

Lattice Sentry Root-of-Trust Reference
Design for MachXO3D

User Guide

FPGA-RD-02203-1.0

July 2020

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02203-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 3

Contents
Acronyms in This Document ... 5
1. Introduction .. 6

1.1. Purpose ... 6
1.2. Audience ... 6
1.3. Document Structure .. 6

2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction .. 7
2.1. PFR .. 7
2.2. RoT .. 7
2.3. Lattice RoT Mechanism ... 7
2.4. System Architecture .. 8
2.5. Functionality Overview ... 8

2.5.1. RISC-V Processor ... 8
2.5.2. Lattice Sentry QSPI Master Streamer ... 8
2.5.3. Lattice Sentry QSPI Monitor ... 9
2.5.4. Lattice Sentry I2C Monitor .. 9
2.5.5. Lattice Sentry ESB Mux ... 9
2.5.6. Lattice Sentry PLD Interface .. 9
2.5.7. Embedded Function Block .. 10
2.5.8. General Peripherals .. 10

3. PFR System Architecture and Runtime Flow .. 11
3.1. Firmware Architecture .. 11
3.2. Runtime Flow .. 11
3.3. Configuration .. 13

3.3.1. Configuration Flow ... 13
3.3.2. MachXO3D PFR Manifest Manager .. 15

3.4. Boot Up Protection ... 16
3.5. Recovery .. 17
3.6. Detection ... 18
3.7. Logs and Reporting .. 19

4. PFR IP API Reference .. 20
4.1. Lattice Sentry QSPI Monitor .. 20
4.2. Lattice Sentry QSPI Streamer .. 22
4.3. Lattice Sentry I2C Monitor ... 24
4.4. Lattice Sentry ESB Mux ... 26
4.5. Lattice Sentry PLD Interface .. 30

5. PFR Component API Reference .. 32
5.1. Manifest Management .. 32
5.2. OOB Management... 35
5.3. Security Manager .. 37
5.4. Log Management .. 39

6. PFR System Design (from Lattice Propel) ... 40
6.1. PFR Solution Template .. 40
6.2. PFR System Design Customization .. 41

6.2.1. Customer PLD Customization ... 41
6.3. System-level Simulation .. 42

6.3.1. Simulation Details ... 42
7. PFR System Validation Guide .. 43

7.1. PFR Utilities ... 43
7.1.1. PFR Demo Tool GUI ... 43

7.2. Key Feature Validation Method .. 46
7.2.1. Function Simulation .. 46
7.2.2. Authentication .. 47

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02203-1.0

7.2.3. Protection ... 48
7.2.4. Recovery ... 51

Reference .. 54
Revision History .. 55

Figures
Figure 2.1. Lattice PFR System Architecture ... 8
Figure 3.1. Software Architecture of Lattice PFR Solution .. 11
Figure 3.2. Lattice PFR Runtime Flow ... 12
Figure 3.3. Lattice PFR 2. 0 Configuration Handler Flow .. 14
Figure 3.4. Launch Manifest Manager in Lattice Propel SDK .. 15
Figure 3.5. Manifest Manager Window .. 15
Figure 3.6. PFR Boot-up Protection Handler ... 16
Figure 3.7. PFR Recovery Handler ... 17
Figure 3.8. PFR Detection Handler .. 18
Figure 6.1. Lattice Propel Template Flow ... 40
Figure 6.2. Customer PLD Work Flow ... 41
Figure 6.3. PFR System Simulation Platform Overview .. 42
Figure 7.1. Launch Lattice PFR Demo Tool .. 43
Figure 7.2 COM Port Scan of the Lattice PFR Demo Tool ... 44
Figure 7.3 Enable Lattice PFR Demo Tool ... 44
Figure 7.4. Send Command of Lattice PFR Demo Tool ... 45
Figure 7.5 Logging of Lattice PFR Demo Tool .. 45
Figure 7.6 Read Address Space of Lattice PFR Demo Tool .. 46
Figure 7.7. BMC Image Authentication for Flash 0 ... 47
Figure 7.8. Get logs for image authentications ... 48
Figure 7.9. Initial value of 0x00300000~0x0030000F ... 49
Figure 7.10. Value of 0x00300000~0x0030000F After write .. 49
Figure 7.11. Value of 0x00300100~0x0030010F after write ... 50
Figure 7.12. Logs of Illegal Operation ... 51
Figure 7.13. Authentication Failed with Destroyed Image ... 52
Figure 7.14. Authenticate Primary Image after Recovery Done ... 53

Tables
Table 3.1. Authority Level Definition .. 18
Table 3.2. Lattice PFR Log Format Definition .. 19

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 5

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AMBA Advanced Microcontroller Bus Architecture used by the RISC-V to communicate with peripherals.

BMC Baseboard Management Controller

BSP
Board Support Package, the layer of software containing hardware-specific drivers and libraries to function in a
particular hardware environment.

CoT Chain of Trust

CPU Central Processing Unit

ECDSA Elliptic Curve Digital Signature Algorithm

EFB Embedded Function Block, a hard block in Lattice FPGA device.

ESB Embedded Security Block, a hardened security block in MachXO3D device.

GPIO General Purpose Input Output.

GUI Graphic User Interface

HAL
Hardware Abstraction Layer, a software interface to hide the detail of the hardware design and provide general
services to the upper layer.

I2C Inter Integrated Circuit

PFR Platform Firmware Resiliency

QSPI Quad Serial Peripheral Interface

OOB Out of Band

PCH Platform Controller Hub

PLD Programmable Logic Device

RISC-V
Reduced Instruction Set Computer – Five, a free and open instruction set architecture (ISA) enabling a new era
of processor innovation through open standard collaboration.

RoT Root of Trust

RTL Register Transfer Level

Rx Receiver

SDK
System Design and Develop Kit. A set of software development tools that allows the creation of applications for
software package on the Lattice embedded platform.

SHA Secure Hash Algorithm

SoC System on Chip

SPI Serial Peripheral Interface

Tx Transmitter

UART Universal Asynchronous Receiver-Transmitter

UFM User Flash Memory

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02203-1.0

1. Introduction

1.1. Purpose
Lattice MachXO3D device is a new low-density FPGA with enhanced security features and on-chip dual boot flash. The
enhanced bitstream security and user-mode security functions enable MachXO3D device to be used as a Root-of-Trust
hardware solution in a complex system. With Lattice MachXO3D device, you can implement a Platform Firmware
Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193.

The purpose of this document is to introduce the design methodology of the Lattice MachXO3D PFR solution using the
Lattice Propel toolsets, which can largely reduce the design complexity.

1.2. Audience
The intended audience for this document includes embedded system designers and embedded software developers.
The technical guidelines assume readers have expertise in embedded system design and FPGA technologies. In
addition, readers are recommended to read NIST 800-193 Platform Firmware Resiliency Guidelines before reading this
document.

The content in this document is a MachXO3D PFR solution design guide of recommended flows using Lattice Propel
tools. It introduces a recommended design guide but not a constraint to experienced users.

1.3. Document Structure
The remainder of this document is with the following major sections:

 Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction section — introduces the Lattice
MachXO3D PFR RoT (Root of Trust) solution, including system architecture, functionality overview, and principles
supporting firmware resiliency.

 PFR System Architecture and Runtime Flow section — Describes the Lattice MachXO3D PFR RoT firmware
architecture, runtime flow, particularly the system configuration, protection, detection and recovery mechanism.

 PFR IP API Reference and PFR Component API Reference sections — List the API reference for the PFR IP and
component.

 PFR System Design (from Lattice Propel) section — Shows the design flow through Lattice Propel toolsets, including
template design, customization, and simulation.

 PFR System Validation Guide section — A system validation guide by applying Lattice PFR utilities.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 7

2. Platform Firmware Resiliency System (PFR) Root of Trust
(RoT) Introduction

2.1. PFR
NIST 800-193 Platform Firmware Resiliency (PFR) Guidelines describe the principles of supporting platform resiliency.
As stated in NIST 800-193, the security guidelines are based on the following three principles:

Protection: Mechanisms for ensuring that Platform Firmware code and critical data remain in a state of integrity and
are protected from corruption, such as the process for ensuring the authenticity and integrity of firmware updates.

Detection: Mechanisms for detecting when Platform Firmware code and critical data have been corrupted, or
otherwise changed from an authorized state.

Recovery: Mechanisms for restoring Platform Firmware code and critical data to a state of integrity in the event that
any such firmware code or critical data are detected to have been corrupted, or when forced to recover through an
authorized mechanism. Recovery is limited to the ability to recover firmware code and critical data.

2.2. RoT
The security mechanisms are founded in Roots of Trust (RoT). An RoT is an element that forms the basis of providing
one or more security-specific functions, such as measurement, storage, reporting, recovery, verification, and update.
An RoT must be designed to always behave in the expected manner because its proper functioning is essential to
providing its security-specific functions and because its misbehavior cannot be detected. An RoT is typically just the
first element in a Chain of Trust (CoT) and can serve as an anchor in such a chain to deliver more complex functionality.

The foundational guidelines on the Roots of Trust (RoT) that support the subsequent guidelines for Protection,
Detection, and Recovery. These guidelines are organized based on the logical component responsible for each of those
security properties:

The Root of Trust for Update (RTU) is responsible for authenticating firmware updates and critical data changes to
support platform protection capabilities.

The Root of Trust for Detection (RTD) is responsible for firmware and critical data corruption detection capabilities.

The Root of Trust for Recovery (RTRec) is responsible for recovery of firmware and critical data when corruption is
detected.

2.3. Lattice RoT Mechanism
Lattice MachXO3D FPGA can serve as the Root of Trust and provide the following services:

Image Authentication: On system power-up or reset, MachXO3D device holds the protected devices in reset while it
authenticates their boot images in SPI flash. After each signature authentication passes, MachXO3D device releases
each resets, and those devices can boot from their authenticated SPI flash image. Image authentication can also be
requested at any time through the I2C Out of Band (OOB) communication path.

Image Recovery: If a flash image becomes corrupted for any reason, it fails to be authenticated. The MachXO3D device
can restore it to a known good state by copying from an authenticated backup image.

SPI Flash Monitoring and Protection: The MachXO3D device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external SPI quick switches. The monitors can be configured to watch
for specific SPI flash commands and address ranges defined by the system designer and designate them as authorized
(whitelisted) or unauthorized (blacklisted).

Event Logging: MachX3OD device logs security events, such as unauthorized flash accesses and notifies the BMC.

I2C Monitoring: The MachXO3D device can monitor an I2C bus for unauthorized activity and block unauthorized
transactions by disabling the I2C bus. The monitor can be configured with multiple whitelist or blacklist filters to watch
for specific byte or bit patterns defined by the system designer and designate them as authorized or unauthorized I2C
transactions.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02203-1.0

2.4. System Architecture
Figure 2.1 shows the architecture of a Lattice MachXO3D FPGA working as an RoT device. The system design consists of
a RISC-V processor connected to a set of peripherals through the AMBA bus. Software running on the processor
controls the general and PFR solution peripherals and handles all the events at runtime to perform the system
functionalities.

General Peripherals include the MachXO3D hard GPIO, UART, JTAG, and I2C Slave. These modules perform the basic
board level controls and communications. PFR solution Peripherals include EFB, ESB, QSPI Streamer/Monitor, I2C
Monitor and Customer PLD interface, which perform the main PFR functionalities. Customers can add or remove the
peripherals using the Lattice Propel tools according to their requirement. For the details of customization, refer to the
Lattice Sentry QSPI Streamer section.

ESI

GPIO

RISC-V

UART EFB

UFM

System Bus (AMBA)

QSPI Monitor

BMC

SPI switch 0
SPI Flash

SPI Flash
... SPI switch N

QSPI Master
Streamer

I2C
Monitor

...

Monitor0 MonitorN...
[Q]SPI

SPI Flash

SPI Flash

PCH

[Q]SPI [Q]SPI

Switch Ctrl Switch Ctrl

[Q]SPI [Q]SPI

[Q]SPI

[Q]SPI

[Q]SPI

[Q]SPI
I2C

OOB

GPIO

PLD I/O

UART

I2C

E
SB

 M
u

x

ESB

Ctrl HSP

Data Mux

FIFO

Mux 0 Mux N

Customer
PLD

Logic

Customer
PLD

Interface

...I2C
Slave

Timer

PIC

Soft IP

Harden Block

Customer Logic

Figure 2.1. Lattice PFR System Architecture

2.5. Functionality Overview

2.5.1. RISC-V Processor

The RISC-V Processor is a configurable CPU soft IP based on the open source Vex RISC-V core, which integrates JTAG
debugger, PIC and Timer. The RISC-V core supports RV32I instruction set and 5-stage pipelines to fulfill the
performance requirement for PFR system. JTAG debugger, PIC, and Timer can be enabled or disabled based on the
system requirement.

2.5.2. Lattice Sentry QSPI Master Streamer

Lattice Sentry QSPI Master Streamer is a configurable SPI master that supports SPI and QSPI slaves. It contains FIFOs for
Tx and Rx data, which enable it to support very long SPI transactions (more than 32 bits). It also provides an external Rx
FIFO interface (8-bit) that can be connected to the ESB for image authentication.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 9

QSPI Streamer incorporates an SPI FIFO Master that provides significant performance improvement by supporting data
read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI
transaction. The external Rx FIFO interface also enables direct transmission of input data from the SPI slave to another
block, such as the ESB without tying up the CPU or system bus.

For details on QSPI streamer, refer to Lattice Sentry QSPI Master Streamer IP Core – Lattice Propel Builder User Guide
(FPGA-IPUG-02109). For the system software developer, refer to the PFR IP API Reference section for more details on
the API reference.

2.5.3. Lattice Sentry QSPI Monitor

The QSPI Monitor is a configurable security module which can monitor one or more SPI or QSPI buses for unauthorized
activity and block transactions by controlling the chip select signal and external quick switch devices. In addition to
monitoring, it can connect external SPI/QSPI buses to the QSPI Master Streamer through a programmable mux/demux
block.

The QSPI Monitor watches the external buses for allowed flash commands and flash addresses. It provides fine grain
control over the set of allowed commands, and supports up to four configurable address spaces which can be
independently monitored for erase, program, and read commands. Address spaces can be whitelisted for erase or
program commands or blacklisted for read commands. Both 24-bit and 32-bit flash addresses are supported.

For details on the QSPI Monitor, refer to Lattice Sentry QSPI Monitor IP Core for MachXO3D – Lattice Propel Builder
User Guide (FPGA-IPUG-02110). For the system software developer, refer to the PFR IP API Reference section for more
details on the API reference.

2.5.4. Lattice Sentry I2C Monitor

The I2C Monitor is a configurable security module which can monitor traffic on an I2C bus to identify unauthorized
activity, based on set of up to 20 programmable filters. If unauthorized activity is detected, the I2C bus is disabled and
firmware is notified so that an event can be logged.

For details of the I2C monitor, refer to Lattice Sentry I2C Monitor IP Core for MachXO3D – Lattice Propel Builder User
Guide (FPGA-IPUG-02108). For the system software developer, refer to the PFR IP API Reference section for more
details on the API reference.

2.5.5. Lattice Sentry ESB Mux

The Embedded Security Block (ESB) is a hardened block which provides a set of security services for MachXO3D device.

The ESB has two interfaces for sending and receiving data: a register interface, and a High Speed Data Port (HSP) which
is a FIFO-style interface.

The ESB Mux provides a thin layer around the ESB which provides separate interface ports for AMBA and HSP, and an
internal mux to select between them. The mux is controlled by a new control register which is mapped into unused ESB
address space. This register is always available through the AMBA interface, regardless of whether the mux is set to
AMBA or HSP.

For details on the ESB Mux, refer to Lattice Sentry Embedded Security Block Mux IP Core for MachXO3D – Lattice
Propel Builder User Guide (FPGA-IPUG-02107). For the system software developer, refer to the PFR IP API Reference
section for more details on the API reference.

2.5.6. Lattice Sentry PLD Interface

The PLD Interface is a register-based interface which is used by firmware to send and receive messages between code
executing on the RISC-V and the customer control PLD logic. It can be used to request system control actions, to check
status, or to send customized messages. It is the customer’s responsibility to connect the PLD logic to the defined
interface and implement the actions associated with messages sent by firmware. The design of the actual Customer
PLD logic is system-dependent and is implemented by the customer for the particular system.

For details on Customer PLD, refer to Lattice Sentry PLD Interface IP Core for MachXO3D User Guide
(FPGA-IPUG-02106). For the system software developer, refer to the PFR IP API Reference section for more details on
the API reference.

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52885
http://www.latticesemi.com/view_document?document_id=52885
http://www.latticesemi.com/view_document?document_id=52886
http://www.latticesemi.com/view_document?document_id=52886
http://www.latticesemi.com/view_document?document_id=52884
http://www.latticesemi.com/view_document?document_id=52884
http://www.latticesemi.com/view_document?document_id=52883
http://www.latticesemi.com/view_document?document_id=52883
http://www.latticesemi.com/view_document?document_id=52882
http://www.latticesemi.com/view_document?document_id=52882

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02203-1.0

2.5.7. Embedded Function Block

The Embedded Function Block (EFB) is a hardened block in MachXO3D device, which is used to access User Flash
Memory (UFM) and I2C slave device.

In Lattice PFR solution, the UFM is used to store the Manifest, event logs, and a backup Uboot image, while the I2C
slave device is used to communicate with the BMC or PCH devices.

2.5.8. General Peripherals

Besides the PFR solution peripherals, some general peripherals are also integrated into the system for board-level
control or communication, including GPIO, UART, etc. You can add or remove these modules based on your own
system requirement.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 11

3. PFR System Architecture and Runtime Flow

3.1. Firmware Architecture
The PFR solution of Lattice MachXO3D FPGA has firmware running on the processor to handle the system dependent
information and runtime events.

Figure 3.1 shows the architecture of the firmware of the PFR 2.0 RISC-V solution. The Lattice PFR solution firmware is
composed of four layers.

 Sitting on the top is the APP layer, which is the demo application to demonstrate all the features on Protection,
Detection and Recovery that FPR spec defined.

 The Component layer is functional module based for dedicated solutions. For PFR solution, this layer contains OOB
Communication module, Log/Manifest Management module, and Security Management module to implement the
corresponding features.

 BSP/Driver and HAL layers are automatically generated during the system design. All the system-dependent
information is applied statically into the source code. The BSP/Driver layer is for all the general IPs, while the HAL
layer is for the RISC-V processor IP that capsulates all the platform dependent information.

Log/Manifest
Management

Security
Management

QSPI Streamer/
Monitor

ESB

UFMI2C Slave

GPIO

UART

Timer/Interrupt/Register
HAL Layer

ESB Mux CPLD Interface

BSP/Driver
Layer

PFR Component

PFR App System Initialization/Command Handling/...

EFB

I2C Filter

OOB
Communication

Figure 3.1. Software Architecture of Lattice PFR Solution

3.2. Runtime Flow
The runtime flow of the firmware is shown in Figure 3.2, which can be stated in five steps:

1. Configuration Handler: Read and parse the system Manifest and configure the system accordingly. Refer to the
Configuration section for more details.

2. Boot-up Protection Handler: Authenticate the firmware on the SPI flash before BMC/PCH boot up. Refer to the
Boot Up Protection section for more details.

3. Recovery Handler: Recover the firmware on the SPI flash if the image is corrupted. Refer to the Recovery section for
more detail.

4. Invalid SPI/I2C Event Detection and Protection: Monitor and detect the system SPI/I2C events and avoid invalid
behaviors. Refer to the Detection section for more details.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02203-1.0

5. Logging and Reporting Handler: Log events which occur and report to the BMC/PCH when requested. Refer to the
Logs and Reporting section for more details.

System Power on

System initialization
Hold the BMC/PCH Reset Pin

Configuration Handler

FW Authentication Handler
for BMC/PCH

Release the Reset Pin for
BMC/PCH

Authentication OK? FW Recover Handler

Detect the SPI/I2C Events

Any Invalid Events?

Communication From
BMC/PCH

Yes

No

Log/Report HandlerYes

Yes

Figure 3.2. Lattice PFR Runtime Flow

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 13

3.3. Configuration
System dependent information is configured as a manifest, which is stored in the UFM of Lattice MachXO3D FPGA
device. The system manifest is a data structure which provides crucial information (flash layout, signature, keys…) for
each firmware stored, authenticated and monitored on a SPI flash in the system.

Use of the manifest in the RoT device can make it easier to maintain a common code functionality for authentication
and recovery across different platform designs.

3.3.1. Configuration Flow

During runtime, the system software reads the manifest in the UFM and parse the critical data for firmware
authentication, recovery and detection. Figure 3.3 shows basic flow of the Lattice PFR 2.0 configuration handler.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02203-1.0

Configuration Handler

Manifest Reading and
Parsing

Configure the
Detection Handler

Read the header of
Manifest

Get the public Key, SPI
flash layout,

Valid?

Reading the Manifest

Checksum OK?

Get the information SPI
monitor and I2C

Monitor

yes

yes

no

no

Configure the white/
black spaces for SPI

Monitor

Configure the
monitored activities

for I2C Monitor

System Power On

Configuration Done

Manifest Read Error

Figure 3.3. Lattice PFR 2. 0 Configuration Handler Flow

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 15

3.3.2. MachXO3D PFR Manifest Manager

Lattice Propel provides a Manifest Manager tool to manage the manifest for your own system. The Manifest is then
stored in UFM2 of the MachXO3D device.

You can follow steps below to create, modify the manifest for their system.

1. Open Lattice Propel SDK. Click LatticeTools -> Lattice Sentry Manifest Manager to run manifest manager. See
Figure 3.4.

2. Click the Open button and choose the .mem file. Manifest Manager loads the .mem file and parses its manifest
information, as shown in the three tabs, Image Data, Flash Data and I2C Filter Data (Figure 3.5).

3. Click the Generate button to create the .mem file for UFM2 initialization. The .jed file is programmed into UFM2.

Figure 3.4. Launch Manifest Manager in Lattice Propel SDK

Figure 3.5. Manifest Manager Window

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02203-1.0

3.4. Boot Up Protection
Before the system boots up, the MachXO3D RoT ensures that the system firmware is valid. If not, the RoT performs
recovery.

Figure 3.6 shows the basic flow of authentication for the firmware on the SPI flash. Basically, the authentication
consists of two steps. First, perform ECDSA verification using the firmware data and signature stored on the SPI flash
with the public key in the Manifest. The second step is to perform a version check to avoid firmware roll back.

Boot-up Protection
Handler

Read the FW data
from SPI Flash

Feed data into ESB
and Generate the

Digest

Read the public key
from Manifest

Read the signature
from SPI Flash

Feed digest, publick
key and signature

into ESB do
verification

Verify Pass

Read version from
SPI Flash

FW Version >
threshold

Pass Authentication

yes

yes

ERROR
no

no

Logging the event

start Authentication

Figure 3.6. PFR Boot-up Protection Handler

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 17

3.5. Recovery
Recovery mechanism aims to keep the firmware and critical data in a valid and authorized state in case that they are
detected to have been corrupted. Generally, two cases trigger the recovery mechanism, one detects the Firmware has
been corrupted, the other is that the BMC/PCH triggers the recovery on purpose. After recovery, authentication is
recommended to ensure the integrity of the firmware and data in the recovered flash.

Figure 3.7 shows the basic flow of the recovery process.

Recovery Handler

Get the SPI flash
information

Erase Firmware
Image

Erase Signature

Copying the
Firmware Image

Read the Signature
from the SPI Flash

Copy to the
destination SPI

FLash

Recovery Done

Re-authenticate the
recovered flash

Logging the recovery
event

Start Recover

Figure 3.7. PFR Recovery Handler

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02203-1.0

3.6. Detection
The detection mechanism can detect unauthorized changes to device firmware and critical data before it is executed or
consumed by the device. In Lattice MachXO3D PFR solution (Figure 3.8), two kinds of events can be monitored, SPI
flash access and I2C read/write.

Firmware and critical data can be stored on the SPI flashes of the system. At different locations of the flash, the access
authority level may be different. Three authority levels are defined in Lattice PFR solution, which are called white, grey
and black list. For each monitored spaces of the flash, an authority level is defined and configured in manifest
accordingly.

Table 3.1. Authority Level Definition

Authority Level Definition

White Read, Erase, and Write are all allowed.

Grey Only Read is allowed. Neither Erase nor Write operation is permitted.

Black None of the Read, Erase or Write operation is permitted. The operation is disturbed when any of
the Read, Erase, or Write operation is detected on the SPI bus.

The I2C bus may be used for communications among on-board devices. Some critical data can be exchanged. The
Lattice MachXO3D PFR solution can be configured to define a set of transactions which are monitored on the I2C bus at
runtime. If there are any illegal transactions detected, an interrupt or a flag is issued to notify the processor. This
information is logged and reported to the BMC/PCH.

Configure the
monitored events

from Manifest

Detection Handler

SPI Events
Detected?

I2C Event
Detected?

Checking the events,
read the information

Check the detected
I2C events and read

the information

Log and Report

YesYes

Enable the
Detection

Figure 3.8. PFR Detection Handler

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 19

3.7. Logs and Reporting
Logs of the different events are written to the UFM3 of the Lattice MachXO3D device, starting from page 1. Each page
of UFM3 holds a single log entry. Byte 0 is the log index and indicates the page where the log is stored, as well as an
indicator of available memory. Byte 15 is used to indicate if a log has been read (RD).

The BMC/PCH can read the logs from RoT device and know the events in the system via the I2C OOB channel. Table 3.2
shows the detailed definition of the log format.

 Table 3.2. Lattice PFR Log Format Definition

Log Entry
Type

Data

Byte

0

Data

Byte

1

Data

Byte

2

Data

Byte

3

Date

Byte

4

Data

Byte

5

Data

Byte

6

Data

Byte

7

Data

Byte

8

Data

Byte

9

Data
Byte

10

Data

Byte

11

Data

Byte

12

Data
Byte

13

Data
Byte

14

Data
Byte

15

Authentication
Log

Index
0x0

Img

ID

Pri/

Sec

Pass/
Fail

0x00 0x00 0x00
Timestamp in Seconds

(32-bit)
— — — RD

SPI Exception
Log

Index
0x01

Flash

ID

SPI

CMD
SPI Address

Timestamp in Seconds

(32-bit)
— RD

I2C Exception
Log
Index

0x02
I2C

ID

Filter

ID
0x00 0x00 0x00 0x00

Timestamp in Seconds

(32-bit)
— — — RD

Recovery
Log
Index

0x04
Img
ID

0-
Pri=>
BU

1-
BU=>
Pri

0x00 0x00 0x00 0x00
Timestamp in Seconds

(32-bit)
— — — RD

Recovery
UBoot

Log
Index

0x05
Img
ID

1-Pri

2-BU
0x00 0x00 0x00 0x00

Timestamp in Seconds

(32-bit)
— — — RD

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02203-1.0

4. PFR IP API Reference
The PFR IPs are critical parts of the Lattice PFR solution. You need to make use of the APIs to initialize, configure, and
control the IPs to perform the functions.

The following sections provide reference to the APIs for each PFR IP, which is released in the corresponding IP package
by Lattice.

4.1. Lattice Sentry QSPI Monitor

qspi_mon_init

unsigned char qspi_mon_init(struct spi_mon_instance *this_spi_monitor,

 unsigned int base_address)

Parameter Description

this_spi_monitor The pointer to current QSPI monitor instance.

base_address
Base address of the QSPI monitor module, Propel SDK automatically parses the address
map of the SoC system and passes the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the QSPI monitor module.

1: Failed to initialize the QSPI monitor module.

Description

This function is used to Initializes QSPI monitor instance. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI monitor related functions.

qspi_mon_flash_update

unsigned char qspi_mon_flash_update(struct spi_mon_instance

 *this_spi_monitor, unsigned int flash_id,

 unsigned int flash_select, unsigned int master_select)

Parameter Description

this_spi_monitor The pointer to current QSPI monitor instance.

flash_id The value of the flash id number.

flash_select

The value of flash to select:

0x10: Select Flash A.

0x20: Select Flash B.

master_select

The value of master to select:

0: SPI Monitor

1: Internal Master

Returns Description

unsigned char
0: Succeeded in selecting the new flash.

1: Failed to select the new flash.

Description

This function is used to select flash that QSPI master accesses to.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 21

qspi_mon_ws_update

unsigned char qspi_mon_ws_update(struct spi_mon_instance *this_spi_monitor,

 unsigned int flash_id, unsigned int mon_cntl,

 unsigned int dummy_num,

 struct spi_monitor_space *flash_mon_sp)

Parameter Description

this_spi_monitor The pointer to current QSPI monitor instance.

flash_id The value of the flash ID number.

mon_cntl The monitor control value to set to the QSPI monitor.

dummy_num The value of dummy byte number that sets to the QSPI monitor.

flash_mon_sp The pointer to the flash monitor space that set to the QSPI monitor.

Returns Description

unsigned char
0: Succeeded in updating the QSPI monitor space.

1: Failed to update the QSPI monitor space.

Description

This function is used to update white space and control setting for the QSPI monitor.

qspi_mon_exception_get

unsigned char qspi_mon_exception_get(struct spi_mon_instance

 *this_spi_monitor, unsigned int flash_id,

 unsigned int *command, unsigned int *address)

Parameter Description

this_spi_monitor The pointer to current QSPI monitor instance.

flash_id The value of the flash ID number.

command The pointer to the buffer to store the exception SPI command.

address The pointer to the buffer to store the exception SPI address.

Returns Description

unsigned char
0: Succeeded in getting the exception.

1: Failed to get the exception.

Description

This function is used to get the command and SPI access address of the exception from the QSPI monitor.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02203-1.0

4.2. Lattice Sentry QSPI Streamer

spi_streamer_init

unsigned char spi_streamer_init(struct spi_streamer_instance *this_spi,

 unsigned int base_addr,

 unsigned int spi_mode,

 unsigned int sck_div)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

base_addr
Base address of the QSPI streamer module. Propel SDK parses the address map of the SoC
system and passes the information to software.

spi_mode

The value of QSPI mode to select.

0x00: QSPI mode 0

0x03: QSPI mode 3

sck_div The value of the clock division.

Returns Description

unsigned char
0: Succeeded in initializing the QSPI streamer.

1: Failed to initialize the QSPI streamer.

Description

This function is used to Initialize QSPI streamer module. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI streamer related functions.

spi_write

unsigned char spi_write(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char *buff, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI device to write to.

length The number of data in byte that is written to the SPI device.

buff The pointer to the data buffer that is written to the SPI device.

addr4B The value of the addressing mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in writing the specified data to the SPI device.

1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the buffer to the SPI device from the specified address. Refer to
spi_read() for the data reading details.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 23

spi_read

unsigned char spi_read(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char *buff, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of SPI device to read from.

length The length of data in byte that is read from the SPI device.

buff The pointer to the data buff that stores the data read from the SPI device.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device. Refer to spi_write() for the data writing details.

spi_write_txfifo

unsigned char spi_write_txfifo(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI device to write to.

length The number of data in byte that is written to the SPI device.

Returns Description

unsigned char
0: Succeeded in writing the specified data to the SPI device.

1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the TX FIFO to the SPI device from the specified address.

spi_read_txfifo

unsigned char spi_read_txfifo(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of SPI device to read from.

length The length of data in byte that is read from the SPI device.

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and store the data into the TX FIFO of the QSPI
streamer module.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02203-1.0

spi_read_esb

unsigned char spi_read_esb(void *this_spi_streamer, unsigned int addr,

 unsigned int length, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of SPI device to read from.

length The length of data in byte that is read from the SPI device.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and feed to the ESB module for processing. For
details on general data read, refer to spi_read().

spi_erase_4k

unsigned char spi_erase_4k(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI device to erase

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in erasing the 4K data.

1: Failed to erase the 4K data.

Description

This function is used to erase a 4K memory of the SPI device from the specified address.

4.3. Lattice Sentry I2C Monitor

i2c_mon_init

unsigned char i2c_mon_init(struct i2c_mon_instance *this_i2cmon,

 unsigned int base_addr)

Parameter Description

this_i2cmon The pointer to the instance of the current I2C monitor.

base_addr
Base address of the I2C monitor module. Propel SDK automatically parses the address map
of the SoC system and pass the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the I2C monitor.

1: Failed to initialize the I2C monitor.

Description

This function is used to initialize the I2C monitor module. This function is supposed to be called when the platform is initializing.
This function should be called before calling any I2C monitor related functions.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 25

i2c_mon_conf

unsigned char i2c_mon_conf(struct i2c_mon_instance *this_i2cmon,

 struct i2c_mon_entry *entry_data, unsigned int entry_num)

Parameter Description

this_i2cmon The pointer to the instance of the current I2C monitor.

entry_data The pointer to the entry data that is configured to the I2C monitor device.

entry_num The number of the monitor entry. Maximum number is 20.

Returns Description

unsigned char
0: Succeeded in configuring the I2C monitor.

1: Failed to configure the I2C monitor.

Description

This function is used to configure the I2C monitor device by setting the number of entry and the entry data.

i2c_mon_enable

unsigned char i2c_mon_enable(struct i2c_mon_instance *this_i2cmon,

 unsigned int mon_en)

Parameter Description

this_i2cmon The pointer to the instance of the current I2C monitor.

mon_en

The value of enable the i2c monitor.

0: Disable the monitor.

1: Enable the monitor.

Returns Description

unsigned char
0: Succeeded in enabling/disabling the I2C monitor.

1: Failed to enable/disable the I2C monitor.

Description

This function is used to enable or disable the I2Cmonitor to start or stop the monitoring of the I2C bus.

i2c_mon_bus_stop

unsigned char i2c_mon_bus_stop(struct i2c_mon_instance *this_i2cmon,

 unsigned char bus_stop)

Parameter Description

this_i2cmon The pointer to the instance of the current I2C monitor.

bus_stop

The value of the bus stop flag of the I2C monitor.

0: Release the I2C bus

1: Stop the I2C bus

Returns Description

unsigned char
0: Stopped or released the monitored I2C bus.

1: Failed to stop or release the monitored I2C bus.

Description

This function is used to stop or release the monitored I2C bus.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02203-1.0

i2c_mon_event_get

unsigned char i2c_mon_event_get(struct i2c_mon_instance *this_i2cmon,

 unsigned char *event_cnt, unsigned int *dct_evt)

Parameter Description

this_i2cmon The pointer to the instance of the current I2C monitor.

event_cnt The pointer to the buffer to store the detected events count of the I2C monitor.

dct_evt The pointer to the buffer to store the detected event number of the I2C monitor.

Returns Description

unsigned char
0: Succeeded in getting the detected I2C events.

1: Failed to get the detected I2C events.

Description

This function is used to get the number of event and the count of detected events from the I2C monitor.

i2c_mon_isr

void i2c_mon_isr(void *ctx)

Parameter Description

ctx The pointer to the context of the I2C monitor device.

Returns Description

void —

Description

This function is used to process I2C monitor interrupt. The function can be registered via calling pic_isr_register ().

4.4. Lattice Sentry ESB Mux

esb_init

unsigned char esb_init(struct esb_instance *this_esb,

 unsigned int base_addr);

Parameter Description

this_esb The pointer to the instance of the current ESB device.

base_addr
Base address of the ESB module, Propel SDK automatically parses the address map of the
SoC system and passes the information to the software.

Returns Description

unsigned char
0: Succeeded in initializing the ESB module.

1: Failed to initialize the ESB module.

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any ESB
related functions.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 27

esb_mux_por_sel

unsigned char esb_mux_port_sel(struct esb_instance *this_esb,

 unsigned int sel_port)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

sel_port Select the ESB mux to high speed port (HSP) or WISHBONE bus port.

Returns Description

unsigned char
0: Succeeded in selecting the specified port for ESB module.

1: Failed to select the specified port for ESB module.

Description

This function is used to select the ESB mux to the specified data port. There are two data ports for the ESB module: one is the
HSP high-speed port, the other is the WISHBONE bus port.

esb_switch_idle

unsigned char esb_switch_idle(struct esb_instance *this_esb)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

Returns Description

unsigned char
0: Succeeded in switching the ESB module to idle state.

1: Failed to switch the ESB module to idle state.

Description

This function is used to switch the ESB module into idle state.

esb_trng32bits_get

unsigned char esb_trng32bits_get(struct esb_instance *this_esb,

 unsigned int *trn_value)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

trn_value
The pointer to the data buffer to store the 32-bit long random number generated by the
ESB module.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to generate a 32-bit long random number by the ESB module.

esb_nonce_get

unsigned char esb_nonce_get(struct esb_instance *this_esb,

 unsigned char p_trn[16])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn
The data buffer to store the 15-byte random number generated by the ESB block and one
byte checksum.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02203-1.0

esb_trng256bits_get

unsigned char esb_trng256bits_get(struct esb_instance *this_esb,

 unsigned char p_trn[32])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn The data array to store the 256-bit random number generated by the ESB module.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to generate a 256-bit long random number.

esb_pubkey_derive

unsigned char esb_pubkey_derive(struct esb_instance *this_esb,

 EccPoint * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_publicKey The pointer to data buffer to store the generated public key.

p_privateKey The private key input to the ESB module.

Returns Description

unsigned char
0: Succeeded in deriving the public key.

1: Failed to derive the public key.

Description

This function is used to derive the public key.

esb_ecdh_get

unsigned char esb_ecdh_get(struct esb_instance *this_esb,

 unsigned char p_secret[NUM_ECC_DIGITS],

 EccPoint * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_secret The data array to store the shared secret generated by ECDH.

p_publicKey The public key to for ECDH.

p_privateKey The private key for ECDH.

Returns Description

unsigned char
0: Succeeded in getting the ECDH shared secret.

1: Failed to get the ECDH shared secret.

Description

This function is used to generate the shared secret with ECDH.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 29

esb_aes

unsigned char esb_aes(struct esb_instance *this_esb, unsigned char *key,

 unsigned char *bufferIn, unsigned char *bufferOut,

 unsigned int decrypt)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

key The 128-bit long public key to do the AES encryption or decryption.

bufferIn 16-byte long data to do the AES encryption or decryption.

bufferOut The 16-byte long result of the AES encryption or decryption for the input data.

decrypt

The flag to indicate to do encryption or decryption.

0: To do encryption

1: To do decryption

Returns Description

unsigned char
0: Succeeded in doing the AES for the input data.

1: Failed to do the AES for the input data

Description

This function is used to do the AES encryption or decryption for the input data with the specified public key.

esb_sha256

unsigned char esb_sha256(struct esb_instance *this_esb,

 struct sha256_ctx *ctx)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

ctx The pointer to the context to do the SHA256.

Returns Description

unsigned char
0: Succeeded in generating the digest via SHA-256 hash function.

1: Failed to generate the digest via SHA-256 hash function.

Description

This function is used to generate a 256-bit long digest for the data specified in the context via the SHA-256 hash function.

esb_esdsa_verify

unsigned char esb_esdsa_verify(struct esb_instance *this_esb,

 unsigned int digest[],

 unsigned int pub_key[],

 unsigned int signature[],

 unsigned char *auth_pass)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

digest The digest that feeds to the ESB module to do the ECDSA authentication.

pub_key The public key that feeds to the ESB module to do the ECDSA authentication.

signature The signature that feeds to the ESB module to do the ECDSA authentication.

auth_pass

The pointer to the data buffer to hold the authentication result:

1: Authentication passed.

0: Authentication failed.

Returns Description

unsigned char
0: Succeeded in doing the ECDSA verification.

1: Failed to do the ECDSA verification.

Description

This function is used to do the ECDSA authentication.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02203-1.0

get_nonce

unsigned char get_nonce(struct esb_instance *this_esb,

 unsigned char p_trn[16])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn
The data buffer to store the 15-byte random number generated by the ESB block and one
byte checksum.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

4.5. Lattice Sentry PLD Interface

cstm_pld_init

unsigned char cstm_pld_init(struct cstm_pld_instance *this_cstm_pld,

 unsigned int base_addr)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

base_addr
The base address of the customer PLD module. Propel SDK automatically parses the address
map of the SoC system and passes the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the customer PLD module.

1: Failed to initialize the customer PLD module.

Description

This function is used to initialize the customer PLD module.

cstm_pld_int_set

unsigned char cstm_pld_int_set(struct cstm_pld_instance *this_cstm_pld,

 unsigned int ints)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

ints The interrupts bit set to notify the PLD logic.

Returns Description

unsigned char
0: Succeeded in setting the interrupt bits.

1: Failed to set the interrupt bits.

Description

This function is used to set the specified interrupts bit to notify the customer PLD logic.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 31

cstm_pld_int_status_get

unsigned char cstm_pld_int_status_get(struct cstm_pld_instance

 *this_cstm_pld, unsigned int *ints)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

ints The pointer to data buffer to hold the interrupt status.

Returns Description

unsigned char
0: Succeeded in getting the interrupt status.

1: Failed to get the interrupt status.

Description

This function is used to get the interrupt status of customer PLD module.

cstm_pld_msg_receive

unsigned char cstm_pld_msg_receive(struct cstm_pld_instance *this_cstm_pld,

 unsigned char *msg)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

msg The pointer to buffer to hold the message that is received from the customer PLD logic.

Returns Description

unsigned char
0: Succeeded in receiving the message.

1: Failed to receive the message.

Description

This function is used to receive the message from the customer PLD logic.

cstm_pld_msg_send

unsigned char cstm_pld_msg_send(struct cstm_pld_instance *this_cstm_pld,

 unsigned char *msg)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

msg The pointer to the message that is to be sent to the customer PLD logic.

Returns Description

unsigned char
0: Succeeded in sending the message to the customer PLD logic.

1: Failed to send the message to the customer PLD logic.

Description

This function is used to send the message to the customer PLD logic.

cstm_pld_isr

void cstm_pld_isr(void *ctx)

Parameter Description

ctx The pointer to context that is passed to the interrupt service routine.

Returns Description

void —

Description

This function is called when there is interrupts from the customer PLD module. The function can be registered via calling
pic_isr_register ().

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02203-1.0

5. PFR Component API Reference
The component layer of the Lattice PFR solution provides basic function for protection, detection, and recovery.

The following section provides the API reference on how to manage the manifest, OOB channel, high-level security and
log. Based on the provided component layer APIs, you can develop your own PFR software easily.

5.1. Manifest Management

load_manifest_flash

unsigned char load_manifest_flash(struct st_manifest_t *manifest)

Parameter Description

manifest The pointer to the manifest of the system.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to load the manifest into internal flash.

mfst_oob_read

unsigned char mfst_oob_read(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 struct esb_instance *this_esb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

this_esb The pointer to the instance of the current ESB device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to read manifest from UFM and send data to BMC over the OOB channel.

mfst_ufm_read

unsigned char mfst_ufm_read(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor)

Parameter Description

manifest The pointer to the manifest of the system.

SPImonitor The pointer to the instance of the current SPI monitor device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to read manifest from UFM.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 33

mfst_ufm_write

unsigned char mfst_ufm_write(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update manifest in UFM.

mfst_image_update

unsigned char mfst_image_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb);

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the image information in manifest.

mfst_sign_update

unsigned char mfst_sign_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the signature information in manifest.

mfst_ver_update

unsigned char mfst_ver_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the version information in manifest.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02203-1.0

mfst_ver_thrhd_update

unsigned char mfst_ver_thrhd_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update version threshold in manifest.

mfst_pkey_update

unsigned char mfst_pkey_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the public key in manifest.

mfst_wsa_update

unsigned char mfst_wsa_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 struct spi_mon_instance *SPImonitor)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

SPImonitor The pointer to the instance of the current SPI monitor device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the white space address in manifest.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 35

5.2. OOB Management

oob_cmd_get

unsigned char oob_cmd_get(volatile struct st_i2cCtx_t *this_i2c_efb,

unsigned char num)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

num The offset of the OOB command in the data buffer.

Returns Description

unsigned char Returns the value of the OOB command.

Description

This function is used to get the OOB command sent from the BMC.

oob_param_num_get

unsigned char oob_param_num_get(volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns the parameter length of the current OOB command.

Description

This function is used to get the length of the current OOB command.

oob_status_get

unsigned char oob_status_get (volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns the current status of the OOB channel.

Description

This function is used to get the status of the OOB channel.

oob_status_set

void oob_status_set(volatile struct st_i2cCtx_t *this_i2c_efb,

 unsigned char status)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device.

status The status of OOB user wants to set.

Returns Description

void —

Description

This function is used to set the status of OOB channel.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02203-1.0

oob_status_buffer_set

void oob_status_buffer_set(volatile struct st_i2cCtx_t *this_i2c_efb,

unsigned char status)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

status The status of OOB you want to get.

Returns Description

void —

Description

This function is used to set the status buffer of the OOB channel.

oob_data_read

unsigned char oob_data_read(volatile struct st_i2cCtx_t *this_i2c_efb,

struct esb_instance *this_esb)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

this_esb The pointer to the instance of the current ESB device.

Returns Description

unsigned char
0: Succeeded in reading the data from the OOB channel.

1: Failed to read the data from the OOB channel.

Description

This function is used to read data from OOB channel.

oob_data_write

void oob_data_write(volatile struct st_i2cCtx_t *this_i2c_efb,

 unsigned char *buff, unsigned char size, unsigned char checksum)

Parameter Description

this_i2c_efb The pointer to the instance of the current I2C device used for OOB channel.

buff The pointer to the data buffer you want to write to the OOB channel.

size The length of data in byte you want to write.

checksum The check sum of the data written to the OOB channel.

Returns Description

void —

Description

This function is used to send data via OOB channel.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 37

5.3. Security Manager

Select_flash

int select_flash(struct spi_mon_instance *SPImonitor,

 unsigned int flash_id, unsigned int flash_select,

 unsigned int master_select);

Parameter Description

SPImonitor The pointer to the QSPI monitor device.

flash_id The value of the flash ID you want to select.

flash_select The primary of secondary flash you want to select.

master_select

The SPI master you want to select.

0: QSPI Monitor.

1: Internal QSPI master.

Returns Description

int
1: Succeeded in selecting the SPI flash.

-1: Failed to select the SPI flash.

Description

This function is used to select the SPI flash you want to access.

authenticate_image

int authenticate_image(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor,

 struct spi_streamer_instance

 *qspi_master_streamer_inst,

 struct esb_instance *esb_inst,

 unsigned int image_id, unsigned int flash_sel);

Parameter Description

manifest The pointer to the current manifest.

SPImonitor The pointer to the QSPI monitor device.

qspi_master_streamer_inst The pointer to the QSPI streamer device.

esb_inst The pointer to the ESB device.

image_id The image ID that used to get the image related information from the manifest.

flash_sel The primary or the secondary SPI flash where you wants to do the authentication.

Returns Description

int
1: Succeeded in authenticating the specified image.

–1: Failed to authenticate the specified image.

Description

This function is used to authenticate the specified image stored on the SPI flash.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02203-1.0

recover_image

int recover_image(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor,

 struct spi_streamer_instance *qspi_master_streamer_inst,

 unsigned int image_id, unsigned int buflash2priflash);

Parameter Description

manifest The pointer to the current manifest.

SPImonitor The pointer to the QSPI monitor device.

qspi_master_streamer_inst The pointer to the QSPI streamer device.

image_id The image ID that used to get the image related information from the manifest.

buflash2priflash
The flash to indicate the direction of the recovery. 0 means recovery from primary to
secondary.

Returns Description

int
1: Succeeded in recovering the specified image.

–1: Failed to recover the specified image.

Description

This function is used to recover the image from the specified source to the specified destination.

recover_uboot

int recover_uboot(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor,

 struct spi_streamer_instance *qspi_master_streamer_inst,

 unsigned int image_id, unsigned int pri_sec);

Parameter Description

manifest The pointer to the current manifest.

SPImonitor The pointer to the QSPI monitor device.

qspi_master_streamer_inst The pointer to the QSPI streamer device

image_id The image ID that used to get the image related information from the manifest.

pri_sec

The value to specify recovery destination.

1: To recover primary SPI flash device.

2: To recover secondary SPI flash device.

Returns Description

int
1: Succeeded in recovering the SPI flash with the Uboot image.

–1: Failed to recovery the SPI flash with the Uboot image.

Description

This function is used to recover the flash image with the Uboot image.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 39

5.4. Log Management

log_write

int log_write(struct st_manifest_t *manifest, unsigned char *data)

Parameter Description

manifest The pointer to the current manifest of the system.

data The pointer to the data buffer that stores the log.

Returns Description

int
0: Succeeded in writing the log.

–1: Failed to write the log.

Description

This function is used to write one slot of log data into the UFM.

log_read

unsigned int log_read(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 unsigned char *pException,

 struct esb_instance *this_esb);

Parameter Description

manifest The pointer to the manifest of the current system.

this_i2c_efb The pointer to the I2C slave device that is used as the communication channel.

pException The pointer to the flag for exception.

this_esb The pointer to the ESB device.

Returns Description

unsigned int Return the available address for the next log.

Description

This function is used to read the log from the UFM and send it to BMC via the OOB channel.

log_ack

int log_ack(struct st_manifest_t *manifest, unsigned int page);

Parameter Description

manifest The pointer to the current manifest of the system.

page The value of log entry.

Returns Description

int
0: Succeeded in writing the log.

–1: Failed to write the log.

Description

This function is used to acknowledge that the previous log has been received.

log_clear

int log_clear(struct st_manifest_t *manifest);

Parameter Description

manifest The pointer to the current manifest of the system.

Returns Description

int 0: Succeeded to clear the log. No other return value.

Description

This function is used to write one slots of log data into the UFM.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02203-1.0

6. PFR System Design (from Lattice Propel)
Lattice Propel is a platform for embedded system design, development, and validation. Lattice Propel provides a PFR
Solution Template to simplify customer PFR solution design.

6.1. PFR Solution Template
The PFR Solution Template provides a baseline PFR implementation with all required features enabled. You can follow
Lattice Propel tool flow to create or modify a standard PFR design.

The diagram below (Figure 6.1) shows the general design flow based on Propel tool sets. Choose PFR Template during
the Select Solutions Templates step. After that, follow the Propel user guide to create the entire design step by step.

Select Solution Templates

Select Processer and Device

DGE (Formatter)

Prepared Files (RTL, LPF, and TCL)
for Lattice Diamond Project

SGE

System Configuration File
& BSP Files

C Project

Develop & Build

Debug and Profile

SW Binary

Open Lattice Propel

SoC Project System Builder

Lattice Diamond

SoC Bistream

Figure 6.1. Lattice Propel Template Flow

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 41

6.2. PFR System Design Customization
You can customize your hardware and software designs on top of the PFR Solution Template to meet your specific
requirements.

When creating a new PFR system design, to build a customized design, you can:

 after creating the SoC project, customize the SoC design in System Builder.

 after creating a project in Lattice Diamond:

 add/edit RTL source files to bring in customer logic;

 edit the LPF file for I/O mapping and constrain settings.

 After the software project is created, edit the source files in Propel SDK.

Further changes can be made to the existing PFR system design which is created through the Propel tool sets. Note
when an SoC design is changed in the System Builder, it is necessary to build the hardware project in Propel SDK to
regenerate the BSP. After that, a new software project needs to be created with the updated BSP.

6.2.1. Customer PLD Customization

As stated in the Embedded Function Block section, a Customer PLD module is provided to allow you to integrate the
control logic into the PFR solution. In the Lattice PFR Solution Template, a simple customer PLD design is provided
(Figure 6.2) to demonstrate a typical usage as monitoring and controlling customized I/O pads.

User Toggle Switch

LED Toggled Toggle Output

Receive Message

Send Message

Input Change Detected

Send Message

Receive Message

Initial Customer PLD
Interface

Customer PLD PFR Firmware

Figure 6.2. Customer PLD Work Flow

You can edit the template project to customize the functionality of customer PLD as well as the firmware accordingly.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02203-1.0

6.3. System-level Simulation
After a new PFR design is created via the Lattice Propel platform, system-level simulation tool is provided to verify the
functionalities of the system. This section only covers PFR-specific topics. For details on how to launch the simulation,
refer to the System Simulation Flow of Lattice Propel 1.0 User Guide (FPGA-UG-02110) for how to launch the
simulation.

There are several pre-developed test cases available for a quick evaluation. Once PFR template is generated, a folder
named sim is created as well. Read readme.txt inside this sim folder for detailed information.

6.3.1. Simulation Details

As shown Figure 6.3, in Baseboard Management Controller (BMC) and PCH, as well as several SPI flashes, are
instantiated in the simulation platform. UART slaves are also there for debugging purpose. uart_bmc is the special one
used to simulate “PFR Demo Tool” in Propel SDK.

The uart_bmc module reads the I2C command in stimulus_bmc.txt. After that, this uart_bmc module sends
to/communicate with BMC via UART. BMC decodes and communicates with DUT via I2C. Once DUT gets valid
commands, it acts accordingly.

PCH has similar workflow, but it mainly communicates with SPI flash in the simulation platform.

Figure 6.3 shows the overview of the simulation platform.

Figure 6.3. PFR System Simulation Platform Overview

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52956

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 43

7. PFR System Validation Guide

7.1. PFR Utilities
A set of utilities in Lattice Propel can let you validate the functionalities for the PFR system. With these utilities, you can
perform system-level validation for your own PFR solutions.

7.1.1. PFR Demo Tool GUI

The PFR Demo Tool GUI is a tool which can communicate between a PC with Windows platform and the MachXO3D
device through UART to I2C bridge on the Lattice MachXO3D PFR Demo Board. It also provides SPI access to verify the
monitoring and protection of the SPI Flash. The PFR Demo GUI is integrated in Lattice Propel platform.

To use PFR Demo Tool:

1. Connect mini-USB cable from PC to the mini-USB connector J6 of the MachXO3D PFR Demo Board.

2. From your PC desktop, invoke Lattice Propel. Choose LatticeTools -> Lattice PFR Demo Tool to invoke Lattice PFR
Demo Tool. See Figure 7.1.

Figure 7.1. Launch Lattice PFR Demo Tool

3. The available COM ports are listed in Console Output. Clicking the Scan Ports button can update the available ports.
See Figure 7.2.

4. Two COM ports are associated with the MachXO3D PFR Demo Board. The COM port with smaller number is for
BMC, while the COM port with larger number is for PCH. Select the associated COM port for both BMC and PCH
channel. See Figure 7.2.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02203-1.0

Figure 7.2 COM Port Scan of the Lattice PFR Demo Tool

5. Clicking the OFF check box for BMC to open the port and establish the connection between GUI and BMC. If the
BMC port can be opened successfully, the OFF check box is changed to ON. See Figure 7.3. All logs are listed in the
Console Output area. For PCH, the operation is similar.

Figure 7.3 Enable Lattice PFR Demo Tool

6. Click the Clear button to clear the message log in the Console Output window.

7. In the UART Control section, you can select a command and change the parameters for the corresponding
command. The message for this command is generated automatically.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 45

8. Clicking Send Command can send selected command and receive the response. All logs are shown in the Console
Output window. See Figure 7.4.

Figure 7.4. Send Command of Lattice PFR Demo Tool

9. Clicking Read Log reads one log entry at a time. Logs are available for Authentication, Recovery, and SPI Exceptions.
When the Current and Last Index values are the same, there are no more log entries. See Figure 7.5.

Figure 7.5 Logging of Lattice PFR Demo Tool

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02203-1.0

10. Clicking Read Address Space retrieves the information of the manifest from UFM2 in MachXO3D device. In the
Address Space Information area, the Flash0 tab is for the BMC port and the Flash1 tab is for the PCH port. See
Figure 7.6.

Figure 7.6 Read Address Space of Lattice PFR Demo Tool

For the detail definition of the commands, refer to the Write Commands and Read Commands sections of the
MachXO3D Platform Firmware Resiliency Out-of-Band I2C Command Protocol User Guide (FPGA-UG-02032).

7.2. Key Feature Validation Method
Lattice Propel provides several methods which can be used to validate the PFR functionalities at different levels. When
you design a PFR solution using Lattice Propel, functions from basic register access to system-level can all be validated
in the simulation environment. At board-level validation, key features for PFR system, including authentication,
protection, and recovery are necessary. Lattice Propel provides tool set to validate the basic features on demo board.

7.2.1. Function Simulation

Follow steps below, you can form Functional Simulation at multiple levels:

1. Register access testing for all available registers. Special registers, such as write-only registers, are not covered at
this stage, in order to make sure the correctness of SOC connection, address map, and basic quality of RTLs of SOC
and IP.

2. Functional simulation for all available IP BSP to ensure each standalone IP works as expected.

3. Build up the system-level simulation environment which is aligned with maximum real application hardware
environment, and then use firmware directly as stimulus to do the system-level simulation.

For Step 1 above, write and readback scenario are used as the starting point.

For Step 2 above, the functionality of each IP plus BSP is the key focus.

Meanwhile, for Step 1 and Step 2, each transaction on the system bus (AHBLITE and APB buses) is traced from end to
end with address map checking. The content of each transaction is also checked.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 47

Step 3 mainly verifies the functionality of the system-level usage defined in firmware.

An internal UVM-based simulation platform has been developed to support verification of all levels. Each level of
verification can be enabled/customized using a unified configuration interface.

An external user can have a customized simulation environment which can be run using Active-HDL.

Lattice Propel provides a utility, Lattice PFR Demo Tool, which allows you to operate all PFR I2C commands to
implement and validate the PFR Key functionality.

7.2.2. Authentication
As stated in the Boot Up Protection section, the PFR system authenticates BMC/PCH image at boot-up stage. For
function validation, you can use a command to perform image authentication manually.
The command should be selected with correct arguments in the Lattice PFR Demo Tool.
To force authentication for the Primary image in Flash0, select the command ‘Authenticate Image’ and modify the
value in the right command parameter table (Figure 7.7), then it generates the whole command 0x01 0x00 0x01 0xFD.
Click the Send Command. You can see a Console Output message (Figure 7.7), if it was executed successfully.

Figure 7.7. BMC Image Authentication for Flash 0

Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0
Authenticate Image (0x01 0x00 0x02 0xFC) – to authenticate Secondary image in Flash0
Authenticate Image (0x01 0x01 0x01 0xFC) – to authenticate Primary image in Flash1
Authenticate Image (0x01 0x01 0x02 0xFB) – to authenticate Secondary image in Flash1

Next, check all of the security logs by clicking Read Log, and the latest log should be “Event: Authenticate Img ID: 0
Pri/Sec: 1 Auth Pass / Vers Pass /”, which is corresponded to the previous command 0x01 0x00 0x01 0xFD, as shown
in Figure 7.8.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02203-1.0

Figure 7.8. Get logs for image authentications

7.2.3. Protection
Click Read Address Space to get the Address Space information for Flash0 and Flash1. All White Spaces are also listed,
as shown in Figure 7.8, which was configured in Manifest file as default.

7.2.3.1. Legal Operation (Operate on White Space)

Read 16 bytes starting from 0x00300000 in Flash0 (White Space), program a value (0x5A) to 0x00300003, and read
back the bytes again.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) – to read 16 bytes started from 0x00300000 in Flash0. The read back data
is all 0xff, as Figure 7.9 shows.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 49

Figure 7.9. Initial value of 0x00300000~0x0030000F

Flash Sector Erase (0xF0 0x00 0x30 0x00 0x00 0x01) – to erase the sector started from 0x00300000 in Flash0.
Flash Byte Write (0xF4 0x00 0x30 0x00 0x03 0x5A) – to write a value (0x5A) to 0x00300003 in Flash0.
Flash Page Read (0xF3 0x00 0x30 0x00 0x00) – to read 16 Bytes started from 0x00300000 in Flash0 with above steps,

As Figure 7.10 shows, the address 0x00300003 was programmed with 0x5A successfully, for 0x00300003 is in White
Address List space 0.

Figure 7.10. Value of 0x00300000~0x0030000F After write

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02203-1.0

7.2.3.2. Illegal Operation (operate on Black Space)

Reading 16 bytes started from 0x00300100 in Flash0, program a value (0x5A) to 0x00300103, and read back the bytes
again. Follow steps below:
Enable SPI Filter (0x16 0x00 0x01 0xE8) – to enable all commands for filtering on BMC SPI port
Flash Page Read (0xF3 0x00 0x30 0x01 0x00) – to read 16 Bytes started from 0x00300100 in Flash0
Flash Byte Write (0xF4 0x00 0x30 0x01 0x03 0x5A) – to write a value (0x5A) to 0x00300103 in Flash0
Flash Page Read (0xF3 0x00 0x30 0x01 0x00) – to read 16 Bytes started from 0x00300100 in Flash0.
After running above steps, Figure 7.11 shows that the address 0x00300103 is still 0xFF, was not programmed with 0x5A
successfully. 0x00300103 is out of White Address List data space 0, so it cannot be programmed.

Figure 7.11. Value of 0x00300100~0x0030010F after write

Using the Read log operation, an SPI Exception Event is printed in detail by Lattice PFR Demo Tool, as shown in
Figure 7.12. The illegal command is captured as the Flash Byte Write to BMC Flash0.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 51

Figure 7.12. Logs of Illegal Operation

7.2.4. Recovery

Image recovery is demonstrated by manually destroying the image and recovering it from a known good image.

7.2.4.1. Manual Image Destroy

Disable all commands filtering for BMC. Then erase the sector starting from 0x00100000 in Flash0 to destroy Primary
image in Flash0. Authenticate Primary image after destroying the Primary image. Authentication should fail, as
Figure 7.13 shows. Follow steps below:
Enable SPI Filter (0x16 0x00 0x00 0xE9) – to disable all commands for filtering on BMC SPI port
Flash Sector Erase (0xF0 0x00 0x10 0x00 0x00 0x01) – to erase the sector started from 0x00100000 in Flash0
Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02203-1.0

Figure 7.13. Authentication Failed with Destroyed Image

7.2.4.2. Manual Image Recovery
Select the command Recovery Image and modify the value in the right command parameter table (Figure 7.14). It
generates the whole command 0x02 0x00 0x01 0xFC. Click Send Command. If successful, the console output appears
with messages, as shown in Figure 7.14.

http://www.latticesemi.com/legal

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 53

Figure 7.14. Authenticate Primary Image after Recovery Done

Recover Image (0x02 0x00 0x01 0xFC) – to recover BMC image to Primary with Secondary (good image) in Flash0.
Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0.

http://www.latticesemi.com/legal

Lattice Sentry Root-of-Trust Reference Design for MachXO3D
User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02203-1.0

Reference
 Lattice Sentry PLD Interface IP Core for MachXO3D - Lattice Propel Builder (FPGA-IPUG-02106)

 Lattice Sentry Embedded Security Block Mux IP Core for MachXO3D - Lattice Propel Builder (FPGA-IPUG-02107)

 Lattice Sentry I2C Monitor IP Core for MachXO3D - Lattice Propel Builder (FPGA-IPUG-02108)

 Lattice Sentry QSPI Master Streamer IP Core for MachXO3D - Lattice Propel Builder (FPGA-IPUG-02109)

 Lattice Sentry QSPI Monitor IP Core for MachXO3D - Lattice Propel Builder (FPGA-IPUG-02110)

 Lattice Propel 1.0 User Guide (FPGA-UG-02110)

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52882
http://www.latticesemi.com/view_document?document_id=52883
http://www.latticesemi.com/view_document?document_id=52884
http://www.latticesemi.com/view_document?document_id=52885
http://www.latticesemi.com/view_document?document_id=52886
http://www.latticesemi.com/view_document?document_id=52956

 Lattice Sentry Root-of-Trust Reference Design for MachXO3D
 User Guide

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02203-1.0 55

Revision History

Revision A, July 2020

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Lattice Sentry Root-of-Trust Reference Design for MachXO3D
	Acronyms in This Document
	1. Introduction
	1.1. Purpose
	1.2. Audience
	1.3. Document Structure

	2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction
	2.1. PFR
	2.2. RoT
	2.3. Lattice RoT Mechanism
	2.4. System Architecture
	2.5. Functionality Overview
	2.5.1. RISC-V Processor
	2.5.2. Lattice Sentry QSPI Master Streamer
	2.5.3. Lattice Sentry QSPI Monitor
	2.5.4. Lattice Sentry I2C Monitor
	2.5.5. Lattice Sentry ESB Mux
	2.5.6. Lattice Sentry PLD Interface
	2.5.7. Embedded Function Block
	2.5.8. General Peripherals

	3. PFR System Architecture and Runtime Flow
	3.1. Firmware Architecture
	3.2. Runtime Flow
	3.3. Configuration
	3.3.1. Configuration Flow
	3.3.2. MachXO3D PFR Manifest Manager

	3.4. Boot Up Protection
	3.5. Recovery
	3.6. Detection
	3.7. Logs and Reporting

	4. PFR IP API Reference
	4.1. Lattice Sentry QSPI Monitor
	4.2. Lattice Sentry QSPI Streamer
	4.3. Lattice Sentry I2C Monitor
	4.4. Lattice Sentry ESB Mux
	4.5. Lattice Sentry PLD Interface

	5. PFR Component API Reference
	5.1. Manifest Management
	5.2. OOB Management
	5.3. Security Manager
	5.4. Log Management

	6. PFR System Design (from Lattice Propel)
	6.1. PFR Solution Template
	6.2. PFR System Design Customization
	6.2.1. Customer PLD Customization

	6.3. System-level Simulation
	6.3.1. Simulation Details

	7. PFR System Validation Guide
	7.1. PFR Utilities
	7.1.1. PFR Demo Tool GUI

	7.2. Key Feature Validation Method
	7.2.1. Function Simulation
	7.2.2. Authentication
	7.2.3. Protection
	7.2.3.1. Legal Operation (Operate on White Space)
	7.2.3.2. Illegal Operation (operate on Black Space)

	7.2.4. Recovery
	7.2.4.1. Manual Image Destroy
	7.2.4.2. Manual Image Recovery

	Reference
	Revision History
	Revision A, July 2020

