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Acronyms in This Document 
A list of acronyms used in this document. 

Acronym Definition 

CKPT Checkpoint 

CNN Convolutional Neural Network 

EVDK Embedded Vision Development Kit 

FPGA Field-Programmable Gate Array 

ML Machine Learning 

MLE Machine Learning Engine 

SPI Serial Peripheral Interface 

VIP Video Interface Platform 
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1. Introduction 
This document describes the Human Counting Design process of MobileNet-v2 using the ECP5™ Embedded Vision 
Development Kit FPGA platform. Human Counting is a subset of the generic Object Counting base design.  

1.1. Design Process Overview 
The design process involves the following steps: 

1. Training the model 

 Setting up the basic environment 

 Preparing the dataset 

 Preparing 224 x 224 image 

 Labeling dataset of human bounding box 

 Training the machine 

 Training the machine and creating the checkpoint data 

 Creating Frozen file (*.pb) 

2. Compiling Neural Network  

 Creating the binary file with Lattice SensAI™ 3.0 program 

3. FPGA Design 

 Creating the FPGA bitstream file 

4. FPGA Bitstream and Quantized Weights and Instructions 

 Flashing the binary and bitstream files 

 Binary File to MicroSD 

 Bitstream to Flash Memory on VIP Board 

 

Figure 1.1. Lattice Machine Learning Design Flow 
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2. Setting Up the Basic Environment  

2.1. Software and Hardware Requirements 
This section describes the required tools and environment setup for FPGA Bitstream and Flashing. 

2.1.1. Lattice Software 
 Lattice Diamond® – Refer to http://www.latticesemi.com/latticediamond. 

 Lattice Diamond Programmer – Refer to http://www.latticesemi.com/programmer. 

 Lattice SensAI Compiler v3.0 – Refer to 
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler. 

2.1.2. Win32 MicroSD Disk Imager 

Refer to https://sourceforge.net/projects/win32diskimager/. 

2.1.3. Hardware 

This design uses the ECP5 FPGA VIP board as shown in Figure 2.1. Refer to 
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP. 

CrossLink VIP

Input Bridge Board

ECP5 VIP 

Processor Board

HDMI VIP Output

Bridge Board

MicroSD Card 

Adapter Board

Camera Sensor CN2

Camera Sensor CN1

 

Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board 
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2.2. Setting Up the Linux Environment for Machine Training 
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS.  

Note: NVIDIA library and TensorFlow version is dependent on PC and Ubuntu/Windows version. 

2.2.1. Installing the CUDA Toolkit 

To install the CUDA toolkit, run the following commands in the order specified below: 

$ curl -O 

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb 

 

Figure 2.2. Download CUDA Repo 

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb 

 

Figure 2.3. Install CUDA Repo 

$ sudo apt-key adv --fetch-keys 

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub 

 

Figure 2.4. Fetch Keys 

$ sudo apt-get update 

 

Figure 2.5. Update Ubuntu Packages Repositories 
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$ sudo apt-get install cuda-9-0 

 

Figure 2.6. CUDA Installation 

2.2.2. Installing the cuDNN  

To install the cuDNN: 

1. Create Nvidia developer account in https://developer.nvidia.com. 

2. Download cuDNN lib in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1 

3. Execute the command below to install cuDNN. 

$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz  

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include  

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64  

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 

 

Figure 2.7. cuDNN Library Installation 

2.2.3. Installing the Anaconda and Python 3 

To install the Anaconda and Python 3: 

1. Go to https://www.anaconda.com/distribution/#download-section. 

2. Download the Python 3 version of Anaconda for Linux. 

 

Figure 2.8. Anaconda Package Download 
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3. Install the Anaconda environment by running the command below: 

$ sh Anaconda3-2019.03-Linux-x86_64.sh 

Note: Anaconda3-<version>-Linux-x86_64.sh version may vary based on the release. 

 

Figure 2.9. Anaconda Installation 

4. Accept the license. 

 

Figure 2.10. Accept License Terms 

5. Confirm the installation path. Follow the instruction on-screen if you want to change the default path. 

 

Figure 2.11. Confirm/Edit Installation Location 

6. After installation, enter No as shown in Figure 2.12.  

 

Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion 
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2.2.4. Installing the TensorFlow v1.12 (or Higher) 

To install the TensorFlow v1.12: 

1. Activate the conda environment by running the command below: 

$ source <conda directory>/bin/activate 

 

Figure 2.13. Anaconda Environment Activation 

2. Install the TensorFlow by running the command example below: 

$ conda install tensorflow-gpu==1.12.0 

 

Figure 2.14. TensorFlow Installation 

3. After installation, enter Y as shown in Figure 2.15. 

 

Figure 2.15. TensorFlow Installation Confirmation 

Figure 2.16 shows that the TensorFlow installation is complete. 

 

Figure 2.16. TensorFlow Installation Completion 
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2.2.5. Installing the Python Package 

To install the Python package: 

1. Install Easydict by running the command below: 

$ conda install –c conda-forge easydict 

 

Figure 2.17. Easydict Installation 

2. Install Joblib by running the command below: 

$ conda install joblib 

 

Figure 2.18. Joblib Installation 

3. Install Keras by running the command below: 

$ conda install keras 

 

Figure 2.19. Keras Installation 
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4. Install OpenCV by running the command below: 

$ conda install opencv 

 

Figure 2.20. OpenCV Installation 

5. Install Pillow by running the command below: 

$ conda install pillow 

 

Figure 2.21. Pillow Installation 
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3. Preparing the Dataset 
This section describes how to create a dataset using Google Open Image Dataset as an example. 

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features 
more than 600 classes of images. The Person class of images includes human annotated and machine annotated labels 
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0. 

3.1. Downloading the Dataset 
To download the dataset, run the commands below: 

1. Clone the OIDv4_Toolkit repository: 

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git 

$ cd OIDv4_ToolKit 

 

Figure 3.1. Open Source Dataset Repository Cloning 

Figure 3.2 shows the OIDv4 code directory structure. 

 

Figure 3.2. OIDv4_Toolkit Directory Structure 

View the OIDv4 Toolkit Help menu: 

$ python3 main.py -h 
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Figure 3.3. Dataset Script Option/Help 

2. Use the OIDv4 Toolkit to download dataset. Download the Person class images: 

$ python3 main.py downloader --classes Person --type_csv validation 

 

Figure 3.4. Dataset Downloading Logs 

Figure 3.5 shows the downloaded dataset directory structure. 

 

Figure 3.5. Downloaded Dataset Directory Structure 
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3. Lattice training code uses KITTI (.txt) format. However, the downloaded dataset is not in exact KITTI format. Convert 
the annotation to KITTI format. 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/* 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/* 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/* 

 

Figure 3.6. OIDv4 Label to KITTI Format Conversion 

Note:  

KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90 

It has class ID followed by truncated, occluded, alpha, Xmin, Ymin, Xmax, Ymax. 

Code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as bounding box rectangle coordinates. 

3.2. Visualizing and Tuning/Cleaning Up the Dataset 
To visualize and annotate the dataset, run the command below: 

1. Visualize the labeled images. 

$ python3 main.py visualizer 

 

Figure 3.7. Toolkit Visualizer 
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2. Clone the manual annotation tool from the GitHub repository. 

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git 

 

Figure 3.8. Manual Annotation Tool – Cloning 

3. Go to annotate to KITTI. 

$ cd annotate-to-KITTI 

$ ls 

 

Figure 3.9. Manual Annotation Tool – Directory Structure 

4. Install the dependencies (OpenCV 2.4). 

$ sudo apt-get install python-opencv 

5. Launch the utility. 

$ python3 annotate-folder.py 

6. Set the dataset path and default object label.  

 

Figure 3.10. Manual Annotation Tool – Launch 

7. For annotation, run the script provided in the website below. 

https://github.com/SaiPrajwal95/annotate-to-KITTI 

For information on other labeling tools, see Table A.1. 
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3.3. Data Augmentation 
Data Augmentation needs a large amount of training data to achieve good performance. Image Augmentation creates 
training images through different ways of processing or combination of multiple processing such as random rotation, 
shifts, shear and flips, and others. 

 

Figure 3.11. Augmentation Directory Stucture 

 data_aug – It contains basic methods and augmentation classes. 

 augmentation.py – This file reads the input images (input labels) and performs preferred augmentation on it. 

 config.py – Contains parameters that are used in augmentation operations. 

3.3.1. Configuring the Augmentation 

To configure the augmentation: 

1. Configure the config.py file which contains the parameters shown in Figure 3.12. 

 

Figure 3.12. config.py Configuration File Parameters 

2. Choose the operations to perform on the dataset. The operations can be selected in augmentation.py by editing 
the list all_op. 
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Figure 3.13. Selecting the Augmentation Operations 

3. Add or remove the operation by commenting/uncommenting the operation in the all_op list as shown in Figure 
3.13. 

3.3.2. Running the Augmentation 

Run the augmentation by running the following command: 

python augmentation.py --image_dir <Path_To_InputImage_Dir> --label_dir 

<Path_To_InputLabel_Dir> --out_image_dir <Path_To_OutputImage_Dir> --

out_label_dir <Path_To_OutputLable_Dir> 

 

Figure 3.14. Running the Augmentataion 
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4. Training the Machine 

4.1. Training Code Structure 

 

Figure 4.1. Training Code Directory Structure 

4.2. Neural Network Architecture 

4.2.1. Human Count Training Network Layers 

This section provides information on the Convolution Network Configuration of the Human Presence Detection design. 
The Neural Network model of the Human Presence Detection design uses MobileNet-v2 Neural Network base model 
and the detection layer of SqueezeDet model. 
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Figure 4.2. Human Counting Training Network Topology 
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Conv3 - # where:  

 Conv3 = 3 x 3 Convolution filter Kernel size  

 # = The number of filter  

DWConv3 - 32- # where:  

 DWConv3 = Depthwise convolution filter with 3 x 3 size  

 # = The number of filter  

Conv1 - 32- # where:  

 Conv1 = 1 x 1 Convolution filter Kernel size  

 # = The number of filter  

For example, Conv3 - 16 = 16 3 x 3 convolution filters 

 Batch Normalization (BN) 

 Human Count Network structure consists of 7 fire layers followed by one convolution layer. A fire layer contains 
1 x 1 convolution, depth wise convolution, batch normalization and ReLU layers with pooling layer only in Fire 
3, Fire 5, and Fire 7. Layers Fire 2, Fire 4, and Fire 6 do not contain pooling. 

 A fire layer (except Fire 1) is basically a residual block which contains three layers: 1 x 1 expansion layer 
followed by batch normalization layer and ReLU layer, depth wise convolution layer followed by batch 
normalization and ReLU layer, and 1 x 1 projection layer followed by batch normalization layer. The architecture 
of a fire block is shown in Figure 4.3: 

 

Figure 4.3. Fire Block Architecture 
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 Fire 1 layer has stride=2 in convolution layer while all other conv operations in fire layers have stride = 1. 

 Layer information: 

 Convolutional Layer 
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters 
(sometimes referred as kernels), which convolves with the input layer/image and generates an activation 
map (that is feature map). This filter is an array of numbers (called weights or parameters). Each of these 
filters can be thought of as feature identifiers, such as straight edges, simple colors, curves, and other 
high-level features. For example, the filters on the first layer convolve around the input image and 
activate (or compute high values) when the specific feature (such as curve, for example) it is looking for is 
in the input volume. 

 ReLU (Activation Layer) 
After each conv layer, it is conventional to apply a nonlinear layer (or activation layer) immediately 
afterward. The purpose of this layer is to introduce nonlinearity to a system that is computing linear 
operations during the conv layers (element-wise multiplications and summations). In the past, nonlinear 
functions such as tanh and sigmoid were used, but researchers found out that ReLU layers work far better 
because the network is able to train a lot faster (because of the computational efficiency) without making 
a significant difference in accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values 
in the input volume. In basic terms, this layer changes all the negative activations to 0. This layer increases 
the nonlinear properties of the model and the overall network without affecting the receptive fields of 
the conv layer. 

 Pooling Layer 
After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling 
layer. In this category, there are also several layer options, with Maxpooling being the most popular. This 
basically takes a filter (normally of size 2 x 2) and a stride of the same length. It then applies to the input 
volume and outputs the maximum number in every sub region that the filter convolves around.  
The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original 
input volume (there is a high activation value), its exact location is not as important as its relative location 
to the other features. As you can imagine, this layer drastically reduces the spatial dimension (the length 
and the width change but not the depth) of the input volume. This serves two main purposes. The first is 
that the number of parameters or weights is reduced by 75%, thus lessening the computation cost. The 
second is that it controls over fitting. This term is used to when a model is so tuned to the training 
examples that it is not able to generalize well for the validation and test sets. A symptom of over fitting is 
having a model that gets 100% or 99% on the training set, but only 50% on the test data. 

 Batch Normalization Layer 
Batch Normalization layer reduces the internal covariance shift. To train a neural network, some 
preprocessing to the input data are performed. For example, you can normalize all data so that it 
resembles a normal distribution (that means, zero mean and a unitary variance). This prevents the early 
saturation of non-linear activation functions such as the sigmoid function and assures that all input data 
are in the same range of values. 
An issue, however, appears in the intermediate layers because the distribution of the activations is 
constantly changing during training. This slows down the training process because each layer must learn 
to adapt them to a new distribution in every training step. This is known as internal covariate shift. 
Batch Normalization layer forces the input of every layer to have approximately the same distribution in 
every training step by following the process below during training time:  

a. Calculate the mean and variance of the layers input. 

b. Normalize the layer inputs using the previously calculated batch statistics. 

c. Scale and shift to obtain the output of the layer. 

This makes the learning of layers in the network more independent of each other and allows you to be 
care free about weight initialization, works as regularization in place of dropout, and other regularization 
techniques. 
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 Depthwise Convolution Layer and Pointwise Convolution Layer  
Depthwise convolution is used to apply a single filter per each input channel (input depth). Pointwise 
convolution, a simple 1 x 1 convolution, is then used to create a linear combination of the output of the 
depthwise layer. 
Depthwise convolution is extremely efficient relative to standard convolution. However, it only filters 
input channels and does not combine them to create new features. So an additional layer that computes a 
linear combination of the output of depthwise convolution through 1 x 1 convolution is needed to 
generate these new features. 
Pointwise convolution compresses an input tensor with large channel size to one with the same batch and 
spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensorshape [filter_height, 
filter_width, in_channels, channel_multiplier] containing in_channels convolutional filters of depth 1, 
depthwise_conv2d applies a different filter to each input channel, then concatenates the results together. 
The output has in_channels multiply with channel_multiplier channels. 
The architecture above provides nonlinearities and preservation of dimension that help to improve the 
robustness of the network and control over fitting. 

4.2.2. Human Count Detection Network Output 

From the input image model, it extracts the feature maps first and overlays them with a W x H grid. And then, each cell 
computes K pre-computed bounding boxes called anchors. Each bounding box has the following: 

 Four scalars (x, y, w, h) 

 A confidence score (Pr(Object)*IOU) 

 C° conditional class probability 

 The current model architecture has a fixed output of WxHxK (4+1+C). where:  

 W, H = Grid Size 

 K = Number of Anchor boxes 

 C = Number of classes for which you want detection 

 The model has a total of 8232 output values which are derived from the following: 

 14 x 14 grid 

 Seven anchor boxes per grid 

 Six values per anchor box. It consists of: 

 Four bounding box coordinates (x, y, w, h) 

 One class probability 

 One confidence score 

So in total, 14 x 14 x 7 x 6 = 8232 output values. 
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4.2.3. Training Code Overview 

 

Figure 4.4. Training Code Flow Diagram 

Training Code is divided into the following parts: 

 Model Configuration 

 Model Building 

 Model Freezing 

 Data Preparation 

 Training for Overall Execution Flow 

Details of each can be found in subsequent sections. 
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4.2.3.1. Model Configuration 

The design uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config() maintains all the configurable parameters 
for the model. Below is summary of configurable parameters: 

 Image size 

 Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in 
src/config/kitti_squeezeDet_config.py. 

 

Figure 4.5. Code Snippet – Input Image Size Config 

 Since there are four pooling layers, grid dimension would be H = 14 and W = 14. anchor_shapes variable of 
set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and heights. Update it based on 
anchors per gird size changes. 

 

Figure 4.6. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes) 

 Batch size 

 Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size. 

 Anchors per grid 

 Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid. 

 

Figure 4.7. Code Snippet – Anchors Per Grid Config #2 

 Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here, B (value 
7) indicates anchors per grid. 

 To run the network on your own dataset, adjust the anchor sizes. Anchors are kind of prior distribution over 
what shapes your boxes should have. The better this fits to the true distribution of boxes, the faster and easier 
your training is going to be.  

 To determine anchor shapes, first load all ground truth boxes and pictures, and if your images do not have all 
the same size, normalize their height and width by the images’ height and width. All images are normalized 
before being fed to the network, so you need to do the same to the bounding boxes and consequently, the 
anchors. 

 Second, perform a clustering on these normalized boxes. (use k-means without feature whitening and 
determine the number of clusters either by eyeballing or by using the elbow method.) 

 Check for boxes that extend beyond the image or have a zero to negative width or height. 
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Figure 4.8. Code Snippet – Anchors Per Grid Config #3 

 Training Parameters 

 Other training related parameters such as learning rate, loss parameters, and different thresholds can be 
configured from src/config/kitti_squeezeDet_config.py. 

 

Figure 4.9. Code Snippet – Training Parameters 

4.2.3.2. Model Building 

SqueezeDet class constructor builds model, which is divided into the following sections: 

 Forward Graph 

 Interpretation Graph 

 Loss Graph 

 Train Graph 

 Visualization Graph 
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Forward Graph 

 The CNN architecture consists of Convolution, Batch Normalization, ReLU, Maxpool, and 1 x 1 Depthwise 
Convolution layers 

 Forward Graph consists of seven fire layers as described in Figure 4.2. 

 

Figure 4.10. Code Snippet – Training Parameters 

 Filter sizes of each convolutional blocks are mentioned in code, which can be configured by changing the values of 
depth, as shown in Figure 4.10. 

 

Figure 4.11. Code Snippet – Forward Graph Fire Layers 

 

Figure 4.12. Code Snippet – Forward Graph Last Convolution Layer 
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Interpretation Graph 

 The Interpretation Graph consists of the following sub-blocks: 

 interpret_output 
This block interprets output from network and extracts predicted class probability, predicated confidence 
scores, and bounding box values. 

Output of the convnet is a 14 x 14 x 42 tensor – there are 42 channels of data for each of the cells in the grid 
that is overlaid on the image and contains the bounding boxes and class predictions. This means the 42 
channels are not stored consecutively but are scattered all over the place and needed to be sorted. Figure 4.13 
and Figure 4.14 explain the details. 

 

Figure 4.13. Grid Output Visualization #1 

For each grid cell, values are aligned as shown in Figure 4.14. 

 

Figure 4.14. Grid Output Visualization #2  
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As shown in Figure 4.15, the output from conv12 layer (4D array of batch size x 14 x 14 x 42) needs to be sliced 
with proper index to get all values of probability, confidence, and coordinates. 

 

Figure 4.15. Code Snippet – Interpret Output Graph  

For confidence score, this must be a number between 0 and 1, so sigmoid is used. 

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a 
softmax to make it probability distribution. 

 bbox 

This block calculates bounding boxes based on anchor box and predicated bounding boxes. 

 IOU 

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes. 

 Probability 
This block calculates detection probability and object class. 

Loss Graph 

 This block calculates different types of losses which need to be minimized. In order to learn detection, localization 
and classification, model defines a multi-task loss function. There are three types of losses which are considered 
for calculation: 

 Bounding Box 

This loss is regression of the scalars for the anchors. 

http://www.latticesemi.com/legal


Object Counting Using Mobilenetv2 CNN Accelerator IP  
Reference Design 
 

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

34  FPGA-RD-02197-1.0 

 

Figure 4.16. Code Snippet – Bbox Loss 

 Confidence Score 

 To obtain meaningful confidence score, each box’s predicted value is regressed against the of the real and 
the predicted box. During training, compare ground truth bounding boxes with all anchors and assign 
them to the anchors that have the largest overlap (IOU) with each of them.  

 Select the closest anchor to match the ground truth box such that the transformation needed is reduced 
to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a 
ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss 
generated by the responsible anchors.  

 As there can be multiple objects per image, normalize the loss by dividing it by the number of objects 
(self.num_objects). 

 

Figure 4.17. Code Snippet – Confidence Loss 

 Class 

 The last part of the loss function is cross-entropy loss for each box to do classification, as you would for 
image classification. 
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Figure 4.18. Code Snippet – Class Loss 

In one model architecture, you obtain the bounding box prediction, the classification, as well as, the confidence 
score. 

Train Graph 

 This block is responsible for training the model with momentum optimizer to reduce all losses. 

Visualization Graph 

 This block provides visitations of detected results. 

4.2.3.3. Training 

 

Figure 4.19. Code Snippet – Training 

sess.run feeds the data, labels batches to network, and optimizes the weights and biases. The code above handles the 
input data method in case of multiple threads preparing batches or data preparation in main thread only. 
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4.3. Training from Scratch and/or Transfer Learning 
To train the machine: 

1. Go to the top/root directory of the Lattice training code from command prompt. 

The model works on 224x224 images. 

Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Mean and 
scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.20. 

 

Figure 4.20. Training Code Snippet for Mean and Scale 

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the --
data_path option while triggering training using train.py to get the desired path. For example, you can have 
<data_path>/training/images and <data_path>/training/labels. 

 

Figure 4.21. Training Code Snippet for Dataset Path 

2. Create a train.txt.  
$ cd data/humancnt/ 

$ python dataset_create.py 

 

Figure 4.22. Create File for Dataset train.txt 

Notes: 

 train.txt – file name of dataset images. 

 image_set – train (ImageSets/train.txt) 

 data_path – $ROOT/data/humandet/ 

 Images – $ROOT/data/humandet/images 

 Annotations – $ROOT/data/humandet/labels 

3. Modify the training script. 

Training script at @scripts/train.sh is used to trigger training. Figure 4.23 shows the input parameters which can be 
configured. 
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Figure 4.23. Training Input Parameter  

 $TRAIN_DATA_DIR – dataset directory path. /data/humandet is an example. 

 $TRAIN_DIR – log directory where checkpoint files are generated while model is training. 

 $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use. 

 --summary_step – indicates at which interval loss summary should be dumped. 

 --checkpoint_step – indicates at which interval checkpoints are created. 

 --max_steps – indicates the maximum number of steps for which the model is trained. 

4. Execute the run command script, which starts training. 

 

Figure 4.24. Execute Run Script 

5. Start TensorBoard. 
$ tensorboard –logdir=<log directory of training> 

For example: tensorboard –logdir=’./logs/humancnt/train/’ 

6. Open the local host port on your web browser. 

  

Figure 4.25. TensorBoard – Generated Link 
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7. Check the training status on TensorBoard. 

 

Figure 4.26. TensorBoard 

Figure 4.26 shows the image menu of TensorBoard. 

 

Figure 4.27. Image Menu of TensorBoard 

8. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory. 
These files are used for creating the frozen file (*.pb). 
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Figure 4.28. Example of Checkpoint Data Files at Log Folder 
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5. Creating Frozen File 
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the 
steps below to generate the frozen protobuf file: 

5.1. Generating the Frozen .pb File 
Generate .pb file from latest checkpoint using below command from the training code’s root directory. 

$ python src/genpb.py –ckpt_dir <log directory> --freeze 

For example, python src/genpb.py –ckpt_dir logs/humancnt/train –freeze. 

 

Figure 5.1. .pb File Generation from Checkpoint 

Figure 5.2 shows the generated .pb file. 

 

Figure 5.2. Frozen .pb File 
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6. Creating Binary File with Lattice SensAI 
This chapter describes how to generate binary file using the Lattice SensAI version 2.1 program. 

 

Figure 6.1. SensAI Home Screen 

To create the project in SensAI tool: 

1. Click File > New. 

2. Enter the following settings: 

 Project Name 

 Framework – TensorFlow 

 Class – CNN  

 Device – ECP5 

 MOBBILENET Mode - Enabled 

3. Click Network File and select the network (.pb) file. 
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Figure 6.2. SensAI – Network File Selection 

4. Click Image/Video/Audio Data and select the image input file. 

 

Figure 6.3. SensAI – Image Data File Selection 

5. Click NEXT. 

6. Configure your project settings. 
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Figure 6.4. SensAI – Project Settings 

7. Click OK to create project. 

8. Double-click Analyze. 

 

Figure 6.5. SensAI – Analyze Project 

9. Confirm the Q format of each layer as shown in Figure 6.6 and update if required. 
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Figure 6.6. Q Format Settings for Each Layer 

10. Double-click Compile to generate the firmware file. 
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Figure 6.7. Compile Project 
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7. Hardware Implementation 

7.1. Top Level Information 

7.1.1. Block Diagram 

 

Figure 7.1. RTL Top Level Block Diagram 

7.1.2. Operational Flow 

This section provides a brief idea about the data flow across ECP5 board. 

 The CNN module is configured with the help of a binary (.bin) file stored in an SD card. The .bin file is a command 
sequence code which is generated by the Lattice Machine Learning software tool.  

 The command code is written in the DRAM through AXI before the execution of the CNN Accelerator IP Core starts. 
CNN reads the command code from the DRAM during its execution and performs calculation per command code. 
Intermediate data may be transferred from/to DRAM per command code.  

 The external camera configured using the I2C_top logic block captures the raw image and passes it to the 
CSI2_to_DVI_top module. The CSI2_to_DVI_top module separates the R, G, and B pixels from raw data and creates 
separated colors to match the real world using gain and offset controls.   

 The RGB data from CSI2_to_DVI_top module is downscaled to 224 x 224 image resolution by 
crop_downscale_human_count module to match CNN’s input resolution. This data is written into internal memory 
block of CNN Accelerator IP Core through input data ports.  

 After the command code and input data are available, the CNN Accelerator IP Core starts calculation at the rising 
edge of start signal.  

 The output data of the CNN is passed to det_out_filter for post processing. The det_out_filter generates bounding 
box coordinates X, Y, W, H associated with the top 20 confidence value indexes for 224 x 224 image resolution. 

 These coordinates are passed to the crop_downscale_human_count again for resizing to fit the actual image 
resolution on HDMI display. HDMI is configured using the hdmi_i2c_top block. 
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7.1.3. Core Customization 

Table 7.1. Core Parameter 

Constant Default 

(Decimal) 

Description 

CONF_THRESH 65472 

 (that is -64) 

Signed confidence threshold value calculated as per Q-Format of Last Layer of CNN. 

For example, if threshold is to be kept at -0.0625 and Q-Format is Q5.10, 
CONF_THRESH. 

= 2’s complement ((0.0625) * (2^10))  

= 2’s complement (64)  

= 65472 Decimal  = FFC0 Hex 

OVLP_TH_2X 5 Intersection Over Union threshold 

NUM_FRAC 10 Fraction Part Width in Q-Format representation.  

EN_INF_TIME 0 Used to enable Timing Measurement logic. By default, value is zero and the 
memory file used is human_count.mem. 

If assigned to 1, timing measurement is enabled and the memory file used is 
human_count_INF.mem. 

In order to configure the respective memory file, follow the steps below: 

 Open ecp.sbx from file list using clarity designer in Diamond user interface. 

 Go to Builder tab in Clarity designer. 

 Right-click on dpram8192x8_human_count and select config. 

 Click on Browse Memory File from Initialization section 

 Update the following mem file path:  

        For 0 - /src/vip_common/humant_count.mem  

        For 1 - /src/vip_common/human_count_INF.mem 

Constant Parameters (Not to be modified) 

NUM_ANCHOR 1372 Number of reference bounding boxes for all grids  

NUM_GRID 196 Total number of Grids (X * Y) 

NUM_X_GRID  14 Number of X Grids 

NUM_Y_GRID  14 Number of Y Grids 

PIC_WIDTH 224 Picture Pixel Width (CNN Input) 

PIC_HEIGHT 224 Picture Pixel Height (CNN Input) 

NUM_CLASS 1 Number of probability classes 

TOP_N_DET 20 Number of Top confidence bounding boxes detection 

OBJECT BODY Detection of upper human body from input image 

7.2. Architecture Details 

7.2.1. Pre-processing CNN 

The output from the CSI2_to_DVI_top module is a stream of RGB data that reflects the camera image which is given to 
crop_downscale_human_count module.  

The crop_downscale_human_count module processes that image data and generates input of 224 x 224 image data 
interface for CNN IP. 

7.2.1.1. Pre-processing Flow 

 RGB data values for each pixel are fed serially line by line for an image frame. 

 These RGB data values are considered as valid only when horizontal and vertical masks are inactive. Mask 
parameters are set such that it masks out boundary area of full HD resolution (1920 x 1080) to 1792 x 896.  
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Figure 7.2. Masking and Zoning 

 The Frame of 1792 x 896 is further divided in half horizontally by making two blocks of 896 x 896 of the same 
frame as shown in Figure 7.2. This is done to make the downscaling process easier. 

 When the left zone is active, pixel values from the left zone are used to generate the CNN input image data. Pixel 
values from right zone are ignored. After the data is sent to CNN, the active zone is changed to the right zone. 
When CNN is ready to accept data, the pixel values from the right zone are used to generate the CNN input image 
data. 

 Each 896 x 896 frame block is downscaled into 224 x 224 resolution image as shown in the Figure 7.3. 

 

Figure 7.3. Downscaling  

 A single accumulated pixel value is generated for each 4 x 4 grid of pixels. This leads to generate 224 x 224 values 
(896/4 x 896/4) from 896 x 896 values.   

 The accumulated value is written into Frame Buffer. Frame Buffer is a True Dual-Port RAM. Accumulated R, G, and 
B pixel values for 4 x 4 grids are stored in the same memory location.  

 When Data is read from memory each RGB value is divided by 16 (that is the area of 4 x 4 grid) to take the average 
of 4 x 4 grid matrix. 

Data from Memory is read and formatted for compatibility with the trained network according to CNN input Data layer 
configuration. According to the CNN Input Data layer width configuration, RTL is implemented with half word write 
with byte mode. It sends teo downscaled pixel Byte values concatenated in single clock cycle. 

7.2.2. Post Processing CNN 

CNN provides a total of 8232 [1372 x 6 (C, P, X, Y, W, H)] values, which are given to the det_out_filter module. The CNN 
output data consists of the following parameters. 
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Table 7.2. Data Parameters of CNN Output 

Parameter Description 

C This parameter indicates the confidence of detected object class.  

For each grid cell (14 x 14), one confidence value (16 Bit) for each anchor box (7) is provided making total 
values of confidence 14 * 14 * 7 = 1372 from CNN Output. 

P This parameter indicates the probability of detected object class. 

For each grid cell (14 x 14), one probability value (16 Bit) for each anchor box (7) is provided making total 
values of probability 14 * 14 * 7 = 1372 from CNN Output. 

X This parameter indicates the Relative X coordinate to transform the anchor box into a predicted 
bounding box for detected object.  

For each grid cell, one Relative X value (16 Bit) for each anchor box is provided making total values of  
14 * 14 * 7 = 1372 for X from CNN Output. 

Y This parameter indicates the Relative Y coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative Y value (16 Bit) for each anchor box is provided making total values of  
14 * 14 * 7 = 1372 for Y from CNN Output. 

W This parameter indicates the Relative W (Width) coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative W value (16 Bit) for each anchor box is provided making total values of  
14 * 14 * 7 = 1372 for W from CNN Output. 

H This parameter indicates the Relative H (Height) coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative H value (16 Bit) for each anchor box is provided making total values of  
14 * 14 * 7 = 1372 for H from CNN Output. 

 

Figure 7.4 shows the format of CNN output. 

 

Figure 7.4. CNN Output Data Format 

The primary functionality of the det_out_filter module is to capture the CNN valid output and modify it to work with the 
crop_downscale_human_count module.  

The det_out_filter module contains three sub-modules: det_sort_conf, det_st_class and det_st_bbox. 

 1372 values of confidence are passed to the det_sort_conf module. It sorts out the top 20 highest confidence 
values and stores their indexes. Index values are passed to det_st_class and det_st_bbox modules. 

 1372 values of probability are passed to the det_st_class module. It provides the valid class probability bitmap, 
which is passed to the det_st_bbox module. 

 1372 x 4 values of coordinates are passed to the det_st_bbox module. It calculates the bounding box coordinates, 
performs NMS and provides valid box bitmap. 

The crop_downscale module contains logic for post processing. 

 The draw_box module calculates the box coordinates for 89 x 896 image from 224 x 224 coordinates. 

 The lsc_osd_text module generates character bitmap for text display on HDMI. 

 HDMI display logic implements Muxing logic to provide final serial HDMI output interface. 

This module implements logic for providing box coordinates, text and masking information to HDMI interface serially. 

7.2.2.1. Confidence Sorting 

 All input confidence values (1372) are compared with threshold parameter CONF_THRESH value. Confidence 
values, which are greater than threshold are considered as valid for sorting. 
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 det_sort_conf module implements an anchor counter (0-1371), which increments on each confidence value. It 
provides the index of confidence value given by CNN output.  

 Two memory arrays are generated in this module: (1) Sorted top 20 (TOP_N_DET) Confidence Value array and (2) 
Sorted top 20 Confidence Index array. 

 For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is 
compared with stored/initial value at each location of the confidence value array.  

 If the input value is greater than stored/initial value on any array location AND lesser than stored/initial value of 
previous array location, the input value is updated on current array location. The previously stored value of current 
location is shifted into the next array location.  

 Refer to Figure 7.5 for sorting of new value of confidence into existing Confidence Value array. Calculated 
confidence index (anchor count value) is also updated in the confidence index array along with the confidence 
value array. 

 

Figure 7.5. Confidence Sorting 

 This process is followed for all 1372 Confidence values. This module provides 20 indexes (o_idx_00 to o_idx_19) as 
output along with the count of valid indexes (o_num_conf). o_idx_00 contains highest confidence value index and 
o_idx_29 contains lowest confidence value index. 

7.2.2.2. Class Probability Detection 

 The det_st_class module captures the total NUM_CLASS * 1372 Probability Class values from the CNN output. 
Currently, NUM_CLASS is set to 1 for a single class of Human Upper Body detection.  

 This module checks the class probability value for the sorted index numbers obtained from det_sort_conf module. 

 If multiple Probability Class exist (NUM_CLASS>1), this module compares the values of multiple probability classes 
for each sorted confidence index value. It marks the maximum valued probability class as valid (1) and other 
classes as invalid (0) for each sorted confidence index and stores this information in a bitmap memory array.  

 This array is provided as output to the det_out_filter module for differentiating bounding boxes of different 
probability class by different color. Green box is used for probability class 1. Similarly, red and blue boxes can be 
used for probability class 2 and 3 respectively. 

 For Single Probability Class, this module provides hardcoded value of 1 set as probability for each sorted 
confidence index value in bitmap array. This only infers green boxes in final output. 

7.2.2.3. Bounding Box Calculation 

SqueezeDet Neural Network for Object Detection is trained with 7 reference boxes of pre-selected shapes having 
constant W (Width) and H (Height). These reference boxes are typically referred as anchors. 
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Table 7.3. Pre-Selected Width and Height of Anchor Boxes 

Anchor No. 1 2 3 4 5 6 7 

W x H (pixel) 184x184 138x138 92x92 69x69 46x46 34x34 23x23 

 

Anchors are centered around 14 x 14 grid cells of image. So each grid center has above seven anchors with pre-selected 
shape. 14 x 14 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y) pixel values 
are shown in Table 7.4. 

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes 

Grid No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

X (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209 

Y (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209 

 

CNN provides a total 1372 (14 x 14 x 7) values of each relative coordinates X, Y, W, and H to transform the fixed size 
anchor into a predicted bounding box. Input X, Y, W, and H values associated with top 20 sorted confidence indexes are 
used for box calculation in det_st_bbox module. 

Each anchor is transformed to its new position and shape using the relative coordinates as shown in logic 1. 

LOGIC 1 

X’ = X coordinate of Predicted Box 

X = Grid Center X according to Grid number 

W = Width of Anchor according to Anchor number 

DeltaX = Relative coordinate for X (CNN output) 

 

X’ = X + W * DeltaX 

Y’ = Y + H * DeltaY 

W’= W * DeltaW 

H’ = H * DeltaH 

The predicted X’, Y’, W’ and H’ values are clamped so that the box remains out of masking area. This is shown in logic 2. 

LOGIC 2 

If (X’ < 0) => X’’ = 0   | Else if (X’ > 223) => X’’ = 223 | Else X’’ = X’ 

If (Y’ < 0) => Y’’ = 0   | Else if (Y’ > 223) => Y’’ = 223 | Else Y’’ = Y’ 

If (W’ < 0) => W’’ = 0   | Else if (W’ > 223) => W’’ = 223 | Else W’’ = W’ 

The final calculated X’’, Y’’, W’’ and H’’ values for all the boxes are stored in separate memory array each having highest 
confidence coordinate at 1st index and lowest confidence coordinate 20th index.  

The Box coordinates are passed to the crop_downscale_human_count module after the NMS process.  

7.2.2.4. NMS – Non Max Suppression 

NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out the 
overlapping boxes using OVLP_TH_2X value. 

The NMS process is started when the CNN output data is completely received.  

 The process starts from the box having highest Confidence coordinates: 0th location in X, Y, W, H array. 

These coordinates are compared against second highest Confidence coordinates: first location in X, Y, W, H array. 
From this comparison, Intersection and Union coordinates are found. 

 From these coordinates, Intersection and Union area are calculated between the highest confidence box and the 
second highest confidence box as shown is Figure 7.6. 
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Figure 7.6. Intersection-Union Area NMS 

 If Intersection Area * (OVLP_TH_2X/2) > Union Area, the box with lower Confidence value is blocked in final output.  

 This NMS calculation is performed between all the combinations of two boxes. 

 After all combinations are checked, output array o_bbox_bmap contains boxes, which are correctly overlapped or 
non-overlapped. o_out_en provides valid pulse for crop_downscale_human_count for further processing on these 
box coordinates.  

7.2.2.5. Bounding Box Upscaling 

 The draw_box module converts X, Y, W, and H input coordinates provided for 224 x 224 resolution into 896 x 896 
resolution as shown in logic 3.  

LOGIC 3 

X1 = (X’’ - W’’/2) * 4 + Horizontal-Mask (64/960) 

Y1 = (Y’’ – H’’/2) * 4 + Vertical-Mask (92) 

X2 = (X’’ + W’’/2) * 4 + Horizontal-Mask (64/960) 

Y2 = (Y’’ + H’’/2) * 4 + Vertical-Mask (92) 

 (X, Y) are considered as center of the Box of Width W and Height H for calculating extreme ends of the Box (X1, X2, 
and Y1, Y2). For converting from 224 to 896, the coordinates are multiplied with 4. Required offset value is added 
in coordinate calculations to keep the boxes out of mask area. X1, X2 and Y1, Y2 coordinates are calculated for 
each Box. 

 Pixel counter and Line counter keeps track of pixels of each line and lines of each frame. Outer boundary of the 
box and Inner boundary of the box are calculated when Pixel and Line counter reaches to coordinates (X1, X2) and 
(Y1, Y2) respectively. Calculations are done as per logic 4. 

LOGIC 4 

Outer Box = (Pixel Count >= (X1 – 1)) and (Pixel Count <= (X2 + 1)) and  

                     (Line Count >= (Y1 – 1)) and (Line Count <= (Y2 + 1)) 

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and  

                     (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1)) 

 Each Bounding Box is calculated by removing the intersecting area of outer and inner box. Box is only displayed if 
Box-Bitmap for that box is set to 1(From det_st_bbox module). Box on calculations are as done as logic 5. 

LOGIC 5 

Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1] 

Box_on[2] = Outer Box[2] and ~Inner Box[2] and Box-Bitmap[2] 

. 

. 

Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20] 
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 The o_box_obj signal is asserted when any of the above Box_on signal is set, which is then connected to green_on 
signal and processed for Bounding Box display via HDMI. 

7.2.2.6. OSD Text Display 

 The lsc_osd_text module provides bitmap of each ASCII character to be displayed with the specified position  
on-screen. It takes count of detected Humans and Threshold value as input. 

 It sets an output signal (text_on) when text is to be displayed on HDMI. When text_on is set, RGB value for that 
pixel location is assigned FFF value (white color) and sent to HDMI output instead of original pixel value. 

7.2.2.7. HDMI Display Management 

RGB data is passed serially to HDMI and it is multiplexed by following values.  

 If Signal Text is on (text_on) – Pass all RGB value as FFF for White color display. 

 If Signal Green is on (green_on) – Pass only Green pixel value as FFF. Keep Red and Blue values as 0. 

 If Signal Mask is on (fmask_on) – Pass darker RGB pixel values.  

 Else – Pass Input RGB Data as it is. 

7.2.2.8. Inference Time Calculation 

 The time taken by a trained neural network model to infer/predict outputs after obtaining input data is called 
inference time. The process of this calculation is explained as follows. 

 The inference time is calculated by implementing a counter to store the count of CNN engine cycles per frame. 

 When signal i_rd_rdy (that is o_rd_rdy coming from CNN engine) is high, the CNN engine indicates that it is ready 
to get input and when it is low, the engine indicates that it is busy.  

 When i_rd_rdy signal is low, the CNN counter begins and stops when the i_rd_rdy signal goes high again indicating 
that previous execution is over and the CNN is ready for new input. 

 As shown in Figure 7.7 when rdy_h2l (ready high-to-low) pulse is asserted, the CNN Up-counter starts from 1 and 
the count value increases till i_rd_rdy is not high again. The count value is stored in (count).  

 Similarly, when rdy_l2h (ready low-to-high) pulse is asserted, the Up-counter stops and the final CNN count value is 
obtained (cnn_count).  

 

Figure 7.7. CNN Counter Design 

 The methodology used to obtain stable inference time is to calculate inference time per frame and obtain the 
average inference time value after 16 CNN frames are over, as discussed below. 

 After completion of every frame, the new count value (cnn_count) obtained as explained above is added to the 
previous value and stored in (cnn_adder).  

  A frame counter keeps monitoring the frame count and after 16 frames when the frame count is done, this 
cnn_adder value is reset as shown in Figure 7.8. 
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Figure 7.8. Frame Counter Design for 16 CNN Frames Average 

 To get the average inference time value (avg_inf_time_hex) after frame count is done, the final cnn_adder value is 
divided by 16 as shown in Figure 7.9. 

 

Figure 7.9. Average Inference Time Calculation 

 Using Lattice Multiplier library module this average inference time value is multiplied by INF_MULT_FAC, a 
parameter indicating inference multiplying factor explained in Table 7.1. 

 The inference time in millisecond (inf_time_ms) is obtained by dividing the output obtained from this multiplier by 
2^31 as per the Q-Format, shown in Figure 7.10. 

 All the above obtained values, namely, the CNN count, the average inference time, and the inference time in 
millisecond are passed on to lsc_osd_text_human_count module for getting bitmap to display characters. 

 

Figure 7.10. Inference Time in Millisecond 

7.2.2.9. Inference Time Display Management 

 This module mainly consists of a DPRAM which holds the characters at pre-defined address positions indicated by 
text_addr and an 8 x 8 font ROM which provides the bitmap of these characters for HDMI display. 

 This module basically functions by using two entities. One is the position of the character where it has to be 
displayed, and other is by reading the ASCII value of the character to be displayed. 

 For this purpose, once the CNN count, individual frame inference time and the inference time in millisecond values 
are obtained, they are converted from hex into ASCII values as shown in Figure 7.11. 

 The average inference time input values (i_avg_inf_time_hex) are converted from hex to ASCII values as shown 
below in Figure 7.11. To display eight characters of this value on HDMI, this input is stored in respective 
r_avginfhex_ch. The characters obtained by adding 7’h30 and 7’h37 are shown in Table 7.5. 

 

Figure 7.11. Average Inference Time Value to ASCII Conversion 
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Table 7.5. Signal Values to ASCII Conversion 

CHARACTERS FOR DISPLAY VALUE TO BE ADDED TO SIGNAL ASCII HEX VALUE ASCII DECIMAL VALUE 

1  7’h30 31 49 

2 7’h30 32 50 

3 7’h30 33 51 

4 7’h30 34 52 

5 7’h30 35 53 

6 7’h30 36 54 

7 7’h30 37 55 

A 7’h37 41 65 

B 7’h37 42 66 

C 7’h37 43 67 

D 7’h37 44 68 

E 7’h37 45 69 

F 7’h37 46 70 

 

 Similarly to display eight characters of individual frame inference time, the input signal i_inf_time_hex is converted 
from hex to ASCII and stored in respective r_infhex_chsignalas shown in Figure 7.12. 

 In the same way, to display four characters of inference time in ms, the input signal i_inf_ms is converted from hex 
to ASCII and stored in respective r_inf_ms signal as shown in Figure 7.13. 

 

Figure 7.12. CNN Count Values to ASCII Conversion 

 

Figure 7.13. Inference Time in Millisecond Values to ASCII Conversion 

 The positions where these values have to be displayed are given using text_addr signal as shown in Figure 7.14. 
The use of these locations is shown in Figure 7.14 and Figure 7.15. A memory initialization file 
human_count.mem is used by Lattice Diamond tool to store characters at address locations for display.  
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Figure 7.14. Text Address Position to Display Input Values 

 The address location structure for displaying average inference time ( of 16 CNN frames) and inference time in 
millisecond values along with their strings are stored in human_count.mem is shown in Figure 7.15.   

 

Figure 7.15. Address Locations to Display Individual Frame Time and Inference Time with String in HDMI 

 The address location structure for displaying individual frame inference time Values along with the string are 
stored in human_count.mem is shown in Figure 7.16.  

 

Figure 7.16. Address Locations to Display CNN Count Value and its String in HDMI Output 

 To display the input values in address locations shown in Figure 7.15 and Figure 7.16, their ASCII values obtained as 
shown in Figure 7.12, Figure 7.13, and Figure 7.14 are sent to the 8 x 8 font ROM with the help of font_char signal 
to obtain the bitmap for HDMI output as shown in Figure 7.17. 
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Figure 7.17. Bitmap Extraction from Font ROM 
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8. Creating FPGA Bitstream File 
This section describes the steps to compile RTL bitstream using Lattice Diamond tool. 

To create the FPGA bitstream file: 

1. Open the Lattice Diamond software. 

 

Figure 8.1. Lattice Diamond – Default Screen 

2. Click File > Open > Project. 

3. Open the Diamond project file for ECP5 Face Identification Demo RTL. 

 

Figure 8.2. Lattice Diamond – Open ECP5 Face Identification Diamond Project File 
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4. Double-click Bitstream File to trigger bitstream generation. 

 

Figure 8.3. Lattice Diamond – Trigger Bitstream Generation 

5. The Lattice Diamond tool displays Saving bit stream in … message in Reports window as shown in Figure 8.4. The 
bitstream is generated at Implementation Location as shown in Figure 8.3. 

 

Figure 8.4. Lattice Diamond – Bit File Generation Report Window 
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9. Programming the Demo 

9.1. Programming the CrossLink™ SPI Flash 

9.1.1. Erasing the CrossLink SRAM Prior to Reprogramming 

If the CrossLink device is already programmed (either directly or loaded from SPI Flash), erase the CrossLink SRAM 
before reprogramming the CrossLink SPI Flash. Keep the board powered on to prevent reloading on reboot. 

To erase the CrossLink device SRAM: 

1. Start Diamond Programmer. In the Getting Started dialog box, select Create a new blank project. 

 

Figure 9.1. Diamond Programmer – Default Screen 

2. Click OK. 

3. In the Diamond Programmer main interface, select LIFMD in Device Family and LIF-MD6000 in Device as shown in 
Figure 9.2. 

 

Figure 9.2. Diamond Programmer – Device Selection 

4. Click the CrossLink row and select Edit > Device Properties. 

5. In the Device Properties dialog box, select SSPI SRAM Programming in Access mode and Erase Only in Operation as 
shown in Figure 9.3. 

http://www.latticesemi.com/legal


 Object Counting Using Mobilenetv2 CNN Accelerator IP 
 Reference Design 
 

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02197-1.0  61 

 

Figure 9.3. Diamond Programmer – Device Operation 

6. Click OK to close the Device Properties dialog box. 

7. In the Diamond Programmer main interface, click the Program button  to start the erase operation. 

Note: If you power OFF/ON the board, the SPI Flash reprograms the CrossLink device. In this case, you must repeat steps 
1 to 7. 

9.1.2. Programming the CrossLink VIP Input Bridge Board 

To program the CrossLink VIP Input Bridge Board: 

1. Ensure that the CrossLink device SRAM is erased by performing the steps in Erasing the CrossLink SRAM Prior to 
Reprogramming.  

2. In the Diamond Programmer main interface, click the CrossLink row and select Edit > Device Properties to open the 
Device Properties dialog boxes shown in Figure 9.4. 

 

Figure 9.4. Diamond Programmer – Selecting Device Properties Options for Crosslink Flashing 
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3. Apply the settings below. 

 Under Device Operation, select the options below: 

 Access Mode – SPI Flash Programming 

 Operation – SPI Flash Erase, Program, Verify 

 Under Programming Options, select the bitstream file 
~/Demonstration/Dual_Camera_to_parallel_Crosslink.bit available in downloaded demo directory in 
Programming file. 

 For SPI Flash Options, refer to Table 9.1: 

Table 9.1. Diamond Programmer – SPI Flash Options 

Item Rev B Rev C - Option 1 Rev C – Option 2 

Family SPI Serial Flash SPI Serial Flash (SPI Serial Flash 
Beta for Diamond 3.10 SP1 or 

earlier) 

SPI Serial Flash (SPI Serial Flash 
Beta for Diamond 3.10 SP1 or 

earlier) 

Vendor Micron Micron Macronix 

Device SPI-M25PX16 SPI-N25Q128A MX25L12835F 

Package 8-pin S08W 8-pin SOP2 8-Land WSON 

 

 Click Load from File to update the Data file size (Bytes) value. 

 Ensure that the following addresses are correct: 

 Start Address (Hex) – 0x00000000 

 End Address (Hex) – 0x00020000 

4. Click OK. 

5. In the Diamond Programmer main interface, click the Program button  to start the programming operation. 

6. After successful programming, the Output console displays the result as shown in Figure 9.5. 

 

Figure 9.5. Diamond Programmer – Output Console  
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9.2. ProgrammingECP5 VIP Processor Board 
Both the CrossLink VIP Input Bridge Board and the ECP5 VIP Processor Board must be configured and programmed. Also, 
the demo design firmware must be programmed onto the MicroSD Card which is plugged into the MicroSD Card Adaptor 
Board. 

9.2.1. Erasing the ECP5 Prior to Reprogramming 

If the ECP5 device is already programmed (either directly or loaded from SPI Flash), erase the ECP5 SRAM before 
reprogramming the ECP5 SPI Flash. Keep the board powered on to prevent reloading on reboot. 

To erase the ECP5 SRAM: 

1. Launch Diamond Programmer with Create a new blank project. 

 

Figure 9.6. Diamond Programmer – Default Screen 

2. Click OK. 

3. In the Diamond Programmer main interface, select ECP5UM in Device Family and LFE5UM-85F in Device as shown 
in Figure 9.8. 
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Figure 9.7. Diamond Programmer – Device Family Selection 

 

Figure 9.8. Diamond Programmer – Device Selection 

4. Click the ECP5 row and select Edit > Device Properties. 

5. In the Device Properties dialog box, select JTAG 1532 Mode in Access mode and Erase Only in Operation (shown in 
Figure 9.9). 

 

Figure 9.9. Diamond Programmer – Device Operation 
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6. Click OK to close the Device Properties dialog box. 

7. In the Diamond Programmer main interface, click the Program button  to start the Erase operation. 

Note: If you power OFF/ON the board, the SPI Flash reprograms the ECP5 device. In this case, you must repeat 
steps 1 to 7. 

9.2.2. Programming the ECP5 VIP Processor Board 

To program the ECP5 VIP Processor Board: 

1. Ensure that the ECP5 device is erased by performing the steps in Erasing the ECP5 Prior to Reprogramming. 

2. In the Diamond Programmer main interface, click the ECP5 row and select Edit > Device Properties 

3. The Device Properties dialog box opens. Select human count demo bit file in Programming file: section as shown in 
Figure 9.10 (Rev B). 

 

Figure 9.10. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing 

http://www.latticesemi.com/legal


Object Counting Using Mobilenetv2 CNN Accelerator IP  
Reference Design 
 

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

66  FPGA-RD-02197-1.0 

4. Apply the settings below: 

 Under Device Operation, select the options below: 

 Access Mode – SPI Flash Background Programming 

 Operation – Erase, Program, Verify 

 Under Programming Options, select the appropriate bitstream file for respective demo in Programming file. 

 For SPI Flash Options, refer below table: 

Table 9.2. Diamond Programmer – SPI Flash Options 

Item Rev B Rev C - Option 1 

Family SPI Serial Flash SPI Serial Flash 

Vendor Micron Macronix 

Device SPI-N25Q128A MX25L12835F 

Package 8-pin SO8 8-Land WSON 

 

 Click Load from File to update the Data file size (Bytes) value. 

 Ensure that the following addresses are correct: 

 Start Address (Hex) – 0x00000000 

 End Address (Hex) – 0x001D0000 

5. Click OK. 

6. In the Diamond Programmer main interface, click the Program button  to start the programming operation. 

7. After successful programming, the Output console displays the result as shown in Figure 9.11. 

 

Figure 9.11. Diamond Programmer – Output Console 
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9.3. Programming the MicroSD Card Firmware 
To write the image to the MicroSD Card: 

1. Download and install the Win32diskimager Image Writer software from the following link:  
https://sourceforge.net/projects/win32diskimager/. 

2. Use Win32diskimager to write the appropriate Flash image (binary firmware) file to the SD memory card. You may 
need SD Card reader and adapter to connect the MicroSD card to PC for firmware flashing. 

3. In Win32 Disk Imager, select the image file for respective demo firmware bin file as shown in Figure 9.12. 

4. Select the Card Reader in Device as shown in Figure 9.12. 

5. Click Write. 

Select Binary File

Write

Select Card Reader

 

Figure 9.12. Win32 Disk Imager 

Optionally, you can click Verify Only to confirm whether firmware write is correct. 
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10. Running the Demo 
To run the demo: 

1. Insert the configured MicroSD Card into the MicroSD Card Adapter, and connect it to the Embedded Vision 
Development Kit. 

 

Figure 10.1. Connecting the MicroSD Card 

2. Cycle the power on the Embedded Vision Development Kit to allow the ECP5 and CrossLink devices to be 
reconfigured from Flash. 

3. Connect the Embedded Vision Development Kit to the HDMI monitor. The camera image is displayed on monitors 
shown in below figure. 

 

Figure 10.2. Running the Demo 

4. Demo output contains bounding boxes for detected humans in a given frame and it displays the total number of 
detected humans in a given frame on HDMI output. 
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Appendix A. Other Labelling Tools 
Table A.1 provides information on other labelling tools. 

Table A.1. Other Labelling Tools 

Software Platform License Reference Converts 
To 

Notes 

annotate-to-
KITTI 

Ubuntu/Windows 
(Python based 
utility) 

No License 
(Open 
source 
GitHub 
project) 

https://github.com/SaiPrajwal95/annotate-to-
KITTI 

KITTI Python based 
CLI utility that 
you can clone 
and launch.  

LabelBox JavaScript, HTML, 
CSS, Python  

Cloud or 
On-
premise, 
some 
interfaces 
are 
Apache-2.0 

https://www.labelbox.com/ json, csv, 
coco, voc 

Web 
application 

LabelMe Perl, JavaScript, 
HTML, CSS, On 
Web 

MIT 
License 

http://labelme.csail.mit.edu/Release3.0/ xml Converts only 
jpeg images 

Dataturks On web Apache 
License 2.0 

https://dataturks.com/ json Converts to 
json format 
but creates 
single json file 
for all 
annotated 
images 

LabelImg ubuntu OSI 
Approved:: 
MIT 
License  

https://mlnotesblog.wordpress.com/2017/12/
16/how-to-install-labelimg-in-ubuntu-16-04/ 

xml Need to 
install 
dependencies 
given in 
reference 

Dataset_ 

annotator 

Ubuntu 2018 

George 
Mason 
University 
Permission 
is hereby 
granted, 
Free of 
charge 

https://github.com/omenyayl/dataset-
annotator 

json Need to 
install 
app_image 
and run it by 
changing 
permissions 
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References 
 Google TensorFlow Object Detection GitHub 

 Pretrained TensorFlow Model for Object Detection 

 Python Sample Code for Custom Object Detection 

 Train Model Using TensorFlow 
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Technical Support Assistance 
Submit a technical support case through www.latticesemi.com/techsupport. 
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Revision History 

Revision 1.0, May 2020 

Section Change Summary 

All Initial release. 
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