

CrossLink-NX Object Counting Using VGG
CNN Accelerator IP

Reference Design

FPGA-RD-02200-1.0

May 2020

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02200-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 3

Contents
Acronyms in This Document ... 8
1. Introduction .. 9

1.1. Design Process Overview .. 9
2. Setting Up the Basic Environment .. 10

2.1. Software and Hardware Requirements ... 10
2.1.1. Lattice Software .. 10
2.1.2. Hardware .. 10

2.2. Setting Up the Linux Environment for Machine Training .. 11
2.2.1. Installing the CUDA Toolkit ... 11
2.2.2. Installing the cuDNN ... 12
2.2.3. Installing Anaconda and Python 3 .. 12
2.2.4. Installing TensorFlow v1.12 (or Higher) .. 14
2.2.5. Installing the Python Package ... 15

3. Preparing the Dataset ... 17
3.1. Downloading the Dataset .. 17
3.2. Visualizing and Tuning/Cleaning Up the Dataset .. 19
3.3. Data Augmentation ... 21

3.3.1. Configuring the Augmentation ... 21
3.3.2. Running the Augmentation... 22

4. Training the Machine .. 23
4.1. Training Code Structure .. 23
4.2. Neural Network Architecture .. 24

4.2.1. Human Count Training Network Layers .. 24
4.2.2. Human Count Detection Network Output .. 26
4.2.3. Training Code Overview .. 26

4.2.3.1. Model Configuration .. 27
4.2.3.2. Model Building ... 29
4.2.3.3. Training .. 33

4.3. Training from Scratch and/or Transfer Learning ... 34
5. Creating Frozen File .. 38

5.1. Generating the Frozen .pb File .. 38
6. Creating Binary File with Lattice SensAI ... 39
7. Hardware Implementation ... 43

7.1. Top Level Information ... 43
7.1.1. Block Diagram ... 43
7.1.2. Operational Flow .. 43
7.1.3. Core Customization... 44

7.2. Architecture Details .. 45
7.2.1. SPI Flash Operation ... 45
7.2.2. Pre-processing CNN .. 46

7.2.2.1. Pre-processing Flow ... 46
7.2.3. HyperRAM Operations .. 48
7.2.4. Post-processing CNN ... 49

7.2.4.1. Confidence Sorting .. 50
7.2.4.2. Bounding Box Calculation .. 51
7.2.4.3. NMS – Non Max Suppression .. 52
7.2.4.4. Bounding Box Upscaling .. 52
7.2.4.5. OSD Text Display .. 53
7.2.4.6. HDMI Display Management ... 53

8. Creating FPGA Bitstream File .. 54
9. Programming the Demo ... 57

9.1. Programming the CrossLink-NX SPI Flash ... 57

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02200-1.0

9.1.1. Erasing the CrossLink-NX SRAM Prior to Reprogramming .. 57
9.1.2. Programming the CrossLink-NX VIP Input Bridge Board ... 58
9.1.3. Programming SensAI Firmware Binary to the CrossLink-NX SPI Flash .. 61

9.1.3.1. Convert SensAI Firmware Binary to Hex .. 61
9.1.3.2. Convert Flash SensAI Firmware Hex to Crosslink-NX SPI Flash .. 61

9.2. Programming ECP5 VIP Board ... 64
9.2.1. Erasing the ECP5 Prior to Reprogramming ... 64
9.2.2. Programming the ECP5 VIP Processor Board .. 67

10. Running the Demo .. 70
Appendix A. Other Labelling Tools .. 71
References .. 72
Technical Support Assistance ... 73
Revision History .. 74

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 5

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 9
Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board .. 10
Figure 2.2. CUDA Repo Download .. 11
Figure 2.3. CUDA Repo Installation ... 11
Figure 2.4. Fetch Keys ... 11
Figure 2.5. Update Ubuntu Packages Repositories... 11
Figure 2.6. CUDA Installation Completed ... 12
Figure 2.7. cuDNN Library Installation .. 12
Figure 2.8. Anaconda Package Download ... 12
Figure 2.9. Anaconda Installation ... 13
Figure 2.10. Accept License Terms ... 13
Figure 2.11. Confirm/Edit Installation Location .. 13
Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion ... 13
Figure 2.13. Anaconda Environment Activation ... 14
Figure 2.14. TensorFlow Installation .. 14
Figure 2.15. TensorFlow Installation Confirmation .. 14
Figure 2.16. TensorFlow Installation Completion ... 14
Figure 2.17. Easydict Installation .. 15
Figure 2.18. Joblib Installation .. 15
Figure 2.19. Keras Installation .. 15
Figure 2.20. OpenCV Installation .. 16
Figure 2.21. Pillow Installation ... 16
Figure 3.1. Open Source Dataset Repository Cloning ... 17
Figure 3.2. OIDv4_Toolkit Directory Structure ... 17
Figure 3.3. Dataset Script Option/Help ... 18
Figure 3.4. Dataset Downloading Logs ... 18
Figure 3.5. Downloaded Dataset Directory Structure .. 18
Figure 3.6. OIDv4 Label to KITTI Format Conversion .. 19
Figure 3.7. Toolkit Visualizer ... 19
Figure 3.8. Manual Annotation Tool – Cloning ... 20
Figure 3.9. Manual Annotation Tool – Directory Structure .. 20
Figure 3.10. Manual Annotation Tool – Launch ... 20
Figure 3.11. Augmentation Directory Stucture .. 21
Figure 3.12. config.py Configuration File Parameters .. 21
Figure 3.13. Selecting the Augmentation Operations .. 22
Figure 3.14. Running the Augmentataion ... 22
Figure 4.1. Training Code Directory Structure .. 23
Figure 4.2. Training Code Flow Diagram ... 26
Figure 4.3. Code Snippet – Input Image Size Config ... 27
Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes) ... 27
Figure 4.5. Code Snippet – Anchors Per Grid Config #2 .. 27
Figure 4.6. Code Snippet – Anchors Per Grid Config #3 .. 28
Figure 4.7. Code Snippet – Training Parameters .. 28
Figure 4.8. Code Snippet – Quantization Setting .. 29
Figure 4.9. Code Snippet – Forward Graph Fire Layers .. 29
Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer ... 29
Figure 4.11. Grid Output Visualization #1 ... 30
Figure 4.12. Grid Output Visualization #2 ... 30
Figure 4.13. Code Snippet – Interpret Output Graph ... 31
Figure 4.14. Code Snippet – Bbox Loss ... 32
Figure 4.15. Code Snippet – Confidence Loss ... 32
Figure 4.16. Code Snippet – Class Loss ... 33

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02200-1.0

Figure 4.17. Code Snippet – Training .. 33
Figure 4.18. Training Code Snippet for Mean and Scale ... 34
Figure 4.19. Training Code Snippet for Dataset Path .. 34
Figure 4.20. Create File for Dataset train.txt .. 34
Figure 4.21. Training Input Parameter .. 35
Figure 4.22. Execute Run Script .. 35
Figure 4.23. TensorBoard – Generated Link ... 35
Figure 4.24. TensorBoard .. 36
Figure 4.25. Image Menu of TensorBoard .. 36
Figure 4.26. Example of Checkpoint Data Files at Log Folder ... 37
Figure 5.1. .pb File Generation from Checkpoint .. 38
Figure 5.2. Frozen .pb File ... 38
Figure 6.1. SensAI Home Screen ... 39
Figure 6.2. SensAI – Network File Selection .. 40
Figure 6.3. SensAI – Image Data File Selection ... 40
Figure 6.4. SensAI – Project Settings... 41
Figure 6.5. SensAI – Analyze Project ... 41
Figure 6.6. Q Format Settings for Each Layer ... 42
Figure 6.7. Compile Project ... 42
Figure 7.1. RTL Top Level Block Diagram .. 43
Figure 7.2. SPI Read Command Sequence .. 45
Figure 7.3. Masking ... 46
Figure 7.4. Downscaling .. 47
Figure 7.5. HyperRAM Memory Addressing ... 48
Figure 7.6. HyperRAM Access Block Diagram ... 49
Figure 7.7. CNN Output Data Format ... 50
Figure 7.8. Confidence Sorting .. 51
Figure 7.9. Intersection-Union Area NMS ... 52
Figure 8.1. Radiant – Default Screen .. 54
Figure 8.2. Radiant – Open CrosslinkNX Project File (.rdf) .. 54
Figure 8.3. Radiant – Design Load Check After Opening the Project File .. 55
Figure 8.4. Radiant – Trigger Bitstream Generation ... 55
Figure 8.5. Radiant – Bit File Generation Report Window .. 56
Figure 9.1. Radiant Programmer – Default Screen ... 57
Figure 9.2. Radiant Programmer – Device Selection .. 57
Figure 9.3. Radiant Programmer – Device Operation ... 58
Figure 9.4. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 59
Figure 9.5. CrossLink-NX Flashing Switch – SW4 Push Button .. 60
Figure 9.6. Radiant Programmer – Output Console .. 60
Figure 9.7. SensAI Bin to Hex – Convert SensAI Binary to Hex Format ... 61
Figure 9.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 62
Figure 9.9. CrossLink-NX Flashing Switch – SW4 Push Button .. 63
Figure 9.10. Radiant Programmer – Output Console .. 63
Figure 9.11. Diamond Programmer – Default Screen ... 64
Figure 9.12. Diamond Programmer – Device Family Selection ... 65
Figure 9.13. Diamond Programmer – Device Selection .. 65
Figure 9.14. Diamond Programmer – Device Operation .. 66
Figure 9.15. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing .. 68
Figure 9.16. Diamond Programmer – Output Console ... 69
Figure 10.1. Running the Demo .. 70

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 7

Tables
Table 4.1. Human Counting Training Network Topology.. 24
Table 7.1. Core Parameter .. 44
Table 7.2. Data Parameters of CNN Output ... 49
Table 7.3. Pre-Selected Width and Height of Anchor Boxes... 51
Table 7.4. Grid Center Values (X, Y) for Anchor Boxes ... 51
Table 9.1. Diamond Programmer – SPI Flash Options .. 67
Table A.1. Other Labelling Tools ... 71

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02200-1.0

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AXI Advanced Extensible Interface

CNN Convolutional Neural Network

DRAM Dynamic Random Access Memory

EVDK Embedded Vision Development Kit

FPGA Field-Programmable Gate Array

LED Light-Emitting Diode

NN Neural Network

SD Secure Digital

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

VIP Video Interface Platform

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 9

1. Introduction
This document describes the Human Counting Design process of VGG using the CrossLink™-NX Embedded Vision
Development Kit FPGA platform. Human Counting is a subset of the generic Object Counting base design.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

 Setting up the basic environment

 Preparing the dataset

 Preparing 224 x 224 image

 Labeling dataset of human bounding box

 Training the machine

 Training the machine and creating the checkpoint data

 Creating the frozen file (*.pb)

2. Compiling Neural Network

 Creating the binary file with Lattice SensAI™ 3.0 program

3. FPGA Design

 Creating the FPGA bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

 Flashing the binary and bitstream files

 Binary File to MicroSD

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02200-1.0

2. Setting Up the Basic Environment

2.1. Software and Hardware Requirements
This section describes the required tools and environment setup for the FPGA bitstream and flashing.

2.1.1. Lattice Software

 Lattice Diamond® – Refer to http://www.latticesemi.com/latticediamond.

 Lattice Diamond Programmer – Refer to http://www.latticesemi.com/programmer.

 Lattice SensAI Compiler v3.0 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Hardware

This design uses the ECP5™ FPGA VIP Board as shown in Figure 2.1. Refer to
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP for more information.

Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticediamond
http://www.latticesemi.com/programmer
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 11

2.2. Setting Up the Linux Environment for Machine Training

2.2.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:

$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. CUDA Repo Download

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub

Figure 2.4. Fetch Keys

$ sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02200-1.0

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation Completed

2.2.2. Installing the cuDNN

To install the cuDNN:

1. Create an Nvidia developer account in https://developer.nvidia.com.

2. Download cuDNN lib in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN.

$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.3. Installing Anaconda and Python 3

To install Anaconda and Python 3:

1. Go to https://www.anaconda.com/distribution/#download-section.

2. Download Python 3 version of Anaconda for Linux.

Figure 2.8. Anaconda Package Download

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/distribution/#download-section

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 13

3. Install the Anaconda environment by running the command below:

$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh version may vary based on the release.

Figure 2.9. Anaconda Installation

4. Accept the license.

Figure 2.10. Accept License Terms

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure 2.11. Confirm/Edit Installation Location

6. After installation, enter No as shown in Figure 2.12.

Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02200-1.0

2.2.4. Installing TensorFlow v1.12 (or Higher)

Note: TensorFlow2.0 is not supported.

To install TensorFlow v1.12:

1. Activate the conda environment by running the command below:

$ source <conda directory>/bin/activate

Figure 2.13. Anaconda Environment Activation

2. Install the TensorFlow by running the command example below:

$ conda install tensorflow-gpu==1.12.0

Figure 2.14. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.15.

Figure 2.15. TensorFlow Installation Confirmation

Figure 2.16 shows that the TensorFlow installation is complete.

Figure 2.16. TensorFlow Installation Completion

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 15

2.2.5. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:

$ conda install –c conda-forge easydict

Figure 2.17. Easydict Installation

2. Install Joblib by running the command below:

$ conda install joblib

Figure 2.18. Joblib Installation

3. Install Keras by running the command below:

$ conda install keras

Figure 2.19. Keras Installation

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02200-1.0

4. Install OpenCV by running the command below:

$ conda install opencv

Figure 2.20. OpenCV Installation

5. Install Pillow by running the command below:

$ conda install pillow

Figure 2.21. Pillow Installation

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 17

3. Preparing the Dataset
This section describes how to create a dataset using Google Open Image Dataset as an example.

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features
more than 600 classes of images. The Person class of images includes human annotated and machine annotated labels
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0.

3.1. Downloading the Dataset
To download the dataset, run the commands below:

1. Clone the OIDv4_Toolkit repository:

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git

$ cd OIDv4_ToolKit

Figure 3.1. Open Source Dataset Repository Cloning

Figure 3.2 shows the OIDv4 code directory structure.

Figure 3.2. OIDv4_Toolkit Directory Structure

View the OIDv4 Toolkit Help menu:

$ python3 main.py -h

http://www.latticesemi.com/legal
https://storage.googleapis.com/openimages/web/index.html
https://github.com/EscVM/OIDv4_ToolKit.git

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02200-1.0

Figure 3.3. Dataset Script Option/Help

2. Use the OIDv4 Toolkit to download dataset. Download the Person class images:

$ python3 main.py downloader --classes Person --type_csv validation

Figure 3.4. Dataset Downloading Logs

Figure 3.5 shows the downloaded dataset directory structure.

Figure 3.5. Downloaded Dataset Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 19

3. Lattice training code uses KITTI (.txt) format. Since the downloaded dataset is not in exact KITTI format, convert the
annotation using the code below.

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/*

Figure 3.6. OIDv4 Label to KITTI Format Conversion

Note:

KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90

The format includes class ID followed by truncated, occluded, alpha, Xmin, Ymin, Xmax, Ymax.

The code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as bounding box rectangle coordinates.

3.2. Visualizing and Tuning/Cleaning Up the Dataset
To visualize and annotate the dataset, run the commands below:

1. Visualize the labeled images.

$ python3 main.py visualizer

Figure 3.7. Toolkit Visualizer

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02200-1.0

2. Clone the manual annotation tool from the GitHub repository.

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git

Figure 3.8. Manual Annotation Tool – Cloning

3. Go to annotate to KITTI.

$ cd annotate-to-KITTI

$ ls

Figure 3.9. Manual Annotation Tool – Directory Structure

4. Install the dependencies (OpenCV 2.4).

$ sudo apt-get install python-opencv

5. Launch the utility.

$ python3 annotate-folder.py

6. Set the dataset path and default object label.

Figure 3.10. Manual Annotation Tool – Launch

7. For annotation, run the script provided in the website below.

https://github.com/SaiPrajwal95/annotate-to-KITTI

For information on other labeling tools, see Table A.1.

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI.git
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 21

3.3. Data Augmentation
Data Augmentation needs a large amount of training data to achieve good performance. Image Augmentation creates
training images through different ways of processing or a combination of multiple processing such as random rotation,
shifts, shear and flips, and others.

Figure 3.11. Augmentation Directory Stucture

 data_aug – This folder contains basic methods and augmentation classes.

 augmentation.py – This file reads the input images (input labels) and performs preferred augmentation on it.

 config.py – Contains parameters that are used in augmentation operations.

3.3.1. Configuring the Augmentation

To configure the augmentation:

1. Configure the config.py file, which contains the parameters shown in Figure 3.12.

Figure 3.12. config.py Configuration File Parameters

Choose the operations to perform on the dataset. The operations can be selected in augmentation.py by editing
the list all_op.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02200-1.0

Figure 3.13. Selecting the Augmentation Operations

2. Add or Remove the operation by commenting/uncommenting the operation in the all_op list as shown in Figure
3.13.

3.3.2. Running the Augmentation

Run the augmentation by running the following command:

python augmentation.py --image_dir <Path_To_InputImage_Dir> --label_dir

<Path_To_InputLabel_Dir> --out_image_dir <Path_To_OutputImage_Dir> --out_label_dir

<Path_To_OutputLable_Dir>

Figure 3.14. Running the Augmentataion

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 23

4. Training the Machine

4.1. Training Code Structure

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02200-1.0

4.2. Neural Network Architecture

4.2.1. Human Count Training Network Layers

This section provides information on the Convolution Network Configuration of the Human Presence Detection design.
The Neural Network model of the Human Presence Detection design uses the VGG Neural Network base model and the
detection layer of the SqueezeDet model.

Table 4.1. Human Counting Training Network Topology

Image Input (224 x 224 x 3)

Fire 1 Conv3–32 Conv3 - # where:

 Conv3 = 3 x 3 Convolution filter Kernel size

 # = The number of filter

For example, Conv3 - 16 = 16 3 x 3 convolution filters

BN – Batch Normalization

BN

ReLU

Maxpool

Fire 2 Conv3–32

BN

ReLU

Fire 3 Conv3–32

BN

ReLU

Maxpool

Fire 4 Conv3–64

BN

ReLU

Fire 5 Conv3–64

BN

ReLU

Maxpool

Fire 6 Conv3–128

BN

ReLU

Fire 7 Conv3–128

BN

ReLU

Maxpool

Conv12 Conv3–42

 The Human Count Network structure consists of seven fire layers followed by one convolution layer. A fire layer
contains convolutional, batch normalization, and ReLU (Rectified Linear Unit). Pooling layers are only in Fire 1, Fire
3, Fire 5, and Fire 7. Fire 2, Fire 4, and Fire 6 do not contain pooling layers.

 In Table 4.1, the layer contains convolution (conv), batch normalization (bn), and ReLU layers.

 Layer information:

 Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of a number of filters
(sometimes referred as kernels), which convolves with the input layer/image and generates an activation map
(that is, feature map). This filter is an array of numbers (called weights or parameters). Each of these filters can
be thought of as feature identifiers, such as straight edges, simple colors, curves, and other high-level features.
For example, the filters on the first layer convolve around the input image and activate (or compute high
values) when the specific feature it is looking for (such as curve, for example) is in the input volume.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 25

 ReLU (Activation Layer)

It is the convention to apply a nonlinear layer (or activation layer) immediately after each conv layer. The
purpose of this layer is to introduce nonlinearity to a system that is basically computing linear operations
during the conv layers (element wise multiplications and summations). In the past, nonlinear functions such as
tanh and sigmoid were used, but researchers found out that ReLU layers work far better because the network
is able to train a lot faster (because of the computational efficiency) without making a significant difference in
accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input volume. In basic
terms, this layer changes all the negative activations to 0. This layer increases the nonlinear properties of the
model and the overall network without affecting the receptive fields of the conv layer.

 Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer.
In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2 x 2) and a stride of the same length. It then applies a filter to the input volume
and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
controls over fitting. This term is used when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

 Batch Normalization Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing
to the input data are performed. For example, you can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). This prevents the early saturation of non-linear
activation functions, such as sigmoid, and assures that all input data are in the same range of values, and
others.

An issue, however, appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below during training:

a. Calculate the mean and variance of the layers input.

b. Normalize the layer inputs using the previously calculated batch statistics.

c. Scale and shift to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be care-
free about weight initialization, works as regularization in place of dropout, and other regularization
techniques.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of
the network and control over fitting.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02200-1.0

4.2.2. Human Count Detection Network Output

From the input image model, it extracts the feature maps first and overlays them with a W x H grid. Each cell then
computes K pre-computed bounding boxes called anchors. Each bounding box has the following:

 Four scalars (x, y, w, h)

 A confidence score (Pr(Object)*IOU)

 C° conditional class probability

 The current model architecture has a fixed output of WxHxK(4+1+C). where:

 W, H = Grid Size

 K = Number of Anchor boxes

 C = Number of classes for which you want detection

 The model has a total of 8232 output values, which are derived from the following:

 14 x 14 grid

 Seven anchor boxes per grid

 Six values per anchor box. It consists of:

 Four bounding box coordinates (x, y, w, h)

 One class probability

 One confidence score

As a result, there is a total of 14 x 14 x 7 x 6 = 8232 output values.

4.2.3. Training Code Overview

Figure 4.2. Training Code Flow Diagram

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 27

Training Code is divided into the following parts:

 Model Configuration

 Model Building

 Model Freezing

 Data Preparation

 Training for Overall Execution Flow

The details of each part can be found in subsequent sections.

4.2.3.1. Model Configuration

The design uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config() maintains all the configurable parameters
for the model. Below is the summary of configurable parameters.

 Image size

 Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure image size (width and height) in
src/config/kitti_squeezeDet_config.py.

Figure 4.3. Code Snippet – Input Image Size Config

 Since there are four pooling layers, grid dimension is H = 14 and W = 14. anchor_shapes variable of
set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and heights. Update it based on
anchors per gird size changes.

Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes)

 Batch size

 Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size.

 Anchors per grid

 Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid.

Figure 4.5. Code Snippet – Anchors Per Grid Config #2

 Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here, B (value
7) indicates anchors per grid.

 To run the network on your own dataset, adjust the anchor sizes. Anchors are prior distribution over what
shapes your boxes should have. The better this fits to the true distribution of boxes, the faster and easier your
training is going to be.

 To determine anchor shapes, first load all ground truth boxes and pictures, and if your images are not of the
same size, normalize their height and width by the images’ height and width. All images are normalized before
being fed to the network, so you need to do the same to the bounding boxes and consequently, the anchors.

 Second, perform a clustering on these normalized boxes (that is, you can use k-means without feature
whitening and determine the number of clusters either by eyeballing or by using the elbow method.)

 Check for boxes that extend beyond the image or have a zero to negative width or height.

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02200-1.0

Figure 4.6. Code Snippet – Anchors Per Grid Config #3

 Training Parameters

 Other training related parameters such as learning rate, loss parameters, and different thresholds can be
configured from src/config/kitti_squeezeDet_config.py.

Figure 4.7. Code Snippet – Training Parameters

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 29

4.2.3.2. Model Building

SqueezeDet class constructor builds the model, which is divided into the following sections:

 Forward Graph

 Interpretation Graph

 Loss Graph

 Train Graph

 Visualization Graph

Forward Graph

 The CNN architecture consists of Convolution, Batch Normalization, ReLU, and Maxpool.

 Forward graph consists of seven fire layers as described in Table 4.1.

Figure 4.8. Code Snippet – Quantization Setting

 Filter sizes of each convolutional block are mentioned in Table 4.1, which can be configured by changing the values
of depth, as shown in Figure 4.9.

Figure 4.9. Code Snippet – Forward Graph Fire Layers

Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02200-1.0

Interpretation Graph

 The Interpretation Graph consists of the following sub-blocks:

 interpret_output
This block interprets output from network and extracts predicted class probability, predicated confidence
scores, and bounding box values.

Output of the convnet is a 14 x 14 x 42 tensor – there are 42 channels of data for each of the cells in the grid
that is overlaid on the image and contains the bounding boxes and class predictions. This means the 42
channels are not stored consecutively but are scattered all over and need to be sorted. Figure 4.11 and Figure
4.12 show the details.

Figure 4.11. Grid Output Visualization #1

For each grid, cell values are aligned as shown in Figure 4.12.

Figure 4.12. Grid Output Visualization #2

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 31

Figure 4.13 shows the output from the conv12 layer (4D array of batch size x 14 x 14 x 42) that needs to be
sliced with the proper index to get all values of probability, confidence, and coordinates.

Figure 4.13. Code Snippet – Interpret Output Graph

For confidence score, this must be a number between 0 and 1, as such, sigmoid is used.

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a
softmax to make it probability distribution.

 bbox

This block calculates bounding boxes based on the anchor box and the predicated bounding boxes.

 IOU

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.

 Probability
This block calculates detection probability and object class.

Loss Graph

 This block calculates different types of losses, which need to be minimized. To learn detection, localization, and
classification, model defines a multi-task loss function. There are three types of losses which are considered for
calculation:

 Bounding Box

This loss is regression of the scalars for the anchors.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02200-1.0

Figure 4.14. Code Snippet – Bbox Loss

 Confidence Score

 To obtain meaningful confidence score, each box’s predicted value is regressed against the real and
predicted box. During training, compare the ground truth bounding boxes with all anchors and assign
them to the anchors with the largest overlap (IOU).

 Select the closest anchor to match the ground truth box such that the transformation needed is reduced
to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a
ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss
generated by the responsible anchors.

 As there can be multiple objects per image, normalize the loss by dividing it by the number of objects
(self.num_objects).

Figure 4.15. Code Snippet – Confidence Loss

 Class

 The last part of the loss function is cross-entropy loss for each box to do classification, as you would for
image classification.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 33

Figure 4.16. Code Snippet – Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as the confidence score.

Train Graph

 This block is responsible for training the model with momentum optimizer to reduce all losses.

Visualization Graph

 This block provides visitations of detected results.

4.2.3.3. Training

Figure 4.17. Code Snippet – Training

sess.run feeds the data, labels batches to network, and optimizes the weights and biases. The code above handles the
input data method in case of multiple threads preparing batches, or data preparation in the main thread.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02200-1.0

4.3. Training from Scratch and/or Transfer Learning
To train the machine:

1. Go to the top/root directory of the Lattice training code from the command prompt.

The model works on 224 x 224 images.

Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Mean and
scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.18.

Figure 4.18. Training Code Snippet for Mean and Scale

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the --
data_path option while triggering training using train.py to get the desired path. For example, you can have
<data_path>/training/images and <data_path>/training/labels.

Figure 4.19. Training Code Snippet for Dataset Path

2. Create a train.txt file.

$ cd data/humancnt/

$ python dataset_create.py

Figure 4.20. Create File for Dataset train.txt

Notes:

 train.txt – file name of dataset images

 image_set – train (ImageSets/train.txt)

 data_path – $ROOT/data/humandet/

 Images – $ROOT/data/humandet/images

 Annotations – $ROOT/data/humandet/labels

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 35

3. Modify the training script.

@scripts/train.sh is used to trigger training. Figure 4.21 shows the input parameters, which can be configured.

Figure 4.21. Training Input Parameter

 $TRAIN_DATA_DIR – dataset directory path. /data/humandet is an example.

 $TRAIN_DIR – log directory where checkpoint files are generated while model is training.

 $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use.

 --summary_step – indicates at which interval loss summary should be dumped.

 --checkpoint_step – indicates at which interval checkpoints are created.

 --max_steps – indicates the maximum number of steps for which the model is trained.

4. Execute the run command script which starts training.

Figure 4.22. Execute Run Script

5. Start TensorBoard.

$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/humancnt/train/’

6. Open the local host port on your web browser.

Figure 4.23. TensorBoard – Generated Link

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02200-1.0

7. Check the training status on TensorBoard.

Figure 4.24. TensorBoard

Figure 4.25 shows the image menu of TensorBoard.

Figure 4.25. Image Menu of TensorBoard

8. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory.
These files are used for creating the frozen file (*.pb).

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 37

Figure 4.26. Example of Checkpoint Data Files at Log Folder

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02200-1.0

5. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the
steps below to generate the frozen protobuf file.

5.1. Generating the Frozen .pb File
Generate .pb file from latest checkpoint using the command below from the training code’s root directory.

$ python src/genpb.py –ckpt_dir <log directory> --freeze

For example, python src/genpb.py –ckpt_dir logs/humancnt/train –freeze.

Figure 5.1. .pb File Generation from Checkpoint

Figure 5.2 shows the generated .pb file.

Figure 5.2. Frozen .pb File

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 39

6. Creating Binary File with Lattice SensAI
This chapter describes how to generate the binary file using the Lattice SensAI version 3.0 program.

Figure 6.1. SensAI Home Screen

To create the project in SensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project Name

 Framework – TensorFlow

 Class – CNN

 Device – CrossLink-NX

 MOBBILENET Mode – Disabled

3. Click Network File and select the network (.pb) file.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02200-1.0

Figure 6.2. SensAI – Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3. SensAI – Image Data File Selection

5. Click NEXT.

6. Configure your project settings.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 41

Figure 6.4. SensAI – Project Settings

7. Click OK to create the project.

8. Double-click Analyze.

Figure 6.5. SensAI – Analyze Project

9. Confirm the Q format of each layer as shown in Figure 6.6 and update if required.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02200-1.0

Figure 6.6. Q Format Settings for Each Layer

10. Double-click Compile to generate the firmware file.

Figure 6.7. Compile Project

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 43

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

HyperRAM

External

Camera

HyperBus

CrossLink-NX

AXI Slave
Compact CNN

Accelerator Engine

SPI Loader

crop_downscale_front_224x224csi2_to_parallel

External

SPI Flash

lsc_i2cm

AXI Busaxi2_hyperbus

det_out_filter

osd_back_128x128_human_count

External

HDMI
Tx

Figure 7.1. RTL Top Level Block Diagram

7.1.2. Operational Flow

This section provides a brief idea about the data flow across the CrossLink-NX board.

 The CNN module is configured with the help of a binary (.bin) file stored in SPI Flash memory. The .bin file is a
command sequence code, which is generated by the Lattice Machine Learning software tool.

 The command code is written in hyperRAM through AXI before the execution of CNN Accelerator IP Core starts.
CNN reads command code from hyperRAM during its execution and performs calculation with it per command
code. Intermediate data may be transferred from/to hyperRAM per command code.

 The external camera configured using lsc_i2cm logic block captures the raw image and passes it to csi2_to_parallel
module. This module separates the R, G, and B pixels from raw data and creates separated colors to match the real
world using gain and offset controls.

 The RGB data from the csi2_to_parallel module is downscaled to 224x224 image resolution by the
crop_downscale_front_224x224 module to match CNN’s input resolution. This data is written into hyperRAM
memory through axi2_hyperbus via axi_ws2m AXI interface module.

 After the command code and input data are available, the CNN Accelerator IP Core starts calculation at the rising
edge of start signal.

 The output data of CNN is passed to det_out_filter for post processing. det_out_filter generates bounding box X, Y,
W, and H coordinates associated with top 10 confidence value indexes for 224 x 224 image resolution.

 These coordinates are passed to osd_back_128x128_human_count for resizing to fit the actual image resolution on
the HDMI display.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02200-1.0

7.1.3. Core Customization

Table 7.1. Core Parameter

Constant Default

(Decimal)

Description

OVLP_TH_2X 5 Intersection Over Union Threshold (NMS)

NUM_FRAC 10 Fraction Part Width in Q-Format representation.

EN_INF_TIME 0 Enable Timing measurement logic

By default, it is zero and the memory file used is human_count.memI.

If assigned 1, timing measurement is enabled and the memory file used is
human_count_INF.mem.

In order to configure the respective memory file, follow the steps below:

1. Open dpram8192x8_human_count.ipx from the File List in Radiant.

2. Click Browse Memory File from Initialization section.

3. Update the mem file path:

 For 0 – /src/jedi_common/human_count.mem

 For 1 – /src/jedi_common/human_count_INF.mem

INF_MULT_FAC 15907 Inference time multiplying factor calculated as per CNN clock frequency and using
Q-Format (Q1.31).

CNN Clock Frequency = 135 MHz

Hence, CNN clock period

= 1/(135 x 10-6) µs

= 0.000007407 ms

Now, Q1.31 = 0.000007407 x 231 = ~15907

FLASH_START_ADDR 24’h300000 SPI Flash Read Start Address (keep the same address in programmer while loading
the firmware file)

For example, for the current start address, programmer address should be
0x00300000.

FLASH_END_ADDR 24’h400000 SPI Flash Read End Address (keep the same address in programmer while loading
the firmware file)

The address must be in multiple of 512 bytes.

For example, for the current end address, programmer address should be:
0x00400000.

Constant Parameters (Not to be modified)

NUM_ANCHOR 1372 Number of reference bounding boxes for all grids

NUM_GRID 196 Total number of Grids (X * Y)

NUM_X_GRID 14 Number of X Grids

NUM_Y_GRID 14 Number of Y Grids

PIC_WIDTH 224 Picture Pixel Width (CNN Input)

PIC_HEIGHT 224 Picture Pixel Height (CNN Input)

TOP_N_DET 10 Number of Top confidence bounding boxes detection

HYPERRAM_BASEADDR 4194304 Indicates hyperRAM starting Base address location value. This should match with
the SensAI compiler while generating the firmware.

BLUE_OFFSET 0 Indicates hyperRAM starting address location value to store Blue pixels

GREEN_OFFSET 50176 Indicates hyperRAM starting address location value to store Green pixels. It is
obtained as PIC_WIDTH * PIC_HEIGHT.

RED_OFFSET 100352 Indicates hyperRAM starting address location value to store Red pixels. It is
obtained as PIC_WIDTH * PIC_HEIGHT * 2.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 45

7.2. Architecture Details

7.2.1. SPI Flash Operation

RTL module spi_loader_spram provides SPI Flash read operation and writes that data into HyperRAM through the AXI
interface. It reads from SPI Flash and as soon as the board gets powered up, the .bit and .bin files are loaded in the
expected addresses.

 Expected Address for BIT File (Programmer) – 0x0000000 - 0x00100000

 Expected Address for Firmware File (Programmer) – FLASH_START_ADDR - FLASH_END_ADDR

Typical sequence of the SPI Read commands for SPI Flash MX25L12833F is implemented using FSM in RTL as per the
flow of the operation below.

 After FPGA Reset, RELEASE FROM DEEP POWER DOWN command (0xAB) is passed to SPI Flash memory. Then RTL
waits for 500 clock cycles for SPI flash to come into Standby mode if it is in Deep Power Down mode.

 RTL sends FAST READ command code (0x0B) on SPI MOSI signal for indication of Read Operation to SPI Flash.

 RTL sends three bytes of Address on SPI MOSI channel which determines the location in SPI flash from where the
data needs to be read.

 This SPI Flash has eight Dummy cycles as wait duration before read data appears on MISO channel. After waiting
for eight dummy cycles, the RTL code starts reading the data.

 This read sequence is shown in Figure 7.2. The SPI Interface Signal Mapping with RTL signals are as follow:

 CS (Chip Select) => SPI_CSS

 SCLK (Clock) => SPI_CLK

 SI (Slave In) => SPI_MOSI

 SI (Slave Out) => SPI_MISO

 The Read Data on the MISO signal is stored in a FIFO in RTL, which then reads the data in multiples of 512 bytes.
After 512 bytes chip select is de-asserted, the AXI FSM state is activated.

Figure 7.2. SPI Read Command Sequence

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02200-1.0

 AXI logic reads the data from FIFO in bursts of four on the AXI write channel, with each burst having 128 bytes.

 In accessing the HyperRAM, the axi_ws2m module is used as a Muxing module among the multiple input slave AXI
interfaces as shown in Figure 7.6. The spi_loader_spram module is considered as SLAVE 0 and given priority to
write into HyperRAM. The Master Interface connects to the axi2_hyperbus module, which provides output
interface for accessing HyperRAM.

 After writing to HyperRAM is complete, the 512 bytes are fetched from the SPI Flash using the same command
sequence as explained above until the FLASH_END_ADDR is reached.

7.2.2. Pre-processing CNN

The output from csi2_to_parallel module is a stream of RGB data that reflects the camera image, which is given to
crop_downscale_front_224x224 module.

The crop_downscale_front_224x224 module processes that image data and generates input of 224 x 224 image data
interface for CNN IP.

7.2.2.1. Pre-processing Flow

 RGB data values for each pixel are fed serially line by line for an image frame.

 These RGB data values are considered as valid only when horizontal and vertical masks are inactive. The mask
parameters set to mask out boundary area of full HD resolution (1920 x 1080) to 896 x 896 are shown below.

 Left masking = 512

 Right masking = 1408 (Obtained as 512 + 896)

 Top masking = 92

 Bottom masking = 988 (Obtained as 92 + 896)

 The image obtained after masking is shown in Figure 7.3.

Figure 7.3. Masking

 The 896 x 896 frame block is downscaled into 224 x 224 resolution image as shown in Figure 7.4 by accumulating
4 x 4 pixels into single pixel (that is 896/4 x 896/4 = 224 x 224).

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 47

Accumulation into

Single Pixel

4

896

896

4

Figure 7.4. Downscaling

 This accumulated value is written into Frame Buffer. Frame Buffer is a True Dual-Port RAM. Accumulated R, G, and
B pixel values for 4 x 4 grids are stored in the same memory location.

 When data is read from memory, each RGB value is divided by 16 (that is the area of the 4 x 4 grid) to take the
average of 4 x 4 grid matrix.

 The data from memory is read and stored again in HyperRAM through axi2_hyperbus, via axi_w2sm module, which
acts as an AXI interface to write data from slave (crop_downscale_front_224x224) to master (axi2_hyperbus). This
process is described in the next section.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02200-1.0

7.2.3. HyperRAM Operations

The CrossLink-NX board uses external HyperRAM for faster data transfer mechanism among the internal blocks and
enhances the system performance. The crop_downscale_front_224x224 module uses HyperRAM to store the
downscaled image data.

BLUE

GREEN

RED

HyperRAM

HyperRAM BaseAddr +

Blue Offset

HyperRAM BaseAddr +

Green Offset

HyperRAM BaseAddr +

Red Offset

Downscaled

224x224

Blue Pixels

Downscaled

224x224

Green Pixels

Downscaled

224x224

Red Pixels

Figure 7.5. HyperRAM Memory Addressing

 The 896 x 896 image is distributed into 224 horizontal and 224 vertical lines, and each block consists of 4 x 4 pixels
as shown in Figure 7.4. Thus, there is a total of 224 x 224 x 3 pixel values for the downscaled image (3 stands for
RGB).

 Primarily, the crop_downscale_front_224x224 module stores 224 values each of RGB into a local FIFO for all 224
horizontal blocks. Later, this stored data is written to HyperRAM through write data channel.

 As shown in Figure 7.5, when final data is written out, 224 x 224 Blue pixels are initially stored into HyperRAM
starting from Blue offset address location, followed by 224 x 224 Green pixels from the Green offset address
location, and finally, 224 x 224 Red pixels from the Red offset address location. These offset address values are
mentioned in Table 7.1 as core customization parameters.

 The 224 x 224 x 3 pixel values stored in HyperRAM are serially obtained by the CNN engine after getting command
sequence.

 In order for the crop_downscale_front_224x224 module to access HyperRAM for the operations explained above,
the axi_ws2m module functions as an AXI interface as shown in Figure 7.6.

 For the internal blocks to access HyperRAM, the axi_ws2m module considers the sd_spi module as SLAVE 0, the
cnn_opt module as SLAVE 1, the crop_downscale_front_224x224 module as SLAVE 2, and the MASTER connects
these slaves to the axi2_hyperbus module.

 The priority to select the write channel for any Slave is done on the basis of muxing logic whenever the valid
address is available from the respective Slave on its write address channel. Thus, when valid write address is
obtained from the crop_downscale_front_224x224 module, access is given to Slave 2 to use HyperRAM.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 49

SLAVE 0

SLAVE 1

SLAVE 2

MASTER

axi_ws2m

AXI INTERFACE

sd_spi

cnn_opt

crop downscale

AXI wr channel

AXI wr channel

AXI wr channel

AXI wr channel
axi2_hyperbus

hyperbus

I/O

External

HyperRAM

Figure 7.6. HyperRAM Access Block Diagram

7.2.4. Post-processing CNN

CNN provides a total of 6860 [1372 x 6 (C, P, X, Y, W, H)] values, which are given to the det_out_filter module. The CNN
output data consists of the following parameters.

Table 7.2. Data Parameters of CNN Output

Parameter Description

C This parameter indicates the confidence of detected object class.

For each grid cell (14 x 14), one confidence value (16 Bit) for each anchor box (7) is provided making total
values of confidence 14 * 14 * 7 = 1372 from CNN Output.

P This parameter indicates the probability of detected object class.

For each grid cell (14 x 14), one probability value (16-bit) for each anchor box (7) is provided making total
values of probability 14 * 14 * 7 = 1372 from CNN Output.

X This parameter indicates the Relative X coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative X value (16-bit) for each anchor box is provided making total values of
14 * 14 * 7 = 1372 for X from CNN Output.

Y This parameter indicates the Relative Y coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative Y value (16-bit) for each anchor box is provided making total values of
14 * 14 * 7 = 1372 for Y from CNN Output.

W This parameter indicates the Relative W (Width) coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative W value (16-bit) for each anchor box is provided making total values of
14 * 14 * 7 = 1372 for W from CNN Output.

H This parameter indicates the Relative H (Height) coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative H value (16-bit) for each anchor box is provided making total values of
14 * 14 * 7 = 1372 for H from CNN Output.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02200-1.0

Figure 7.7 shows the format of CNN output.

Figure 7.7. CNN Output Data Format

The primary functionality of the det_out_filter module is to capture the CNN valid output and modify it to work with the
crop_downscale_human_count module.

The det_out_filter module contains three sub-modules: det_sort_conf, det_st_class and det_st_bbox.

 1372 values of confidence are passed to the det_sort_conf module. It sorts out the top 10 highest confidence
values and stores their indexes. Index values are passed to the det_st_class and det_st_bbox modules.

 1372 values of probability are passed to the det_st_class module. It provides the valid class probability bitmap,
which is passed to the det_st_bbox module.

 1372 x 4 values of coordinates are passed to the det_st_bbox module. It calculates the bounding box coordinates,
performs NMS and provides valid box bitmap.

The crop_downscale module contains logic for post processing.

 The draw_box module calculates the box coordinates for 89 x 896 image from 224 x 224 coordinates.

 The lsc_osd_text module generates character bitmap for text display on HDMI.

7.2.4.1. Confidence Sorting

 All input confidence values (1372) are compared with threshold parameter CONF_THRESH value. Confidence
values that are greater than threshold are considered as valid for sorting.

 The det_sort_conf module implements an anchor counter (0-1371), which increments on each confidence value. It
provides the index of confidence value given by the CNN output.

 Two memory arrays are generated in this module: (1) sorted top 20 (TOP_N_DET) confidence value array, and (2)
sorted top 20 confidence index array.

 For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is
compared with stored/initial value at each location of the confidence value array.

 If the input value is greater than stored/initial value on any array location and lesser than stored/initial value of
previous array location, the input value is updated on current array location. The previously stored value of current
location is shifted into the next array location.

 Refer to Figure 7.8 for sorting of new value of confidence into existing confidence value array. Calculated
confidence index (anchor count value) is also updated in the confidence index array along with the confidence
value array.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 51

Figure 7.8. Confidence Sorting

 This process is followed for all 1372 confidence values. This module provides 10 indexes (o_idx_00 to o_idx_09) as
output along with the count of valid indexes (o_num_conf). o_idx_00 contains the highest confidence value index
and o_idx_09 contains the lowest confidence value index.

7.2.4.2. Bounding Box Calculation

The SqueezeDet Neural Network for Object Detection is trained with seven reference boxes of pre-selected shapes
having constant W (Width) and H (Height). These reference boxes are typically referred as anchors.

Table 7.3. Pre-Selected Width and Height of Anchor Boxes

Anchor No. 1 2 3 4 5 6 7

W x H (pixel) 184x184 138x138 92x92 69x69 46x46 34x34 23x23

Anchors are centered around 14 x 14 grid cells of image. So each grid center has above seven anchors with pre-selected
shape. 14 x 14 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y) pixel values
are shown in Table 7.4.

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes

Grid No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209

Y (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209

CNN provides a total of 1372 (14 x 14 x 7) values of each relative coordinates X, Y, W, and H to transform the fixed size
anchor into a predicted bounding box. Input X, Y, W, and H values associated with top 20 sorted confidence indexes are
used for box calculation in det_st_bbox module.

Each anchor is transformed to its new position and shape using the relative coordinates as shown in logic 1.

LOGIC 1

X’ = X coordinate of Predicted Box

X = Grid Center X according to Grid number

W = Width of Anchor according to Anchor number

DeltaX = Relative coordinate for X (CNN output)

X’ = X + W * DeltaX

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02200-1.0

Y’ = Y + H * DeltaY

W’= W * DeltaW

H’ = H * DeltaH

The Box co-ordinates are passed to bbox2box module in jedi_human_count_top.v after NMS process.

7.2.4.3. NMS – Non Max Suppression

The NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out
the overlapping boxes using OVLP_TH_2X value.

NMS process is started when the CNN output data is completely received.

 The process starts from the box having highest Confidence coordinates: 0th location in X, Y, W, H array.

 These coordinates are compared against the second highest Confidence coordinates: First location in X, Y, W, H
array. From this comparison, Intersection and Union coordinates are found.

 From these coordinates, Intersection and Union area are calculated between the highest confidence box and the
second highest confidence box as shown in Figure 7.9.

Figure 7.9. Intersection-Union Area NMS

 If Intersection Area * (OVLP_TH_2X/2) > Union Area, the box with the lower confidence value is blocked in final
output.

 This NMS calculation is performed between all the combinations of two boxes.

 After all combinations are checked, output array o_bbox_bmap contains boxes, which are correctly overlapped or
non-overlapped. o_out_en provides valid pulse for crop_downscale_human_count for further processing on these
box coordinates.

7.2.4.4. Bounding Box Upscaling

The process of upscaling bounding boxes for 896 x 896 resolution is accomplished by two different modules bboxbox and
draw_box_simple.

Initially, the bbox2box module in jedi_human_count_top.v obtains box cordinate outputs from det_out_filter.

The bbox2box module clamps the cordinate values so that the box remains out of masking area. This is shown in Logic 2.
LOGIC 2

If (X’ < 0) => X’’ = 0 | Else if (X’ > 223) => X’’ = 223 | Else X’’ = X’

If (Y’ < 0) => Y’’ = 0 | Else if (Y’ > 223) => Y’’ = 223 | Else Y’’ = Y’

If (W’ < 0) => W’’ = 0 | Else if (W’ > 223) => W’’ = 223 | Else W’’ = W’

The final calculated X’’, Y’’, W’’, and H’’ values for all the boxes in bbox2box are then sent to draw_box_simple module
via osd_back_128x128_human_count module.

The draw_box_simple module converts these X, Y, W, and H input coordinates provided for 224 x 224 resolution into
896 x 896 resolution as shown in Logic 3.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 53

LOGIC 3

X1 = (X’’ - W’’/2) * 4 + Horizontal-Mask (512/960)

Y1 = (Y’’ – H’’/2) * 4 + Vertical-Mask (92)

X2 = (X’’ + W’’/2) * 4 + Horizontal-Mask (512/960)

Y2 = (Y’’ + H’’/2) * 4 + Vertical-Mask (92)

(X, Y) are considered as center of the Box of Width W and Height H for calculating extreme ends of the Box (X1, X2 and
Y1, Y2). For converting from 224 to 896, the coordinates are multiplied with 4. Required offset value is added in co-
ordinate calculations to keep the boxes out of mask area. X1, X2 and Y1, Y2 coordinates are calculated for each Box.

Pixel Counter and Line Counter keeps track of the pixels of each line, and lines of each frame. The outer boundary of the
box and inner boundary of the box are calculated when Pixel and Line counter reaches to co-ordinates (X1, X2) and (Y1,
Y2) respectively. Calculations are done as per Logic 4.

LOGIC 4

Outer Box = (Pixel Count >= (X1 – 1)) and (Pixel Count <= (X2 + 1)) and

 (Line Count >= (Y1 – 1)) and (Line Count <= (Y2 + 1))

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and

 (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1))

Each bounding box is calculated by removing the intersecting area of outer and inner box. The box is only displayed if the
Box-Bitmap for that box is set to 1 (from the det_st_bbox via bbox2box module). Box on calculations are as done as Logic
5.

LOGIC 5

Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1]

Box_on[2] = Outer Box[2] and ~Inner Box[2] and Box-Bitmap[2]

.

.

Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20]

The o_box_obj signal is asserted when any of the above Box_on signal is set which is then connected to green_on signal
and processed for Bounding Box display through HDMI.

7.2.4.5. OSD Text Display

 The lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen.
It takes count of detected Humans and Threshold value as input.

 It sets an output signal (text_on) when text is to be displayed on HDMI. When text_on is set, RGB value for that
pixel location is assigned FFF value (White color) and sent to HDMI output instead of original pixel value.

7.2.4.6. HDMI Display Management

RGB data is passed serially to HDMI and it is multiplexed by following values.

 If Signal Text is on (text_on) – Pass all RGB value as FFF for White color display.

 If Signal Green is on (green_on) – Pass only Green pixel value as FFF. Keep Red and Blue values as 0.

 If Signal Mask is on (fmask_on) – Pass darker RGB pixel values.

 Else – Pass Input RGB Data as it is.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02200-1.0

8. Creating FPGA Bitstream File
This section describes the steps to compile RTL bitstream using Lattice Radiant tool.
To create the FPGA bitstream file:

1. Open the Lattice Radiant Software. Default screen in shown in Figure 8.1.

Figure 8.1. Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Radiant project file (.rdf) for CrossLink-NX Human Count Demo RTL. As shown in Figure 8.2, you can also
open the project by selecting the yellow folder shown in the user interface.

Figure 8.2. Radiant – Open CrosslinkNX Project File (.rdf)

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 55

4. After opening the project file, check the following points shown in Figure 8.3.

 The design loaded with zero errors message shown in the Output window.

 Check the following information in the Project Summary window.

 Part Number – LIFCL-40-9BG400I

 Family – LIFCL

 Device – LIFCL-40

 Package – CABGA400

Figure 8.3. Radiant – Design Load Check After Opening the Project File

5. If the design is loaded without errors, click the Run button to trigger bitstream generation as shown in
Figure 8.4.

Figure 8.4. Radiant – Trigger Bitstream Generation

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02200-1.0

6. The Lattice Radiant tool displays Saving bit stream in … message in the Reports window as shown in Figure 8.5. The
bitstream is generated at Implementation Location as shown in Figure 8.5.

Figure 8.5. Radiant – Bit File Generation Report Window

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 57

9. Programming the Demo

9.1. Programming the CrossLink-NX SPI Flash

9.1.1. Erasing the CrossLink-NX SRAM Prior to Reprogramming

If the CrossLink-NX device is already programmed (either directly, or loaded from SPI Flash), follow this procedure to first
erase the CrossLink-NX SRAM memory before re-programming the CrossLink-NX’s SPI Flash. If you are doing this, keep
the board powered when re-programming the SPI Flash (so it does not reload on reboot).

To erase the CrossLink-NX device SRAM:

1. Start Diamond Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.1. Radiant Programmer – Default Screen

2. Click OK.

3. In the Radiant Programmer main interface, Select LIFMD for Device Family, LIFCL for Device Vendor, and LIFCL-40 for
Device as shown in Figure 9.2.

Figure 9.2. Radiant Programmer – Device Selection

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02200-1.0

4. Right-click and select Device Properties.

5. Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation as shown in
Figure 9.3.

Figure 9.3. Radiant Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Click the Program button to start the erase operation.

9.1.2. Programming the CrossLink-NX VIP Input Bridge Board

To program the CrossLink-NX VIP Input Bridge Board:

1. Ensure that the CrossLink-NX device SRAM is erased by performing the steps in Erasing the CrossLink-NX SRAM
Prior to Reprogramming.

2. In the Radiant Programmer main interface, right-click the CrossLink-NX row and select Device Properties.

3. Apply the settings below:

a. Under Device Operation, select the options below:

 Port Interface – JTAG2SPI

 Access Mode – Direct Programming

 Operation – SPI Flash Erase, Program, Verify

b. Under Programming Options, select the bitstream file
~/Demonstration/Jedi_human_cnt_optimized_150MHz.bit in Programming file.

c. For SPI Flash Options, select the Macronix 25L12833F device as shown in Figure 9.4.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 59

Figure 9.4. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

d. Click Load from File to update the Data file size (bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00100000

4. Click OK.

5. Press the SW4 push button switch before clicking the Program button as shown in Figure 9.5. Hold it until you see
the Successful message in the Radiant log window.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02200-1.0

Figure 9.5. CrossLink-NX Flashing Switch – SW4 Push Button

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result as shown in Figure 9.6.

Figure 9.6. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 61

9.1.3. Programming SensAI Firmware Binary to the CrossLink-NX SPI Flash

9.1.3.1. Convert SensAI Firmware Binary to Hex

To program the CrossLink-NX SPI flash:

1. Use the bin2hex.exe to convert the SensAI firmware binary file to hex format using command shown in Figure 9.7.

2. Make sure you do not have the target .mcs file present in the directory. If the target .mcs file is already present at
the specified path, utility does not perform anything.

Figure 9.7. SensAI Bin to Hex – Convert SensAI Binary to Hex Format

9.1.3.2. Convert Flash SensAI Firmware Hex to Crosslink-NX SPI Flash

To program the CrossLink-NX SPI flash:

1. For Programming File, select the CrossLink-NX SensAI firmware binary file after converting it to hex (*.mcs).

2. For SPI Flash Options, follow the configurations in Figure 9.8.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02200-1.0

Figure 9.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

3. Click Load from File to update the data file size (bytes) value.

4. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00300000

 End Address (Hex) – 0x00400000

5. Click OK.

6. Press the SW4 push button switch. Click the PROGRAMN push button as shown in Figure 9.9. Hold it until you see
the Successful message in the Radiant log window.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 63

Figure 9.9. CrossLink-NX Flashing Switch – SW4 Push Button

7. Click the Program button to start the programming operation.

8. After successful programming, the Output console displays the result as shown in Figure 9.10.

Figure 9.10. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02200-1.0

9.2. Programming ECP5 VIP Board
Both the CrossLink-NX VIP Input Bridge Board and the ECP5 VIP Processor Board must be configured and programmed.
Also, the demo design firmware must be programmed onto the MicroSD Card, which is plugged into the MicroSD Card
Adaptor Board.

9.2.1. Erasing the ECP5 Prior to Reprogramming

If the ECP5 device is already programmed (either directly or loaded from SPI Flash), erase the ECP5 SRAM before
reprogramming the ECP5 SPI Flash. Keep the board powered on to prevent reloading on reboot.

To erase the ECP5 SRAM:

1. Start Diamond Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.11. Diamond Programmer – Default Screen

2. Click OK.

3. In the Diamond Programmer main interface, select ECP5UM in Device Family and LFE5UM-85F in Device as shown
in Figure 9.13.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 65

Figure 9.12. Diamond Programmer – Device Family Selection

Figure 9.13. Diamond Programmer – Device Selection

4. Click the ECP5 row and select Edit > Device Properties.

5. In the Device Properties dialog box, select JTAG 1532 Mode in Access mode and Erase Only in Operation (shown in
Figure 9.14).

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02200-1.0

Figure 9.14. Diamond Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Click the Program button to start the Erase operation.

Note: If you power OFF/ON the board, the SPI Flash reprograms the ECP5 device. In this case, you must repeat steps
1 to 7.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 67

9.2.2. Programming the ECP5 VIP Processor Board

To program the ECP5 VIP Processor Board:

1. Ensure that the ECP5 device is erased by performing the steps in Erasing the ECP5 Prior to Reprogramming.

2. Right-click and select Edit > Device Properties.

3. Apply the following settings:

a. Under Device Operation, select the options below:

 Access Mode – SPI Flash Background Programming

 Operation – Erase, Program, Verify

b. Under Programming Options, select the Raw10toParallel_75MHZ.bit in Programming file.

c. For SPI Flash Options, refer to Table 9.1:

Table 9.1. Diamond Programmer – SPI Flash Options

Item Rev B Rev C - Option 1

Family SPI Serial Flash SPI Serial Flash

Vendor Micron Macronix

Device SPI-N25Q128A MX25L12835F

Package 8-pin SO8 8-Land WSON

d. Click Load from File to update the Data file size (bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x001D0000

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

68 FPGA-RD-02200-1.0

Figure 9.15. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing

4. Click OK.

5. Click the Program button to start the programming operation.

6. After successful programming, the Output console displays the result as shown in Figure 9.16.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 69

Figure 9.16. Diamond Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

70 FPGA-RD-02200-1.0

10. Running the Demo
To run the demo:

1. Cycle the power on the Embedded Vision Development Kit to allow the ECP5 and CrossLink-NX devices to be
reconfigured from Flash.

2. Connect the Embedded Vision Development Kit to the HDMI monitor. The camera image is displayed on monitors
as shown in Figure 10.1.

Figure 10.1. Running the Demo

3. The demo output contains bounding boxes for detected humans in a given frame. It also displays the total number
of detected humans in a given frame on HDMI output.

http://www.latticesemi.com/legal

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 71

Appendix A. Other Labelling Tools
Table A.1 provides information on other labelling tools.

Table A.1. Other Labelling Tools

Software Platform License Reference Converts
To

Notes

annotate-to-
KITTI

Ubuntu/Windows
(Python based
utility)

No License
(Open
source
GitHub
project)

https://github.com/SaiPrajwal95/annotate-to-
KITTI

KITTI Python based
CLI utility that
you can clone
and launch.

LabelBox JavaScript, HTML,
CSS, Python

Cloud or
On-
premise,
some
interfaces
are
Apache-2.0

https://www.labelbox.com/ json, csv,
coco, voc

Web
application

LabelMe Perl, JavaScript,
HTML, CSS, On
Web

MIT
License

http://labelme.csail.mit.edu/Release3.0/ xml Converts only
jpeg images

Dataturks On web Apache
License 2.0

https://dataturks.com/ json Converts to
json format
but creates
single json file
for all
annotated
images

LabelImg ubuntu OSI
Approved::
MIT
License

https://mlnotesblog.wordpress.com/2017/12/
16/how-to-install-labelimg-in-ubuntu-16-04/

xml Need to
install
dependencies
given in
reference

Dataset_

annotator

Ubuntu 2018

George
Mason
University
Permission
is hereby
granted,
Free of
charge

https://github.com/omenyayl/dataset-
annotator

json Need to
install
app_image
and run it by
changing
permissions

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

72 FPGA-RD-02200-1.0

References
 Google TensorFlow Object Detection GitHub

 Pretrained TensorFlow Model for Object Detection

 Python Sample Code for Custom Object Detection

 Train Model Using TensorFlow

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
 Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02200-1.0 73

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

CrossLink-NX Object Counting Using VGG CNN Accelerator IP
Reference Design

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

74 FPGA-RD-02200-1.0

Revision History

Revision 1.0, May 2020

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	CrossLink-NX Object Counting Using VGG CNN Accelerator IP
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Lattice Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. Installing the cuDNN
	2.2.3. Installing Anaconda and Python 3
	2.2.4. Installing TensorFlow v1.12 (or Higher)
	2.2.5. Installing the Python Package

	3. Preparing the Dataset
	3.1. Downloading the Dataset
	3.2. Visualizing and Tuning/Cleaning Up the Dataset
	3.3. Data Augmentation
	3.3.1. Configuring the Augmentation
	3.3.2. Running the Augmentation

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Human Count Training Network Layers
	4.2.2. Human Count Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Forward Graph
	Interpretation Graph
	Loss Graph
	Train Graph
	Visualization Graph

	4.2.3.3. Training

	4.3. Training from Scratch and/or Transfer Learning

	5. Creating Frozen File
	5.1. Generating the Frozen .pb File

	6. Creating Binary File with Lattice SensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Operational Flow
	7.1.3. Core Customization

	7.2. Architecture Details
	7.2.1. SPI Flash Operation
	7.2.2. Pre-processing CNN
	7.2.2.1. Pre-processing Flow

	7.2.3. HyperRAM Operations
	7.2.4. Post-processing CNN
	7.2.4.1. Confidence Sorting
	7.2.4.2. Bounding Box Calculation
	7.2.4.3. NMS – Non Max Suppression
	7.2.4.4. Bounding Box Upscaling
	7.2.4.5. OSD Text Display
	7.2.4.6. HDMI Display Management

	8. Creating FPGA Bitstream File
	9. Programming the Demo
	9.1. Programming the CrossLink-NX SPI Flash
	9.1.1. Erasing the CrossLink-NX SRAM Prior to Reprogramming
	9.1.2. Programming the CrossLink-NX VIP Input Bridge Board
	9.1.3. Programming SensAI Firmware Binary to the CrossLink-NX SPI Flash
	9.1.3.1. Convert SensAI Firmware Binary to Hex
	9.1.3.2. Convert Flash SensAI Firmware Hex to Crosslink-NX SPI Flash

	9.2. Programming ECP5 VIP Board
	9.2.1. Erasing the ECP5 Prior to Reprogramming
	9.2.2. Programming the ECP5 VIP Processor Board

	10. Running the Demo
	Appendix A. Other Labelling Tools
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, May 2020

