s=LATTICE

Lattice Propel 1.0 Application Programming
Interface

Reference Guide

FPGA-AN-02027-1.0

May 2020

Lattice Propel 1.0 Application Programming Interface ...ILATTICE

Reference Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-AN-02027-1.0

http://www.latticesemi.com/legal

::LATTICE Lattice Propel 1.0 Application Programming Interface

Reference Guide

Contents

ACTONYMS N THiS DOCUMENTiiiiiciiiiecieee ettt e e ettt e e ettt e e e sttt e e e s treeessasseeessaeeeassteeeaasssaeesssaeeeanssseesanseaeesssaneeanseeesanssnsesnssnens 4
R 1o} 4 oo [T d o] o PRSPPSO 5
1.1. U 0T 1] RPN 5
1.2. F XU o 1= o Lol ISR PUPRRN 5
2. RISCV CPU ittt ettt e sttt e e e ab e e e e atb e e e s abe e e e e s bt e e e e asbeeesaabaeesaabeeeeaasbeeesanb e e e s aabbeaeensbeeesanbaeesaabbeeanns 6
2.1. OVEIVIBW it et eeeaeeaaeaeaeaaaeeaaaaananans 6
2.2. CPU HAL <ttt ettt ettt e ettt e sttt e s ab et e e ettt e e s aab e e e s aa b e e e e eabb e e e s ns e e e e aab e e e e aanbeeesnseeesaabeeesannbeeesansneessnrenannns 6
S S = [G TP PO PU PP PP PPPUTN

2.2.2. Timer...
2.2.3. Register Access

3. General IPs
3.1. GPIO
3.2. UART
3.3. 23 = TP PP UPPTOPPN
3.3.0. UFIM A CCESS . uututttutururererureternneeererereresesesesesssesesesseesssssesesesssesesesssesesesesasese s s eeeeee e et e s e s st e s e e s e st e ee b e et e et et ebetebebntenennnnne

0 T) =117 YOO

20T (=T =T ool PR
Technical Support Assistance
LAV T o I T ES) o T PSP PPP PPN

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02027-1.0 3

http://www.latticesemi.com/legal

mLATTICE

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

BSP Board Support Package, the layer of software containing hardware-specific drivers and libraries to function in a
particular hardware environment.

EFB Embedded Function Block, a hard block in Lattice FPGA device.

eSDK Embedded System Design and Develop Kit, a set of software development tools that allows the creation of
applications for software package on the Lattice embedded platform.

ESI Embedded System Solutions.

GPIO General Purpose Input Output.

HAL Hardware Abstraction Layer, a software interface to hide the detail of the hardware design and provide general
services to the upper layer.

12C Inter Integrated Circuit.

ISR Interrupt Service Routine that is called when the corresponding interrupt occurs.

PIC Programmable Interrupt Controller, handling the interrupts from the peripheral devices.

RISC.V A free and open instruction set architecture (ISA) enabling a new era of processor innovation through open
standard collaboration.

SoC System on Chip.

UART Universal Asynchronous Receiver-Transmitter.

UFM User Flash Memory.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

1. Introduction

Lattice Propel 1.0 is a complete set of graphical and command-line tools to create, analyze, compile, and debug both
FPGA-based hardware and software processor systems.

1.1. Purpose

Embedded System Solutions (ESI) take an important role in FPGA system design allowing you to develop software for a
processor in an FPGA device. It provides flexibility for you to control various peripherals from a system bus.

To develop an embedded system on an FPGA, you need to design the SoC with an embedded processor and develop
system software on the processor. Lattice Propel can help develop your system with a RISC-V processor, peripheral IP,
and a set of tools.

The purpose of this document is to introduce the Application Programming Interface (API) for the IPs in Lattice Propel
eSDK and to guide you to develop your own system software.

1.2. Audience

The intended audience for this document are embedded system designers and embedded software developers using
Lattice MachXO3D FPGA devices. The technical guidelines assume readers have expertise in the embedded system area
and FPGA technologies.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

2. RISC-V CPU

2.1. Overview

The RISC-V Processor is a configurable CPU soft IP based on the open source Vex RISC-V core, which integrates JTAG
debugger, PIC, and Timer. The RISC-V core supports RV32l instruction set and five-stage pipelines. JTAG debugger, PIC,
and Timer could be enable or disable optionally based on the system requirement.

Lattice HAL provides a set of APIs to help integrate the CPU into the system and develop the software, which needs to
make use of all the modules and services the CPU provides.

2.2. CPUHAL

2.2.1. PIC

The Programmable Interrupt Controller (PIC) aggregates up to eight external interrupt inputs (IRQs) into one interrupt
output to CPU (meip). The interrupt status is a memory mapped register that can be used to read the values of IRQs
through the bus interface. Individual IRQs can be configured by programming the corresponding enable and polarity
register. For the design detail, refer to RISC-V MC CPU IP Core — Lattice Propel Builder (FPGA-IPUG-02114).

The APIs of the PIC provides the necessary interfaces to the user to handle the peripherals’ interrupts, which makes use
of the system interrupt handling framework.

2.2.1.1. API Reference

void pic_init(unsigned int base)

Parameter | Description

Base address of the PIC module, Propel SDK automatically parses the address map of the

base . .
SoC system and passes the information to software.

Returns | Description

void | —

Description

This function is supposed to be called when the platform is initializing. This function should be called before calling any PIC
related functions.

pic_int_enable

void pic_int_enable(unsigned char src)

Parameter | Description

src | The corresponding INT number of the device connecting on the PIC.

Returns | Description

void | —

Description

This function is used to enable the interrupt for a specified source. The interrupt service routine is called for the source, only if
it is enabled by this function. The interrupt can be disabled by calling ‘pic_int_disable()’ with the same interrupt source number
as the parameter.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52887

s LATTICE

pic_int_disable

void pic_int_disable(unsigned char src);

Parameter | Description

src | The corresponding INT number of the device connecting on the PIC.

Returns | Description

void | —

Description

This function is used to disable the interrupt for a specified source. The interrupt service routine is not invoked, if the interrupt
is disabled by this function. The interrupt can be enabled by calling ‘pic_int_enable()’ with the same interrupt source number as
the parameter.

pic_isr_register
bool pic_isr_register(unsigned char src, void (*isr)(void *), void *context) ;

Parameter | Description

src | The corresponding INT number of the device connecting on the PIC.

isr | The function pointer to the interrupt service routine of the corresponding device.

context | The context of the interrupt service routine for the device.

Returns | Description

True: the interrupt registration succeeded.

bool
False: the interrupt registration failed.

Description

This function is used to register an interrupt service routine for a specified device. After registration, the ISR is invoked
automatically when the interrupt happens, if the interrupt is enabled by pic_int_enable().

pic_int_polarity_set
void pic_int_polarity_set(unsigned char src, unsigned char bit)

Parameter | Description

src | The corresponding INT number of the device connecting on the PIC.

bit | The value of the polarity of the interrupt.

Returns | Description

void | —

Description

This function is used to set the polarity of the specified device at runtime. The current polarity can be got via calling
pic_int_polarity_get().

pic_int_polarity_get
unsigned char pic_int_polarity_get(unsigned char src)

Parameter | Description

src | The value of the polarity of the specified interrupt.

Returns | Description

unsigned char | The polarity of the interrupt.

Description

This function is used to get the polarity of the specified interrupt pin.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

2.2.1.2. API Usage Example

The code episode shows the typical usage of the APIs of PIC. After initialization of the PIC module, you can register a
callback for a specified interrupt source. When interrupt happens from that source, the registered callback is invocated
to handle the event.

#include “hal.h”

/*supported number of interrupt source*/
#define INT NUM 6
int main()

{

/* Initialize the PIC with base address and the number of interrupt source */
pic_init(CPUO_INST_PICTIMER_START _ADDR, INT_NUM);

/* Register an ISR callback, invocated when the corresponding interrupt happens */

pic_isr_register(IRQ_NUM, pisr_callback, (void *)context);

while (1)

return O;

2.2.2. Timer

The Timer module provides 64-bit real-time counter register (mtime) and time compare register (mtimecmp). An
output interrupt signal that is connected to “mtip” of RISC-V core is asserted when the value of mtime is greater than
or equal to mtimecmp. You can refer to RISC-V MC CPU IP Core — Lattice Propel Builder (FPGA-IPUG-02114) for detail.

The APIs of timer provide a set of interfaces for you to access the timer registers, to start or stop a registered timer
service.

2.2.2.1. API Reference

void timer_init(struct timer_ctx_s * this_timer, unsigned int base_addr, unsigned int cpu_freq);

Parameter | Description

this_timer | The pointer to the instance of the current timer device.

Base address of the timer device, Propel SDK automatically parses the address map of the

base_addr . .
- SoC system and passes the information to the software.

cpu_freq | The CPU running frequency, which is used to configure the required timer slice.

Returns | Description

void | —

Description

This function is supposed to be called when the platform is initializing. This function should be called before calling any timer
related functions.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52887

s LATTICE

unsigned char timer_start(struct timer_ctx_s * this_timer , void (*callback)(void *), void *userCtx, unsigned int periodic,
unsigned int count)

Parameter | Description

this_timer | The pointer to the instance of the current timer device.

callback | The pointer to the callback function that is called when the timer interrupt happens.

userCtx | The pointer to the context that is passed to the user-callback function.

The flag to indicate whether or not the timer event is periodic.
periodic | 1: periodic, timer is reloaded automatically when timer interrupt happens.
0: not periodic, timer event happens only once.

count | The time delay for the timer, 1 ms as the granularity.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to register a user-callback and start the timer with the required time delay. The timer can be stopped by
calling timer_stop().

unsigned char timer_stop()

Parameter | Description

void | —

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to stop an active timer. After calling this function, you need to re-start the timer by calling the
timer_start() again.

timer_get_mtime

unsigned char timer_get_mtime(struct timer_ctx_s * this_timer, unsigned long int *value)

Parameter | Description

this_timer | The pointer to the instance of the current timer device.

value | The pointer to a 64-bit integer that storing the value of mtime.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to get the current mtime value of the timer.

timer_set_mtime

unsigned char timer_set_mtime(struct timer_ctx_s * this_timer, unsigned long long int value)

Parameter | Description

this_timer | The pointer to the instance of the current timer device.

value | The 64-bit integer value that is set to mtime.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to set the mtime value of the timer.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

timer_get_mtimecmp

unsigned char timer_get_mtimecmp(struct timer_ctx_s * this_timer, unsigned long long int *value)

Parameter | Description
this_timer | The pointer to the instance of the current timer device.
value | The pointer to a 64-bit integer that stores the value of mtimecmp.
Returns | Description
unsigned char | Return 0 if no error.

Description

This function is used to get the value of mtimecmp.

timer_set_mtimecmp
unsigned char timer_set_mtimecmp(struct timer_ctx_s * this_timer, unsigned long long int value)

Parameter | Description
this_timer | The pointer to the instance of the current timer device.
value | The 64-bit integer value that set to mtimecmp.
Returns | Description
unsigned char | Return 0 if no error.

Description

This function is used to set the mtimecmp value of the timer.

timer_reload
unsigned char timer_reload(struct timer_ctx_s * this_timer, unsigned int delay)

Parameter | Description
this_timer | The pointer to the instance of the current timer device.
delay | The delay time for the next timer interrupt happens. The granularity is 1 ms.
Returns | Description
unsigned char | Return 0 if no error.

Description

This function is used to reload the delay time for the timer. This function is supposed to be used when the timer is not periodic
and need to trigger the timer interrupt one more time manually.

2.2.2.2. API Usage Example

The typical usage of the timer can be divided into two cases, one is to get the real time counter of the timer, and the
other is to register a callback function and make it be called once or periodic when the timer expires.

The following code episode shows an example of how to use a timer.

#include “hal.h”
int main()
{
struct timer_inst timer;
/* initialize the timer with base address and CPU frequency */
timer_init(&timer, CPUO_INST_PICTIMER_START_ADDR,
CPU_FREQUENCY);

/* start the timer with a registered callback */

timer_start(&timer, ptimer_callback, NULL, true, 10);

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

/*stop the timer*/
timer_stop();

return O;

~~

2.2.3. Register Access

The Register Access provides a set of APIs to read, write or modify the memory mapped address of the peripheral
devices registers, including 8-bit, 16-bit and 32-bit services.

2.2.3.1. API Reference
reg_32b_write
unsigned char reg_32b_write(unsigned int reg_addr, unsigned int value)

Parameter | Description

reg_addr | The address of register that user wants to write.

value | The value that is written to the register.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to write 32-bit data into a specified register.

reg_32b_read

unsigned char reg_32b_read(unsigned int reg_addr, unsinged int *reg_32b_value)

Parameter | Description

reg_addr | The address of register that user wants to read.

reg_32b_value | The pointer to buffer to hold the data read back.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to return 32-bit data read from the peripheral register.

reg_32b_modify

unsigned char reg_32b_modify(unsigned int reg_addr, unsigned int bits_mask, unsigned int value)

Parameter | Description

reg_addr | The address of register that user wants to modify the value.

bits_mask | Bits that is modified within the register.

value | The value that user wants to write to the register. Only masked bits are affected.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to modify the masked bits of the specified register value.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

reg_16b_write
unsinged char reg_16b_write(unsigned int reg_addr, unsigned short value)

Parameter | Description

reg_addr | The address of register that user wants to write.

value | The value that is written to the register.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to write 16-bit data into a specified register.

reg_16b_read
unsigned char reg_16b_read(unsigned int reg_addr, unsigned short *reg_16b_value)

Parameter | Description

reg_addr | The address of register that user wants to read.

reg_16b_value | The pointer to the buffer to hold the data read back.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to return a 16-bit data read from the peripheral register.

reg_16b_modify
unsigned char reg_16b_modify(unsigned int reg_addr, unsigned short bits_mask, unsigned short value)

Parameter | Description

reg_addr | The address of register that user wants to modify the value.

bits_mask | Bits that are modified within the register.

value | The value that user wants to write to the register. Only masked bits are affected.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to modify the masked bits of the specified register value.

reg_8b_write
unsigned char reg_8b_write(unsigned int reg_addr, unsigned char value)

Parameter | Description

reg_addr | The address of register that user wants to write.

value | The value that is written to the register.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to write 8-bit data into a specified register.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

reg_8b_read

unsigned char reg_8b_read(unsigned int reg_addr, unsigned char *reg_8b_value)

Parameter | Description

reg_addr | The address of register that user wants to read.

reg_8b_value | Pointer to the buffer to hold the data read back from the address.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to return 8-bit data read from the peripheral register.

unsigned char reg_8b_modify(unsigned int reg_addr, unsigned char bits_mask, unsigned char value)

Parameter | Description

reg_addr | The address of register of which user wants to modify the value.

bits_mask | Bits that are modified within the register.

value | The value that user wants to write to the register. Only masked bits are affected.

Returns | Description

unsigned char | Return 0 if no error.

Description

This function is used to modify the masked bits of the specified register value.

2.2.3.2. API Usage Example

The code episode below shows the typical usage of the APIs to access the 32-bit memory mapped register of the
peripherals. You can read or write the peripheral with the memory mapped address as the parameter. You can also
modify the specified bits of the register with 1 as the masks.

#include “hal.h”

#define BITS_MASK OXOF
#define BITS_SET 0x03
int main()

{

unsigned int reg_value = 0;

/* Read the value of the specified memory mapped address */

reg_value =reg_32b_read(reg_address);
/* Write the new value to the specified address */
reg_value = BITS_SET;

reg_32b_write(reg_address, reg_value);

/* Modify the masked bits of the register */
reg_32b_modify(reg_address, BITS_MASK, BITS_SET);

return O;

~—~

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

3. General IPs

Lattice Propel provides a set of general IPs for you to build SoC system. Combined with the IP package, BSP provides to
help develop the system software.

3.1. GPIO

Lattice GPIO peripheral soft IP provides dedicated interface to configure each GPIO as either an input or an output pin.
When configured as an input, the GPIO module can detect the state of a GPIO by reading the state of the associated
register. When configured as an output, it takes the value written into the associated register and control the state of
the controlled GPIO.

The APIs of the GPIO module provides a set of interfaces for you to control the GPIOs easily.

3.1.1.1. API Reference

unsigned char gpio_init(struct gpio_instance *this_gpio, unsigned int base_addr,
unsigned int gpio_num, unsigned int gpio_dirs)

Parameter | Description

this_gpio | The pointer to the instance of the current GPIO device.

Base address of the GPIO module, Propel SDK =automatically parses the address map of the

base_addr
- SoC system and passes the information to the software.

gpio_num | The number of the GPIOs the module supports. The number should be between 1 to 32.

The direction of the GPIOs that user wants to set. Each bit specifies the direction of the
corresponding GPIO.

0: GPIO for input.

1: GPIO for output.

Returns | Description

gpio_dirs

0 : Succeeded in initializing the GPIO module.

igned ch
tnsigned char 1: Failed to initialize the GPIO module.

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any GPIO
related functions.

gpio_set_direction

unsigned char gpio_set_direction(struct gpio_instance *this_gpio,
unsigned int index, unsigned int gpio_dir)

Parameter | Description

this_gpio | The pointer to the instance of the current GPIO device.

index | The value of the lines index of the GPIO.

The direction of the GPIO that user wants to set.
gpio_dir | 0:the GPIO for input use.

1:the GPIO for output use.

Returns | Description

0 : Succeeded in setting the direction for a specified GPIO pin.

unsigned char
& 1: Failed to set the direction.

Description

This function is used to set the GPIO direction for the specified GPIO pin.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

gpio_output_write

unsigned char gpio_output_write(struct gpio_instance *this_gpio,
unsigned int index, unsigned int value)

Parameter Description
this_gpio The pointer to the instance of the current GPIO device.
index The value to specify the GPIO pins to output.
value The value of the output of the GPIO.
Returns Description

. 0 : Succeeded in outputting the power level through the GPIO pin.
unsigned char . .

1: Failed to output the power level through the GPIO pin.

Description

This function is used to write the output data to the specified GPIO pin.

gpio_input_get

unsigned char gpio_input_get(struct gpio_instance *this_gpio,
unsigned int index, unsigned int *data)

Parameter | Description

this_gpio | The pointer to the instance of the current GPIO device.

index | The number of the GPIO pin that user wants to read the value.
data | The pointer to the data buffer to hold the GPIO input status.
Returns | Description

0 : Succeeded in getting the input value of the specified GPIO pin.

igned ch
unsignea char 1: Failed to get the input value of the specified GPIO pin.

Description

This function is used to read the input data of the specified GPIO pin.

3.1.1.2. API Usage Example

The typical usage of the GPIO is to output different power levels through the corresponding pin, or to get the input
level on the GPIO when the direction is set as input. The example code below shows the control to two GPIO pins:
GPIOO is used for output, while GPIO1 is used as input.

#include “gpio.h”
#define NUM_GPIO 0x08

#define GPIOO 0x01
#define GPIO1 0x02
int main()

{

struct gpio_instance gpio_inst;

unsigned int input_val = 0;

/* Initialize the GPIO instance with base address and supported number of pins, default output*/
gpio_init(&gpio_inst, GPIOO_INST_BASE_ADDR, NUM_GPIO, 0xff);

/* Set GPIO1 as input */
gpio_set_direction(&gpio_inst, GPIO1, GPIO_INPUT);

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

/* Output low(0) on GPIOO*/
gpio_output_write(&gpio_inst, GPIOO, 0);

/* Get the input value from GPIO1 */
gpio_input_get(&gpio_inst, GPIO1, &input_val);

return O;

3.2. UART

Lattice UART is a universal asynchronous receiver-transmitter used to interface to RS232 serial devices. The APIs
provide a set of interface for you to configure the UART device or communicate via the R$232 interface easily.

3.2.1.1. API Reference

unsigned char uart_init(struct uart_instance *this_uart,
unsigned int base_addr,
unsigned int sys_clk,
unsigned int baud_rate,
unsigned char stop_bits, unsigned char data_width)

Parameter | Description

this_uart | The pointer to the instance of the current UART device.

Base address of the UART module. Propel SDK automatically parses the address map of the

base_addr
- SoC system and passes the information to software.

sys_clk | The frequency of the system clock.
baud_rate | The value of the baud rate of the UART.
The value of the stop-bit of the UART.
Stop-bit is the end flag of one data frame. The value can be set as 1 or 2.
The value of the data width of the UART.

data_width | Data width indicates the valid data bits in one data frame. The value can be setas 5, 6, 7 or
8. Normally, 8 is the general data width.

stop_bits

Returns | Description

0 : Succeeded in initializing the UART module.

unsigned char
& 1: Failed to initialize the UART module.

Description

This function is used to Initializes UART instance. This function is supposed to be called when the platform is initializing. This
function should be called before calling any UART related functions.

unsigned char uart_putc(struct uart_instance * this_uart, unsigned char ucChar)

Parameter | Description

this_uart | The pointer to the instance of the current UART device.

ucChar | The value of the character that user wants to send out over the UART interface.

Returns | Description

0 : Succeeded in outputting a character through the UART interface.

unsigned char
& 1: Failed to output a character through the UART interface.

Description

This function is used to send a character over the UART.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

uart_getc

unsigned char uart_getc(struct uart_instance * this_uart, unsigned char *pucChar)

Parameter | Description
this_uart | The pointer to the instance of the current UART device.
pucChar | The pointer to the character received from the UART.
Returns | Description

Return value:
unsigned char
1: Failed to receive a character from the UART interface.

0 : Succeeded in getting a character from the UART interface.

Description

This function is used to retrieve a character from the UART.

uart_set_rate

unsigned char uart_set_rate(struct uart_instance * this_uart, unsigned int baudrate)

Parameter | Description
this_uart | The pointer to the instance of the current UART device.
baudrate | The value of the baud rate of the UART.
Returns | Description

unsigned char

1: Failed to set the baud rate for the UART device.

0 : Succeeded in setting the baud rate for the UART device.

Description

This function is used to change the baud rate of UART device.

uart_config

unsigned char uart_config(struct uart_instance * this_uart, unsigned int dwidth,
unsigned char parity_en, unsigned char even_odd, unsigned int stopbits)

Parameter | Description
this_uart | The pointer to the instance of the current UART device.
The value of the data width of the UART.
dwidth | Data width indicates the valid data bits in one data frame. The value can be set as 5, 6, 7 or
8. 8 is the most commonly-used data width.
The value of the parity of the UART.
parity_en | O: No parity.
1: Parity enabled.
even_odd | The value of the even_odd of the UART. 1 => even, 0 => odd
. The value of the stop-bit of the UART.
stopbits .
Stop-bit is the end flag of one data frame. The value can be set as 1 or 2.
Returns | Description
. 0 : Succeeded in configuring the UART device with new settings.
unsigned char
1 : Failed to configure the UART device with new settings.

Description

This function is used to configure the data width, parity, even odd check and stop-bit for the UART device at runtime.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Propel 1.0 Application Programming Interface ...ILATTICE

Reference Guide

3.2.1.2. API Usage Example

The typical usage of the UART is to output or input a character. For input, uart_getc() needs to be called. For output, a
redirected printf() is provided, which can be directly used to output the strings or integer via the UART interface.

#include “uart.h”
#include <stdio.h>
#define BAUD_RATE_SET 9600

int main()

{

struct uart_instance uart_inst;

unsigned char in_char = 0;

/* Initialize the UART instance */
uart_init(&uart_inst, UARTO_INST_BASE_ADDR, CPU_FREQUENCY,
UARTO_INST_BAUD_RATE, UARTO_INST_LCR_STOP_BITS, UARTO_INST_LCR_DATA_BITS);
/* Modify the baud rate, or default is configured during IP generation */
uart_set_rate(&uart_inst, BAUD_RATE_SET);

/* Get a character form the UART interface */
if (uart_getc(&uart_inst, &in_char) ==0)

/* Output the received character via UART by calling printf()*/
printf(“The input character is %c.\n”, in_char);
return O;
© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

18

FPGA-AN-02027-1.0

http://www.latticesemi.com/legal

s LATTICE

3.3. EFB

The Embedded Function Block (EFB) is a hard architectural block in Lattice FPGA device. The EFB driver provides a set
of APIs for User Flash Memory (UFM) access and I°C slave function.
efb_init

Unsigned char efb_init(struct efb_instance *this_efb, unsigned int base_addr)

Parameter | Description

this_efb | The pointer to the instance of the current EFB device.

Base address of the EFB module. Propel SDK automatically parses the address map of the

base_addr
- SoC system and passes the information to software.

Returns | Description

0 : Succeeded in initializing the EFB module.

unsigned char
& 1: Failed to initialize the EFB module.

Description

This function is used to initialize the EFB device. The function is supposed to be called when the platform is initializing. This
function should be called before calling any EFB related functions.

3.3.1. UFM Access

The UFM is a general purpose Flash Memory, which is typically used to store system-level data, Embedded Block RAM
initialization data, or executable code for microprocessors. The UFM is a flash sector that is organized in pages, each of
which has 128 bits (16 bytes).

3.3.1.1. API Reference

ufm_page_read

unsigned char ufm_page_read (struct efb_instance *this_efb, unsigned int pageno, unsigned int ufm, unsigned char *data,
unsigned char *checksum)

Parameter | Description

this_efb | The pointer to the instance of the current EFB device.

pageno | The page number you want to read.

The UFM number you want to read. To MachXO3D devices, four UFMs are supported:

e UFMO
ufm | ¢ UFM1
e UFM2
e UFM3

data | The pointer to the buffer that stores the data read from EFM page.

checksum | The pointer to the buffer to store the check sum of the data read from the page.

Returns | Description

0 : Succeeded in reading data from the specified UFM page.

unsigned char
& 1: Failed to read data from the specified UFM page.

Description

This function is used to read the whole data from the specified page of UFM. See ufm_page_write() for how to write data into
UFM page.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

unsigned char *checksum);

unsigned char ufm_page_write (struct efb_instance *this_efb, unsigned int pageno, unsigned int ufm, unsigned char *data,

Parameter | Description
this_efb | The pointer to the instance of the current EFB device.
pageno | The page number you want to write to.
The UFM number you want to read. To MachXO3D devices, four UFMs are supported:
e UFMO
ufm | e UFM1
e UFM2
e UFM3
data | The pointer to the buffer that stores the data written to EFM page.
checksum | The pointer to the buffer to store the check sum of the data write to the page.
Returns | Description

unsigned char

0 : Succeed in writing data into the specified UFM page.
1 : Failed to write data into the specified UFM page.

Description

page.

This function is used to write the data into the specified pages of UFM. See ufm_page_read() for how to read data from UFM

ufm_page_erase

unsigned char ufm_erase(struct efb_instance *this_efb, unsigned int ufm);

Parameter | Description
this_efb | The pointer to the instance of the current EFB device.
The UFM number you want to read. To MachXO3D devices, four UFMs are supported:
UFMO
ufm | UFM1
UFM2
UFM3
Returns | Description

unsigned char

0 : Succeeded in erasing all the data from the specified UFM.
1: Failed to erase all the data from the specified UFM.

Description

This function is used to erase the specified UFM. Note that before writing data to the UFM, erase should be performed to make
sure the data can be written successfully.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s LATTICE

unsigned char ufm_byte_write(struct efb_instance *this_efb, unsigned int pageno, unsigned char byteno, unsigned int ufm,
unsigned char data)

Parameter | Description

this_efb | The pointer to the instance of the current EFB device.

pageno | The page number you want to write to.

byteno | The byte number of the page you want to write to.

The UFM number you want to read. To MachXO3D devices, four UFMs are supported:

e UFMO
ufm | ¢ UFM1
e UFM2
e UFM3

data | The data that written to the page.

Returns | Description

0 : Succeeded in writing a byte to the specified UFM page.

nsigned char
unsig 1 : Failed to write a byte to the specified UFM page.

Description

This function is used to update a single byte in the UFM page. Do not change other data in the page.

ufm_byte_read

unsigned char ufm_byte_read(struct efb_instance *this_efb, unsigned int pageno, unsigned char byteno, unsigned int ufm,
unsigned char *data)

Parameter | Description

this_efb | The pointer to the instance of the current EFB device.

pageno | The page number you want to write to.

byteno | The byte number of the page you want to write to.

The UFM number you want to read. To MachXO3D devices, four UFMs are supported:

e UFMO
ufm | ¢ UFM1
e UFM2
e UFM3

data | The pointer to the buffer that holds the data read back.
Returns | Description

0: Succeed in reading a byte to the specified UFM page.

nsigned char
unsig 1: Failed to read a byte to the specified UFM page.

Description

This function is used to read the specified byte of the page in the UFM.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Propel 1.0 Application Programming Interface ...ILATTICE

Reference Guide

3.3.1.2. API Usage Example

The code episode in this section shows how to read, erase, and write to the UMF. Note that the UMF is implemented
with flash memory. You should erase the UFM before writing data into it. Or, there comes unexpected behaviors.

#include “efb.h”
int main()

{
struct efb_instance efb_inst;
unsigned char check_sum = 0;
unsinged char data_buffer[16];

/* Initialize the EFB module before access the UFM */
efb_init(&efb_inst, EFBO_INST_BASE_ADDR);

/* Read the page0 of UFM1 into data buffer */
ufm_page_read (&efb_inst, 0, UFM1, data_buffer, &checksum);

/* Erase the UFM1 before write */

ufm_erase(&efb_inst, unsigned int ufm);

/* Write data into pagel of UFM1 */
ufm_page_write (&efb_inst, 1, UFM1, data_buffer, &check_sum);

return O;

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

22 FPGA-AN-02027-1.0

http://www.latticesemi.com/legal

s LATTICE

3.3.2. I2CSlave

The EFB I1>C module can work as both master mode and slave mode. In this Propel 1.0, only slave mode is supported.

When working in the slave mode, interrupt service routine needs to be implemented and registered into the system
interrupt handling framework. When the 12C master device accesses to the slave device, an interrupt occurs, calling the
interrupt handling routine to provide a proper response.

void (*i2cslave_isr)(void *ctx)

Parameter | Description

ctx | The pointer to the context that the interrupt service routine runs in.

Returns | Description

void | —

Description

The interrupt service routine you need to implement to handle the interrupts. This function should be registered via
efb_i2c2_isr_register().

efb_i2c2_isr_register
unsigned char efb_i2c2_isr_register(struct efb_instance *this_efb,
struct i2c_desc *i2c)

Parameter | Description

this_efb | The pointer to the instance of the current EFB device.

The pointer to the I2C descriptor holding the data buffer and callback function you

12¢ provided.

Returns | Description

0 : Succeeded in registering a callback for the 12C device.

unsigned char
& 1: Failed to register a callback for the 12C device.

Description

This function is used to register a customer implemented interrupt service routine for EFB 12C2.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

mLATTICE

3.3.2.1. API Usage Example

Normally, the EFB I2C driver provides the default interrupt service routine for the slave function. While in some cases,
customer needs to implement his/her own interrupt service routine to handle the data transactions on the bus.
Following code gives an example on how to register your own ISR for the EFB I2C slave.

include “efb.h”

/* the i2c slave interrupt service routine user implemented based on requirement */

void cstm_i2c_isr(void *ctx);

int main()

{

struct efb_instance efb_inst;
char buffer[64];

struct i2c_desc cstm_i2c_des = {buffer, cstm_i2c_isr};

/* Initialize the PIC with base address and the number of interrupt source */
pic_init(CPUO_INST_PICTIMER_START_ADDR, INT_NUM);

/* Initialize the EFB module before access the i2c slave device */
efb_init(&efb_inst, EFBO_INST_BASE_ADDR);

// register 12C slave callback, this assumes no other interrupts sources coming from EFB
efb_i2c2_isr_register(&efb_inst, &cstm_i2c_desc);

while (1)
{
/*customer can add the i2c data handling code here based on its own isr*/

return O;

www.latticesemi.com/legal

http://www.latticesemi.com/legal

am . .- .
-+ LATTICE Lattice Propel 1.0 Application Programming Interfzf\ce
Reference Guide

Reference

GPIO IP Core (FPGA-IPUG-02076)
UART IP Core — Lattice Propel Builder (FPGA-IPUG-02105)
RISC-V MC CPU IP Core — Lattice Propel Builder (FPGA-IPUG-02114)

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02027-1.0

25

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52464
http://www.latticesemi.com/view_document?document_id=52880
http://www.latticesemi.com/view_document?document_id=52887

Lattice Propel 1.0 Application Programming InterfaceLATTICE

Reference Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-AN-02027-1.0

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

s LATTICE

Lattice Propel 1.0 Application Programming Interface
Reference Guide

Revision History

Revision 1.0, May 2020

Section

Change Summary

All

Initial release.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02027-1.0

27

http://www.latticesemi.com/legal

s LATTICE

http://www.latticesemi.com/

	Lattice Propel 1.0 Application Programming Interface
	Acronyms in This Document
	1. Introduction
	1.1. Purpose
	1.2. Audience

	2. RISC-V CPU
	2.1. Overview
	2.2. CPU HAL
	2.2.1. PIC
	2.2.1.1. API Reference
	2.2.1.2. API Usage Example

	2.2.2. Timer
	2.2.2.1. API Reference
	2.2.2.2. API Usage Example

	2.2.3. Register Access
	2.2.3.1. API Reference
	2.2.3.2. API Usage Example

	3. General IPs
	3.1. GPIO
	3.1.1.1. API Reference
	3.1.1.2. API Usage Example

	3.2. UART
	3.2.1.1. API Reference
	3.2.1.2. API Usage Example

	3.3. EFB
	3.3.1. UFM Access
	3.3.1.1. API Reference
	3.3.1.2. API Usage Example

	3.3.2. I2C Slave
	3.3.2.1. API Usage Example

	Reference
	Technical Support Assistance
	Revision History
	Revision 1.0, May 2020

