

iCE40 UltraPlus Hand Gesture Detection

Reference Design

FPGA-RD-02206-1.0

December 2020

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02206-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 3

Contents
Acronyms in This Document ... 7
1. Introduction .. 8

1.1. Design Process Overview .. 8
2. Setting Up the Basic Environment .. 9

2.1. Software and Hardware Requirements ... 9
2.1.1. Lattice Software .. 9
2.1.2. Hardware .. 9

2.2. Setting Up the Linux Environment for Machine Training .. 10
2.2.1. Installing the CUDA Toolkit ... 10
2.2.2. Installing the cuDNN ... 11
2.2.3. Installing the Anaconda and Python 3 .. 11
2.2.4. Installing the TensorFlow v1.14 .. 13
2.2.5. Installing the Python Package ... 14

3. Preparing the Dataset ... 16
3.1. Creating the Dataset ... 16

4. Training the Machine .. 18
4.1. Training Code Structure .. 18
4.2. Dataset Augmentation .. 18
4.3. Generating tfrecords from Augmented Dataset ... 19
4.4. Neural Network Architecture .. 19

4.4.1. Neural Network Architecture ... 19
4.4.2. Hand Gesture Recognition Network Output .. 21
4.4.3. Training Code Overview .. 22

4.4.3.1. Configuring Hyper Parameters .. 23
4.4.3.2. Creating Training Data Input Pipeline .. 23
4.4.3.3. Model Building ... 25

4.5. Training from Scratch and/or Transfer Learning ... 30
5. Creating Frozen File .. 33

5.1. Generating the .pbtxt File Inference ... 33
5.2. Generating the Frozen (.pb) File ... 33

6. Creating Binary File with Lattice SensAI ... 35
7. Hardware Implementation ... 39

7.1. Top Level Information ... 39
7.1.1. Block Diagram ... 39
7.1.2. Operational Flow .. 39
7.1.3. Core Customization... 40

7.2. Architectural Details .. 41
7.2.1. Pre-Processing CNN .. 41
7.2.2. Post-Processing CNN ... 43
7.2.3. UART Operation for Display .. 43
7.2.4. Strobe Control... 45

8. Creating FPGA Bitstream File .. 46
9. Programming the Demo ... 49

9.1. Functional Description .. 49
9.2. Programming the Hand Gesture Recognition on iCE40 UltraPlus SPI Flash .. 49

10. Running the Demo .. 55
10.1. Running the Demo in LEDs .. 55
10.2. Running the Demo in Windows UART Display Utility ... 57

Technical Support Assistance ... 58
Revision History .. 59

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02206-1.0

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 8
Figure 2.1. Lattice Himax HM01B0 UPduino Shield Board ... 9
Figure 2.2. Download CUDA Repo .. 10
Figure 2.3. Install CUDA Repo ... 10
Figure 2.4. Fetch Keys ... 10
Figure 2.5. Update Ubuntu Packages Repositories ... 10
Figure 2.6. CUDA Installation .. 11
Figure 2.7. cuDNN Library Installation .. 11
Figure 2.8. Anaconda Installation ... 11
Figure 2.9. Accept License Terms .. 12
Figure 2.10. Confirm/Edit Installation Location .. 12
Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion ... 12
Figure 2.12. Anaconda Environment Activation ... 13
Figure 2.13. TensorFlow Installation ... 13
Figure 2.14. TensorFlow Installation Confirmation .. 13
Figure 2.15. TensorFlow Installation Completion ... 13
Figure 2.16. Easydict Installation .. 14
Figure 2.17. Joblib Installation .. 14
Figure 2.18. Keras Installation .. 14
Figure 2.19. OpenCV Installation .. 15
Figure 2.20. Pillow Installation .. 15
Figure 3.1. UART Display Windows Application .. 16
Figure 3.2. Capture Dataset Image ... 17
Figure 3.3. Dataset Format Sample .. 17
Figure 4.1. Training Code Directory Structure .. 18
Figure 4.2. Augmentation Operations Sample ... 18
Figure 4.3. Training Code Flow Diagram ... 22
Figure 4.4. Code Snippet – Hyper Parameters .. 23
Figure 4.5. Code Snippet – Build Input ... 23
Figure 4.6. Code Snippet – Parse tfrecords ... 24
Figure 4.7. Code Snippet – Convert Image to Grayscale ... 24
Figure 4.8. Code Snippet – Convert and Scale Image to BGR ... 24
Figure 4.9. Code Snippet – Create Queue ... 25
Figure 4.10. Code Snippet – Add Queue Runners ... 25
Figure 4.11. Code Snippet – Create Model ... 25
Figure 4.12. Code Snippet – Fire Layer ... 25
Figure 4.13. Code Snippet – Convolution Block .. 26
Figure 4.14. Code Snippet: Feature depth array for fire layers .. 26
Figure 4.15. Code Snippet – Quantization Parameters ... 27
Figure 4.16. Code Snippet – Forward Graph Fire Layers .. 27
Figure 4.17. Code Snippet – Convolution Quantization .. 28
Figure 4.18. Code Snippet – Loss Function ... 28
Figure 4.19. Code Snippet – Optimizers ... 28
Figure 4.20. Code Snippet – Restore Checkpoints .. 28
Figure 4.21. Code Snippet – Save .pbtxt ... 29
Figure 4.22. Code Snippet – Training Loop ... 29
Figure 4.23. Code Snippet – _LearningRateSetterHook ... 29
Figure 4.24. Code Snippet – Save Summary for TensorBoard .. 30
Figure 4.25. Code Snippet – Logging Hook ... 30
Figure 4.26. Hand Gesture Recognition – Run Script .. 30
Figure 4.27. Hand Gesture Recognition – Trigger Training ... 30
Figure 4.28. Hand Gesture Recognition – Trigger Training with Transfer Learning .. 31

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 5

Figure 4.29. Hand Gesture Recognition – Training Logs ... 31
Figure 4.30. Hand Gesture Recognition – Confusion Matrix .. 31
Figure 4.31. TensorBoard – Launch .. 32
Figure 4.32. TensorBoard Scalars ... 32
Figure 4.33. Checkpoint Storage Directory Structure ... 32
Figure 5.1. .pbtxt File Generation for Inference ... 33
Figure 5.2. Generated .pbtxt for Inference ... 33
Figure 5.3. Run genpb.py to Generate Inference .pb ... 33
Figure 5.4. Frozen Inference .pb Output .. 34
Figure 6.1. SensAI Home Screen ... 35
Figure 6.2. SensAI – Network File Selection ... 36
Figure 6.3. SensAI – Image Data File Selection ... 36
Figure 6.4. SensAI – Project Settings .. 37
Figure 6.5. SensAI – Analyze Project ... 37
Figure 6.6. Q Format Settings for Each Layer ... 38
Figure 6.7. Compile Project .. 38
Figure 7.1. Himax Hand Gesture Detection Using iCE40 UltraPlus Block Diagram ... 39
Figure 7.2. Masking and Cropping Image ... 41
Figure 7.3. Downscaling Image ... 42
Figure 7.4. Foreground Detection from Downscaled Image .. 42
Figure 7.5. Logic to Obtain Maximum Index of Detected Gesture ... 43
Figure 7.6. UART Operation for Lattice UART Display Software ... 44
Figure 7.7. Logic for UART Display Data ... 44
Figure 8.1. Lattice Radiant – Default Screen ... 46
Figure 8.2. Lattice Radiant – Open iCE40 Himax Gesture Detection Project File ... 46
Figure 8.3. Lattice Radiant – Design Check After Loading the Project File ... 47
Figure 8.4. Lattice Radiant – Trigger Bitstream Generation ... 47
Figure 8.5. Lattice Radiant – Bit Generation Report Window .. 48
Figure 9.1. iCE40 Hand Gesture Demo Diagram ... 49
Figure 9.2. Radiant Programmer – Default Screen ... 49
Figure 9.3. Radiant Programmer – Initial Project Window ... 50
Figure 9.4. Diamond Programmer – Device Selection .. 50
Figure 9.5. Diamond Programmer – Device Operation .. 51
Figure 9.6. Radiant Programmer – Bitstream Flashing Settings ... 52
Figure 9.7. Radiant Programmer – Firmware Bin File Flashing Setting .. 53
Figure 9.8. Radiant Programmer – Program Device ... 54
Figure 9.9. Radiant Programmer – Output Console ... 54
Figure 10.1. Camera and LED Location ... 55
Figure 10.2. UART Windows Utility... 57
Figure 10.3. Brightness Mode On/Off ... 57

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02206-1.0

Tables
Table 4.1. Hand Gesture Recognition Training Network Topology ... 19
Table 7.1. Core Parameter .. 40
Table 7.2. UART Display Modes and Description .. 43
Table 10.1. Hand Gesture Recognition Classes ... 56

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 7

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CNN Convolutional Neural Network

FPGA Field-Programmable Gate Array

LED Light-emitting diode

LSB Least Significant Bit

NN Neural Network

ML Machine Learning

MSB Most Significant Bit

SPI Serial Peripheral Interface

USB Universal Serial Bus

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02206-1.0

1. Introduction
This document describes the hand gesture detection design process using an iCE40 UltraPlus™ FPGA platform (HiMax
HM01B0 UPduino Shield v2.1).

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

 Setting up the basic environment

 Preparing the dataset

 Training the machine

 Training the machine and creating the checkpoint data

 Creating the frozen file (*.pb)

2. Compiling Neural Network

 Creating the filter and firmware binary files with Lattice SensAI 3.1 program

3. FPGA Design

 Creating the FPGA bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

 Flashing the binary and bit stream files to iCE40 UltraPlus UPduino hardware

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 9

2. Setting Up the Basic Environment

2.1. Software and Hardware Requirements
This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Software
 Lattice Radiant™ Tool v2.2 – Refer to http://www.latticesemi.com/latticeradiant

 Lattice Radiant Programmer v2.2 – Refer to http://www.latticesemi.com/latticeradiant

 Lattice SensAI Compiler v3.1 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

2.1.2. Hardware

This design uses the HiMax HM01B0 UPduino Shield as shown in Figure 2.1. Refer to
http://www.latticesemi.com/products/developmentboardsandkits/himaxhm01b0.

Figure 2.1. Lattice Himax HM01B0 UPduino Shield Board

Note: HiMax HM01B0 board with IR sensor is needed in order to run Hand Gesture demo.

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
http://www.latticesemi.com/products/developmentboardsandkits/himaxhm01b0

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02206-1.0

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. The NVIDIA library
and TensorFlow version is dependent on the PC and Ubuntu/Windows version.

2.2.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af

80.pub

Figure 2.4. Fetch Keys

$sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 11

Figure 2.6. CUDA Installation

2.2.2. Installing the cuDNN

To install the cuDNN:

1. Create NVIDIA developer account in https://developer.nvidia.com.

2. Download cuDNN lib in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN:
$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.3. Installing the Anaconda and Python 3

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/distribution/#download-section.

2. Download Python 3 version of Anaconda for Linux.

3. Install the Anaconda environment by running the command below:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release

Figure 2.8. Anaconda Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/distribution/#download-section

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02206-1.0

4. Accept the license.

Figure 2.9. Accept License Terms

5. Confirm the installation path. Follow the instruction on screen if you want to change the default path.

Figure 2.10. Confirm/Edit Installation Location

6. After installation, enter No as shown in Figure 2.11.

Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 13

2.2.4. Installing the TensorFlow v1.14

To install the TensorFlow v1.14:

1. Activate the conda environment by running the command below:
$ source <conda directory>/bin/activate

Figure 2.12. Anaconda Environment Activation

2. Install the TensorFlow by running the command example below:
$ conda install tensorflow-gpu==1.14.0

Figure 2.13. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.14.

Figure 2.14. TensorFlow Installation Confirmation

Figure 2.15 shows that the TensorFlow installation is complete.

Figure 2.15. TensorFlow Installation Completion

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02206-1.0

2.2.5. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:
$ conda install –c conda-forge easydict

Figure 2.16. Easydict Installation

2. Install Joblib by running the command below:
$ conda install joblib

Figure 2.17. Joblib Installation

3. Install Keras by running the command below:
$ conda install keras

Figure 2.18. Keras Installation

4. Install OpenCV by running the command below:
$ conda install opencv

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 15

Figure 2.19. OpenCV Installation

5. Install Pillow by running the command below:
$ conda install pillow

Figure 2.20. Pillow Installation

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02206-1.0

3. Preparing the Dataset
This section provides the guidelines for preparing dataset to train the hand gesture model for the iCE40 UltraPlus
device. Note that these examples are for reference only. Lattice is not recommending any of these dataset(s). It is
recommended that you gather and prepare your own datasets for your end applications.

3.1. Creating the Dataset
The dataset is an important part of machine learning and model training. Feeding an accurate and diverse dataset is
vital for training a high accuracy neural network.

Before creating the dataset, make sure you have the Hand Gesture Recognition UART Display software and iCE40
UltraPlus device flashed with prebuilt binaries of hand gesture demo.

Note: To flash prebuilt binaries, follow the steps in the Programming the Demo section.

Once the iCE40 UltraPlus device is inserted in your Windows system, the application automatically detects the port,
which appears in the UART Port as shown in Figure 3.1.

Figure 3.1. UART Display Windows Application

To create the dataset:

1. Select the Image and Save Images checkboxes.

2. Enter the Name Prefix and select the destination folder for the gesture image.

3. Click UART get to display the image as shown in Figure 3.2.

4. Click Save.
Note: Take at least 1000 images per gesture class. Try to capture the image from all aspects to increase the model
accuracy. Also, ensure that value for Brightness Mode is None.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 17

Figure 3.2. Capture Dataset Image

5. Store one gesture class image in a single folder.

6. Name the gesture class from 1 to N, where N is <= 14. As shown in Figure 3.3, a total of 10 gesture datasets are
displayed along with eleventh class as background. Arrange your dataset accordingly.

Note: (N+1) Th class is always the background, which contains plain black images.

Figure 3.3. Dataset Format Sample

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02206-1.0

4. Training the Machine

4.1. Training Code Structure

Figure 4.1. Training Code Directory Structure

4.2. Dataset Augmentation
To augment the data, use the canvas approach. Place one image in a different part of the black canvas (see Figure 4.2).

Figure 4.2. Augmentation Operations Sample

To run augmentation on the dataset, go to the data directory under training code and run the command below:
$ python augmentation_canvas.py -i <Input_dataset_root_path> -o

<Output_augmented_dataet_path>

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 19

4.3. Generating tfrecords from Augmented Dataset
Since this reference design only takes tfrecords of a specific format for input, generate the tfrecords file first.

To generate tfrecords from the augmented dataset you generated in Dataset Augmentation, run the command below:
$ python tfrecord-gen.py -i <Input_augmented_dataset_root> -o

<Output_tfrecord_path>

The input directory should have the directory structure shown in Figure 3.3.

Note: The output of the augmentation script (see Figure 4.2) is in the expected format of ‘tfrecord-gen.py’.

4.4. Neural Network Architecture

4.4.1. Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Hand Gesture Recognition
design.

Table 4.1. Hand Gesture Recognition Training Network Topology

Grayscale Image Input (32 x 32 x 1)

Fire 1 Conv3x3–16 Conv3x3 - # where:

 Conv3x3 = 3 x 3 Convolution filter Kernel size

 # = The number of filters

For example, Conv3x3 - 8 = 8 3 x 3 convolution filters

Batch Norm – Batch Normalization

FC - # where:

 FC – Fully-connected layer

 # – The number of outputs

Batch Norm

ReLU

MaxPool

Fire 2 Conv3x3 – 16

Batch Norm

ReLU

Fire 3 Conv3x3 – 16

Batch Norm

ReLU

MaxPool

Fire 4 Conv3x3 – 32

Batch Norm

ReLU

Fire 5 Conv3x3 – 32

Batch Norm

ReLU

MaxPool

Fire 6 Conv3x3 – 44

Batch Norm

ReLU

Fire 7 Conv3x3 – 48

Batch Norm

ReLU

MaxPool

Dropout Dropout - 0.80

logit FC – (2 + Num-Gestures)

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02206-1.0

 In Table 4.1, the layer contains Convolution (conv), Batch Normalization (bn), ReLU, MaxPool, and Dropout layers.

 The output of layer logit is the number of classes in the dataset, along with background and unknown considered as
two gesture classes. The total number of outputs of the ogit layer is # of classes + 2.

 Layer information:

 Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels), which convolves with the input layer/image and generates an activation map
(that is. feature map). This filter is an array of numbers (called weights or parameters). Each of these filters can
be thought of as feature identifiers, such as straight edges, simple colors, curves, and other high-level features.
For example, the filters on the first layer convolve around the input image and activate (or compute high
values) when the specific feature it is looking for (such as curve, for example) is in the input volume.

 ReLU (Activation Layer)

It is the convention to apply a nonlinear layer (or activation layer) immediately after each conv layer. The
purpose of this layer is to introduce nonlinearity to a system that is basically computing linear operations
during the conv layers (element wise multiplications and summations). In the past, nonlinear functions such as
tanh and sigmoid were used, but researchers found out that ReLU layers work far better because the network
is able to train a lot faster (because of the computational efficiency) without making a significant difference in
accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input volume. In basic
terms, this layer changes all the negative activations to 0. This layer increases the nonlinear properties of the
model and the overall network without affecting the receptive fields of the conv layer.

 Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer.
In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2 x 2) and a stride of the same length. It then applies a filter to the input volume
and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
controls over fitting. This term is used when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

 Batch Normalization Layer

Batch Normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing
to the input data are performed. For example, you can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). This prevents the early saturation of non-linear
activation functions such as sigmoid and assures that all input data are in the same range of values, and others.

An issue, however, appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below during training time:

a. Calculate the mean and variance of the layers input.

b. Normalize the layer inputs using the previously calculated batch statistics.

c. Scale and shift to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be
carefree about weight initialization, works as regularization in place of dropout, and other regularization
techniques.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 21

 Dropout layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network does not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. That means the network should be able to
provide the right classification or output for a specific example even if some of the activations are dropped
out. It makes sure that the network is not getting too fitted to the training data and thus helps alleviate the
over fitting problem. An important note is that this layer is only used during training, and not during test time.

 Fully-connected layer

This layer basically takes an input volume (whatever the output is of the Conv, ReLU, or MaxPool layer
preceding it) and outputs an N dimensional vector where N is the number of classes that the program must
choose from.

 Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of
the network and control over fitting.

4.4.2. Hand Gesture Recognition Network Output

The Hand Gesture recognition network gives N + 2 values from the last output node, where N is number of gesture
trained. Two additional values represent background and unknown as two gesture classes.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02206-1.0

4.4.3. Training Code Overview

resnet_main.py

Mode is
Evaluation?

Create training
data input pipeline

Create evaluation
data input pipeline

Read TFrecords

Create Input Pipe
with Augmentation

operations

Create input FIFO
Queue

Read TFrecords

Create input FIFO
Queue

Build model

Restore
checkpoint if

available

Mode is
Freeze?

Training loop

Train model

Save checkpoints

Build evaluation
model

Restore
checkpoints

Run Evaluation on
given batches and

print states

Save inference
.pbtxt

Exit

Figure 4.3. Training Code Flow Diagram

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 23

4.4.3.1. Configuring Hyper Parameters

Figure 4.4. Code Snippet – Hyper Parameters

To configure hyper parameters:

1. Set the number of gestures in num_classes (default = 10+2).

2. Change the batch size for specific mode, if required.

Note: The hps contains the list of hyper parameters for custom resnet backbone and optimizer.

4.4.3.2. Creating Training Data Input Pipeline

 build_input () from cifer_input.py reads Tfrecords and creates some augmentation operations before pushing the
input data to FIFO queue.

 FLAGS.dataset – dataset type (signlang)

 FLAGS.train_data_path – input path to tfrecords

 FLAGS.batch_size – training batch size

 FLAGS.mode – train or eval

 FLAGS.gray – True if model is of 1 channel otherwise False

 hps[1] – num_classes configured in model hyper parameters

Figure 4.5. Code Snippet – Build Input

Reading tfrecords

Figure 4.6 shows the reading and parsing of tfrecord files and features such as height, label, and image.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02206-1.0

Figure 4.6. Code Snippet – Parse tfrecords

Converting and Scaling Image to Grayscale

Figure 4.7. Code Snippet – Convert Image to Grayscale

 Convert the RGB image to grayscale if gray flag is true.

Figure 4.8. Code Snippet – Convert and Scale Image to BGR

 Unstack the channel layers and convert to BGR format if the image mode is not gray. The RGB is converted to BGR
because the iCE40 UltraPlus device works on BGR image.

 Divide every element on image with 128 so that the values can be scaled to 0–2 range.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 25

Creating Input Queue

Figure 4.9. Code Snippet – Create Queue

 tf.RandomShuffleQueue is a queue implementation that dequeues elements in random order.

Figure 4.10. Code Snippet – Add Queue Runners

 Figure 4.9 and Figure 4.10 show the enqueuing of images and labels to RandomShuffleQueue and adding queue
runners. This directly feeds data to the network.

4.4.3.3. Model Building

CNN Architecture

Figure 4.11. Code Snippet – Create Model

 The Build_graph () method creates a training graph or training model using the configuration shown in Figure 4.11.

 The Build_graph creates a model with seven fire layers, followed by the dropout layer and fully-connected layer.
Each fire layer contains the Convolution, ReLU as activation, Batch Normalization, and MaxPool (in Fire 1, Fire 3,
Fire 5, and Fire 7 only). The fully-connected layer gives the final output.

Figure 4.12. Code Snippet – Fire Layer

 The arguments of _vgg_layer are specified below:

 The first argument is the name of the block.

 The second argument is the input node to the new fire block.

 oc – Output channels are the number of filters of the convolution.

 freeze – Setting weights are trainable or not.

 w_bin – Quantization parameter for convolution.

 a_bin – Quantization parameter for activation binarization (ReLU).

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02206-1.0

 pool_en – Flag to include MaxPool in the fire layer.

 min_rng, max_rng – Setting maximum and minimum values of quantized activation. Default values for
min_rng = 0.0 and max_rng = 2.0.

 bias_on – Sets bias add operation in graph if true.

 phase_train – Argument to generate graph for inference and training.

Figure 4.13. Code Snippet – Convolution Block

 In the resnet_model.py file, the basic network construction blocks are implemented in the specific functions below:

 Convolution – _conv_layer

 Batch Normalization – _batch_norm_tensor2

 ReLU – binary_wrapper

 MaxPool – _pooling_layer

 _conv_layer

 The _conv_layer contains the code to create the convolution block. This code contains the kernel variable,
variable initializer, quantization code, convolution operation, and ReLU if argument relu is True.

 _batch_norm_tensor2

 The _batch_norm_tensor2 contains the code to create the batch normalization operation for both training and
inference phase.

 binary_wrapper

 The binary_wrapper is used for quantized activation with ReLU.

 _pooling_layer

 The _pooling_layer adds MaxPooling with the given kernel size and stride size to training and inference graph.

Fire Layer Feature Depth

The depth list contains the feature depth for seven fire layers in network.

Figure 4.14. Code Snippet: Feature depth array for fire layers

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 27

Quantization

 For more information about quantization, refer to the Quantization section in Neural Network Architecture.

Figure 4.15. Code Snippet – Quantization Parameters

 fl_w_bin – Quantization parameter for first convolution layer

 fl_a_bin – Quantization parameter for activation of first layer

 ml_w_bin – Quantization parameter for rest of convolution layers

 ml_a_bin – Quantization parameter for rest of activation layers

 l1_w_bin – Quantization parameter for multiplication in fully-connected layer

 l1_a_bin – Quantization parameter for bias add operation in fully-connected layer

 min_rng – Minimum value for quantization output

 max_rng – Maximum value for quantization output

Figure 4.16. Code Snippet – Forward Graph Fire Layers

 The 8-bit quantization is done on weights and activations in this model. Based on value of w_bin and a_bin, it is
decided if quantization should be performed or not.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02206-1.0

Figure 4.17. Code Snippet – Convolution Quantization

Loss Function and Optimizers

 The Loss Function model uses softmax_cross_entropy_with_logitds because the labels are in the form of class
index.

Figure 4.18. Code Snippet – Loss Function

 Figure 4.19 shows the four options for selecting optimizers. In this model, you are using mom optimizer as default.

Figure 4.19. Code Snippet – Optimizers

Restoring Checkpoints

Checkpoints are restored from the log directory and starts training from that checkpoint, if the checkpoints exist in the
log directory.

Figure 4.20. Code Snippet – Restore Checkpoints

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 29

Saving .pbtxt

If mode is freeze, it saves the inference graph (model) as .pbtxt file. The .pbtxt file is later used for freezing purposes.

Figure 4.21. Code Snippet – Save .pbtxt

Training Loop

 The MonitoredTrainingSession utility sets the proper session initializer/restorer. It also creates hooks related to
checkpoint and summary saving. For workers, this utility sets proper session creator, which waits for the chief to
initialize/restore. For more information, go to tf.compat.v1.train.MonitoredSession.

Figure 4.22. Code Snippet – Training Loop

 _LearningRateSetterHook

 The _LearningRateSetterHook sets the learning rate based on the training steps performed.

Figure 4.23. Code Snippet – _LearningRateSetterHook

http://www.latticesemi.com/legal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MonitoredSession

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02206-1.0

 Summary_hook

 The Summary_hook saves the TensorBoard summary for every 100 steps.

Figure 4.24. Code Snippet – Save Summary for TensorBoard

 Logging_hook

 The Logging_hook prints the logs after every 100 iterations.

Figure 4.25. Code Snippet – Logging Hook

4.5. Training from Scratch and/or Transfer Learning
To train the machine:

1. Open run script and modify the parameters as required.

Figure 4.26. Hand Gesture Recognition – Run Script

To start training, run the command below.

$./run

Figure 4.27. Hand Gesture Recognition – Trigger Training

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 31

2. To restore the checkpoints, run the same command again with the same log directory. If checkpoints are present in
the log path, it is restored and resumes training from that point.

Figure 4.28. Hand Gesture Recognition – Trigger Training with Transfer Learning

Training status can be checked in the logs by observing different terminologies like loss, precision, and confusion
matrix.

Figure 4.29. Hand Gesture Recognition – Training Logs

Figure 4.30. Hand Gesture Recognition – Confusion Matrix

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02206-1.0

3. Start TensorBoard.

$ tensorboard – logdir=<log directory of training>

Figure 4.31. TensorBoard – Launch

4. Check the training status on TensorBoard.

Figure 4.32. TensorBoard Scalars

5. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory.
These files are used for creating the frozen file (*.pb).

Figure 4.33. Checkpoint Storage Directory Structure

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 33

5. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the
steps below to generate the frozen protobuf file.

5.1. Generating the .pbtxt File Inference
Once training is completed, generate the inference .pbtxt file using the command below:

Note: Do not modify config.sh after training.

$ python resnet_main.py --train_data_path=<TFRecord_root_path>/train* --

log_root=<Logging_Checkpoint_Path> --train_dir=<tensorboard_summary_path> --

dataset='signlang' --image_size=32 --num_gpus=<num_GPUs> --mode=freeze

Figure 5.1. .pbtxt File Generation for Inference

The output pbtxt file is generated for inference under the train log directory.

Figure 5.2. Generated .pbtxt for Inference

5.2. Generating the Frozen (.pb) File
Generate .pb file from latest checkpoint using the command below from the training code’s root directory.

$ python genpb.py --ckpt_dir <COMPLETE_PATH_TO_LOG_DIRECTORY>

Figure 5.3. Run genpb.py to Generate Inference .pb

genpb.py uses the .pbtxt generated by the procedure performed in Generating the .pbtxt File Inference and the latest
checkpoint in the train directory to generate the frozen .pb file.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02206-1.0

Once the genpb.py is executed successfully, the log directory generates the <ckpt-prefix>_frozenforinference.pb file as
shown in Figure 5.2.

Figure 5.4. Frozen Inference .pb Output

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 35

6. Creating Binary File with Lattice SensAI
This chapter describes how to generate the binary file using the Lattice SensAI version 3.1 program.

Figure 6.1. SensAI Home Screen

To create the project in SensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project Name

 Framework – TensorFlow

 Class – CNN

 Device – UltraPlus

3. Click Network File and select the network (.pb) file.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02206-1.0

Figure 6.2. SensAI – Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3. SensAI – Image Data File Selection

5. Click NEXT.

6. Configure your project settings.

a. Mean Value for Data Pre-Processing – 0

b. Scale Value for Data Pre-Processing – 0.0078125

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 37

Figure 6.4. SensAI – Project Settings

7. Click OK to create the project.

8. Double-click Analyze.

Figure 6.5. SensAI – Analyze Project

9. Confirm the Q format of each layer as shown in Figure 6.6.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02206-1.0

Figure 6.6. Q Format Settings for Each Layer

10. Double-click Compile to generate the firmware and filter binary file.

Figure 6.7. Compile Project

11. The Firmware bin file location is displayed in the compilation log. Use the generated firmware bin on hardware for
testing.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 39

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

iCE40 UltraPlus

External SPI
Flash

SPI Loader
Compact CNN

Engine

I2C Master

Video
Processing

External Himax
Camera

Post Processing

UART

Output LED

Output LED

32 x 32
image

32 x 32
image

Figure 7.1. Himax Hand Gesture Detection Using iCE40 UltraPlus Block Diagram

7.1.2. Operational Flow

This section provides an overview of the data flow across the Himax UPduino board.

 The Compact CNN module is configured with the firmware (BIN) file from the external SPI Flash through the
spi_loader_wrap module. The BIN file is a command sequence code, which is generated by the Lattice Machine
Learning software tool.

 The external Himax HM01B0 imaging camera is configured with the lsc_i2cm_himax module. The grayscale
captured by the camera image is sent to the iCE40 UltraPlus device.

 When the imaging camera is active, strobe control is used for IR LEDs through the strobe_ctl module.

 The image data is then downscaled to 32 x 32 image resolution by the
ice40_himax_video_process_128_32_wide_br module to make it compatible for the Compact CNN engine input
resolution. This data is written into the internal memory block of the Compact CNN Accelerator IP Core through
the input data ports.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02206-1.0

 By using the loaded firmware and the downscaled input image, the CNN engine performs inference and generates
output.

 The Compact CNN result data (o_dout) is given to the post processing module signdet_post, which provides the
valid index value for the detected hand gesture.

 The index value from the signdet_post module is then used in the top module to drive the output debug LEDs (DS1
to DS4) and RGB LED on board. Also, the LED DS5 represents that the CNN engine is enabled and LED DS6
represents that a hand gesture is detected.

 The 32 x 32 gray scale image used for display is obtained as valid debug data from the CNN engine.

 This grayscale image of hand gesture and its corresponding index value can be observed in the Lattice UART
Display Software through the lsc_uart module.

7.1.3. Core Customization

Table 7.1. Core Parameter

Parameter Default

(Decimal)

Description

Configurable Parameter

BYTE_MODE UNSIGNED Configured for CNN input data layer width

The following are the possible configurations:

UNSIGNED – The data is directly passed to CNN input for unsigned 8-bit input data
layer.

SIGNED – 128 is subtracted from the data for signed 8-bit input data layer of CNN.

DISABLED – Disable byte mode

Non-Configurable Parameter

USE_ML 1 Enable ML engine

EN_I2CS 0 Used to instantiate I2C slave for control and debugging

EN_UART 1 Used to instantiate UART for video output

EN_CLKMASK parameter of ice40_himax_signdet_clkgen module must be 0 in
order to enable EN_UART.

EN_DUAL_UART 1 Used to get Wired AND connection for UART signal

EN_SEQ 0 Sequence mode for CNN input Data

EN_STROBE_CTL 1 Enable strobe control for power reduction

EN_FILTER 1 Enable to capture filtered maximum index value

EN_ONEHOT 0 If 1, drive one hot LED output.

If 0, drive 4-bit BCD representation LED output.

CODE_MEM TRI_SPRAM Type of Memory utilized

Other possible configurations are EBRAM, SINGLE_SPRAM, and DUAL_SPRAM.

LCD_TYPE OLED Used OLED as output type

Other possible configuration is LCD.

ROTATE 0 No rotation used to readout post processing result

Other possible values are 90, 180, and 270 degrees.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 41

7.2. Architectural Details

7.2.1. Pre-Processing CNN

The captured grayscale camera image is sent to the ice40_himax_video_process_128_32_wide_br module from the top.

The ice40_himax_video_process_128_32_wide_br module processes that image data and generates input of 32 x 32
grayscale image data for the Compact CNN IP. The pre-processing flow is described below.

 Image data values are fed serially line by line for an image frame of 640 x 320 pixels.

 Mask parameters are set to mask out the boundary area of 640 x 320 pixels to 512 x 256 pixels as shown in Figure
7.2. This 512 x 256 image data is then downscaled into 32 x 32 image data (1024 pixels) for the CNN engine.

 As shown in Figure 7.3, every 16 horizontal pixels (512/32) and 8 vertical pixels (256/32), which make a pixel block
of 16 x 8 are accumulated into a single pixel.

 The foreground detection process is used to extract the changes from moving images as shown in Figure 7.4.

 The downscaled 1024 image values of the current frame are stored and used as background image (rd_pixel_bg).

 When the new frame arrives, the newly accumulated 1024 values are also stored (accu_mod). Both old and new
values are compared. If the new value is greater than the previously stored background value, the background
value is subtracted from the new value and stored (accu_mod_br). After processing, all these 1024 values are sent
to CNN for inference.

320
256

512

640

Figure 7.2. Masking and Cropping Image

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02206-1.0

256

512

16

8

Accumulation into
Single Pixel

Figure 7.3. Downscaling Image

Figure 7.4. Foreground Detection from Downscaled Image

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 43

7.2.2. Post-Processing CNN

Post-processing is discussed below:

 For this demo, the CNN engine gives probability values for detected hand gestures to the signdet_post module.

 The signdet_post module finds out the index value (r_max_idx) of the detected hand gesture, as shown in Figure
7.5 by implementing an up-counter for index count (idx_cnt) until the CNN result is available.

 The maximum value is considered valid only if the CNN output is a positive value, that is, SIGN bit (Highest bit) is 0.

Figure 7.5. Logic to Obtain Maximum Index of Detected Gesture

 After all CNN outputs are processed, the valid maximum index value (o_max_idx) is obtained. This value is passed
to the top module, which is mainly used for three operations:

 To drive the output and debug the LEDs (DS1, DS2, DS3, and DS4) on the HM01B0 Adapter board in 4-bit BCD
format.

 To drive the RGB LED on the UPduino board through the RGB_DRIVER module.

 To observe the index value of detected gesture in the Lattice UART display software through the lsc_uart
module.

7.2.3. UART Operation for Display

This section explains the UART data transfer for Lattice UART Display Software.

 The UART communication is mentored by lsc_uart block configured at a Baud rate of 230400 in top module.

 The Lattice UART display software operates with four different modes. Each mode is identified by an ASCII
character as shown Table 7.2.

Table 7.2. UART Display Modes and Description

Mode Character ASCII Value Description

Image h 0x68 Obtain the grayscale downscaled image in display

Data i 0x69 Obtain the CNN output result after inference in display

Result j 0x6A Obtain the index value of detected hand gesture in display

Image + k 0x6B Obtain the grayscale downscaled image and its index value in display

 The lsc_uart block provides the required UART data for display by identifying the UART mode as shown in Figure
7.6.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02206-1.0

h
i
j
k

dpram
1024x8

Lattice
UART

Display
Software

UART
Data

lsc_ml_ice40_himax_signdet_top

lsc_uart
i_din o_txd

UART
Mode
Select o_dout i_rxd

Tx

Rx

Figure 7.6. UART Operation for Lattice UART Display Software

 The w_uart_dout output processed from the i_rxd data is used to identify the modes in the top module as follows:

 If w_uart_dout [2:0] is 0, it indicates Character h.So the UART mode is Image.

 If w_uart_dout [2:0] is 1, it indicates Character i. So the UART mode is Data.

 If w_uart_dout [2:0] is 2, it indicates Character j. So the UART mode is Result.

 If w_uart_dout [2:0] is 3, it indicates Character k.So the UART mode is Image+.

 The logic to obtain the UART data for an identified mode is shown in Figure 7.7.

Figure 7.7. Logic for UART Display Data

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 45

 This 8-bit UART data r_uart_din latched for its respective mode is sent back to the lsc_uart module through the
i_din port, which is then stored in a local DPRAM as shown in Figure 7.6.

 When the DPRAM is not empty, the data is sent out on the o_txd port of the lsc_uart module in the UART data
packet format consisting of a Start Bit (0), followed by the 8-bit data read out from the DPRAM, and a Stop Bit (1).

 Finally, the output data packet coming from the o_txd is sent serially to the Lattice UART Display software through
SPI Interface output (spi_mosi).

 The downscaled 32 x 32 image is obtained from the CNN as debug data on top when valid debug signal
w_debug_vld is present. This image data is sent to Lattice UART display software when frame reading is present.

 The values for the data mode are the CNN output results after inference which is sent in two bytes, latched by
result1, result2, and result3.

7.2.4. Strobe Control
This section provides an overview of the Strobe control for the IR LEDs on board.

 There are two IR LEDs placed on the left and right side of the image sensor on the board.

 The Strobe control for these IR LEDs is managed by the strobe_ctl block in the top module when EN_STROBE_CTL
parameter is enabled.

 This module uses object detection w_obj_det_trig and w_det_obj signals from the
ice40_himax_video_process_128_32_wide_br module to generate the o_en_strobe output.

 The Strobe signal for the LEDs is mainly received from this block if any of the below condition is valid:

 Image sensor is detecting the object (uses skip counter).

 Image sensor has captured the object (uses detection counter).

 Condition 1 is valid when no hand gesture is present. Hence, when trigger is present, the image sensor is detecting
the object and during this time the IR LEDs can be seen blinking slowly at regular intervals onboard.

 Condition 2 is valid when hand gesture is detected after trigger. So the image sensor is not in search mode
o_search_mode and the IR LEDs can be seen blinking very quickly on board.

 During both the above conditions, whether it is slow or fast, both LEDs blink simultaneously.

 Instead of keeping the IR LEDs active regularly, the power is saved due to the pulsed ON/OFF control. It helps
increase the life span of the LEDs.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02206-1.0

8. Creating FPGA Bitstream File
This section describes the steps to compile RTL bitstream using Lattice Radiant tool.

To create the FPGA bitstream file:

1. Open the Lattice Radiant software. Default screen is shown in Figure 8.1.

Figure 8.1. Lattice Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Lattice Radiant project file ice40_himax_upduino2_signdet.rdf. As shown in Figure 8.2, you can also open
the project by selecting the yellow folder shown in the user interface.

Figure 8.2. Lattice Radiant – Open iCE40 Himax Gesture Detection Project File

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 47

4. After opening the project file, check the following points shown in Figure 8.3.

 The design loaded with zero error message shown in the Output window.

 Check the following information in the Project Summary window.

 Part Number – iCE40UP5K-SG48I

 Family – iCE40UP

 Device – iCE40UP5K

 Package – SG48

Figure 8.3. Lattice Radiant – Design Check After Loading the Project File

5. If the design is loaded without errors, click the Export Files button to trigger bitstream generation as shown in
Figure 8.4.

Figure 8.4. Lattice Radiant – Trigger Bitstream Generation

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02206-1.0

6. The Lattice Radiant tool displays Saving bit stream in … message in the Reports window. The bitstream is generated
at Implementation Location shown in Figure 8.5.

Figure 8.5. Lattice Radiant – Bit Generation Report Window

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 49

9. Programming the Demo

9.1. Functional Description
Figure 9.1 shows the diagram of the hand gesture demo. The microphone captures audio and sends it to the iCE40
UltraPlus device. The iCE40 UltraPlus device then uses the audio data with the firmware file from the external SPI Flash
to determine the outcome.

Camera
iCE40 UltraPlus

Device
image

Binary output LEDs
outcome

External SPI Flash

Firmware

Figure 9.1. iCE40 Hand Gesture Demo Diagram

9.2. Programming the Hand Gesture Recognition on iCE40 UltraPlus SPI Flash
This section provides the procedure for programming the SPI Flash on the Himax HM01B0 UPduino Shield board.

There are two different files that should be programmed into the SPI Flash. These files are programmed to the same SPI
Flash, but at different addresses:

 Bitstream

 Firmware

To program the SPI Flash in Radiant Programmer:

1. Connect the Himax HM01B0 UPduino Shield board to the PC using a micro USB cable. Please note that the USB
connector onboard is delicate so handle it with care.

2. Start Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.2. Radiant Programmer – Default Screen

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02206-1.0

Figure 9.3. Radiant Programmer – Initial Project Window

3. Click OK.

4. In the Radiant Programmer main interface, select iCE40 UltraPlus for Device Family and iCE40UP5K for Device as
shown in Figure 9.4.

Figure 9.4. Diamond Programmer – Device Selection

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 51

5. Right-click and select Device Properties.

Figure 9.5. Diamond Programmer – Device Operation

6. Apply the settings below:

a. Under Device Operation, select the options below:

 Target Memory – External SPI Flash Memory

 Port Interface – SPI

 Access Mode – Direct Programming

 Operation – Erase, Program, Verify

b. Under SPI Flash Options, select the options below:

 Family – SPI Serial Flash

 Vendor – Winbond

 Device – W25Q32

 Package – 8-pin SOIC

7. To program the bitstream file, select the options as shown in Figure 9.6.

a. Under Programming Options, select the Hand Gesture RTL bitstream file in Programming file.

b. Click Load from File to update the Data file size (Bytes) value.

c. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00010000

8. Click OK.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02206-1.0

Figure 9.6. Radiant Programmer – Bitstream Flashing Settings

9. Initially, the .xcf file only has one option to add bin file. You need to program two bin files in case of hand gesture

demo, add one more device from in the toolbar. Set Device Family to iCE40 UltraPlus and Device to
iCE40UP5K.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 53

10. To program the firmware, select the options as shown in Figure 9.7.

a. Under Programming Options, select the hand gesture firmware generated by the SensAI tool.

b. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00020000

 End Address (Hex) – 0x00030000

11. Click OK.

Figure 9.7. Radiant Programmer – Firmware Bin File Flashing Setting

12. In the main interface, click Program Device to program the binary file.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02206-1.0

Figure 9.8. Radiant Programmer – Program Device

13. After successful programming, the Output console displays the result as shown in Figure 9.9.

Figure 9.9. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 55

10. Running the Demo

10.1. Running the Demo in LEDs
To run the demo and observe results on the board:

1. Power ON the Himax HM01B0 UPduino Shield board.

2. Show the gesture in front of the board, which results to the LEDs to turn on. Refer to Figure 10.1 for the LED
information.

Microphone 1

camera

Binary output LED (ldx = 0) (LSB)

Binary output LED (ldx = 1)

Binary output LED (ldx = 2)

Binary output LED (ldx = 3) (MSB)

On if ML engine is running

ON if object is in front of camera

Microphone 2

Figure 10.1. Camera and LED Location

 DS1- DS4 – Binary output LEDs, where DS1 is LSB (Least Significant Bit) and DS4 is MSB (Most Significant Bit).

 DS5 – If this LED is on, ML engine is running.

 DS6 – If this LED is on, an object is in front of camera.

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02206-1.0

Table 10.1. Hand Gesture Recognition Classes

Gesture ID Gesture Image Detection LEDs state

[DS4, DS3, DS2, DS1]

1

[OFF, OFF, OFF, ON]

2

[OFF, OFF, ON, OFF]

3

[OFF, OFF, ON, ON]

4

[OFF, ON, OFF, OFF]

5

[OFF, ON, OFF, ON]

6

[OFF, ON, ON, OFF]

7

[OFF, ON, ON, ON]

8

[ON, OFF, OFF, OFF]

9

[ON, OFF, OFF, ON]

10

[ON, OFF, ON, OFF]

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 57

10.2. Running the Demo in Windows UART Display Utility
To run the demo in Windows UART Display utility:

1. Start UART Windows utility.

Select COM Port

Enable Image saving
Brightness Mode: Dimming

Brightness Mode: On/Off

Select image destination Path

Enable Image mode

Capture and save image
Start Stop UART Utility

Figure 10.2. UART Windows Utility

UART display utility can display camera output, predicted hand gesture class and change screen brightness based
on brightness mode configured. This utility can also be used to capture camera output images as mentioned in the
Creating the Dataset section.

2. Apply the settings below to run the demo:

a. Select UART port.

b. Enable Image to see the camera output image.

c. Click on Start UART.

d. Predicted class is displayed as shown in Figure 10.2.

3. Run the demo with different brightness modes:

 There are two brightness modes: Dimming and On/Off.

 In Dimming Mode, the system’s brightness is adjusted by the detected class index.

 For example, if number of classes are 10, the brightness level is 20 if class id detected is 2.
Note: UART Widows utility has default number of classes as 10.

 In On/Off mode, if detected class id is 1, then the display is turned off. For the rest of class indexes, display is
on.

Figure 10.3. Brightness Mode On/Off

http://www.latticesemi.com/legal

iCE40 UltraPlus Hand Gesture Detection
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02206-1.0

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

iCE40 UltraPlus Hand Gesture Detection
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02206-1.0 59

Revision History

Revision 1.0, December 2020

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	iCE40 UltraPlus Hand Gesture Detection
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Lattice Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. Installing the cuDNN
	2.2.3. Installing the Anaconda and Python 3
	2.2.4. Installing the TensorFlow v1.14
	2.2.5. Installing the Python Package

	3. Preparing the Dataset
	3.1. Creating the Dataset

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Dataset Augmentation
	4.3. Generating tfrecords from Augmented Dataset
	4.4. Neural Network Architecture
	4.4.1. Neural Network Architecture
	4.4.2. Hand Gesture Recognition Network Output
	4.4.3. Training Code Overview
	4.4.3.1. Configuring Hyper Parameters
	4.4.3.2. Creating Training Data Input Pipeline
	Reading tfrecords
	Converting and Scaling Image to Grayscale
	 Divide every element on image with 128 so that the values can be scaled to 0–2 range.
	Creating Input Queue
	 tf.RandomShuffleQueue is a queue implementation that dequeues elements in random order.

	4.4.3.3. Model Building
	CNN Architecture
	Fire Layer Feature Depth
	Quantization
	Loss Function and Optimizers
	Restoring Checkpoints
	Saving .pbtxt
	Training Loop

	4.5. Training from Scratch and/or Transfer Learning

	5. Creating Frozen File
	5.1. Generating the .pbtxt File Inference
	5.2. Generating the Frozen (.pb) File

	6. Creating Binary File with Lattice SensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Operational Flow
	7.1.3. Core Customization

	7.2. Architectural Details
	7.2.1. Pre-Processing CNN
	7.2.2. Post-Processing CNN
	7.2.3. UART Operation for Display
	7.2.4. Strobe Control

	8. Creating FPGA Bitstream File
	9. Programming the Demo
	9.1. Functional Description
	9.2. Programming the Hand Gesture Recognition on iCE40 UltraPlus SPI Flash

	10. Running the Demo
	10.1. Running the Demo in LEDs
	10.2. Running the Demo in Windows UART Display Utility

	Technical Support Assistance
	Revision History
	Revision 1.0, December 2020

