

I²C to WISHBONE Configuration Interface Bridge Usage Guide

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronym	s in This Document	6
1. Intro	oduction	
1.1.	Quick Facts	
1.2.	Conventions	
1.2.1		
1.2.2		
1.2.3		
2. Feat	ures	
3. Sign	al Description	<u>C</u>
	ctional Overview	
5. Attri	ibutes Summary	
	gn Instantiation, Simulation, and Validation	
6.1.	EFB Generation	
6.2.	Reference Design Module Declaration and Instantiation	14
6.3.	WISHBONE Configuration Commands	16
6.4.	I ² C Transmission Format	18
6.5.	Design Simulation	19
Appendix	A. Resource Utilization	22
	es	
	Support Assistance	
	History	

Figures

Figure 4.1. I ² C to WISHBONE Configuration Interface Bridge Functional Diagram	10
Figure 4.2. I ² C to WISHBONE Configuration Interface Bridge Pin Diagram	
Figure 6.1. EFB Module in IPExpress	13
Figure 6.2. Generating an EFB Module wit IPExpress	
Figure 6.3. I ² C Transmission Format for Write	
Figure 6.4. I ² C Transmission Format for Reading	18
Figure 6.5. Simulation Project in Lattice Diamond	19
Figure 6.6. Simulation Waveform for Transparent Flash Access Enable	
Figure 6.7. Simulation Waveform for Transparent Flash Access Enable	

Tables

Table 1.1. Quick Facts	7
Table 3.1. Ports Description	
Table 5.1. Parameter Table	
Table 6.1. WISHBONE Configuration Command Format	16
Table 6.2. WISHBONE Configuration Command Table	
Table A.1. Performance and Resource Utilization	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
FPGA	Field Programmable Gate Array
LUT	Lookup-Table
I ² C	Inter-Integrated Circuit
WB	WISHBONE Bus
SDA	Serial Data
SCL	Serial Clock
NVM	Non-Volatile Memory (NVCM for MachXO3L, Flash memory for others)
SDM	Self-Download Mode
GPIO	General Purpose Input/Output
EFB	Embedded Function Block

1. Introduction

I²C to WISHBONE Configuration Interface Bridge Reference Design provides an I²C slave interface with bridging logic to convert the I²C traffic into WISHBONE bus format. Hence, it allows the external I²C master to access Lattice FPGA configuration logic through the internal fabric WISHBONE interface, which exists on MachXO2™, MachXO3™, and MachXO3D™ device families. This Reference Design can serve as a replacement for the Primary I²C sysConfig™ interface, and provide flexibility for the I²C interface from any available GPIO.

Two main concerns are paramount for the I²C to WISHBONE Configuration Interface Bridge:

- Provide an efficient way to access the configuration NVM in Transparent Mode.
- Flexiable I/O pin assignment, independent from sysConfig pins.
- Reducing the number of physical pins used by the interface, relative to JTAG or SPI sysConfig options.

This design is implemented in Verilog. Lattice design tools are language agnostic, so the Verilog design can be seamlessly added to a VHDL design if needed. Lattice Diamond® Software Place and Route tool integrated with Synplify Pro® synthesis tool is used for design implementation. The design can be targeted to all MachXO2, MachXO3, and MachXO3D family devices.

1.1. Quick Facts

Table 1.1 presents a summary of the I²C to WISHBONE Configuration Interface Bridge Reference Design Core.

Table 1.1. Quick Facts

Reference Design	Supported FPGA Family	MachXO2, MachXO3, MachXO3D				
Requirements	Minimal Device Needed	MachXO2-256				
Davisa Basuiramanta	Targeted Device	Any device in MachXO2, MachXO3, and MachXO3D families				
Device Requirements	Supported User Interfaces	WISHBONE Bus Interface				
	Lattice Implementation	Lattice Diamond Software 3.11 or higher				
	Cunthosis	Lattice Synthesis Engine (LSE)				
Design Tool Support	Synthesis	Synopsys® Synplify Pro for Lattice				
	Simulation	For the list of supported simulators, see the Lattice Diamond Software 11.0 User Guide.				

1.2. Conventions

1.2.1. Definition of Terms

This document uses the following terms to describe common functions:

- Configuration Configuration refers to a change in the state of the MachXO3D SRAM memory cells.
- Transparent Mode Transparent mode is used to update the Configuration Flash and the User Flash Memory while leaving the MachXO3D devices in user mode.
- User Mode The MachXO3D device is in user mode when configuration is complete and the FPGA is performing the logic functions it is programmed to perform.

1.2.2. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.2.3. Signal Names

Signal names that end with:

- _n are active low (asserted when value is logic 0)
- _i are input signals
- _o are output signals

2. Features

The I²C to WISHBONE Configuration Interface Bridge behave as a slave on the I²C bus. It passes the I²C data packet onto the built-in WISHBONE bus inside the MachXO2, MachXO3, or MachXO3D device, which is a system configuration logic interface. Therefore, you can establish NVM programming in the user functional mode.

The I²C to WISHBONE Configuration Interface Bridge presents the following features and requirements:

- Two wire I²C interface up to 1 MHz
- 7-bit addressing is supported
- Parameterized I²C slave address with 7'h40 as default
- The WISHBONE clock must be at least 16x of the I²C bus clock.
- Provides digital glitch filter on SCL for two WISHBONE clock periods, which is 50 ns for 40 MHz WISHBONE clock.

3. Signal Description

Table 3.1 lists and describes the input and output signals for I²C to WISHBONE Configuration Interface Bridge.

Table 3.1. Ports Description

able 511 Total Description							
Signal	Direction	Description					
System Control Interface							
bridge_enable	Input	Enable signal for this reference design					
I ² C Interface							
SCL_in	Input	I ² C clock input to Slave from Master					
SDA_in	Input	I ² C data input to Slave from Master					
SDA_oe	Output	Open Drain Output Enable for I ² C data output					
WISHBONE Interface							
wb_rst_i	Input	WISHBONE Reset					
		Resets the WISHBONE interface and sets registers to their default values. Also, reset the					
		internals of the reference design block.					
wb_clk_i	Input	WISHBONE Clock					
		Clock for the WISHBONE interface and the rest of the reference design, include the Slave I ² C					
		interface					
wb_we_o	Output	WISHBONE Write Enable					
wb_adr_o[7:0]	Output	WISHBONE Address					
wb_dat_o[7:0]	Output	WISHBONE Output Data					
wb_dat_i[7:0]	Input	WISHBONE Input Data					
wb_str_o	Output	WISHBONE Strobe					
wb_cyc_o	Output	WISHBONE Cycle (= Strobe)					
wb_rd_data_reg[7:0]	Output	WISHBONE read data register out					

4. Functional Overview

The I²C to WISHBONE Configuration Interface Bridge supports standard I²C communication transactions on the twowire interface, SDA bidirectional data line and SCL input. The data packets between the I²C slave interface inside the Reference Design and the external I²C master goes through the bridging logic and feed into the WISHBONE configuration Interface to invoke the device configuration logic to access the on chip Non-volatile Memory. The bridging logic handles the WISHBONE addressing for the WISHBONE Configuration Interface.

The I²C to WISHBONE Configuration Interface Bridge functional diagram is shown in Figure 4.1.

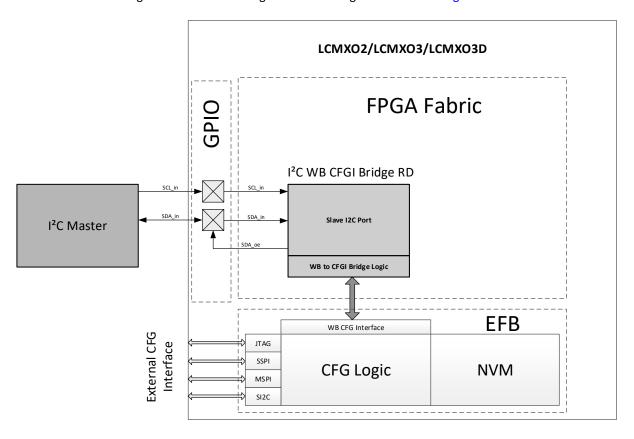


Figure 4.1. I²C to WISHBONE Configuration Interface Bridge Functional Diagram

The I²C to WISHBONE Configuration Interface Bridge pin diagram is shown in Figure 4.2.

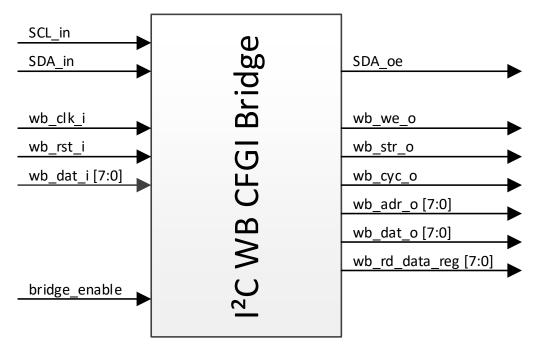


Figure 4.2. I²C to WISHBONE Configuration Interface Bridge Pin Diagram

5. Attributes Summary

Table 5.1 provides the list of user-selectable and compile time configurable parameters for the I²C to WISHBONE Configuration Interface Bridge. The parameter settings are specified using I²C to WISHBONE Configuration Interface Bridge Configuration user interface in Lattice Diamond software.

Table 5.1. Parameter Table

Attribute	Selectable Values	Default	Dependency on Other Attributes	Description
General				
I ² C Bus Characterist	ics			
I2C_ADDR	7'h08 – 7'h77	7'h40	None	Slave Address for the Slave I ² C port of the reference design

6. Design Instantiation, Simulation, and Validation

This section provides information on how to instantiate the I²C to WISHBONE Configuration Interface Bridge, including using the Lattice Diamond Software to generate the EFB, and how to run simulation and synthesis. For more details on the Lattice Diamond Software, refer to the Lattice Diamond Software 3.11 User Guide.

6.1. EFB Generation

The I²C to WISHBONE Configuration Interface Bridge Reference Design can access the Configuration Flash, User Flash Memory, and the Feature Row from an internal WISHBONE bus. To use the WISHBONE bus, the Embedded Function Block must be inserted into your design. This allows for flexible utilization of the EFB, for example if your design makes use of other features of the EFB such as UFM.

If no other features are required, the EFB can be generated as shown below. In either case, insert the generated EFB instantiation into your design and hook up the WISHBONE bus to the Bridge Reference Design.

To configure the EFB hard IP functions and generate the EFB module using IPExpress:

- 1. From the Lattice Diamond top menu, select **Tools > IPExpress**.
- 2. With a device targeted for the Diamond project, the IPExpress window opens and the EFB module can be found under **Modules > Architecture Modules**.

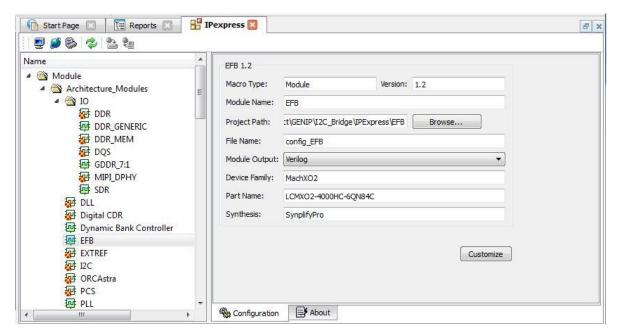


Figure 6.1. EFB Module in IPExpress

- 3. Fill in the Project Path, File Name, and Design Entry fields, and click Customize.
- 4. The EFB configuration dialog appears. The left side of the EFB window dis-plays a graphical representation of the I/O associated with each IP function. The I/O pins appear and disappear as each IP is enabled or disabled. Check the tab for **WISHBONE**, and enter the **WISHBONE** Clock Frequency. An example EFB with all features enabled is shown in Figure 6.2.
- 5. Click the Generate button.

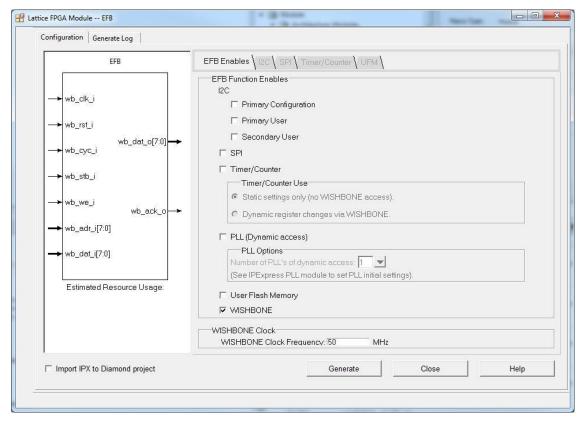


Figure 6.2. Generating an EFB Module wit IPExpress

The EFB module is generated and ready to be instantiated in your design.

6.2. Reference Design Module Declaration and Instantiation

The I²C to WISHBONE Configuration Interface Bridge can be instantiated into the RTL design, as shown in the example below.

Module Declaration

```
module #(I2C ADDR) I2C2WB birdge (bridge enable, SCL in, SDA in, SDA oe, wb clk i,
wb rst i, wb we o, wb adr o,
                                                                        wb dat o,
wb dat i, wb str o, wb cyc o, wb rd data reg);
parameter I2C ADDR = 7'h40;
input bridge enable;
input SCL in;
input SDA in;
output SDA oe;
input wb clk i;
input wb rst i;
output wb we o;
output [7:0] wb adr o;
output [7:0] wb dat o;
input [7:0] wb dat i;
output wb str o;
output wb cyc o;
output [7:0] wb rd data reg;
endmodule
```

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Instantiation

```
parameter I2C ADDR = 7'h40; // Define I2C slave address for the Reference
Design, value between 7'h08 - 7'h77;
                  wb clk i ;
wire
                  wb_rst_i ;
                  wb we i ;
wire
             wb_adr i ;
wire
      [7:0]
wire
       [7:0] wb dat i ;
       [7:0]
wire
               wb dat o ;
                  wb str i ;
wire
                  wb cyc_i ;
wire
wire
                  wb ack o;
// I2C to WISHBONE Configuration Bridge
I2C2WB birdge #(I2C ADDR) I2CWB bridge inst (
        .bridge enable (bridge enable ),
        .SCL in (SCL in
                            ),
        .SDA in
                  (SDA in
        .SDA oe
                 (SDA oe ),
        .wb clk i (wb clk i),
        .wb rst i (wb rst i),
        .wb we o (wb we i),
        .wb adr o (wb adr i),
        .wb dat o (wb dat i),
        .wb dat i (wb dat o),
        .wb str o (wb str i),
        .wb cyc o (wb cyc i),
        .wb rd data reg (wb rd data reg));
// MachXO EFB
config EFB EFB inst (
       .wb clk i (wb clk i ),
       .wb rst i (wb rst i ),
       .wb we i (wb we i ),
       .wb adr i (wb adr i ),
       .wb dat i (wb dat i ),
       .wb dat o(wb dat o),
       .wb stb i(wb str i ),
       .wb cyc i (wb cyc i ),
       .wb ack o(wb ack o ));
```


6.3. WISHBONE Configuration Commands

The WISHBONE Configuration commands consist of one byte mandatory OPCODE, three bytes mandatory OPERANDs (except for ISC_NOOP command, which is OPCODE only), and optional data bytes and dummy bytes, which are defined on a per command basis as shown in Table 6.1.

Table 6.1. WISHBONE Configuration Command Format

OPCODE	OPCODE OPERAND1		OPERAND3	DATA	
(1 Byte) (1 Byte) (1 Byte)		(1 Byte)	(X Bytes)		
Mandatory	Mandatory	Mandatory	Mandatory	Optional	

The supported WISHBONE Configuration Commands for MachXO2, MachXO3, and MachXO3D product families are shown in Table 6.2.

Table 6.2. WISHBONE Configuration Command Table

Command Name [SVF Synonym]	Command	Operands	Write Data	Read Data	Notes		
Read Device ID [IDCODE_PUB]	0xE0	00 00 00	N/A	YY YY YY YY	YY characters represent the device- specific ID code		
Enable Configuration Interface (Transparent Mode) [ISC_ENABLE_X]	0x74	08 00 00 1	N/A	N/A	Enable the Configuration Logic for device programming in transparent mode. ¹		
Read Busy Flag [LSC_CHECK_BUSY]	0xF0	00 00 00	N/A	YY	Bit 1 0 7 Busy Ready		
Read Status Register [LSC_READ_STATUS]	0x3C	00 00 00	N/A	YY YY YY YY	Bit 1 0 12 Busy Ready 13 Fail OK		
					Y = Memory space to erase		
			N/A		Y is a bitwise OR Bit 1=Enable		
Erase [ISC_ERASE]	0x0E	0Y 00 00		N/A	Bit 1=Enable 16 Erase SRAM 17 Erase Feature Row 18 Erase Configuration Flash 19 Erase UFM		
Erase UFM [LSC_ERASE_TAG]	0xCB	00 00 00	N/A	N/A	Erase the UFM sector only.		
Reset Configuration Flash Address [LSC_INIT_ADDRESS]	0x46	00 00 00	N/A	N/A	Set Page Address pointer to the beginning of the Configuration Flash sector		
Set Address [LSC_WRITE_ADDRESS]	0xB4	00 00 00	M0 00 PP PP	N/A	Set the Page Address pointer to the Flash page specified by the least significant 14 bits of the PP PP field. The 'M' field defines the Flash memory space to access. Field 0x0 0x4 M Configuration Flash UFM		
Program Page [LSC_PROG_INCR_NV]	0x70	00 00 01	YY * 16	N/A	Program one Flash page. Can be used to program the Configuration Flash, or UFM.		
Reset UFM Address	0x47	00 00 00	N/A	N/A	Set the Page Address Pointer to the		

Command Name [SVF Synonym]	Command	Operands	Write Data	Read Data	Notes	
[LSC_INIT_ADDR_UFM]					beginning of the UFM sector	
Program UFM Page [LSC_PROG_TAG]	0xC9	00 00 01	YY * 16	N/A	Program one UFM page	
Program USERCODE [ISC_PROGRAM_USERCODE]	0xC2	00 00 00	YY * 4	N/A	Program the USERCODE.	
Read USERCODE [USERCODE]	0xC0	00 00 00	N/A	YY * 4	Retrieves the 32-bit USERCODE value	
Write Feature Row [LSC_PROG_FEATURE]	0xE4	00 00 00	YY * 8	N/A	Program the Feature Row bits	
Read Feature Row [LSC_READ_FEATURE]	0xE7	00 00 00	N/A	YY * 8	Retrieves the Feature Row bits	
Write FEABITS [LSC_PROG_FEABITS]	0xF8	00 00 00	YY * 2	N/A	Program the FEABITS	
Read FEABITS [LSC_READ_FEABITS]	0xFB	00 00 00	N/A	YY * 2	Retrieves the FEABITS	
Read Flash [LSC_READ_INCR_NV]	0x73	M0 PP PP	N/A	YY * N ² * PPPP	Retrieves PPPP count pages. Only the least significant 14 bits of PP PP are used. The 'M' field must be set based on the con-figuration port being used to read the Flash memory. 0x0 I ² C 0x1 JTAG/SSPI/WB	
Program DONE [ISC_PROGRAM_DONE]	0x5E	00 00 00	N/A	N/A	Program the DONE status bit enabling SDM	
Program OTP Fuses [LSC_PROG_OTP]	0xF9	00 00 00	UCFSUCFS	N/A	Makes the selected memory space One Time Programmable. Matching bits must be set in unison to activate the OTP feature. Bit 1 0 0,4 SRAM OTP SRAM Writable 1,5 Feature OTP Feature Writable 2,6 CF OTP CF Writable 3,7 UFM OTP UFM Writable	
Disable Configuration Interface [ISC_DISABLE]	0x26	00 00	N/A	N/A	Exit Transparent programming mode.	
Bypass [ISC_NOOP]	0xFF	N/A	N/A	N/A	No Operation	
Refresh [LSC_REFRESH]	0x79	00 00	N/A	N/A	Force the MachXO2 to reconfigure. Trans-mitting a REFRESH command reconfigures the MachXO2 in the same fashion as asserting	

Command Name [SVF Synonym]	Command	Operands	Write Data	Read Data	Notes
					PROGRAMN.
Program SECURITY [ISC_PROGRAM_SECURITY]	0xCE	00 00 00	N/A	N/A	Program the Security bit (Secures CFG Flash sector). ³
Program SECURITY PLUS [ISC_PROGRAM_SECPLUS]	0xCF	00 00 00	N/A	N/A	Program the Security Plus bit (Secures CFG and UFM Sectors). ³
Read TraceID code [UIDCODE_PUB]	0x19	00 00 00	N/A	YY * 8	Read 64-bit TraceID.

Notes:

- 1. Transmit the command opcode and first two operand bytes when using the I²C port. The final operand byte must not be transmitted.
- 2. The N is determined by the DSR size of the device, which N = Total DSR Bits / 8.
- 3. SECURITY and SECURITY PLUS commands are mutually exclusive.

For details on the Non-Volatile Memory Programming Flow, refer to:

- MachXO2 Programming and Configuration Usage Guide (FPGA-TN-02155)
- MachXO3 Programming and Configuration Usage Guide (FPGA-TN-02055)
- MachXO3D Programming and Configuration Usage Guide (FPGA-TN-02069)

6.4. I²C Transmission Format

The typical WISHBONE Configuration write operation through the I²C to WISHBONE Configuration Interface Bridge is shown in Figure 6.3.

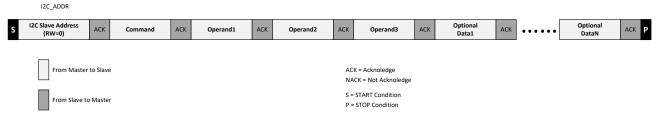


Figure 6.3. I²C Transmission Format for Write

The typical WISHBONE Configuration read operation through the I²C to WISHBONE Configuration Interface Bridge is shown in Figure 6.4.

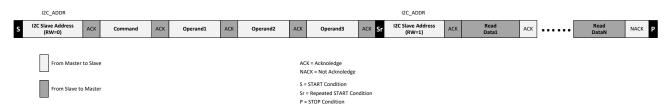


Figure 6.4. I²C Transmission Format for Reading

6.5. Design Simulation

The simulation environment and test bench *tb_I2C_bridge.v* instantiates the *I2C2WB_bridge_sysconfig.v*, which contains the I²C to WISHBONE Configuration Interface Bridge module, FPGA device EFB module, and an I²C Master driver (i2c_master.v).

To simulate the design:

1. Invoke the entire simulation setup by opening the project file *Project/I2C_Bridge_sim.ldf* from Lattice Diamond. The I²C to WISHBONE Configuration Interface Bridge inputs are driven with a generated pattern from the I²C Master driver.

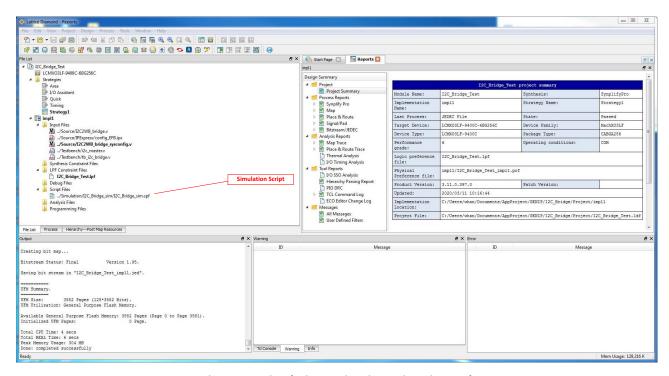


Figure 6.5. Simulation Project in Lattice Diamond

- 2. Access the simulation environment by double clicking on the *I2C_Bridge_sim.spf_*script file in Lattice Diamond from the file list.
- 3. Click **OK**. The Aldec ActiveHDL opens.
- 4. Compile the project and initialize the simulation.
- 5. Add signals to the waveform viewer to view and run the simulation.

The testbench shows the following statements while running:

```
run @3ms
                                                                          820
# KERNEL: Configuration complete. EFB now in user mode.
# KERNEL:
                         50000: Starting I2C Slave Simulation
# KERNEL:
 KERNEL:
                         50000: Initializing Test Bench
 KERNEL:
                         51500: Sending ISC Enable X Command 0x74
#
 KERNEL:
# KERNEL:
                        135627: I2C Master Command = 74
# KERNEL:
                        180627: I2C Master Operand/Data = 08
# KERNEL:
                        225627: I2C Master Operand/Data = 00
 KERNEL:
                        270627: I2C Master Operand/Data = 00
 KERNEL:
 KERNEL:
                        289250: Sending Read Device ID Command 0xE0
```

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
373127: I2C Master Command = e0
# KERNEL:
                        418127: I2C Master Operand/Data = 00
 KERNEL:
                        463127: I2C Master Operand/Data = 00
 KERNEL:
                        508127: I2C Master Operand/Data = 00
# KERNEL:
 KERNEL:
                        605002: Data Read = 01
                        650002: Data Read = 2b
 KERNEL:
                        695002: Data Read = 20
 KERNEL:
                        740002: Data Read = 43
 KERNEL:
 KERNEL:
# KERNEL:
                        761750: Sending ISC Disable Command 0x26
                        845627: I2C Master Command = 26
#
 KERNEL:
 KERNEL:
                        890627: I2C Master Operand/Data = 00
# KERNEL:
                        935627: I2C Master Operand/Data = 00
                        980627: I2C Master Operand/Data = 00
 KERNEL:
# KERNEL:
 KERNEL:
                        994250: Sending Bypass/NOP Command 0xFF
#
 KERNEL:
                       1078127: I2C Master Command = ff
 KERNEL:
                       1123127: I2C Master Operand/Data = ff
                       1168127: I2C Master Operand/Data = ff
 KERNEL:
 KERNEL:
                       1213127: I2C Master Operand/Data = ff
 KERNEL:
# KERNEL:
                       1226750: I2C Simulation Complete
 KERNEL:
# RUNTIME: Info: RUNTIME 0068 i2c master.v (167): $finish called.
# KERNEL: Time: 1326750 ns, Iteration: 0, Instance: /tb i2c bridge/MST,
                                                                             Process:
@INITIAL#98 2@.
# KERNEL: stopped at time: 1326750 ns
```

An example of the simulation waveform for transmitting the transparent flash access enable command is shown in Figure 6.6. In addition, an example of the simulation for reading the device ID is shown in Figure 6.7.

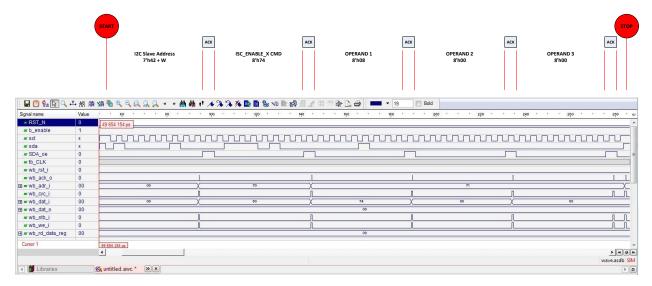


Figure 6.6. Simulation Waveform for Transparent Flash Access Enable

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

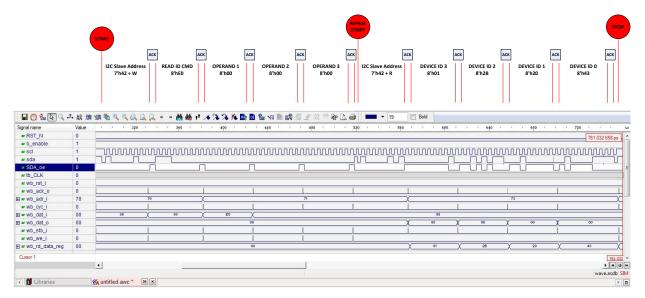


Figure 6.7. Simulation Waveform for Transparent Flash Access Enable

Appendix A. Resource Utilization

Resource utilization information for a sample Slave configuration using Lattice Diamond Software is shown in Table A.1. For more information on Lattice Diamond Software, visit the Lattice web site at www.latticesemi.com/Products/DesignSoftwareAndIP.

Table A.1. Performance and Resource Utilization

Table Al211 citoffidite and resource offization								
Device Family	Language	Speed Grade	Utilization	Fmax (MHz)	1/0	Architecture Resources		
MachXO2	Verilog-LSE	-6	106 LUTs	40	2	EFB		
	Verilog-Syn	-6	95 LUTs	40	2	EFB		
MachXO3FL	Verilog-LSE	-6	106 LUTs	40	2	EFB		
	Verilog-Syn	-6	95 LUTs	40	2	EFB		
MachXO3D	Verilog-LSE	-6	106 LUTs	40	2	EFB		
	Verilog-Syn	-6	95 LUTs	40	2	EFB		

References

For complete information on Lattice Diamond Project-Based Environment, Design Flow, Implementation Flow and Tasks, as well as on the Simulation Flow, see the Lattice Diamond Software 3.11 User Guide.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

24

Revision History

Revision 1.0, March 2020

Section	Change Summary
All	Initial release

www.latticesemi.com