

Object Counting Using Resnet CNN Accelerator IP

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

,	8
	9
	9
2. Setting Up the Basic Environment	10
2.1. Software and Hardware Requirements	
	10
2.1.2. Win32 MicroSD Disk Imager	
2.2. Setting Up the Linux Environment for Machi	ine Training11
2.2.1. Installing the CUDA Toolkit	11
2.2.2. Installing the cuDNN	
2.2.3. Installing the Anaconda and Python 3	
2.2.4. Installing the TensorFlow v1.12 (or highe	r)14
2.2.5. Installing the Python Package	
3. Preparing the Dataset	
3.1. Downloading the Dataset	
3.2. Visualizing and Tuning/Cleaning Up the Data	aset
3.3. Data Augmentation	21
3.3.1. Configuring the Augmentation	21
3.3.2. Running the Augmentation	22
4. Training the Machine	23
4.1. Training Code Structure	23
4.2. Neural Network Architecture	24
4.2.1. Human Count Training Network Layers	24
4.2.2. Human Count Detection Network Output	:26
4.2.3. Training Code Overview	26
4.2.3.1. Model Configuration	27
4.2.3.2. Model Building	29
4.2.3.3. Training	33
	iing34
	38
<u> </u>	38
	39
=	43
·	43
•	43
	43
•	44
7.2. Architecture Details	44
	44
	45
·	46
_	47
	47
•	48
	48
• •	49
	50
. ,	50
, , ,	50
	nent51
	54

9. Programming the Demo	56
9.1. Programming the CrossLink™ SPI Flash	56
9.1.1. Erasing the CrossLink SRAM Prior to Reprogramming	
9.1.2. Programming the CrossLink VIP Input Bridge Board	
9.2. Programming ECP5 VIP Processor Board	
9.2.1. Erasing the ECP5 Prior to Reprogramming	
9.2.2. Programming the ECP5 VIP Processor Board	
9.3. Programming the MicroSD Card Firmware	
10. Running the Demo	
Appendix A. Other Labelling Tools	
References	
Technical Support Assistance	
Revision History	

Figures

Figure 1.1. Lattice Machine Learning Design Flow	9
Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board	10
Figure 2.2. CUDA Repo Download	11
Figure 2.3. CUDA Repo Installation	11
Figure 2.4. Fetch Keys	11
Figure 2.5. Update Übuntu Packages Repositories	11
Figure 2.6. CUDA Installation Completed	
Figure 2.7. cuDNN Library Installation	
Figure 2.8. Anaconda Package Download	
Figure 2.9. Anaconda Installation	13
Figure 2.10. Accept License Terms	13
Figure 2.11. Confirm/Edit Installation Location	13
Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion	
Figure 2.13. Anaconda Environment Activation	
Figure 2.14. TensorFlow Installation	
Figure 2.15. TensorFlow Installation Confirmation	
Figure 2.16. TensorFlow Installation Completion	
Figure 2.17. Easydict Installation	
Figure 2.18. Joblib Installation	
Figure 2.19. Keras Installation	
Figure 2.20. OpenCV Installation	
Figure 2.21. Pillow Installation	
Figure 3.1. Open Source Dataset Repository Cloning	
Figure 3.2. OIDv4_Toolkit Directory Structure	
Figure 3.3. Dataset Script Option/Help	
Figure 3.4. Dataset Downloading Logs	
Figure 3.5. Downloaded Dataset Directory Structure	
Figure 3.6. OIDv4 Label to KITTI Format Conversion	
Figure 3.7. Toolkit Visualizer	
Figure 3.8. Manual Annotation Tool – Cloning	
Figure 3.9. Manual Annotation Tool – Directory Structure	
Figure 3.10. Manual Annotation Tool – Launch	
Figure 3.11. Augmentation Directory Stucture	
Figure 3.12. config.py Configuration File Parameters	
Figure 3.13. Selecting the Augmentation Operations	
Figure 3.14. Running the Augmentataion	
Figure 4.1. Training Code Directory Structure	
Figure 4.2. Training Code Flow Diagram	
Figure 4.3. Code Snippet – Input Image Size Config	
Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes)	
Figure 4.5. Code Snippet – Anchors Per Grid Config #2	
Figure 4.6. Code Snippet – Anchors Per Grid Config #3	
Figure 4.7. Code Snippet – Training Parameters	
Figure 4.8. Code Snippet – Quantization Setting	
Figure 4.9. Code Snippet – Forward Graph Fire Layers and Residual Blocks with Filters	
Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer	
Figure 4.11. Grid Output Visualization #1	
Figure 4.12. Grid Output Visualization #2	
Figure 4.13. Code Snippet – Interpret Output Graph	
Figure 4.14. Code Snippet – Bbox Loss	
Figure 4.15. Code Snippet – Confidence Loss	
Figure 4.16. Code Snippet – Class Loss	

Figure 4.17. Code Snippet – Training	33
Figure 4.18. Training Code Snippet for Mean and Scale	34
Figure 4.19. Training Code Snippet for Dataset Path	34
Figure 4.20. Create File for Dataset train.txt	34
Figure 4.21. Training Input Parameter	35
Figure 4.22. Execute Run Script	35
Figure 4.23. TensorBoard – Generated Link	35
Figure 4.24. TensorBoard	36
Figure 4.25. Image Menu of TensorBoard	36
Figure 4.26. Example of Checkpoint Data Files at Log Folder	37
Figure 5.1pb File Generation from Checkpoint	38
Figure 5.2. Frozen .pb File	38
Figure 6.1. SensAl Home Screen	
Figure 6.2. SensAI – Network File Selection	40
Figure 6.3. SensAI – Image Data File Selection	40
Figure 6.4. SensAI – Project Settings	41
Figure 6.5. SensAI – Analyze Project	41
Figure 6.6. Q Format Settings for Each Layer	42
Figure 6.7. Compile Project	42
Figure 7.1. RTL Top Level Block Diagram	43
Figure 7.2. Masking and Zoning	45
Figure 7.3. Downscaling	45
Figure 7.4. CNN Output Data Format	46
Figure 7.5. Confidence Sorting	47
Figure 7.6. Intersection-Union Area NMS	49
Figure 7.7. CNN Counter Design	50
Figure 7.8. Inference Time Calculation	50
Figure 7.9. Average Inference Time Calculation	51
Figure 7.10. Inference Time in Millisecond	51
Figure 7.11. Average Inference Time Value to ASCII Conversion	51
Figure 7.12. CNN Count Values to ASCII Conversion	52
Figure 7.13. Inference Time in Millisecond Values to ASCII Conversion	52
Figure 7.14. Text Address Positions to Display Input Values	52
Figure 7.15. Address Locations to Display Individual Frame Time and Inference Time with String in HDMI	
Figure 7.16. Address Locations to Display CNN Count Value and its String in HDMI Output	53
Figure 7.17. Bitmap Extraction from Font ROM	53
Figure 8.1. Lattice Diamond – Default Screen	54
Figure 8.2. Lattice Diamond – Open ECP5 Face Identification Diamond Project File	54
Figure 8.3. Lattice Diamond – Trigger Bitstream Generation	55
Figure 8.4. Lattice Diamond – Bit File Generation Report Window	55
Figure 9.1. Diamond Programmer – Default Screen	56
Figure 9.2. Diamond Programmer – Device Selection	56
Figure 9.3. Diamond Programmer – Device Operation	57
Figure 9.4. Diamond Programmer – Selecting Device Properties Options for Crosslink Flashing	57
Figure 9.5. Diamond Programmer – Output Console	58
Figure 9.6. Diamond Programmer – Default Screen	59
Figure 9.7. Diamond Programmer – Device Family Selection	60
Figure 9.8. Diamond Programmer – Device Selection	60
Figure 9.9. Diamond Programmer – Device Operation	
Figure 9.10. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing	
Figure 9.11. Diamond Programmer – Output Console	
Figure 9.12. Win32 Disk Imager	
Figure 10.1. Connecting the MicroSD Card	
Figure 10.2. Running the Demo	64

Tables

Table 4.1. Human Counting Training Network Topology	24
Table 7.1. Core Parameter	
Table 7.2. Data Parameters of CNN Output	46
Table 7.3. Pre-Selected Width and Height of Anchor Boxes	
Table 7.4. Grid Center Values (X, Y) for Anchor Boxes	
Table 7.5. Signal Values to ASCII Conversion	
Table 9.1. Diamond Programmer – SPI Flash Options	
Table 9.2. Diamond Programmer – SPI Flash Options	
Table A.1. Other Labelling Tools	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AXI	Advanced Extensible Interface
CNN	Convolutional Neural Network
DRAM	Dynamic Random Access Memory
EVDK	Embedded Vision Development Kit
FPGA	Field-Programmable Gate Array
LED	Light-Emitting Diode
NN	Neural Network
SD	Secure Digital
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
VIP	Video Interface Platform

1. Introduction

This document describes the Human Counting Design process of Resnet using the ECP5™ Embedded Vision Development Kit FPGA platform. Human Counting is a subset of the generic Object Counting base design.

1.1. Design Process Overview

The design process involves the following steps:

- 1. Training the model
 - Setting up the basic environment
 - Preparing the dataset
 - Preparing 224 x 224 image
 - Labeling dataset of human bounding box
 - Training the machine
 - Training the machine and creating the checkpoint data
 - Creating the frozen file (*.pb)
- 2. Compiling Neural Network
 - Creating the binary file with Lattice SensAI™ 3.0 program
- 3. FPGA Design
 - Creating the FPGA bitstream file
- 4. FPGA Bitstream and Quantized Weights and Instructions
 - Flashing the binary and bitstream files
 - Binary File to MicroSD
 - Bitstream to Flash Memory on VIP Board

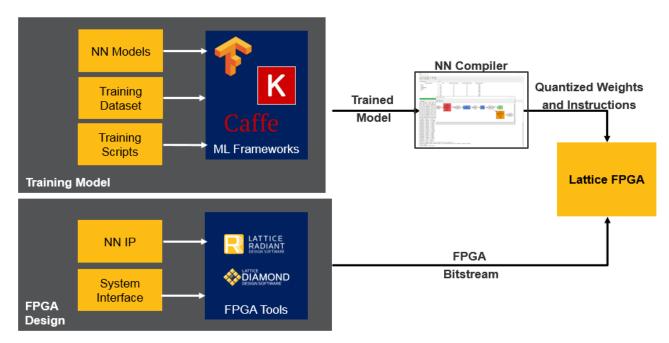


Figure 1.1. Lattice Machine Learning Design Flow

2. Setting Up the Basic Environment

2.1. Software and Hardware Requirements

This section describes the required tools and environment setup for FPGA bitstream and flashing.

2.1.1. Lattice Software

- Lattice Diamond® Refer to http://www.latticesemi.com/latticediamond.
- Lattice Diamond Programmer Refer to http://www.latticesemi.com/programmer.
- Lattice SensAl Compiler v3.0 Refer to https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Win32 MicroSD Disk Imager

Refer to https://sourceforge.net/projects/win32diskimager/.

2.1.3. Hardware

This design uses the ECP5 FPGA VIP Board as shown in Figure 2.1. Refer to http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP.

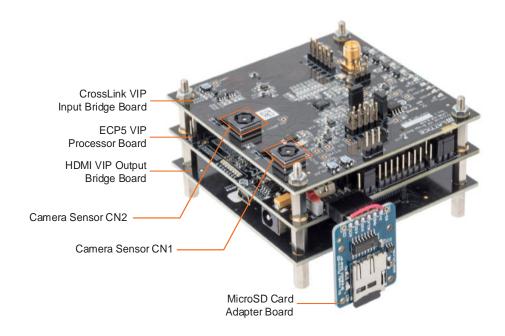


Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board

11

2.2. Setting Up the Linux Environment for Machine Training

2.2.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:

Figure 2.2. CUDA Repo Download

```
$ sudo dpkg -I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

(base) sib:~/kishan$ sudo dpkg -i ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Selecting previously unselected package cuda-repo-ubuntu1604.

(Reading database ... 288236 files and directories currently installed.)

Preparing to unpack .../cuda-repo-ubuntu1604_10.1.105-1_amd64.deb ...

Unpacking cuda-repo-ubuntu1604 (10.1.105-1) ...

Setting up cuda-repo-ubuntu1604 (10.1.105-1) ...

(base) sib:~/kishan$ _
```

Figure 2.3. CUDA Repo Installation

```
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

(base) sib:~/kishan$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homedir /tmp/tmp.oqotmWcGn0 --no-auto-check-trustdb --trust-model
ng /etc/apt/trusted.gpg --keyring /etc/apt/trusted.gpg.d/diesch-testing.gpg --keyring /etc/apt/trusted.gpg.d/george-edison55-cmake-3_x.gpg -
--fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

gpg: key 7FA2AF80: "cudatools <cudatools@nvidia.com>" not changed

gpg: Total number processed: 1

gpg: unchanged: 1
```

Figure 2.4. Fetch Keys

\$ sudo apt-get update

\$ sudo apt-key adv --fetch-keys

```
(base) sib:~/kishan$ sudo apt-get update
Ign http://dl.google.com stable InRelease
Ign http://archive.ubuntu.com trusty InRelease
Ign http://extras.ubuntu.com trusty InRelease
Hit https://deb.nodesource.com trusty InRelease
Ign http://archive.canonical.com precise InRelease
Hit http://ppa.launchpad.net trusty InRelease
```

Figure 2.5. Update Ubuntu Packages Repositories

\$ sudo apt-get install cuda-9-0

```
(base) sib:~/kishan$ sudo apt-get install cuda-9-0
Reading package lists... Done
Building dependency tree
Reading state information... Done
```

Figure 2.6. CUDA Installation Completed

2.2.2. Installing the cuDNN

To install the cuDNN:

- 1. Create Nvidia developer account in https://developer.nvidia.com.
- Download cuDNN lib in https://developer.nvidia.com/compute/machinelearning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.
- 3. Execute the commands below to install cuDNN

```
$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
```

```
k$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz
cuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.1.4
cuda/lib64/libcudnn_static.a
k$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
k$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
k$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
k$ _
```

Figure 2.7. cuDNN Library Installation

2.2.3. Installing the Anaconda and Python 3

To install the Anaconda and Python 3:

- 1. Go to https://www.anaconda.com/distribution/#download-section.
- 2. Download Python 3 version of Anaconda for Linux.

Figure 2.8. Anaconda Package Download

3. Install the Anaconda environment by running the command below:

\$ sh Anaconda3-2019.03-Linux-x86 64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release

```
sib:~/kishan$ sh Anaconda3-2019.03-Linux-x86_64.sh

Welcome to Anaconda3 2019.03

In order to continue the installation process, please review the license agreement.

Please, press ENTER to continue
>>>
```

Figure 2.9. Anaconda Installation

4. Accept the license.

```
Do you accept the license terms? [yes|no] [no] >>> yes_
```

Figure 2.10. Accept License Terms

5. Confirm the installation path. Follow the instruction on screen if you want to change the default path.

```
Do you accept the license terms? [yes|no]
[no] >>> yes

Anaconda3 will now be installed into this location:
/home/sibridge/anaconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below
[/home/sibridge/anaconda3] >>> /home/sibridge/kishan/anaconda3_
```

Figure 2.11. Confirm/Edit Installation Location

6. After installation, enter **No** as shown in Figure 2.12.

```
installation finished.
Do you wish the installer to initialize Anaconda3
by running conda init? [yes/no]
[no] >>> no_
```

Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.2.4. Installing the TensorFlow v1.12 (or higher)

Note: TensorFlow2.0 is not supported.

To install the TensorFlow v1.12:

1. Activate the conda environment by running the command below:

\$ source <conda directory>/bin/activate

```
sib:~/kishan$ source anaconda3/bin/activate
(base) sib:~/kishan$ _
```

Figure 2.13. Anaconda Environment Activation

2. Install the TensorFlow by running the command example below:

\$ conda install tensorflow-gpu==1.12.0

```
(base) sib:~/kishan$ conda install tensorflow-gpu==1.12.0
WARNING: The conda.compat module is deprecated and will be removed in a future release.
Collecting package metadata: done
Solving environment: done

## Package Plan ##

environment location: /home/sibridge/kishan/anaconda3

added / updated specs:
- tensorflow-gpu==1.12.0
```

Figure 2.14. TensorFlow Installation

3. After installation, enter **Y** as shown in Figure 2.15.

```
      wurlitzer
      1.0.2-py37_0 --> 1.0.2-py36_0

      xlrd
      1.2.0-py37_0 --> 1.2.0-py36_0

      xlwt
      1.3.0-py37_0 --> 1.3.0-py36_0

      zict
      0.1.4-py37_0 --> 0.1.4-py36_0

      zipp
      0.3.3-py37_1 --> 0.3.3-py36_1

Proceed ([y]/n)? y_
```

Figure 2.15. TensorFlow Installation Confirmation

Figure 2.16 shows that the TensorFlow installation is complete.

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) sib:~/kishan$ _
```

Figure 2.16. TensorFlow Installation Completion

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.2.5. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:

\$ conda install -c conda-forge easydict

```
(base) sib:~/kishan$ conda install -c conda-forge easydict
Collecting package metadata: done
Solving environment: done

## Package Plan ##

environment location: /home/sibridge/kishan/anaconda3

added / updated specs:
- easydict
```

Figure 2.17. Easydict Installation

2. Install Joblib by running the command below:

\$ conda install joblib

```
(base) sib:~/kishan$ conda install joblib
Collecting package metadata: done
Solving environment: done

## Package Plan ##

environment location: /home/sibridge/kishan/anaconda3

added / updated specs:
- joblib
```

Figure 2.18. Joblib Installation

3. Install Keras by running the command below:

\$ conda install keras

```
(base) sib:~/kishan$ conda install keras
Collecting package metadata: done
Solving environment: done

## Package Plan ##

environment location: /home/sibridge/kishan/anaconda3

added / updated specs:
- keras
```

Figure 2.19. Keras Installation

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Install OpenCV by running the command below:

\$ conda install opency

```
(base) sib:~/kishan$ conda install opencv
Collecting package metadata: done
Solving environment: done

## Package Plan ##

environment location: /home/sibridge/kishan/anaconda3

added / updated specs:
- opencv
```

Figure 2.20. OpenCV Installation

5. Install Pillow by running the command below:

\$ conda install pillow

```
(base) sib:~/kishan$ conda install pillow
Collecting package metadata: done
Solving environment: done

# All requested packages already installed.

(base) sib:~/kishan$ _
```

Figure 2.21. Pillow Installation

17

3. Preparing the Dataset

This section describes how to create a dataset using Google Open Image Dataset as an example.

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features more than 600 classes of images. The Person class of images includes human annotated and machine annotated labels and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0.

3.1. Downloading the Dataset

To download the dataset, run the commands below:

1. Clone the OIDv4_Toolkit repository:

```
$ git clone https://github.com/EscVM/OIDv4_ToolKit.git
$ cd OIDv4_ToolKit
```

```
(base) k$ git clone https://github.com/EscVM/OIDv4_ToolKit.git
Cloning into 'OIDv4_ToolKit'...
remote: Enumerating objects: 25, done.
remote: Counting objects: 100% (25/25), done.
remote: Compressing objects: 100% (24/24), done.
remote: Total 382 (delta 3), reused 14 (delta 1), pack-reused 357
Receiving objects: 100% (382/382), 34.06 MiB | 752.00 KiB/s, done.
Resolving deltas: 100% (111/111), done.
(base) k$
```

Figure 3.1. Open Source Dataset Repository Cloning

Figure 3.2 shows the OIDv4 code directory structure.

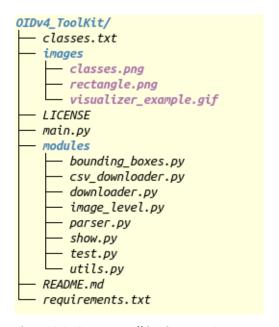


Figure 3.2. OIDv4_Toolkit Directory Structure

View the OIDv4 Toolkit Help menu:

```
$ python3 main.py -h
```

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02195-1 0

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

Figure 3.3. Dataset Script Option/Help

2. Use the OIDv4 Toolkit to download dataset. Download the Person class images:

```
$ python3 main.py downloader --classes Person --type_csv validation
```

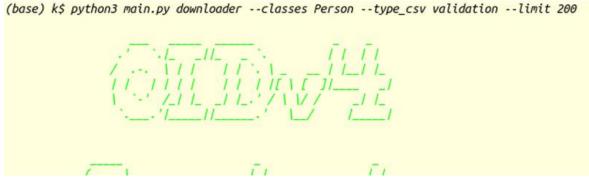


Figure 3.4. Dataset Downloading Logs

Figure 3.5 shows the downloaded dataset directory structure.

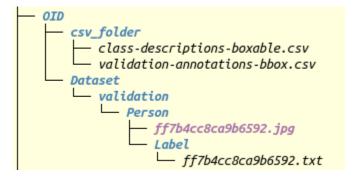


Figure 3.5. Downloaded Dataset Directory Structure

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3. Lattice training code uses KITTI (.txt) format. However, the downloaded dataset is not in exact KITTI format. Convert the annotation to KITTI format.

```
$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*
$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/*
$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/*

(base) k$ cat OID/Dataset/validation/Person/Label/ff7b4cc8ca9b6592.txt

Person 324.614144 69.905733 814.569472 681.9072

(base) k$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*

(base) k$ cat OID/Dataset/validation/Person/Label/ff7b4cc8ca9b6592.txt

Person 0 0 0 324.614144 69.905733 814.569472 681.9072

(base) k$
```

Figure 3.6. OIDv4 Label to KITTI Format Conversion

Note:

KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90

It has class ID followed by truncated, occluded, alpha, Xmin, Ymin, Xmax, Ymax.

Code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as bounding box rectangle coordinates.

3.2. Visualizing and Tuning/Cleaning Up the Dataset

To visualize and annotate the dataset, run the command below:

1. Visualize the labeled images.

```
$ python3 main.py visualizer
```


Figure 3.7. Toolkit Visualizer

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02195-1.0

2. Clone the manual annotation tool from the GitHub repository.

```
$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git
   (base) k$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git
   Cloning into 'annotate-to-KITTI'...
   remote: Enumerating objects: 27, done.
   remote: Total 27 (delta 0), reused 0 (delta 0), pack-reused 27
   Unpacking objects: 100% (27/27), done.
   (base) k$ _
```

Figure 3.8. Manual Annotation Tool - Cloning

3. Go to annotate to KITTI.

```
$ cd annotate-to-KITTI
$ ls
```

```
annotate-to-KITTI/
— annotate-folder.py
— README.md
```

Figure 3.9. Manual Annotation Tool – Directory Structure

4. Install the dependencies (OpenCV 2.4).

```
$ sudo apt-get install python-opencv
```

5. Launch the utility.

```
$ python3 annotate-folder.py
```

6. Set the dataset path and default object label.

```
(base) k$ python3 annotate-folder.py
Enter the path to dataset: /tmp/images
Enter default object label: Person
[{'label': 'Person', 'bbox': {'xmin': 443, 'ymin': 48, 'xmax': 811, 'ymax': 683}}]
(base) k$ _
```

Figure 3.10. Manual Annotation Tool - Launch

7. For annotation, run the script provided in the website below.

```
https://github.com/SaiPrajwal95/annotate-to-KITTI
```

For information on other labeling tools, see Table A.1.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20

3.3. Data Augmentation

Data Augmentation needs a large amount of training data to achieve good performance. Image Augmentation creates training images through different ways of processing or combination of multiple processing such as random rotation, shifts, shear and flips, and others.

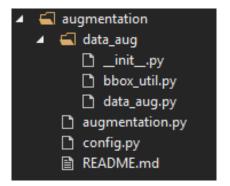


Figure 3.11. Augmentation Directory Stucture

- data_aug It contains basic methods and augmentation classes.
- augmentation.py This file reads the input images (input labels) and performs preferred augmentation on it.
- config.py Contains parameters that are used in augmentation operations.

3.3.1. Configuring the Augmentation

To configure the augmentation:

1. Configure the *config.py* file which contains the parameters shown in Figure 3.12.

```
Input_dict = {
    'AngleForRotation': '90,190,270',
    'GammaForRandomBrightness1': 0.6,
    'GammaForRandomBrightness2': 1.5,
    'FilterSizeForGaussianFiltering': 11,
    'SnowCoeffForAddSnow': 0.5,
    'resizeheight': 224,
    'resizewidth': 224,
}
```

Figure 3.12. config.py Configuration File Parameters

Choose the operations to perform on the dataset. The operations can be selected in *augmentation.py* by editing the list *all_op*.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice


```
all_op = [
    'RandomHorizontalFlip',
    #'RandomScale',
    #'RandomRotate',
    #'RandomTranslate',
    #'Rotate',
    'Translate',
    #'Shear',
    #'GaussianFiltering',
    'RandomBrightness2_0',
    'RandomBrightness0_5',
    #'Resize'
]
```

Figure 3.13. Selecting the Augmentation Operations

2. Add or Remove the operation by commenting/uncommenting the operation in the *all_op* list as shown in Figure 3.13.

3.3.2. Running the Augmentation

Run the augmentation by running the following command:

```
python augmentation.py --image_dir <Path_To_InputImage_Dir> --label_dir
<Path_To_InputLabel_Dir> --out_image_dir <Path_To_OutputImage_Dir> --out_label_dir
<Path To OutputLable Dir>
```

Figure 3.14. Running the Augmentataion

4. Training the Machine

4.1. Training Code Structure

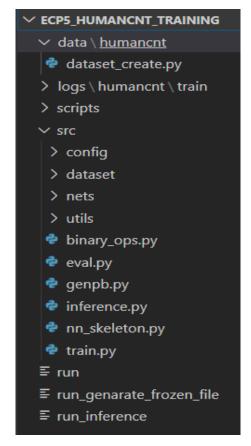


Figure 4.1. Training Code Directory Structure

4.2. Neural Network Architecture

4.2.1. Human Count Training Network Layers

This section provides information on the Convolution Network Configuration of the Human Presence Detection design. The Neural Network model of the Human Presence Detection design uses MobileNet Neural Network base model and the detection layer of SqueezeDet model.

Table 4.1. Human Counting Training Network Topology

	Image Input	(224 x 224 x 3)
Fire 0	Conv3-32	Conv3 - # where:
	BN	• Conv3 = 3 x 3 Convolution filter Kernel size
	ReLU	• # = The number of filters
	MaxPool	For example, Conv3 - 32 = 32 x 3 x 3 convolution filters
ResBlk_1	Conv3-32	
	BN	BN – Batch Normalization ReLU – Rectified Linear Unit (Activation function)
	ReLU	MaxPool – Max Pooling
	Conv3 - 32	Eltwise – Eltwise add operation
	BN	7
	Eltwise (Fire0-Maxpool + ResBlk_2-BN)	
	ReLU	
	MaxPool	
Fire 1	Conv3-64	
	BN	
	ReLU	
	MaxPool	
ResBlk_2	Conv3-64	
	BN	
	ReLU	
	Conv3-64	
	BN	
	Eltwise (Fire1-Maxpool + ResBlk_5-BN)	
	ReLU	7
	MaxPool	7
Conv12	Conv3 – 42	

- Human Count Network structure consists of two fire layers and t residual blocks. A fire layer contains convolution, batch normalization, ReLU layer, and pooling layer. A residual block contains convolution, batch normalization, and ReLU layers with pooling layer.
- All the convolution layers in fire layers and residual blocks have stride 1.
- A residual block has a skip connection functionality so that the input to the first convolution layer connects to the input of the last ReLU layer using add operation inside all the residual blocks.
- In Table 4.1, the layer contains convolution (conv), batch normalization (bn), and ReLU layers.
- Layer information:
 - Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters (sometimes referred as kernels), which convolves with the input layer/image and generates an activation map (that is. feature map). This filter is an array of numbers (called weights or parameters). Each of these filters can be thought of as feature identifiers, such as straight edges, simple colors, curves, and other high-level features.

For example, the filters on the first layer convolve around the input image and *activate* (or compute high values) when the specific feature it is looking for (such as curve, for example) is in the input volume.

ReLU (Activation Layer)

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward. The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear operations during the conv layers (element wise multiplications and summations). In the past, nonlinear functions such as t tanh and sigmoid were used, but researchers found out that ReLU layers work far better because the network is able to train a lot faster (because of the computational efficiency) without making a significant difference in accuracy. The ReLU layer applies the function f(x) = max(0, x) to all of the values in the input volume. In basic terms, this layer changes all the negative activations to 0. This layer increases the nonlinear properties of the model and the overall network without affecting the receptive fields of the conv layer.

Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular. This basically takes a filter (normally of size 2 x 2) and a stride of the same length. It then applies it to the input volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original input volume (there is a high activation value), its exact location is not as important as its relative location to the other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the width change but not the depth) of the input volume. This serves two main purposes. The first is that the number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it controls over fitting. This term is used when a model is so tuned to the training examples that it is not able to generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or 99% on the training set, but only 50% on the test data.

Batch Normalization Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing to the input data are performed. For example, you can normalize all data so that it resembles a normal distribution (that means, zero mean and a unitary variance). This prevents the early saturation of non-linear activation functions such as sigmoid and assures that all input data are in the same range of values, and others. An issue, however, appears in the intermediate layers because the distribution of the activations is constantly changing during training. This slows down the training process because each layer must learn to adapt them to a new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every training step by following the process below during training time:

- a. Calculate the mean and variance of the layers input.
- b. Normalize the layer inputs using the previously calculated batch statistics.
- c. Scale and shift to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be carefree about weight initialization, works as regularization in place of dropout, and other regularization techniques.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of the network and control over fitting.

4.2.2. Human Count Detection Network Output

From the input image model, it extracts the feature maps first and overlays them with a W x H grid. And then, each cell computes K pre-computed bounding boxes called anchors. Each bounding box has the following:

- Four scalars (x, y, w, h)
 - A confidence score (Pr(Object)*IOU)
 - C° conditional class probability
- The current model architecture has a fixed output of WxHxK(4+1+C). where:
 - W, H = Grid Size
 - K = Number of Anchor boxes
 - C = Number of classes for which you want detection
- The model has a total of 8232 output values which are derived from the following:
 - 14 x 14 grid
 - Seven anchor boxes per grid
 - Six values per anchor box. It consists of:
 - Four bounding box coordinates (x, y, w, h)
 - One class probability
 - One confidence score

So in total, $14 \times 14 \times 7 \times 6 = 8232$ output values.

4.2.3. Training Code Overview

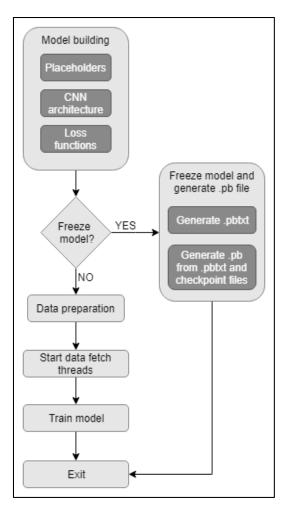


Figure 4.2. Training Code Flow Diagram

Training Code is divided into the following parts:

- Model Configuration
- Model Building
- Model Freezing
- Data Preparation
- Training for Overall Execution Flow

Details of each can be found in subsequent sections.

4.2.3.1. Model Configuration

The design uses Kitti dataset and SqueezeDet model. *kitti_squeezeDet_config()* maintains all the configurable parameters for the model. Below is the summary of configurable parameters:

- Image size
 - Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in src/config/kitti squeezeDet config.py.

```
mc.IMAGE_WIDTH = 224
mc.IMAGE_HEIGHT = 224
```

Figure 4.3. Code Snippet - Input Image Size Config

 Since there are four pooling layers, grid dimension is H = 14 and W = 14. anchor_shapes variable of set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and heights. Update it based on anchors per gird size changes.

```
|def set_anchors(mc):
| H, W, B = 14, 14, 7
| div_scale = 2.0
```

Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes)

- Batch size
 - Change mc.BATCH SIZE in src/config/kitti squeezeDet config.py to configure batch size.
- Anchors per grid
 - Change mc.ANCHOR PER GRID in src/config/kitti squeezeDet config.py to configure anchors per grid.

```
mc.ANCHOR_BOX = set_anchors(mc)
mc.ANCHORS = len(mc.ANCHOR_BOX)
mc.ANCHOR_PER_GRID = 7
```

Figure 4.5. Code Snippet – Anchors Per Grid Config #2

- Change hard coded anchors per grid in *set_anchors()* in *src/config/kitti_squeezeDet_config.py*. Here, B (value 7) indicates anchors per grid.
- To run network on your own dataset, adjust the anchor sizes. Anchors are kind of prior distribution over what shapes your boxes should have. The better this fits to the true distribution of boxes, the faster and easier your training is going to be.
- To determine anchor shapes, first load all ground truth boxes and pictures, and if your images do not have all the same size, normalize their height and width by the images' height and width. All images are normalized before being fed to the network, so you need to do the same to the bounding boxes and consequently, the anchors.
- Second, perform a clustering on these normalized boxes (that is, you can use k-means without feature whitening and determine the number of clusters either by eyeballing or by using the elbow method.)

Check for boxes that extend beyond the image or have a zero to negative width or height.

Figure 4.6. Code Snippet – Anchors Per Grid Config #3

- Training Parameters
 - Other training related parameters such as learning rate, loss parameters, and different thresholds can be configured from *src/config/kitti_squeezeDet_config.py*.

```
mc.WEIGHT DECAY
                          = 0.0001
mc.LEARNING RATE
                          = 0.01
mc.DECAY_STEPS
                          = 10000
mc.MAX GRAD NORM
                          = 1.0
mc.MOMENTUM
                          = 0.9
mc.LR_DECAY_FACTOR
                          = 0.5
mc.LOSS COEF BBOX
                          = 5.0
mc.LOSS COEF CONF POS
                          = 75.0
mc.LOSS_COEF_CONF_NEG
                          = 100.0
mc.LOSS COEF CLASS
                          = 1.0
mc.PLOT PROB THRESH
                          = 0.4
mc.NMS_THRESH
                          = 0.4
mc.PROB THRESH
                          = 0.005
                          = 10
mc.TOP_N_DETECTION
mc.DATA AUGMENTATION
                          = True
mc.DRIFT X
                          = 150
mc.DRIFT Y
                          = 100
mc.EXCLUDE_HARD_EXAMPLES = False
```

Figure 4.7. Code Snippet – Training Parameters

4.2.3.2. Model Building

SqueezeDet class constructor builds model, which is divided into the following sections:

- Forward Graph
- Interpretation Graph
- Loss Graph
- Train Graph
- Visualization Graph

Forward Graph

- The CNN architecture consists of Convolution, Batch Normalization, ReLU, and Maxpool.
- Forward Graph consists of two fire layers and four residual blocks as described in Table 4.1.

Figure 4.8. Code Snippet – Quantization Setting

• Filter sizes of each convolutional blocks are mentioned in Table 4.1, which can be configured by changing the values of depth, as shown in Figure 4.9.

```
depth = [ 32, 32, 32, 64, 64, 64]
fire0 = self. fire_layer('fire0', self.image_input,oc=depth[0], freeze=False, w_bin=fl_w_bin, a_b:
ResBlk_2 = self. ResNetBlock('ResBlk_2', ResBlk_1, depth1=depth[1], depth2=depth[2], freeze=False
fire1 = self. fire_layer('fire1', ResBlk_2,oc=depth[3], freeze=False, w_bin=fl_w_bin, a_bin=fl_a_!
ResBlk_5 = self. ResNetBlock('ResBlk_5', ResBlk_4, depth1=depth[4], depth2=depth[5], freeze=False
fire_o = ResBlk_5
```

Figure 4.9. Code Snippet – Forward Graph Fire Layers and Residual Blocks with Filters

```
num_output = mc.ANCHOR_PER_GRID * (mc.CLASSES + 1 + 4)
self.preds = self._conv_layer('conv12', fire_o, filters=num_output, size=3, stride=1,
    padding='SAME', xavier=False, relu=False, stddev=0.0001, w_bin=sl_w_bin)
print('self.preds:', self.preds)
```

Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer

Interpretation Graph

- The Interpretation Graph consists of the following sub-blocks:
 - interpret output

This block interprets output from network and extracts predicted class probability, predicated confidence scores, and bounding box values.

Output of the convnet is a 14 x 14 x 42 tensor – there are 42 channels of data for each of the cells in the grid that is overlaid on the image and contains the bounding boxes and class predictions. This means the 42 channels are not stored consecutively but are scattered all over the place and need to be sorted. Figure 4.11 and Figure 4.12 explain the details.

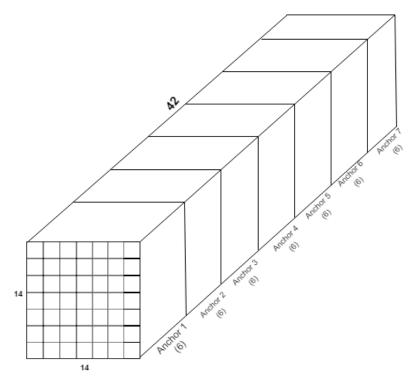


Figure 4.11. Grid Output Visualization #1

For each grid, cell values are aligned as shown in Figure 4.12.

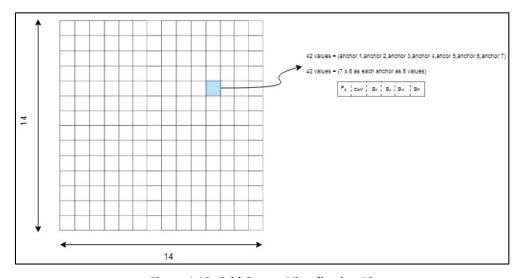


Figure 4.12. Grid Output Visualization #2

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 4.13 shows the output from conv12 layer (4D array of batch size x 14 x 14 x 42) needs to be sliced with proper index to get all values of probability, confidence, and coordinates.

```
# confidence
num confidence scores = mc.ANCHOR PER GRID
self.pred_conf = tf.sigmoid(
    tf.reshape(
        preds[:, :, :, :num_confidence_scores],
        [mc.BATCH SIZE, mc.ANCHORS]
    name='pred_confidence_score'
# probability
num_class_probs = mc.ANCHOR_PER_GRID*mc.CLASSES+num_confidence_scores
self.pred class probs = tf.reshape(
    tf.nn.softmax(
        tf.reshape(
            preds[:, :, :, num_confidence_scores:num_class_probs],
            [-1, mc.CLASSES]
    [mc.BATCH SIZE, mc.ANCHORS, mc.CLASSES],
    name='pred_class_probs'
# bbox delta
self.pred_box_delta = tf.reshape(
    preds[:, :, :, num_class_probs:],
    [mc.BATCH_SIZE, mc.ANCHORS, 4],
    name='bbox delta'
```

Figure 4.13. Code Snippet - Interpret Output Graph

For confidence score, this must be a number between 0 and 1, so sigmoid is used.

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a softmax to make it probability distribution.

- bbox
 - This block calculates bounding boxes based on anchor box and predicated bounding boxes.
- 101
 - This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.
- Probability
 This block calculates detection probability and object class.

Loss Graph

- This block calculates different types of losses, which need to be minimized. To learn detection, localization, and classification, model defines a multi-task loss function. There are three types of losses which are considered for calculation:
 - Bounding Box
 - This loss is regression of the scalars for the anchors.

Figure 4.14. Code Snippet - Bbox Loss

- Confidence Score
 - To obtain meaningful confidence score, each box's predicted value is regressed against the real and predicted box. During training, compare the ground truth bounding boxes with all anchors and assign them to the anchors that have the largest overlap (IOU).
 - Select the *closest* anchor to match the ground truth box such that the transformation needed is reduced to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss generated by the *responsible* anchors.
 - As there can be multiple objects per image, normalize the loss by dividing it by the number of objects (self.num_objects).

Figure 4.15. Code Snippet – Confidence Loss

- Class
 - The last part of the loss function is cross-entropy loss for each box to do classification, as you would for image classification.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 4.16. Code Snippet - Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as the confidence score.

Train Graph

This block is responsible for training the model with momentum optimizer to reduce all losses.

Visualization Graph

This block provides visitations of detected results.

4.2.3.3. Training

Figure 4.17. Code Snippet – Training

sess.run feeds the data, labels batches to network, and optimizes the weights and biases. The code above handles the input data method in case of multiple threads preparing batches, or data preparation in the main thread.

4.3. Training from Scratch and/or Transfer Learning

To train the machine:

1. Go to the top/root directory of the Lattice training code from command prompt.

The model works on 224 x 224 images.

Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Mean and scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.18.

```
v = np.where(v <= 255 - add_v, v + add_v, 255)
final_hsv = cv2.merge((h, s, v))
im = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)

im -= mc.BGR_MEANS #
im /= 128.0 # to make input in the range of [0, 2)
orig_h, orig_w, _ = [float(v) for v in im.shape]</pre>
```

Figure 4.18. Training Code Snippet for Mean and Scale

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the -- data_path option while triggering training using train.py to get the desired path. For example, you can have <data_path>/training/images and <data_path>/training/labels.

```
def __init__(self, image_set, data_path, mc):
    imdb.__init__(self, 'kitti_'+image_set, mc)
    self._image_set = image_set
    self._data_root_path = data_path
    self._image_path = os.path.join(self._data_root_path, 'training', 'images')
    self._label_path = os.path.join(self._data_root_path, 'training', 'labels')
    self._classes = self.mc.CLASS_NAMES
```

Figure 4.19. Training Code Snippet for Dataset Path

2. Create a train.txt.

```
$ cd data/humancnt/
$ python dataset_create.py
```

```
k$ python dataset_create.py
k$ _
```

Figure 4.20. Create File for Dataset train.txt

Notes:

- train.txt file name of dataset images
- image_set train (ImageSets/train.txt)
- data path \$ROOT/data/humandet/
 - Images \$ROOT/data/humandet/images
 - Annotations \$ROOT/data/humandet/labels

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

35

3. Modify the training script.

@scripts/train.sh is used to trigger training. Figure 4.21 shows the input parameters, which can be configured.

```
python ./src/train.py \
    --dataset=KITTI \
    --pretrained_model_path=$PRETRAINED_MODEL_PATH \
    --data_path=$TRAIN_DATA_DIR \
    --image_set=train \
    --train_dir="$TRAIN_DIR/train" \
    --net=$NET \
    --summary_step=100 \
    --checkpoint_step=500 \
    --max_steps=2000000 \
    --gpu=$GPUID
```

Figure 4.21. Training Input Parameter

- \$TRAIN_DATA_DIR dataset directory path. /data/humandet is an example.
- \$TRAIN_DIR log directory where checkpoint files are generated while model is training.
- \$GPUID gpu id. If the system has more than one gpu, it indicates the one to use.
- --summary_step indicates at which interval loss summary should be dumped.
- --checkpoint_step indicates at which interval checkpoints are created.
- --max_steps indicates the maximum number of steps for which the model is trained.
- 4. Execute the run command script which starts training.

Figure 4.22. Execute Run Script

5. Start TensorBoard.

```
$ tensorboard -logdir=<log directory of training>
```

For example: tensorboard -logdir='./logs/humancnt/train/'

6. Open the local host port on your web browser.

```
earth:$ tensorboard --logdir logs/humancnt/train
TensorBoard 1.12.0 at http://earth:6006 (Press CTRL+C to quit)
```

Figure 4.23. TensorBoard – Generated Link

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02195-1 0

7. Check the training status on TensorBoard.

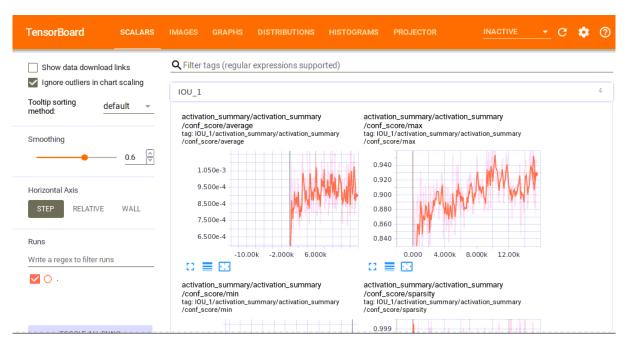


Figure 4.24. TensorBoard

Figure 4.25 shows the image menu of TensorBoard.

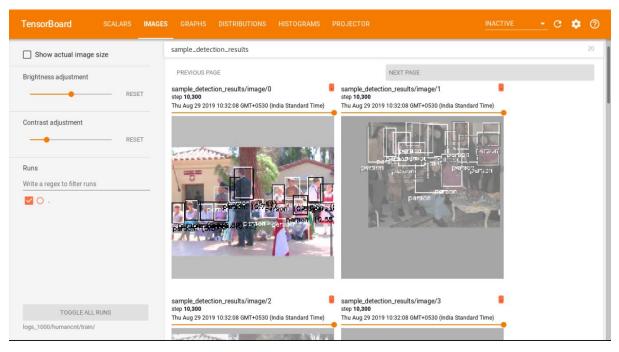


Figure 4.25. Image Menu of TensorBoard

8. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory. These files are used for creating the frozen file (*.pb).

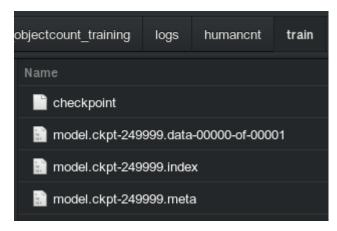


Figure 4.26. Example of Checkpoint Data Files at Log Folder

5. Creating Frozen File

This section describes the procedure for freezing the model, which is aligned with the Lattice SensAl tool. Perform the steps below to generate the frozen protobuf file:

5.1. Generating the Frozen .pb File

Generate .pb file from latest checkpoint using below command from the training code's root directory.

```
$ python src/genpb.py -ckpt_dir <log directory> --freeze
For example, python src/genpb.py -ckpt_dir logs/humancnt/train -freeze.
```

```
earth:$ python src/genpb.py --ckpt_dir logs/humancnt/train/ --freeze
genrating pbtxt
self.preds: Tensor("conv12/bias_add:0", shape=(20, 14, 14, 42), dtype=float32, device=/device:GPU:0)
ANCHOR_PER_GRID: 7
CLASSES: 1
ANCHORS: 1372
Using checkpoint: ./model.ckpt-249999
saved pbtxt at checkpoint direcory Path
inputShape shape [1, 224, 224, 3]
```

Figure 5.1. .pb File Generation from Checkpoint

Figure 5.2 shows the generated .pb file.

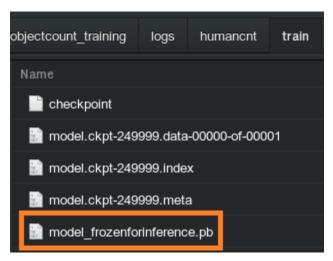


Figure 5.2. Frozen .pb File

39

6. Creating Binary File with Lattice SensAl

This chapter describes how to generate binary file using the Lattice SensAl version 3.0 program.

Figure 6.1. SensAl Home Screen

To create the project in SensAI tool:

- 1. Click File > New.
- 2. Enter the following settings:
 - Project Name
 - Framework TensorFlow
 - Class CNN
 - Device ECP5
 - MOBBILENET Mode Disabled
- 3. Click **Network File** and select the network (.pb) file.

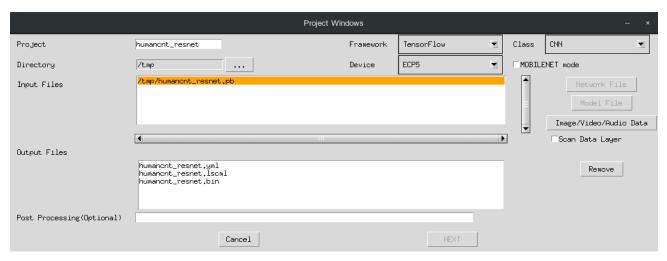


Figure 6.2. SensAI - Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

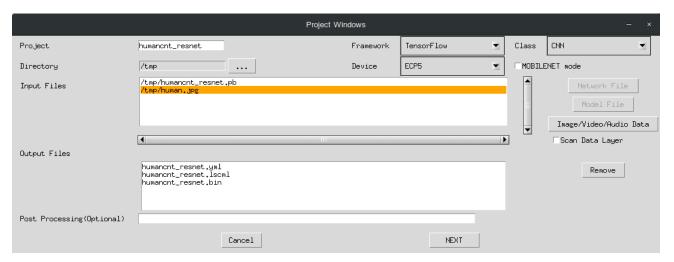


Figure 6.3. SensAI - Image Data File Selection

- 5. Click **NEXT**.
- 6. Configure your project settings.

40

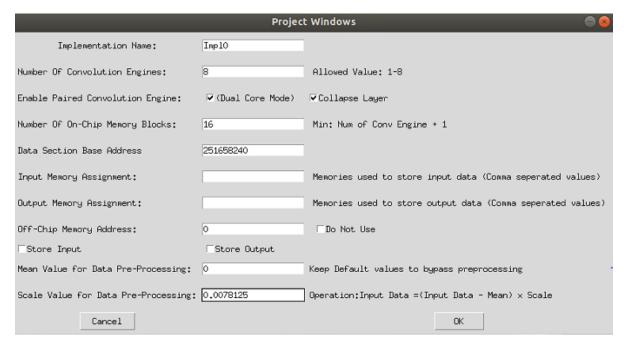


Figure 6.4. SensAI - Project Settings

- 7. Click **OK** to create the project.
- 8. Double-click Analyze.

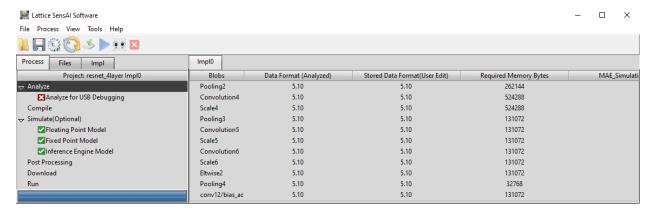


Figure 6.5. SensAI – Analyze Project

9. Confirm the Q format of each layer as shown in Figure 6.6 and update if required.

Blobs	Data Format (Analyzed)	Stored Data Format(User Edit)	Required Memory Bytes
data	5.10	1.7	196608
Convolution1	5.10	5.10	3670016
Scale1	5.10	5.10	3670016
Pooling1	5.10	5.10	1048576
Convolution2	5.10	5.10	1048576
Scale2	5.10	5.10	1048576
Convolution3	5.10	5.10	1048576
Scale3	5.10	5.10	1048576
Eltwise1	5.10	5.10	1048576
Pooling2	5.10	5.10	262144
Convolution4	5.10	5.10	524288
Scale4	5.10	5.10	524288
Pooling3	5.10	5.10	131072
Convolution5	5.10	5.10	131072
Scale5	5.10	5.10	131072
Convolution6	5.10	5.10	131072
Scale6	5.10	5.10	131072
Eltwise2	5.10	5.10	131072
Pooling4	5.10	5.10	32768
conv12/bias_ad	5.10	5.10	131072

Figure 6.6. Q Format Settings for Each Layer

10. Double-click **Compile** to generate the firmware file.

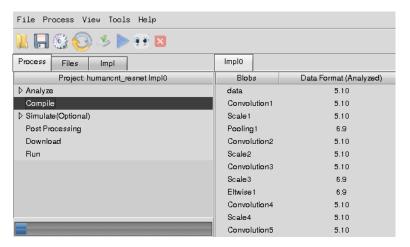


Figure 6.7. Compile Project

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

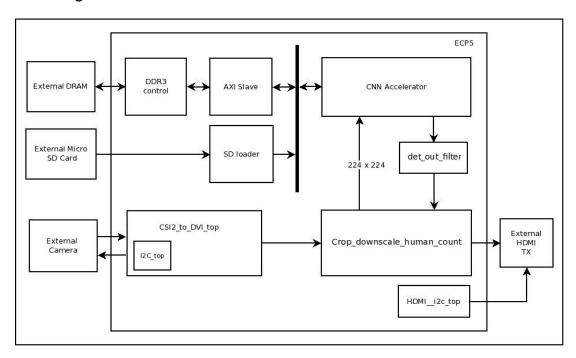


Figure 7.1. RTL Top Level Block Diagram

7.1.2. Operational Flow

This section provides a brief idea about the data flow across ECP5 board.

- The CNN module is configured with the help of a binary (.bin) file stored in an SD card. The .bin file is a command sequence code which is generated by the Lattice Machine Learning software tool.
- The command code is written in the DRAM through AXI before the execution of the CNN Accelerator IP Core starts. CNN reads the command code from the DRAM during its execution and performs calculation per command code. Intermediate data may be transferred from/to DRAM per command code.
- The external camera configured using the I2C_top logic block captures the raw image and passes it to the CSI2_to_DVI_top module. The CSI2_to_DVI_top module separates the R, G, and B pixels from raw data and creates separated colors to match the real world using gain and offset controls.
- The RGB data from CSI2_to_DVI_top module is downscaled to 224 x 224 image resolution by crop_downscale_human_count module to match CNN's input resolution. This data is written into internal memory block of CNN Accelerator IP Core through input data ports.
- After the command code and input data are available, the CNN Accelerator IP Core starts the calculation at the rising edge of start signal.
- The output data of the CNN is passed to the det_out_filter for post processing. The det_out_filter generates bounding box coordinates X, Y, W, H associated with the top 20 confidence value indexes for 224 x 224 image resolution.
- These coordinates are passed to the crop_downscale_human_count again for resizing to fit the actual image resolution on HDMI display. HDMI is configured using the hdmi_i2c_top block.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

7.1.3. Core Customization

Table 7.1. Core Parameter

Constant	Default	Description
	(Decimal)	
CONF_THRESH	65472	Signed confidence threshold value calculated as per Q-Format of last layer of CNN
	(that is -64)	For example, if threshold is to be kept at -0.0625, then Q-Format is Q5.10, CONF_THRESH.
		= 2's complement ((0.0625) * (2^10))
		= 2's complement (64)
		= 65472 Decimal = FFC0 Hex
INF_MULT_FAC	19884	Inference time multiplying factor calculated as per CNN clock frequency and using Q-Format (Q1.31)
		CNN clock frequency = 108 MHz.
		Hence, CNN clock period
		$= 1/(108 \times 10^{-6}) \mu s$
		= 0.000009259259 ms
		Therefore, Q1.31 = $0.000009259259 \times 2^{31} \sim 19884$ decimal.
OVLP_TH_2X	5	Intersection Over Union threshold (NMS)
NUM_FRAC	9	Fraction Part Width in Q-Format representation.
EN_INF_TIME	0	Used to enable Timing Measurement logic. By default, value is zero and the memory file used is human_count.mem.
		If assigned to 1, timing measurement is enabled and the memory file used is human_count_INF.mem.
		In order to configure the respective memory file, follow the steps below:
		Open <i>ecp.sbx</i> from file list using clarity designer in Diamond user interface.
		Go to Builder tab in Clarity designer.
		Right-click on dpram8192x8_human_count and select config.
		Click on Browse Memory File from Initialization section
		Update the following mem file path:
		For 0 - /src/vip_common/humant_count.mem
		For 1 - /src/vip_common/human_count_INF.mem
		Constant Parameters (Not to be modified)
NUM_ANCHOR	1372	Number of reference bounding boxes for all grids
NUM_GRID	196	Total number of Grids (X * Y)
NUM_X_GRID	14	Number of X Grids
NUM_Y_GRID	14	Number of Y Grids
PIC_WIDTH	224	Picture Pixel Width (CNN Input)
PIC_HEIGHT	224	Picture Pixel Height (CNN Input)
NUM_CLASS	1	Number of probability classes
TOP_N_DET	20	Number of Top confidence bounding boxes detection
OBJECT	BODY	Detection of upper human body from input image

7.2. Architecture Details

7.2.1. Pre-processing CNN

The output from the CSI2_to_DVI_top module is a stream of RGB data that reflects the camera image, which is given to crop_downscale_human_count module.

The crop_downscale_human_count module processes that image data and generates input of 224 x 224 image data interface for CNN IP.

7.2.1.1. Pre-processing Flow

- RGB data values for each pixel are fed serially line by line for an image frame.
- These RGB data values are considered as valid only when horizontal and vertical masks are inactive. Mask parameters are set such that it masks out boundary area of full HD resolution (1920 x 1080) to 1792 x 896.

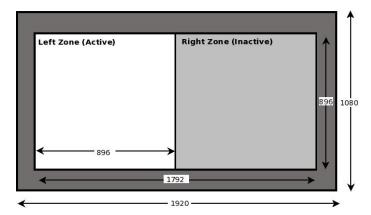


Figure 7.2. Masking and Zoning

- The Frame of 1792 x 896 is further divided in half horizontally by making two blocks of 896 x 896 of the same frame as shown in Figure 7.2. This is done to make the downscaling process easier.
- When the left zone is active, pixel values from the left zone are used to generate CNN input image data. Pixel
 values from right zone are ignored. After the data is sent to CNN, the active zone is changed to the right zone.
 When CNN is ready to accept data, the pixel values from the right zone are used to generate the CNN input image
 data.
- Each 896 x 896 frame block is downscaled into 224 x 224 resolution image as shown in the Figure 7.3.

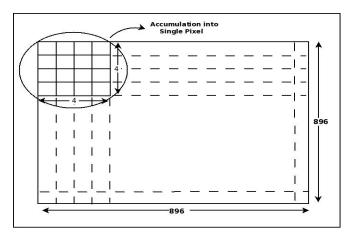


Figure 7.3. Downscaling

- A single accumulated pixel value is generated for each 4 x 4 grid of pixels. This leads to generate 224 x 224 values (896/4 x 896/4) from 896 x 896 values.
- The accumulated value is written into Frame Buffer. Frame Buffer is a True Dual-Port RAM. Accumulated R, G, and B pixel values for 4 x 4 grids are stored in the same memory location.
- When Data is read from memory each RGB value is divided by 16 (that is the area of 4 x 4 grid) to take the average of 4 x 4 grid matrix.

Data from Memory is read and formatted for compatibility with the trained network according to CNN input Data layer configuration. According to the CNN Input Data layer width configuration, RTL is implemented with half word write with byte mode. It sends two downscaled pixel Byte values concatenated in single clock cycle.

7.2.2. Post Processing CNN

CNN provides a total of 8232 [1372 x 6 (C, P, X, Y, W, H)] values, which are given to the det_out_filter module. The CNN output data consists of the following parameters.

Table 7.2. Data Parameters of CNN Output

Parameter	Description
С	This parameter indicates the confidence of detected object class. For each grid cell (14 x 14), one confidence value (16 Bit) for each anchor box (7) is provided making total values of confidence 14 * 14 * 7 = 1372 from CNN Output.
Р	This parameter indicates the probability of detected object class. For each grid cell (14 x 14), one probability value (16-bit) for each anchor box (7) is provided making total values of probability 14 * 14 * 7 = 1372 from CNN Output.
X	This parameter indicates the Relative X coordinate to transform the anchor box into a predicted bounding box for detected object. For each grid cell, one Relative X value (16-bit) for each anchor box is provided making total values of 14 * 14 * 7 = 1372 for X from CNN Output.
Y	This parameter indicates the Relative Y coordinate to transform the anchor box into a predicted bounding box for detected object. For each grid cell, one Relative Y value (16-bit) for each anchor box is provided making total values of 14 * 14 * 7 = 1372 for Y from CNN Output.
W	This parameter indicates the Relative W (Width) coordinate to transform the anchor box into a predicted bounding box for detected object. For each grid cell, one Relative W value (16-bit) for each anchor box is provided making total values of 14 * 14 * 7 = 1372 for W from CNN Output.
Н	This parameter indicates the Relative H (Height) coordinate to transform the anchor box into a predicted bounding box for detected object. For each grid cell, one Relative H value (16-bit) for each anchor box is provided making total values of 14 * 14 * 7 = 1372 for H from CNN Output.

Figure 7.4 shows the format of CNN output.

Output Data		С			Р			Х	Y	W	Н	Х	Y	W	Н			
Index No.	0 - 195	196 - 391	 1176 - 1371	1372	2 - 1567	1568 -	1763 .	2	2548 - 2743	2744 - 2939	2940 - 3135	3136 - 3331	3332 - 3527	3528 - 3723	3724 - 3919	3920 - 4115	4116 - 4311	
Grid No.	0 - 195	0 - 195	 0 - 195	0	- 195	0 - 1	95 .		0 - 195	0 - 195	0 - 195	0 - 195	0 - 195	0 - 195	0 - 195	0 - 195	0 - 195	
Anchor No.	1	2	 7		1	2			7	1				1 2				

Figure 7.4. CNN Output Data Format

The primary functionality of the det_out_filter module is to capture the CNN valid output and modify it to work with the crop_downscale_human_count module.

The det_out_filter module contains three sub-modules: det_sort_conf, det_st_class and det_st_bbox.

- 1372 values of confidence are passed to the det_sort_conf module. It sorts out the top 20 highest confidence values and stores their indexes. Index values are passed to the det_st_class and det_st_bbox modules.
- 1372 values of probability are passed to the det_st_class module. It provides the valid class probability bitmap, which is passed to the det_st_bbox module.
- 1372 x 4 values of coordinates are passed to the det_st_bbox module. It calculates the bounding box coordinates, performs NMS and provides valid box bitmap.

The crop_downscale module contains logic for post processing.

- The draw box module calculates the box coordinates for 89 x 896 image from 224 x 224 coordinates.
- The lsc_osd_text module generates character bitmap for text display on HDMI.
- HDMI display logic implements muxing logic to provide final serial HDMI output interface.

This module implements logic for providing box coordinates, text and masking information to HDMI interface serially.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.2.2.1. Confidence Sorting

- All input confidence values (1372) are compared with threshold parameter CONF_THRESH value. Confidence values, which are greater than threshold are considered as valid for sorting.
- The det_sort_conf module implements an anchor counter (0-1371), which increments on each confidence value. It provides the index of confidence value given by the CNN output.
- Two memory arrays are generated in this module: (1) sorted top 20 (TOP_N_DET) confidence value array, and (2) sorted top 20 confidence index array.
- For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is compared with stored/initial value at each location of the confidence value array.
- If the input value is greater than stored/initial value on any array location and lesser than stored/initial value of previous array location, the input value is updated on current array location. The previously stored value of current location is shifted into the next array location.
- Refer to Figure 7.5 for sorting of new value of confidence into existing confidence value array. Calculated
 confidence index (anchor count value) is also updated in the confidence index array along with the confidence
 value array.

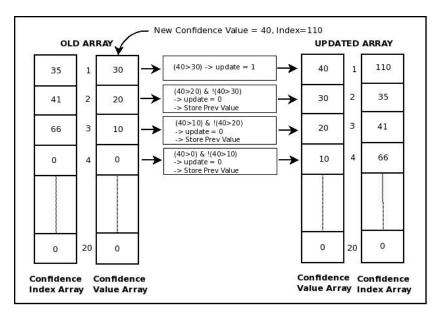


Figure 7.5. Confidence Sorting

• This process is followed for all 1372 confidence values. This module provides 20 indexes (o_idx_00 to o_idx_19) as output along with the count of valid indexes (o_num_conf). o_idx_00 contains highest confidence value index and o idx_29 contains lowest confidence value index.

7.2.2.2. Class Probability Detection

- The det_st_class module captures the total NUM_CLASS * 1372 Probability Class values from the CNN output. Currently, NUM_CLASS is set to 1 for a single class of Human Upper Body detection.
- This module checks the class probability value for the sorted index numbers obtained from the det_sort_conf module.
- If multiple Probability Class exist (NUM_CLASS>1), this module compares the values of multiple probability classes for each sorted confidence index value. It marks the maximum valued probability class as valid (1) and other classes as invalid (0) for each sorted confidence index and stores this information in a bitmap memory array.
- This array is provided as output to the det_out_filter module for differentiating bounding boxes of different
 probability class by different color. Green box is used for probability class 1. Similarly, red and blue boxes can be
 used for probability class 2 and 3 respectively.
- For Single Probability Class, this module provides hardcoded value of 1 set as probability for each sorted confidence index value in bitmap array. This only infers green boxes in final output.

^{© 2020} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

7.2.2.3. Bounding Box Calculation

SqueezeDet Neural Network for Object Detection is trained with seven reference boxes of pre-selected shapes having constant W (Width) and H (Height). These reference boxes are typically referred as anchors.

Table 7.3. Pre-Selected Width and Height of Anchor Boxes

Anchor No.	1	2	3	4	5	6	7
W x H (pixel)	184x184	138x138	92x92	69x69	46x46	34x34	23x23

Anchors are centered around 14 x 14 grid cells of image. So each grid center has above seven anchors with pre-selected shape. 14 x 14 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y) pixel values are shown in Table 7.4.

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes

Grid No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
X (pixel)	15	30	45	60	75	90	105	119	134	149	164	179	194	209
Y (pixel)	15	30	45	60	75	90	105	119	134	149	164	179	194	209

CNN provides a total of 1372 (14 x 14 x 7) values of each relative coordinates X, Y, W, and H to transform the fixed size anchor into a predicted bounding box. Input X, Y, W, and H values associated with top 20 sorted confidence indexes are used for box calculation in det_st_bbox module.

Each anchor is transformed to its new position and shape using the relative coordinates as shown in logic 1.

```
LOGIC 1

X' = X coordinate of Predicted Box

X = Grid Center X according to Grid number

W = Width of Anchor according to Anchor number

DeltaX = Relative coordinate for X (CNN output)

X' = X + W * DeltaX

Y' = Y + H * DeltaY

W' = W * DeltaW

H' = H * DeltaH
```

The predicted X', Y', W' and H' values are clamped so that the box remains out of masking area. This is shown in logic 2.

```
LOGIC 2 If (X' < 0) \Rightarrow X'' = 0 | Else if (X' > 223) \Rightarrow X'' = 223 | Else X'' = X' If (Y' < 0) \Rightarrow Y'' = 0 | Else if (Y' > 223) \Rightarrow Y'' = 223 | Else Y'' = Y' If (W' < 0) \Rightarrow W'' = 0 | Else if (W' > 223) \Rightarrow W'' = 223 | Else W'' = W'
```

The final calculated X", Y", W" and H" values for all the boxes are stored in separate memory array each having highest confidence coordinate at 1st index and lowest confidence coordinate 20th index.

The Box coordinates are passed to the crop downscale human count module after the NMS process.

7.2.2.4. NMS - Non Max Suppression

The NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out the overlapping boxes using OVLP TH 2X value.

NMS process is started when the CNN output data is completely received.

- The process starts from the box having highest Confidence coordinates: 0th location in X, Y, W, H array. These coordinates are compared against the second highest Confidence coordinates: First location in X, Y, W, H array. From this comparison, Intersection and Union coordinates are found.
- From these coordinates, Intersection and Union area are calculated between the highest confidence box and the second highest confidence box as shown is Figure 7.6.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

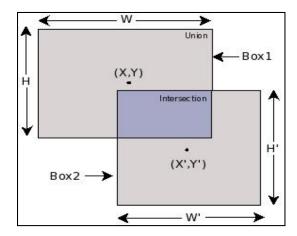


Figure 7.6. Intersection-Union Area NMS

- If Intersection Area * (OVLP_TH_2X/2) > Union Area, the box with lower confidence value is blocked in final output.
- This NMS calculation is performed between all the combinations of two boxes.
- After all combinations are checked, output array o_bbox_bmap contains boxes, which are correctly overlapped or non-overlapped. o_out_en provides valid pulse for crop_downscale_human_count for further processing on these box coordinates.

7.2.2.5. Bounding Box Upscaling

• The draw_box module converts X, Y, W, and H input coordinates provided for 224 x 224 resolution into 896 x 896 resolution as shown in logic 3.

```
LOGIC 3

X1 = (X'' - W''/2) * 4 + Horizontal-Mask (64/960)

Y1 = (Y'' - H''/2) * 4 + Vertical-Mask (92)

X2 = (X'' + W''/2) * 4 + Horizontal-Mask (64/960)

Y2 = (Y'' + H''/2) * 4 + Vertical-Mask (92)
```

- (X, Y) are considered as center of the Box of Width W and Height H for calculating extreme ends of the Box (X1, X2, and Y1, Y2). For converting from 224 to 896, the coordinates are multiplied with 4. Required offset value is added in coordinate calculations to keep the boxes out of mask area. X1, X2 and Y1, Y2 coordinates are calculated for each Box.
- Pixel Counter and Line Counter keeps track of pixels of each line and lines of each frame. Outer boundary of the box and Inner boundary of the box are calculated when Pixel and Line counter reaches to coordinates (X1, X2) and (Y1, Y2) respectively. Calculations are done as per logic 4.

```
LOGIC 4

Outer Box = (Pixel Count >= (X1 - 1)) and (Pixel Count <= (X2 + 1)) and (Line Count >= (Y1 - 1)) and (Line Count <= (Y2 + 1))

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1))
```

• Each Bounding Box is calculated by removing the intersecting area of outer and inner box. Box is only displayed if Box-Bitmap for that box is set to 1 (from det_st_bbox module). Box on calculations are as done as logic 5.

```
LOGIC 5
Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1]
Box_on[2] = Outer Box[2] and ~Inner Box[2] and Box-Bitmap[2]
.
.
Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20]
```

• The o_box_obj signal is asserted when any of the above Box_on signal is set, which is then connected to green_on signal and processed for Bounding Box display via HDMI.

7.2.2.6. OSD Text Display

- The lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen. It takes count of detected Humans and Threshold value as input.
- It sets an output signal (text_on) when text is to be displayed on HDMI. When text_on is set, RGB value for that pixel location is assigned FFF value (While color) and sent to HDMI output instead of original pixel value.

7.2.2.7. HDMI Display Management

RGB data is passed serially to HDMI and it is multiplexed by following values.

- If Signal Text is on (text_on) Pass all RGB value as FFF for White color display.
- If Signal Green is on (green_on) Pass only Green pixel value as FFF. Keep Red and Blue values as 0.
- If Signal Mask is on (fmask_on) Pass darker RGB pixel values.
- Else Pass Input RGB Data as it is.

7.2.2.8. Inference Time Calculation

- The time taken by a trained neural network model to infer/predict outputs after obtaining input data is called inference time. The process of this calculation is explained as follows.
- The inference time is calculated by implementing a counter to store the count of CNN engine cycles per frame.
- When signal i_rd_rdy (that is o_rd_rdy coming from CNN engine) is high, the CNN engine indicates that it is ready to get input and when it is low, the engine indicates that it is busy.
- When i_rd_rdy signal is low, the CNN counter begins and stops when the i_rd_rdy signal goes high again indicating that previous execution is over and the CNN is ready for new input.
- As shown in Figure 7.7 when rdy_h2l (ready high-to-low) pulse is asserted, the CNN Up-counter starts from 1 and the count value increases till i rd rdy is not high again. The count value is stored in (count).
- Similarly, when rdy_l2h (ready low-to-high) pulse is asserted, the Up-counter stops and the final CNN count value is obtained (cnn count).

Figure 7.7. CNN Counter Design

- The methodology used to obtain stable inference time is to calculate inference time per frame and obtain the average inference time value after 16 CNN frames are over as discussed below.
- After completion of every frame, the new count value (cnn_count) obtained as explained above is added to the
 previous value and stored in (cnn_adder).
- A frame counter keeps monitoring the frame count and after 16 frames when the frame count is done, this cnn_adder value is reset as shown in Figure 7.8.

```
// Frame counter to calculate CNN frames upto 16 (0 - 15)
assign frame_counter_c = (rdy_l2h_rr)? (frame_counter + 4'dl) : frame_counter;

// keep adding indiviual cnn frame counter for 16 frames. Then clear to 0
assign cnn_adder_c = (count_done)? 31'd0 : (rdy_l2h_r) ? (cnn_adder + {4'd0,cnn_count}) : cnn_adder;

// Counter addition done when 1ll 16 cnn frame counter values are added and averaged
assign count_done = (frame_counter == 4'd15) & (rdy_l2h_rr);
```

Figure 7.8. Inference Time Calculation

To get the average inference time value (avg inf time hex) after frame count is done, the final cnn adder value is divided by 16 as shown in Figure 7.9.

```
// Average Inference Time calculated by dividing by 16
                         = (count done)? cnn adder[30:4] : inf time;
assign inf time c
// 32 Bit average Inference time in Hex
assign avg inf time hex = {5'd0,inf time};
```

Figure 7.9. Average Inference Time Calculation

- Using Lattice Multiplier library module, this average inference time value is multiplied by INF MULT FAC, a parameter indicating inference multiplying factor explained in Table 7.1.
- The inference time in millisecond (inf time ms) is obtained by dividing the output obtained from this multiplier by 2³¹ as per the Q-Format, shown in Figure 7.10.
- All the above obtained values namely the CNN count, average inference time, and inference time in millisecond are passed on to lsc osd text human count module for getting bitmap to display characters.

```
assign inf time ms
                         = inf time mult[46:31];
```

Figure 7.10. Inference Time in Millisecond

7.2.2.9. Inference Time Display Management

- This module mainly consists of a DPRAM which holds the characters at pre-defined address positions indicated by text addr and an 8 x 8 font ROM which provides the bitmap of these characters for HDMI display.
- This module basically functions by using two entities. One is the position of the character where it has to be displayed, and the other is by reading the ASCII value of the character to be displayed.
- For this purpose, once the CNN count, individual frame inference time and the inference time in millisecond values are obtained, they are converted from hex into ASCII values as shown in Figure 7.11.
- The average inference time input values (i avg inf time hex) are converted from hex to ASCII values as shown in Figure 7.11. To display eight characters of this value on HDMI, this input is stored in respective r_avginfhex_ch. The characters obtained by adding 7'h30 and 7'h37 are shown in Table 7.5.

```
avginfhex ch0 <= (i avg inf time hex[31:28]</pre>
                                               > 4'd9)?
                                                         (i avg inf time hex[31:28
                                                                                         'h37
                                                                                                 (i avg inf time hex[31:28]
                                                                                                                                 'h30):
                                                         (i_avg_inf_time_hex[
r avginfhex ch1 <= (i avg inf time hex
                                                  4'd9)?
                                                                                                 (i avg inf time hex[
r_avginfhex_ch2 <=
                   (i_avg_inf_time_hex|
                                                 4'd9)?
                                                         (i_avg_inf_time_hex[
                                                                                         h37
                                                                                                 (i_avg_inf_time_hex[
r avginfhex ch3 <= (i avg inf time hex
                                                         (i avg inf time hex[
                                                                                                 (i avg inf time hex[
                                                  4'd9)?
 avginfhex_ch4 <= (i_avg_inf_time_hex[
                                               > 4'd9)?
                                                         (i_avg_inf_time_hex[
                                                                                       7 h 37
                                                                                                 (i_avg_inf_time_hex[
                                                                                                                               7'h30)
                                                                                                                               7'h30);
r_avginfhex_ch5 <= (i_avg_inf_time_hex[11:8]
                                               > 4'd9)?
                                                         (i_avg_inf_time_hex[
                                                                                       7'h37)
                                                                                                 (i_avg_inf_time_hex[11:8]
r_avginfhex_ch6 <= (i_avg_inf_time_hex
                                               > 4'd9)?
                                                         (i avg inf time hex
                                                                                         'h37)
                                                                                                 (i avg inf time hex[
                                                                                                                                 'h30):
r_avginfhex_ch7 <= (i_avg_inf_time_hex[3:0]
                                               > 4'd9)? (i_avg_inf_time_hex[3:0]
                                                                                     + 7'h37) : (i_avg_inf_time_hex[3:0]
                                                                                                                             + 7'h30):
```

Figure 7.11. Average Inference Time Value to ASCII Conversion

Table 7.5. Signature 1.5. Signature	gnal Values to	ASCII Conversion
---	----------------	------------------

CHARACTERS FOR DISPLAY	VALUE TO BE ADDED TO SIGNAL	ASCII HEX VALUE	ASCII DECIMAL VALUE
1	7'h30	31	49
2	7'h30	32	50
3	7'h30	33	51
4	7'h30	34	52
5	7'h30	35	53
6	7'h30	36	54
7	7'h30	37	55

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal FPGA-RD-02195-1 0

А	7'h37	41	65
В	7′h37	42	66
С	7'h37	43	67
D	7'h37	44	68
E	7'h37	45	69
F	7'h37	46	70

- Similarly to display eight characters of individual frame inference time, the input signal i_inf_time_hex is converted from hex to ASCII and stored in respective r_infhex_ch signal as shown in Figure 7.12.
- In the same way to display four characters of inference time in ms, the input signal i_inf_ms is converted from hex to ASCII and stored in respective r_inf_ms signal as shown in Figure 7.13.

```
r infhex ch0
                  = (i_inf_time_hex[31:28] > 4'd9)? (i_inf_time_hex[31:28] + 7'h37) : (i_inf_time_hex[31:28] + 7'h30);
r_infhex_ch1
                 <= (i_inf_time_hex[27:24] > 4'd9)? (i_inf_time_hex[27:24] + 7'h37)
                                                                                                                             'h30);
                                                                                               (i inf time hex[27:24] + 7
                 <= (i inf time hex[23:20] > 4'd9)? (i inf time hex[23:20] + 7'h37) : (i inf time hex[23:20] +
                                                                                                                           7'h30);
r infhex ch2
                 <= (i_inf_time_hex[19:16] > 4'd9)? (i_inf_time_hex[19:16] + 7'h37) : (i_inf_time_hex[19:16] + 7'h30);
<= (i_inf_time_hex[15:12] > 4'd9)? (i_inf_time_hex[15:12] + 7'h37) : (i_inf_time_hex[15:12] + 7'h30);
r infhex ch3
r infhex ch4
                 <= (i_inf_time_hex[11:8] > 4'd9)? (i_inf_time_hex[11:8] + 7'h37) : (i_inf_time_hex[11:8] + 7'h30);
r infhex ch5
r_infhex_ch6
                 <= (i inf time hex[7:4]
                                              > 4'd9)? (i inf time hex[7:4]
                                                                                  + 7'h37) : (i inf time hex[7:4]
                                                                                                                        + 7'h30);
                 <= (i inf time hex[3:0] > 4'd9)? (i inf time hex[3:0]
                                                                                  + 7'h37) : (i inf time hex[3:0]
r infhex ch7
                                                                                                                        + 7'h30);
```

Figure 7.12. CNN Count Values to ASCII Conversion

```
r_infms_ch0 <= (i_inf_time_ms[15:12] > 4'd9)? (i_inf_time_ms[15:12] + 7'h37) : (i_inf_time_ms[15:12] + 7'h30);
r_infms_ch1 <= (i_inf_time_ms[11:8] > 4'd9)? (i_inf_time_ms[11:8] + 7'h37) : (i_inf_time_ms[11:8] + 7'h30);
r_infms_ch2 <= (i_inf_time_ms[7:4] > 4'd9)? (i_inf_time_ms[7:4] + 7'h37) : (i_inf_time_ms[7:4] + 7'h30);
r_infms_ch3 <= (i_inf_time_ms[3:0] > 4'd9)? (i_inf_time_ms[3:0] + 7'h37) : (i_inf_time_ms[3:0] + 7'h30);
```

Figure 7.13. Inference Time in Millisecond Values to ASCII Conversion

The positions where these values have to be displayed are given using text_addr signal as shown in Figure 7.14. The use of these locations is shown in Figure 7.15 and Figure 7.16. A memory initialization file human count.mem is used by Lattice Diamond tool to store characters at address locations for display.

```
// Hex counter display
assign w avginfhex ch0 pos = (text addr == 13'd7140);
assign w avginfhex ch1 pos = (text addr == 13'd7141);
assign w_avginfhex_ch2_pos = (text_addr == 13'd7142);
assign w_avginfhex_ch3_pos = (text_addr == 13'd7143);
assign w avginfhex ch4 pos = (text addr == 13'd7144);
assign w avginfhex ch5 pos = (text addr == 13'd7145);
assign w avginfhex ch6 pos = (text addr == 13'd7146);
assign w avginfhex ch7 pos = (text addr == 13'd7147);
assign w infhex ch0 pos
                           = (text addr == 13'd7116);
assign w_infhex_ch1_pos
                           = (text_addr == 13'd7117);
assign w infhex ch2 pos
                           = (text addr == 13'd7118);
assign w infhex ch3 pos
                           = (text addr == 13'd7119);
assign w infhex ch4 pos
                           = (text addr == 13'd7120);
                           = (text_addr == 13'd7121);
assign w infhex ch5 pos
assign w infhex ch6 pos
                           = (text_addr == 13'd7122);
                           = (text addr == 13'd7123);
assign w_infhex_ch7_pos
// Milisecond display
assign w infms ch0 pos
                            = (text addr == 13'd7149);
                           = (text addr == 13'd7150);
assign w infms ch1 pos
assign w infms ch2 pos
                            = (text addr == 13'd7151);
                            = (text addr == 13'd7152);
assign w infms ch3 pos
```

Figure 7.14. Text Address Positions to Display Input Values

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

• The address location structure for displaying average inference time (of 16 CNN frames) and inference time in millisecond values along with their strings are stored in human count.mem is shown in Figure 7.15.

	Characters stored as ASCII Values in human_count.mem file for string display							Avg Inf	Charac		numan_o	count.me e value	em file				
Character	Α	v	g	1	n	f	Т	i	m	e		Time	(Inf Time	m	5)
Address in decimal	7126	7127	7128	7130	7131	7131	7134	7135	7136	7137	7138	7140 To 7147	7148	7149 to 7152	7153	7154	7155

Figure 7.15. Address Locations to Display Individual Frame Time and Inference Time with String in HDMI

• The address location structure for displaying individual frame inference time values along with the string are stored in human_count.mem is shown in Figure 7.16.

Characters stored as ASCII Values in human_count.mem file for string display *										
Character I n f T i m e :										
Address in decimal	7106	7107	7108	7110	7111	7112	7113	7114	7116 To 7123	

Figure 7.16. Address Locations to Display CNN Count Value and its String in HDMI Output

• To display the input values in address locations shown in Figure 7.15 and Figure 7.16, their ASCII values obtained as shown in Table 7.5, Figure 7.12, and Figure 7.13 are sent to the 8 x 8 font ROM with the help of font_char signal to obtain the bitmap for HDMI output as shown in Figure 7.17.

```
assign font char
                    = (r face ch0 pos )? r face ch0 :
                      (r_face_ch1_pos )? r face_ch1 :
                      (r th sign pos
                                      )? r th sign :
                      (r_th_ch0_pos
                                      )? r_th_ch0 :
                      (r th ch1 pos
                                      )? r th ch1:
                      (r th ch2 pos
                                      )? r th ch2 :
                      (r th ch3 pos
                                      )? r th ch3 :
                      //Inference Time Logic
                      (r_avginfhex_ch0_pos )? r_avginfhex_ch0
                      (r avginfhex ch1 pos )? r avginfhex ch1
                      (r_avginfhex_ch2_pos_)? r_avginfhex_ch2
                      (r avginfhex ch3 pos )? r avginfhex ch3
                      (r avginfhex ch4 pos )? r avginfhex ch4
                      (r avginfhex ch5 pos )? r avginfhex ch5
                      (r_avginfhex_ch6_pos )? r_avginfhex_ch6
                      (r avginfhex ch7 pos )? r avginfhex ch7 :
                      (r infhex ch0 pos
                                            )? r infhex ch0 :
                      (r_infhex_ch1_pos
                                            )? r_infhex_ch1 :
                      (r infhex ch2 pos
                                            )? r infhex ch2
                      (r_infhex_ch3_pos
                                            )? r infhex ch3 :
                      (r infhex ch4 pos
                                            )? r infhex ch4
                                            )? r_infhex_ch5 :
                      (r infhex ch5 pos
                      (r infhex ch6 pos
                                            )? r infhex_ch6
                      (r infhex ch7 pos
                                            )? r infhex ch7 :
                      (r infms ch0 pos
                                           )? r infms ch0 :
                      (r infms ch1 pos
                                           )? r infms ch1 :
                      (r infms ch2 pos
                                           )? r infms ch2 :
                      (r infms ch3 pos
                                           )? r infms ch3 :
                                          text data[6:0];
```

Figure 7.17. Bitmap Extraction from Font ROM

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

8. Creating FPGA Bitstream File

This section describes the steps to compile RTL bitstream using Lattice Diamond tool.

To create the FPGA bitstream file:

1. Open the Lattice Diamond software.

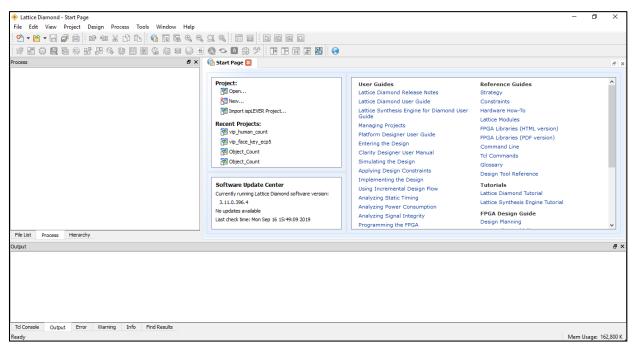


Figure 8.1. Lattice Diamond - Default Screen

- 2. Click File > Open > Project.
- 3. Open the Diamond project file for ECP5 Face Identification Demo RTL.

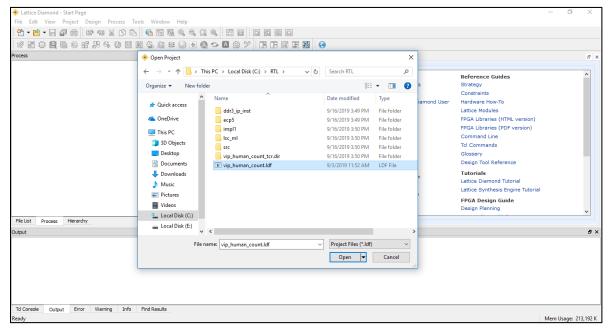


Figure 8.2. Lattice Diamond – Open ECP5 Face Identification Diamond Project File

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Double-click **Bitstream File** to trigger bitstream generation.

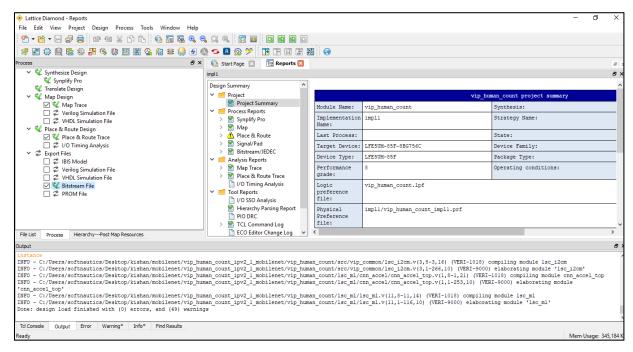


Figure 8.3. Lattice Diamond - Trigger Bitstream Generation

5. The Lattice Diamond tool displays *Saving bit stream in ...* message in the **Reports** window as shown in Figure 8.4. The bitstream is generated at *Implementation Location* as shown in Figure 8.3.

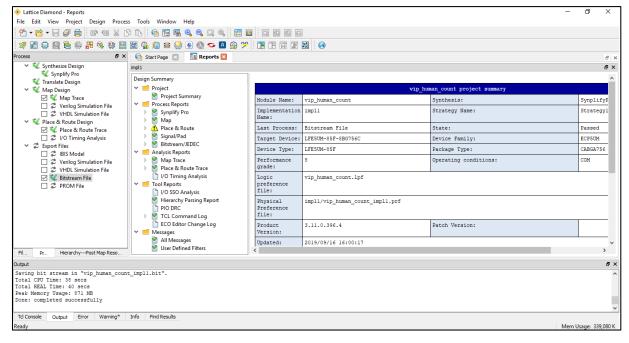


Figure 8.4. Lattice Diamond – Bit File Generation Report Window

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

9. Programming the Demo

9.1. Programming the CrossLink™ SPI Flash

9.1.1. Erasing the CrossLink SRAM Prior to Reprogramming

If the CrossLink device is already programmed (either directly or loaded from SPI Flash), erase the CrossLink SRAM before reprogramming the CrossLink SPI Flash. Keep the board powered on to prevent reloading on reboot.

To erase the CrossLink device SRAM:

1. Start Diamond Programmer. In the Getting Started dialog box, select Create a new blank project.

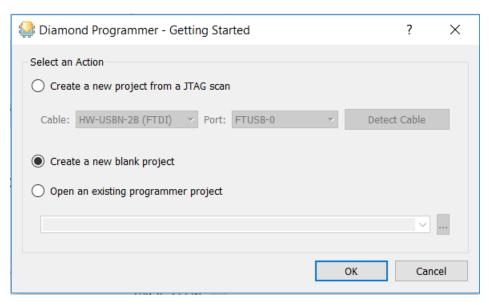


Figure 9.1. Diamond Programmer - Default Screen

- 2. Click OK.
- In the Diamond Programmer main interface, select LIFMD in Device Family and LIF-MD6000 in Device as shown in Figure 9.2.

Figure 9.2. Diamond Programmer - Device Selection

- 4. Click the CrossLink row and select **Edit > Device Properties**.
- In the Device Properties dialog box, select SSPI SRAM Programming in Access mode and Erase Only in Operation as shown in Figure 9.3.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

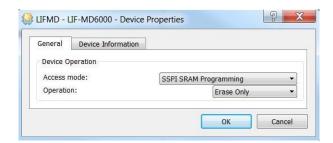


Figure 9.3. Diamond Programmer – Device Operation

- 6. Click **OK** to close the Device Properties dialog box.
- 7. In the Diamond Programmer main interface, click the **Program** button to start the erase operation.

 Note: If you power OFF/ON the board, the SPI Flash reprograms the CrossLink device. In this case, you must repeat steps 1 to 7.

9.1.2. Programming the CrossLink VIP Input Bridge Board

To program the CrossLink VIP Input Bridge Board:

- 1. Ensure that the CrossLink device SRAM is erased by performing the steps in Erasing the CrossLink SRAM Prior to Reprogramming.
- 2. In the Diamond Programmer main interface, click the CrossLink row and select **Edit > Device Properties** to open the **Device Properties** dialog boxes shown in Figure 9.4.

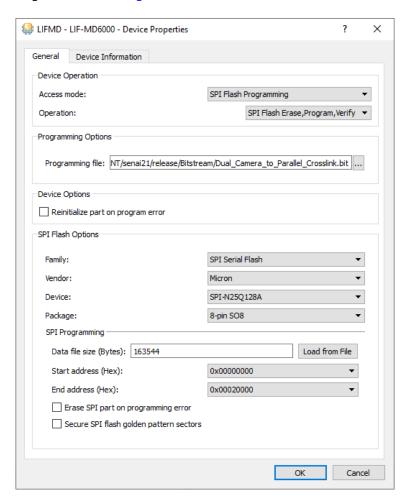


Figure 9.4. Diamond Programmer - Selecting Device Properties Options for Crosslink Flashing

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02195-1.0

- 3. Apply the settings below.
 - Under Device Operation, select the options below:
 - Access Mode SPI Flash Programming
 - Operation SPI Flash Erase, Program, Verify
 - Under Programming Options, select the bitstream file ~/Demonstration/Dual_Camera_to_parallel_Crosslink.bit available in downloaded demo directory in Programming file.
 - For **SPI Flash Options**, refer to Table 9.1:

Table 9.1. Diamond Programmer - SPI Flash Options

Item	Rev B	Rev C - Option 1	Rev C – Option 2
Family	SPI Serial Flash	SPI Serial Flash (SPI Serial Flash Beta for Diamond 3.10 SP1 or earlier)	SPI Serial Flash (SPI Serial Flash Beta for Diamond 3.10 SP1 or earlier)
Vendor	Micron	Micron	Macronix
Device	SPI-M25PX16	SPI-N25Q128A	MX25L12835F
Package	8-pin S08W	8-pin SOP2	8-Land WSON

- Click Load from File to update the Data file size (Bytes) value.
- Ensure that the following addresses are correct:
 - Start Address (Hex) 0x00000000
 - End Address (Hex) 0x00020000
- 4. Click OK.
- 5. In the Diamond Programmer main interface, click the **Program** button 🚇 to start the programming operation.
- 6. After successful programming, the **Output** console displays the result as shown in Figure 9.5.

Figure 9.5. Diamond Programmer - Output Console

58

9.2. Programming ECP5 VIP Processor Board

Both the CrossLink VIP Input Bridge Board and the ECP5 VIP Processor Board must be configured and programmed. Also, the demo design firmware must be programmed onto the MicroSD Card which is plugged into the MicroSD Card Adaptor Board.

9.2.1. Erasing the ECP5 Prior to Reprogramming

If the ECP5 device is already programmed (either directly or loaded from SPI Flash), erase the ECP5 SRAM before reprogramming the ECP5 SPI Flash. Keep the board powered on to prevent reloading on reboot.

To erase the ECP5 SRAM:

1. Launch Diamond Programmer with Create a new blank project.

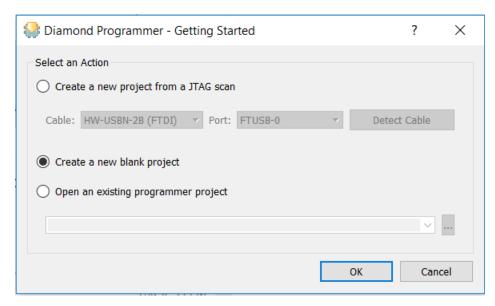


Figure 9.6. Diamond Programmer – Default Screen

- 2. Click OK.
- 3. In the Diamond Programmer main interface, select **ECP5UM** in Device Family and **LFE5UM-85F** in Device as shown in Figure 9.8.

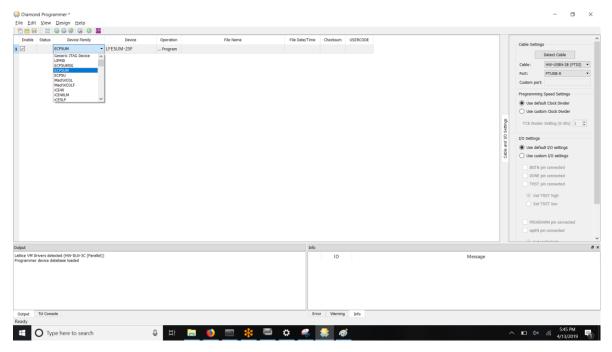


Figure 9.7. Diamond Programmer - Device Family Selection

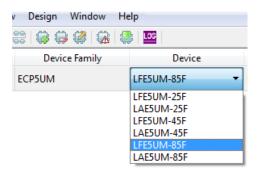


Figure 9.8. Diamond Programmer - Device Selection

- 4. Click the ECP5 row and select **Edit > Device Properties**.
- 5. In the Device Properties dialog box, select **JTAG 1532 Mode** in Access mode and Erase Only in Operation (shown in Figure 9.9).

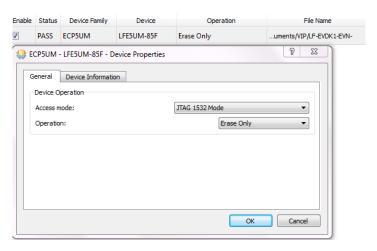


Figure 9.9. Diamond Programmer – Device Operation

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- 6. Click **OK** to close the Device Properties dialog box.
- 7. In the Diamond Programmer main interface, click the Program button to start the Erase operation.

 Note: If you power OFF/ON the board, the SPI Flash reprograms the ECP5 device. In this case, you must repeat steps 1 to 7.

9.2.2. Programming the ECP5 VIP Processor Board

To program the ECP5 VIP Processor Board:

- 1. Ensure that the ECP5 device is erased by performing the steps in Erasing the ECP5 Prior to Reprogramming.
- 2. In the Diamond Programmer main interface, click the ECP5 row and select Edit > Device Properties
- 3. The **Device Properties** dialog box opens. Select human count demo bit file in *Programming file:* section as shown in Figure 9.10 (Rev B).

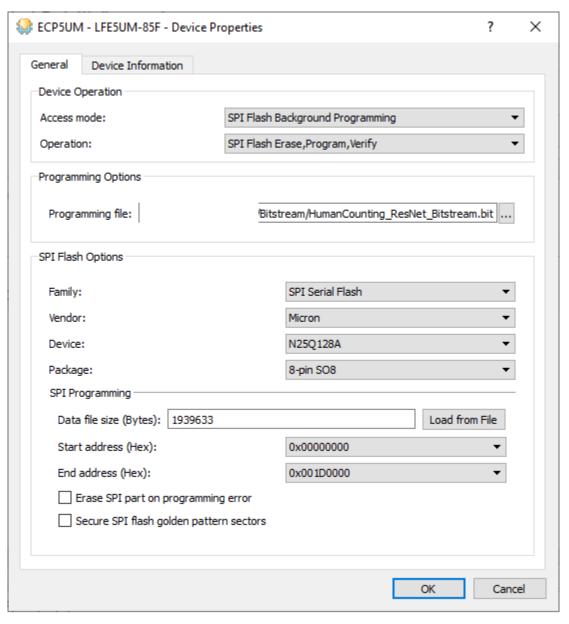


Figure 9.10. Diamond Programmer - Selecting Device Properties Options for ECP5 Flashing

- 4. Apply the following settings:
 - Under Device Operation, select the options below:
 - Access Mode SPI Flash Background Programming
 - Operation Erase, Program, Verify
 - Under Programming Options, select the appropriate bitstream file for respective demo in Programming file.
 - For **SPI Flash Options**, refer to Table 9.2:

Table 9.2. Diamond Programmer - SPI Flash Options

Item	Rev B	Rev C - Option 1
Family	SPI Serial Flash	SPI Serial Flash
Vendor	Micron	Macronix
Device	Device SPI-N25Q128A	
Package	8-pin SO8	8-Land WSON

- Click Load from File to update the Data file size (Bytes) value.
- Ensure that the following addresses are correct:
 - Start Address (Hex) 0x00000000
 - End Address (Hex) 0x001D0000
- Click OK.
- 6. In the Diamond Programmer main interface, click the **Program** button 💇 to start the programming operation.
- 7. After successful programming, the Output console displays the result as shown in Figure 9.11.

Figure 9.11. Diamond Programmer - Output Console

9.3. Programming the MicroSD Card Firmware

To write the image to the MicroSD Card:

- 1. Download and install the Win32diskimager Image Writer software from the following link: https://sourceforge.net/projects/win32diskimager/.
- 2. Use Win32diskimager to write the appropriate Flash image (binary firmware) file to the SD memory card. You may need a SD Card reader and adapter to connect the MicroSD card to PC for firmware flashing.
- 3. In Win32 Disk Imager, select the image file for respective demo firmware .bin file as shown in Figure 9.12.
- 4. Select the Card Reader in **Device** as shown in Figure 9.12.
- 5. Click Write.

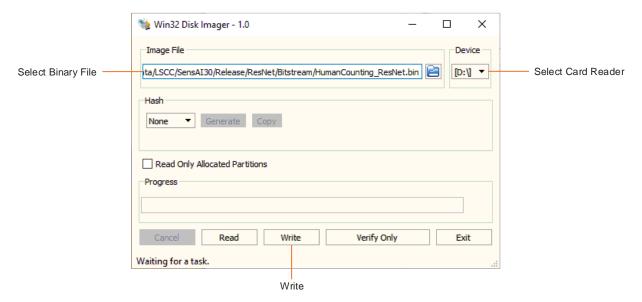


Figure 9.12. Win32 Disk Imager

Optionally, you can click **Verify Only** to confirm whether firmware write is correct.

FPGA-RD-02195-1.0

10. Running the Demo

To run the demo:

64

1. Insert the configured MicroSD Card into the MicroSD Card Adapter and connect it to the Embedded Vision Development Kit.

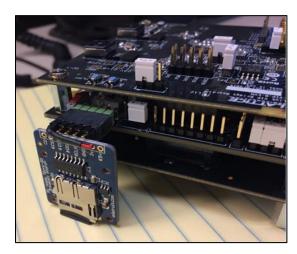


Figure 10.1. Connecting the MicroSD Card

- 2. Cycle the power on the Embedded Vision Development Kit to allow the ECP5 and CrossLink devices to be reconfigured from Flash.
- 3. Connect the Embedded Vision Development Kit to the HDMI monitor. The camera image is displayed on monitors as shown in Figure 10.2.

Figure 10.2. Running the Demo

4. The demo output contains bounding boxes for detected humans in a given frame. It also displays the total number of detected humans in a given frame on HDMI output.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Appendix A. Other Labelling Tools

Table A.1 provides information on other labelling tools.

Table A.1. Other Labelling Tools

Software	Platform	License	Reference	Converts To	Notes
annotate-to- KITTI	Ubuntu/Windows (Python based utility)	No License (Open source GitHub project)	https://github.com/SaiPrajwal95/annotate-to- KITTI	KITTI	Python based CLI utility that you can clone and launch.
LabelBox	JavaScript, HTML, CSS, Python	Cloud or On- premise, some interfaces are Apache-2.0	https://www.labelbox.com/	json, csv, coco, voc	Web application
LabelMe	Perl, JavaScript, HTML, CSS, On Web	MIT License	http://labelme.csail.mit.edu/Release3.0/	xml	Converts only jpeg images
Dataturks	On web	Apache License 2.0	https://dataturks.com/	json	Converts to json format but creates single json file for all annotated images
Labelimg	ubuntu	OSI Approved:: MIT License	https://mlnotesblog.wordpress.com/2017/12/ 16/how-to-install-labelimg-in-ubuntu-16-04/	xml	Need to install dependencies given in reference
Dataset_ annotator	Ubuntu	2018 George Mason University Permission is hereby granted, Free of charge	https://github.com/omenyayl/dataset- annotator	json	Need to install app_image and run it by changing permissions

References

- Google TensorFlow Object Detection GitHub
- Pretrained TensorFlow Model for Object Detection
- Python Sample Code for Custom Object Detection
- Train Model Using TensorFlow

66

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.0, May 2020

Section	Change Summary
All	Initial release.

www.latticesemi.com