

Region Constraints can be specified in the GUI. Going to ‘Region’ tab in Floor Planner and right-
clicking on it gives an option to create a Region as shown in the Figure 7-6. The coordinates of
the region can be selected by dragging the mouse on the Floor Planner view. A pop up dialog box
comes up asking the name of the region. By entering the name, a Region would be created.
User can change the co-ordinates of a created region by changing the properties of the region,
which are available by a right-click on the region name. The properties of the region gives user
the options to change region co-ordinates, type of region (inclusive/blocked), groups assigned to.

If the Region is of type Inclusive, the logic in the Group assigned to the Region, is placed inside
the boundary of the Region. If the Region type is Blocked, no logic is placed inside the Region.

ZBw k| € [besn v @
COutput
Region ax

Region Type Location

% Create Region EJ@

‘ Region narne:
En_FFs_Region

Create Inclusive Region [Ok l [Cancel]

Create Blocked Region

logic | GPIO | Global | RAM | Net | Group | Region

Figure 7-6 Creating an Inclusive Region

Once a region is created, user can assign a Group to a Region by going to Group tab and
changing its properties. Figure 7-7 shows how to set group to an origin. Multiple groups can be
assigned to the same region.

Once creating the constraint is done, user can save the created constraints in PCF file by clicking
the ‘save’ button on the top panel. Then the created PCF file will be automatically added to the
current project. The legality check of the created constraints can be performed by running the
‘Import P&R files’. The adherence of the constraints can be checked out by invoking the Floor
Planner again after running the Placer.

iCEcube2 User Guide www.latticesemi.com 151

http://www.latticesemi.com/

= LATTICE

- B v R | € lre v|@ E
< Output

Group & X

LogicGroup Region

| Create Logic Group
Delete Logic Group

Set Region

G Logic Gﬂ)up
Logic group name: | En_FFs
Origin point: 35
Region name: v

En_FFs Regon

[Logic | GPIO | Global | RAM | Met | Group | Region |

Figure 7-7 Set group to aregion

/IFF Merge

The device 10 pads include registers which can be used through explicit instantiation of the
SB_IO primitive, or by merging logic registers into the 1/0. Similarly, you can separate the I/O
registers from the I/O pads; this process is called Unmerging.

Creating the merging and unmerging constraints from GUI is shown in Figure 7-8.
After successful “Import P&R Input Files”, open the “Floor Planner” and select “GPIO” tab.

Right-clicking on any 1/0O shown in Floor Planner, gives the option to merge/unmerge FF. On
selecting this option, a pop up comes out asking the user to merge/unmerge FF from the 1/O.

The pop up gives the user the options to merge FF into 1/O and to separate FF from 1/O. The
options “Merge FF into Input/Merge FF into Output/Merge FF into Output Enable” specifies where
the Flip Flop should be merged into. Similarly, the options “Unmerge FF from Input/Unmerge FF
from Output/Unmerge FF from Output Enable” specifies from where the Flip Flop should be
separated.

iCEcube2 User Guide www.latticesemi.com 152

http://www.latticesemi.com/

= LATTICE

GPIO

Logic Instance

3

FHEH RN

Logic

World Wiew

out3 fout3_obuft)
inl {inl _jbuf)
ind Cind_jbuf)
oukZ {oukz_obuf)
inZ {inZ_ibuf)
okl {oukd_obuf)
ouktl {oukl _obuf)

GPIO Glabal RAM et GrcI

Cukpuk

Instance Tyvpe Location

SE_IO

SE_IO

SE_IO

SE_IO

SE_IO

SE_IO .

SE_IO 5 Mergeflinmerge FF
Park: |in2

Merge FF bo I

Merge FF Lo outpuk

Merge FF to out enable

Unmerge FFE From I
Unmerge FF From inpuk
Unmerge FF from outpuk

Unmerge FF from out enable

Merge FF Lo inpuk i o

Flo

E3

St

[Ik,] [Cancel

]

Figure 7-8: IO/FF Merge and Unmerge Option

Only the options that are feasible to merge/separate are displayed in the GUI. The options will be
grayed out, whenever merging/unmerging a FF is not possible.

The synthesis tool by default identifies the flops that can be merged into the I/O and generates
appropriate directives to the P&R tool. The auto FF merge directive can be controlled by the user
by setting the Merge FF option to “off”. This is shown in Figure 7-9.

Once creating the constraint is done, user can save the created constraints in PCF file by clicking
the ‘save’ button on the top panel. The created PCF file will be automatically added to the current
project. The legality check of the created constraints can be performed by running the “Import
P&R files.” The adherence of the constraints can be checked out by invoking the floor planner
again after running the placer.

The merged FF to I/O is displayed in timing reports as shown in Figure 6-15.

iCEcube2 User Guide

www.latticesemi.com

153

http://www.latticesemi.com/

= LATTICE

Cutpuk Flo
GPIO (¢
Lagic Inskance Instance Type | Location
4 TF oubd {out3_obuft) SB_IO
#- Tk ind {inl _jbuf) SE_IO
TF 0 {jin0_jbuf) SE_IO
+- T oukZ (outz_obuf) SE_ID
LF inZ {in2_ibuf) SB_IO
¥
¥

CL outd (ouk0_obuf) SE_IO .
utl fout1 _obuf) SE_IO ¥ Merge/Unmerge FF
10 with FF Merge "ON" Port: {out2
Merge FF ko IO
Merge FF to inpuk

Merge FF to output Off »

on
Merge FF to out enable

Unmerge FF From IO
Unmerge FF From input
Unmerge FF From output

Unmerge FF From out enabls

Logic GPID Global RAM Met Groy

[Ok] [Cancel

Wiorld Wiew

Figure 7-9: Disable the Auto FF Merge Synthesis Directive

Global Buffer Promotion/Demotion

This feature allows the designer to specify usage of global routing network for a net. The GUI
enables this in terms of promotion / demotion constraints.

Global Buffer Promotion

For critical signals and high fan-out nets such as clock, designer would want to have it routed
through the global routing network. Also, if a high routing congestion is observed in a specific
area on the device, this can be reduced by promoting a high fanout net in this area.

Global Buffer Promotion feature allows the user to explicitly assign a net to the global routing
network on the device as shown in Figure 7-10. Right-clicking on the logic instance gives the
option “Global Buffer Promotion/Demotion”. Selecting the option will gives a pop up with Global
Buffer Promotion Option.

Once creating the constraint is done, user can save the created constraints in pcf file by clicking
the ‘save’ button on the top panel. Then the created pcf file will be automatically added to the
current project. The legality check of the created constraints can be performed by running the
‘Import P&R files’.

iCEcube2 User Guide www.latticesemi.com 154

http://www.latticesemi.com/

= LATTICE

Logic g X
Logic Instance Instance Type | Location
{I data_dff_7_RNO SE_LUT4
#- { ouTzZ_z.50M0_0 SB_LUT4
{1 data_dff_1 SB_DFF
#- {1 data_dff 02 250M0_.. SB_LUT4
e E reg I {58 DFF » . s
+ {1 data_dff 4 BDF fove) Global Buffer Promoti... E|
T data_dff_D SE_DF
+ {J data_0_1.50M0 00 SE_LUL add to logic group Logic: reg_I1 v
LT reg I4
4 ﬂ data_dff_3 Global Buffer Promation/Demaotion Logic part: |Q hd
#- {T OUTL_obuf_RNO] _ -
#- LT data_dff_2 SB_DF| Sort By Name -9 Promation/Demation
data_dff_0_2_2.5UM0_0 SE_LL

: g r:giI_Z === - SB:DF Sort By Cell Global Buffer Promotion

Search ... Global Buffer Demotion

[s]4 H Cancel

Logic GPID Glaobal RAM et Group Region

Figure 7-10: Global Buffer Promotion.

Global Buffer Demotion

Non-critical signals in a design need not use the global routing network. This can be ensured by
the designer by specifying “Global buffer demotion” constraints in GUI. If designer finds that delay
from source of the net to SB_GB is causing degradation of performance, such instance of SB_GB
could be demoted.

Global Buffer Demotion feature allows the user to demote an SB_GB/SB_GB_IO. In case of
SB_GB, the instance will be removed and for SB_GB_IO, it will be converted into SB_|O.

Figure 7-11 shows how to demote a Global Buffer. Right-clicking on the instance SB_GB gives
the option “Global Buffer Promotion/Demotion”. Selecting the option will gives a pop up with
Global Buffer Demotion Option.

Once creating the constraint is done, user can save the created constraints in pcf file by clicking
the ‘save’ button on the top panel. Then the created pcf file will be automatically added to the
current project. The legality check of the created constraints can be performed by running the
‘Import P&R files’. The adherence of the constraints can be checked out by invoking the floor
planner again after running the placer.

iCEcube2 User Guide www.latticesemi.com 155

http://www.latticesemi.com/

= LATTICE

=F | [k|| & lzesn @ [
< Qutput

Global 2 X

e ——

b Move [R— Logic: Ul.count_inferred_clock_RNILSP7[3] +
Add to logic group Logic port: v

PromotionjDemation

Sort By Name Global Buffer Promotion
Sort By Cel [[] Global Buffer Demotion
Search ...

Logic GPIO Global RAM Net Group Region

Figure 7-11: Global Buffer Demotion

Modifying the Device Floor Plan after Placement
This section explains the steps used to change an existing floor plan.
Modifying Placement of Individual Cells

Placement of individual Logic, Block RAM and IO cells can be changed by clicking on the cell to
be moved and dragging it to the desired location. Optionally, the following three-step process is
recommended:

1. Select the cell to be moved by Right-Mouse-Click > Move. It may be the case that, for
certain 1/0O cells, the Move menu is not available. This is intentional, since it prevents
incorrect placement of special pins (like global buffers) that can only be placed at certain
fixed locations.

2. Move the cursor to the desired location.
3. Place the cell at the target location by Right-Mouse-Click > Put.

Note: A set of logic cells contained in the same carry-chain, can be moved as a group. In order to
move the entire set of logic cells, select the carry-in cell i.e. the square green cell at the
bottom-left corner of the Logic Tile. Drop this cell at the desired carry-in cell location.

Pin locations can also be changed through the Pin Constraint dialog box (Figure 7-12). This
dialog can be invoked for each pin using Right-Click > Edit Pin Constraint. In addition to its
location, the pin’s I/O standard and Pull Up resistor can also be configured from this dialog.

Note: Differential /0 pins are supported only on Bank #3.

iCEcube2 User Guide www.latticesemi.com 156

http://www.latticesemi.com/

= LATTICE

Port Mame: irst

10 Mame: irst_pad_irst_pad

Pin Location: [Cll

I0 Standard: |SB_LVCMOS

Pull Up: [No

Figure 7-12: The Edit Pin Constraints dialog box

Modifying Placement of a Group of Cells

A group of cells (RAM, 10, Logic) can be moved as a unit to a new placement location (Figure
7-13). In order to accomplish such an operation, the Floor Planner software permits the user to
select the cells using a Left-mouse-click and drag operation. This operation is permitted only

when the Floor Planner is in the Select Mode i.e. the arrow button [E is clicked. The Select
Mode can be toggled ON and OFF, simply by clicking this arrow icon.

Once the cells are grouped together (it is recommended that the options shown in Figure 5-12 be
switched OFF for easier selection and movement), the following three-step process is
recommended:

1. Invoke the Move operation through Right-Mouse-Click > Move.

2. Move the cursor to the desired location. Make sure that there are sufficient unused
resources available at the target location. Since the selected group of cells cannot be
placed over any cell this is already utilized, it is necessary that the unused portion of the
device be large enough to accommodate the same relative layout as the selected group
of cells.

3. Place the group of cells at the target location by Right-Mouse-Click > Lock. A lock
symbol would be shown on the moved cells in the Floor Planner.

Note: A set of logic cells contained in the same carry-chain, can be moved as a group. In order to
move the entire set of logic cells, select the carry-in cell i.e. the square green cell at the
bottom-left corner of the Logic Tile. Drop this cell at the desired carry-in cell location.

iCEcube2 User Guide www.latticesemi.com 157

http://www.latticesemi.com/

HLATTICE
EEEEEMENNREEEEEEEE EEE:
T LT
;3gﬂjﬁamﬁlll i@?::

IIEEIEIIIEIH EEHE
5 REREEERRNEPEEEE
DR RNRERLEEER
IIIHIIHEEIIIIEEEEEE
IIIIIII!E!II

IlllﬁllEEEII I{IIIE
HENNRNNEECEENNEEERE

Figure 7-13: Moving a group of Logic Cells

Floor Plan changes can be reverted back to their initial state using the Edit > Undo menu.

Once all changes are complete, the new floor plan should be saved my clicking File > Save Floor
Planner from the main menu.

Note: Any changes to the device Floor Plan will require the router to be rerun.

iCEcube2 User Guide www.latticesemi.com 158

http://www.latticesemi.com/

= LATTICE

Chapter 8 Generating/Integrating Fixed Placement IP Blocks

This chapter talks about the “IP Generation/Integration Flow” feature in iCEcube2 tools. This
chapter consists of the following two sections:

1. IP Generation Flow: This section explains the steps required to create an IP with fixed
locations, which can later be used in a design as a sub-module, thereby guaranteeing the
performance of this IP sub-module.

2. System Design Flow: This section explains the steps for instantiating the IP as a black box in
the synthesis flow, and including the placed IP (EDIF) as a sub-module in the iCEcube2
Physical Implementation tools.

IP Generation Flow

The sample design used in this document as an IP is an up counter. The RTL for the up counter
is presented below.

module ip (
clock,
enable,
reset,
out

E

input clock;
input reset;
input enable;

output [7:0] out;
reg [7:0] out;

always @(posedge clock)

begin
if(reset == 1)
out <= 0;
else
if(enable == 1)
out <= out+l;
end
endmodule

The steps involved in exporting this IP into EDF format are:

1. Launch the iCEcube2 tool and create a new project from File > New Project. In the New
Project Window, enter the project name, set device and operation conditions. Make sure
that the Start from Synthesis and IP Generation options are selected. Click Next. See
Figure 8-1.

iCEcube2 User Guide www.latticesemi.com 159

http://www.latticesemi.com/

= LATTICE

Project

Project Mame: | IP_Creation_Project |
Project Directory: |C:'l,workspace'l,msridhar'l,DEMO'l,IP_FIow G u)
Dievice BROWSE
Device Family: |iCE65 v|
Device; |LD4 v|
Device Package: |C8284 v|
Power Grade: |L v|

Operating Conditian

Ambient Temperature (in degrees Celsius)

Range: Besk: Typical: Warsk:
|Commercial v | | a | | 25 | | 70
Core wolkagedy)
‘oltage Tolerance Range: EBest: Typical: ‘Worst:
|+/-sw(datasheet defaul v| (126 | [z v |14

Perfarm timing analysis based on

) Best) Typical (&) Worst

(%) Statt From Synthesis

) Start From BackEnd
1P Generation

e D e]

Figure 8-1 New Project Creation

2. Browse to the RTL location and add the up counter file “ip.v” into the project. Add timing
constraint files if any. Click Finish to go back to the iCEcube2 main window.

) Add Files

Files ko add
Look. in: |C:,l’workspace,l’msridhar,l’DEMO,l’IP_FIow,l’RTL v| (=] .
ip.y
41 >
My Computer Wd Selected Filesi
J—)
?_[:
-
Home
File name: | iy |
Files of type: |.°.II Files(*) v|

Back Finish ancel

Figure 8-2 Add Files to Project

3. Run synthesis. If using:
e LSE, double-click Run Lattice LSE Synthesis.

iCEcube2 User Guide www.latticesemi.com 160

http://www.latticesemi.com/

= LATTICE

The Use IO Insertion option should be False if you selected IP Generation in the New
Project dialog box. You can check by selecting Tool > Tool Options and looking in the

LSE tab.

e Synplify Pro, double-click Run Synplify Pro Synthesis.

The Disable 10 Insertion option should be selected if you selected IP Generation in
the New Project dialog box. You can check by selecting Tool > Tool Options and click

the word "here"

in the Synplify Pro tab.

Implementation Options and look in the Device tab.

& SiliconBlue iCFcube? - [Qutput]
W File View Tool Window Help

D@ ©dl B i Y

Project Name: IP_Creation_Project

= Project
Mew Project
Open Project
Clase Project
= Synthesis Tool
= Add Synthesis Files
Design Files

Constraint File —

< [» Launch Synthesis Tool

= PER Flow

B o¢@BEDad % 3
Elm:PRRBR £3

=

Synplify Pro E-2010.095 Beta - [C:fworkspace/msridharDEMO/IP_Flow/IP_Creation_Praject/IP_Creation_Project_syn.prj]
B Fie Edt View Project Import Run Analysis HDL-Analyst Opbions Window Tech-Support Web Help
QE AR E&Em @ O

In the Synplify Pro window, click

T BN 9,88yl

Implementation Optians - IP_Creation_Praject_syn : IP_Creation_Project_mplmnt

[Select Implementz{Double click to la

Add PER Files
Run &l
[Import FER Input Filss
|> Run Placer
|> Run Router
[» Gererate Bitrmap
IP Exporter

TCL Seript Meszage:

Options | Constraints | ImplemertationResuks | TingRepart | Yerbg | Place andRoute | ITeementabona:
[ie_Creation_Proj
] Technology. Pat Package Speed: ——
T [Shconsieicess] [icessios ~] [5] [© 5
1) open Profect... (= Profect Fies
= 1| |/ IP_Creation_Prc pavice Mapping Oplions
1% Close Profect S @ [P Creati
1 # () Veriog | |Option | v
|l AddFle... P | For Guide 10000
By Change Fie.. | Cm 17O Insertion. £ :
[——— / Fex Gated Ciocs z
Frx Generated Cocks. 0 [0 10
Updste Comple Pairk Trming Dota
Annotated Properties for Analyst L4
tesolve Mxed Drivers
=1 [4]
£l =)
Chck on an option For descry
T 1P crestion_Project_synprl -
‘System Designer Board Fie
HOTE: This version of the software is net)
in the

e =m [Synplicity "

Fion_Project|IP_Creatiol

[ive i
Directory 1

ity included in

Figure 8-3 Run Synthesis

4. After Synthesis, close the Synplify Pro tool. This will bring you back to iCEcube2 tool. The
Synthesis output files “PRINAME.edf’ and “PRJNAME.scf’ would be automatically added
to the project. Double-click Run All to run placement, router, and bitmap generation.

iCEcube2 User Guide

i SiliconBlue iCEcube? - [Output]
W File

View Tool ‘Window Help

D@ 8%

Project Mame: IP_Creation_Project

= Praoject
Mewy Project
Open Project
Close Project
= Synthesis Tool
= Add Synithesis Files
Design Files
Constraint Files
o Launch Synthesis Tool
= P&R. Flow

IP_Creation_Project.edf
IP_Creation_Project.scf
Add PER Files

r, OrT PR Input Files
|> Run Placer

D Fun Router

I:) Generate Bitmap

IF Exparter

Figure 8-4 Run Complete Flow

www.latticesemi.com

= ¢ Select Implementation(IP_Cre...

161

http://www.latticesemi.com/

= LATTICE

5. Launch the Floor Planner from Tool > Floor Planner and can view the placed IP on the

FPGA. If the user wants to do any modification to the placement he can do the same by
dragging the placed instances into required location. Lock the instance using the option
showed after a right-click on the instance. Save the placement using File > Save Floor
Planner and rerun “Run All”.

Figure 8-5 Placed IP Instances

Double-click IP Exporter to save the IP in EDF format. Browse to a location on the pop
window and save the EDF file. By default, the EDIF file is saved in
<PrjName>/<PrjName_Implmnt>/sbht/IP/ location. The saved IP EDF file contains the
locations of all the instances.

0 SiliconBlue iCEcube? - [Dutput]

™ Fle Wiew Tool ‘Window Help

; [oo £
Jp B8 %C
Projeckt Mame: IP_Creation_Project B X
= Froject -~ Save in: | =] v| Q¥ E-
Mew Project -
Open Project ‘35
Close Project
=-Synthesis Tool ggg;iiﬁ
= Add Synthesis Files
Design Files ?F
Constraint Files
& Launch Synthesis Tool Deskiop
= PSR Flow -
= o Select Irmplementation(IP_...
IP_Creation_Project.edf
IP_Creation_Praject.scf My Documents
= Add PER Files
Design Files 3
Constraint Files
Rur all
< Import PSR Input Files
o Run Placer - :
& Run Router " File name: ‘EHDDIIBdJP.Bdﬂ V| [Save 1
«f Generate Bitmap
[P Exporter

Repert{oauble ckto Export P
Figure 8-6 Exporting the IP into EDF Format

Please enter the file name

My Computer

MyMotwork | Saveastpe | AllFies (*ed) | [cancal |

iCEcube2 User Guide www.latticesemi.com 162

http://www.latticesemi.com/

= LATTICE

System Design Flow
This section explains the process to integrate the placed IP into the top level designs.

First, the user needs to instantiate the IP as a black box in his RTL. For example, the system Top
instantiates the IP. So, the customer needs to add a black box attribute IP as shown below.

module top(
clock,
reset,
enable,
up_count_out,
down_count_out
E
input clock;
input reset;
input enable;
output [7:0] up_count_out;
output [7:0] down_count_out;
reg [7:0] down_count_out;

always @(posedge clock)
begin
if(reset == 1)
down_count_out <= 0;

else
begin
if(enable == 1)
down_count_out <= down_count_out - 1;
end

end

ip up_count_inst (//// IP Instantiation
.clock(cTlock),
.reset(reset),
.enable(enable),
.out(up_count_out)
E

endmodule

///// BLACK BOX DECLARATION /////
module ip (
clock,
reset,
enable,
out
) /* synthesis syn_blackbox = 1 */
input clock;
input reset;
input enable;
output [7:0] out;

endmodule

iCEcube2 User Guide www.latticesemi.com 163

http://www.latticesemi.com/

= LATTICE

The IP can be declared as black box by using the attribute “syn_blackbox” during the IP
declaration.

The steps involved in running the System Design Flow are:

1. Launch iCEcube?2 tool and create a new project from File > New Project. In the New
Project Window, browse to location where project need to be created, enter the project
name, set device and operation conditions. Select option “Start from Synthesis” and click

on Next.
0 New Project @ E

Project
Project Mame: System_Design_Project
Project Directory: | C:\workspaceimsridhar\DEMOYIP_Flow @
Device
poviesFaniy v
Dievice: L0 -
Device Package: |CBZ284 A
Power Grade: L e

Operating Condition

Ambient Temperature {in degrees Celsius)

Range: Best: Typical: Worsk:
Commercial ~ 1} 25 70
Core Yoltage(y)
Yoltage Tolerance Range: Best: Typical: Warsk:
-+-5%:{datashest defaul v 1.28 1.2 v 1.14

Petform timing analysis based on

O Best O Typical (&) Worst

T#) Start From Synthest

() Start From BackEnd

|:| IP Genetation

et Do |
Figure 8-7 Create New Project

2. Browse to the RTL location and add the Verilog file “system.v” into the project as shown.
Click on Finish to get back to iCEcube? tool.

iCEcube2 User Guide www.latticesemi.com 164

http://www.latticesemi.com/

= LATTICE

) Add Files

Files ko add
Look in: |C:,l’workspaceImsridhar,l’DEMO,l’IP_FIow,l’RTL v| @ =] @
- System.y
jj}g Syetem-y I
My Computer Add Selected Files
— ES-
?'_'.'
L
-
Home
File name: | Syskem,v |
Files of type: |AI\ Files(*) v|

Back g Finish 2 Cancel

Figure 8-8 Add RTL Files to Project

3. Run synthesis. If using:
e LSE, double-click Run Lattice LSE Synthesis.

The Use IO Insertion option should be True. You can check by selecting Tool > Tool
Options and looking in the LSE tab.

e Synplify Pro, double-click Run Synplify Pro Synthesis.

The Disable 10 Insertion option should be off. You can check by selecting Tool > Tool
Options and click the word "here" in the Synplify Pro tab. In the Synplify Pro window,
click Implementation Options and look in the Device tab.

The synthesis would be performed treating the IP as a black box.

Synplify Pro E-2010.095 Beta - [C:Aworkspace/msridhar/DEMO/IP_Flow/IP_Creation_Project/IP_Creation_Project_syn.prj]
B File Edt View Project Import Run Analysis HOL-Analyst Options Window TechrSuppart Web Help

EfOE D@ < B dd G g U O @ e W G DIk R e o @@ o B E i
%) R ¥ Implementation Options - System_Design_Project_syn : System_Design_Project_Implmnt

W SiliconBlue iCEcube? - [Dutput]

W File Miew Tool ‘Window Help Bl P BRR
: A Devie | Options Constramts | ImplementationResuks | TmingReport | Verbog | Place and Route
i ZAHFoR: - W Pat Fackage: Spesd:
Project Name: IP_Creation_Project (ICE6S =] [icessos v [cazed =[x | —_—
B-Project Device Mapping Options
Mew Project = roject|IP_Cre
Cpen Project :mm Ikm [rvee
Cloge Project - Directory
reeron
= Synthesis Tool = T
- T
=) dDSynmerKs Files o oted s . ke -
DsinFies e ol
= Annotated Propesties for Analyst i
< [» Launch Synithesis Toal e et v
[= PER Flow
[» select Implememta{Dnuhle click to lau
Add PER Files = Irﬂ;
Run &1l - E—
ek for descr
D> Import PER Input Files B 1p_creston proect_sym.gr clken s gten fo descrten
e Run Flacer
E Run Router - F—
Generate Bitmap (_
1P Exporter HOTE: This version of the software is no| 7| P i
in the ny d
. C oD o Synplicity
TCLSript | Messages

Figure 8-9 Run Synthesis
4. After successfully running synthesis, close the Synplify Pro Tool. This will bring you back

to iCEcube?2 tool. The Synthesis outputs “PRIJNAME.edf’ and “PRJNAME.scf’ would be
automatically added to the project. Now, right-click on the “IP Design Files” in “Add P&R

iCEcube2 User Guide www.latticesemi.com 165

http://www.latticesemi.com/

= LATTICE

Files” select “Add Files”. On the popup window browse to the Vendor provided IP location
and add the EDF file.

W SiliconBlue iCEcube? - [Qutput]

" File Wiew Tool ‘Window Help

J = | Fm <f HES 5
“4HCE: K- 2
Project Mame: System_Design_Project 2 X
= Project ~ L Add Files
Mew Project
Open Project Lockin; | Cofworkspace(msridhar[DEMO[IE_Powiie_Creats ¥ (3] © (@] D) (0]
Close Project
= Synthesis Tool :55
= Add Synthesis Files
Design Files S
Congstraint Files —
o Launch Synthesis Tool B
(= P&R Flowr Desktop
= o Select Implementation(Syst... -
System_Design_Project.edf]
Hame

|8 Exported_ip.edi

Systern_Design_Project.scf
= Add PER Files
Design Files

Fili: name: Exporbed_IF.edf

Add Files,.,

Constraint Files
Run All

[) Import PER Input Files II] Concel

|> RuNn Placer

Files of type: |EDIF Fies({* edf *.edf *.edn *.vgm) 4

[Run Router
[Generate Bitmap

Figure 8-10 Add IP File for performing P&R

5. Click on “Run All". This would perform Placement, Routing and Bitmap Generation.

6. Once the Flow is completely run, the placed instances can be viewed again by launching
Floor Planner through Tools > Floor Planner. You can observe that the IP would be
placed according to the locations mentioned in IP EDF.

iCEcube2 User Guide www.latticesemi.com 166

http://www.latticesemi.com/

- LATTICE

HEN SEMICONDUCTOR.

IP Instances

é

Figure 8-11 Placed IP Instances

11 Lo fiuasaons fisssssns finsnnins

iCEcube2 User Guide www.latticesemi.com 167

http://www.latticesemi.com/

= LATTICE

Chapter 9 Hierarchical Project Flow

The iCEcube2 software supports hierarchical project management flow for larger team based
designs. The iCEcube?2 installation contains various IP Modules in encrypted format. These IP
modules can be easily integrated as building blocks in the larger designs, resulting in significant
time and cost savings though design-reuse.

This chapter explains how to integrate IP building blocks provided with the iCEcube2 software
into a larger design using the Synplify Pro software.

For additional information please refer to the section on Hierarchical Project Management Flows
of the Synplify Pro for SiliconBlue User Guide located at <iCEcube2_install_dir>/synpro/doc/
user_guide.pdf.

Create Top Level Project

This section explains the steps to create a top level design file with an IP block instantiation.

1.

2.

In your top level design file, instantiate the required IP as shown in Figure 9-1.

// IP instance

I2C_to_SPI_Bridge I2C_to_SPI_Bridge_u1
.i_sys_clk{i_sys_clk),
.i_sys_rst{i_sys_rst),
.i_s5cl{i_scl),
.o_scl({o_scl},
.i_sda(i_sda},
.0_sdafo_sda),
.0_sda_tri_en{o_sda_tri_en},
.0_scl_tri_en{o_scl_tri_en},
.i_addr2(i_addr2),
.i_adde1(i_adde1},
.i_addrB(i_addra),
.i_miso(),

I .0_mosi{w mosi_bridge_slave),
-mosi_tri_eng),
.0_spiclk{w_spiclk_bridge_slave},
.i_slave_csn{),
.0_slave_csn{w slave_csn_bridge_slave),
.0_gpio_read_data_ack(},
.o_intr()

Figure 9-1: IP Block Instantiation in the top level module

In the same top level design file, provide a black box definition of the IP building block, as
displayed in Figure 9-2.

iCEcube2 User Guide www.latticesemi.com 168

http://www.latticesemi.com/

= LATTICE

ittt ittt i it ittt iiiiiiitiids
FEPEELERE Black Box IP module definitions for hierarchical design flow LIrIrrriss
R R b i L i L i L i itiiedi

i_slave_csn,
o_intr,

o_spiclk,
o_slave_csnf]
o_sda_tri_en,
o_scl_tri_en,

o_scl,

o_sda,

mosi_tri_en,
o_gpio_read_data_ack

¥

input i_sys_clk;

input i_sys_rst;

input i_secl ;

input i_sda;

input i_miso;

input i_addr2;

input i_addr1;

input i_addr@;

imput [3:8] i_slave_csn;

output o_intr;

output o_mosi;

output o_spiclk;

output [3:8] o_slave_csn

output o_sda_tri_en;

output o_scl_tri_en;

output 0_scl;

output 0_sda;

output mosi_tri_en;

output o_gpio_read_data_ack:;
endmodule

Figure 9-2 : Black Box Definition of IP block in the top level module

Note: For iCE40 UltraLite, Ultra and UltraPlus devices, if connecting VPP_25V supply to voltages
of 2.3V or below, and any one or more of these functions: SB_HFOC, SB_LFOSC,
SB_RGBA_DRV, SB_IR400_DRV, SB_IR500_DRYV, or SB_BARCODE_DRYV is needed in
the design, then you should add the VPP_2V5 TO_1P8V attribute to your top-level to
override the limitation specified in the datasheet’s Recommended Operating Conditions.
This workaround is allowed only when Slave SPI Configuration mode is used. For attribute
usage, see the following examples:

Verilog Syntax Example

module top

clkhf en,

clkhf pu,

clkhf
) /* synthesis VPP 2V5 T0 1PSV = 1 */-
/% VPP_2V5 TO 1P8V = 1 or 0 */
input clkhf en;
input clkhf pu;
output clkhf;
SB_HFOSC 0SCInst0 (

. CLKHFEN (c1khf en),

iCEcube2 User Guide www.latticesemi.com 169

http://www.latticesemi.com/

= LATTICE

. CLKHFPU (c1khf pu),

. CLKHF (c1kht)
) /* synthesis ROUTE THROUGH FABRIC= 0 */;
defparam 0SCInst0.CLKHF DIV = “0b00”;
endmodule

VHDL Syntax Example:

library ieee;
use ieee.std logic 1164.all;
entity top is
port (
clkhf pu : in std logic;
clkhf en : in std logic;
clkhf : out std logic
)
attribute VPP 2V5 T0O 1PSV :boolean;
attribute VPP 2V5 70 IPSV of top - entity is true; ——true or false
end top;

architecture behavior of top is
component SB HFOSC is

port (CLKHFEN, CLKHFPU : in std logic;
CLKHF: out std logic);

end component;

begin

HFOSCinst0O : SB HFOSC

port map

(
CLKHFEN => clkhf en,
CLKHFPU => clkhf pu,
CLKHF => clkhf

)

end behavior:

3. Launch iCEcube2 and create a new project from File > New Project. In the New Project
Window, browse to location where project need to be created, enter the project name, set
device and operation conditions. Select option “Start from Synthesis” and click on Next.

iCEcube2 User Guide www.latticesemi.com 170

http://www.latticesemi.com/

= LATTICE

© New Project

Project

Project Name: | tdcontralier_top |
Project Directory: |C:{TeamDesignioemo |CJ
Device

Device Famly: [icE40 v
Devica: |pax v
Device Package: [CMzzs ~

Operating Condition

Ambient: Temperature {in degrees Celsius)

Range: Best: Typical: Warst:
[commercial v o | [ED
Core Yolkagef¥)
waltage: Tolerance Range: Best: Typical: Warst:
[rismidsastest defal v (126 | [z v [1as |
T0Bank Uolkage(\)
topBank. 2.5 - 2.5 v

Perform timing analysis based on

Opest Cypical @nworst

(&) start From Synthesis
() Start From BackEnd
[1P Generation

Figure 9-3: Create Top Level Project

4. Add the top level design file into the project as shown in Figure 9-4. Click on Finish to get
back to the iCEcube2 tool.

) Add Files

Laak in: |C:fTeamDesignthl v| @ (5]

tdeontroller_top.y
tdeontroller _top.sde

Files to add
[tdcontraller_topsdc
Q_)-g @ tdcontroller_top, v

Iy Computer
Eres

T
-
Haorne:

File: name: |tdcontrol\er_top.sdc ‘

Files of type: |A\I Files(*) v‘

[Back][Finish][Cancel]

Figure 9-4 : Add RTL Files to top Project

4. Right-click Synthesis Tool and choose Select Synthesis Tools.
The Select Synthesis Tool dialog box opens.
5. Select Synplify Pro.
6. Click OK.
The command under Synthesis Tool changes to Run Synplify Pro Synthesis.

The top level project is created with the specified input design files as shown in Figure 9-5.

iCEcube2 User Guide www.latticesemi.com 171

http://www.latticesemi.com/

= LATTICE

Synplify Pro®

Reach

Project Files Design Hierarchy
tdcontrollerl_top_syn : tdcontrollerl_top_Implmnt - Silicon Blue iCE40 : iCE40LPSE | CM225
= & [tHcontraller|_top_syn] - C:h\TeamDesign\Demobidcontroller|_tophidcontroller|_toj
= [verilog
3 tdcontroller _top.w [work]
= Ef/” Consiraint
B itdcontroller top,sdc
£} tdcontroller|_top_Irmplmnt

Figure 9-5: Top Level Design Project.

Create Sub-Projects for IP blocks

This section explains the steps for integrating the IP blocks into your top level design, and
converting the IP projects into sub-projects of the top level project.

It is strongly recommended that the IP library be copied to a user specified location as it enables
better design management.

The IP blocks provided with the iCEcube2 software include a Synplify Project file with the
required design source files (RTL), the top module name and other settings required to import the
IP into your top level design. This Project file is located at <iCEcube2_install_dir>/IP/<IP
Name>/V1.x/source/<IP Name>.prj.

1. Copy the <iCEcube2_install_dir>/IP/<IP Name> directory into a user specified directory.
For example, copy <iCEcube2_install_dir>/IP/I2C_to_SPI_Bridge to <user_IP_dir>/IP/
I2C_to_SPI_Bridge.

2. In Synplify Pro, click on the “Open Project” icon. Select “Existing Project” in the “Open
Projects” dialog box. Browse to the “<user_IP_dir>/IP/I2C_to_SPI_Bridge/V1.1/source”
location and add the existing “12C_to_SPI_Bridge.prj” file as shown in Figure 9-6. This
opens the “|2C_to_SPI_Bridge” project in Synplify Pro and automatically imports the
required source files. See Figure 9-7.

iCEcube2 User Guide www.latticesemi.com 172

http://www.latticesemi.com/

= LATTICE

iCEcube2 User Guide

Synplify Pro®

Ready

2Run

FrojectFiles | Design Hierarchy

‘ ':r Open Project...

"; Close Project

Implementation Directo

tdcontroller]_top_syn : tdcontrolled_top_Implmnt - Siicon Blus iZE40 @ iICE40LPEE § CM225
=@ [tdcontroller|_top_syn] - C\TeamDesigniDemo\tdoontraller|_topitdcontraller|_tof

C:\TeamDesigniDemc

B (2 Merilo
‘Eg Add File... | & vering
B
‘35 Change File... | & o
‘ﬁ'fa Add Implementation... | {1y Look in; |_) source
i = (ip_xact
Implementation Options... | 1
‘{:ﬁ i L uﬁ [yverilog
‘ﬁﬁ Add PER, Trmplementation | My Fiecent
Documents
‘_.‘9. YWigw Log | =
FrequencyitHz): Desktop

L B
® Luto Constrain

My Documents

FSM Compiler
Resource Sharing -
Pipelining "!)
Retiming] My Computer
>y
by Metwork, Fil 12C_to_SPI_Brid; ~ Open
e il name: ‘ _to_SPI_Bridge J
Files of bype: ‘Proiecls [*.pri) j Cancel
gl T man e
Figure 9-6: Select the 12C_to_SPI_Bridge.prj file
Synplify Pro®
Readchs
Froject Files Design Hierarchy
I2C_to_SPI_Bridge : I2C_to_SPI_Bridge_Implmnt - Siicon Blue iCE<40 @ iCE40LPSK : CM225
= 50 [dcontroller]_top_syn] - CihzTeambDesigniDemostdcontroller] tophtdcontroller] top swyn. o

= er Werilog
A tdcontroller_top.w [work]
= Q Constraint
EH= tdcontraller _top.sdc
{:} tdcontraller|_top_Implmnt

= & [I2C_to_SFPI_Bridge] - CihTeamDesigniIPN2C_to_ SFI_Bridgeiy'l. IhsourcehJ2C_to SFI_Bridge.prj

= (ZF WHDOL

H spi_master.vhd [work]

#H spi_data_path.whd [work]
#H =clk_gen.vhd [work]
== i

=)
ist

ram_bank.w [work]
binary_to_gray_convertery [work]
asynch_x16_fifo.v [work]
i2c_slave.w [work]
I2C_to_SFPI_Pridge.v [work]
= SPI_Master _wirappery [work]
Constraint
I2C_to_SPI_Pridge_Implmnt

EEEE R
i

Figure 9-7 : Created IP Block Project

3. Drag and Drop the IP Project into the top level project as shown in Figure 9-8. This
converts the IP Projects into a “Sub-Project” of the top level project as shown in Figure

9-9.

www.latticesemi.com

173

http://www.latticesemi.com/

« LATTICE

Synplify Pro®

Ready

Project Files Design Hierarchy
SPI_Slave : SPI_Slave_Implmnt - Silicon Blue iCE40 : iCE40LP8K : CM225
= 20 {[tdcontroller|_top_syn] - C:\TeamDesigniDemo\tdcontroller]_topytdcontroller]_top_syn.prj
= Verilog -
3 tdcontroller _top.v [work]
= [Constraint

E tdcontroller _top.sdc .:'
£} tdcontroller|_top_Implmnt o
=} W[ém: to_SPI_Bridge] - C:\TeamDesign\IP\2C_to_SPI_Bridge\Vv1. 1\source\lzc SPI_Bridge.prj
YHDL

#H spi_master.vhd [work]

H spi_data_path.vhd [work]

#H sclk_gen.vhd [work]
= & verilog Drag and drop the added IP

ram_bank.v [work] . s

binary_to_gray_converter.v [work] pl‘O]ECt into the tOp-IEVQI
asynch_x16_fifo.v [work] pro]’ect,
i2c_slave.v [work]
12C_to_SPI_PBridge.v [work]
SPI_Master _wrapper.v [work]

Constraint

12C_to_SPI_Bridge_Implmnt

[SPI_Slave] - C:\TeamDesign\P\SPI_Slave\wv 1. 1\source\SPI_Slave.prj

= Q WHDL

H spi_slave.vhd [work]
* Constraint

SPI_Slave_Implmnt

e

Figure 9-8 : Drag and drop the IP Project into Top-Level Project

Synplify Pro®
Readhy

Project Files Design Hierarchy
tdcontrollerl_top_syn : tdcontrollerl_top_Implmnt - Silicon Blue iCE40 : iICE4OLPSK : CM225
= @9 [tdcontroller|_top_syn] - C:\TeamDesigniDemoitdcontroller|_topi\tdcontroller|_top_syn.prj
=1 Iz “erilog
A tdcontroller_top.v [work]
= %nsh’amt
g S.Jh"ic,ﬂ,']‘gﬂer to‘p e IP Sub-Projects
B [12C_to_SPI_PBridge] - C:\TeamDesign\IP\I2C_to_SPI_BridgeiV1l.1\source\I2C_to_SPI_Bridge.prj
@ [wHDL
& iﬁ werilog
[Constraint
I2C_to_SPI_Pridge_Implmnt
1B [SPI_Slave] - C:\TeamDesigniIPASPI_Slave\V1. 1\source\SPI_Slave.prj
@) wHDL
[Constraint
SPI_Slave_Implmnt
43 tdcontroller|_top_Implmnt

Figure 9-9: Top Level Project Hierarchy with IP Sub-Projects

Synthesize Top Level Project

1. In the Synplify Pro tool, select the top level project and right-click it. Select “Hierarchical
Project Options” as shown in Figure 9-10.

iCEcube2 User Guide www.latticesemi.com 174

http://www.latticesemi.com/

= LATTICE

Synplify Pro®
Ready
Project Files Design Hierarchy Implementation Directory

tdcontrollerl_top_syn : tdcontroller]_top_Implmnt - Siicon Blue iCE40 : (CE40LPEK : CM225
= B0 tdeontraller]_top_syn] - CiiTeamDesignmiDemoitdcontroller]_tophidoontroller]_top_syn.pr

C:A\TeamDesign'Demakh

=) W ‘erilog Project Options... r
Y i tdcontroller_top.v [wark] Open as Text 3
Ed %n;héj?;u\\er_mp‘sdc Insert SubProject...
= ¥ Sub-Projects Hierarchical Froject Options. ..
= [12C_to_SPI_Bridge] - C:\TeamDesigriP2C_to_SPI_Bridgeiw1. 1hsourceil2c_to_| 4dd Source Flle...
) wHoL
“erilog add Folder...
12C_tn_SPI_Pridge_TImplrnt #dd Implementation. ..
= [SPI_Slave] - Ci\TeamDesignyFYSPI_Slave'y'l. 1\sourcehSFPI_Slave.pri
g HDL Run Fg
SPI_Slave_Implmnt 'y, Constraint Check Shift+F10

¥ tdcontroller]_top_Irplrant FesminesEs ol

Compile Only F7

Wirite Output Retlist Only

Arrange YHOL Files

Find. .

Find in Files... Cirl+shift+F
Save

Close Project

Project View Options...

N I |

Figure 9-10 : Select Hierarchical Project Options Menu

2. In the “Hierarchical Project Options”, specify the Sub-Project Implementation and set run
type as “top_down” as shown in Figure 9-11. Click on the “Synchronize All Options with
Top Level” icon to synchronize Sub-Project options with top-level project options.

r|D Hierarchical Project options for top_level_syn | top_level_Implmnt ‘ &‘éy
Top: top_level_syn | Sub: SPI2I2CBridge | B

Implementation: top_level Implmnt |SPI2_I2C Bridge_Implmnt
Run Type: | top_down -
Options: ‘top_down
Technology SBTICE40 bottom_up |
Technology part ICE40LPBK ICEA0LPBK
Technology package |CM225 CM225
Fanout Guide 10000 10000 I
Disable /O Insertion | [] |
Pipelining
Retiming] L I
Fix Gated Clocks 2 2 g
Fix Generated Clocks |0 0
Auto Constrain IO L] L] @
Top-level and block-level options for [top_level_Implmnt].
Conflicting options are highlighted; resolve them before running an implementation.

l Synchronization with top level required Synchronization with top level optional

I |Synchronize All Options with Top Level| | 0K | | Cancel

Figure 9-11: Set Hierarchical Project Options

iCEcube2 User Guide www.latticesemi.com 175

http://www.latticesemi.com/

= LATTICE

3. Click on “Run” to synthesize the top level design. Click on the “View Log” menu item and
select the “Resource Utilization” link. The resource usage report shows that all the

design units are elaborated and synthesized into primitive cells, as shown in Figure 9-12.

Synplify Pro E-2011.035-5P1-1 - [C:fTeamDesign/Demo/tdcontrollerl_topftdcontrollerl_top_Implmnt/tdcontrollerl top. htm]

B @ File Edit “iew Project Import Run Analysis HDL-Analyst Options Mindow Tech-Support Wieb Help

= tdcontroller]l_top_syn
(tdcontroller|_top_lmplmnt)
| Sub-Projects
LA 12C_to_SPI_Bridge
L4 SPIL_Slave
= Compiler Report
% Timing Report
= Performance Summary
= Clock Relationships
= Interface Information
A Detailed Report for Clock:
spi_master_clk
A Detailed Report for Clock:

Bd#0|0ad -
NI N RN

tdcontroller topli_scl_inferred clack

A Detailed Report for Clock:

tdcontroller topli_sda_inferred cloc

A Detailed Report for Clock:
top_sys_clock
A Detailed Report for Clock:
System
= Resource Utilization

EX|

Log File Links:

= tdcontroller]l_top_lImplmnt
= Hierarchical Area Report
itdcontroller_top) (12:04 25-Jan)

* Session Log

Toral path delay {propagation time + secup) of 1.100
Path delay compensaved for clock skew. Clock skew is

##§## END OF TIMING REPORT #####]

Lesource Usage Report for cdeomtroller top

Mapping to part: iced0lpSkemZzs
Cell usage:

D 15 uses
SB_CARRY 117 uses
SB_DFFE 3 uses
SBE_DFFER 118 uses
SBE_DFFHER 64 uses
SE_DFFNR 35 uses
SEB_DFFHS 5 usas
SE_DFFER 330 uses
=B _DFFS 14 uses
SE_GE 2 usas
SE_RAM4R 2 usas
e 15 uses
SB_LUT4 723 uses

I/0 pores: 52
I/0 primivives: 52

SE_GE_IO 1 use
SE_IO 51 uses

1/0 Register bits: o
Register bits not including I/0s: E73 (7%

Total load per clock:
spi_master_clk: &2
top_sys_clock: 1
tdcontroller_topli_secl_inferred clock: 3
tdcontroller_topli_sda_inferred clock: 3

is 1.1004100.0%) logic and 0.
added to cleck-to-out valus,

Figure 9-12: Resource Utilization Report for Top Level Project

4. Exit the Synplify Pro software. This will bring you back to the iCEcube2 environment. The
synthesized netlist is automatically added to the iCEcube?2 project. Click on “Run All” to
Place, Route and generate bitmap.

iCEcube2 User Guide

www.latticesemi.com

176

http://www.latticesemi.com/

= LATTICE

Chapter 10 iCEcube2 Command Line Interface

The iCEcube2 software tools can be executed in a command line shell such as DOS or bash. The
iCEcube? installation contains a set of TCL scripts, which helps the user to run the designs in
batch mode. This chapter describes the iCEcube2 TCL scripts and the default flow options for
command-line operations.

Overview

The iCEcube2 software provides command line executables at each stage of the flow. The
iCEcube? installation contains a set of TCL wrapper scripts to set the project and tool options and
execute the individual tools. It also contains top level TCL script to run the default backend flow
starting with edifparser tool to bitmap generation. The environment variables to be set for the
batch mode run are listed at Command Line Execution.

Running LSE in batch mode

Lattice Synthesis Engine (LSE) is the integrated synthesis tool that comes with iCEcube2. LSE is
a synthesis tool custom-built for Lattice products and depending on the design, LSE may lead to
a more compact or faster placement of the design than another synthesis tool would do. LSE
generates EDIF netlist and forward annotated timing constraint file for the backend tools.

The command to execute LSE in batch mode is shown below
<<TCEcubeZ_install>>\LSE\bin\nt\synthesis.exe -f <project_name.prj>

Arguments:
-f <project_name.prj> . Specify LSE project file.

Sample project file “top_design_Ise.prj” is shown below. Refer iCEcube2 user guide for LSE
project setting options.

HHHHHHHHHH R R 3 33
top_design_lse.prj
HHHHHHHHHH R R 3 3 3

#-- Lattice, Inc.
#-- Project file

#device

-a SBTiCE40
-d iCE40LP8K
-t CM225

#constraint file
-sdc "../src/top_design.sdc"

#options

-frequency 200
-optimization_goal Area
-twr_paths 3

iCEcube2 User Guide www.latticesemi.com 177

http://www.latticesemi.com/

= LATTICE

-bram_utilization 100.00
-ramstyle Auto

-romstyle Auto
-use_carry_chain 1
-carry_chain_Tength 0
-resource_sharing 1
-propagate_constants 1
-remove_duplicate_regs 1
-max_fanout 10000
-fsm_encoding_style Auto
-use_io_insertion 1
-use_io_reg auto

-ifd
-resolve_mixed_drivers 0
-RwCheckonRrRam 0
-fix_gated_clocks 1

-ver "../src/top_design.v"
-p "C:/examples/sbtProject/top_design"

#set result format/file last
-output_edif rev_1/top_design.edf

#set log file
-lTogfile rev_1/top_design.log

Running Synplify-pro in batch mode

Synplify-pro synthesis tool integrated with the iCEcube2 IDE supports the comprehensive verilog
HDL, VHDL, timing constraint design entry files. After successful run, Synplify generates EDIF
netlist and forward annotated timing constraint file for the backend tools. Synplify-pro synthesis
tool is executed through a wrapper (synpwrap) executable available in the build.

The command to execute Synplify-pro in batch mode is shown below

<<TCEcubeZ_install>>\sbt_backend\bin\win32\opt\synpwrap\synpwrap.exe
-prj <project_name.prj> -log <logfile_name>

Arguments:
-prj <project_name.prj> . Specify Synplify pro project file
-log <logfile_name> . Specify log file name.

Sample project file “top_design_syn.prj” is shown below. Refer to Synplify-pro user guide for
more project setting options.

HHHHHHHHHHH R R R
top_design_syn.prj
HHHHHHHHHH R R R 33

#project files
add_file -verilog -Tib work "../src/top_design.v"
add_file -constraint -1ib work "../src/top_design.sdc"

#implementation: "rev_1"

iCEcube2 User Guide www.latticesemi.com 178

http://www.latticesemi.com/

= LATTICE

impl -add rev_1l -type fpga

#implementation attributes
set_option -vlog_std v2001
set_option -project_relative_includes 1

#device options
set_option -technology SBTiCE40
set_option -part iCE40LP8K
set_option -package CM225
set_option -speed_grade
set_option -part_companion

#compilation/mapping options

mapper_options

set_option -frequency auto
set_option -write_verilog 0
set_option -write_vhdl 0O

Silicon Blue 1iCE40

set_option -maxfan 10000
set_option -disable_io_insertion 0
set_option -pipe 1

set_option -retiming O

set_option -update_models_cp O
set_option -fixgatedclocks 2
set_option -fixgeneratedclocks 0O

NFilter

set_option -popfeed 0
set_option -constprop O
set_option -createhierarchy 0

sequential_optimization_options
set_option -symbolic_fsm_compiler 1

Compiler Options
set_option -compiler_compatible 0
set_option -resource_sharing 1

#automatic place and route (vendor) options
set_option -write_apr_constraint 1

#set result format/file Tlast

project -result_format "edif"

project -result_file ./rev_1/top_design.edf
impl -active rev_1

iCEcube2 User Guide www.latticesemi.com 179

http://www.latticesemi.com/

= LATTICE

Running iCEcube2 Backend tools in batch mode

“run_sbt_backend_auto” is the top level TCL wrapper which accepts tools specific options and
executes the default flow. The TCL source files are available in the installation area at
<<iCEcube2_install>>\Iscc\iCEcube2\sbt_backend\tcl.

Command:
run_sbt_backend_auto <device_package> <design_topmodule> <project_dir>
<output_dir> <tool_options> <edif_netlist>

Arguments:
<device-package> : Specify the selected device —package name.
Ex: iCE40LP8K-CM225.
<design_topmodule : Specify the design top module name.
<project_dir> : Specify the path to synthesis project dir.
<output_dir> : Specify the synthesis implementation dir.
Backend results will be kept in the same directory.
<tool_options> : Specify tool options. Refer Backend tool Options for
complete list of tool options.
<edif_netlist> : Specify input edif netlist name.

Sample “iCEcube2_flow.tcl” file is shown below
#lusr/bin/tclsh8.4

Sample flow script for iCEcube?2

B 1 1 R R R A S A S S
User Configurable section
R S i ittt it it it ot

set device 1iCE40LP8K-CM225
set top_module top_design
set proj_dir [pwd]

set output_dir "rev_1"

set edif_file "top_design"

set tool_options ":edifparser -y top_design.pcf"

HHHBHHBH BB HRHHBH BB HRHHRHBBHBHHRHBRHBHHRHHRH
Tool Interface
HEHBHHBHBRHBHHBH BB HRBHBHHBHBRHRHHRH BB HRRHRHH
set sbt_root $::env(SBT_DIR)

append sbt_tcl $sbt_root "/tcl/sbt_backend_synpl.tcl"
source $sbt_tcl

run_sbt_backend_auto $device $top_module $proj_dir
$output_dir $tool_options S$edif_file

exit

iCEcube2 User Guide www.latticesemi.com 180

http://www.latticesemi.com/

= LATTICE

Backend tool Options

Each tool in the backend flow accepts parameter values to optimize the design. The
“run_sbt_backend_auto” wrapper accepts the individual tool options as a single argument
as given below

“redifparser <edif_parser_options> :placer <placer_options> router
<router_options> :bitmap <bitmap_options>"

This section covers the tools in the iCEcube2 backend flow and the tool options.

Edif Parser

“Import P&R Input Files” stage in GUI invokes edif parser tool to parse the input edif netlist,
forward annotated timing constraints (scf) and the physical constraints file (pcf). This generates a
design database for placer and route tool. The edif parser tool options are specified with
“:edifparser” keyword in the argument.

:edifparser [-y | --physicalconstraint <phy_constraints.pcf>] [-s | --sdcfiles <sdc_constraints.sdc> |

Options
[-y | --physicalconstraint <phy_constraints.pcf>]
Specify the design physical constraints file.

[-s | --sdcfile <sdc_constraints.sdc>]
Specify the SDC timing constraint files. If default SCF file exits along with specified SDC
file, both files will be parsed.

Placer

iCEcube2 Placer tool optimally places the design objects into the device layout based on the
given physical and timing constraints to meet the performance requirements. The placer tool
options are specified with “:placer” keyword in the argument.

:placer [-e | --effort_level <std|mid|high>] [-k | --no_autolutcascade] [-r | --no_autoramcascade]
[-t|--power_driven] [-p | --pack_area]

Options
[-e | --effort_level <std|mid|high>]
Option to specify the placement effort level. Default is std.
[-k | --no_autolutcascade]
Disable automatic LUT cascading in placer. By default LUT cascading is enabled.
[-r | --no_autoramcascade]
Disable automatic RAM cascading in placer. By default RAM cascading is enabled in
placer.
[-t| --power_driven]
Enable power driven placement mode. By default power driven placement option is
disabled in placer.
[-p | --pack_area]
Pack for dense area. Default is for timing.

iCEcube2 User Guide www.latticesemi.com 181

http://www.latticesemi.com/

= LATTICE

Router

Router tool route the placer design with timing driven optimization. The router tool options are
specified with “:router” keyword in the argument.

:router [--no_timing_driven] [--no_pin_permutation]

Options
[--no_timing_driven]

Option to disable timing driven router optimization. By default timing driven option is
enabled.

[--no_pin_permutation]
Option to disable LUT pin permutation. By default pin permutation is enabled.

Bitmap

Bitmap generates the bit stream to program the device. The bitmap tool options are specified
with “:bitmap” keyword in the argument.

:bitmap [--no_low_power] [--no_init_ram] [--init_ram_bank <specify_quadrants>] [--frequency
<low|medium|high>] [--no warmboot] [-- set_security] [--set_unused_io_nopullup]

Options

[--no_low_power]
Change setting of SPI PROM from low power mode after configuration. Default is low
power mode if not specified.

[--no_init_ram]
Do not initialize Block Rams in the design with contents specified in the design or ‘0.
Default is on.

[--init_ram_bank <specify _quadrants >]
Select the quadrants for Block RAM initialization. Quadrant 0 to quadrant 3 can be
specified as 1111.

[--frequency <low|medium|high>]
Select frequency value

[--no_warmboot]
Set warm boot to off. Default is on.

[-- set_security]
Set security mode.

[--set_unused_io_nopullup]
Set all unused 1/O in the design to no-pullup mode.

Command Line Execution

Certain environment variables need to be set in Dos or bash shell to execute the tools in
command line. To execute the tools in command line, the LM_LICENSE_FILE environment
variable should point to the license server, which contains license for iCEcube2 GUI. The user
can find the iCEcube2 GUI license server details using the <iCEcube2_install>\LicenseSetup.exe
utility.

iCEcube2 User Guide www.latticesemi.com 182

http://www.latticesemi.com/

= LATTICE

DOS scripts
Dos script for LSE-iCEcube?2 flow:

SET FOUNDRY=C:\1scc\iCEcube2\LSE
SET SBT_DIR=C:\1scc\iCEcube2\sbt_backend

C:\1scc\iCEcube2\LSE\bin\nt\synthesis.exe -f
top_design_lse.prj

tclsh iCEcube2_flow.tcl
Dos script for Synplify—iCEcube?2 flow:

SET SYNPLIFY_PATH=C:\1scc\iCEcube2\synpbase
SET SBT_DIR=C:\1scc\iCEcube2\sbt_backend

C:\1scc\iCEcube2\sbt_backend\bin\win32\opt\synpwrap\sy
npwrap.exe -prj top_design_syn.prj -log icelog.log

tclsh iCEcube2_flow.tcl

Bash scripts

Bash script for LSE—iCEcube2 flow:

export LD_LIBRARY_PATH=/home/userl/lscc/iCEcube2/LSE
:$LD_LIBRARY_PATH

export FOUNDRY=/home/userl/Tscc/iCEcube2/LSE

export SBT_DIR=/home/userl/lTscc/iCEcube2/sbt_backend/

/home/userl/1scc/iCEcube2/LSE/bin/Tin/synthesis.exe -f
top_design_lse.prj

tclsh iCEcube2_flow.tcl
Bash script for Synplify-iCEcube?2 flow:

export
LD_LIBRARY_PATH=/home/userl/1scc/iCEcube2/sbt_backend/
bin/1inux/opt/synpwrap: $LD_LIBRARY_PATH

export
SYNPLIFY_PATH=/home/userl/lscc/iCEcube2/synpbase
export SBT_DIR=/home/userl/Tscc/iCEcube2/sbt_backend/

/home/userl/1scc/iCEcube2/sbt_backend/bin/Tinux/opt/sy
npwrap/synpwrap -prj top_design_syn.prj -log
icelog.log

tclsh iCEcube2_flow.tcl

iCEcube2 User Guide www.latticesemi.com 183

http://www.latticesemi.com/

= LATTICE

Chapter 11 High Drive IO with Configurable Drive Strengths

I/Os in iCE40/iCE40LM device can be configured with different drive strengths to increase the I/O
output current. This special I/Os are available only in selected iCE device packages and only
three 1/0Os with configurable drive strength is allowed in a device.

To configure an 1/0 with specific drive value, the user needs specify the “DRIVE_STRENGTH”
synthesis attribute on the I/O instance. The design can have maximum of three I/O instances with
configured drive strengths and the 1/O needs to be configured as output-only registered I/O.

The iCEcube2 SW replicates the I/O instance once or twice based on the specified drive strength
value. The original and the replicate 1/0 instances share the following signal and properties.

e Signals

@)
@)
@)
@)

DOUTO

DOUT1
OUTPUT_CLK
OUTPUT ENABLE

e Properties

@)
@)
@)

PIN_TYPE
PULL_UP
|IO_STANDARD

The placer auto places the 1/0 in one of the 3 predefined 1/0O group locations. The users can also
constraint the 1/0O group location by using pcf constraints. The drive strengths are reported under
drive strength column in the pin table csv report as shown in Figure 11-1.

3o Select Implementation(le...
leckdrive_sample.edf
leckdrive_sample.acf

Add PSR Files

Run PER.

o Tmport PBR Input Files

o Run Placer

o Fun Router

o Cenerate Bitmap

= Output Files

= Reports
dut_pin_tahle.CSy
dut_timing.mt
placer.log

+-Bitmap

LA A At AR R a st R At st ARt AR st ER R st AR R R R RN RN

Device, 1CE40LPE40HD
Package, SUG1E

Fin Mueber, Pin Type Name, 3ignal Name, Direction, Global Buffer, IO 3tvandard, Pull Up, IO Function, IO Bank, Drive Streng

' ' ; ; ; ; ;
AL, VCCIO 3, not used, , , , , , leftBank,

Az, PIO GBIN, not used, , , , , , topBank,

A3, VCCIO O, not used, , , , , , topBank,

A, PIO; b, Ingut, , 3B_LVCHOS, No Pull Up, 3imple Input, topBank, x1

Bl, PIO, ¢, Ducput, . 3B_LVCHOY, No Pull Up, Cucput Registered, topBank,@

B, PIO GBIN, =, Input, , 3B LWCHO3, No Pull Up, Simple Input, leftBank,

B3, PIO GBIN, output_clk, Input, glb Buff, 5B LVCHO3, No Pull Up, Simple Input, lefrBank, x1

E4, GND, not used, , , , , , UnknownBank,

PR

Figure 11-1: Drive Strength Display in Pin Table CSV File.

High Drive 10 Supported Device-Packages

Following iCE40, ICE40LM device packages supports the high drive /O pins.
iCE40LP1K-SWG16TR

iCE40LP640-SWG16TR

iCE40LM4K-SWG25TR,CM36,CM49

iCE40LM2K-SWG25TR,CM36,CM49

iCE40LM1K-SWG25TR,CM36,CM49

iCEcube2 User Guide www.latticesemi.com 184

http://www.latticesemi.com/

= LATTICE

High Drive 10 Pin Locations

Following table shows the package pin locations of high drive IO groups.

Device Package High Drive 10 Package Pin
Group
. Group O Bl
iCE40LP1K
. SWG16TR Group 1 A2
iCE40LP640 Group 2 Ad
Group 0 A3
SWG25TR Group 1 A4
Group 2 B5
iCE40LM4K Group 0 A5
iCE40LM2K CM36 Group 1 A4
iCE40LM1K Group 2 A3
Group O A4
CM49 Group 1 A3
Group 2 A2
Synthesis Attribute Syntax:
/* synthesis DRIVE_STRENGTH = <Drive value> */
Drive Value:
Drive Strength Description.
Value
x1 Default drive strength. No replication of SB_IO.
X2 Increase default drive strength by 2. SB IO
replicated once.
x3 Increase default drive strength by 3. SB IO
replicated twice.
Example:

module highdriveio (a, b, output_clk, c);

input a, b, output_clk;
output c;
assign x = a & b;

SB_IO #(.PIN_TYPE("010101™))
X_inst
(.PACKAGE_PIN(C),
.OUTPUT_CLK(output_clk),
.D_OUT_0(x)
) /* synthesis DRIVE_STRENGTH= x2 */;

endmodule

iCEcube2 User Guide www.latticesemi.com

185

http://www.latticesemi.com/

= LATTICE

Chapter 12 Open Drain LED IO

iCESLP (iCE40 Ultra) device contains dedicated open drain LED 10 for the LED drive primitives
(SB_RGB_DRYV, SB_IR_DRV). These I0s can be either configured as high current sink for the
LED drive or as an Open Drain GPIO.

The RGB LED IO can sink between 0 to 24mA current in steps of 4mA per device pin when
configured as high drive sink. Similarly IR LED IO can sink between 0 to 500mA current in steps
of 50mA. The sink current value is set via the primitive parameters. Refer Technology Guide for
the details of parameter settings.

The Open Drain GPIO primitive (SB_IO_OD) instantiated in the design can be used to drive the
LED 10 pins, when the LED drive parameters are set to zero. Open Drain 10 cannot be placed at
normal I/O pin locations and vice versa.

Package view display of LED IO is shown in Figure 12-1

1 2 3 4 5 6
»HSENES
Y Y ==
cOOHNEN®———

— Open Drain LED IO
@@ 00
FOK X I I IS
FOI0L X X 1OL

1 2 3 4 5 6

voumsovavEA

iCE5SLP4K - SWG36

Figure 12-1: Open Drain LED IO pins

iCEcube2 User Guide www.latticesemi.com 186

http://www.latticesemi.com/

= LATTICE

Appendix A: PCF Syntax

Relative Placement

1. Group Creation
create_group $group_name
begin

instO [x0, y0, z0]
instl[x1, y1, z1]
end

2. Set Group Origin Point
set_group_origin $group_name x0 y0
Ex: set_group_origin En_FFs 2 3

3. Region Constraints

create_region —name $region_name —type $type $x_left $y_bottom $x_right $y_top

Ex: create_group En_FFs
begin

EFF_A_Ins[1, 2, 3]

EFF_B_Inst[1, 2, 4]
end

$type can be blocked (no cells are placed in the region) or
inclusive (holds the cells placed in the region)

set_group_to_region $group_name $region_ name

Ex: create_region —name EnFFs_Region —type inclusive 33 7 10

set_group_to_region En_FFs EnFFs_Region
IO/FF Merge

1. Merge FFto 10
set_io_ff $port_name [-in/-out/-oe]

The options specify where the Flip Flops need to be merged.

Three Options can coexist at same time.
Ex: set_io_ff A1 -in -oe

2. Unmerge FF from 10
seperate_io_ff $port_name [-in/-out/-oe]
Ex: separate_io_ff A1 —in —oe

Global Buffer Promotion/Demotion
1. Promote Signal to be Global Buffered
promote_signal_gbuffered $signal_name
Ex: promote_signal_gbuffered Al
2. Demote Global buffered Signal

demote_signal_unbuffered $signal_name
Ex: demote_signal_unbuffered Al

iCEcube2 User Guide www.latticesemi.com

187

http://www.latticesemi.com/

