s LATTICE

Generic Soft 12C Master Controller

Reference Design

FPGA-RD-02201-1.0

December 2020



Generic Soft 12C Master Controller .':LATTICE

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02201-1.0


http://www.latticesemi.com/legal

=LATTICE

Contents
ACTONYMS N THIS DOCUMENT ... . .iiiieeiiii e ciiee ettt e e et e et e e e sttt e e e e et e e e seaseeeessaeaeasstaeeaasssaeesnsaeeeanssseesanssaeessssneeesnseeeeanseeeesnnnes 5
R [ 4 o T [¥ ot o TP 6
R - | {8 [ TP PPV PUPPPPUPRRRPIRt 6
3. FUNCHIONAI DESCIIPTION ...ttt ettt ettt ettt ettt st e s bt e b e s bt e bt e sabe e s abtesabe e e bt e sabeesabeesabee s bt e sabeesabeesabeeeneenane 6
O T AT D LT ol T 1o o F-3 R 7
LT D T=Ty T4 o 1V o Yo 1] L=T TR PR 8
5.1. [ZC BUS CONTIOI FSIM...viuiivietiieteeteetetee ettt ettt et sttt e s e se et e b ese et e b esaebe b eseebe b ensebe b ensebesbensesesbenseseabensesenne 8
5.2. [2C MASEEE CONTIOL FSIMI.....otiiiieietiiteteetestet ettt ettt ettt sttt e b e se et et esa et e beseebe b eseeba b eseebesbensesesbensesasbensenene 8
(T oY (T g o I U A T g 1V - T PSRN 9
A A (=Y 1 =Tl 2 T A D T ] o o] 1 PP PPRPRRPINt 10
T 1o o T1 g ¥ D1 =Y 4 o P TP PP PO PRTRRP 11
8.1. ol R Y Y = T 11T = DT Y= (Lo o A 11
8.2. [2C Master Read TimiNg DIGEIam ..c..ceceeieeeeeieceeeteiteereeeeetetesteetestesteeseeseestestestesasstesbeeresssesseneesssstestssreereensenes 12
S T O 1o 1=l =Y [ ] Y =To [ U] [ <SP PUPPRPRRRPNt 13
9.1. A T [o [T oY= 1V o Yo RS 13
9.1.1.  Single/Multi-Byte WIte OPEIration .......ccceccuieveiiieeereeiteeiteeteeteseesteeeteeeteereeaeeeteesteebeebeeabesssesaaesseesseeseennens 13
9.1.2.  Single/Multi-Byte R OPEIatioN ......cecoieiviieiciieeteeeteeeteeteetesee st e steesteeveeaaesteesteebeebeeabesssesseesseesseeseennens 13
9.1.3.  Write With REPEAET STAT ...coueiiiiiiieeee et b e s bt e s e s beesabeesneenane 13
9.2. 10-Bit ADAreSSiNG IMOE........eiiiiiiiiiiiieeiee ettt ettt ettt st e sbt e e be e e sbb e e bt e e sbb e e bt e e ssbeeebteessbeenneeesnneennneens 14
9.2.1.  Single/MUulti-Byte WIte OPEIratioN ......ccvieeueeeireieetieeieeeeeeeeteeeeteeeeteeeeteeeeteeestaeeteeeeseeebeseseeeabesesaesressnseesnns 14
9.2.2.  Single/Multi-Byte REA OPEIatioN .....ecccuvieiiieeiiieeieeeteeeeteeeeteeeeteeeeteeeeteeeeteeesteeebessesaeenbeseseeebesesaesressnseesans 14
9.2.3. Single/Multi-Byte Write Operation With REPEAt SLArt ........cceevieeiiiiiieciie ettt ereesbeesaee s 14
9.3. Clock Stretching
i LUy o] 0 T 1 o] o FO TP PSP PP PRSP PRPRRORE
11. HDL Simulation and VerifiCatiONn .........iieiiier ettt sttt st e e st e e st e e s saae e e ssabeeessaateessnaeeesnsbeeesnnnes 18
12, PACKAGEA DESIGN ..eueieitieeiteetee ettt ettt s bt e et e st e e bt e s a ke e et e e sa b e e e bt e s a ke e e abeesab e e ea b e e sa bt e e bt e sabe e e bt e s beeenee et 20
12.1.  Using the SIMUIation FIle (\DO) ..cccuiii ettt ettt e e ettt e e ettt e e et e e e ettt e e e s baeeeeesbeeeeeasaeeesabaeaeenssasesnnanas 20
13, HArdWare ValidatioNn.........ceiiiiiiiieeiiie et see st se st s e st e e st e s ae e s be e ssbeesabeesaseesabeeasseessbeessseesssaeanseesatessnseesasessnseesane 22
I B 0 T o1 1= 0 V=T o =1 Lo T o USRSt 23
(301 (=T 4= g 1ol =T R PO PPUTSTPN 24
TeChNICAl SUPPOIT ASSISTANCE ..c..uvviiiciiieecciiee et ecee ettt e e ettt e e e e e e e s e e e essteeesassaee e s seeeeasseeeesnnseeeanssaeesansseeessaneesnnseeenannns 25
AV T o I TES) (o] PP PT R UPPP PPN 26

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

Figures

[ Fq R A =Y o Yol | DT = - o S EP 6
Figure 5.1. FUNCLIONAl BIOCK DIGBIam ... ..eiiiiiiiieeiee ettt ettt ettt ettt e et e st e sae e e sabeesaseesabeesaseesateesnseesabeennneens 8
FIGUIE 8.1, 120 WIEE THMINE c.veiveivteeeieeecteeteste ettt et et et e e see st e ebeeae e st estesteseestesassteeseesseste st estesessbeesseseassensentesesstesreereensensenteseeas 11
FIgUIE 8.2, I2C REAM TIMINE ...vviviieteeiieteeitetetttevete st ete st e tete s e bese e e bese s ebese st ebese s ebese s ebese s et ese st ebessssebese s ebese s ebesessebessasereseaes 12
Figure 9.1. Data Format for Master Write Operation Using 7-Bit Address Mode ..........cccueeeeiiieeeeciieccciieee et 13
Figure 9.2. Data Format for Master Read Operation Using a 7-Bit Address Mode .........ccceeeeiiieeeciiiececiieee e e 13
Figure 9.3. Data Format for Master Write Operation with Repeat Start Using a 7-Bit Address Mode ..........cccceeecvverenneen. 13
Figure 9.4. Data Format for Master Write Operation Using a 10-Bit Address Mode ..........cceecvieeeeciiiiescieee e 14
Figure 9.5. Data Format for Master Read Operation Using a 10-Bit Address Mode ........ccccceeeviveeecierescieee e 14
Figure 9.6. Data Format for Master Write Operation with Repeat Start Using a 10-Bit Address Mode ..........ccccccuverennneen. 14
Figure 9.7. Simulation Waveform Showing a Four-Byte I12C Write Transaction with Clock Stretching..........c.ccccevevvevenee. 15
Figure 10.1. Compiler Directive CuStomization EXAMPIE........ueeiiiiiiii ittt ette e et e e etr e e e e ab e e e e aba e e eesaeeeennaeas 17
Figure 11.1. 4-Byte I2C Write with Starting Address = OX00 .........c.ccveeveruireiriiriereereeesteetesreereeseeseesseseestesessresssersessessesseseeas 18
Figure 11.2. Zoomed-In View When 0x11 is Received by the SIaVe ........coccueeieiiiii et 18
T R T B 1Y =) L Ol 2=V OO 18
Figure 11.4. Zoomed-In View When 0x11 is Fetched by the 12C Slave ModUle ..........coveviereeeiereeceeeeeeereeere e 19
Figure 11.5. Repeated 2-Byte 12C WIte COMMANT.......ciivieriieeeeeeeereereereereeteeteeseesesesseeseeseeseeseessessesseesesseeseeseessensensensesseas 19
Figure 11.6. Aldec ACtiVe-HDL CONSOIE VIEW ......iiuiiiiiiiiiiieiiteeeite ettt ettt ettt sttt st e st e st e sabe e st e sabeesabeesaneesars 19
Figure 12.1. Packaged Design Dir€CtOrY STIUCTUIE .......eiiuiiiiiiiieeiieecie ettt sttt et e s e st e s e s e sneesans 20
Figure 12.2. Changing the SiMUIation DIFECLOMY .......ciicciiieiiiiee ettt ettt e e et e e e et e e e e ta e e e esabaeeeeasteeesabaeeesntaeeeensseeeennses 20
Figure 12.3. RUNNING the SIMUIATION FIl ....ccouiiieciee ettt e et e e e et e e e e ab e e e eeabb e e e sabaeeesataeeeensaeeeennreas 21

Tables

TabIE 4.1, Pin DESCIIPTIONS. ... utiie ettt eciiee e ettt e ee ettt e ettt e e e steeeeeetteeeeetbaeeesbaeeeassesaeasssaaaastasesanssseeaasssaaaassasesansseeessssaeenstesenanes 7
I o [ ST R = =4 1] Yl X T PSPUSRNE 9
I o) T A R =Y o1 Yol T DT T [ ] LSS S 10
Table 8.1. Configuration and Mode Bit Requirements for 2C Write TransaCtion ..........ccccveeeeeeerveveereereeresreereeseeeeeesseeseens 11
Table 8.2. Configuration and Mode Bit Requirements for 2C Read TranSaction ...........cveeeeeereeveveereereereereereeseeseeeeseseseens 12
Table 10.1. Compiler DIreCtiveS OPTIONS ....ceecueiiiiieeite ettt ettt ettt et e st e et e et esbte s bt eesbeesbeeebeesbeeebeesbeeeabeesabeeesnesareean 16
I o) 1= I Yo TU o I W 1 [ =) o [ ] I PR RRUPP 23

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

Generic Soft 12C Master Controller
Reference Design

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

12C Inter-Integrated Circuit
SCL Serial Clock Line

SDA Serial Data Line

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02201-1.0


http://www.latticesemi.com/legal

= LATTICE

1. Introduction

12C or Inter-Integrated Circuit is a popular serial interface protocol that is widely used in many electronic systems. The
I2C interface is a two-wire interface capable of half-duplex serial communication at moderate to high speeds of up to a
few megabits per second. There are thousands of I2C peripherals on the market today, ranging from data converters to
video processors. The I2C bus is a good choice for designs that need to communicate with low-speed peripherals due to
its simplicity and low cost.

This reference design implements an I12C Master Module on any Lattice FPGA using Lattice Diamond® 3.11 and Lattice
Radiant® 2.1. It follows the 1°C specification to provide device addressing, read/write operation, and an
acknowledgement mechanism. It adds an instant I12C compatible interface to any component in the system. The
programmable nature of FPGA devices provides you with the flexibility of configuring the I2C master device to any legal
slave address. This avoids the potential slave address collision on an 1C bus with multiple slave devices.

2. Features

e Supports a wide array of Lattice FPGAs such as MachX02™, MachX03™, LatticeECP3™, ECP5™, CrossLink™,
CrossLink™-NX, and iCE40 UltraPlus™

e  Supports 7-bit and 10-bit slave address

e  Supports operation at 100 kHz" (Standard Mode) and 400 kHz" (Fast Mode)

e Supports repeated start operations

e Interrupt generation logic

e Verilog RTL, test bench

e Byte-wide clock stretching

*Note: Verified in both simulation and hardware.

3. Functional Description

( \ i_clk \

i_rst_n / \

yy

| o_int_n
-

i_slave_address_reg I2C Master
Control FSM

SBIO SDA

i_byte cnt_reg

iclk div Isb

7 \/Z \/

\ j io_sda
4 ) 7

io_scl

i_config_reg

A

Processor i_mode_reg I2C Slave

Interface

»

[V RVIRY
4
A

i slave addr reg I°C Bus

. 0 cmd_status reg Control FSM
) B
” \_ J

SBIO SCL

o_transmit_data_req
dl

P o_received_data_valid

__ 0_receive_data

* 12C Master Controller /

Figure 3.1. Block Diagram

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

4. Pin Descriptions

Table 4.1. Pin Descriptions

Signal Width Type Description

i_clk 1 Input System clock operating at 24 MHz

i_rst_n 1 Input Asynchronous active-low system reset

o_int_n 1 Output Active-low processor interrupt

i_slave_addr_reg 10 Input 10-bit I2C slave address. If 7-bit addressing mode is enabled, then the
controller takes only i_slave_addr_reg[6:0].

i_byte_cnt_reg 8 Input Sets the number of data bytes to be read or written for the I>C
transaction

i_clk_div_Isb 8 Input Sets the lower byte of the clock divider that is used to generate SCL
from CLK. The upper three bits are located in the mode register.

i_config_reg 6 Input This is used to configure the 1>°C Master Controller (see Table 7.1).

i_mode_reg 8 Input Sets the various modes of operation like speed, read/write (see Table
7.1).

o_cmd_status_reg 8 Output Indicates the status of the operation, I°C bus (see Table 7.1).
o_start_ack 1 Output Acknowledge to the start bit provided by the user through i_config_reg
i_transmit_data 8 Input Data to be transmitted over the SDA line to the I>C slave
o_transmit_data_requested 1 Output Indicates that transmit data is required

o_received_data_valid 1 Output A 1 corresponds to valid data availability on the o_receive_data line.
o_receive_data 8 Output Received data bus

io_scl 1 Inout I2C clock line

io_sda 1 Inout I°C data line

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

5. Design Modules

The design includes the modules shown in Figure 5.1.

Clock Clock Tx Data Rx Data
Generator Synchronizer FSM FSM

Start Stop I2C Master Control
Generate Detect FSM

Logic Logic

Acknowledge
Generate Detect Logic

Filter

I12C Bus Control FSM

Figure 5.1. Functional Block Diagram

5.1. [12C Bus Control FSM

The 1°C Bus Control FSM is comprised of the Clock Generator/Synchronizer, Start/Stop generate/detect logic, and
Acknowledge generate/detect logic.

The Clock Generation and Synchronization logic generates the 12C clock signal SCL based on the system clock and clock
divide factors configured by the processor. Due to the nature of the I2C bus, the actual SCL clock that is seen by all
devices on the bus may not be running at the same frequency that the master generates. This module starts counting
its SCL low period when the current master drives SCL low. Once a device’s clock goes low, the master holds the SCL
line low until the clock high state is reached. When all devices count off their LOW period, the clock line is released and
goes HIGH. There is no difference between the device clocks and the state of the SCL line, and all the devices start
counting their HIGH periods. The first device to complete its HIGH period pulls again the SCL line LOW. In this way, a
synchronized SCL clock is generated with its LOW period determined by the device with the longest clock LOW period,
and its HIGH period determined by the one with the shortest clock HIGH period.

The start/stop logic generates and detects start and stop events on the I°C bus. The detection of start and stop events
is necessary to determine whether or not the 12C bus is in use by another master on the bus when the primary master
gets a START signal from the processor. When the 12C bus is idle, both SCL and SDA are pulled high by passive pull-ups.
A start condition is signaled by transitioning SDA from high to low while SCL is still high. Likewise, a stop condition is
signaled by transitioning SDA from low to high while SCL is high.

5.2. 1>C Master Control FSM

For controlling data transfer, the I2C master makes use of a control FSM, along with counters for controlling the bits
and bytes. The byte counter is an 8-bit counter that keeps track of the number of bytes that are written or read during
the I°C transaction. This counter increments after each byte is written to or read from the external I°C slave device. The
count is then compared with the byte count register. If the value is a match, the 12C Master Controller considers the
transaction complete, issues a stop signal on the 12C bus, asserts the RXTX_DONE flag, and waits for the next
transaction to be initiated from the processor. This counter is fully controlled by the main control FSM.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

::LATTICE Generic Soft 12C Master Controller

Reference Design

6. Internal Register Map

The 12C Master Controller configuration can be performed on run-time. Table 6.1 lists the available registers.

Table 6.1. Register List

Port/Bit 9 8 7 6 5 4 3 2 1 0
i_slave_addr_reg | SADR[9] |SADR[8]| SADR[7] | SADR[6] | SADR[5] |SADR[4]| SADR[3] SADR[2] | SADR[1] | SADR[O]
BCNT[7] | BCNT[6] BCNT[5] | BCNT[4] | BCNT[3] BCNT[2] BCNT[1] | BCNT[O]

i_byte_cnt_reg

i_clk_div_Isb DIV[7] | DIV[6] DIV[5] | DIV[4] DIV[3] DIV[2] DIV[1] | DIV[0]
i_config_reg RESET | ABORT | TX_IE RX_IE | INT_CLR| START
i_mode_reg BPS[1] | BPS[0] |ADR_MOD RW_MODE | DIV[10] DIV[9] | DIV[8]

I12C_BUSY | TX_DONE | RX_DONE RX_ERR | ABORT_ACK

o_cmd_status_reg

. Undefined

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02201-1.0


http://www.latticesemi.com/legal

= LATTICE

7. Register Bit Descriptions

Table 7.1. Register Bit Descriptions

Register Bit Description

i_slave_addr_reg[9:0] 10-bit slave address. If 10-bit addressing mode is disabled (i_mode_reg[5] = 1'b1), then
the controller takes only i_slave_addr_reg[6:0].

|_byte_cnt_reg[7:0] Sets the number of data bytes to be written or read for the 12C transaction. For example,
set the register to 8 to transfer eight data bytes.

i_clk_div_Isb[7:0] - DIV[7:0] Sets the lower byte of the clock divider that is used to generate SCL from CLK. The upper

three bits are located in i_mode_reg[2:0]. Note that DIV[0] is not used since only even
DIV values are supported.

i_config_reg[5] — RESET — Writing a 1 resets this 12C Master Controller.

i_config_reg[4] — ABORT — Writing a 1 stops the current 12C transaction in progress. This bit is cleared by the
ABORT_ACK status bit in the Command Status Register.

i_config_reg[3] - TX_IE — Set this bit high to enable interrupt generation on o_int_n output after completing a
transmission (1°C Master Write) and a STOP condition in the I2C bus has been issued.

i_config_reg[2] — RX_IE Set this bit high to enable interrupt generation on o_int_n output when receiving has
completed (I2C Master Read) and a STOP condition in the 1°C bus has been issued.

i_config_reg[1] — INT_CLR Writing a 1 clears all bits in the o_cmd_status_reg output except the 12C_BUSY bit.

i_config_reg[0] — START Write a 1 to start an I°C transaction. This bit is auto-cleared after the master successfully
arbitrates and acquires the 1°C bus.

i_mode_reg[7:6] — BPS[1:0] Selects the 12C speed mode. (2’b00 = standard, 2’b01 = fast, others are reserved)

i_mode_reg[5] — ADR_MOD Selects the I2C address mode. (1'b0 = 7-bit Addressing, 1'b1 = 10-bit Addressing)

i_mode_reg[3] - RW_MODE Sets the read or write operation on the 12C bus. (0 = write, 1 = read)

i_mode_reg[2:0] — DIV[10:8] The upper three bits of the clock divider factor.

o_cmd_status_reg[7] — 12C_BUSY This read-only status bit indicates that the bridge is busy performing a data transaction
and a STOP is not issued. This bit reflects the state of the I1°C bus and cannot be cleared by
the user.

o_cmd_status_reg[6] — TX_DONE This read-only status bit indicates that the 12C write operation issued is completed, but
the STOP condition may still be in progress.

o_cmd_status_reg[5] — RX_DONE This read-only status bit indicates that the 12C read operation issued is completed, but the
STOP condition may still be in progress.

o_cmd_status_reg[4] — TX_ERR This read-only status bit indicates an error during the 12C write operation.

o_cmd_status_reg[3] — RX_ERR This read-only status bit indicates an error during the I2C read operation.

o_cmd_status_reg[2] — ABORT_ACK This read-only status bit indicates that the ABORT command is completed. You should
clear the proper FIFO and status bits afterwards.

Note: All status bits, except 12C_BUSY, are cleared by writing a 1 to the INTR_CLR bit in the configuration 3 register.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

8. Timing Diagram

8.1.

I2C Master Write Timing Diagram

The following describes how a Processor Interface should control this reference design when an I2C Write Transaction is

desired.

1. The I>)C Master Controller waits for i_config_reg[0] to be asserted to 1 to begin a transaction.

2. The Processor Interface requests an I°C transaction by applying the necessary signal values to the inputs below:

Table 8.1. Configuration and Mode Bit Requirements for 12C Write Transaction

Register Bit Value Function
i_config_reg(0] 1'bl Starts an I2C transaction
i_config_reg(3] 1'bl Generates an interrupt to o_int_n on transmit
completion
i_mode_reg[3] 1'b0 Defines that the I2C transaction is a write
operation

Note: For simplicity, some of the bits for i_config_reg and i_mode_reg are not shown in Figure 8.1. Refer to Table 7.1 for the

complete list of options.

3. The Processor Interface waits for o_start_ack to go HIGH before it sets i_config_reg[5:0] input to 6’b000000.

4. At this point, the I°C bus transaction had already begun and a positive o_transmit_data_request strobe is
generated each time a transmit data is required in the i_transmit_data input on the next clock cycle.

5. When the total number of bytes defined in the i_byte_cnt_reg input is reached, an o_int_n interrupt is generated
which also tells the Processor Interface that a stop condition is generated. At this point, the Processor Interface
should assert i_config_reg[1] to 1 to clear the bits of o_cmd_status_reg and puts the I2C Master Controller in idle
state. When a new transaction is intended, i_config_reg[1] should be deasserted to 0.

ick 1
i_config_reg[0]

i_config_reg[1]

2

pign

3 4

JEpEnEannliniy

ffffffffffffff

,,,,,,,,,,,,,,,,,,,,,

i_config_reg[3]

i_mode_reg[3)

o_start_ack

o_transmit_data_request

,,,,,,,,,,,,,,

i_transmit_data

Valid Data

\ v‘v‘v.v‘v’v‘v.v‘v’v‘v‘v’v‘v‘v’v‘v‘v.v’v.;’v.v‘v’v‘v‘v

G000999.0009990099999990090¢

’/ ‘ A’A’A’A‘A’A’A’A‘A’A’A‘A’A‘A’A’A’A’A’A’A‘A’A‘A‘A’A‘A’A

o_int_n

Figure 8.1. I>C Write Timing

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

8.2. I’C Master Read Timing Diagram

The following describes how a Processor Interface should control this reference design when an I2C Read Transaction is
desired.

1. The I>)C Master Controller waits for i_config_reg[0] to be asserted to 1 to begin a transaction.

2. The Processor Interface requests an I2C transaction by applying the necessary signal values to the inputs below:

Table 8.2. Configuration and Mode Bit Requirements for 1>C Read Transaction

Register Bit Value Function
i_config_reg[0] 1’bl Starts an I°C transaction
i_config_reg[2] 1'bl Generates an interrupt to o_int_n on receive
completion
i_mode_reg[3] 1'bl Defines that the I2C transaction is a read
operation

Note: For simplicity, some of the bits for i_config_reg and i_mode_reg are not shown in Figure 8.2. Refer to Table 7.1 for the
complete list of options.

3. The Processor Interface waits for o_start_ack to go HIGH before it sets i_config_reg[5:0] inputs to 6’b000000.

4. At this point, the I°C bus transaction had already begun and a positive o_received_data_valid strobe is generated
each time a received data is valid in the o_receive_data output.

5.  When the total number of bytes defined in the _byte_cnt_reg input has been reached, an o_int_n interrupt is
generated which also tells the Processor Interface that a stop condition has been generated. At this point, the
Processor Interface should then assert i _config_reg[1] to 1 to clear the bits of o_cmd_status_reg and puts the 12C
Master Controller in idle state. When a new transaction is intended, i_config_reg[1] should be deasserted to 0.

1 2 3 4 5

— '
ik : ! | | . o ! ! ! ! !
: : : : : : : : : : :
i A [A— | — — O O St S SR |

i_config_reg[0] ‘

i_config_reg[1]

i_config_reg[3] ‘

imodereg3) _— | ‘

o_start_ack

ffffffffffffff

o_transmit_data_request

VVVVY VY VYWY YVVVYVV/VVAV ANV TYIAAAAAN
LT O,

,,,,,,,,,,,,,,

o_int_n

,,,,,,,,,,,,,,

Figure 8.2. IC Read Timing

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

9. Operation Sequence

9.1. 7-Bit Addressing Mode

9.1.1. Single/Multi-Byte Write Operation

Figure 9.1 shows a Master Write operation in 7-bit addressing mode. The master generates the START bit and sends the
7-bit slave address, followed by the eighth bit which is a data direction read/write bit (R/W). 0 is sent for this WRITE
operation. The master sends the data followed by an acknowledgment (A) from the slave. The slave generates an
acknowledgment for every byte of data from the master. The processor can either STOP the transaction by sending a
STOP bit, or the slave can respond with a NACK (A') so that the master stops the data write by generating a STOP
condition to terminate the data transfer.

S | Slave Address RI~W | A| Data | A | Data | A/I~FA | P
|

] Data transferred
0 (write) (n bytes + acknowledge)
[ From Master to Slave ~A — Not Acknowledge ~ R/~W — Data Direction Bit
[ From Slave to Master S — Start Condition 0 — Indicates Write Operation
P — Stop Condition 1 - Indicates Read Operation

A — Acknowledge

Figure 9.1. Data Format for Master Write Operation Using 7-Bit Address Mode

9.1.2. Single/Multi-Byte Read Operation

Figure 9.2 shows a Master Read operation in 7-bit addressing mode. The master generates a START bit, transmits a 7-
bit slave address, followed by an eighth bit which is a data direction bit (R/W). A 1 is sent for this READ operation. The
slave acknowledges this by a positive acknowledgment (A). The slave transmits a byte of data, which the master should
acknowledge (A) for further data transactions to continue. The master generates a Not Acknowledge (A) before
generating a STOP condition to terminate the data transfer.

S | Slave Address R/~-W | A | Data | A | Data [-A| P
|

—— Data transferred
1(read)  (n pytes + acknowledge)

Figure 9.2. Data Format for Master Read Operation Using a 7-Bit Address Mode

9.1.3. Write with Repeated Start

Figure 9.3 shows a Master Write with Repeated Start. The master generates a START bit and sends a 7-bit slave address
plus the eighth R/W bit as O for the write transaction. The slave acknowledges this request. The master then sends one
or more data byte followed by an acknowledgment from the slave. Instead of generating a STOP condition, the master
generates another START (that is Repeated START) and repeats the process again. You can define how many times the
process is repeated before generating a STOP condition

S | Slave Address R/TW A | Data | A/~A Sr | Slave Address R/~IW A IData Al~A | P

. Data transferred )
0 (write) | (nbytes + | 0 (write)
acknowledge)

Data transferred
Repeated start (n bytes + acknowledge)

Figure 9.3. Data Format for Master Write Operation with Repeat Start Using a 7-Bit Address Mode

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

9.2. 10-Bit Addressing Mode

9.2.1. Single/Multi-Byte Write Operation

Figure 9.4 shows a Master Write operation in 10-bit addressing mode. The master generates the START condition and
sends the first seven bits of the first byte. The first seven bits are 11110XX, of which the last two bits (XX) are the two
Most-Significant Bits (MSBs) of the 10-bit address, followed by a 0 R/W eighth bit. Slaves supporting 10-bit mode and
matching the two MSB address bits respond with an acknowledgment (A1). The master sends the second byte of the
slave address and which is acknowledged (A2) by the matching slave. Hereafter, the write data transfer is similar to
conventional 7-bit addressing mode.

11110XX
Slave Address Slave Address
~ A ~ P
> First 7 Bits 2 |W Al Second Byte A2 | Data Data A~A
0 (write)

Figure 9.4. Data Format for Master Write Operation Using a 10-Bit Address Mode

9.2.2. Single/Multi-Byte Read Operation

Figure 9.5 shows the Master Read operation in 10-bit addressing mode. The master generates the START condition and
sends the first seven bits of the first byte. The first seven bits are 11110XX of which the last two bits (XX) are the two
Most-Significant Bits (MSBs) of the 10-bit address, followed by a 0 R/W eighth bit. Slaves supporting 10-bit mode and
matching the two MSB address bits respond with an acknowledgment (A1). The master sends the second byte of the
slave address which is acknowledged (A2) by the matching slave. The master generates a Repeated START and sends
the same first byte of the address followed by a 1 on the R/W bit. The slave generates a positive acknowledgement
(A3). Hereafter, the read data transaction is similar to conventional 7-bit addressing mode.

11110XX 11110XX
Slave Address Slave Address Slave Address
~ Al A2 ~ A3 | Dat Dat <
> | First 7 Bits R/mW Second Byte 5" | First 7 Bits RImW ata | A Data |FA P
0 (write) 1 (read)

Figure 9.5. Data Format for Master Read Operation Using a 10-Bit Address Mode

9.2.3. Single/Multi-Byte Write Operation with Repeat Start

Figure 9.6 shows a Write with Repeated Start using a 10-bit addressing mode. The master generates the START
condition and sends the first seven bits of the first byte. The first seven bits are 11110XX, of which the last two bits (XX)
are the two Most-Significant Bits (MSBs) of the 10-bit address, followed by a 0 R/W eighth bit. Slaves supporting 10-bit
mode and matching the two MSB address bits respond with an acknowledgment (A). The master sends the second byte
of the slave address and which is acknowledged (A) by the matching slave. Hereafter, the write data transfer is similar
to conventional 10-bit addressing mode but instead of generating a STOP condition, the master generates another
START (that is Repeated START) and repeats the process again. You can define how many times the process is repeated
before generating a STOP condition.

iuoxx
s | Shivbie | KW | A [ty | A | Ba | A| [ paaiaea
Ol(write) ‘>
C ioxx e -
e el Rl e el el K B R e
Ol(write)

Figure 9.6. Data Format for Master Write Operation with Repeat Start Using a 10-Bit Address Mode

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

9.3. Clock Stretching

Clock stretching pauses a transaction when the slave holds the SCL line LOW. The transaction cannot continue until the
line is released HIGH again. On the byte level, a device may be able to receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare another byte to be transmitted. The slave can then hold the SCL line
LOW after receipt and acknowledgment of a byte to force the master into a wait state until the slave is ready for the
next byte transfer in a handshake procedure.

You can test the clock stretching capability of this reference design by uncommenting stretch_test in the tb_defines.v
source file. For more info, refer to the Customization section.

Signal name Value ©o o am - s0 om0+ om0 @0+ o+ o@D+ 0oE0 o+ 3E0 03w 400+ s+ 0+ s o+ osmoc 0 s

Testbench Signals Testbench Siguals

ar clk

o st
= SCL
= SDA
o START

erw

UV | IO [
| | [l L1

5

g T

Figure 9.7. Simulation Waveform Showing a Four-Byte I2C Write Transaction with Clock Stretching

www.latticesemi.com/legal


http://www.latticesemi.com/legal

10. Customization

To customize the testbench files of this reference design, a file named tb_defines.v contains all the compiler directives
that you can modify. This includes device selection, slave addresses settings, clock source, clock speed, and others.
Table 10.1 shows the complete list of compiler directives. Figure 10.1 shows an example of customization implemented

in the tb_defines.v file.

Table 10.1. Compiler Directives Options

= LATTICE

Category

Compiler Directives

Remarks

Device Selection

ECP3™

ECP5™

LIFMD

LIFCL

Machxo2™

MachX03™

iCE40 Ultraplus™

Uncomment only one to enable the selected device.

Slave Addresses

SLAVE_ADDRESS1

SLAVE_ADDRESS2

Define 10-bit slave addresses to be accessed by the
master. If 10-bit address mode is disabled, then the
controller takes only SLAVE_ADDRESSX[6:0].

Clock Speed Selection

CLK_12MHZ

CLK_24MHZ

CLK_32MHZ

Uncomment only one to enable the selected clock
speed.”

Clock Stretching Test

stretch_test

Uncomment to enable clock stretching test in the slave
testbench files.

Clock Stretching Value

stretch_value

Define the duration of the stretch in decimal value.

12C Mode Selection

STD

FSTMD

Uncomment only one to enable Standard or Fast Mode.

*Note: If the desired clock speed is not in the selection, other clock speeds can still be used. However, you should manually modify
the i_clk_div_Isb and i_mode_reg[2:0] values to allow proper generation of io_scl clock line.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

= L

[

7

stretch walue

Figure 10.1. Compiler Directive Customization Example

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

11. HDL Simulation and Verification

This Generic IC Master module (i2c_master_controller_top.v) is simulated using a top-level testbench file tb.v that acts
as the processor interface mentioned in Figure 3.1. It also allows access to two slave addresses 0x41 and 0x3C3 (7-bit
and 10-bit address modes respectively) from the two instantiations of the testbench 12C Slave module
(i2c_ebr_slave_top.v).

Whenever the I2C Master performs a write transaction, the 12C slave’s simple RAM allows it to store the data sent by
the 12C Master. The same data will then be sent by the I°C Slave whenever the IC Master requests for an I>C read
transaction. For simplicity, only selected signals are shown in the figures below. The following lists the testbench flow:

1. The I2C Master sends a 4-byte 12C write command.

a. Asshown in Figure 11.1, the first byte (in this case 0x00) is treated by the testbench as the starting address of
the RAM. The succeeding bytes 0x11, 0x22, and 0x33 are the actual data sent by the I1°C Master.

b. Figure 11.2 shows a zoomed-in view during momentary assertion of the o_transmit_data_request port. At the
falling edge of this port, the Master Controller fetches the data from the i_transmit_data port (0x11) so it can
be sent to the slave through the 12C bus.

2. The I’C Master sends a 3-byte 12C read command.
a. Asshown in Figure 11.3, the data bytes Ox11, 0x22, and 0x33 was read back from the 12C Slave.

b. Figure 11.4 shows a zoomed-in view during momentary assertion of the o_received_data_valid port. During
the same period, the processor interface can fetch the data from the o_receive_data port. As shown in Figure
6.4, 0x11 has been successfully received by the I2C Master from the I12C Slave.

The 12C Master sends a 2-byte 12C write command twice with a Repeat Start in between.

For easier analysis, the top-level testbench file th.v implements display tasks (Sdisplay) showing the simulation
activity and in what timeline a certain task is performed. After the above I>C transactions, three more similar
transactions are made but uses 10-bit address mode.

Signal name Valug ' ' ' 40 . . . 50 ' . . a0 . ' . 0o . DR =T : © Mo
Soft |2C Master Controller Soft 12C Master Costroller
e i_clk 1
e-i_rst_n 1
=io_sd 1 _Uuuuyuuyryuyryrrruyrrrrrrryrurrrrrruyurrruuuy
<io_sda 1 min ] | m LTl M L r 1hr
- 0_{ransmit_data_request 0 | | | |
e i_fransmit_data 33 oo 1 22
-» o_received_data_valid 0
= 0_receive_data 0

Figure 11.1. 4-Byte I1>C Write with Starting Address = 0x00

Signa\ name Value oo TDIQl' v 70‘32' v Tﬂll oo fﬂlaﬁ o . TOISS oo TDISA' o TDITQ oo TDIB o fﬂlsﬁ oo TDIBS' v TIIDI o
Soft 12C Master Controller Soft 12C Master Controller
ei_clk 1 )y g v}
ei_rstn 1
=io_scl 1
=io_sda 0
= 0_transmit_data_request 0 1
e i_transmit_data il [ n
= o_received_data_valid 0
= 0_receive_data o

Figure 11.2. Zoomed-In View When 0x11 is Received by the Slave

Signal name Value . . . 140 . . . 160 . . . 1150 . . D 1) . . . 2o - . . 1240
Soft 12C Master Controller Soft I2C Master Controller

e-i_clk 1
e-i_rst_n 1
~io_scl 1 U U U U U U U
=io_sda 1 —  II1 1 il Ll M 1 1r
-» o_{ransmit_data_request 0

e I_transmit_data 33 35
= 0_received_data_wvalid 0 | | |

-» 0_receive_data 33 i ISR N! [ RS 22 L

Figure 11.3. 3-Byte I>C Read

www.latticesemi.com/legal


http://www.latticesemi.com/legal

::LATTICE Generic Soft 12C Master Controller

Reference Design

S\gnal name Value '1199.88' . 'IISOI F6 . . “9!.04' . . 119!.12 . . . “9."2 . . . 113!.28 . . " 113!.35 . . . 113!.44 . . . 119].52 . . . IISII.S . . . 113!.68 . . . “9]
Soft 12C Master Controller Soft I2C Master Controller
= i_clk 0 . S [ e S o
e i_rst_n 1
=io_scl 1 ]
=jo_sda 0
-» 0_transmit_data_request 0
e i_transmit_data 33 33
= o_received_data_valid 0 1
-» 0_receive_data il i

Figure 11.4. Zoomed-In View When 0x11 is Fetched by the I1>C Slave Module

Signal name Value ' © a0 ' DR~ R ' DR : -

Soft 12C Master Controller

e i_clk 1
ei_rst_n 1
= jo_scl 1
=io_sda 1 11 I M [ 1
= 0_transmit_data_request 0 | | | |
e i_transmit_data " 3% o [ k4 [ by [ by
= 0_received_data_valid 0
= 0_receive_data 33
Figure 11.5. Repeated 2-Byte I>C Write Command
Console
# KERNEL:
# BERNEL: [////07 000000 0P8FF7A 4777/ TEST PHASE 1 FETEEEETEEETET LA F AT AR A EEEf T
# KERNEL:
# EKERNEL: 21050: MASTER WILL WRITE TC SLAVE ADDRESS Ox41 -> 7-BIT ADDRESS MCDE
# KERNEL:
# EERNEL: 23793: 1 _config reg has been cleared
# KERNEL:
# EERNEL: 47229: The first byte with the value of 0x00 is written by the I2ZC Master to
# HERNEL:
# KERNEL: 70287: I2C MASTER WRITES 0xl11 TC THE I2C SLAVE
# HERNEL:
# KERNEL: 893345: I2C MASTER WRITES 0x22 TC THE I2C SLAVE
# KERNEL:
# KERNEL: 11€403: I2C MASTER WRITES 0x33 TC THE I2C SLAVE
# KERNEL:
# EERNEL: 142023: Cleared all bits in the Command Status Register except the I2C_BUSY bi
# KERNEL:
>

‘B Console [/

Figure 11.6. Aldec Active-HDL Console View

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02201-1.0 19


http://www.latticesemi.com/legal

= LATTICE

12. Packaged Design

The reference design folder (Generic_Soft_I2C_Master) contains five subfolders: Docs, Project, Simulation, Source, and

Testbench. The details of each subfolder are as follows:
e  Project — contains subfolders for each FPGA Family. Each of these subfolders contains either a Diamond or a

Radiant project file (.LDF and .RDF).
e Simulation — contains subfolders for each FPGA Family. Each of these subfolders contains the simulation file (.DO)

used to run RTL simulation on Aldec Active-HDL.
e Source — contains all the Generic I2C Master RTL files.
e Testbench — contains all the testbench source files.

Generic_Soft_12C_Master
Docs
Project
ECP3
ECP5
iCE40Ultraplus
LIFCL
LIFMD
X02
X03
Simulation
Source

Testbench

Figure 12.1. Packaged Design Directory Structure

12.1. Using the Simulation File (.DO)

To use the simulation file, perform the following steps:
1. Open the DO file on a text editor and replace the text <ENTER simulation DIRECTORY PATH HERE> from Line 1 with
the directory path of the simulation file. An example is seen on Line 4 of the file.

[ tl_verilog.do E3
zet EII'I_]:'IF. "sENTEER =zimulation DIEECTCORY PATH HERE™

Figure 12.2. Changing the Simulation Directory

2. Runthe file on Aldec Active-HDL by selecting Execute macro... under the Tools option.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

...LATTICE Generic Soft 12C Master Controller

SEMICONDUCTOR, Reference Design

Active-HDL 10.5 (design not loaded)
File Edit Search View Workspace Design Simulation - Window Help
B | & mz;.,op.ﬁgmu_ 100
Language Assistant
E Generate Testbench...

arh Server Farm...

% Signal Alias Editor...
Legacy Coverage »
ACDE Coverage »

5
7

Code2Graphics Conversion Wizard... Ctrl+B
VHPI/PLI/VPI/DPI-C Wizard

Generate SystemC Transactors...

PCE Interface...

Profiler Viewer
IP CORE Generator
HOL Code Statistics

DO &Rl

Preferences...

Customize...

Source Control b

Figure 12.3. Running the Simulation File

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02201-1.0 21


http://www.latticesemi.com/legal

Generic Soft 12C Master Controller .':LATTICE

Reference Design

13. Hardware Validation

This reference design was hardware validated using a MachX03- 9400 Development Board (LCMXO3LF-9400C-ASC-B-
EVN) and an iCE40 UltraPlus Breakout Board (iCE4A0UP5K-B-EVN). A companion demo was also created to allow the
user to perform actual hardware validation on most Lattice FPGA. Refer to the Generic Soft I2C Master and Slave Write-
Read Demo (FPGA-UG-02122).

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02201-1.0


http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=53008
http://www.latticesemi.com/view_document?document_id=53008

=LATTICE

14. Implementation

This design is implemented in Verilog. When using this design in a different device or strategy settings, density,
speed/grade, performance, and utilization may vary. Due to the limitations of the 1/0O pin count of iCE40 UltraPlus and
CrossLink devices, the included two projects for these fail during Map. However, if most of the ports for this reference
design are only used internally, Map succeeds like in the case of the companion demo, Generic Soft I2C Master and
Slave Write-Read Demo (FPGA-UG-02122).

Table 14.1. Resource Utilization

Device Family Language Ut(lll_llj:_t: n fvax (MHz) 1/0
Lattice ECP3?! Verilog 290 >32 This Reference Design has a
ECP52 Verilog 289 >32 total of 69 ports. The
CrossLink™3 Verilog ~2638 >32 hardware validated
CrossLink™-NX4 Verilog 290 >32 companion demo mentioned
in this document is only
iCE40 UltraPlus® Verilog 282° >32 using nine 1/0 since most of
MachX026 Verilog 292 >32 the ports are only used
MachX037 Verilog 292 >32 internally.

Notes:

1. Performance and utilization characteristics are generated using LFE3-35EA-8FN484C with Lattice Diamond 3.11 design software
with either LSE (Lattice Synthesis Engine) or Synplify Pro®.

2. Performance and utilization characteristics are generated using LFE5U-85F-8BG381C with Lattice Diamond 3.11 design software
with either LSE (Lattice Synthesis Engine) or Synplify Pro.

3. Performance and utilization characteristics are generated usingiCE4A0UP5K-SG48| with Lattice Radiant 2.1 design software with
either LSE (Lattice Synthesis Engine) or Synplify Pro.

4. Performance and utilization characteristics are generated using LIFCL-40-7BG400I with Lattice Lattice Radiant 2.1 design
software with either LSE (Lattice Synthesis Engine) or Synplify Pro.

5. Performance and utilization characteristics are generated using LFE5U-85F-8BG381C with Lattice Diamond 3.11 design software
with either LSE (Lattice Synthesis Engine) or Synplify Pro.

6. Performance and utilization characteristics are generated using LCMX02-7000HE-6TG144C with Lattice Diamond 3.11 design
software with either LSE (Lattice Synthesis Engine) or Synplify Pro.

7. Performance and utilization characteristics are generated using LCMXO3LF-9400C-6BG484C with Lattice Diamond 3.11 design
software with either LSE (Lattice Synthesis Engine) or Synplify Pro.

8. Approximation only. Selected CrossLink device does not meet the required 69 1/0 for this reference design. However, if some of
the ports are going to be utilized internally, this reference design can still be used.

9. Total LUT count came from the Map Resource Usage section of Lattice Radiant software’s report browser after compiling the
design using another top-level unit of the companion demo that instantiates the i2c_master_controller_top module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=53008
http://www.latticesemi.com/view_document?document_id=53008

Generic Soft 12C Master Controller
Reference Design

= LATTICE

References

For more information, refer to the following documents:

e LatticeECP3 EA Family Data Sheet (DS1021)

e ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012)

e  CrossLink Family Data Sheet (FPGA-DS-02007)

e  MachX02 Family Data Sheet (DS1035)

e  MachXO3 Family Data Sheet (FPGA-DS-02032)

e iCE40 UltraPlus Family Data Sheet (FPGA-DS-02008)

e  Generic Soft I°C Master and Slave Write-Read Demo (FPGA-UG-02122)

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24

FPGA-RD-02201-1.0


http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=31998
http://www.latticesemi.com/view_document?document_id=50461
http://www.latticesemi.com/view_document?document_id=51662
http://www.latticesemi.com/view_document?document_id=38834
http://www.latticesemi.com/view_document?document_id=50121
http://www.latticesemi.com/view_document?document_id=53008
http://www.latticesemi.com/view_document?document_id=53008

::LATTICE Generic Soft 12C Master Controller

Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02201-1.0 25


http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Generic Soft 12C Master Controller
Reference Design

= LATTICE

Revision History

Revision 1.0, December 2020

Section

Change Summary

All

Initial release.

26

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02201-1.0


http://www.latticesemi.com/legal

s=LATTICE


http://www.latticesemi.com/

	Generic Soft I2C Master Controller
	Acronyms in This Document
	1. Introduction
	2. Features
	3. Functional Description
	4. Pin Descriptions
	5. Design Modules
	5.1. I2C Bus Control FSM
	5.2. I2C Master Control FSM

	6. Internal Register Map
	7. Register Bit Descriptions
	8. Timing Diagram
	8.1. I2C Master Write Timing Diagram
	8.2. I2C Master Read Timing Diagram

	9. Operation Sequence
	9.1. 7-Bit Addressing Mode
	9.1.1. Single/Multi-Byte Write Operation
	9.1.2. Single/Multi-Byte Read Operation
	9.1.3. Write with Repeated Start

	9.2. 10-Bit Addressing Mode
	9.2.1. Single/Multi-Byte Write Operation
	9.2.2. Single/Multi-Byte Read Operation
	9.2.3. Single/Multi-Byte Write Operation with Repeat Start

	9.3. Clock Stretching

	10. Customization
	11. HDL Simulation and Verification
	12. Packaged Design
	12.1. Using the Simulation File (.DO)

	13. Hardware Validation
	14. Implementation
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, December 2020



