

Certus-NX Family

Data Sheet

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

ontents	
Acronyms in This Document	11
L. General Description	
1.1. Features	
2. Architecture	
2.1. Overview	
2.2. PFU Blocks	
2.2.1. Slice	
2.2.2. Modes of Operation	
2.2.2.1. Logic Mode	
2.2.2.2. Ripple Mode	
2.2.2.3. RAM Mode	
2.2.2.4. ROM Mode	
2.3. Routing	
2.4. Clocking Structure	
2.4.1. Global PLL	
2.4.2. Clock Distribution Network	
2.4.2. Clock Distribution Network	
2.4.4. Edge Clock	
<u> </u>	
2.4.5. Clock Dividers	
2.4.6. Clock Center Multiplexer Blocks	
2.4.7. Dynamic Clock Select	
2.4.8. Dynamic Clock Control	
2.4.9. DDRDLL	
2.5. SGMII TX/RX	
2.6. sysMEM Memory	
2.6.1. sysMEM Memory Block	
2.6.2. Bus Size Matching	
2.6.3. RAM Initialization and ROM Operation	
2.6.4. Memory Cascading	
2.6.5. Single, Dual and Pseudo-Dual Port Modes	
2.6.6. Memory Output Reset	
2.7. Large RAM	
2.8. sysDSP	
2.8.1. sysDSP Approach Compared to General DSP	
2.8.2. sysDSP Architecture Features	
2.9. Programmable I/O (PIO)	
2.10. Programmable I/O Cell (PIC)	
2.10.1. Input Register Block	39
2.10.2.1. Input FIFO	39
2.10.2. Output Register Block	40
2.11. Tri-state Register Block	41
2.12. DDR Memory Support	42
2.12.1. DQS Grouping for DDR Memory	42
2.12.2. DLL Calibrated DQS Delay and Control Block (DQSBUF)	43
2.13. sysl/O Buffer	45
2.13.1. Supported sysI/O Standards	45
2.13.2. sysI/O Banking Scheme	46
2.13.2.1. Typical sysI/O Behavior During Power-up	48
2.13.2.2. VREF1 and VREF2	
2.13.2.3. sysI/O Standards Supported by I/O Bank	48
2.13.2.4. Hot Socketing	

2 12	3.3. sysI/O Buffer Configurations	40
2.13	Analog Interface	
	I.1. Analog to Digital Converters	
	I.2. Continuous Time Comparators	
	I.3. Internal Junction Temperature Monitoring Diode	
2.15.	IEEE 1149.1-Compliant Boundary Scan Testability	
2.16.	Device Configuration	
	5.1. Enhanced Configuration Options	
	.16.2.1. Dual-Boot and Multi-Boot Image Support	
2.17.	Single Event Upset (SEU) Handling	
2.18.	On-Chip Oscillator	51
2.19.	User I2C IP	52
2.20.	Trace ID	52
2.21.	Density Shifting	52
2.22.	Peripheral Component Interconnect Express (PCIe)	53
2.23.	Cryptographic Engine	
3. DC a	and Switching Characteristics for Commercial and Industrial	55
3.1.	Absolute Maximum Ratings	
3.2.	Recommended Operating Conditions ^{1, 2, 3}	
3.3.	Power Supply Ramp Rates	
3.4.	Power up Sequence	
3.5.	On-Chip Programmable Termination	
3.6.	Hot Socketing Specifications	
3.7.	ESD Performance	
3.8.	DC Electrical Characteristics	
3.9.	Supply Currents	
3.10.	sysI/O Recommended Operating Conditions	
3.11.	sysI/O Single-Ended DC Electrical Characteristics	
3.12.	sysI/O Differential DC Electrical Characteristics	
	2.1. LVDS	
	2.2. LVDS25E (Output Only)	
	2.3. SubLVDS (Input Only)	
	2.4. SubLVDSE/SubLVDSEH (Output Only)	
	2.6. Soft MIPI D-PHY	
	2.7. Differential HSTL15D (Output Only)	
	2.8. Differential SSTL135D, SSTL15D (Output Only)	
	2.9. Differential HSUL12D (Output Only)	
	2.10. Differential LVCMOS25D, LVCMOS33D, LVTTL33D (Output Only)	
3.13.	Maximum sysI/O Buffer Speed	
3.14.	Typical Building Block Function Performance	
3.15.	LMMI	
3.16.	Derating Timing Tables	
3.17.	External Switching Characteristics	
3.18.	sysCLOCK PLL Timing (V _{CC} = 1.0 V)	
3.19.	Internal Oscillators Characteristics	84
3.20.	User I2C Characteristics	
3.21.	Analog-Digital Converter (ADC) Block Characteristics	85
3.22.	Comparator Block Characteristics	
3.23.	Digital Temperature Readout Characteristics	
3.24.	Hardened PCIe Characteristics	86
3.24	l.1. PCle (2.5 Gbps)	86
	l.2. PCIe (5 Gbps)	
3.25.	Hardened SGMII Characteristics	89

3.25	5.1. SGMII Specifications	89
3.26.	sysCONFIG Port Timing Specifications	90
3.27.	JTAG Port Timing Specifications	97
3.28.	Switching Test Conditions	98
1. DC a	and Switching Characteristics for Automotive	100
4.1.	Absolute Maximum Ratings	100
4.2.	Recommended Operating Conditions ^{1, 2, 3}	101
4.3.	Power Supply Ramp Rates	102
4.4.	Power up Sequence	102
4.5.	On-Chip Programmable Termination	102
4.6.	Hot Socketing Specifications	103
4.7.	ESD Performance	103
4.8.	DC Electrical Characteristics	104
4.9.	Supply Currents	105
4.10.	sysI/O Recommended Operating Conditions	106
4.11.	sysI/O Single-Ended DC Electrical Characteristics ³	107
4.12.	sysI/O Differential DC Electrical Characteristics	109
4.12	2.1. LVDS	109
4.12	2.2. LVDS25E (Output Only)	109
4.12	2.3. SubLVDS (Input Only)	110
4.12	2.4. SubLVDSE/SubLVDSEH (Output Only)	110
	2.5. SLVS	
4.12	2.6. Differential HSTL15D (Output Only)	112
4.12	2.7. Differential SSTL135D, SSTL15D (Output Only)	112
4.12	2.8. Differential HSUL12D (Output Only)	112
4.12	2.9. Differential LVCMOS25D, LVCMOS33D, LVTTL33D (Output Only)	112
4.13.	Maximum sysI/O Buffer Speed	113
4.14.	Typical Building Block Function Performance	115
4.15.	LMMI	116
4.16.	Derating Timing Tables	116
4.17.	External Switching Characteristics	116
4.18.	sysCLOCK PLL Timing (Vcc = 1.0 V)	
4.19.	Internal Oscillators Characteristics	125
4.20.	User I2C Characteristics	
4.21.	Analog-Digital Converter (ADC) Block Characteristics	
4.22.	Comparator Block Characteristics	128
4.23.	Digital Temperature Readout Characteristics	
4.24.	Hardened PCIe Characteristics	129
4.24	4.1. PCIe (2.5 Gb/s)	129
4.24	4.2. PCIe (5 Gb/s)	130
4.25.	Hardened SGMII Characteristics	
4.26.	sysCONFIG Port Timing Specifications	132
4.27.	JTAG Port Timing Specifications	139
4.28.	Switching Test Conditions	140
5. Pinc	out Information	141
5.1.	Signal Descriptions	
5.2.	Pin Information Summary	
5. Ord	ering Information	154
6.1.	Part Number Description	
6.2.	Ordering Part Numbers	
6.2.		
6.2.		
6.2.		
Technica	l Support Assistance	158

References	159
Revision History	160

Figures

E: 2.4 C: 1:5: LDL LD: LEDONY 30 LEDONY 40 D : /T L IV	47
Figure 2.1. Simplified Block Diagram, LFD2NX-28 and LFD2NX-40 Devices (Top Level)	
Figure 2.2. Simplified Block Diagram, LFD2NX-9 and LFD2NX-17 Devices (Top Level)	
Figure 2.3. Simplified Block Diagram, LFD2NX-15 and LFD2NX-25 Devices (Top Level)	
Figure 2.4. Simplified Block Diagram, LFD2NX-35 and LFD2NX-65 Devices (Top Level)	
Figure 2.5. PFU Diagram	
Figure 2.6. Slice Diagram	
Figure 2.7. Slice Configuration for LUT4 and LUT5	
Figure 2.8. General Purpose PLL Diagram	
Figure 2.9. Clocking for Certus-NX Logic Optimized Device	
Figure 2.10. Clocking for Certus-NX I/O Optimized Device	
Figure 2.11. Edge Clock Sources per Bank	
Figure 2.12. DCS_CMUX Diagram	
Figure 2.13. DCS Waveforms	
Figure 2.14. DLLDEL Functional Diagram	
Figure 2.15. DDRDLL Architecture for Logic Optimized Device	
Figure 2.16. DDRDLL Architecture for I/O Optimized Device	
Figure 2.17. SGMII CDR IP	
Figure 2.18. Memory Core Reset	33
Figure 2.19. Comparison of General DSP and Certus-NX Approaches	34
Figure 2.20. DSP Functional Block Diagram	
Figure 2.21. Group of Two High Performance Programmable I/O Cells	38
Figure 2.22. Wide Range Programmable I/O Cells	38
Figure 2.23. Input Register Block for PIO on Top, Left, and Right Sides of the Device	39
Figure 2.24. Input Register Block for PIO on Bottom Side of the Device	40
Figure 2.25. Output Register Block on Top, Left, and Right Sides	40
Figure 2.26. Output Register Block on Bottom Side	41
Figure 2.27. Tri-state Register Block on Top, Left, and Right Sides	41
Figure 2.28. Tri-state Register Block on Bottom Side	42
Figure 2.29. DQS Grouping on the Bottom Edge	43
Figure 2.30. DQS Control and Delay Block (DQSBUF)	44
Figure 2.31. sysI/O Banking for Logic Optimized Device	47
Figure 2.32. sysI/O Banking for I/O Optimized Device	47
Figure 2.33. PCIe Core	53
Figure 2.34. PCIe Soft IP Wrapper	54
Figure 2.35. Cryptographic Engine Block Diagram	54
Figure 3.1. On-Chip Termination	
Figure 3.2. LVDS25E Output Termination Example	
Figure 3.3. SubLVDS Input Interface	
Figure 3.4. SubLVDS Output Interface	
Figure 3.5. SLVS Interface	66
Figure 3.6. MIPI Interface	67
Figure 3.7. Receiver RX.CLK.Centered Waveforms	80
Figure 3.8. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	
Figure 3.9. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	
Figure 3.10. Transmit TX.CLK.Aligned Waveforms	
Figure 3.11. DDRX71 Video Timing Waveforms	
Figure 3.12. Receiver DDRX71_RX Waveforms	
Figure 3.13. Transmitter DDRX71 TX Waveforms	
Figure 3.14. Master SPI POR/REFRESH Timing	
Figure 3.15. Slave SPI/I2C/I3C POR/REFRESH Timing	
Figure 3.16. Master SPI PROGRAMN Timing	
Figure 3.17. Slave SPI/I2C/I3C PROGRAMN Timing	
<u> </u>	

Figure 3.18. Master SPI Configuration Timing	94
Figure 3.19. Slave SPI Configuration Timing	95
Figure 3.20. I2C/I3C Configuration Timing	95
Figure 3.21. Master SPI Wake-Up Timing	96
Figure 3.22. Slave SPI/I2C/I3C Wake-Up Timing	96
Figure 3.23. Configuration Error Notification	97
Figure 3.24. JTAG Port Timing Waveforms	98
Figure 3.25. Output Test Load, LVTTL and LVCMOS Standards	98
Figure 4.1. On-Chip Termination	102
Figure 4.2. LVDS25E Output Termination Example	110
Figure 4.3. SubLVDS Input Interface	110
Figure 4.4. SubLVDS Output Interface	111
Figure 4.5. SLVS Interface	
Figure 4.6. Receiver RX.CLK.Centered Waveforms	122
Figure 4.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	122
Figure 4.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	
Figure 4.9. Transmit TX.CLK.Aligned Waveforms	
Figure 4.10. DDRX71 Video Timing Waveforms	123
Figure 4.11. Receiver DDRX71_RX Waveforms	124
Figure 4.12. Transmitter DDRX71_TX Waveforms	124
Figure 4.13. Master SPI POR/REFRESH Timing	134
Figure 4.14. Slave SPI/I2C/I3C POR/REFRESH Timing	135
Figure 4.15. Master SPI PROGRAMN Timing	135
Figure 4.16. Slave SPI/I2C/I3C PROGRAMN Timing	
Figure 4.17. Master SPI Configuration Timing	
Figure 4.18. Slave SPI Configuration Timing	137
Figure 4.19. I2C/I3C Configuration Timing	
Figure 4.20. Master SPI Wake-Up Timing	
Figure 4.21. Slave SPI/I2C/I3C Wake-Up Timing	138
Figure 4.22. JTAG Port Timing Waveforms	
Figure 4.23. Configuration Error Notification	140
Figure 4.24. Output Test Load, LVTTL and LVCMOS Standards	140

Tables

Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide	14
Table 1.2. Certus-NX Automotive Family Selection Guide	15
Table 1.3. Specification Status for Certus-NX Devices	15
Table 2.1. Resources and Modes Available per Slice	19
Table 2.2. Slice Signal Descriptions ¹	21
Table 2.3. Number of Slices Required to Implement Distributed RAM	22
Table 2.4. sysMEM Block Configurations	32
Table 2.5. Maximum Number of Elements in a sysDSP block	37
Table 2.6. Input Block Port Description	39
Table 2.7. Output Block Port Description	41
Table 2.8. Tri-state Block Port Description	42
Table 2.9. DQSBUF Port List Description	44
Table 2.10. Single-Ended I/O Standards	45
Table 2.11. Differential I/O Standards	46
Table 2.12. Single-Ended I/O Standards Supported on Various Sides	48
Table 2.13. Differential I/O Standards Supported on Various Sides	49
Table 3.1. Absolute Maximum Ratings	55
Table 3.2. Recommended Operating Conditions	56
Table 3.3. Power Supply Ramp Rates	56
Table 3.4. Power-On Reset	57
Table 3.5. On-Chip Termination Options for Input Modes	57
Table 3.6. Hot Socketing Specifications for GPIO	58
Table 3.7. DC Electrical Characteristics – Wide Range	58
Table 3.8. DC Electrical Characteristics – High Speed	59
Table 3.9. Capacitance – Wide Range	59
Table 3.10. Capacitance – High Performance	59
Table 3.11. Single Ended Input Hysteresis – Wide Range	5 ⁹
Table 3.12. Single Ended Input Hysteresis – High Performance	
Table 3.13. sysI/O Recommended Operating Conditions	60
Table 3.14. sysI/O DC Electrical Characteristics – Wide Range I/O	
Table 3.15. sysI/O DC Electrical Characteristics – High Performance I/O	
Table 3.16. I/O Resistance Characteristics	
Table 3.17. V _{IN} Maximum Overshoot/Undershoot Allowance – Wide Range ^{1, 2}	
Table 3.18. V _{IN} Maximum Overshoot/Undershoot Allowance – High Performance ^{1, 2}	
Table 3.19. LVDS DC Electrical Characteristics ¹	
Table 3.20. LVDS25E DC Conditions	
Table 3.21. SubLVDS Input DC Electrical Characteristics	
Table 3.22. SubLVDS Output DC Electrical Characteristics	
Table 3.23. SLVS Input DC Characteristics	
Table 3.24. SLVS Output DC Characteristics	
Table 3.25. Soft D-PHY Input Timing and Levels	
Table 3.26. Soft D-PHY Output Timing and Levels	
Table 3.27. Soft D-PHY Clock Signal Specification	
Table 3.28. Soft D-PHY Data-Clock Timing Specifications	
Table 3.29. Maximum I/O Buffer Speed ^{1, 2, 3, 4, 7}	
Table 3.30. Pin-to-Pin Performance ¹	72
Table 3.31. Register-to-Register Performance ^{1, 3, 4}	
Table 3.32. LMMI F _{MAX} Summary	
Table 3.33. External Switching Characteristics (V _{CC} = 1.0 V)	
Table 3.34. sysCLOCK PLL Timing (Vcc = 1.0 V)	
Table 3.35. Internal Oscillators (Vcc = 1.0 V)	
Table 3.36. User I2C Specifications (V _{CC} = 1.0 V)	84

Table 3.37. ADC Specifications ¹	
Table 3.38. Comparator Specifications ¹	86
Table 3.39. DTR Specifications ^{1, 2}	86
Table 3.40. PCIe (2.5 Gbps)	86
Table 3.41. PCIe (5 Gbps)	88
Table 3.42. SGMII ¹	89
Table 3.43. sysCONFIG Port Timing Specifications	90
Table 3.44. JTAG Port Timing Specifications	97
Table 3.45. Test Fixture Required Components, Non-Terminated Interfaces ¹	99
Table 4.1. Absolute Maximum Ratings	100
Table 4.2. Recommended Operating Conditions	101
Table 4.3. Power Supply Ramp Rates	102
Table 4.4. Power-On Reset	
Table 4.5. On-Chip Termination Options for Input Modes	103
Table 4.6. Hot Socketing Specifications for GPIO	103
Table 4.7. DC Electrical Characteristics – Wide Range	104
Table 4.8. DC Electrical Characteristics – High Speed	104
Table 4.9. Capacitors – Wide Range	104
Table 4.10. Capacitors – High Performance	105
Table 4.11. Single Ended Input Hysteresis – Wide Range	105
Table 4.12. Single Ended Input Hysteresis – High Performance	105
Table 4.13. sysI/O Recommended Operating Conditions	106
Table 4.14. sysI/O DC Electrical Characteristics – Wide Range I/O	107
Table 4.15. sysI/O DC Electrical Characteristics – High Performance I/O ³	107
Table 4.16. I/O Resistance Characteristics	108
Table 4.17. V _{IN} Maximum Overshoot/Undershoot Allowance – Wide Range ^{1, 2}	108
Table 4.18. V _{IN} Maximum Overshoot/Undershoot Allowance – High Performance ^{1, 2}	108
Table 4.19. LVDS DC Electrical Characteristics ¹	109
Table 4.20. LVDS25E DC Conditions	109
Table 4.21. SubLVDS Input DC Electrical Characteristics	110
Table 4.22. SubLVDS Output DC Electrical Characteristics	111
Table 4.23. SLVS Input DC Characteristics	111
Table 4.24. SLVS Output DC Characteristics	
Table 4.25. Maximum I/O Buffer Speed ^{1, 2, 3, 4, 7}	
Table 4.26. Pin-to-Pin Performance ¹	115
Table 4.27. Register-to-Register Performance ^{1, 3, 4}	115
Table 4.28. LMMI F _{MAX} Summary	
Table 4.29. External Switching Characteristics (V _{CC} = 1.0 V)	116
Table 4.30. sysCLOCK PLL Timing (V _{CC} = 1.0 V)	
Table 4.31. Internal Oscillators (V _{CC} = 1.0 V)	
Table 4.32. User I2C Specifications (Vcc = 1.0 V)	126
Table 4.33. ADC Specifications ¹	
Table 4.34. Comparator Specifications ¹	128
Table 4.35. DTR Specifications ^{1, 2}	
Table 4.36. PCIe (2.5 Gb/s)	
Table 4.37. PCIe (5 Gb/s)	
Table 4.38. SGMII ¹	
Table 4.39. sysCONFIG Port Timing Specifications	
Table 4.40. JTAG Port Timing Specifications	
Table 4.41. Test Fixture Required Components, Non-Terminated Interfaces ¹	
Table 5.1. Signal Descriptions ¹	
Table 5.2. Pin Information Summary for Logic Optimized Device	
Table 5.3. Pin Information Summary for I/O Optimized Device	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition			
AES	Advanced Encryption Standard			
BGA	Ball Grid Array			
CDR	Clock and Data Recovery			
CRC	Cycle Redundancy Code			
DCC	Dynamic Clock Control			
DCS	Dynamic Clock Select			
DDR	Double Data Rate			
DLL	Delay Locked Loop			
DSP	Digital Signal Processing			
EBR	Embedded Block RAM			
ECC	Error Correction Coding			
ECDSA	Elliptic Curve Digital Signature Algorithm			
ECLK	Edge Clock			
FFT	Fast Fourier Transform			
FIFO	First In First Out			
FIR	Finite Impulse Response			
LC	Logic Cell			
LRAM	Large RAM			
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor			
LVDS	Low-Voltage Differential Signaling			
LVPECL	Low Voltage Positive Emitter Coupled Logic			
LVTTL	Low Voltage Transistor-Transistor Logic			
LUT	Look Up Table			
PCI	Peripheral Component Interconnect			
PCS	Physical Coding Sublayer			
PCLK	Primary Clock			
PDPR	Pseudo Dual Port RAM			
PFU	Programmable Functional Unit			
PIC	Programmable I/O Cells			
PLL	Phase Locked Loop			
POR	Power On Reset			
RGMII	Reduced Gigabit Media Independent Interface			
SCI	SERDES Client Interface			
SER	Soft Error Rate			
SERDES	Serializer/Deserializer			
SEU	Single Event Upset			
SGMII	Serial Gigabit Media Independent Interface			
SLVS	Scalable Low-Voltage Signaling			
SPI	Serial Peripheral Interface			
SPR	Single Port RAM			
SRAM	Static Random-Access Memory			
TAP	Test Access Port			
	· ·			

1. General Description

The Certus™-NX family of low-power general purpose FPGAs can be used in a wide range of applications across multiple markets and are optimized for bridging and processing needs in Edge applications. It is built on the Lattice Nexus™ FPGA platform, using low-power 28 nm FD-SOI technology. It combines the extreme flexibility of an FPGA with the low power and high reliability (due to extremely low SER) of FD-SOI technology and offers small footprint package options with a high amount of I/O per mm². Design security features such as AES-256 encryption and ECDSA authentication are also supported.

Certus-NX supports a variety of interfaces including PCI Express (Gen1, Gen2), SGMII⁴ (Gigabit Ethernet), LVDS, LVCMOS (0.9–3.3 V), and more.

Processing features of Certus-NX include up to 65k Logic Cells, 128 multipliers (18 \times 18), 3.3 Mb of embedded memory (consisting of EBR and LRAM blocks), distributed memory, DRAM interfaces (supporting DDR3, DDR3L, and LPDDR2 up to 1066 Mbps \times 16 bits data width).

Certus-NX FPGAs support fast configuration of the reconfigurable SRAM-based logic fabric, and ultra-fast configuration (under 3 ms) of its programmable sysI/O™. In addition to the high reliability inherent to FD-SOI technology (due to its extremely low SER), active reliability features such as built-in frame-based SED/SEC (for SRAM-based logic fabric), and ECC (for EBR and LRAM) are also supported. Dual 12-bit ADCs are available on-chip for system monitoring functions.

Certus-NX FPGAs are offered in logic optimized and I/O optimized devices to satisfy a broad range of end applications.

Lattice Radiant™ design software allows large complex user designs to be efficiently implemented in the Certus-NX FPGA family. Synthesis library support for Certus-NX devices is available for popular logic synthesis tools. Radiant tools use the synthesis tool output along with constraints from floor planning tools to place and route the user design for the Certus-NX device. The tools extract timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the Certus-NX family. By using these configurable soft IP cores as standardized blocks, the user is free to concentrate on the unique aspects of the design, increasing productivity.

1.1. Features

- Available in Commercial, Industrial and Automotive temperature grades.
- Programmable architecture
 - 9k to 65k logic cells
 - 12 to 128 sysDSP™ blocks (18 x 18 multipliers)
 - 1 to 3.3 Mb of embedded memory (EBR, LRAM)
 - 77 to 371 programmable sysI/O (High Performance and Wide Range I/O)
- Programmable sysl/O supports wide variety of interfaces.
 - High Performance (HP) I/O on bottom I/O banks
 - Supports up to 1.8 V VCCIO
 - Mixed voltage support (1.0 V, 1.2 V, 1.5 V, 1.8 V)
 - High-speed differential up to 1.5 Gbps
 - Supports LVDS, Soft D-PHY (Tx/Rx), LVDS 7:1 (Tx/Rx), SLVS (Tx/Rx), subLVDS (Rx)
 - Supports SGMII (Gb Ethernet)⁴
 - Two channels (Tx/Rx) at 1.25 Gbps⁴
 - Dedicated DDR3/DDR3L and LPDDR2 memory support with DQS logic, up to 1066 Mbps data rate and ×16 bits data width
 - Wide Range (WR) I/O on left, right, and top I/O Banks
 - Supports up to 3.3 V V_{CCIO}
 - Mixed voltage support (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V)
 - Programmable slew rate (slow, med, fast)
 - Controlled impedance mode
 - Emulated LVDS support
 - Hot Socketing Support
- Power modes Low Power, High-Performance
 - User selectable
 - Low-Power mode for power and/or thermal challenges
 - High-Performance mode for faster processing
- Small footprint package options
 - 6 × 6 mm package option in both densities

- Two channels of CDR up to 1.25 Gbps to support SGMII on HP I/O^{1, 3, 4}
 - CDR for RX
 - 10b/8b decoding
 - Independent Loss of Lock (LOL) detector for each CDR block
- sysCLOCK™ analog PLLs
 - Up to three PLLs
 - Six outputs per PLL
 - Fractional N
 - Programmable and dynamic phase control
- sysDSP enhanced DSP blocks
 - Hardened pre-adder
 - Dynamic shift for AI/ML support
 - Four 18 × 18, eight 9 × 9, two 18 × 36, or 36 × 36 multipliers per block
 - Advanced 18 × 36, two 18 × 18, or four 8 × 8
 MACs per block
- Flexible memory resources
 - Up to 3.3 Mb sysMEM™ Embedded Block RAM
 - Programmable width
 - ECC²
 - FIFO
 - 57k to 432k bits distributed RAM
 - Large RAM Blocks
 - 0.5 Mbits per block
 - Up to five blocks (2.5 Mb total) per device
- SERDES PCIe Gen2 ×1 channel (Tx/Rx) hard IP in 28k,39k, 35k, and 65k LC device
 - PCIe hard IP supports:
 - Gen1 and Gen2
 - Endpoint and Root complex
 - Multi-function up to four functions
 - ×1 lane
- Internal bus interface support
 - APB control bus
 - AHB-Lite for data bus
 - AXI4-streaming
- Configuration Fast, Secure
 - SPI ×1, ×2, ×4 up to 150 MHz
 - Master and Slave SPI support
 - JTAG
 - I2C and I3C
 - Ultrafast I/O configuration for instant-on support (under 3 ms)
 - Less than 15 ms full device configuration for LFD2NX-40⁵

- Cryptographic engine
 - Bitstream encryption using AES-256
 - Bitstream authentication using ECDSA
 - Hashing algorithms SHA, HMAC
 - True Random Number Generator
 - AES 128/256 Encryption
- Single Event Upset (SEU) Mitigation Support
 - Extremely low Soft Error Rate (SER) due to FD-SOI technology
 - Soft Error Detect Embedded hard macro
 - Soft Error Correction Without stopping user operation
 - Soft Error Injection Emulate SEU event to debug system error handling
- ADC block with two SAR ADCs that sample simultaneously¹
 - Dedicated differential pair input for each SAR
 - Up to eight additional differential pair input for each SAR ADC
 - 12-bit resolution
 - Sampling frequency of 620 ksps for each channel
 - Up to three continuous-time comparators
- System level support
 - IEEE 1149.1 and IEEE 1532 compliant
 - Reveal Logic Analyzer
 - On-chip oscillator for initialization
 - 1.0 V core power supply

Notes:

- 1. Except caBGA196.
- 2. Available in select speed grades. See the Ordering Information section.
- 3. Requires -9 speed grade in Commercial and Industrial temperature grades, or -7 speed grade in Automotive temperature grade.
- 4. The SGMII interface using LVDS I/O has limitations when operating across the full specified temperature range. Lattice recommends using alternative interfaces, such as SERDES or RGMII, for designs requiring Gigabit Ethernet. Refer to the Knowledge Database article for details. Contact your local Lattice sales representative for more information.
- 5. Achieved with MSPI self-configuration: Fast V_{CC} ramp, QSPI Flash, MCLK=150 MHz, no EBR or LRAM init data in bitstream.

Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide

	Logic Optimized I/O Optimized							
Device	LFD2NX-9	LFD2NX-17	LFD2NX-28	LFD2NX-40	LFD2NX-15	LFD2NX-25	LFD2NX-35	LFD2NX-65
Logic Cells ¹	9k	17k	28k	39k	15k	25k	35k	65k
Embedded Memory (EBR) Blocks (18 kb)	15	24	58	84	48	80	105	128
Embedded Memory (EBR) Bits (kb)	270	432	1044	1,512	864	1440	1,890	2,304
Distributed RAM Bits (kb)	57	108	180	252	108	180	232	432
Large Memory (LRAM) Blocks	3	5	2	2	1	1	1	2
Large Memory (LRAM) Bits (kb) (512 kbits each)	1536	2560	1024	1024	512	512	512	1024
18 X 18 Multipliers	12	24	40	56	12	20	48	128
ADC Block with two SAR ADCs ²	1	1	1	1	1	1	1	1
450 MHz High Frequency Oscillator	1	1	1	1	1	1	1	1
128 kHz Low Power Oscillator	1	1	1	1	1	1	1	1
GPLL	2	2	3	3	2	2	2	2
PCIe Gen2 Hard IP	ı	1	1	1	1	_	1	1
Packages (Size, Ball Pitch)			Total I/O (Wid	le Range, Hig	h Performance	, ADC³)/PCle La	ane ⁴	
csfBGA121 (6 × 6 mm, 0.5 mm)	77 (23, 48, 6) / 0	77 (23, 48, 6) / 0	81 (23, 58, 0) / 1	81 (23, 58, 0) / 1	1	_	_	_
caBGA196 (12 × 12 mm, 0.8 mm)	77 (23, 48, 6) / 0	77 (23, 48, 6) / 0	156 (92, 58, 6) / 0	156 (92, 58, 6) / 0	_	_	_	_
caBGA256 (14 × 14 mm, 0.8 mm)	_	_	191 (111, 74, 6) / 1	191 (111, 74, 6) / 1	205 (159,40,6)/0	205 (159,40,6)/0	TBD	TBD
caBGA400 (17 x 17 mm, 0.8mm)	_	_	_	_	311 (257,48,6)/0	311 (257,48,6)/0	313 (259,48,6)/0	313 (259,48,6)/0
caBGA484 (19 x 19 mm, 0.8mm)	_	_	_	_	_	_	371 (317,48,6)/1	371 (317,48,6)/1

Notes:

- 1. Logic Cells = LUTs × 1.2 effectiveness.
- 2. Available in –8 and –9 speed grades. Each ADC has a dedicated differential pair of input pins and a V_{REF} pin.
- 3. Each ADC pin count reflects using dedicated complement pair and V_{REF} .
- 4. Each PCIe lane consists of a Tx and Rx complement pair.

Table 1.2. Certus-NX Automotive Family Selection Guide

Device	LFD2NX-9	LFD2NX-17	LFD2NX-28	LFD2NX-40
Logic Cells ¹	9k	17k	28k	39k
Embedded Memory (EBR) Blocks (18 kb)	15	24	58	84
Embedded Memory (EBR) Bits (kb)	270	432	1054	1,512
Distributed RAM Bits (kb)	80	80	240	240
Large Memory (LRAM) Blocks	3	5	2	2
Large Memory (LRAM) Bits (kb)	1536	2560	1024	1024
18 X 18 Multipliers	12	24	40	56
ADC Block with two SAR ADCs ²	1	1	1	1
450 MHz High Frequency Oscillator	1	1	1	1
128 kHz Low Power Oscillator	1	1	1	1
GPLL	2	2	3	3
PCIe Gen2 Hard IP	_	_	1	1
Packages (Size, Ball Pitch)	Total I/O (Wide Range, High Performance, ADC ³) / PCIe Lane ⁴			
csfBGA121 (6 × 6 mm, 0.5 mm)	77 (23, 48, 6) / 0	77 (23, 48, 6) / 0	81 (23, 58, 0) / 1	81 (23, 58, 0) / 1
caBGA196 (12 × 12 mm, 0.8 mm)	77 (23, 48, 6) / 0	77 (23, 48, 6) / 0	156 (92, 58, 6) / 0	156 (92, 58, 6) / 0
caBGA256 (14 × 14 mm, 0.8 mm)	_	_	191 (111, 74, 6) / 1	191 (111, 74, 6) / 1

Notes:

- 1. Logic Cells = LUTs \times 1.2 effectiveness.
- 2. Available in –7 and –8 speed grade.
- 3. Each ADC pin count reflects using dedicated complement pair and V_{REF} .
- 4. Each PCIe lane consists of a Tx and Rx complement pair.

Table 1.3. Specification Status for Certus-NX Devices

Devices	Package	Grade	Status
LFD2NX-9	csfBGA121	Commercial/Industrial/Automotive	Production
LFDZINA-9	caBGA196	Commercial/Industrial/Automotive	Advance
LFD2NX-17	csfBGA121	Commercial/Industrial/Automotive	Production
LFD2NX-17	caBGA196	Commercial/Industrial/Automotive	Advance
LFD2NX-28	csfBGA121, caBGA196, and caBGA256	Commercial/Industrial/Automotive	Production
LFD2NX-40	csfBGA121, caBGA196, and caBGA256	Commercial/Industrial/Automotive	Production
LFD2NX-15	caBGA256 and caBGA400	Commercial/Industrial	Advance
LFD2NX-25	caBGA256 and caBGA400	Commercial/Industrial	Advance
LFD2NX-35	caBGA256, caBGA400, and caBGA484	Commercial/Industrial	Advance
LFD2NX-65	caBGA256, caBGA400, and caBGA484	Commercial/Industrial	Advance

2. Architecture

2.1. Overview

Each Certus-NX device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) and rows of sysDSP Digital Signal Processing blocks, as shown in Figure 2.1. The sysMEM EBR blocks are large, dedicated 18 kb fast memory blocks and have built-in ECC and FIFO support. Each sysMEM block can be configured to a single, pseudo dual or true dual port memory in a variety of depths and widths as RAM or ROM. Each DSP block supports a variety of multiplier and adder configurations with one 108-bit or two 54-bit accumulators supported, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIO (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the Certus-NX devices are arranged in multiple banks allowing the implementation of a wide variety of I/O standards. The Wide Range (WR) I/O banks that are located on the top, bottom, left and right sides of the device provide flexible ranges of general purpose I/O configurations up to 3.3 V V_{CCIO}. Selected banks located on the bottom side of the device are dedicated to High Performance (HP) interfaces such as LVDS, DDR3, and LPDDR2 supporting up to 1.8 V V_{CCIO}.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. The registers in the PFU and sysI/O blocks in Certus-NX devices can be configured to be SET or RESET. After power up and device configuration, it enters into user mode with these registers SET/RESET according to the user design, allowing the device to power up in a known state for predictable system function.

In addition, Certus-NX devices provide various system level hard IP functional and interface blocks such as PCIe (LFD2NX-28, LFD2NX-40, LFD2NX-35 and LFD2NX-65 only), I2C, SGMII/CDR, and ADC blocks. The PCIe hard IP supports PCIe Generation 2.0. Certus-NX devices also provide security features to help protect user designs and deliver more robust reliability by offering enhanced frame-based SED/SEC functions.

Other blocks provided include PLLs, DLLs, and configuration functions. The PLL and DLL blocks are located at the corners of each device. Certus-NX devices also include the Lattice Memory Mapped Interface (LMMI) which is a Lattice standard to support simple read and write operations to control internal IP.

Every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The Certus-NX devices use 1.0 V as their core voltage.

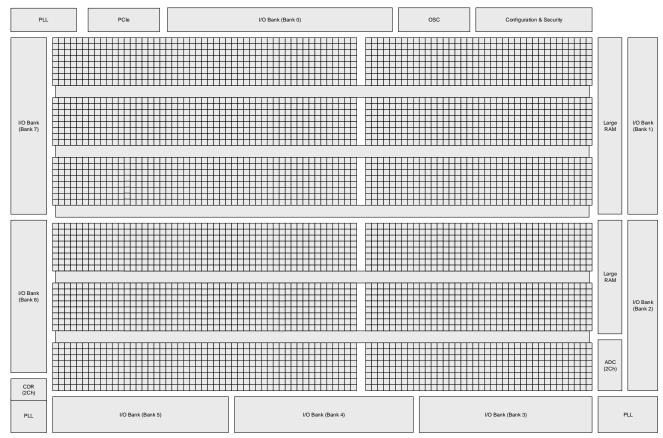


Figure 2.1. Simplified Block Diagram, LFD2NX-28 and LFD2NX-40 Devices (Top Level)

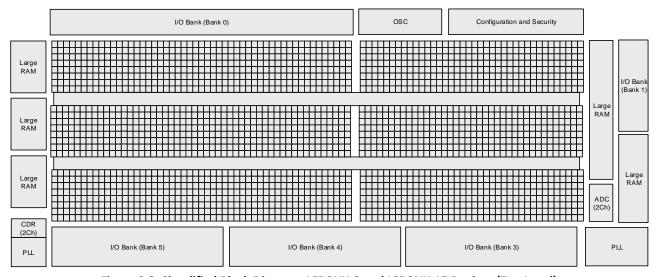


Figure 2.2. Simplified Block Diagram, LFD2NX-9 and LFD2NX-17 Devices (Top Level)

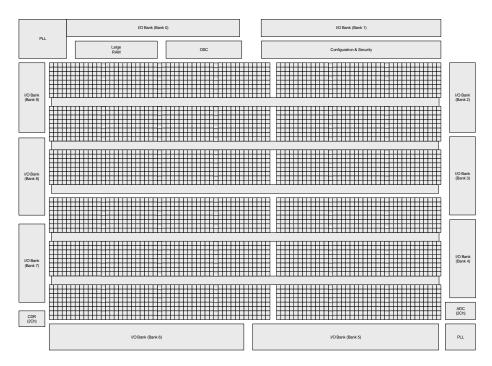


Figure 2.3. Simplified Block Diagram, LFD2NX-15 and LFD2NX-25 Devices (Top Level)

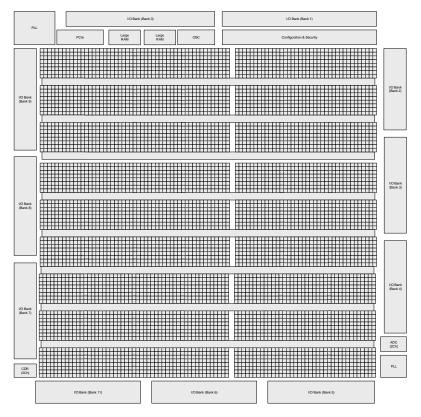


Figure 2.4. Simplified Block Diagram, LFD2NX-35 and LFD2NX-65 Devices (Top Level)

2.2. PFU Blocks

The core of the Certus-NX device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0–3 as shown in Figure 2.5. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing.

The PFU block can be used to perform Logical, Arithmetic, RAM or ROM functions. Table 2.1 shows the functions each slice can perform in either Distributed SRAM or non-distributed SRAM modes.

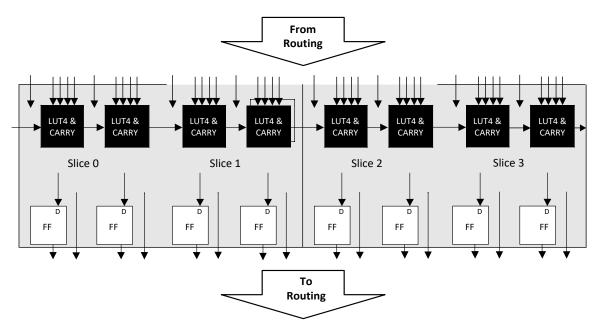


Figure 2.5. PFU Diagram

2.2.1. Slice

Each slice contains two LUT4s feeding two registers. In Distributed SRAM mode, Slice 0 and Slice 1 are configured as distributed memory and Slice 2 is not available as it is used to support Slice 0 and Slice 1, while Slice 3 is available as Logic or ROM. Table 2.1 shows the capability of the slices along with the operation modes they enable. In addition, each Slice contains logic that allows the LUTs to be combined to perform a LUT5 function. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions.

Table 2.1. Resources and Modes Available per Sl

Clina	PFU (Used as Distributed SRAM)		PFU (Not used as Distributed SRAM)		
Slice	Resources	Modes	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 1	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 2	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Figure 2.6 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive or negative edge clocking.

Each slice has 17 input signals: 16 signals from routing and one from the carry-chain (from the adjacent slice or PFU). Three of them are used for FF control and shared between two slices (0/1 or 2/3). There are five outputs: four to routing and one to carry-chain (to the adjacent PFU). Table 2.2 and Figure 2.6 list the signals associated with all the slices. Figure 2.7 shows the slice signals that support a LUT5 or two LUT5 functions. F0 can be configured to have a LUT4 or LUT5 output while F1 is for a LUT4 output.

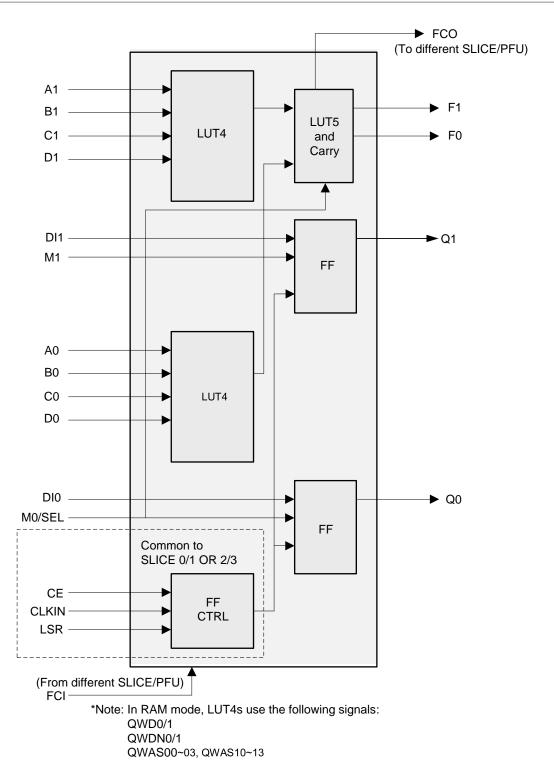
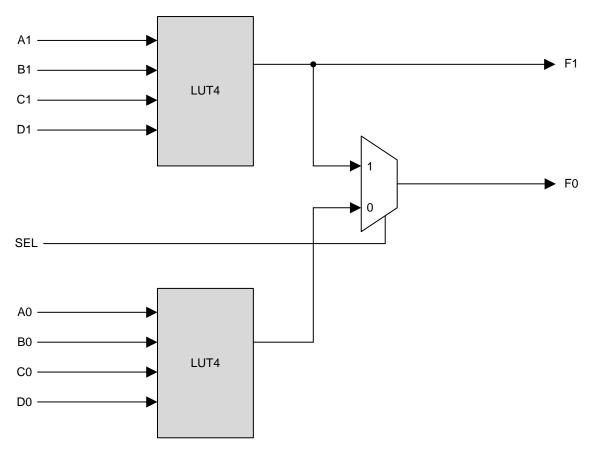



Figure 2.6. Slice Diagram

*Note: In RAM mode, LUT4s use the following signals:

QWD0/1 QWDN0/1

QWAS00~03, QWAS10~13

Figure 2.7. Slice Configuration for LUT4 and LUT5

Table 2.2. Slice Signal Descriptions¹

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Data signal	M0, M1	Direct input to FF from fabric
Input	Control signal	SEL	LUT5 mux control input
Input	Data signal	DI0, DI1	Inputs to FF from LUT4 F0/F1 outputs
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLKIN	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-in
Output	Data signals	F0	LUT4/LUT5 output signal
Output	Data signals	F1	LUT4 output signal
Output	Data signals	Q0, Q1	Register outputs
Output	Inter-PFU signal	FCO	Fast carry chain output

Note:

1. See Figure 2.6 for connection details.

2.2.2. Modes of Operation

Slices 0-2 have up to four potential modes of operation: Logic, Ripple, RAM, and ROM. Slice 3 is not needed for RAM mode, it can be used in Logic, Ripple, or ROM modes.

2.2.2.1. Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice.

2.2.2.2. Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear 2-bit using dynamic control
- Up/Down counter with preload (sync) 2-bit using dynamic control
- Comparator functions of A and B inputs 2-bit
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B
- Up/Down counter with A greater-than-or-equal-to B comparator 2-bit using dynamic control
- Up/Down counter with A less-than-or-equal-to B comparator 2-bit using dynamic control
- Multiplier support Ai×Bj+1 + Ai+1×Bj in one logic cell with 2 logic cells per slice
- Serial divider 2-bit mantissa, shift 1bit/cycle
- Serial multiplier 2-bit, shift 1bit/cycle or 2bit/cycle

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

2.2.2.3. RAM Mode

In this mode, a 16×4 -bit distributed single or pseudo dual port RAM can be constructed in one PFU using each LUT block in Slice 0 and Slice 1 as a 16×2 -bit memory in each slice. Slice 2 is used to provide memory address and control signals. The Certus-NX devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different sized memories. Where appropriate, the software constructs these using distributed memory primitives that represent the capabilities of the PFU. Table 2.3 lists the number of slices required to implement different distributed RAM primitives. For more information about using RAM in Certus-NX devices, refer to Memory Usage Guide for Nexus Platform (FPGA-TN-02094).

Table 2.3. Number of Slices Required to Implement Distributed RAM

	SPR1 16 × 4	PDPR ¹ 16 × 4
Number of slices	3	3

Note:

SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

2.2.2.4. ROM Mode

ROM mode uses the LUT logic; hence, Slice 0 through Slice 3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information, refer to Memory Usage Guide for Nexus Platform (FPGA-TN-02094).

2.3. Routing

There are many resources provided in the Certus-NX devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers, and metal interconnect (routing) segments.

The Certus-NX family has an enhanced routing architecture that produces a compact design. The Radiant software tool takes the output of the synthesis tool and places and routes the design.

2.4. Clocking Structure

The Certus-NX clocking structure consists of clock synthesis blocks (PLLs), balanced clock tree networks (PCLK & ECLK), and efficient clock logic modules: Clock Dividers (PCLKDIV and ECLKDIV), Dynamic Clock Selection (DCS), Dynamic Clock Control (DCC), and DDRDLLs. Each of these functions is described as follows.

2.4.1. Global PLL

The Global PLLs (GPLL) provide the ability to synthesize clock frequencies. The devices in the Certus-NX family support two or three full-featured General Purpose GPLLs. The architecture of the GPLL is shown in Figure 2.8. A description of the GPLL functionality follows.

REFCLK is the reference frequency input to the PLL and its source can come from external CLK inputs or from internal routing. The CLKI input feeds into the input Clock Divider block.

CLKFB is the feedback signal to the GPLL which can come from a path internal to the PLL or from FPGA routing. The feedback divider is used to multiply the reference frequency and thus synthesize a higher or lower frequency clock output.

The PLL has six clock outputs CLKOP, CLKOS, CLKOS2, CLKOS3, CLKOS4, and CLKOS5. Each output has its own output divider, thus allowing the GPLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. Each GPLL output can be used to drive the primary clock or edge clock networks.

The setup and hold times of the device can be improved by programming a phase shift into the output clocks which advances or delays the output clock with reference to the un-shifted output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically using the DIRSEL, DIR, DYNROTATE, and LOADREG ports.

The LOCK signal is asserted when the GPLL determines it has achieved lock and de-asserted if a loss of lock is detected. The lock signal is asynchronous to the PLL clock outputs.

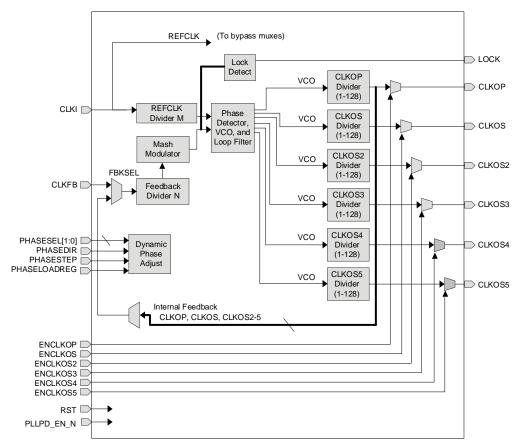


Figure 2.8. General Purpose PLL Diagram

For more details on the PLL, the user can refer to the sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

2.4.2. Clock Distribution Network

There are two main clock distribution networks for any member of the Certus-NX product family, namely Primary Clock (PCLK) and Edge Clock (ECLK). These clock networks can be driven from many different sources, such as Clock Pins, PLL outputs, DLLDEL outputs, Clock Divider outputs, SERDES/PCS clocks, and user logic. There are Clock Divider blocks (ECLKDIV and PCLKDIV) to provide a slower clock from these clock sources.

Certus-NX supports glitchless Dynamic Clock Control (DCC) for the PCLK Clock to save dynamic power. There are also Dynamic Clock Selection logic to allow glitchless selection between two clocks for the PCLK network (DCS).

An Overview of the Clocking Network is shown in Figure 2.9 for the Certus-NX logic optimized device. The shaded blocks (Left I/O banks, PCIe and upper left PLL) are not available in the 9k and 17k Logic Cell device.

An Overview of the Clocking Network is shown in Figure 2.10 for the Certus-NX I/O optimized device. The shaded PCIe block is not available in the 15k and 25k Logic Cell device.

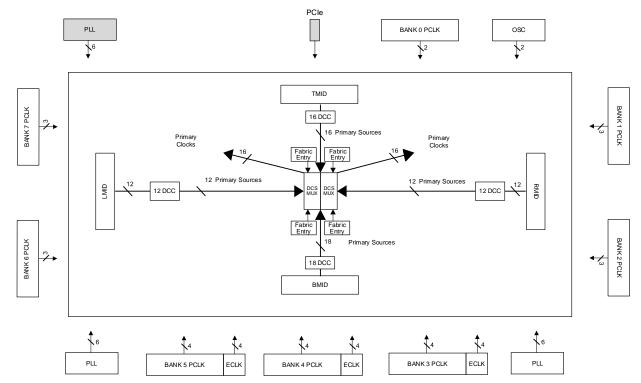


Figure 2.9. Clocking for Certus-NX Logic Optimized Device

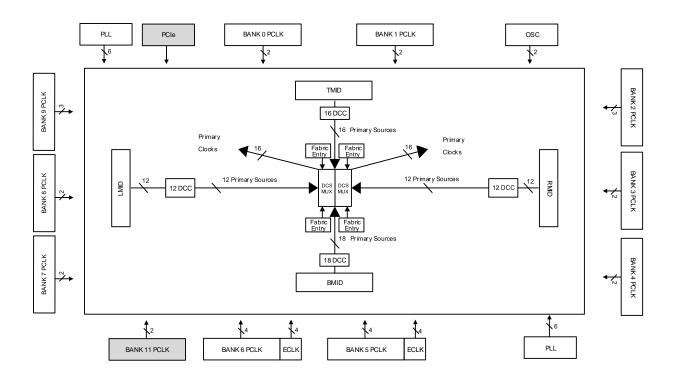


Figure 2.10. Clocking for Certus-NX I/O Optimized Device

2.4.3. Primary Clocks

The Certus-NX device family provides low-skew, high fan-out clock distribution to all synchronous elements in the FPGA fabric through the Primary Clock Network. The Certus-NX PCLK clock network is a balanced clock structure which is designed to minimize the clock skew across all destinations in the FPGA core.

The primary clock network is divided into two clock domains depending on the device density. Each of these domains has 16 clocks that can be distributed to the fabric in the domain.

The Lattice Radiant software can automatically route each clock to one of the domains up to a maximum of 16 clocks per domain. The user can change how the clocks are routed by specifying a preference in the Lattice Radiant software to locate the clock to a specific domain. The Certus-NX device provides the user with a maximum of 64 unique clock input sources that can be routed to the primary Clock network.

Primary clock sources are:

- Dedicated clock input pins
- PLL outputs
- PCLKDIV, ECLKDIV outputs
- Internal FPGA fabric entries (with minimum general routing)
- SGMII-CDR, PCIe clocks
- OSC clock

These sources are routed to each of four clock switches called a Mid Mux (LMID, RMID, TMID, BMID). The outputs of the Mid MUX are routed to the center of the FPGA where additional clock switches (DSC_CMUX) are used to route the primary clock sources to primary clock distribution to the Certus-NX fabric. These routing muxs are shown in Figure 2.9. There are potentially 64 unique clock domains that can be used in the largest Certus-NX Device. For more information about the primary clock tree and connections, refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

2.4.4. Edge Clock

Certus-NX FPGAs have a number of high-speed edge clocks that are intended for use with the PIO in the implementation of high-speed interfaces. There are four (4) ECLK networks per bank I/O on the Bottom side of the device. The Edge clock network is powered by a separate power domain (to reduce power noise injection from the core and reduce overall noise induced jitter) while controlled by the same logic that gates the FPGA core and PCLK domains for power management.

Each Edge Clock can be sourced from the following:

- Dedicated PIO Clock input pins (PCLK)
- DLLDEL output (PIO Clock delayed by 90°)
- PLL outputs (CLKOP, CLKOS, CLKOS2, CLKOS3, CLKOS4, and CLKOS5)
- Internal Nodes

Figure 2.11 illustrates the various ECLK sources for logic optimized devices. Bank 3 is shown in the example. Bank 4 and Bank 5 are similar. For I/O optimized devices, bank 5 and bank 6 provide the ECLK sources.

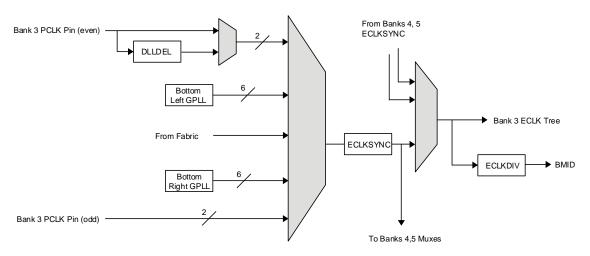


Figure 2.11. Edge Clock Sources per Bank

The edge clocks have low injection delay and low skew. They are typically used for DDR Memory or Generic DDR interfaces. For detailed information on Edge Clock connections, refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

2.4.5. Clock Dividers

The Certus-NX devices have two distinct types of clock divider, Primary and Edge. There are from one (1) to eight (8) Primary Clock Dividers (PCLKDIV) and which are in the DCS_CMUX block(s) at the center of the device. There are up to twelve (12) ECLKDIV dividers per device, locate near the bottom high-speed I/O banks.

The PCLKDIV supports $\div 2$, $\div 4$, $\div 8$, $\div 16$, $\div 32$, $\div 64$, $\div 128$, and $\div 1$ (bypass) operation. The PCLKDIV is fed from a DCSMUX within the DCS_CMUX block. The clock divider output drives one input of the DCS Dynamic Clock Select within the DSC_CMUX block. The Reset (RST) control signal is asynchronous and forces all outputs to low. The divider output starts at next cycle after the reset is synchronously released. The PCLKDIV is shown in context in Figure 2.12.

The ECLKDIV is intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a $\div 2$, $\div 3.5$, $\div 4$, or $\div 5$ mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The ECLKDIV can be fed from selected PLL outputs, external primary clock pins (with or without DLLDEL Delay) or from routing. The clock divider outputs feed into the Bottom Mid-mux (BMID). The Reset (RST) control signal is asynchronous and forces all outputs to low. The divider output starts at next cycle after the reset is synchronously released.

The ECLKDIV block is shown in context in Figure 2.11. For further information on clock dividers, refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

2.4.6. Clock Center Multiplexer Blocks

All clock sources are selected and combined for primary clock routing through the Dynamic Clock Selector Center Multiplexer logic (DCS_CMUX). There are one (1) or two (2) DCS_CMUX blocks per device. Each DCS_CMUX block contains 2 DCSMUX blocks, 1 PCLKDIV, 1 DCS block, and 1 or 2 CMUX blocks. See Figure 2.12 for a representative DCS_CMUX block diagram.

The heart of the DCS_CMUX is the Center Multiplexer (CMUX) block. It can accept up to 64 input clock sources (Midmuxes (RMID, LMID, TMIC, BMID) and DCC) and to drive up to 16 primary clock trunk lines.

Up to two (2) clock inputs to the DCS_CMUX can be routed through a Dynamic Clock Select block then routed to the CMUX. One (1) input to the DCS can be optionally divided by the Primary Clock Divider (PCLKDIV). For more information about the DCS_CMUX, refer to sysCLOCK_PLL_Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

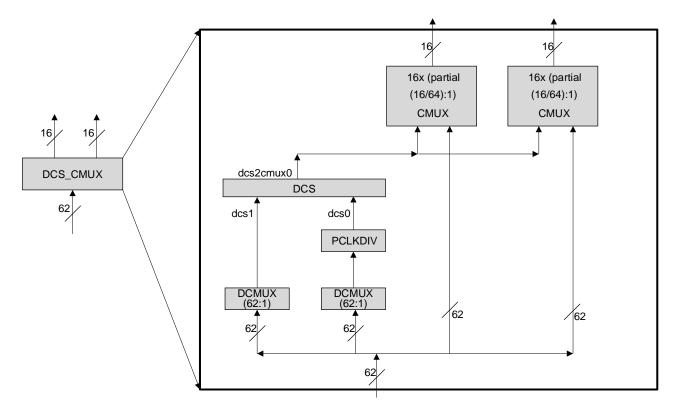


Figure 2.12. DCS_CMUX Diagram

2.4.7. Dynamic Clock Select

The Dynamic Clock Select (DCS) is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources. Depending on the operational mode, it switches between two (2) independent input clock sources either with or without any glitches. This is achieved regardless of when the select signal is toggled. Both input clocks must be running to achieve a functioning glitchless DCS output clock, but running clocks are not required when used as a non-glitchless normal clock multiplexer.

There are one (1) or two (2) DCS blocks per device that feed all clock domains. The DCS blocks are in the DCS_MUX block. The inputs to the DCS blocks come from MIDMUX outputs and user logic clocks via DCC elements. The DCS elements are located at the center of the PLC array core. The output of the DCS is connected to the inputs of Primary Clock Center MUXs (CMUX).

Figure 2.13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information about the DCS, refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

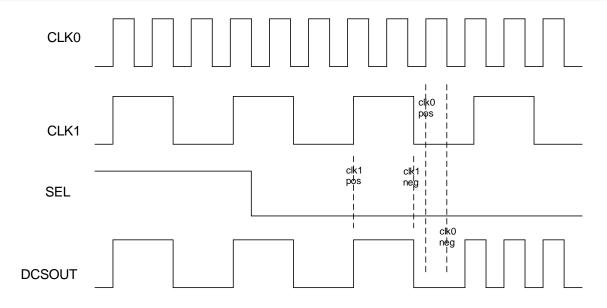


Figure 2.13. DCS Waveforms

2.4.8. Dynamic Clock Control

The Dynamic Clock Control (DCC), Domain Clock enable/disable feature allows internal logic control of the domain primary clock network. When a clock network is disabled, the clock signal is static and does not toggle. All the logic fed by that clock also does not toggle, reducing the overall power consumption of the device. The disable function is glitchless and does not increase the clock latency to the primary clock network.

Four additional DCC elements control the clock inputs from the Certus-NX domain logic to the Center MUX elements (DSC_CMUX).

This DCC controls the clock sources from the Primary CLOCK MIDMUX before they are fed to the Primary Center MUXs that drive the domain clock network. For more information about the DCC, refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

2.4.9. **DDRDLL**

Certus-NX has two identical DDRDLL blocks, located in the lower left and lower right corners of the device. Each DDRDLL (master DLL block) can generate a 9-bit phase shift value corresponding to a 90-degree phase shift of the reference clock input and provide this value to every DQS block and DLLDEL slave delay element. The reference clock can be either from a PLL or an input pin. The DQSBUF uses this value to control the delay of the DQS inputs from a DDR memory interface to achieve a 90-degree shift to clock DQ inputs at the center of the data eye.

• The value is also sent to another slave DLL, DLLDEL, that takes a primary clock input and generates a 90-degree shifted clock output to drive the clocking structure. This is useful in an edge-aligned Generic DDR interface, where 90-degree clocking needs to be created. Not all primary clock inputs have associated DLLDEL control. Figure 2.14 shows DDRDLL connectivity to a DLLDEL block (connectivity to DQSBUF blocks is similar).

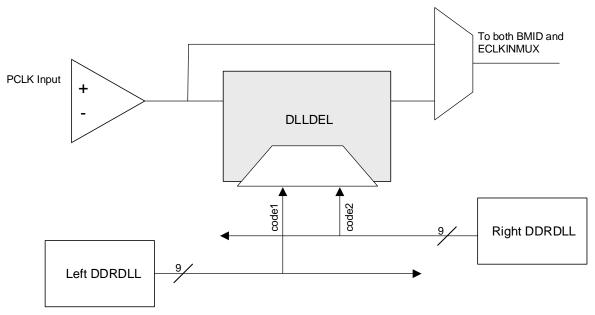


Figure 2.14. DLLDEL Functional Diagram

Each DDRDLL can generate a delay value based on the reference clock frequency. The slave DLLs (DQSBUF and DLLDEL) use the value (code) to either create phase shifted inputs from the DDR memory or create a 90-degree shifted clock. Figure 2.15 shows the connections between the DDRDLL and the slave DLLs.

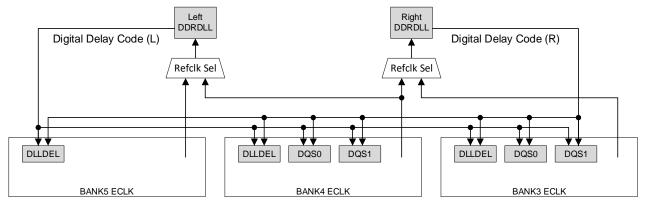


Figure 2.15. DDRDLL Architecture for Logic Optimized Device

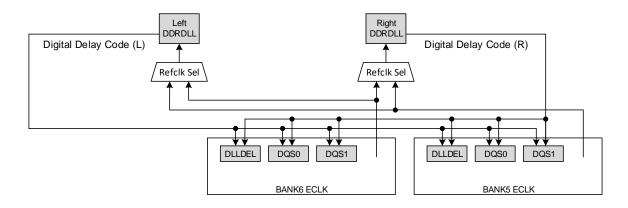


Figure 2.16. DDRDLL Architecture for I/O Optimized Device

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.5. SGMII TX/RX

The Certus-NX device utilizes different components/resources for the transmit and receive paths of Serial Gigabit Media Independent Interface (SGMII). For the SGMII transmit path, Generic DDR I/O with X5 gearing are used. For more information, refer to the GDDRX5_TX.ECLK.Aligned interface section in the Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

For the SGMII receive path, one of the two available hardened CDR (Clock and Data Recovery) Components can be used. There are three main blocks in each CDR: the CDR, deserializer, and FIFO. Each CDR features two loops. The first loop is locked to the reference clock. Once locked, the loop switches to the data path loop where the CDR tracks the data signals to generate the correcting signals that are needed to achieve and maintain phase lock with the data. The data is then passed through a deserializer which deserializes the data to 10-bit parallel data. The 10-bit parallel data is then sent to the FIFO bridge, which allows the CDR to interface with the rest of the FPGA.

Figure 2.17 shows a block diagram of the SGMII CDR IP.

The two hardened blocks are located at the bottom left of the chip and uses the high speed I/O Bank 5 (Logic optimized device) or I/O Bank 6 (I/O optimized device) for the differential pair input. It is recommended that the reference clock should be entered through a GPIO that has connection to the PLL on the lower left corner as well.

For more information on how to implement the hardened CDR for the SGMII solution, refer to the SGMII and Gb Ethernet PCS IP Core (FPGA-IPUG-02077).

Note: The SGMII interface using LVDS I/O has limitations when operating across the full specified temperature range. Lattice recommends using alternative interfaces, such as SERDES or RGMII, for designs requiring Gigabit Ethernet. Refer to the Knowledge Database article for details. Contact your local Lattice sales representative for more information.

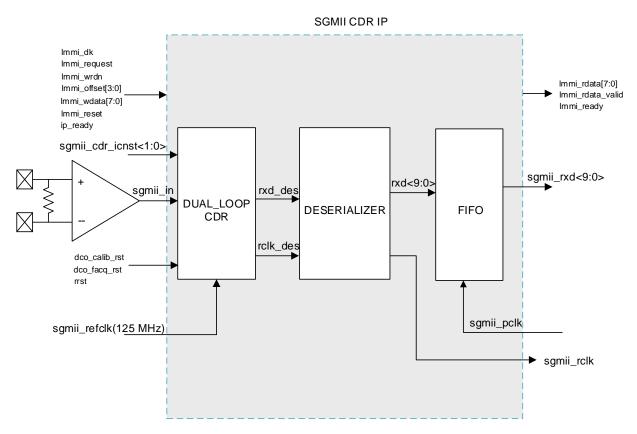


Figure 2.17. SGMII CDR IP

2.6. sysMEM Memory

The Certus-NX devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18 kb RAM with memory core, dedicated input registers and output registers as well as optional pipeline registers at the outputs. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and built in FIFO. In Certus-NX, unused EBR blocks is powered down to minimize power consumption.

2.6.1. sysMEM Memory Block

The sysMEM block can implement single port, dual port, or pseudo dual port memories. Each block can be used in a variety of depths and widths as listed in Table 2.4. FIFOs can be implemented using the built-in read and write address counters and programmable full, almost full, empty, and almost empty flags. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with 18-bit and 36-bit data widths. For more information, refer to Memory Usage Guide for Nexus Platform (FPGA-TN-02094).

EBR also provides a build in ECC engine, which is available in Commercial/Industrial –8 and –9 speed grades and Automotive –7 speed grade. The ECC engine supports a write data width of 32 bits and it can be cascaded for larger data widths such as x64. The ECC parity generator creates and stores parity data for each 32-bit word written. When a read operation is performed, it compares the data with its associated parity data and report back if any Single Event Upset (SEU) event has disturbed the data. Any single bit data disturb is automatically corrected at the data output. In addition, two dedicated error flags indicate if a single-bit or two-bit error has occurred.

Table 2.4. sysMEM Block Configurations

Memory Mode	Configurations	
Single Port	16,384 × 1	
	8,192 × 2	
	4,096 × 4	
	2,048 × 9	
	1,024 × 18	
	512 × 36	
True Dual Port	16,384 × 1	
	8,192 × 2	
	4,096 × 4	
	2,048 × 9	
	1,024 × 18	
Pseudo Dual Port	16,384 × 1	
	8,192 × 2	
	4,096 × 4	
	2,048 × 9	
	1,024 × 18	
	512 × 36	

2.6.2. Bus Size Matching

All the multi-port memory modes support different widths on each of the ports (except ECC mode which only supports a write data width of 32 bits). The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.6.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.6.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.6.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

2.6.6. Memory Output Reset

The EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2.18. The optional Pipeline Registers at the outputs of both ports are also reset in the same way.

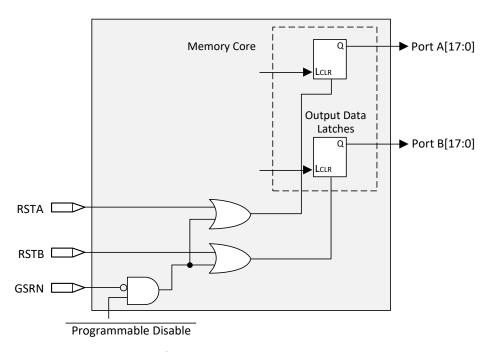


Figure 2.18. Memory Core Reset

For further information on the sysMEM EBR block, see the list of technical documentation in the References section.

2.7. Large RAM

The Certus-NX device includes additional memory resources in the form of Large Random-Access Memory (LRAM) blocks.

The LRAM is designed to work as Single-Port RAM, Dual-Port RAM, Pseudo Dual-Port RAM, and ROM memories. It is meant to function as additional memory resources for the user beyond what is available in the EBR and PFU.

Each individual Large RAM block contains 0.5 Mbits or megabits of memory and has a programmable data width of up to 32 bits. Cascading Large RAM blocks allow data widths of up to 64 bits. Additionally, there is the ability to use either Error Correction Coding (ECC) or byte enable.

2.8. sysDSP

The Certus-NX family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders, and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

2.8.1. sysDSP Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. In the Certus-NX device family, there are many DSP blocks that can be used to support different data widths. This allows the user to use highly parallel implementations of DSP functions. The user can optimize DSP performance versus area by choosing appropriate levels of parallelism. Figure 2.19 compares the fully serial implementation to the mixed parallel and serial implementation.

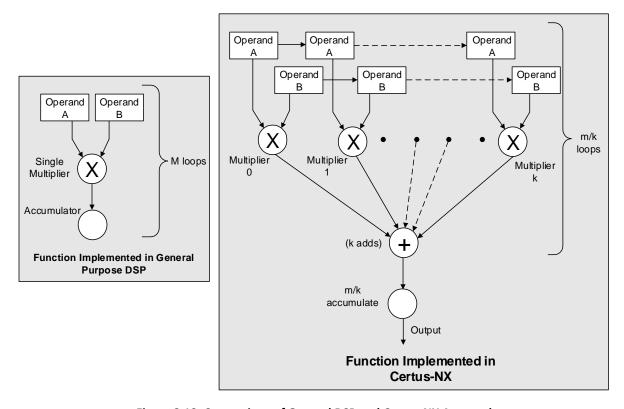


Figure 2.19. Comparison of General DSP and Certus-NX Approaches

2.8.2. sysDSP Architecture Features

The Certus-NX sysDSP block contains two sysDSP slices. The Certus-NX sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The Certus-NX sysDSP block (two sysDSP slices) supports many functions that include the following:

- Symmetry support. The primary target application is wireless. 1D Symmetry is useful for many applications that use FIR filters when their coefficients have symmetry or asymmetry characteristics. The main motivation for using 1D symmetry is cost/size optimization. The expected size reduction is up to 2x.
 - Odd Mode Filter with Odd number of taps
 - Even Mode Filter with Even number of taps
 - Two-dimensional (2D) Symmetry Mode Supports 2D filters for mainly video applications
- Dual-multiplier architecture. Lower accumulator overhead to half and the latency to half compared to single multiplier architecture.
- Fully cascadable DSP across slices. Support for symmetric, asymmetric and non-symmetric filters.
- Multiply $(36 \times 36$, two 18×36 , four 18×18 , or eight 9×9)
- Multiply Accumulate (supports one 18×36 multiplier result accumulation, two 18×18 multiplier result accumulation or four 9×9 multiplier result accumulation)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 × 18 Multiplies feed into an accumulator that can accumulate up to 54 bits)
- Pipeline registers
- 1D Symmetry support. The coefficients of FIR filters have symmetry or negative symmetry characteristics.
 - Odd Mode Filter with Odd number of taps
 - Even Mode Filter with Even number of taps
- 2D Symmetry support. The coefficients of 2D FIR filters have symmetry or negative symmetry characteristics.
 - 3 × 3 and 3 × 5 Internal DSP Slice support
 - 5 × 5 and larger size 2D blocks Semi internal DSP Slice support
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading DSP blocks
 - Minimizes fabric use for common DSP functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2.20, the Certus-NX sysDSP block is backwards-compatible with the LatticeECP3™ sysDSP block, such that, legacy applications can be targeted to Certus-NX sysDSP. Figure 2.20 shows the diagram of sysDSP block.

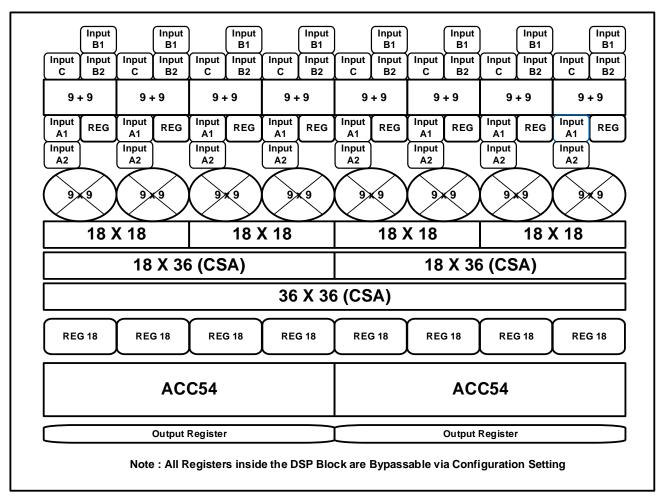


Figure 2.20. DSP Functional Block Diagram

The Certus-NX sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2.5 shows the capabilities of Certus-NX sysDSP block versus the above functions.

Table 2.5. Maximum Number of Elements in a sysDSP block

Width of Multiply	×9	×18	×36
MULT	8	4	1
MAC	2	2	
MULTADDSUB	2	2	_
MULTADDSUBSUM	2	2	_

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting *dynamic operation,* the following operations are possible:

- In the Add/Sub option, the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

For further information, refer to sysDSP Usage Guide for Nexus Platform (FPGA-TN-02096).

2.9. Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysI/O buffers and pads. In Certus-NX devices, the PIO are assembled into groups of two PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the Certus-NX devices, two adjacent PIO can be combined to provide a complementary output driver pair.

2.10. Programmable I/O Cell (PIC)

The programmable I/O cells (PIC) provide I/O function and necessary gearing logic associated with PIO. Certus-NX consists of base PIC and gearing PIC.

Base PICs contain three blocks: an input register block, output register block, and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic. Base PICs cover the top and left/right bank. Gearing PICs contain gearing logic and edge monitor used for locating the center of data window. Gearing PICs cover the bottom banks to support DDR operation.

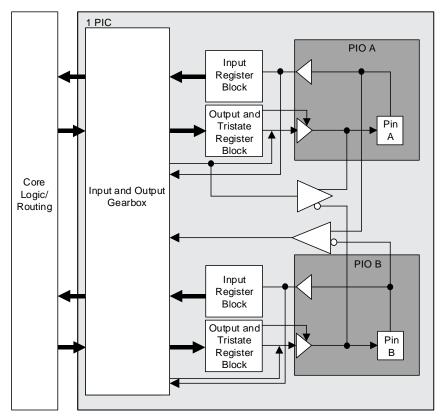


Figure 2.21. Group of Two High Performance Programmable I/O Cells

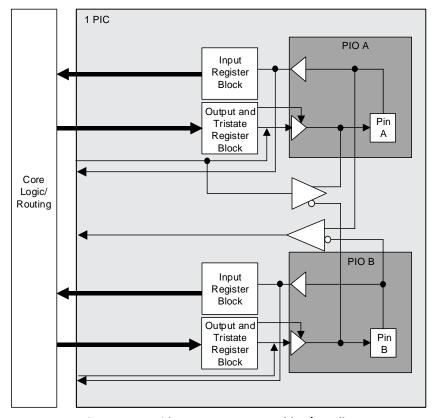


Figure 2.22. Wide Range Programmable I/O Cells

2.10.1. Input Register Block

The input register blocks for the PIO on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIO on the bottom edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the bottom side includes gearing logic and registers to implement IDDRX1, IDDRX2, IDDRX4, and IDDRX5 gearing functions. With two PICs sharing the DDR register path, it can also implement the IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers – shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. For more information on gearing function, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

2.10.2.1. Input FIFO

The Certus-NX PIO has a dedicated input FIFO per single-ended pin for input data register for DDR Memory interfaces. The FIFO resides before the gearing logic. It transfers data from DQS domain to continuous ECLK domain. On the Write side of the FIFO, it is clocked by DQS clock, which is the delayed version of the DQS Strobe signal from DDR memory. On the Read side of FIFO, it is clocked by ECLK. ECLK may be any high-speed clock with identical frequency as DQS (the frequency of the memory chip). Each DQS group has one FIFO control block. It distributes FIFO read/write pointers to every PIC in same DQS group. DQS Grouping and the DQS Control Block is described in DDR Memory Support section.

Table 2.6. Input Block Port Description

Name	Туре	Description
D	Input	High Speed Data Input
Q[1:0]/Q[3:0]/Q[6:0]/Q[7:0]/Q[9:0]	Output	Low Speed Data to the device core
RST	Input	Reset to the Output Block
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQS	Input	Clock from DQS control Block used to clock DDR memory data
ALIGNWD	Input	Data Alignment signal from device core.

Figure 2.23 shows the input register block for the PIO on the top, left, and right edges.

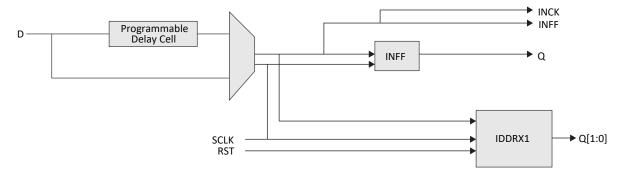
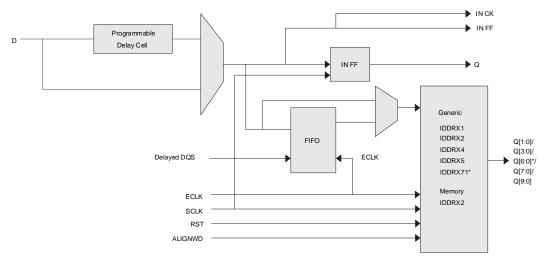



Figure 2.23. Input Register Block for PIO on Top, Left, and Right Sides of the Device

Figure 2.24 shows the input register block for the PIO located on the bottom edge.

*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).

Figure 2.24. Input Register Block for PIO on Bottom Side of the Device

2.10.2. Output Register Block

The output register block registers signals from the core of the device before they are passed to the syst/O buffers.

The Certus-NX output data path has programmable registers and output gearing logic. On the bottom side, the output register block can support 1x, 2x, x4, x5, and 7:1 gearing enabling high speed DDR and DDR memory interfaces. On the top, left, and right sides, the banks support 1x gearing. The Certus-NX output data path diagram is shown in Figure 2.25. The programmable delay cells are also available in the output data path.

For a detailed description of the output register block modes and usage, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

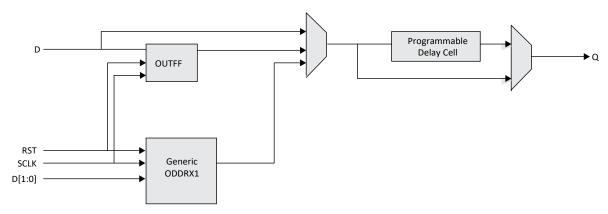
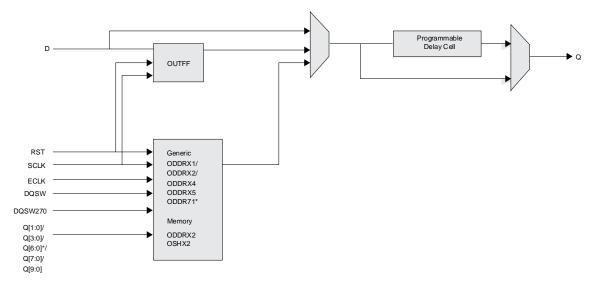



Figure 2.25. Output Register Block on Top, Left, and Right Sides

*For 7:1 LVDS interface only. It is required to use PIO pair pins PIOA/B.

Figure 2.26. Output Register Block on Bottom Side

Table 2.7. Output Block Port Description

Name	Туре	Description
Q	Output	High Speed Data Output
D	Input	Data from core to output SDR register
Q[1:0]/Q[3:0]/Q[6:0]/Q[7:0]/Q[9:0]	Input	Low Speed Data from device core to output DDR register
RST	Input	Reset to the Output Block
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output

2.11. Tri-state Register Block

The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation. In SDR, the TD input feeds one of the flip-flops that then feeds the output. In DDR, operations used mainly for DDR memory interfaces can be implemented on the bottom side of the device. Here, two inputs feed the tri-state registers clocked by both ECLK and SCLK.

Figure 2.27 and Figure 2.28 show the Tri-state Register Block functions on the device. For a detailed description of the tri-state register block modes and usage, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

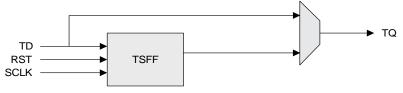


Figure 2.27. Tri-state Register Block on Top, Left, and Right Sides

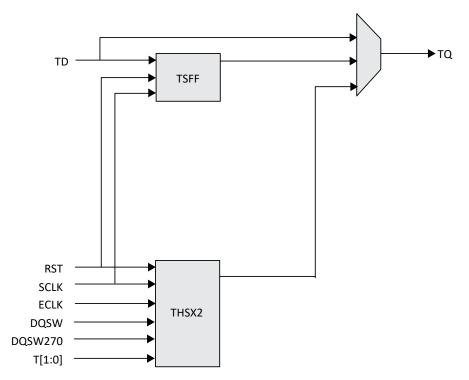


Figure 2.28. Tri-state Register Block on Bottom Side

Table 2.8. Tri-state Block Port Description

Name	Туре	Description
TD	Input	Tri-state Input to Tri-state SDR Register
RST	Input	Reset to the Tri-state Block
T[1:0]	Input	Tri-state input to TSHX2 function
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output
TQ	Output	Output of the Tri-state block

2.12. DDR Memory Support

2.12.1. DQS Grouping for DDR Memory

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR3, DDR3L, and LPDDR2 memory interfaces. The support varies by the edge of the device as detailed below.

The Bottom bank PIC have fully functional elements supporting DDR3, DDR3L, and LPDDR2 memory interfaces. Every 16 PIO on the bottom side are grouped into one DQS group, as shown in Figure 2.29. Within each DQS group, there are two pre-placed pins for DQS and DQS# signals. The rest of the pins in the DQS group can be used as DQ signals and DM signal. The number of pins in each DQS group bonded out is package dependent. DQS groups with less than 11 pins bonded out can only be used for LPDDR2 Command/Address busses. In DQS groups with more than 11 pins bonded out, up to two pre-defined pins are assigned to be used as virtual VccIO, by driving them high to make extra connections to the VccIO power supply. These soft connections to VccIO help reduce SSO noise. For details, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

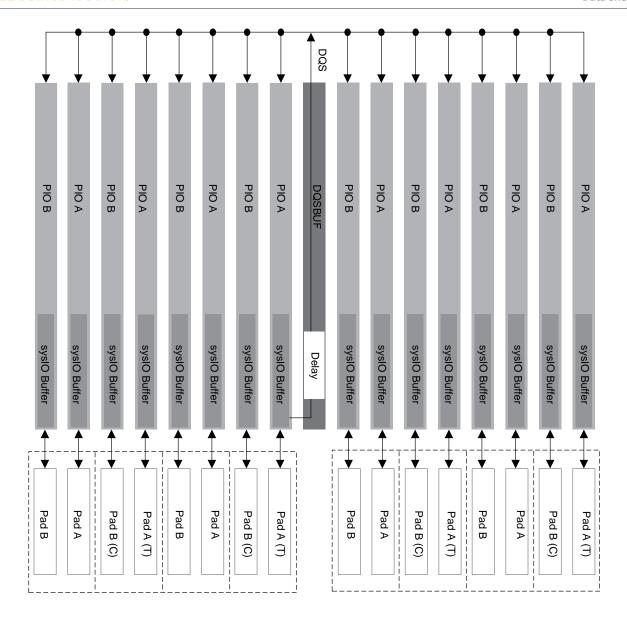


Figure 2.29. DQS Grouping on the Bottom Edge

2.12.2. DLL Calibrated DQS Delay and Control Block (DQSBUF)

To support DDR memory interfaces (DDR3, DDR3L, and LPDDR2), the DQS strobe signal from the memory must be used to capture the data (DQ) in the PIC registers during memory reads. This signal is output from the DDR memory device aligned to data transitions and must be time shifted before it can be used to capture data in the PIC. This time shift is achieved by using the DQSBUF programmable delay line in the DQS Delay Block (DQS read circuit). The DQSBUF is implemented as a slave delay line and works in conjunction with a master DDRDLL.

This block also includes a slave delay line to generate delayed clocks used during writes to generate DQ and DQS with correct phases within one DQS group. There is a third delay line inside this block used to provide write leveling for DDR write if needed.

Each of the read and write side delays can be dynamically shifted using margin control signals from the core logic.

The FIFO Control Block include here generates the Read and Write Pointers for the FIFO inside the Input Register Block. These pointers are generated to control the DQS to ECLK domain crossing using the FIFO module.

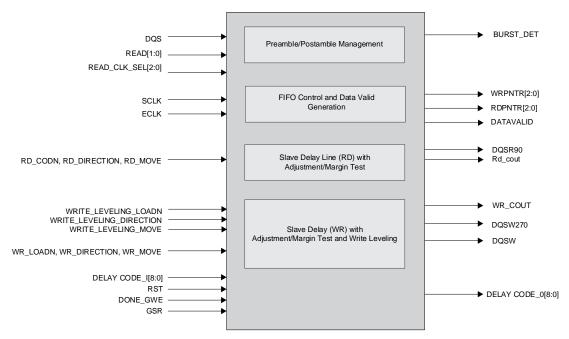


Figure 2.30. DQS Control and Delay Block (DQSBUF)

Table 2.9. DQSBUF Port List Description

Name	Туре	Description
DQS	Input	DDR memory DQS strobe
READ[1:0]	Input	Read Input from DDR Controller
READCLKSEL[2:0]	Input	Read pulse selection
SCLK	Input	Slow System Clock
ECLK	Input	High Speed Edge Clock (same frequency as DDR memory)
RDLOADN, RDMOVE, RDDIRECTION	Input	Dynamic Margin Control ports for Read delay
WRLOADN, WRMOVE, WRDIRECTION	Input	Dynamic Margin Control ports for Write delay
DELAYCODE_I[8:0]	Input	Dynamic Delay Control
WRITE_LEVELING_LOADN, WRITE_LEVELING_DIRECTION, WRITE_LEVELING_MOVE	Input	Write Leveling Control
DQSR90	Output	90 delay DQS used for Read
DQSW270	Output	90 delay clock used for DQ Write
DQSW	Output	Clock used for DQS Write
RDPNTR[2:0]	Output	Read Pointer for IFIFO module
WRPNTR[2:0]	Output	Write Pointer for IFIFO module
DATAVALID	Output	Signal indicating start of valid data
BURSTDET	Output	Burst Detect indicator
RD_COUT	Output	Read Count
WR_COUT	Output	Write Count
DELAYCODE_O[8:0]	Output	Dynamic Delay Control

2.13. sysI/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow the user to implement a wide variety of standards that are found in today's systems including LVDS, HSUL, SSTL Class I and II, LVCMOS, and LVTTL.

The Certus-NX family contains multiple Programmable I/O Cell (PIC) blocks. Each PIC contains two Programmable I/O, PIOA and PIOB. Each PIO includes a sysI/O buffer and I/O logic. Two adjacent PIO can be joined to provide a differential I/O pair referred to as True and Comp, where True Pad is associated with the positive side of the differential I/O, and the complement with the negative.

The top, left, right, and WRIO bottom side banks support I/O standards from 3.3 V to 1.0 V while the HPIO bottom supports I/O standards from 1.8 V to 1.0 V. Every pair of I/O on the HPIO bottom bank also have a true LVDS and SLVS Tx Driver. In addition, the HPIO bottom bank supports single-ended input termination. Both static and dynamic termination are supported. Dynamic termination is used to support the DDR/LPDDR interface standards. For more information about DDR implementation in I/O Logic and DDR memory interface support, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

2.13.1. Supported sysI/O Standards

Certus-NX sysI/O buffers supports both single-ended differential and differential standards. Single-ended standards can be further subdivided into internally ratioed standards such as LVCMOS, LVTTL, and externally referenced standards such as HSUL and SSTL. The buffers support the LVTTL, LVCMOS 1.0 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V standards. Differential standards supported include LVDS, SLVS, differential LVCMOS, differential SSTL, and differential HSUL. For better support of video standards, subLVDS is also supported. Table 2.10 and Table 2.11 provide a list of sysI/O standards supported in Certus-NX devices.

Table 2.10. Single-Ended I/O Standards

Standard	Input	Output	Bi-directional
LVTTL33	Yes	Yes	Yes
LVCMOS33	Yes	Yes	Yes
LVCMOS25	Yes	Yes	Yes
LVCMOS18	Yes	Yes	Yes
LVCMOS15	Yes	Yes	Yes
LVCMOS12	Yes	Yes	Yes
LVCMOS10	Yes	No	No
HTSL15 I	Yes	Yes	Yes
SSTL 15 I	Yes	Yes	Yes
SSTL 135 I	Yes	Yes	Yes
HSUL12	Yes	Yes	Yes
LVCMOS18H	Yes	Yes	Yes
LVCMOS15H	Yes	Yes	Yes
LVCMOS12H	Yes	Yes	Yes
LVCMOS10H	Yes	Yes	Yes
LVCMOS10R	Yes	-	Yes ¹

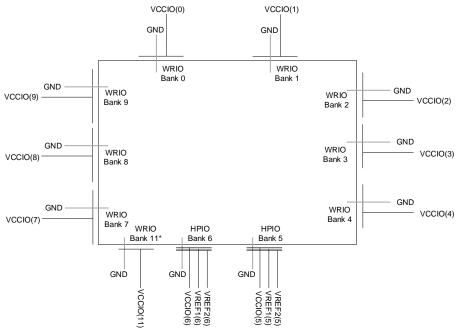
Note:

1. Output supported by LVCMOS10H.


Table 2.11. Differential I/O Standards

Standard	Input	Output	Bi-directional
LVDS	Yes	Yes	Yes
SUBLVDS	Yes	No	_
SLVS	Yes	Yes	_
SUBLVDSE	_	Yes	_
SUBLVDSEH	_	Yes	_
LVDSE	_	Yes	_
MIPI_D-PHY	Yes	Yes	Yes
HSTL15D_I	Yes	Yes	Yes
SSTL15D_I	Yes	Yes	Yes
SSTL15D_II	Yes	Yes	Yes
SSTL135D_I	Yes	Yes	Yes
SSTL135D_II	Yes	Yes	Yes
HSUL12D	Yes	Yes	Yes
LVTTL33D	_	Yes	_
LVCMOS33D	_	Yes	_
LVCMOS25D	_	Yes	_

2.13.2. sysI/O Banking Scheme


Certus-NX devices have up to eleven banks in total. For 35k/65k device, there are two banks on top, three banks each at left and right side of device, and three on the bottom side of device. For 15k/25k device, there are two banks on top, three banks each at left and right side of device, and two on the bottom side of device. For 28k/40K device, there are one bank on top, two banks each at left and right side of device, and three on the bottom side of device. For 9k/17k device, one bank on top, one on right side and three on the bottom side of device. The higher density Certus-NX device has more pins in each bank. WRIO Banks support up to Vccio 3.3 V while HPIO Banks support up to Vccio 1.8 V. In addition, HPIO Banks support two V_{REF} inputs for flexibility to receive two different referenced input levels on the same bank. Figure 2.31 shows the location of each bank.

*Note: Bank not available in LFD2NX-17 and LFD2NX-9.

Figure 2.31. sysI/O Banking for Logic Optimized Device

*Note: Bank not available in LFMXO5-15/25.

Figure 2.32. sysI/O Banking for I/O Optimized Device

2.13.2.1. Typical sysI/O Behavior During Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in Certus-NX devices, see the list of technical documentation in References section.

V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas V_{CCIO} supplies power to the I/O buffers. To simplify the system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. For the different power supply voltage levels by the I/O banks, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216) for detailed information.

2.13.2.2. VREF1 and VREF2

HPIO Banks can support two separate V_{REF} input voltages, VREF1, and VREF2. To assign a V_{REF} driver, use IO_Type = VREF1_DRIVER or VREF2_DRIVER. To assign V_{REF} to a buffer, use VREF1_LOAD or VREF2_LOAD.

2.13.2.3. sysI/O Standards Supported by I/O Bank

All banks can support multiple I/O standards under the V_{CCIO} rules discussed above. Table 2.12 and Table 2.13 summarize the I/O standards supported on various sides of the Certus-NX device.

Table 2.12. Single-Ended I/O Standards Supported on Various Sides

Standard	Тор	Left ¹	Right	Bottom WRIO	Bottom HPIO
LVTTL33	Yes	Yes	Yes	Yes	_
LVCMOS33	Yes	Yes	Yes	Yes	_
LVCMOS25	Yes	Yes	Yes	Yes	_
LVCMOS18	Yes	Yes	Yes	Yes	_
LVCMOS15	Yes	Yes	Yes	Yes	_
LVCMOS12	Yes	Yes	Yes	Yes	_
LVCMOS10	Yes	Yes	Yes	Yes	_
LVCMOS18H	_	_	_	_	Yes
LVCMOS15H	_	_	_	_	Yes
LVCMOS12H	_	_	_	_	Yes
LVCMOS10H	_	_	_	_	Yes
LVCMOS10R	_	_	_	_	Yes
HTSL15 I	_	_	_	_	Yes
SSTL 15 I, II	_	_	_	_	Yes
SSTL 135 I, II					Yes
HSUL12	_			_	Yes

Note:

1. Left bank is not available in LFD2NX-9 and LFD2NX-17.

Table 2.13. Differential I/	O Standards Supported on Various Sides
-----------------------------	--

Standard	Тор	Left1	Right	Bottom WRIO	Bottom HPIO
LVDS	_	_	_	_	Yes
SUBLVDS	_	_	_	_	Yes
SLVS	_	_	_	_	Yes
SUBLVDSE	Yes	Yes	Yes	Yes	_
SUBLVDSEH	_	_	_	_	Yes
LVDSE	Yes	Yes	Yes	Yes	_
MIPI_D-PHY	_	_	_	_	Yes
HSTL15D_I	_	_	_	_	Yes
SSTL15D_I	_	_	1	ı	Yes
SSTL15D_II	_	_	_	-	Yes
SSTL135D_I	_	_	1	ı	Yes
SSTL135D_II	_	_	_	-	Yes
HSUL12D	_	_	1	ı	Yes
LVTTL33D	Yes	Yes	Yes	Yes	_
LVCMOS33D	Yes	Yes	Yes	Yes	_
LVCMOS25D	Yes	Yes	Yes	Yes	_

2.13.2.4. Hot Socketing

The Certus-NX devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/O remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. WRIO Banks are fully hot socketable. HPIO Banks do not support hot socketing.

2.13.3. sysI/O Buffer Configurations

This section describes the various sysI/O features available on the Certus-NX device. Refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216) for detailed information.

2.14. Analog Interface

The Certus-NX family can provide an analog interface consisting of an ADC block that has two SAR ADCs, three continuous-time comparators, and an internal junction temperature monitoring diode. This feature is available in Commercial/Industrial –8 and –9 speed grades and Automotive –7 and –8 speed grade. Both SAR ADCs operate simultaneously with the same start of conversion and end of conversion pulses.

2.14.1. Analog to Digital Converters

The Analog to Digital Convertor is a 12-bit, 1 MSPS SAR (Successive Approximation Register) architecture converter. The ADC supports both continuous and single shot conversion modes.

The ADC input is selected among pre-selected GPIO input pairs, dedicated analog input pair, the internal junction temperature sensing diode and internal voltage rails. The input signal can be converted in either uni-polar or bi-polar mode.

The reference voltage is selectable between the 1.2 V internal reference generator and an external reference. The ADC can convert up to a 1.8 V input signal with a 1.8 V external reference voltage. The ADC has an auto-calibration function which calibrates the gain and offset.

^{1.} Left bank is not available in LFD2NX-9 and LFD2NX-17.

2.14.2. Continuous Time Comparators

The continuous-time comparator can be used to monitor a dedicated input pair or a GPIO input pair. The output of the comparator is provided as continuous and latched outputs.

2.14.3. Internal Junction Temperature Monitoring Diode

On-die junction temperature can be monitored using the internal junction temperature monitoring diode. The PTAT (proportional to absolute temperature) diode voltage can be monitored by the ADC to provide a digital temperature readout. Refer to ADC Usage Guide for Nexus Platform (FPGA-TN-02129) for more details.

2.15. IEEE 1149.1-Compliant Boundary Scan Testability

All Certus-NX devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/O: TDI, TDO, TCK, and TMS. The test access port uses V_{CCIO1} for power supply. The test access port is supported for $V_{\text{CCIO1}} = 1.8 \text{ V} - 3.3 \text{ V}$.

For more information, refer to sysCONFIG User Guide for Nexus Platform (FPGA-TN-02099).

2.16. Device Configuration

All Certus-NX devices contain various ports that can be used for configuration, including a Test Access Port (TAP). The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. JTAG_EN is the only dedicated configuration pin. *PPROGRAMN/INITN/DONE* are enabled by default but can be turned into GPIO. The remaining sysCONFIG pins are used as dual function pins. Refer to sysCONFIG User Guide for Nexus Platform (FPGA-TN-02099) for more information about using the dual-use pins as general purpose I/O.

There are various ways to configure a Certus-NX device:

- JTAG (TAP)
- Master Serial Peripheral Interface (SPI) to load from external SPI flash using ×1, ×2, or ×4 (QSPI) interfaces.
- Inter-Integrated Circuit Bus (I2C)
- Improved Inter-Integrated Circuit Bus (I3C)
- Slave SPI from a system host
- Lattice Memory Mapped Interface (LMMI), refer to sysl/O Usage Guide for Nexus Platform (FPGA-TN-02067) for details.
- JTAG, SSPI, MSPI, I2C, and I3C are supported for V_{CCIO} = 1.8 V 3.3 V

On power-up, based on the voltage level (high or low) of the PROGRAMN pin, the FPGA SRAM is configured by the appropriate sysCONFIG port. If PROGRAMN pin is *low*, the FPGA is in the Slave configuration ports (Slave SPI, Slave I2C or Slave I3C) and is waiting for the correct Slave Configuration port activation key. The PROGRAMN signal must be held low for a minimum of 50 ns following the last activation clock edge. If no slave port is declared active before the PROGRAMN pin is sensed HIGH, the FPGA is in Master SPI booting mode. In Master SPI booting mode, the FPGA boots from an external SPI flash. Once a configuration port is activated, it remains active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by enabling the JTAG_EN pin and sending the appropriate command through the TAP port.

2.16.1. Enhanced Configuration Options

Certus-NX devices have enhanced configuration features such as:

- Early I/O release
- Bitstream decryption
- Decompression support
- Watchdog Timer support
- Dual and Multi-boot image support

Early I/O Release is a new configuration feature in which certain I/O banks are released earlier so that customer systems have minimal disruption. For more details, refer to sysCONFIG User Guide for Nexus Platform (FPGA-TN-02099).

Watchdog Timer is a new configuration feature that helps the user add a programmable timer option for timeout applications.

2.16.2.1. Dual-Boot and Multi-Boot Image Support

Dual-boot and multi-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the Certus-NX devices can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the Certus-NX device can revert to the original backup golden configuration and try again. This can all be done without power cycling the system. For more information, refer to sysCONFIG User Guide for Nexus Platform (FPGA-TN-02099).

2.17. Single Event Upset (SEU) Handling

Certus-NX devices are unique because the underlying technology used to build these devices is much more robust and less prone to soft errors.

Certus-NX devices have an improved, hardware implemented, Soft Error Detection (SED) circuit which can be used to detect SRAM errors so they can be corrected. There are two layers of SED implemented in Certus-NX making it more robust and reliable.

The SED hardware in Certus-NX devices is part of the Configuration block. The SED module in Certus-NX is an enhanced version as compared to the SED modules implemented in other Lattice devices. The configuration data is divided into frames so that the entire FPGA can be programmed precisely with ease. The SED hardware reads data from the FPGAs configuration memory and performs an Error Correcting Code (ECC) calculation on every frame of configuration data (see Figure 2.1). Once an error is detected, a notification is generated and SED resumes operation. For single bit errors, the corrected value is rewritten to the particular frame using ECC information. If more than one bit error is detected within one frame of configuration data, an error message is generated. Certus-NX devices also have dedicated logic to perform Cycle Redundancy Code (CRC) checks for the entire bitstream, which runs in parallel along with ECC.

After the ECC is calculated on all frames of configuration data, CRC is calculated and checked for the entire bitstream. ECC and CRC checks do not include the contents of RAMs (EBR, Large RAM, and distributed RAM).

For further information on SED support, refer to Soft Error Detection (SED)/Correction (SEC) User Guide for Nexus Platform (FPGA-TN-02076).

2.18. On-Chip Oscillator

The Certus-NX device features two on board oscillators. Both Oscillators are controlled with internally generated current.

The low frequency oscillator (LFOSC) is tailored for low power operation and runs at a nominal frequency of 128 kHz. The LFOSC always runs and can be used to perform always on functions with the lowest possible power. The high frequency oscillator (HFOSC) runs at a nominal frequency of 450 MHz but can be divided down to a range of 1.7578 MHz to 225 MHz by user attributes.

2.19. User I2C IP

The Certus-NX device has one hard I2C interface, which can be configured either as a master (controller) or a slave (responder). The pins for the I2C interface are pre-assigned.

The interface core has the option to delay either the input or the output data (SDA), or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface to any external I2C components. In addition, 50 ns glitch filters are available for both SDA and SCL.

When the interface is configured as master (controller), it can control other devices on the I2C bus through the preassigned pins. When the core is configured as a slave (responder), the device can provide, for example, I/O expansion to an I2C master (controller). The I2C core supports the following functionality:

- Master (controller) and slave (responder) operation
- 7-bit and 10-bit addressing
- Multi-master (controller) arbitration support
- Clock stretching
- Up to 1 MHz data transfer speed (Standard-Mode, Fast-Mode, Fast-Mode Plus)
- General Call support
- Optional receive and transmit data FIFOs with programmable sizes
- Optional 50 ns delay on input or output data (SDA), or both
- Hard-Connection and Programmable I/O Connection Support
- Programmable to a mode compliant with I3C requirements on legacy I2C Slave Devices.
- Fast-Mode and Fast-Mode Plus Support
- Disabled Clock Stretching
- 50 ns SCL and SDA Glitch Filters
- Programmable 7-bit Address

For further information on the User I2C, refer to I2C Hardened IP Usage Guide for Nexus Platform (FPGA-TN-02142).

2.20. Trace ID

Each Certus-NX device contains a unique (per device) TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the SPI, I2C, or JTAG interfaces. For further information on TraceID, refer to Using TraceID (FPGA-TN-02084).

2.21. Density Shifting

The Certus-NX family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a low utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization impact the likelihood of success in each case. An example is that some user I/O may become No Connects in smaller devices in the same package. Refer to the Certus-NX Pin Migration Tables and Lattice Radiant software for specific restrictions and limitations.

2.22. Peripheral Component Interconnect Express (PCIe)

The Certus-NX -28, -40, -35, and -65 device features one lane of hardened PCIe block on the top side of the device. The PCIe block implements all three layers defined by the PCI Express Specification: Physical, Data Link, and Transaction as shown in Figure 2.33. Below is a summary of the features supported by the PCIe block:

- Gen 1 (2.5 Gbps) and Gen 2 (5.0 Gbps) speed
- PCIe Express Base Specification 3.0 compliant including compliance with earlier PCI Express Specifications
- Multi-function support with up to four physical functions
- Endpoint and Root Complex support
- Type 0 Configuration Registers in Endpoint Mode
- Complete Error-Handling Support
- 32-bit Core Data Width
- Many power management features including power budgeting

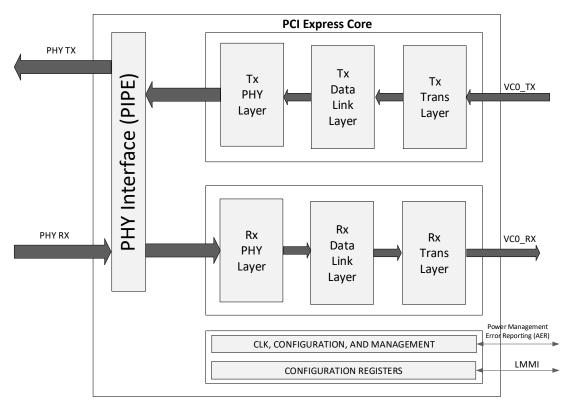


Figure 2.33. PCIe Core

The hardened PCIe block can be instantiated with the primitive *PCIe* through Lattice Radiant software however, it is not recommended to directly instantiate the PCIe primitive itself. It is highly recommended to generate the PCIe Endpoint Soft IP through the Radiant IP Catalog & IP Block Wizard instead. In Figure 2.34, the PCIe core is configured as an Endpoint using a soft IP wrapper that provides useful functions such as bridging support for bus interfaces and DMA applications. In addition to the standard Transaction Layer Packet (TLP) interface, the data interface can also be configured to be AXI4 or AHB-Lite as well. The PCIe hardened block also features a register interface for LMMI and User Configuration Space Register Interface (UCFG). The PCIe block has many registers which contain information about the status of the PCIe block as well as the capability to dynamically switch PCIe settings. One easy way to access these registers is through the Reveal Controller Tool.

For more information about the PCIe soft IP, refer to the PCIe Endpoint IP Core document.

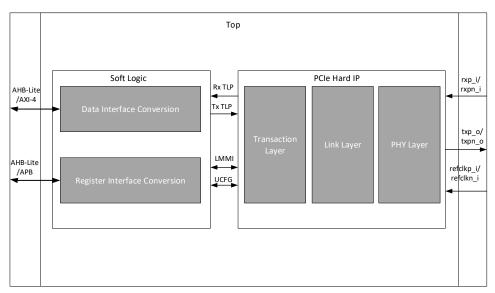


Figure 2.34. PCIe Soft IP Wrapper

2.23. Cryptographic Engine

The Certus-NX family of devices support several cryptographic features that help you secure the design. Some of the key cryptographic features include Advanced Encryption Standard (AES) encryption, Hashing Algorithms, and true random number generation (TRNG). The Certus-NX device also features bitstream encryption (AES-256), used for protecting confidential FPGA bitstream data, and bitstream authentication (using ECDSA), which maintains bitstream integrity and protects the FPGA design bitstream from copying and tampering.

The Cryptographic Engine (CRE) is the main block, which is responsible for bitstream encryption as well as authentication of the Certus-NX device. Once the bitstream is authenticated and the device is ready for user functions, the CRE is available to implement various cryptographic functions in the FPGA design. To enable specific cryptographic functions, the CRE must be configured by setting a few registers.

The Cryptographic Engine supports the below user-mode features:

- True Random Number Generator (TRNG)
- Secure Hashing Algorithm (SHA)-256 bit
- Message Authentication Codes (MACs) HMAC
- Lattice Memory Mapped Interface (LMMI) to user logic
- High Speed Port (HSP) for FIFO-based streaming data transfer

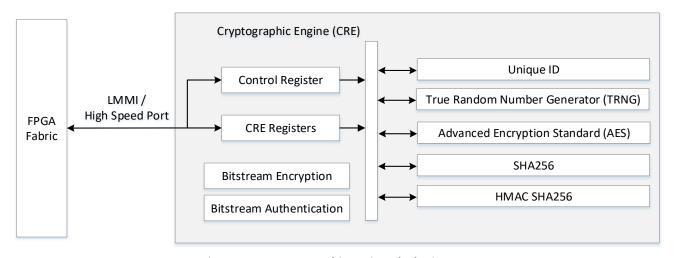


Figure 2.35. Cryptographic Engine Block Diagram

3. DC and Switching Characteristics for Commercial and Industrial

All specifications in this chapter are characterized within recommended operating conditions unless otherwise specified.

3.1. Absolute Maximum Ratings

Table 3.1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{CC} , V _{CCECLK}	Supply Voltage	-0.5	1.10	V
V _{CCAUX} , V _{CCAUXA} ,	Supply Voltage	-0.5	1.98	V
V _{CCAUXH3} , V _{CCAUXH4} ,				
V _{CCAUXH5}				
V _{CCIO0, 1, 2, 6, 7}	I/O Supply Voltage	-0.5	3.63	V
V _{CCIO3, 4, 5}	I/O Supply Voltage	-0.5	1.98	V
V _{CCPLL_DPHY0, 1}	Hardened D-PHY PLL Supply Voltage	-0.5	1.10	V
V _{CCPLLSD0}	SERDES Block PLL Supply Voltage	-0.5	1.98	V
V _{CCA_DPHY0, 1}	Analog Supply Voltage for Hardened D-PHY	-0.5	1.98	V
V _{CC_DPHY0, 1}	Digital Supply Voltage for Hardened D-PHY	-0.5	1.10	V
V_{CCSD0}	SERDES Supply Voltage	-0.5	1.10	V
V _{CCADC18}	ADC Block 1.8 V Supply Voltage	-0.5	1.98	V
V _{CCAUXSD}	SERDES and AUX Supply Voltage	-0.5	1.98	V
_	Input or I/O Voltage Applied, WRIO Banks	-0.5	3.63	V
_	Input or I/O Voltage Applied, HPIO Banks	-0.5	1.98	V
_	Voltage Applied on SERDES Pins	-0.5	1.98	V
T _A	Storage Temperature (Ambient)	-65	+150	°C
T _J	Junction Temperature	_	+125	°C

Notes:

- Stress above those listed under the *Absolute Maximum Ratings* may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- Compliance with the Lattice Thermal Management document is required.
- All voltages referenced to GND.
- All V_{CCAUX} should be connected on PCB.

3.2. Recommended Operating Conditions^{1, 2, 3}

Table 3.2. Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур.	Max	Unit
V _{CC} , V _{CCECLK}	Core Supply Voltage	V _{CC} = 1.0	0.95	1.00	1.05	V
V _{CCAUX}	Auxiliary Supply Voltage	WRIO Banks	1.746	1.80	1.89	V
V _{CCAUXH3/4/5}	Auxiliary Supply Voltage	HPIO Banks	1.746	1.80	1.89	V
V _{CCAUXA}	Auxiliary Supply Voltage for core logic.	_	1.746	1.80	1.89	٧
		V _{CCIO} = 3.3 V, WRIO Banks	3.135	3.30	3.465	V
		V _{CCIO} = 2.5 V, WRIO Banks	2.375	2.50	2.625	V
		V _{CCIO} = 1.8 V, All Banks	1.71	1.80	1.89	V
V _{CCIO}	I/O Driver Supply Voltage	V _{CCIO} = 1.5 V, All Banks ⁴	1.425	1.50	1.575	V
V CCIO	1/O Driver Supply Voltage	V _{CCIO} = 1.35 V, All Banks (For DDR3L Only)	1.2825	1.35	1.4175	V
		V _{CCIO} = 1.2 V, All Banks ⁴	1.14	1.20	1.26	V
		V _{CCIO} = 1.0 V, HPIO Banks	0.95	1.00	1.05	V
ADC External Po	wer Supplies					
V _{CCADC18}	ADC 1.8 V Power Supply	_	1.71	1.80	1.89	V
SERDES Block Ex	cternal Power Supplies					
V _{CCSD0}	Supply Voltage for SERDES Block and SERDES I/O	_	0.95	1.00	1.05	V
V _{CCPLLSD0}	SERDES Block PLL Supply Voltage	_	1.71	1.80	1.89	V
V _{CCAUXSD}	SERDES Block Auxiliary Supply Voltage	_	1.71	1.80	1.89	V
Operating Temp	perature					
t _{JCOM}	Junction Temperature, Commercial Operation	_	0	_	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	_	-40	_	100	°C

Notes:

- For correct operation, all supplies must be held in their valid operation voltage range.
- 2. All supplies with same voltage should be from the same voltage source. Proper isolation filters are needed to properly isolate noise from each other.
- 3. Common supply rails must be tied together except SERDES.
- MSPI (Bank 0) and JTAG, SSPI, I2C, and I3C (Bank 1) ports are supported for V_{CCIO} = 1.8 V to 3.3 V.

3.3. Power Supply Ramp Rates

Table 3.3. Power Supply Ramp Rates

Symbol	Parameter	Min	Тур	Max	Unit
t _{RAMP}	Power Supply ramp rates for all supplies ¹		_	50	V/ms

Notes:

- 1. Assumes monotonic ramp rates.
- 2. All supplies need to be in the operating range as defined in Recommended Operating Conditions, when the device has completed configuration and entering into User Mode. Supplies that are not in the operating range needs to be adjusted to faster ramp rate, or the user must delay configuration or wake up.

3.4. Power up Sequence

Power-On-Reset (POR) puts the Certus-NX device into a reset state. There is no power up sequence required for the Certus-NX device.

Table 3.4. Power-On Reset

Symbol	Parameter		Min	Тур	Max	Unit
Power-On-Reset ramp-up trip		V _{CC}	0.73	ı	0.83	V
V _{PORUP}		V _{CCAUX}	1.34	1	1.71	V
		V _{CCIO0} ,V _{CCI01}	0.89	ı	1.05	V
M	Power-On-Reset ramp-up trip	V _{CC}	0.51	1	0.81	V
V _{PORDN}	point (Monitoring V _{CC} and V _{CCAUX})	V _{CCAUX}	1.38	_	1.54	V

3.5. On-Chip Programmable Termination

The Certus-NX devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40 Ω , 50 Ω , 60 Ω , or 75 Ω .
- Common mode termination of 100 Ω for differential inputs.

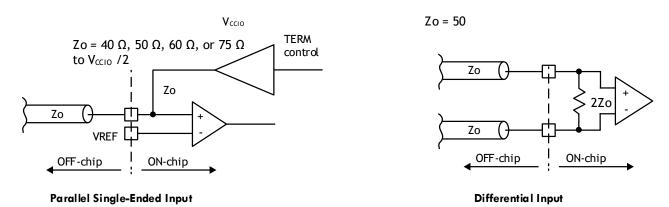


Figure 3.1. On-Chip Termination

See Table 3.5 for termination options for input modes.

Table 3.5. On-Chip Termination Options for Input Modes

IO_TYPE	Differential Termination Resistor ¹	Terminate to V _{CCIO} /2 ¹
subLVDS	100, OFF	OFF
SLVS	100, OFF	OFF
HSTL15D_I	100, OFF	OFF
SSTL15D_I	100, OFF	OFF
SSTL135D_I	100, OFF	OFF
HSUL12D	100, OFF	OFF
LVCMOS15H	OFF	OFF
LVCMOS12H	OFF	OFF
LVCMOS10H	OFF	OFF
LVCMOS12H	OFF	OFF
LVCMOS10H	OFF	OFF
LVCMOS18H	OFF	OFF, 40, 50, 60, 75
HSTL15_I	OFF	50
SSTL15_I	OFF	OFF, 40, 50, 60, 75

IO_TYPE	Differential Termination Resistor ¹	Terminate to V _{CCIO} /2 ¹
SSTL135_I	OFF	OFF, 40, 50, 60, 75
HSUL12	OFF	OFF, 40, 50, 60, 75

 TERMINATE to V_{CCIO}/2 (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only HPIO banks have this feature.
 Use of TERMINATE to V_{CCIO}/2 and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip

Refer to sysI/O Usage Guide for Nexus Platform (FPGA-TN-02067) for on-chip termination usage and value ranges.

3.6. Hot Socketing Specifications

termination tolerance -10%/+60%.

Table 3.6. Hot Socketing Specifications for GPIO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{DK}	Input or I/O Leakage Current for Wide Range I/O (excluding MCLK/MCSN/MOSI/INITN/DONE)	$\begin{aligned} &0 < V_{\text{IN}} < V_{\text{IH}}(\text{max}) \\ &0 < V_{\text{CC}} < V_{\text{CC}}(\text{max}) \\ &0 < V_{\text{CCIO}} < V_{\text{CCIO}}(\text{max}) \\ &0 < V_{\text{CCAUX}} < V_{\text{CCAUX}}(\text{max}) \end{aligned}$	-1.5	_	1.5	mA

Notes:

- 1. I_{DK} is additive to I_{PU} , I_{PD} , or I_{BH} .
- 2. Hot socketing specs are defined at a device junction temperature of 85 °C or below. When the device junction temperature is above 85 °C, the IDK current can exceed the above spec.
- 3. Going beyond the hot socketing range specified here causes exponentially higher leakage currents and potential reliability issues. A total of 64 mA per 8 I/O should not be exceeded.

3.7. ESD Performance

Refer to the Certus-NX Product Family Qualification Summary for complete Commercial and Industrial grade qualification data, including ESD performance.

3.8. DC Electrical Characteristics

Table 3.7. DC Electrical Characteristics - Wide Range

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ¹	Input or I/O Leakage current (Commercial/Industrial)	0 ≤ V _{IN} ≤ V _{CCIO}	_	_	10	μΑ
I _{IH} ²	Input or I/O Leakage current	$V_{CCIO} \le V_{IN} \le V_{IH}$ (max)	_	_	100	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 \times V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	$V_{IL}(max) \le V_{IN} \le V_{CCIO}$	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (max)	30	_		μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 \times V_{CCIO}$	-30	_		μΑ
I _{BHLO}	Bus hold low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	150	μΑ
I _{BHHO}	Bus hold high Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-150	μΑ
V_{BHT}	Bus Hold Trip Points	_	V _{IL} (max)	_	V _{IH} (min)	V

Notes:

- 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output tri-stated. Bus Maintenance circuits are disabled.
- 2. The input leakage current I_{IH} is the worst-case input leakage per GPIO when the pad signal is high and also higher than the bank V_{CCIO}. This is considered a mixed mode input.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.8. DC Electrical Characteristics – High Speed

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ¹	Input or I/O Leakage	$0 \le V_{IN} \le V_{CCIO}$	_	_	10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{\text{IN}} \le 0.7 \times V_{\text{CCIO}} \qquad -30 \qquad -$		-	-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (max) $\leq V_{IN} \leq V_{CCIO}$	30	-	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (max)	30	ı	_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 \times V_{CCIO}$	-30	-	_	μΑ
I _{BHLO}	Bus hold low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	150	μΑ
Івнно	Bus hold high Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	-	-150	μΑ
V _{BHT}	Bus Hold Trip Points	_	V _{IL} (max)		V _{IH} (min)	V

Table 3.9. Capacitance – Wide Range

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C ₁ ¹	I/O Capacitance ¹	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	ı	6	1	pF
C ₂ ¹	Dedicated Input Capacitance ¹	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	-	6	-	pF

Note:

1. T_A 25 °C, f = 1.0 MHz.

Table 3.10. Capacitance - High Performance

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C ₁ ¹	I/O Capacitance ¹	$V_{CCIO} = 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.},$ $V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	_	6	1	рF
C ₂ ¹	Dedicated Input Capacitance ¹	$V_{CCIO} = 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.},$ $V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	-	6	1	pF
C ₃ ¹	SERDES I/O Capacitance	$V_{CCSD0} = 1.0 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to}$ $V_{CCSD0} + 0.2 \text{ V}$	_	5	-	pF

Note:

1. $T_A 25 \, ^{\circ}\text{C}$, $f = 1.0 \, \text{MHz}$.

Table 3.11. Single Ended Input Hysteresis - Wide Range

IO_TYPE	V _{CCIO}	TYP Hysteresis			
LVCMOS33	3.3 V	250 mV			
LVCMOC2F	3.3 V	200 mV			
LVCMOS25	2.5 V	250 mV			
LVCMOS18	1.8 V	180 mV			
LVCMOS15	1.5 V	50 mV			
LVCMOS12	1.2 V	0			
LVCMOS10	1.2 V	0			

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output tri-stated. Bus Maintenance circuits are disabled.

Table 3.12. Single Ended Input Hysteresis - High Performance

IO_TYPE	V _{CCIO}	TYP Hysteresis
LVCMOS18H	1.8 V	180 mV
IVCMOS4FII	1.8 V	50 mV
LVCMOS15H	1.5 V	150 mV
LVCMOS12H	1.2 V	0
LVCMOS10H	1.0 V	0

3.9. Supply Currents

For estimating and calculating current, use Power Calculator in Lattice Design software.

This operating and peak current is design dependent and can be calculated in Lattice Design software. Some blocks can be placed into low current standby modes. Refer to Certus-NX Power Usage Guide (FPGA-TN-02214).

3.10. sysI/O Recommended Operating Conditions

Table 3.13. sysI/O Recommended Operating Conditions

Chandand	Commant Danle	V _{CCIO} (Input)	V _{CCIO} (Output)
Standard	Support Banks	Тур.	Тур.
Single-Ended			
LVCMOS33	WRIO Banks	3.3	3.3
LVTTL33	WRIO Banks	3.3	3.3
LVCMOS25 ^{1, 2}	WRIO Banks	2.5, 3.3	2.5
LVCMOS18 ^{1, 2}	WRIO Banks	1.2, 1.5, 1.8, 2.5, 3.3	1.8
LVCMOS18H	HPIO Banks	1.8	1.8
LVCMOS15 ^{1, 2}	WRIO Banks	1.2, 1.5, 1.8, 2.5, 3.3	1.5
LVCMOS15H1	HPIO Banks	1.5, 1.8	1.5
LVCMOS12 ^{1, 2}	WRIO Banks	1.2, 1.5, 1.8, 2.5, 3.3	1.2
LVCMOS12H ¹	HPIO Banks	1.2, 1.35 ⁷ , 1.5, 1.8	1.2
LVCMOS10 ¹	WRIO Banks	1.2, 1.5, 1.8, 2.5, 3.3	_
LVCMOS10H ¹	HPIO Banks	1.0, 1.2, 1.35 ⁷ , 1.5, 1.8	1.0
LVCMOS10R ¹	HPIO Banks	1.0, 1.2, 1.35 ⁷ , 1.5, 1.8	_
SSTL135_I, SSTL135_II ³	HPIO Banks	1.35 ⁷	1.35
SSTL15_I, SSTL15_II ³	HPIO Banks	1.5 ⁸	1.5 ⁷
HSTL15_I ³	HPIO Banks	1.5 ⁸	1.5 ⁷
HSUL12 ³	HPIO Banks	1.2	1.2
Differential			
LVDS	HPIO Banks	1.2, 1.35, 1.5, 1.8	1.8
LVDSE ⁵	WRIO Banks	_	2.5
subLVDS	HPIO Banks	1.2, 1.35, 1.5, 1.8	_
subLVDSE ⁵	WRIO Banks	_	1.8
subLVDSEH ⁵	HPIO Banks	_	1.8
SLVS ⁶	HPIO Banks	1.0, 1.2, 1.35 ⁶ , 1.5, 1.8 ⁴	1.2, 1.35 ⁶ , 1.5, 1.8 ⁴
LVCMOS33D⁵	WRIO Banks	_	3.3
LVTTL33D⁵	WRIO Banks	_	3.3
LVCMOS25D ⁵	WRIO Banks	_	2.5
SSTL135D_I, SSTL135D_II ⁵	HPIO Banks	_	1.35 ⁶
SSTL15D_I, SSTL15D_II ⁵	HPIO Banks	_	1.5

Standard	Cupport Panks	V _{CCIO} (Input)	V _{CCIO} (Output)
Standard	Support Banks	Тур.	Тур.
HSTL15D_I ⁵	HPIO Banks	_	1.5
HSUL12D⁵	HPIO Banks	_	1.2

- Single-ended input can mix into I/O Banks with V_{CCIO} different from the standard requires due to some of these input standards
 use internal supply voltage source (V_{CC}, V_{CCAUX}) to power the input buffer, which makes them to be independent of V_{CCIO}
 voltage. For more details, refer to sysI/O Usage Guide for Nexus Platform (FPGA-TN-02067). The following is a brief guideline to
 follow:
 - a. Weak pull-up on the I/O must be set to OFF.
 - b. HPIO Banks I/O can only mix into banks with V_{CCIO} higher than or equal to the pin standard, due to clamping diode on the pin in these banks. WRIO Banks do not have this restriction.
 - c. LVCMOS25 uses V_{CCIO} supply on input buffer in WRIO Banks. It can be supported with V_{CCIO} = 3.3 V to meet the V_{IH} and V_{IL} requirements, but there is additional current drawn on V_{CCIO} . Hysteresis has to be disabled when using 3.3 V supply voltage.
 - d. LVCMOS15 uses V_{CCIO} supply on input buffer in HPIO Banks. It can be supported with $V_{CCIO} = 1.8$ V to meet the V_{IH} and V_{IL} requirements, but there is additional current drawn on V_{CCIO} .
- 2. Single-ended LVCMOS inputs can mixed into I/O Banks with different V_{CCIO}, providing weak pull-up is not used. For additional information on Mixed I/O in Bank V_{CCIO}, refer to sysl/O Usage Guide for Nexus Platform (FPGA-TN-02067).
- These inputs use differential input comparator in HPIO Banks. The differential input comparator uses V_{CCAUXH} power supply.
 These inputs require the V_{REF} pin to provide the reference voltage in the Bank. Refer to sysl/O Usage Guide for Nexus Platform (FPGA-TN-02067) for details.
- 4. All differential inputs use differential input comparator in HPIO Banks. The differential input comparator uses V_{CCAUXH} power supply. There is no differential input signaling supported in WRIO Banks.
- 5. These outputs are emulating differential output pair with single-ended output drivers with true and complement outputs driving on each of the corresponding true and complement output pair pins. The common mode voltage, V_{CM}, is ½ × V_{CCIO}. Refer to sysI/O Usage Guide for Nexus Platform (FPGA-TN-02067) for details.
- 6. $V_{CCIO} = 1.35 \text{ V}$ is only supported in HPIO Banks, for use with DDR3L interface in the bank. These Input and Output standards can fit into the same bank with the $V_{CCIO} = 1.35 \text{ V}$.
- 7. LVCMOS15 input uses V_{CCIO} supply voltage. If V_{CCIO} is 1.8 V, the DC levels for LVCMOS15 are still met, but there could be increase in input buffer current.

3.11. sysI/O Single-Ended DC Electrical Characteristics

Table 3.14. sysI/O DC Electrical Characteristics – Wide Range I/O

Input/Output		V _{IL}	VIII		V _{oL} Max	V _{OH} Min	1 /m A)	1 (m A)
Standard ²	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	I _{OL} (mA)	I _{OH} (mA)
LVTTL33 LVCMOS33	_	0.8	2.0	3.465 ⁴	0.4	V _{CCIO} – 0.4	2, 4, 8, 12, 16, "50RS" ³	-2, -4, -8, -12, -16, "50RS" ³
LVCMOS25	_	0.7	1.7	3.465 ⁴	0.4	V _{CCIO} – 0.45	2, 4, 8, 10, "50RS" ³	-2, -4, -8, -10, "50RS" ³
LVCMOS18	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴	0.4	V _{CCIO} – 0.45	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS15	_	$0.35 \times V_{CCIO}$	0.65 × V _{CCIO}	3.4654	0.4	V _{CCIO} – 0.4	2, 4	-2, -4
LVCMOS12	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.4654	0.4	V _{CCIO} – 0.4	2, 4	-2, -4
LVCMOS10	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴		No O/P S	upport	

Notes:

- 1. For electro-migration, the average DC current drawn by the I/O pads within a bank of I/O shall not exceed 10 mA per I/O average.
- 2. For the types of I/O standard supported in which bank, refer to sysI/O User Guide for Nexus Platform (FPGA-TN-02067) for details.
- 3. Select "50RS" in driver strength is selecting 50 Ω series impedance driver.
- 4. V_{IH} (MAX) for inputs on these standards (in WRIO Banks) can go up to 3.465 V if the input clamp is OFF. Otherwise, the input cannot be higher than $V_{CIO} + 0.3 \text{ V}$.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.15. sysI/O DC Electrical Characteristics – High Performance I/O

Input/Output		V _{IL}	Vı	Н	V _{OL} Max	V _{OH} Min	1 (mA)	1 (mA)
Standard ²	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	I _{OL} (mA)	I _{OH} (mA)
LVCMOS18H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} – 0.45	2, 4, 8, 12, "50RS" ³	-2, -4, -8, -12, "50RS" ³
LVCMOS15H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} – 0.4	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS12H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} - 0.4	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS10H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.27 × V _{CCIO}	0.75 × V _{CCIO}	2, 4	-2, -4
SSTL15_I	_	$V_{REF} - 0.10$	V _{REF} + 0.1	V _{CCIO} + 0.3	0.30	V _{CCIO} – 0.30	7.5	-7.5
SSTL15_II	_	$V_{REF} - 0.10$	V _{REF} + 0.1	V _{CCIO} + 0.3	0.30	V _{CCIO} – 0.30	8.8	-8.8
HSTL15_I	_	$V_{REF} - 0.10$	V _{REF} + 0.1	V _{CCIO} + 0.3	0.40	V _{CCIO} – 0.40	8	-8
SSTL135_I	_	$V_{REF} - 0.09$	V _{REF} + 0.09	V _{CCIO} + 0.3	0.27	V _{CCIO} – 0.27	6.75	-6.75
SSTL135_II	_	$V_{REF} - 0.09$	V _{REF} + 0.09	V _{CCIO} + 0.3	0.27	V _{CCIO} – 0.27	8	-8
LVCMOS10R	_	$V_{REF} - 0.10$	V _{REF} + 0.10	V _{CCIO} + 0.3	_	_	_	_
HSUL12	_	V _{REF} - 0.10	V _{REF} + 0.10	V _{CCIO} + 0.3	0.3	V _{CCIO} – 0.3	8.8, 7.5, 6.25, 5	-8.8, -7.5, -6.25, -5

- 1. For electro-migration, the average DC current drawn by the I/O pads within a bank of I/O shall not exceed 10 mA per I/O average.
- 2. For the types of I/O standard supported in which bank, refer to sysI/O User Guide for Nexus Platform (FPGA-TN-02067) for details
- 3. Select "50RS" in driver strength is selecting 50 Ω series impedance driver.

Table 3.16. I/O Resistance Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
50RS	Output Drive Resistance when 50RS Drive Strength Selected	V _{CCIO} = 1.8 V, 2.5 V, or 3.3 V	_	50	_	Ω
R _{DIFF}	Input Differential Termination Resistance	HPIO Banks for I/O selected to be differential	_	100	_	Ω
			36	40	64	
SE Input	Input Single Ended Termination	HPIO Banks for I/O selected to be	46	50	80	
Termination	Resistance	Single Ended	56	60	96	Ω
			71	75	120	

Table 3.17. V_{IN} Maximum Overshoot/Undershoot Allowance – Wide Range^{1, 2}

		0-	
AC Voltage Overshoot	% of UI at -40 °C to 100 °C	AC Voltage Undershoot	% of UI at -40 °C to 100 °C
V _{CCIO} + 0.4	100.0%	-0.4	100.0%
V _{CCIO} + 0.5	100.0%	-0.5	44.2%
V _{CCIO} + 0.6	94.0%	-0.6	10.1%
V _{CCIO} + 0.7	21.0%	-0.7	1.3%
V _{CCIO} + 0.8	10.2%	-0.8	0.3%
V _{CCIO} + 0.9	2.5%	-0.9	0.1%

Notes:

- The peak overshoot or undershoot voltage and the duration above V_{CCIO} + 0.2 V or below GND 0.2 V must not exceed the
 values in this table.
- 2. For UI less than 20 μs.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.18. V_{IN} Maximum Overshoot/Undershoot Allowance – High Performance^{1, 2}

AC Voltage Overshoot	% of UI at -40 °C to 100 °C	AC Voltage Undershoot	% of UI at -40 °C to 100 °C
V _{CCIO} + 0.5	100.0%	-0.5	100.0%
V _{CCIO} + 0.6	47.3%	-0.6	47.3%
V _{CCIO} + 0.7	10.9%	-0.7	10.9%
V _{CCIO} + 0.8	2.7%	-0.8	2.7%
V _{CCIO} + 0.9	0.7%	-0.9	0.7%

- The peak overshoot or undershoot voltage and the duration above V_{CCIO} + 0.2 V or below GND 0.2 V must not exceed the values in this table.
- 2. For UI less than 20 μs.

3.12. sysI/O Differential DC Electrical Characteristics

3.12.1. LVDS

LVDS input buffer on the Certus-NX device is powered by $V_{CCAUX} = 1.8 \text{ V}$ and protected by the bank V_{CCIO} . Therefore, the LVDS input voltage cannot exceed the bank V_{CCIO} voltage. LVDS output buffer is powered by the Bank V_{CCIO} at 1.8 V. LVDS can only be supported in HPIO Banks. LVDS25 output can be emulated with LVDS25E in WRIO Banks. This is described in LVDS25E (Output Only) section.

Table 3.19. LVDS DC Electrical Characteristics¹

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{INP} , V _{INM}	Input Voltage	_	0	_	1.60 ³	V
V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.05	_	1.55 ²	V
V_{THD}	Differential Input Threshold	Difference between the two Inputs	±100	_	_	mV
I _{IN}	Input Current	Power On or Power Off	_	_	±10	μΑ
V _{OH}	Output High Voltage for V _{OP} or V _{OM}	R _T = 100 Ω	_	1.425	1.60	V
V _{OL}	Output Low Voltage for V _{OP} or V _{OM}	R _T = 100 Ω	0.9 V	1.075	_	V
V _{OD}	Output Voltage Differential	$(V_{OP} - V_{OM})$, $R_T = 100 \Omega$	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low	_	_	_	50	mV
V _{OCM}	Output Common Mode Voltage	$(V_{OP} + V_{OM})/2$, $R_T = 100 \Omega$	1.125	1.25	1.375	V
ΔV_{OCM}	Change in V _{OCM} , V _{OCM(MAX)} - V _{OCM(MIN)}	_	_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0 V Driver outputs shorted to each other	_	_	12	mA
ΔV_{OS}	Change in V _{OS} between H and L	_	_	_	50	mV

Notes:

- 1. LVDS input or output are supported in HPIO Banks. LVDS input uses V_{CCAUX} on the differential input comparator, and can be in any V_{CCIO} voltage bank. LVDS output uses V_{CCIO} on the differential output driver, and can only be in bank with $V_{CCIO} = 1.8 \text{ V}$.
- 2. V_{ICM} is depending on VID, input differential voltage, so the voltage on pin cannot exceed $V_{INP/INM(min/max)}$ requirements. $V_{ICM(min)} = V_{INP/INM(min)} + \frac{1}{2} V_{ID}$, $V_{ICM(max)} = V_{INP/INM(max)} \frac{1}{2} V_{ID}$. Values in the table is based on minimum V_{ID} of +/- 100 mV.
- 3. V_{INP} , $V_{INM(max)}$ must be less than or equal to V_{CCIO} in all cases.

3.12.2. LVDS25E (Output Only)

Three sides of the Certus-NX devices, Top, Left and Right, support LVDS25 outputs with emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3.2 is one possible solution for point-to-point signals.

Table 3.20. LVDS25E DC Conditions

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
Rs	Driver Series Resistor (±1%)	158	Ω
R_P	Driver Parallel Resistor (±1%)	140	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

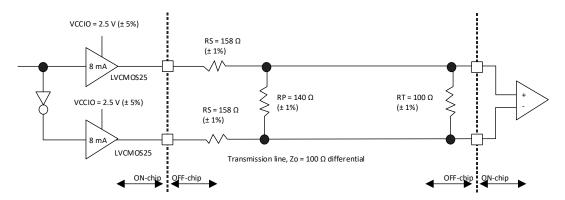


Figure 3.2. LVDS25E Output Termination Example

3.12.3. SubLVDS (Input Only)

SubLVDS is a reduced-voltage form of LVDS signaling, very similar to LVDS. It is a standard used in many camera types of applications. Being similar to LVDS, the Certus-NX devices can support the subLVDS input signaling with the same LVDS input buffer. The output for subLVDS is implemented in subLVDSE/subLVDSEH with a pair of LVCMOS18 output drivers (see SubLVDSE/SubLVDSEH (Output Only) section).

Table 3.21. SubLVDS Input DC Electrical Characteristics

	Parameter	Description	Test Conditions	Min	Тур	Max	Unit
,	V_{ID}	Input Differential Threshold Voltage	Over V _{ICM} range	70	150	200	mV
	V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.4	0.9	1.4 ¹	V

Note:

1. V_{ICM} + 1/2 V_{ID} cannot exceed the bank V_{CCIO} in all cases.

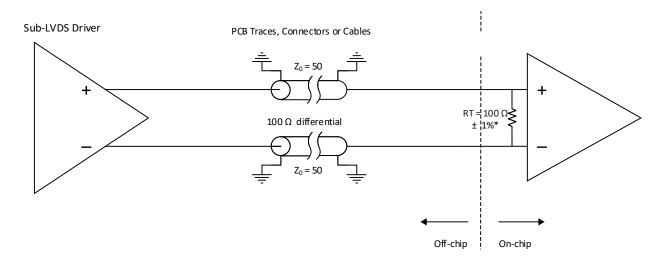


Figure 3.3. SubLVDS Input Interface

3.12.4. SubLVDSE/SubLVDSEH (Output Only)

SubLVDS output uses a pair of LVCMOS18 drivers with True and Complement outputs. The V_{CCIO} of the bank used for subLVDSE or subLVDSEH needs to be powered by 1.8 V. SubLVDSE is for WRIO Banks; and subLVDSEH is for HPIO Banks. Performance of the subLVDSE/subLVDSEH driver is limited to the performance of LVCMOS18.

Table 3.22. SubLVDS Output DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{OD}	Output Differential Voltage Swing	_	_	150	_	mV
V _{OCM}	Output Common Mode Voltage	Half the sum of the two Outputs	_	0.9	_	V

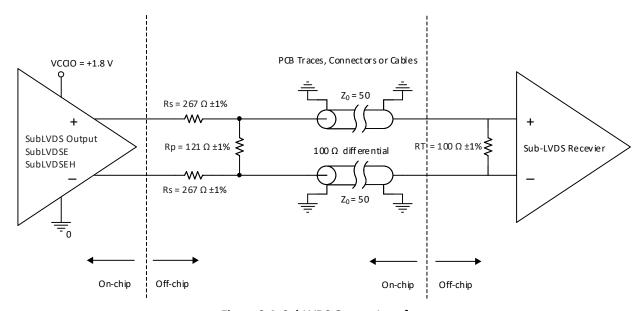


Figure 3.4. SubLVDS Output Interface

FPGA-DS-02078-2.4

3.12.5. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard with smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The Certus-NX devices receive SLVS differential input with the LVDS input buffer. This LVDS input buffer is designed to cover wide input common mode range that can meet the SLVS input standard specified by the JEDEC standard.

Table 3.23. SLVS Input DC Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{ID}	Input Differential Threshold Voltage	Over V _{ICM} range	70	_	_	mV
V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	70	200	330	mV

The SLVS output on the Certus-NX device is supported with the LVDS drivers found in HPIO Banks. The LVDS driver on the Certus-NX device is a current controlled driver. It can be configured as LVDS driver or configured with the 100 Ω differential termination with center-tap set to V_{OCM} at 200 mV. This means the differential output driver can be placed into bank with V_{CCIO} = 1.2 V, 1.5 V, or 1.8 V, even if it is powered by V_{CCIO} .

Table 3.24. SLVS Output DC Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{CCIO}	Bank V _{CCIO}	_	-5%	1.2, 1.5, 1.8	+ 5%	V
V _{OD}	Output Differential Voltage Swing	_	140	200	270	mV
V _{OCM}	Output Common Mode Voltage	Half the sum of the two Outputs	150	200	250	mV
Zos	Single-Ended Output Impedance	_	40	50	80	Ω

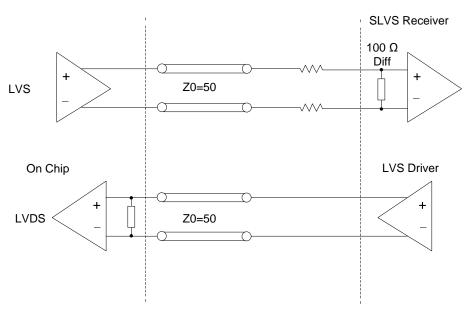
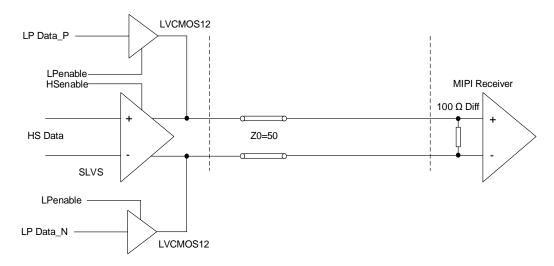


Figure 3.5. SLVS Interface

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


3.12.6. Soft MIPI D-PHY

When Soft D-PHY is implemented inside the FPGA logic, the I/O interface needs to use sysI/O buffers to connect to external D-PHY pins.

The Certus-NX sysI/O provides support for SLVS, as described in SLVS section, plus the LVCMOS12 input/output buffers together to support the High Speed (HS) and Low Power (LP) mode as defined in MIPI Alliance Specification for D-PHY.

To support MIPI D-PHY with SLVS (LVDS) and LVCMOS12, the bank V_{CCIO} cannot be set to 1.5 V or 1.8 V. It must connect to 1.2 V or 1.1 V.

All other DC parameters are the same as listed in SLVS section. DC parameters for the LP driver and receiver are the same as listed in LVCMOS12.

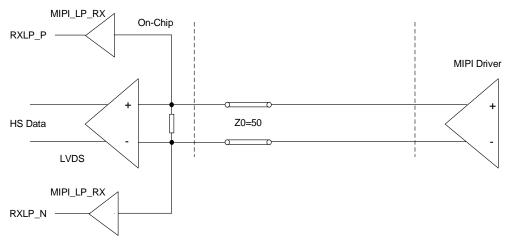


Figure 3.6. MIPI Interface

Table 3.25. Soft D-PHY Input Timing and Levels

Symbol	Description Conditions Min Typ Max						
Зуппрог	Description	Conditions	IVIIII	тур	IVIAX	Unit	
High Speed (Differential) Input DC Specifications							
V _{CMRX(DC)}	Common-mode Voltage in High-Speed Mode	_	70	_	330	mV	
V_{IDTH}	Differential Input HIGH Threshold	_	70	_	_	mV	
V_{IDTL}	Differential Input LOW Threshold	_	_	_	-70	mV	
V_{IHHS}	Input HIGH Voltage (for HS mode)	_	_	_	460	mV	
V _{ILHS}	Input LOW Voltage	_	-40	_	_	mV	
V _{TERM-EN}	Single-ended voltage for HS Termination Enable ⁴	_	_	_	450	mV	

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Symbol	Description	Conditions	Min	Тур	Max	Unit		
Z _{ID}	Differential Input Impedance	_	80	100	125	Ω		
High Speed (D	Differential) Input AC Specifications							
$\Delta V_{CMRX(HF)}^{1}$	Common-mode Interference (>450 MHz)	_	_	_	100	mV		
ΔV _{CMRX(LF)} ^{2, 3}	Common-mode Interference (50 MHz–450 MHz)	_	-50	_	50	mV		
Ссм	Common-mode Termination	_	_	_	60	pF		
Low Power (S	ingle-Ended) Input DC Specifications							
V _{IH}	Low Power Mode Input HIGH Voltage	_	740	_	_	mV		
V _{IL}	Low Power Mode Input LOW Voltage	_	_	_	550	mV		
V _{IL-ULP}	Ultra Low Power Input LOW Voltage	_	_	_	300	mV		
V _{HYST}	Low Power Mode Input Hysteresis	_	25	_	_	mV		
e _{SPIKE}	Input Pulse Rejection	_	_	_	300	V∙ps		
T _{MIN-RX}	Minimum Pulse Width Response	_	20	_	_	ns		
V _{INT}	Peak Interference Amplitude	_	_	_	200	mV		
f _{INT}	Interference Frequency	_	450	_	_	MHz		
Contention Do	Contention Detector (LP-CD) DC Specifications							
V _{IHCD}	Contention Detect HIGH Voltage	_	450			mV		
V _{ILCD}	Contention Detect LOW Voltage	_	_	_	200	mV		

- 1. This is peak amplitude of sine wave modulated to the receiver inputs.
- 2. Input common-mode voltage difference compared to average common-mode voltage on the receiver inputs.
- 3. Exclude any static ground shift of 50 mV.
- 4. High Speed Differential R_{TERM} is enabled when both D_{P} and D_{N} are below this voltage.

Table 3.26. Soft D-PHY Output Timing and Levels

Symbol	Description	Conditions	Min	Тур	Max	Unit
High Speed (Diff	ferential) Output DC Specifications			'	1	
V _{CMTX}	Common-mode Voltage in High-Speed Mode	_	150	200	250	mV
ΔV _{CMTX(1,0)}	V _{CMTX} Mismatch Between Differential HIGH and LOW	_	1	_	5	mV
V _{OD}	Output Differential Voltage	D-PHY-P — D-PHY- N	140	200	270	mV
$ \Delta V_{\text{OD}} $	V_{OD} Mismatch Between Differential HIGH and LOW	_	I	_	10	mV
V _{OHHS}	Single-Ended Output HIGH Voltage	_	1	_	360	mV
Zos	Single Ended Output Impedance	_	37.5	50	80	Ω
Δz_{os}	Z _{OS} mismatch	_	1	_	20	%
High Speed (Diff	ferential) Output AC Specifications					
$\Delta V_{CMTX(LF)}$	Common-Mode Variation, 50 MHz–450 MHz	_	1	_	25	mV_{RMS}
$\Delta V_{CMTX(HF)}$	Common-Mode Variation, above 450 MHz	_	1	_	15	mV_{RMS}
	Output 20%–80% Rise Time	$0.08 \text{ Gbps} \le t_R \le 1.00$ Gbps	I	_	0.30	UI
t _R	Output 80%–20% Fall Time	$1.00 \text{ Gbps} < t_R \le 1.50$ Gbps	1	_	0.35	UI
+	Output Data Valid After CLK Output	$0.08 \text{ Gbps} \le t_F \le 1.00$ Gbps		_	0.30	UI
t _F	Output Data Valid After CLK Output	1.00 Gbps < t _F ≤ 1.50 Gbps	_	_	0.35	UI

Symbol	Description	Conditions	Min	Тур	Max	Unit
Low Power (S	ingle-Ended) Output DC Specifications	<u>.</u>				
V _{OH}	Low Power Mode Output HIGH Voltage	0.08 Gbps-1.5 Gbps	1.1	1.2	1.3	V
V _{OL}	Low Power Mode Input LOW Voltage	_	-50	_	50	mV
Z _{OLP}	Output Impedance in Low Power Mode	_	110	_	_	Ω
Low Power (S	ingle-Ended) Output AC Specifications					
t _{RLP}	15%–85% Rise Time	_	_	_	25	ns
t _{FLP}	85%–15% Fall Time	_	_	_	25	ns
t _{REOT}	HS-LP Mode Rise and Fall Time, 30%-85%	_	_	_	35	ns
T _{LP-PULSE-TX}	Pulse Width of the LP Exclusive-OR Clock	First LP XOR Clock Pulse after STOP State or Last Pulse before STOP State	40	_	_	ns
		All Other Pulses	20	_	_	ns
T _{LP-PER-TX}	Period of the LP Exclusive-OR Clock	_	90	_	_	ns
C _{LOAD}	Load Capacitance	_	0	_	70	pF

Table 3.27. Soft D-PHY Clock Signal Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
Clock Signal Spec	Clock Signal Specification					
UI Instantaneous	Ul _{INST}	_	_	_	12.5	ns
UI Variation	Δυι	_	-10%	_	10%	UI
OI Variation	ΔΟΙ	_	-5%	_	5%	UI

Table 3.28. Soft D-PHY Data-Clock Timing Specifications

Symbol	Description	Conditions	Min	Тур	Max	Unit
Data-Clock Ti	ming Specifications					
Tanana	Data to Clock Skew	0.08 Gbps ≤ T _{SKEW[TX]} ≤ 1.00 Gbps	-0.15	_	0.15	UI _{INST}
T _{SKEW[TX]}	Data to Clock Skew	1.00 Gbps < T _{SKEW[TX]} ≤ 1.50 Gbps	-0.20	_	0.20	UI _{INST}
T	Details Clark Clark	0.08 Gbps ≤ T _{SKEW[TLIS]} ≤ 1.00 Gbps	-0.20	_	0.20	UI _{INST}
T _{SKEW[TLIS]}	Data to Clock Skew	1.00 Gbps < T _{SKEW[TLIS]} ≤ 1.50 Gbps	-0.10	_	0.10	UI _{INST}
т	Input Data Satur Before CLV	$0.08 \text{ Gbps} \le T_{\text{SETUP[RX]}}$ $\le 1.00 \text{ Gbps}$	0.15	_	_	UI
T _{SETUP[RX]}	Input Data Setup Before CLK	1.00 Gbps < T _{SETUP[RX]} ≤ 1.50 Gbps	0.20	_	_	UI
T	Innut Date Hald After CIV	0.08 Gbps ≤ T _{HOLD[RX]} ≤ 1.00 Gbps	0.15	_	_	UI
T _{HOLD[RX]}	Input Data Hold After CLK	1.00 Gbps < T _{HOLD[RX]} ≤ 1.50 Gbps	0.20	_	_	UI

3.12.7. Differential HSTL15D (Output Only)

Differential HSTL outputs are implemented as a pair of complementary single-ended HSTL outputs.

3.12.8. Differential SSTL135D, SSTL15D (Output Only)

Differential SSTL is used for differential clock in DDR3/DDR3L memory interface. All differential SSTL outputs are implemented as a pair of complementary single-ended SSTL outputs. All allowable single-ended output classes (class I and class II) are supported.

3.12.9. Differential HSUL12D (Output Only)

Differential HSUL is used for differential clock in LPDDR2 memory interface. All differential HSUL outputs are implemented as a pair of complementary single-ended HSUL12 outputs. All allowable single-ended drive strengths are supported.

3.12.10. Differential LVCMOS25D, LVCMOS33D, LVTTL33D (Output Only)

Differential LVCMOS and LVTTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output drive strengths are supported.

3.13. Maximum sysl/O Buffer Speed

Table 3.29. Maximum I/O Buffer Speed^{1, 2, 3, 4, 7}

Buffer	Description	Banks	Max	Unit
Maximum sysl/O Input Freque	ncy			
Single-Ended				
LVCMOS33	LVCMOS33, V _{CCIO} = 3.3 V	WRIO	200	MHz
LVTTL33	LVTTL33, V _{CCIO} = 3.3 V	WRIO	200	MHz
LVCMOS25	LVCMOS25, V _{CCIO} = 2.5 V	WRIO	200	MHz
LVCMOS18 ⁵	LVCMOS18, V _{CCIO} = 1.8 V	WRIO	200	MHz
LVCMOS18H	LVCMOS18, V _{CCIO} = 1.8 V	HPIO	200	MHz
LVCMOS15 5	LVCMOS15, V _{CCIO} = 1.5 V	WRIO	100	MHz
LVCMOS15H ⁵	LVCMOS15, V _{CCIO} = 1.5 V	HPIO	150	MHz
LVCMOS12 ⁵	LVCMOS12, V _{CCIO} = 1.2 V	WRIO	50	MHz
LVCMOS12H ⁵	LVCMOS12, V _{CCIO} = 1.2 V	HPIO	100	MHz
LVCMOS10 ⁵	LVCMOS 1.0, V _{CCIO} = 1.2 V	WRIO	50	MHz
LVCMOS10H ⁵	LVCMOS 1.0, V _{CCIO} = 1.0 V	HPIO	50	MHz
LVCMOS10R	LVCMOS 1.0, V _{CCIO} independent	HPIO	50	MHz
SSTL15_I, SSTL15_II	SSTL_15, V _{CCIO} = 1.5 V	HPIO	1066	Mbps
SSTL135_I, SSTL135_II	SSTL_135, V _{CCIO} = 1.35 V	HPIO	1066	Mbps
HSUL12	HSUL_12, V _{CCIO} = 1.2 V	HPIO	1066	Mbps
HSTL15	HSTL15, V _{CCIO} = 1.5 V	HPIO	250	Mbps
MIPI D-PHY (LP Mode)	MIPI, Low Power Mode, V _{CCIO} = 1.2 V	HPIO	10	Mbps
Differential ⁸			<u> </u>	
LVDS	LVDS, V _{CCIO} independent caBGA256, csBGA289, and caBGA400	HPIO	1250	Mbps
	LVDS, V _{CCIO} independent csfBGA121	HPIO	1500	Mbps

Buffer	Description	Banks	Max	Unit
subLVDS	subLVDS, V _{CCIO} independent, caBGA256, csBGA289, and caBGA400	HPIO	1250	Mbps
	subLVDS, V _{CCIO} independent csfBGA121	HPIO	1500	Mbps
SLVS	SLVS similar to MIPI HS, V _{CCIO} independent caBGA256, csBGA289, caBGA400	НРІО	1250	Mbps
	SLVS similar to MIPI HS, V _{CCIO} independent csfBGA121	HPIO	1500	Mbps
MIPI D-PHY (HS Mode)	MIPI, High Speed Mode, VCCIO = 1.2 V ³ Wire Bond package	HPIO	1250	Mbps
	MIPI, High Speed Mode, VCCIO = 1.2 V ³ Flip Chip package	HPIO	1500 ⁸	Mbps
SSTL15D	Differential SSTL15, V _{CCIO} independent	HPIO	1066	Mbps
SSTL135D	Differential SSTL135, V _{CCIO} independent	HPIO	1066	Mbps
HUSL12D	Differential HSUL12, V _{CCIO} independent	HPIO	1066	Mbps
HSTL15D	Differential HSTL15, V _{CCIO} independent	НРІО	250	Mbps
Maximum sysl/O Output Frequency				
Single-Ended				
LVCMOS33 (all drive strengths)	LVCMOS33, V _{CCIO} = 3.3 V	WRIO	200	MHz
LVCMOS33 (RS50)	LVCMOS33, V_{CCIO} = 3.3 V, R_{SERIES} = 50 Ω	WRIO	200	MHz
LVTTL33 (all drive strengths)	LVTTL33, V _{CCIO} = 3.3 V	WRIO	200	MHz
LVTTL33 (RS50)	LVTTL33, V_{CCIO} = 3.3 V, R_{SERIES} = 50 Ω	WRIO	200	MHz
LVCMOS25 (all drive strengths)	LVCMOS25, V _{CCIO} = 2.5 V	WRIO	200	MHz
LVCMOS25 (RS50)	LVCMOS25, V_{CCIO} = 2.5 V, R_{SERIES} = 50 Ω	WRIO	200	MHz
LVCMOS18 (all drive strengths)	LVCMOS18, V _{CCIO} = 1.8 V	WRIO	200	MHz
LVCMOS18 (RS50)	LVCMOS18, $V_{CCIO} = 1.8 \text{ V}$, $R_{SERIES} = 50 \Omega$	WRIO	200	MHz
LVCMOS18H (all drive strengths)	LVCMOS18, V _{CCIO} = 1.8 V	HPIO	200	MHz
LVCMOS18H (RS50)	LVCMOS18, $V_{CCIO} = 1.8 \text{ V}$, $R_{SERIES} = 50 \Omega$	HPIO	200	MHz
LVCMOS15 (all drive strengths)	LVCMOS15, V _{CCIO} = 1.5 V	WRIO	100	MHz
LVCMOS15H (all drive strengths)	LVCMOS15, V _{CCIO} = 1.5 V	HPIO	150	MHz
LVCMOS12 (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	WRIO	50	MHz
LVCMOS12H (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	HPIO	100	MHz
LVCMOS10H (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	HPIO	50	MHz
SSTL15_I, SSTL15_II	SSTL_15, V _{ccio} = 1.5 V	HPIO	1066	Mbps
SSTL135_I, SSTL135_II	SSTL_135, V _{CCIO} = 1.35 V	HPIO	1066	Mbps
HSUL12 (all drive strengths)	HSUL_12, V _{ccio} = 1.2 V	HPIO	1066	Mbps
HSTL15	HSTL15, V _{CCIO} = 1.5 V	HPIO	250	Mbps
MIPI D-PHY (LP Mode)	MIPI, Low Power Mode, V _{CCIO} = 1.2 V	HPIO	10	Mbps
Differential ⁸				
LVDS	LVDS, V _{CCIO} = 1.8 V caBGA256, csBGA289, and caBGA400	HPIO	1250	Mbps
	LVDS, V _{CCIO} = 1.8 V csfBGA121	HPIO	1500	Mbps
LVDS25E ⁶	LVDS25, Emulated, V _{CCIO} = 2.5 V	WRIO	400	Mbps
SubLVDSE ⁶	subLVDS, Emulated, V _{CCIO} = 1.8 V	WRIO	400	Mbps
SubLVDSEH ⁶	subLVDS, Emulated, V _{CCIO} = 1.8 V	HPIO	800	Mbps

Buffer	Description	Banks	Max	Unit
SLVS	SLVS similar to MIPI, V _{CCIO} = 1.2 V caBGA256, csBGA289, caBGA400	HPIO	1250	Mbps
	SLVS similar to MIPI, V _{CCIO} = 1.2 V csfBGA121	HPIO	1500	Mbps
MIPI D-PHY (HS Mode)	MIPI, High Speed Mode, V _{CCIO} = 1.2 V ³ Wire Bond package	HPIO	1250	Mbps
	MIPI, High Speed Mode, V _{CCIO} = 1.2 V ³ Flip Chip package	HPIO	1500	Mbps
SSTL15D	Differential SSTL15, V _{CCIO} = 1.5 V	HPIO	1066	Mbps
SSTL135D	Differential SSTL135, V _{CCIO} = 1.35 V	HPIO	1066	Mbps
HUSL12D	Differential HSUL12, V _{CCIO} = 1.2 V	HPIO	1066	Mbps
HSTL15D	Differential HSTL15, V _{CCIO} = 1.5 V	HPIO	250	Mbps

- 1. Maximum I/O speed is the maximum switching rate of the I/O operating within the guidelines of the defining standard. The actual interface speed performance using the I/O also depends on other factors, such as internal and external timing.
- 2. These numbers are characterized but not test on every device.
- 3. Performance is specified in MHz, as defined in clock rate when the sysl/O is used as pin. For data rate performance, this can be converted to Mbps, which equals to 2 times the clock rate.
- 4. LVCMOS and LVTTL are measured with load specified in Table 3.45.
- 5. These LVCMOS inputs can be placed in different V_{CIO} voltage. Performance may vary. Please refer to Lattice Design Software
- These emulated outputs performance is based on externally properly terminated as described in LVDS25E (Output Only) and SubLVDSE/SubLVDSEH (Output Only).
- 7. All speeds are measured with fast slew.
- 8. For maximum differential I/O performance, only Differential I/O should be placed in the bottom I/O banks. If this is not possible, the following will impact on maximum performance:
 - a. If Fast Slew Rate LVCMOS I/O are used, they should be limited to no more than nine I/O (adjacent), four I/O (same bank),
 55 I/O (left/right banks) to keep degradation below 50%.
 - b. If non-Differential I/O (SLOW SLEW) are placed on the bottom but not within the same bank as differential I/O, then the maximum Differential performance is degraded to 70% of original when 21 aggressors are toggling.
 - c. If non-Differential I/O (SLOW SLEW) are placed within the same bank as Differential I/O then the maximum performance is degraded to 50% of original when 16 aggressor are toggling.
 - d. If Differential RX/TX I/O are both placed within the same bank, then the maximum performance is degraded to 90%.
 - e. For DDR3/ DDR3L/LPDDR2 separate DQ/DQS groups from Address/Commands/CLK groups into separate banks.

3.14. Typical Building Block Function Performance

These building block functions can be generated using Lattice Design Software Tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.

Table 3.30. Pin-to-Pin Performance¹

Function	Typ. @ V _{CC} = 1.0 V	Unit
16-bit Decoder (I/O configured with LVCMOS18, Left and Right Banks)	5.5	ns
16-bit Decoder (I/O configured with HSTL15_I, Bottom Banks)	5.1	ns
16:1 Mux (I/O configured with LVCMOS18, Left and Right Banks)	6	ns
16:1 Mux (I/O configured with HSTL15_I, Bottom Banks)	6.1	ns

Note:

1. These functions are generated using Lattice Radiant Design software tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.

73

Table 3.31. Register-to-Register Performance^{1, 3, 4}

Function	Typ. @ V _{cc} = 1.0 V	Unit
Basic Functions		
16-bit Adder	500 ²	MHz
32-bit Adder	496	MHz
16-bit Counter	402	MHz
32-bit Counter	371	MHz
Embedded Memory Functions		
512 × 36 Single Port RAM, with Output Register	500 ²	MHz
1024 × 18 True-Dual Port RAM using same clock, with EBR Output Registers	500 ²	MHz
1024 × 18 True-Dual Port RAM using asynchronous clocks, with EBR Output Registers	500 ²	MHz
Large Memory Functions		
32 k × 32 Single Port RAM, with Output Register	165 ²	MHz
32 k × 32 Single Port RAM with ECC, with Output Register	130 ²	MHz
32 k × 32 True-Dual Port RAM using same clock, with Output Registers	340	MHz
Distributed Memory Functions		
16 × 4 Single Port RAM (One PFU)	340 ²	MHz
16 × 2 Pseudo-Dual Port RAM (One PFU)	340 ²	MHz
16 × 4 Pseudo-Dual Port (Two PFUs)	340 ²	MHz
DSP Functions		
9 × 9 Multiplier with Input Output Registers	376	MHz
18 × 18 Multiplier with Input/Output Registers	287	MHz
36 × 36 Multiplier with Input/Output Registers	200	MHz
MAC 18 × 18 with Input/Output Registers	203	MHz
MAC 18 × 18 with Input/Pipelined/Output Registers	287	MHz
MAC 36 × 36 with Input/Output Registers	119	MHz
MAC 36 × 36 with Input/Pipelined/Output Registers	155	MHz

Notes:

- 1. The Clock port is configured with LVDS I/O type. Performance Grade: 9_High-Performance_1.0V.
- 2. Limited by the Minimum Pulse Width of the component
- 3. These functions are generated using Lattice Radiant Design Software tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.
- 4. For the Pipelined designs, the number of pipeline stages used are 2.

3.15. LMMI

Table 3.32 summarizes the performance of the LMMI interface with supported IPs. Additional timing requirement and constraint can be identified through the Lattice Radiance design tools.

Table 3.32. LMMI F_{MAX} Summary

IP	F _{MAX} (MHz)
CDR0	73
CDR1	70
DPHY0	67
DPHY1	55
CRE	54
I ² C	38
PCle	57

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-DS-02078-2.4

IP	F _{MAX} (MHz)
PLL_ULC	59
PLL_LLC	55
PLL_LRC	37

3.16. Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Lattice Radiant design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Lattice Radiant design tool can provide logic timing numbers at a particular temperature and voltage.

3.17. External Switching Characteristics

Over recommended commercial and industrial operating conditions.

Table 3.33. External Switching Characteristics (Vcc = 1.0 V)

Davamatav	Description	−9 C/I		-8	C/I	-7	C/I	Unit
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
Clocks								
Primary Clock								
f _{MAX_PRI}	Frequency for Primary Clock	_	400	_	325.2	_	276	MHz
t _{w_pri}	Clock Pulse Width for Primary Clock	1.125	_	1.384	_	1.63	_	ns
t _{skew_pri} 6	Primary Clock Skew Within a Device	_	450	_	554	-	653	ps
Edge Clock								
f _{MAX_EDGE}	Frequency for Edge Clock Tree	_	800	_	650.4	_	551.7	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	0.537	_	0.661	_	0.779	_	ns
t _{skew_edge} 6	Edge Clock Skew Within a Device	_	120	_	148	_	174	ps
Generic SDR Inp	out		•	•	•			
General I/O Pin	Parameters Using Dedicated Prima	ry Clock Inp	ut without	PLL				
t _{co}	Clock to Output - PIO Output Register	_	6.45	_	6.64	_	7.83	ns
t _{su}	Clock to Data Setup - PIO Input Register	0	_	0	_	0	_	ns
t _H	Clock to Data Hold - PIO Input Register	2.94	_	3.32	_	3.92	_	ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Data Input Delay	1.84	_	1.84	_	1.84	_	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Data Input Delay	0.16	_	0.16	_	0.16	_	ns
General I/O Pin	Parameters Using Dedicated Prima	ry Clock Inp	ut with PLI	<u></u>				
t _{COPLL}	Clock to Output - PIO Output Register	_	4.02	_	4.67	_	5.51	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	1.23	_	1.23	_	1.23	_	ns

		−9 C/I		−8 C/I		−7 C/I		l locate
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
t _{HPLL}	Clock to Data Hold - PIO Input Register	0.98	_	1.21	_	1.42	_	ns
t _{su_delpll}	Clock to Data Setup - PIO Input Register with Data Input Delay	4.74	_	4.74	_	4.74	_	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Data Input Delay	0	_	0	_	0	-	ns
Generic DDR Inp	ut/Output							
	Inputs/Outputs with Clock and Dature 3.7 and Figure 3.9	a Centered	at Pin (GDI	DRX1_RX/T	X.SCLK.Ce	ntered) u	sing PCLK (Clock Input –
t _{SU_GDDR1}	Input Data Setup Before CLK	0.917 0.275	_	0.917 0.275	_	0.917 0.275	_	ns UI
t _{HO_GDDR1}	Input Data Hold After CLK	0.917	_	0.917	_	0.917	_	ns
-110_00011	Output Data Valid After CLK	1.217	_	1.113	_	1.014	_	ns
t _{DVB_GDDR1}	Output	-0.45	_	-0.554	_	-0.653	_	ns + 1/2 UI
	Output Data Valid After CLK	1.217	_	1.113	_	1.014	_	ns
t _{DQVA_GDDR1}	Output	-0.45	_	-0.554	_	-0.653	_	ns + 1/2 UI
f _{DATA_GDDRX1}	Input/Output Data Rate	1	300	_	300	_	300	Mbps
f_{MAX_GDDRX1}	Frequency of PCLK	1	150	_	150	_	150	MHz
½ UI	Half of Data Bit Time, or 90 degree	1.667	_	1.667	_	1.667	-	ns
Output TX to Inp	ut RX Margin per Edge	0.3	_	0.197	_	0.097	_	ns
	nputs/Outputs with Clock and Dat	a Aligned at	Pin (GDDF	X1_RX/TX.	SCLK.Alig	ned) using	PCLK Clo	k Input –
WRIO Banks Figu	ure 3.8 and Figure 3.10		1	I	Γ	I		
		_	-0.917	_	-0.917	_	-0.917	ns + 1/2 UI
t _{DVA_GDDR1}	Input Data Valid After CLK		0.75	_	0.75	_	0.75	
					0.005			ns
		0.047	0.225	- 0.017	0.225	_	0.225	UI
DVE GDDR1	Innut Date Hald After CH	0.917	0.225 —	0.917	_	0.917	0.225 —	UI ns + 1/2 UI
t _{DVE_GDDR1}	Input Data Hold After CLK	2.583		0.917 2.583		2.583	0.225	UI ns + 1/2 UI ns
t _{DIA_GDDR1}	Output Data Invalid After			0.917	_		0.225 —	UI ns + 1/2 UI
	·	2.583	_ _ _	0.917 2.583 0.775	_ 	2.583 0.775	0.225 — —	UI ns + 1/2 UI ns UI
t _{DIA_GDDR1}	Output Data Invalid After CLK Output Output Data Invalid Before	2.583	 0.45	0.917 2.583 0.775	 0.554	2.583 0.775	0.225 — — — — 0.653	UI ns + 1/2 UI ns UI ns
t _{DIA_GDDR1}	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output	2.583 0.775 — —		0.917 2.583 0.775 —		2.583 0.775	0.225 — — — 0.653 0.653	UI ns + 1/2 UI ns UI ns uI
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1}	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate	2.583 0.775 — — —		0.917 2.583 0.775 — —	- - - 0.554 0.554	2.583 0.775	0.225 — — — 0.653 0.653	UI ns + 1/2 UI ns UI ns UI ns Mbps
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1}	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90	2.583 0.775 — — — —		0.917 2.583 0.775 — — —	 0.554 0.554 300 150	2.583 0.775 — — — —	0.225 — — — 0.653 0.653	UI ns + 1/2 UI ns UI ns His Ns Mbps MHz
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1} ½ UI Output TX to Inp Generic DDRX1 I	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree	2.583 0.775 — — — — — 1.667		0.917 2.583 0.775 — — — — — 1.667	 0.554 0.554 300 150 	2.583 0.775 — — — — — 1.667 0.098	0.225 0.653 0.653 300 150	UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1} ½ UI Output TX to Inp Generic DDRX1 I HPIO Banks Figu	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree ut RX Margin per Edge Inputs/Outputs with Clock and Dat	2.583 0.775 — — — — — 1.667		0.917 2.583 0.775 — — — — — 1.667	 0.554 0.554 300 150 	2.583 0.775 — — — — — 1.667 0.098	0.225 0.653 0.653 300 150	UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1} ½ UI Output TX to Inp Generic DDRX1 I	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree out RX Margin per Edge Inputs/Outputs with Clock and Date 1.7 and Figure 3.9	2.583 0.775 — — — — 1.667 0.3		0.917 2.583 0.775 1.667 0.197	 0.554 0.554 300 150 	2.583 0.775 — — — — 1.667 0.098	0.225 0.653 0.653 300 150	UI ns + 1/2 UI ns UI ns Mbps MHz ns ns Clock Input –
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1} ½ UI Output TX to Inp Generic DDRX1 I HPIO Banks Figu	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree out RX Margin per Edge Inputs/Outputs with Clock and Datare 3.7 and Figure 3.9 Input Data Setup Before	2.583 0.775 — — — — 1.667 0.3 a Centered a		0.917 2.583 0.775 — — — — 1.667 0.197 DRX1_RX/T.		2.583 0.775 — — — — 1.667 0.098 Intered) u	0.225 0.653 0.653 300 150 sing PCLK (UI ns + 1/2 UI ns UI ns Mbps MHz ns ns clock Input —
t _{DIA_GDDR1} t _{DIB_GDDR1} f _{DATA_GDDRX1} f _{MAX_GDDRX1} ½ UI Output TX to Inp Generic DDRX1 I HPIO Banks Figu t _{SU_GDDR1}	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree ut RX Margin per Edge Inputs/Outputs with Clock and Datare 3.7 and Figure 3.9 Input Data Setup Before CLK	2.583 0.775 — — — — 1.667 0.3 a Centered 3 0.55 0.275	0.45 0.45 300 150	0.917 2.583 0.775 — — — 1.667 0.197 DRX1_RX/T. 0.55 0.275		2.583 0.775 — — — 1.667 0.098 ntered) u 0.648 0.275	0.225 0.653 0.653 300 150 sing PCLK (UI ns + 1/2 UI ns UI ns UI ns Ns Ns Nbps MHz ns ns UI uns UI ns UI uns UI

	4	0	C/I		C /I		· C /I	
Parameter	Description	_9	1	-8 (C/I	Unit
		Min	Max	Min	Max	Min	Max	
t _{DQVA_GDDR1}	Output Data Valid After CLK Output	0.7	_	0.631	_	0.744	_	ns
£	-	-0.300	-	-0.369	-	-0.435	424	ns + 1/2 UI
f _{DATA_GDDRX1}	Input/Output Data Rate	_	500	_	500	_	424	Mbps
f _{MAX_GDDRX1}	Frequency of PCLK	_	250	_	250	_	212	MHz
½ UI	Half of Data Bit Time, or 90 degree	_	_	1	_	1.179	_	ns
	t RX Margin per Edge	0.15	_	0.081	_	0.095	_	ns
	puts/Outputs with Clock and Date 3.8 and Figure 3.10	a Aligned at	: Pin (GDDF	RX1_RX/TX	SCLK.Alig	ned) using	PCLK Cloc	k Input –
		_	-0.55	_	-0.550	_	-0.648	ns + 1/2 UI
t _{DVA_GDDR1}	Input Data Valid After CLK	_	0.45	_	0.45	_	0.53	ns
		_	0.225	_	0.225	_	0.225	UI
		0.55	_	0.55	_	0.648	_	ns + 1/2 UI
t _{DVE_GDDR1}	Input Data Hold After CLK	1.55	_	1.55	_	1.827	_	ns
		0.775	_	0.775	_	0.775	-	UI
t _{DIA_GDDR1}	Output Data Invalid After CLK Output	_	0.3	_	0.369	_	0.435	ns
t _{DIB_GDDR1}	Output Data Invalid Before CLK Output	_	0.3	_	0.369	_	0.435	ns
f _{DATA GDDRX1}	Input/Output Data Rate	_	500	_	500	_	424	Mbps
f _{MAX GDDRX1}	Frequency for PCLK	_	250	_	250	_	212	MHz
½ UI	Half of Data Bit Time, or 90 degree	1	_	1	_	1.179	_	ns
Output TX to Inpu	t RX Margin per Edge	0.15	_	0.081	_	0.095	_	ns
-	puts/Outputs with Clock and Dat	a Centered	at Pin (GDI	DRX2_RX/T	X.ECLK.Ce	ntered) u	sing PCLK (Clock Input -
Figure 3.7 and Fig	ure 3.9							
t _{SU GDDRX2}	Data Setup before CLK Input	0.175	_	0.175	_	0.206	_	ns
CSU_GDDRX2	Data Setup before CER input	0.175	_	0.175	_	0.175	_	UI
t _{HO_GDDRX2}	Data Hold after CLK Input	0.177	_	0.177	_	0.206	_	ns
taun canava	Output Data Valid Before	0.380	_	0.352	_	0.415	_	ns
t _{DVB_GDDRX2}	CLK Output	-0.120	_	-0.148	_	-0.174	_	ns + 1/2 UI
tagu gaanya	Output Data Valid After CLK	0.380	_	0.352	_	0.415	_	ns
t _{DQVA_GDDRX2}	Output	-0.120	_	-0.148	_	-0.174	-	ns + 1/2 UI
f _{DATA_GDDRX2}	Input/Output Data Rate	_	1000	_	1000	_	848	Mbps
f _{MAX_GDDRX2}	Frequency for ECLK	_	500	_	500	_	424	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.500	_	0.500	_	0.589	-	ns
f _{PCLK}	PCLK frequency	_	250.0	_	250.0	_	212.1	MHz
	t RX Margin per Edge	0.230	_	0.202	_	0.239	_	ns
	puts/Outputs with Clock and Dat	a Aligned at	Pin (GDDF	RX2_RX/TX	ECLK.Alig	ned) using	PCLK Cloc	k Input -
Figure 3.8 and Fig								
		_	-0.275	_	-0.275	_	-0.324	ns + 1/2 UI
t _{DVA_GDDRX2}	Input Data Valid After CLK	_	0.225	_	0.225	_	0.265	ns
		_	0.225	_	0.225	_	0.225	UI
		0.275	_	0.275	_	0.324	_	ns + 1/2 UI
t _{DVE} GDDRX2	Input Data Hold After CLK	0.775	_	0.775	_	0.914	_	ns
- <u>-</u> -	,	0.775	_	0.775	_	0.775	_	UI
t _{DIA_GDDRX2}	Output Data Invalid After CLK Output	_	0.120	_	0.148	_	0.174	ns
1	JEN Output		1	1	1			1

		−9 C/I		−8 C/I		−7 C/I		l l'mit
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
t _{DIB_GDDRX2}	Output Data Invalid Before CLK Output	_	0.120	_	0.148	-	0.174	ns
f _{DATA_GDDRX2}	Input/Output Data Rate	_	1000	_	1000	_	848	Mbps
f _{MAX_GDDRX2}	Frequency for ECLK	_	500	_	500	_	424	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.500	_	0.500	_	0.589	_	ns
f _{PCLK}	PCLK frequency	_	250.0	_	250.0	_	212.1	MHz
Output TX to Inpu	it RX Margin per Edge	0.105	_	0.077	_	0.091	-	ns
Generic DDRX4 In Figure 3.7 and Fig	puts/Outputs with Clock and Dat	a Centered	at Pin (GDD	DRX4_RX/T	X.ECLK.Ce	ntered) u	sing PCLK (Clock Input -
t _{SU_GDDRX4}	Input Data Set-Up Before CLK	0.168 0.252		0.210 0.252		0.244 0.252	_	ns UI
tho gddrx4	Input Data Hold After CLK	0.174	_	0.210	_	0.244	_	ns
CHO_GDDRX4	Output Data Valid Before	0.213	_	0.269	_	0.309		ns
t_{DVB_GDDRX4}	CLK Output	-0.120	_	-0.148	_	-0.174		ns + 1/2UI
_	Output Data Valid After CLK	0.213	_	0.269	_	0.309	_	Ns
t_{DQVA_GDDRX4}	Output Data Valid Arter CER	-0.120	_	-0.148	_	-0.174	_	ns + 1/2UI
f _{DATA GDDRX4}	Input/Output Data Rate	_	1500	_	1200	_	1034	Mbps
f _{MAX_GDDRX4}	Frequency for ECLK	_	750.0	_	600	_	517	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.333	_	0.417	_	0.483	_	ns
f _{PCLK}	PCLK frequency	_	187.5	_	150.0	_	129.3	MHz
	it RX Margin per Edge	0.080	_	0.102	_	0.116	_	ns
Generic DDRX4 In and Right sides O	puts/Outputs with Clock and Dat	a Aligned at	Pin (GDDR	X4_RX/TX	ECLK.Alig	ned) using	PCLK Cloc	k Input. Left
	illy - rigule 3.0 allu rigule 3.10							
	illy - Figure 5.8 and Figure 5.10	_	-0.183	_	-0.229	_	-0.266	T
t _{DVA_GDDRX4}	Input Data Valid After CLK	<u> </u>	-0.183 0.150	_ _	-0.229 0.188	_ _		T
t _{DVA_GDDRX4}		_ 		_ _ _		_	-0.266	ns + 1/2 UI
t _{DVA_GDDRX4}			0.150		0.188	 	-0.266 0.218	ns + 1/2 UI ns UI
t _{DVA_GDDRX4}		_	0.150 0.225	_	0.188 0.225	_ 	-0.266 0.218 0.225	ns + 1/2 UI ns UI
	Input Data Valid After CLK	- 0.183	0.150 0.225	— 0.229	0.188 0.225	_ _ _ _ 0.266	-0.266 0.218 0.225	ns + 1/2 UI ns UI ns + 1/2 UI
	Input Data Valid After CLK	- 0.183 0.517	0.150 0.225 — —	- 0.229 0.646	0.188 0.225 — —		-0.266 0.218 0.225 	ns + 1/2 UI ns UI ns + 1/2 UI
t _{DVE_GDDRX4}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After	- 0.183 0.517	0.150 0.225 — — —	- 0.229 0.646	0.188 0.225 — — —		-0.266 0.218 0.225 -	ns + 1/2 UI ns UI ns + 1/2 UI ns
t _{DVE_GDDRX4}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before	- 0.183 0.517	0.150 0.225 — — — 0.120	- 0.229 0.646	0.188 0.225 — — — 0.148		-0.266 0.218 0.225 - - - 0.17	ns + 1/2 UI ns UI ns + 1/2 UI ns UI
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output	- 0.183 0.517	0.150 0.225 — — — 0.120	- 0.229 0.646	0.188 0.225 — — 0.148		-0.266 0.218 0.225 0.17	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns ns
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate	- 0.183 0.517	0.150 0.225 — — — 0.120 0.120	- 0.229 0.646	0.188 0.225 — — 0.148 0.148		-0.266 0.218 0.225 0.17 0.174	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns UI ns UI
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90		0.150 0.225 — — — 0.120 0.120	- 0.229 0.646 0.775 - - -	0.188 0.225 — — 0.148 0.148	 0.266 0.749 0.775 	-0.266 0.218 0.225 0.17 0.174	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns Mbps MHz
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4} ½ UI f _{PCLK}	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90 degree		0.150 0.225 0.120 0.120 1500 750	- 0.229 0.646 0.775 0.417	0.188 0.225 — — 0.148 0.148 1200 600	 0.266 0.749 0.775 	-0.266 0.218 0.225 0.17 0.174 1034 517	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4} ½ UI f _{PCLK} Output TX to Inpu	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90 degree PCLK frequency It RX Margin per Edge		0.150 0.225 0.120 0.120 1500 750 - 187.5	- 0.229 0.646 0.775 0.417 - 0.040	0.188 0.225 — — 0.148 0.148 1200 600 — 150.0	0.266 0.749 0.775 0.483 0.044	-0.266 0.218 0.225 0.17 0.174 1034 517 - 129.3	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns HA UI ns Mbps MHz ns MHz ns
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4} ½ UI f _{PCLK} Output TX to Inpu Generic DDRX5 In Figure 3.7 and Fig	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90 degree PCLK frequency It RX Margin per Edge		0.150 0.225 0.120 0.120 1500 750 - 187.5	- 0.229 0.646 0.775 0.417 - 0.040	0.188 0.225 — — 0.148 0.148 1200 600 — 150.0	0.266 0.749 0.775 0.483 0.044	-0.266 0.218 0.225 0.17 0.174 1034 517 - 129.3	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns HA UI ns Mbps MHz ns MHz ns
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4} ½ UI f _{PCLK} Output TX to Inpu Generic DDRX5 In	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90 degree PCLK frequency It RX Margin per Edge Inputs/Outputs with Clock and Data Cure 3.9		0.150 0.225 0.120 0.120 1500 750 - 187.5		0.188 0.225 — — 0.148 0.148 1200 600 — 150.0 — X.ECLK.Ce		-0.266 0.218 0.225 0.17 0.174 1034 517 129.3 ssing PCLK (ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns MHz ns Clock Input -
t _{DVE_GDDRX4} t _{DIA_GDDRX4} t _{DIB_GDDRX4} f _{DATA_GDDRX4} f _{MAX_GDDRX4} ½ UI f _{PCLK} Output TX to Inpu Generic DDRX5 In Figure 3.7 and Fig	Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for ECLK Half of Data Bit Time, or 90 degree PCLK frequency It RX Margin per Edge Puts/Outputs with Clock and Data Cure 3.9 Input Data Set-Up Before		0.150 0.225 0.120 0.120 1500 750 - 187.5 - at Pin (GDD		0.188 0.225 — — 0.148 0.148 1200 600 — 150.0 — X.ECLK.Ce		-0.266 0.218 0.225 0.17 0.174 1034 517 - 129.3 - ssing PCLK (ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns MHz ns Clock Input -

Danamata:	Description	-9	C/I	-8	C/I	-7	C/I	1714
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
	Output Data Valid Before	0.280	_	0.269	_	0.326	_	ns
t _{DVB_GDDRX5}	CLK Output	-0.120	_	-0.148	_	-0.174	_	ns+1/2UI
	Output Data Valid After CLK	0.280	_	0.269	_	0.326	_	ns
tDQVA_GDDRX5	Output	-0.120	_	-0.148	_	-0.174	_	ns+1/2UI
f _{DATA_GDDRX5}	Input/Output Data Rate	_	1250	_	1200	_	1000	Mbps
f _{MAX_GDDRX5}	Frequency for ECLK	_	625	_	600	_	500	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.400	_	0.417	_	0.500	-	ns
f _{PCLK}	PCLK frequency	_	125.0	_	120.0	_	100.0	MHz
	: RX Margin per Edge	0.120	_	0.102	_	0.126	_	ns
	outs/Outputs with Clock and Dat	a Aligned at	Pin (GDDR	XX5_RX/TX	ECLK.Alig	ned) using	g PCLK Clo	k Input -
Tigure ore und rigo		I _	-0.220	_	-0.229	_	-0.275	ns + 1/2 UI
t _{DVA GDDRX5}	Input Data Valid After CLK	_	0.180	_	0.188	_	0.225	ns
*DVA_GDDRX5	input buta valia vittel elik	_	0.225	_	0.225		0.225	UI
		0.220	— — — — — — — — — — — — — — — — — — —	0.229	—	0.275	_	ns + 1/2 UI
t _{DVE GDDRX5}	Input Data Hold After CLK	0.620	_	0.646	_	0.775	_	ns
CDVE_GDDRX3	input buta fiola filter delic	0.775	_	0.775	_	0.775	_	UI
turnour cooper	Input Data Valid Window	0.440	_	0.458	_	0.550	_	ns
t _{MINDOW_GDDRX5A}	Output Data Invalid After CLK Output	-	0.120	-	0.148	-	0.174	ns
t _{DIB_GDDRX5}	Output Data Invalid Before CLK Output	_	0.120	_	0.148	_	0.174	ns
f _{DATA_GDDRX5}	Input/Output Data Rate	_	1250	_	1200		1000	Mbps
f _{MAX_GDDRX5}	Frequency for ECLK	_	625	_	600	_	500	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.400	_	0.417	_	0.500	_	ns
f _{PCLK}	PCLK frequency	_	125.0	_	120.0	_	100.0	MHz
-	: RX Margin per Edge	0.060	_	0.040	_	0.051	_	ns
	Inputs/Outputs with Clock and		ed at Pin u		Clock Innu			113
3010 2 1111 22104	Input Data Set-Up Before	0.133	_	0.167	_	0.193		ns
t _{SU_GDDRX4_MP}	CLK	0.2	_	0.2	_	0.2	_	UI
tho gddrx4 mp	Input Data Hold After CLK	0.133	_	0.167	_	0.193	_	ns
CHO_GDDRX4_MP	Output Data Valid Before	0.133	_	0.167	_	0.193	_	ns
$t_{DVB_GDDRX4_MP}$	CLK Output	0.133	_	0.107	_	0.133		UI
	•	0.133	_	0.167	_	0.193	_	ns
t _{DQVA_GDDRX4_MP}	Output Data Valid After CLK Output	0.133	_	0.107	_	0.193		UI
f _{DATA_GDDRX4_MP}	Input Data Bit Rate for MIPI PHY	_	1500	_	1200	_	1034	Mbps
½ UI	Half of Data Bit Time, or 90 degree	0.333	_	0.417	_	0.483	_	ns
f _{PCLK}	PCLK frequency	_	187.5	_	150.0	_	129.3	MHz
	: RX Margin per Edge	0.067		0.083		0.097		ns
	uts/Outputs with Clock and Data	<u> </u>	Pin (GDDR		LK) using I		Input - Figu	
3	Input Valid Bit "i" switch	I _	0.264	I _	0.264	_	0.3	UI
t _{RPBi_DVA}	from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	_	-0.250	_	-0.250	_	-0.249	ns+(1/2+i)*U

		-9	C/I	-8	C/I	-7	' C/I	
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
	Input Hold Bit "i" switch	0.722	_	0.722	_	0.7	_	UI
t _{RPBi_DVE}	from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	0.235	_	0.235	_	0.249	_	ns+(1/2+i)*UI
$t_{\text{TPBi_DOV}}$	Data Output Valid Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	Ι	0.159	_	0.159	_	0.187	ns+i*UI
$t_{\text{TPBi_DOI}}$	Data Output Invalid Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	-0.159	_	-0.159	_	-0.187	_	ns+(i+ 1)*UI
t _{TPBi_skew_UI}	TX skew in UI	1	0.150	_	0.150	1	0.150	UI
t _B	Serial Data Bit Time, = 1UI	1.058	_	1.058	_	1.247	_	ns
f _{DATA_TX71}	DDR71 Serial Data Rate	1	945	_	945	1	802	Mbps
f _{MAX_TX71}	DDR71 ECLK Frequency	1	473	_	473	1	401	MHz
f _{CLKIN}	7:1 Clock (PCLK) Frequency	1	135.0	_	135.0	1	114.5	MHz
Output TX to Input R	X Margin per Edge	0.159	_	0.159	_	0.187	_	ns
Memory Interface								
DDR3/DDR3L/LPDD	R2 READ (DQ Input Data are Al	igned to DQ	S) - Figure	3.8				
tovbdo_ddr3 tovbdo_ddr3L tovbdo_lpddr2	Data Input Valid before DQS Input	ı	-0.235	_	-0.235	ı	-0.277	ns + 1/2 UI
t _{DVADQ_DDR3} t _{DVADQ_DDR3L} t _{DVADQ_LPDDR2}	Data Input Valid after DQS Input	0.235	_	0.235	_	0.277	_	ns + 1/2 UI
f _{DATA_DDR3} f _{DATA_DDR3L} f _{DATA_LPDDR2}	DDR Memory Data Rate	_	1066	_	1066	_	904	Mb/s
fmax_eclk_ddr3 fmax_eclk_ddr3l fmax_eclk_lpddr2	DDR Memory ECLK Frequency	_	533	_	533	_	452	MHz
fmax_sclk_ddr3 fmax_sclk_ddr3l fmax_sclk_lpddr2	DDR Memory SCLK Frequency	ı	133.3	_	133.3	ı	113	MHz
DDR3/DDR3L/LPDD	R2 WRITE (DQ Output Data are	Centered to	o DQS) - Fig	ure 3.11				
t _{DQVBS_DDR3} t _{DQVBS_DDR3L} t _{DQVBS_LPDDR2}	Data Output Valid before DQS Output	_	-0.235	_	-0.235	_	-0.277	ns + 1/2 UI
t _{DQVAS_DDR3} t _{DQVAS_DDR3L} t _{DQVAS_LPDDR2}	Data Output Valid after DQS Output	0.235	_	0.235	_	0.277	_	ns + 1/2 UI
f _{DATA_DDR3} f _{DATA_DDR3L} f _{DATA_LPDDR2}	DDR Memory Data Rate	1	1066	-	1066	ı	904	Mb/s
fmax_eclk_ddr3 fmax_eclk_ddr3l fmax_eclk_lpddr2	DDR Memory ECLK Frequency	_	533	_	533	_	452	MHz
fmax_sclk_ddr3 fmax_sclk_ddr3l fmax_sclk_lpddr2	DDR Memory SCLK Frequency	_	133.3	_	133.3	_	113	MHz

Notes:

 Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Lattice Radiant software.

- General I/O timing numbers are based on LVCMOS 1.8, 8 mA, Fast Slew Rate, 0 pf load. Generic DDR timing are numbers based on LVDS I/O. DDR3 timing numbers are based on SSTL15. LPDDR2 timing numbers are based on HSUL12.
- 3. Uses LVDS I/O standard for measurements.
- 4. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
- 5. All numbers are generated with the Lattice Radiant software.
- 6. This clock skew is not the internal clock network skew. Nexus devices have very low internal clock network skew that can be approximated to 0 ps. These t_{SKEW} values measured externally at system level includes additional skew added by the I/O, wire bonding and package ball.

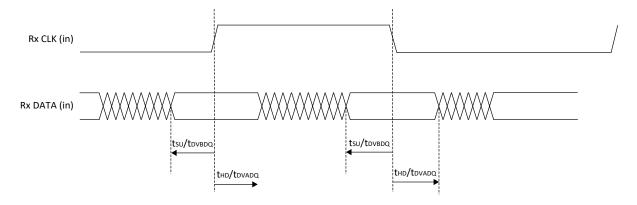


Figure 3.7. Receiver RX.CLK.Centered Waveforms

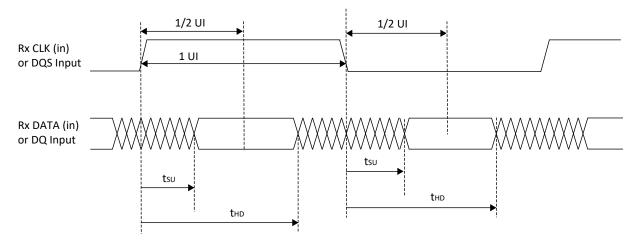


Figure 3.8. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms

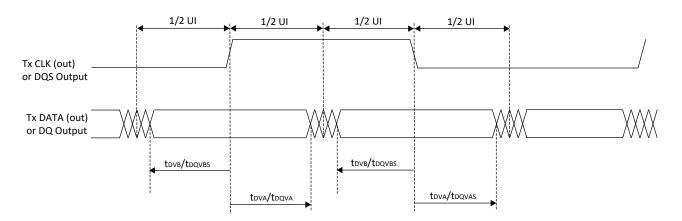


Figure 3.9. Transmit TX.CLK.Centered and DDR Memory Output Waveforms

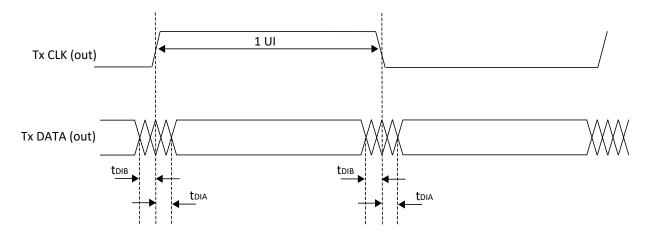
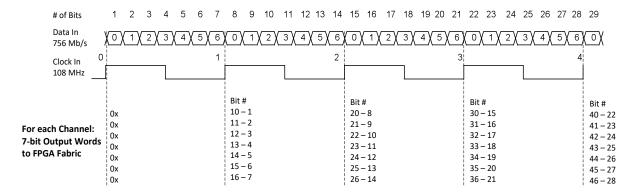



Figure 3.10. Transmit TX.CLK.Aligned Waveforms

Receiver - Shown for one LVDS Channel

Transmitter - Shown for one LVDS Channel

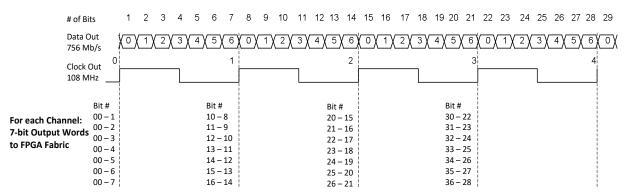


Figure 3.11. DDRX71 Video Timing Waveforms

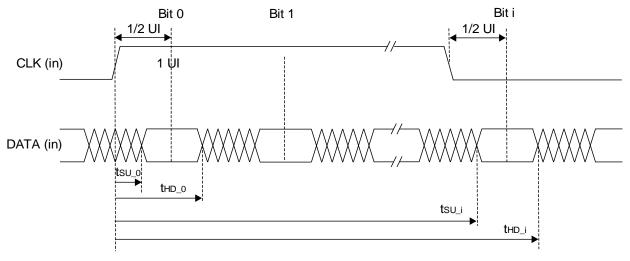


Figure 3.12. Receiver DDRX71_RX Waveforms

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

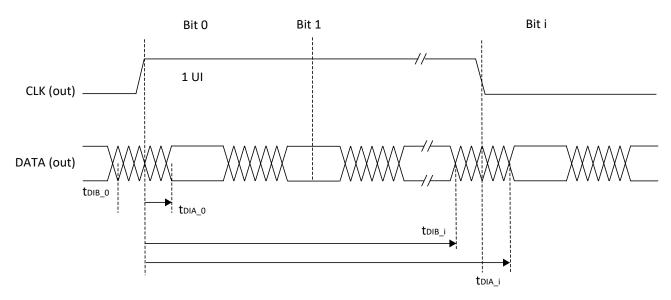


Figure 3.13. Transmitter DDRX71_TX Waveforms

3.18. sysCLOCK PLL Timing ($V_{CC} = 1.0 \text{ V}$)

Table 3.34. sysCLOCK PLL Timing (Vcc = 1.0 V)

Parameter	Descriptions	Conditions	Min	Тур.	Max	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	_	18	_	500	MHz
f _{OUT}	Output Clock Frequency	_	6.25	_	800	MHz
f _{VCO}	PLL VCO Frequency	_	800	_	1600	MHz
f _{PFD}	Phase Detector Input Frequency	Without Fractional-N Enabled	18	_	500	MHz
		With Fractional-N Enabled	18	_	100	MHz
AC Characte	ristics					
t _{DT}	Output Clock Duty Cycle	_	45	_	55	%
t _{PH} ⁴	Output Phase Accuracy	_	-5	_	5	%
	Output Clark Paria d Litter	f _{OUT} ≥ 200 MHz	_	_	250	ps p-p
	Output Clock Period Jitter	f _{OUT} < 200 MHz	_	_	0.05	UIPP
	Output Clock Cycle-to-Cycle Jitter	f _{OUT} ≥ 200 MHz	_	_	250	ps p-p
		f _{OUT} < 200 MHz	_	_	0.05	UIPP
		f _{PFD} ≥ 200 MHz	_	_	250	ps p-p
. 1		60 MHz ≤ f _{PFD} < 200 MHz	_	_	350	ps p-p
t _{OPJIT} 1	Output Clock Phase Jitter	30 MHz ≤ f _{PFD} < 60 MHz	_	_	450	ps p-p
		18 MHz ≤ f _{PFD} < 30 MHz	_	_	650	ps p-p
	Output Clash Pariod Litter (Freetians NI)	f _{OUT} ≥ 200 MHz	_	_	350	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} < 200 MHz	_	_	0.07	UIPP
	Output Clock Cycle-to-Cycle Jitter	f _{OUT} ≥ 200 MHz	_	_	400	ps p-p
	(Fractional-N)	f _{OUT} < 200 MHz	_	_	0.08	UIPP
f _{BW} ³	PLL Loop Bandwidth	_	0.45	_	13	MHz
t _{LOCK} ²	PLL Lock-in Time	_	_	_	10	ms
t _{UNLOCK}	PLL Unlock Time (from RESET goes HIGH)	_	_	_	50	ns
t _{IPJIT}	Input Clock Period Jitter	_	_	_	500	ps p-p
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	_	ns
t _{RST}	RST/Pulse Width	_	1	_	_	ms
						1

Parameter	Descriptions	Conditions	Min	Тур.	Max	Units
f _{SSC_MOD}	Spread Spectrum Clock Modulation Frequency	_	20	_	200	kHz
f _{SSC_MOD_AMP}	Spread Spectrum Clock Modulation Amplitude Range	_	0.25	_	2.00	%
f _{SSC_MOD_STEP}	Spread Spectrum Clock Modulation Amplitude Step Size	_	_	0.25	_	%

Notes:

- 1. Jitter sample is taken over 10,000 samples for Period jitter, and 1,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.
- 2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.
- 3. Result from Lattice Radiant software.
- 4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency.

3.19. Internal Oscillators Characteristics

Table 3.35. Internal Oscillators (V_{CC} = 1.0 V)

Symbol	Parameter Description	Min	Тур	Max	Unit
f _{CLKHF}	HFOSC CLKK Clock Frequency	418.5	450	481.5	MHz
f _{CLKLF}	LFOSC CLKK Clock Frequency	25.6	32	38.4	kHz
DCH _{CLKHF}	HFOSC Duty Cycle (Clock High Period)	45	50	55	%
DCH _{CLKLF}	LFOSC Duty Cycle (Clock High Period)	45	50	55	%

3.20. User I2C Characteristics

Table 3.36. User I2C Specifications (Vcc = 1.0 V)

Symbol	Parameter	STD Mode		FAST Mode		FAST Mode Plus ²			Linita		
Зуппоп	Description	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
f _{scl}	SCL Clock Frequency	-	-	100	_	_	400	_	-	1000	kHz
T _{DELAY}	Optional delay through delay block	-	62	_	_	62	-	_	62	_	ns

Notes:

- Refer to the I2C Specification for timing requirements. User design must set constraints in the Lattice Design software to meet this industrial I2C Specification.
- 2. Fast Mode Plus maximum speed may be achieved by using external pull up resistor on I2C bus. Internal pull up may not be sufficient to support the maximum speed.

3.21. Analog-Digital Converter (ADC) Block Characteristics

Table 3.37. ADC Specifications¹

Symbol	Description	Condition	Min	Тур	Max	Unit
V _{REFEXT_ADC} ³	ADC External Reference Voltage (ADC_REFP0 or ADC_REFP1)	_	1.0	_	1.8	V
N _{RES_ADC}	ADC Resolution	_	_	12	_	bits
V _{SR_ADC}	ADC Input Range	Bipolar Mode	V _{CM_ADC} – V _{REFEXT_ADC} /4	V _{CM_ADC}	V _{CM_ADC} + V _{REFEXT_ADC} /4	V
		Uni-polar Mode	0	_	V _{REFEXT_ADC}	V
V _{CM_ADC}	ADC Input Common Mode Voltage (for fully differential signals)	_	_	V _{REFEXT_ADC} /2	_	V
f _{CLK_ADC}	Max frequency of adc_clk_i input of the ADC block	_	_	_	50	MHz
f _{CLK_FAB}	Max frequency of fab_clk_i input of the ADC block	_	_	_	40	MHz
f _{INPUT_ADC}	ADC Input Frequency	@Sampling Frequency = 620 ksps	_	_	310	kHz
FS _{ADC}	ADC Sampling Rate	_	_	_	620	ksps
R _{IN_ADC}	ADC Input Equivalent Resistance	_	_	116	_	kΩ
t _{CAL_ADC}	ADC Calibration Time	_	_	_	6500	cycles ²
t _{OUTPUT_ADC}	Refer to the ADC User Guide for Nexus Platform (FPGA-TN-02129) for the detailed calculation.	_	_	_	_	_
DNL _{ADC}	ADC Differential Nonlinearity	_	-1	_	-1	LSB
INL _{ADC}	ADC Integral Nonlinearity	_	-2	_	2.21	LSB
SFDR _{ADC}	ADC Spurious Free Dynamic Range	_	67.7	77	_	dBc
THD _{ADC}	ADC Total Harmonic Distortion	_	_	- 76	-66.8	dB
SNR _{ADC}	ADC Signal to Noise Ratio	_	61.9	68	_	dB
SNDR _{ADC}	ADC Signal to Noise Plus Distortion Ratio	_	61.7	67	_	dB
ERR _{GAIN_ADC}	ADC Gain Error	_	-0.5	_	0.5	% FS _{ADC}
ERR _{OFFSET_ADC}	ADC Offset Error	_	-2	_	2	% FS _{ADC}

Notes:

- 1. ADC is available in Commercial/Industrial –8 and –9 speed grades.
- 2. ADC Sample Clock cycles. See ADC User Guide for Nexus Platform (FPGA-TN-02129) for more details.
- 3. The internal voltage reference is only for internal testing purposes. It is not recommended for customer design. You must always use the part with external voltage.

3.22. Comparator Block Characteristics

Table 3.38. Comparator Specifications¹

Symbol	Description	Min	Тур	Max	Unit
f _{IN_COMP}	Comparator Input Frequency	1	1	10	MHz
V _{IN_COMP}	Comparator Input Voltage	0	-	VCCADC18	V
V _{OFFSET_COMP}	Comparator Input Offset	-23	-	24	mV
V _{HYST_COMP}	Comparator Input Hysteresis	10	_	31	mV
V _{LATENCY_COMP}	Comparator Latency	-	-	31	ns

Note:

3.23. Digital Temperature Readout Characteristics

Digital temperature Readout (DTR) is implemented in one of the channels of ADC1.

Table 3.39. DTR Specifications^{1, 2}

Symbol	Description	Condition	Min	Тур	Max	Unit
DTR _{RANGE}	DTR Detect Temperature Range	_	-40	1	100	°C
DTR _{ACCURACY}	DTR Accuracy	with external voltage reference range of 1.0 V to 1.8 V	-13	±4	13	°C
DTR _{RESOLUTION}	DTR Resolution	with external voltage reference	-0.3	_	0.3	°C

Notes:

- External voltage reference (V_{REF}) should be 0.1% accurate or better. DTR sensitivity to V_{REF} is -4.1 °C per V_{REF} percent (for example, if the V_{REF} is 1 % low, then the DTR reads +4.1 °C high).
- 2. DTR is available in Commercial/Industrial –8 and –9 speed grades.

3.24. Hardened PCIe Characteristics

3.24.1. PCIe (2.5 Gbps)

Table 3.40. PCIe (2.5 Gbps)

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Transmitter ¹						
UI	Unit Interval	_	399.88	400	400.12	ps
BW _{TX}	Tx PLL bandwidth	_	1.5	_	22	MHz
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	_	0.8	_	1.2	Vp-p
V _{TX-DIFF-PP-LOW}	Low power differential p-p Tx voltage swing	_	0.4	_	1.2	Vp-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5 dB	_	3	_	4	dB
T _{TX-RISE-FALL}	Transmitter rise and fall time	_	0.125	_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-EYE-MEDIAN-to-MAX-}	Max. time between jitter median and max deviation from the median	_	_	_	0.125	UI

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

^{1.} Comparator is available in Commercial/Industrial –8 and –9 speed grades.

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
RL _{TX-DIFF}	Tx Differential Return Loss, including pkg and silicon	_	10	_	_	dB
RL _{TX-CM}	Tx Common Mode Return Loss, including pkg and silicon	50 MHz < freq < 2.5 GHz	6	_	_	dB
$Z_{TX-DIFF-DC}$	DC differential Impedance	_	80	_	120	Ω
V _{TX-CM-AC-P}	Tx AC peak common mode voltage, RMS	_	_	_	20	mV, RMS
I _{TX-SHORT}	Transmitter short-circuit current	_	_	_	90	mA
V _{TX-DC-CM}	Transmitter DC common-mode voltage	_	0	_	1.2	V
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Output peak voltage	_	_	_	20	mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	_	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	_	20	_	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from EI Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-Lane output skew		_	_	500 ps + 2 UI	ps
Receiver ²						
UI	Unit Interval	_	399.88	400	400.12	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	_	0.175	_	1.2	Vp-p
T _{RX-EYE} ³	Receiver eye opening time	_	0.4	_	_	UI
T _{RX-EYE-MEDIAN-to-MAX-} JITTER ³	Max time delta between median and deviation from median	_	_	_	0.3	UI
RL _{RX-DIFF}	Receiver differential Return Loss, package plus silicon	_	10	_	_	dB
RL _{RX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	_	_	dB
Z _{RX-DC}	Receiver DC single ended impedance	_	40	_	60	Ω
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	_	120	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	_	200K	_	_	Ω
V _{RX-CM-AC-P} ³	Rx AC peak common mode voltage	_		_	150	mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65	_	175	mVp-p
L _{RX-SKEW}	Receiver – lane-lane skew			_	20	ps

Notes:

- 1. Refer to PCI Express Base Specification Revision 3.0 Table 4.18 test condition and requirement for respective parameters.
- 2. Refer to PCI Express Base Specification Revision 3.0 Table 4.24 test condition and requirement for respective parameters.
- 3. Spec compliant requirement

FPGA-DS-02078-2.4 87

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.24.2. PCIe (5 Gbps)

Table 3.41. PCIe (5 Gbps)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit Interval	_	199.94	200	200.06	ps
B _{WTX-PKG-PLL1}	Tx PLL bandwidth	_	8	_	16	MHz
	corresponding to PKG _{TX-PLL1}					
B _{WTX-PKG-PLL2}	Tx PLL bandwidth corresponding to PKG _{TX-PLL2}	_	5	_	16	MHz
P _{KGTX-PLL1}	Tx PLL Peaking corresponding to PKG _{TX-PLL1}	_	_	_	3	dB
P _{KGTX-PLL2}	Tx PLL Peaking corresponding to PKG _{TX-PLL2}	_	<u> </u>	_	1	dB
V _{TX-DIFF-PP}	Differential p-p Tx voltage	_	0.8	_	1.2	V, p-p
V	swing Low power differential p-p Tx	_	0.4	_	1.2	V, p-p
V _{TX-DIFF-PP-LOW}	voltage swing Tx de-emphasis level ratio at	_	0.4	_	1.2	ν, μ-μ
V _{TX-DE-RATIO-3.5dB}	3.5dB	_	3	_	4	dB
V _{TX-DE-RATIO-6dB}	Tx de-emphasis level ratio at 6dB	_	5.5	_	6.5	dB
T _{MIN-PULSE}	Instantaneous lone pulse width	_	0.9	_	_	UI
T _{TX-RISE-FALL}	Transmitter rise and fall time	_	0.15	_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-DJ}	Tx deterministic jitter > 1.5	_	_	_	0.15	UI
T _{TX-RJ}	Tx RMS jitter < 1.5 MHz	_	_	_	3	ps, RMS
T _{RF-MISMATCH}	Tx rise/fall time mismatch	_	_	_	0.1	UI
	Tx Differential Return Loss,	50 MHz < freq < 1.25 GHz	10	_	_	dB
R _{LTX-DIFF}	including package and silicon	1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	50 MHz < freq < 2.5 GHz	6	_	_	dB
Z _{TX-DIFF-DC}	DC differential Impedance	_	_	_	120	Ω
V _{TX-CM-AC-PP}	Tx AC peak common mode	_	_	_	150	mV,
I _{TX-SHORT}	voltage, peak-peak Transmitter short-circuit	_	 	_	90	p-p mA
V _{TX-DC-CM}	Transmitter DC common-mode	_	0	_	1.2	V
V _{TX-IDLE-DIFF-DC}	voltage Electrical Idle Output DC voltage	_	0	_	5	mV
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Differential Output peak voltage	_	_	_	20	mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	_	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	_	20	_	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from El Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Receive ²			•	•		
L _{TX-SKEW}	Lane-to-Lane output skew	_	_	_	500 + 4 UI	ps
UI	Unit Interval	_	199.94	200	200.06	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	_	0.343	_	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	_	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	_	_	_	88	ps
D	Receiver differential Return	50 MHz < freq < 1.25 GHz	10	_	_	dB
R _{LRX-DIFF}	Loss, package plus silicon	1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	_	_	dB
Z _{RX-DC}	Receiver DC single ended impedance	_	40	_	60	Ω
Z _{RX} -HIGH-IMP-DC	Receiver DC single ended impedance when powered down	_	200k	_	_	Ω
V _{RX-CM-AC-P} ³	Rx AC peak common mode voltage	_	_	_	150	mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65	_	175³	mv, pp
L _{RX-SKEW}	Receiver –lane-lane skew	_	_	_	8	ns

Notes:

- 1. Refer to PCI Express Base Specification Revision 3.0 Table 4.18 test condition and requirement for respective parameters.
- 2. Refer to PCI Express Base Specification Revision 3.0 Table 4.24 test condition and requirement for respective parameters.
- 3. Spec compliant requirement

3.25. Hardened SGMII Characteristics

3.25.1. SGMII Specifications

Table 3.42. SGMII¹

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
f _{DATA}	SGMII Data Rate	_	_	1250	_	MHz
f _{REFCLK}	SGMII Reference Clock Frequency (Data Rate / 10)	_	_	125	_	MHz
J _{TOL_Dj}	Jitter Tolerance, Deterministic	Periodic jitter < 300 kHz		_	0.12	UI
J _{TOL_Tj}	Jitter Tolerance, Total	Periodic jitter < 300 kHz		_	0.32	UI
Δf/f	Data Rate and Reference Clock Accuracy	_	-300	_	300	ppm

Notes:

- 1. The SGMII interface using LVDS I/O has limitations when operating across the full specified temperature range. Lattice recommends using alternative interfaces, such as SERDES or RGMII, for designs requiring Gigabit Ethernet. Refer to the Knowledge Database article for details. Contact your local Lattice sales representative for more information.
- 2. J_{TOT} can meet the following jitter mask specification: 0 to 3.5 kHz: 10 UI; 3.5 to 700 kHz: log-log slope 10 UI to 0.05 UI; above 700 kHz: 0.05 UI.

3.26. sysCONFIG Port Timing Specifications

Table 3.43. sysCONFIG Port Timing Specifications

tomc tomc fmclk_def ticfg_por ticfg_por therefore therefore	REFRESH command executed, to the rising edge of INITN (bulk-erase off) Time from rising edge of INITN to the valid Master MCLK Default MCLK frequency (Before MCLK frequency selection in bitstream) Time during POR, from Vcc, Vccaux, Vccioo, or Vccio1 (whichever is the last) pass POR trip OR Time during POR, from Vcc, Vccaux, Vccioo or Vccio1 (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	- - - -		- 3.5 -	30 5 — 5	μs μs MHz ms
toffg tvmc fmclk_def ticfg_por ticfg_por ticfg_por tmspi_inh tact_programn_h tconfig_cclk tconfig_scl programn_l fprogramn_l fprogramn_l	edge of INITN (bulk-erase off) Time from rising edge of INITN to the valid Master MCLK Default MCLK frequency (Before MCLK frequency selection in bitstream) Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} , or V _{CCIO1} (whichever is the last) pass POR trip OR Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	- - - -		- 3.5 -	5 5	μs MHz ms
toffg tvmc fmclk_def ticfg_por ticfg_por ticfg_por tmspi_inh tact_programn_h tconfig_cclk tconfig_scl programn_l fprogramn_l fprogramn_l	edge of INITN (bulk-erase off) Time from rising edge of INITN to the valid Master MCLK Default MCLK frequency (Before MCLK frequency selection in bitstream) Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} , or V _{CCIO1} (whichever is the last) pass POR trip OR Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)			- 3.5 - -	5 5	μs MHz ms
fmclk_def fmclk_def ticfg_por Slave SPI/I2C/I3C PC tmspi_inh tact_programn_h tconfig_cclk tconfig_scl PROGRAMN Configu tprogramn_L	Master MCLK Default MCLK frequency (Before MCLK frequency selection in bitstream) Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} , or V _{CCIO1} (whichever is the last) pass POR trip OR Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH			- 3.5 - -	5	MHz
fmclk_def ticfg_por Slave SPI/I2C/I3C PC tmspi_inh tact_programn_h tconfig_cclk tconfig_scl PROGRAMN Configue tprogramn_l	Default MCLK frequency (Before MCLK frequency selection in bitstream) Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} , or V _{CCIO1} (whichever is the last) pass POR trip OR Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIOO} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH			3.5		ms
Tact-programn_H tonfig_cclk tonfig_scl programn_L tprogramn_L tprogramn_L tprogramn_L	V _{CCIO1} (whichever is the last) pass POR trip OR Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIO0} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)					
tmspi_inh tact_programn_h tconfig_cclk tconfig_scl PROGRAMN Configu tprogramn_l	Time during POR, from V _{CC} , V _{CCAUX} , V _{CCIO0} or V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	_ 	- 50	_	1	μs
tmspi_inh tact_programn_h tconfig_cclk tconfig_scl programn_l tprogramn_l	V _{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode Minimum time driving PROGRAMN HIGH after last activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	_ 	- 50	-	1	μs
tconfig_scl tprogramn_l tprogramn_l tprogramn_l	Iast activation clock Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	_ _	50	_		ļ————
tconfig_cclk tconfig_scl PROGRAMN Configu tprogramn_l	after PROGRAMN HIGH Minimum time to start driving SCL (I2C/I3C)	_		1	_	ns
PROGRAMN Configu tprogramn_L		Ī	50	_	_	ns
t _{PROGRAMN_L}	after PROGRAMN HIGH	_	50	_	_	ns
_	uration Timing			•	•	
_	PROGRAMN LOW pulse accepted	_	50	_	_	ns
	PROGRAMN HIGH pulse accepted	_	60	_	_	ns
t _{PROGRAMN RJ}	PROGRAMN LOW pulse rejected	_	_	_	25	ns
	PROGRAMN LOW to INITN LOW	_	_	_	100	ns
TINIT HIGH	PROGRAMN LOW to INITN HIGH (bulk-erase off)	_	_	_	40	μs
t _{DONE LOW}	PROGRAMN LOW to DONE LOW	_	_	_	55	μs
_	PROGRAMN HIGH to DONE HIGH	_		_	2	S
	PROGRAMN LOW to I/O Disabled	_	_	_	125	ns
Master SPI	,					
f _{MCLK} ¹	Max selected MCLK output frequency	_	_	150	165	MHz
	MCLK output clock duty cycle	_	40	_	60	%
	MCLK output clock pulse width HIGH	_	3	_	_	ns
	MCLK output clock pulse width LOW	_	3	_	_	ns
	MSI to MCLK setup time	_	3	_	_	ns
	MSI to MCLK hold time	_	0.5	_	_	ns
-1.15_11151	MCLK to MSO delay	_		_	12	ns
Slave SPI						5
f _{CCLK_W}	CCLK input clock frequency (For write transaction) ⁴	_	_	_	135	MHz
· · · =	CCLK input clock frequency (For read transaction) ⁵	_	_	_	6	MHz
t _{CCLKH}	CCLK input clock pulse width HIGH	_	3.5		+	ns

Symbol	Parameter	Device	Min	Тур.	Max	Unit
t _{CCLKL}	CCLK input clock pulse width LOW	_	3.5	_	_	ns
tvmc_slave	Time from rising edge of INITN to Slave CCLK driven	_	50	_	_	ns
t _{VMC_MASTER}	CCLK input clock duty cycle	_	40	_	60	%
t _{SU_SSI}	SSI to CCLK setup time	_	3.2	_	_	ns
t _{HD_SSI}	SSI to CCLK hold time	_	1.9	_	_	ns
t _{CO_SSO}	CCLK falling edge to valid SSO output	_	3.07	_	16 ⁷	ns
t _{EN_SSO}	CCLK falling edge to SSO output enabled	_	3.0 ⁷	_	16 ⁷	ns
t _{DIS_SSO}	CCLK falling edge to SSO output disabled	_	3.0 ⁷	_	16 ⁷	ns
t _{HIGH_SCSN}	SCSN HIGH time	_	74	_	_	ns
t _{SU_SCSN}	SCSN to CCLK setup time	_	3.5	_	_	ns
t _{HD_SCSN}	SCSN to CCLK hold time	_	1.6	_	_	ns
12C/I3C						
f _{SCL_I2C}	SCL input clock frequency for I2C	_	_	_	1	MHz
f _{SCL_I3C}	SCL input clock frequency for I3C	_	_	_	12	MHz
t _{SCLH_I2C}	SCL input clock pulse width HIGH for I2C	_	400	_	_	ns
t _{SCLL_I2C}	SCL input clock pulse width LOW for I2C	_	400	_	_	ns
t _{SU_SDA_I2C}	SDA to SCL setup time for I2C	_	250	_	_	ns
t _{HD_SDA_I2C}	SDA to SCL hold time for I2C	_	50	_	_	ns
t _{SU_SDA_I3C}	SDA to SCL setup time for I3C	_	30	_	_	ns
t _{HD_SDA_I3C}	SDA to SCL hold time for I3C	_	30	_	_	ns
t _{CO_SDA}	SCL falling edge to valid SDA output	_	_	_	200	ns
t _{EN_SDA}	SCL falling edge to SDA output enabled	_	_	_	200	ns
t _{DIS_SDA}	SCL falling edge to SDA output disabled	_	_	_	200	ns
Wake-Up Timing						
twakeup_done_high ²	Last configuration clock cycle to DONE going HIGH	_	_	_	60	μs
t _{FIO_EN} 2	User I/O enabled in Early I/O Mode	LFD2NX-40 LFD2NX-28	_		31184	cycles
V-IO_EN	Oser 1/O enabled in Early 1/O Mode	LFD2NX-17 LFD2NX-9	_		20688	cycles
t _{IOEN} ²	Config clock to user I/O enabled	_	130	_	_	ns
t _{MCLKZ} ^{2,3}	Master MCLK to Hi-Z		_	_	2.5	μs

Notes:

- 1. f_{MCLK} has a dependency on HFOSC and is 1/3 of f_{CLKHF} .
- 2. Based on 30k uncompressed/unauthenticated/default MCLK timing (3.5 MHz)/×1. Other permutations result in different values.
- 3. Measure using LVCMOS18, default MCLK frequency, slow slew rate.
- 4. Supported input clock frequency for bursting in configuration bitstream to the device.
- 5. Supported input clock frequency for reading out data transactions from the device.
- Refer to the following equations to determine the supported input clock frequency for read transaction. Assumption: The skew between CCLK and SSO on board is zero.

$$\frac{1}{2}$$
 CCLK - $tCO(max)$ - $Tsu > 0$

$$CCLK > 2(tCO(max) + Tsu)$$

CCLK – Input clock period. $f_{CCLK_R} = 1/CCLK$.

 t_{CO} (max) – Equivalent to t_{CO} sso or t_{EN} sso max value.

 T_{su} – Setup time requirement for host controller I/O.

For customer that can only use single clock for read/write operation, the Fmax is limited by the Fmax for read operation. For example: t_{CO} (max) = 30 ns and T_{SU} = 2 ns.

$$CCLK > 2(tCO(max) + Tsu)$$

$$CCLK > 2(30 ns + 2 ns)$$

$$CCLK > 64 ns$$

$$fCCLK_R = \frac{1}{64 ns} = 15.62MHz$$

For the customer that wants to do the programming at 135 MHz or faster than Fmax for read operation:

- Have a mechanism in the host controller to switch between read clock and write clock for read/write transaction. For
 example, refer to SPI specification to switch between read and write clock by changing the SPI Baud Rate Register (SPIBR) if
 standard SPI controller is used as the host.
- Implementing a mechanism to adjust/calibrate the sampling clock edge when the valid data becomes available.
- 7. Based on SLOW (default) slew rate control on Config output pins.

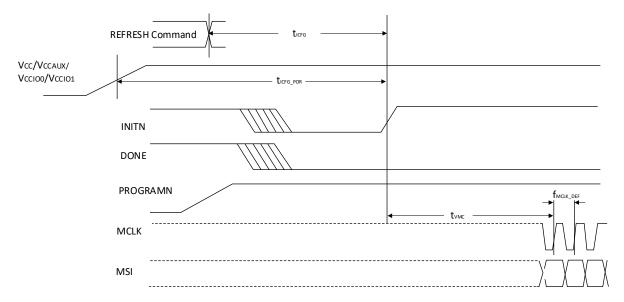


Figure 3.14. Master SPI POR/REFRESH Timing

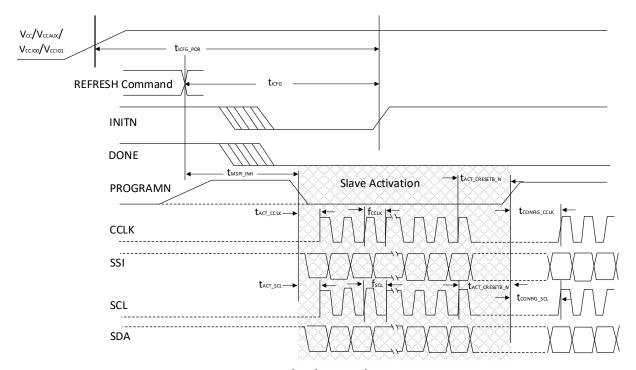


Figure 3.15. Slave SPI/I2C/I3C POR/REFRESH Timing

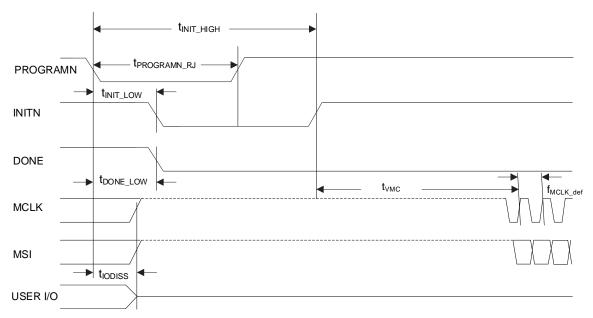


Figure 3.16. Master SPI PROGRAMN Timing

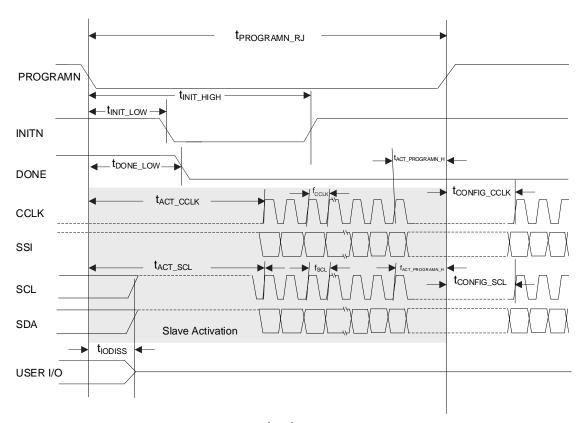


Figure 3.17. Slave SPI/I2C/I3C PROGRAMN Timing

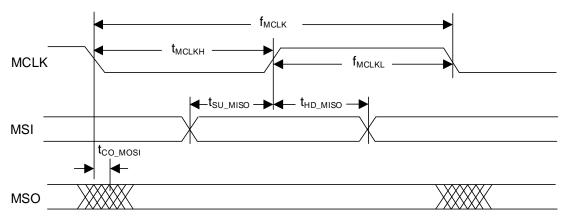


Figure 3.18. Master SPI Configuration Timing

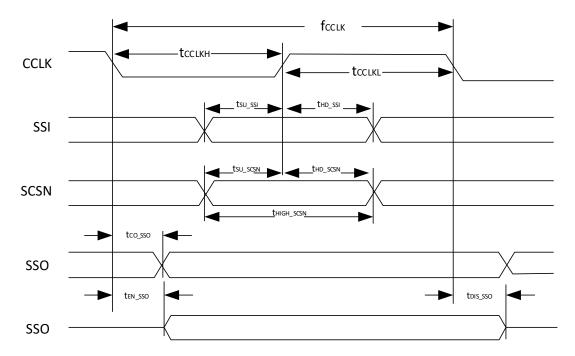


Figure 3.19. Slave SPI Configuration Timing

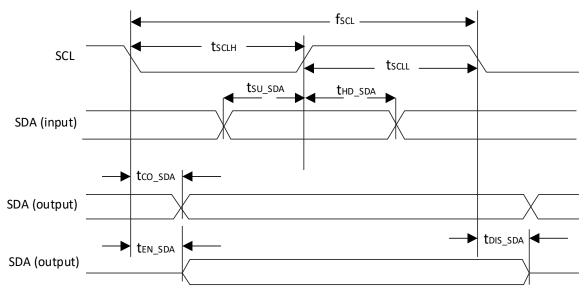


Figure 3.20. I2C/I3C Configuration Timing

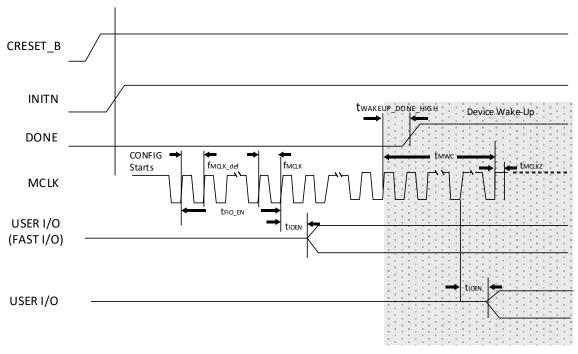


Figure 3.21. Master SPI Wake-Up Timing

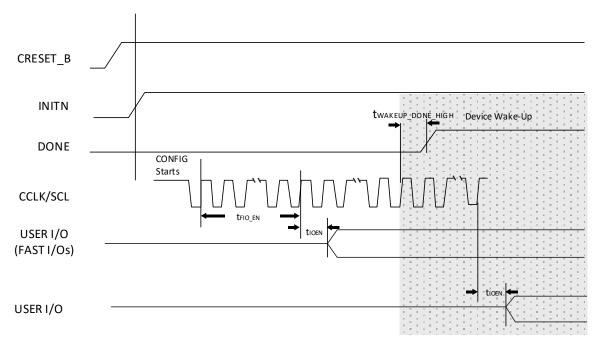
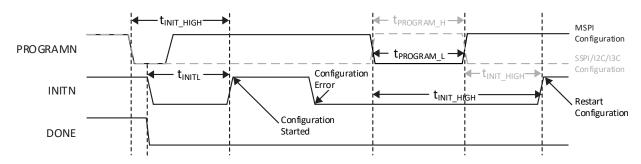



Figure 3.22. Slave SPI/I2C/I3C Wake-Up Timing

Note: tintl = SRAM Memory Initialization Period

Figure 3.23. Configuration Error Notification

3.27. JTAG Port Timing Specifications

Table 3.44. JTAG Port Timing Specifications

Symbol	Parameter	Min	Тур.	Max	Units
f _{MAX}	TCK clock frequency	_	_	25	MHz
t _{BTCPH}	TCK clock pulse width high	20	_	_	ns
t _{BTCPL}	TCK clock pulse width low	20	_	_	ns
t _{BTS}	TCK TAP setup time	5	_	_	ns
t _{BTH}	TCK TAP hold time	5	_	_	ns
t _{BTRF}	TAP controller TDO rise/fall time ¹	100	_	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	_	14	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	_	14	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	_	14	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	_	ns
t _{BTCRH}	BSCAN test capture register hold time	25	_	_	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	_	25	ns

Note:

1. Based on default I/O setting of slow slew rate.

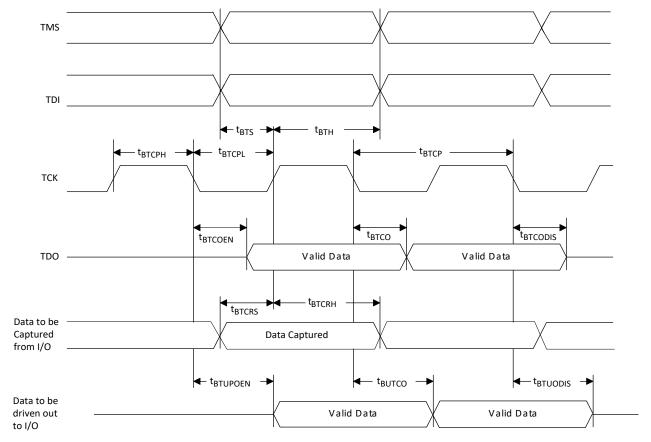
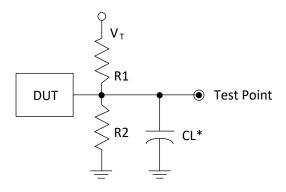



Figure 3.24. JTAG Port Timing Waveforms

3.28. Switching Test Conditions

Figure 3.25 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 3.45.

*CL Includes Test Fixture and Probe Capacitance

Figure 3.25. Output Test Load, LVTTL and LVCMOS Standards

Table 3.45. Test Fixture Required Components, Non-Terminated Interfaces¹

Test Condition	R ₁	R ₂	C _L	Timing Ref.	V _T
LVTTL and other LVCMOS settings (L \geq H, H \geq L)	∞	~	0 pF	LVCMOS 3.3 = 1.5 V	_
				LVCMOS 2.5 = V _{CCIO} /2	_
				LVCMOS 1.8 = V _{CCIO} /2	_
				LVCMOS 1.5 = V _{CCIO} /2	_
				LVCMOS $1.2 = V_{CCIO}/2$	_
LVCMOS 2.5 I/O (Z ≥ H)	∞	1 ΜΩ	0 pF	V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ L)	1 ΜΩ	8	0 pF	V _{CCIO} /2	V_{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)	∞	100	0 pF	V _{OH} – 0.10	_
LVCMOS 2.5 I/O (L ≥ Z)	100	~	0 pF	V _{OL} + 0.10	V _{ccio}

Note:

^{1.} Output test conditions for all other interfaces are determined by the respective standards.

4. DC and Switching Characteristics for Automotive

All specifications in this chapter are characterized within recommended operating conditions unless otherwise specified.

4.1. Absolute Maximum Ratings

Table 4.1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{CC} , V _{CCECLK}	Supply Voltage	-0.5	1.10	V
V _{CCAUX} , V _{CCAUXA} , V _{CCAUXH3} , V _{CCAUXH4} , V _{CCAUXH5}	Supply Voltage	-0.5	1.98	V
V _{CCIO0, 1, 2, 6, 7}	I/O Supply Voltage	-0.5	3.63	V
V _{CCIO3, 4, 5}	I/O Supply Voltage	-0.5	1.98	V
V _{CCPLL_DPHY0, 1}	Hardened D-PHY PLL Supply Voltage	-0.5	1.10	V
V _{CCPLLSD0}	SERDES Block PLL Supply Voltage	-0.5	1.98	V
V _{CCA_DPHY0} , 1	Analog Supply Voltage for Hardened D-PHY	-0.5	1.98	V
V _{CC_DPHY0, 1}	Digital Supply Voltage for Hardened D-PHY	-0.5	1.10	V
V _{CCSD0}	SERDES Supply Voltage	-0.5	1.10	V
V _{CCADC18}	ADC Block 1.8 V Supply Voltage	-0.5	1.98	V
V _{CCAUXSD}	SERDES and AUX Supply Voltage	-0.5	1.98	V
_	Input or I/O Voltage Applied, Bank 0, Bank 1, Bank 2, Bank 6, Bank 7	-0.5	3.63	V
_	Input or I/O Voltage Applied, Bank 3, Bank 4, Bank 5	-0.5	1.98	V
_	Voltage Applied on SERDES Pins	-0.5	1.98	V
T _A	Storage Temperature (Ambient)	-65	150	°C
T _J	Junction Temperature	_	+125	°C

Notes:

- Stress above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions above those indicated in the operational sections of this specification is
 not implied.
- Compliance with the Lattice Thermal Management document is required.
- All voltages referenced to GND.
- All V_{CCAUX} should be connected on PCB.

4.2. Recommended Operating Conditions^{1, 2, 3}

Table 4.2. Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур.	Max	Unit
V _{CC} , V _{CCECLK}	Core Supply Voltage	V _{CC} = 1.0	0.95	1.00	1.05	V
V _{CCAUX}	Auxiliary Supply Voltage	Bank 0, Bank 1, Bank 2, Bank 6, Bank 7	1.746	1.80	1.89	V
V _{CCAUXH3/4/5}	Auxiliary Supply Voltage	Bank 3, Bank 4, Bank 5	1.746	1.80	1.89	V
V _{CCAUXA}	Auxiliary Supply Voltage for core logic	_	1.746	1.80	1.89	V
		V _{CCIO} = 3.3 V, Bank 0, Bank 1, Bank 2, Bank 6, Bank 7	3.135	3.30	3.465	V
		V _{CCIO} = 2.5 V, Bank 0, Bank 1, Bank 2, Bank 6, Bank 7	2.375	2.50	2.625	V
		V _{CCIO} = 1.8 V, All Banks	1.71	1.80	1.89	V
V_{CCIO}	I/O Driver Supply Voltage	V _{CCIO} = 1.5 V, All Banks ⁴	1.425	1.50	1.575	V
		V _{CCIO} = 1.35 V, All Banks (For DDR3L Only)	1.2825	1.35	1.4175	V
		V _{CCIO} = 1.2 V, All Banks ⁴	1.14	1.20	1.26	V
		V _{CCIO} = 1.0 V, Bank 3, Bank 4, Bank 5	0.95	1.00	1.05	V
ADC External Po	ower Supplies					
V _{CCADC18}	ADC 1.8 V Power Supply	_	1.71	1.80	1.89	V
SERDES Block Ex	xternal Power Supplies					
V _{CCSD0}	Supply Voltage for SERDES Block and SERDES I/O	_	0.95	1.00	1.05	V
V _{CCPLLSD0}	SERDES Block PLL Supply Voltage	_	1.71	1.80	1.89	V
V _{CCAUXSD}	SERDES Block Auxiliary Supply Voltage	_	1.71	1.80	1.89	V
Operating Temp	perature					
t _{JAUTO}	Junction Temperature, Automotive Operation	_	-40	_	125	°C

Notes:

- 1. For correct operation, all supplies must be held in their valid operation voltage range.
- 2. All supplies with same voltage should be from the same voltage source. Proper isolation filters are needed to properly isolate noise from each other.
- 3. Common supply rails must be tied together except SERDES.
- 4. MSPI (Bank 0) and JTAG, SSPI, I2C, and I3C (Bank 1) ports are supported for $V_{CCIO} = 1.8 \text{ V}$ to 3.3 V.

FPGA-DS-02078-2.4

4.3. Power Supply Ramp Rates

Table 4.3. Power Supply Ramp Rates

Symbol	Parameter	Min	Тур	Max	Unit
t _{RAMP}	Power Supply ramp rates for all supplies ¹	0.1	1	50	V/ms

Notes:

- Assumes monotonic ramp rates.
- 2. All supplies need to be in the operating range as defined in Recommended Operating Conditions, when the device has completed configuration and entering User Mode. Supplies that are not in the operating range needs to be adjusted to faster ramp rate, or you must delay configuration or wake up.

4.4. Power up Sequence

Power-On-Reset (POR) puts the Certus-NX device into a reset state. There is no power up sequence required for the Certus-NX device.

Table 4.4. Power-On Reset

Symbol	Parameter		Min	Тур	Max	Unit
	, , , , , , , , , , , , , , , , , , , ,	V _{CC}	0.72	ı	0.84	V
V _{PORUP}		V _{CCAUX}	1.30	1	1.71	V
	V _{CCI00} , and V _{CCI01})	V _{CCIO0} , V _{CCI01}	0.87	ı	1.07	V
V	point (Monitoring V _{CC} , V _{CCAUX} , V _{CCI00} , and V _{CCI01})	V _{CC}	0.48	1	0.85	V
V _{PORDN}		1.36	-	1.57	V	

4.5. On-Chip Programmable Termination

The Certus-NX devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40 Ω , 50 Ω , 60 Ω , or 75 Ω .
- Common mode termination of 100 Ω for differential inputs.

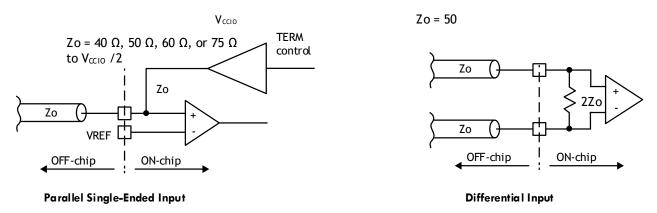


Figure 4.1. On-Chip Termination

See Table 4.5 for termination options for input modes.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 4.5. On-Chip Termination Options for Input Modes

IO_TYPE	Differential Termination Resistor ^{1, 2}	Terminate to V _{CCIO} /2 ^{1, 2}
subLVDS	100, OFF	OFF
SLVS	100, OFF	OFF
HSTL15D_I	100, OFF	OFF
SSTL15D_I	100, OFF	OFF
SSTL135D_I	100, OFF	OFF
HSUL12D	100, OFF	OFF
LVCMOS15H	OFF	OFF
LVCMOS12H	OFF	OFF
LVCMOS10H	OFF	OFF
LVCMOS12H	OFF	OFF
LVCMOS10H	OFF	OFF
LVCMOS18H	OFF	OFF, 40, 50, 60, 75
HSTL15_I	OFF	50
SSTL15_I	OFF	OFF, 40, 50, 60, 75
SSTL135_I	OFF	OFF, 40, 50, 60, 75
HSUL12	OFF	OFF, 40, 50, 60, 75

Notes:

- 1. TERMINATE to V_{CCIO}/2 (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.
- Use of TERMINATE to V_{CCIO}/2 and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance –10%/+60%.

Refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216) for on-chip termination usage and value ranges.

4.6. Hot Socketing Specifications

Table 4.6. Hot Socketing Specifications for GPIO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{DK}	Input or I/O Leakage Current for Wide Range I/O (excluding MCLK/MCSN/MOSI/INITN/DONE)	0 < V _{IN} < V _{IN} (max) 0 < V _{CC} < V _{CC} (max) 0 < V _{CCIO} < V _{CCIO} (max)	-1.5	_	1.5	mA
		$0 < V_{CCAUX} < V_{CCAUX} (max)$				

Notes:

- I_{DK} is additive to I_{PU}, I_{PD}, or I_{BH}.
- Hot socket specification defines when the hot socketed device's junction temperature is at 85 °C or below. When the hot socketed device's junction temperature is above 85 °C, the I_{DK} current can exceed the above spec.
- Going beyond the hot socketing ranges specified here causes exponentially higher Leakage currents and potential reliability issues. A total of 64mA per 8 I/O should not be exceeded.

4.7. ESD Performance

Refer to the Certus-NX Product Family Qualification Summary for complete Automotive grade qualification data, including ESD performance.

4.8. DC Electrical Characteristics

Table 4.7. DC Electrical Characteristics - Wide Range

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ¹	Input or I/O Leakage current (Commercial/Industrial)	0 ≤ V _{IN} ≤ V _{CCIO}	_	_	10	μΑ
I _{IH} ²	Input or I/O Leakage current	V _{CCIO} ≤ V _{IN} ≤ V _{IH} (max)	_	_	100	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 \times V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V _{IL} (max) ≤ V _{IN} ≤ V _{CCIO}	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (max)	30	_		μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 \times V_{CCIO}$	-30	_		μΑ
I _{BHLO}	Bus hold low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	150	μΑ
I _{BHHO}	Bus hold high Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-150	μΑ
V _{BHT}	Bus Hold Trip Points	_	V _{IL} (max)	_	V _{IH} (min)	V

Notes:

- 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output tri-stated. Bus Maintenance circuits are disabled.
- 2. The input leakage current I_{IH} is the worst-case input leakage per GPIO when the pad signal is high and also higher than the bank V_{CCIO} . This is considered a mixed mode input.

Table 4.8. DC Electrical Characteristics - High Speed

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ¹	Input or I/O Leakage	$0 \le V_{IN} \le V_{CCIO}$	_	_	10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 \times V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (max) $\leq V_{IN} \leq V_{CCIO}$	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (max)	30	_	_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 \times V_{CCIO}$	-30	_	_	μΑ
I _{BHLO}	Bus hold low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	150	μΑ
I _{BHHO}	Bus hold high Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	_	-150	μΑ
V _{BHT}	Bus Hold Trip Points	_	V _{IL} (max)	_	V _{IH} (min)	V

Note:

Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output tri-stated. Bus
Maintenance circuits are disabled.

Table 4.9. Capacitors - Wide Range

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C ₁ ¹	I/O Capacitance ¹	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	_	6	1	pf
C ₂ ¹	Dedicated Input Capacitance ¹	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	_	6	1	pf

Note:

1. $T_A 25 \, ^{\circ}\text{C}$, $f = 1.0 \, \text{MHz}$.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 4.10. Capacitors – High Performance

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C ₁ ¹	I/O Capacitance ¹	$V_{CCIO} = 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.},$ $V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	1	6	1	pf
C ₂ ¹	Dedicated Input Capacitance ¹	$V_{CCIO} = 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{typ.},$ $V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	ı	6	ı	pf
C ₃ ¹	D-PHY I/O Capacitance	$V_{CCA_D-PHY} = 1.8 \text{ V}, V_{CC} = typ., V_{IO} = 0 \text{ to}$ $V_{CCA_D-PHY} + 0.2 \text{ V}$	_	5	_	pf
C ₄ ¹	SERDES I/O Capacitance	$V_{CCSD0} = 1.0 \text{ V}, V_{CC} = \text{typ.}, V_{IO} = 0 \text{ to}$ $V_{CCSD0} + 0.2 \text{ V}$	-	5	_	pf

Note:

Table 4.11. Single Ended Input Hysteresis - Wide Range

IO_TYPE	V _{CCIO}	TYP Hysteresis
LVCMOS33	3.3 V	250 mV
LVCMOS25	3.3 V	200 mV
	2.5 V	250 mV
LVCMOS18	1.8 V	180 mV
LVCMOS15	1.5 V	50 mV
LVCMOS12	1.2 V	0
LVCMOS10	1.2 V	0

Table 4.12. Single Ended Input Hysteresis – High Performance

IO_TYPE	V _{ccio}	TYP Hysteresis
LVCMOS18H	1.8 V	180 mV
LVCMOS15H	1.8 V	50 mV
	1.5 V	150 mV
LVCMOS12H	1.2 V	0
LVCMOS10H	1.0 V	0

4.9. Supply Currents

For estimating and calculating current, use the Power Calculator in the Lattice Design software.

This operating and peak current is design dependent and can be calculated in the Lattice Design software. Some blocks can be placed into low current standby modes. Refer to Power Management and Calculation for Certus-NX (FPGA-TN-02214).

^{1.} $T_A 25 \, ^{\circ}C$, $f = 1.0 \, MHz$.

4.10. sysI/O Recommended Operating Conditions

Table 4.13. sysI/O Recommended Operating Conditions

Ctondord	Cummont Domks	V _{ccio} (Input)	V _{CCIO} (Output)
Standard	Support Banks	Тур.	Тур.
Single-Ended			
LVCMOS33	0, 1, 2, 6, 7	3.3	3.3
LVTTL33	0, 1, 2, 6, 7	3.3	3.3
LVCMOS25 ^{1, 2}	0, 1, 2, 6, 7	2.5, 3.3	2.5
LVCMOS18 ^{1, 2}	0, 1, 2, 6, 7	1.2, 1.5, 1.8, 2.5, 3.3	1.8
LVCMOS18H	3, 4, 5	1.8	1.8
LVCMOS15 ^{1, 2}	0, 1, 2, 6, 7	1.2, 1.5, 1.8, 2.5, 3.3	1.5
LVCMOS15H1	3, 4, 5	1.5, 1.8	1.5
LVCMOS12 ^{1, 2}	0, 1, 2, 6, 7	1.2, 1.5, 1.8, 2.5, 3.3	1.2
LVCMOS12H ¹	3, 4, 5	1.2, 1.35 ⁶ , 1.5, 1.8	1.2
LVCMOS10 ¹	0, 1, 2, 6, 7	1.2, 1.5, 1.8, 2.5, 3.3	-
LVCMOS10H ¹	3, 4, 5	1.0, 1.2, 1.35 ⁶ , 1.5, 1.8	1.0
LVCMOS10R ¹	3, 4, 5	1.0, 1.2, 1.35 ⁶ , 1.5, 1.8	_
SSTL135_I, SSTL135_II ³	3, 4, 5	1.35 ⁶	1.35
SSTL15_I, SSTL15_II ³	3, 4, 5	1.5 ⁷	1.5 ⁷
HSTL15_I ³	3, 4, 5	1.57	1.5 ⁷
HSUL12 ³	3, 4, 5	1.2	1.2
Differential			
LVDS	3, 4, 5	1.2, 1.35, 1.5, 1.8	1.8
LVDSE ⁵	0, 1, 2, 6, 7	_	2.5
subLVDS	3, 4, 5	1.2, 1.35, 1.5, 1.8	_
subLVDSE ⁵	0, 1, 2, 6, 7	_	1.8
subLVDSEH⁵	3, 4, 5	_	1.8
SLVS	3, 4, 5	1.0, 1.2, 1.35 ⁶ , 1.5, 1.8 ⁴	1.2, 1.35 ⁶ , 1.5, 1.8 ⁴
LVCMOS33D ⁵	0, 1, 2, 6, 7	_	3.3
LVTTL33D ⁵	0, 1, 2, 6, 7	_	3.3
LVCMOS25D ⁵	0, 1, 2, 6, 7	_	2.5
SSTL135D_I, SSTL135D_II ⁵	3, 4, 5	_	1.35 ⁶
SSTL15D_I, SSTL15D_II ⁵	3, 4, 5	_	1.5
HSTL15D_I ⁵	3, 4, 5	_	1.5
HSUL12D ⁵	3, 4, 5	_	1.2

Notes:

- Single-ended input can mix into I/O Banks with V_{CCIO} different from the standard requires due to some of these input standards use internal supply voltage source (V_{CC}, V_{CCAUX}) to power the input buffer, which makes them to be independent of V_{CCIO} voltage. For more details, please refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216). The following is a brief guideline to follow:
 - a. Weak pull-up on the I/O must be set to OFF.
 - b. Bank 3, Bank 4, and Bank 5 I/O can only mix into banks with V_{CCIO} higher than the pin standard, due to clamping diode on the pin in these banks. Bank 0, Bank 1, Bank 2, Bank 6, and Bank 7 do not have this restriction.
 - c. LVCMOS25 uses V_{CCIO} supply on input buffer in Bank 0, Bank 1, Bank 2, Bank 6, and Bank 7. It can be supported with V_{CCIO} = 3.3 V to meet the V_{IH} and V_{IL} requirements, but there is additional current drawn on V_{CCIO} . Hysteresis has to be disabled when using 3.3 V supply voltage.
 - d. LVCMOS15 uses V_{CCIO} supply on input buffer in Bank 3, Bank 4, and Bank 5. It can be supported with V_{CCIO} = 1.8 V to meet the V_{IH} and V_{IL} requirements, but there is additional current drawn on V_{CCIO} .
- Single-ended LVCMOS inputs can mixed into I/O Banks with different V_{CCIO}, providing weak pull-up is not used.
 For additional information on Mixed I/O in Bank V_{CCIO}, refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216).

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- These inputs use differential input comparator in Bank 3, Bank 4, and Bank 5. The differential input comparator uses V_{CCAUXH} power supply. These inputs require the V_{REF} pin to provide the reference voltage in the Bank. Refer to Certus-NX High-Speed I/O Interface (FPGA-TN-02216) for details.
- 4. All differential inputs use differential input comparator in Bank 3, Bank 4, and Bank 5. The differential input comparator uses V_{CCAUXH} power supply. There is no differential input signaling supported in Bank 0, Bank 1, Bank 2, Bank 6, and Bank 7.
- 5. These outputs are emulating differential output pair with single-ended output drivers with true and complement outputs driving on each of the corresponding true and complement output pair pins. The common mode voltage, V_{CM}, is ½ × V_{CCIO}. Refer Certus-NX High-Speed I/O Interface (FPGA-TN-02216) for details.
- 6. $V_{CCIO} = 1.35 \text{ V}$ is only supported in Bank 3, Bank 4, and Bank 5, for use with DDR3L interface in the bank. These Input and Output standards can fit into the same bank with the $V_{CCIO} = 1.35 \text{ V}$.
- 7. LVCMOS15 input uses V_{CCIO} supply voltage. If V_{CCIO} is 1.8 V, the DC levels for LVCMOS15 are still met, but there could be increase in input buffer current.

4.11. sysI/O Single-Ended DC Electrical Characteristics³

Table 4.14. sysI/O DC Electrical Characteristics - Wide Range I/O

Input/Output	V _{IL}		V _{II}	V _{IH}		V _{он} Min	1 (m A)	I (m A)
Standard ²	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	I _{OL} (mA)	I _{OH} (mA)
LVTTL33 LVCMOS33	_	0.8	2.0	3.465 ⁴	0.4	V _{CCIO} – 0.4	2, 4, 8, 12, 16, "50RS" ³	-2, -4, -8, -12, -16, "50RS" ³
LVCMOS25	_	0.7	1.7	3.465 ⁴	0.4	V _{CCIO} – 0.45	2, 4, 8, 10, "50RS" ³	-2, -4, -8, -10, "50RS" ³
LVCMOS18	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴	0.4	V _{CCIO} - 0.45	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS15	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴	0.4	V _{CCIO} – 0.4	2, 4	-2, -4
LVCMOS12	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴	0.4	V _{CCIO} – 0.4	2, 4	-2, -4
LVCMOS10	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	3.465 ⁴	No O/P Support			

Notes:

- For electro-migration, the average DC current drawn by the I/O pads within a bank of I/O must not exceed 10 mA per I/O average.
- For the types of I/O standard supported in which bank, refer to sysI/O User Guide for Nexus Platform (FPGA-TN-02067) for details.
- 3. Select "50RS" in driver strength is selecting 50 Ω series impedance driver.
- 4. V_{IH} (MAX) for inputs on these standards (in Bank 0, Bank 1, Bank 2, Bank 6, and Bank 7) can go up to 3.465 V if the input clamp is OFF. Otherwise, the input cannot be higher than V_{CCIO} + 0.3 V.

Table 4.15. sysI/O DC Electrical Characteristics – High Performance I/O³

Input/Output	V _{IL} ¹		V _{II}	V _{IH} ¹ V _{OL} Max		V _{OH} Min ²	Ι /m Δ\	1 (mA)
Standard ²	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	I _{OL} (mA)	I _{OH} (mA)
LVCMOS18H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} – 0.45	2, 4, 8, 12, "50RS" ³	-2, -4, -8, -12, "50RS" ³
LVCMOS15H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} – 0.4	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS12H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.4	V _{CCIO} – 0.4	2, 4, 8, "50RS" ³	-2, -4, -8, "50RS" ³
LVCMOS10H	_	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.27 × V _{CCIO}	$0.75 \times V_{CCIO}$	2, 4	-2, -4
SSTL15_I	_	V _{REF} - 0.10	V _{REF} + 0.1	V _{CCIO} + 0.3	0.30	V _{CCIO} – 0.30	7.5	-7.5
SSTL15_II	_	V _{REF} - 0.10	V _{REF} + 0.1	V _{CCIO} + 0.3	0.30	$V_{\text{CCIO}} - 0.30$	8.8	-8.8
HSTL15_I	_	V _{REF} - 0.10	V _{REF} + 0.1	V _{CCIO} + 0.3	0.40	$V_{\text{CCIO}} - 0.40$	8	-8
SSTL135_I	_	V _{REF} - 0.09	$V_{REF} + 0.09$	V _{CCIO} + 0.3	0.27	V _{CCIO} – 0.27	6.75	-6.75
SSTL135_II	_	V _{REF} – 0.09	V _{REF} + 0.09	V _{CCIO} + 0.3	0.27	V _{CCIO} – 0.27	8	-8
LVCMOS10R	_	V _{REF} - 0.10	$V_{REF} + 0.10$	V _{CCIO} + 0.3	_	_	_	_

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Input/Output	V _{IL} ¹		V _{IH} ¹		V _{OL} Max	V _{OH} Min²	Ι /m Δ\	l (mA)
Standard ²	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	I _{OL} (mA)	I _{OH} (mA)
HSUL12	_	V _{REF} - 0.10	V _{REF} + 0.10	V _{CCIO} + 0.3	0.3	V _{CCIO} – 0.3	8.0, 7.5, 6.25, 5	-8.0, -7.5, -6.25, -5

Notes:

- For electro-migration, the average DC current drawn by the I/O pads within a bank of I/O shall not exceed 10 mA per I/O
 average.
- For the types of I/O standard supported in which bank, refer to sysI/O User Guide for Nexus Platform (FPGA-TN-02067) for details.
- 3. Select "50RS" in driver strength is selecting 50 Ω series impedance driver.

Table 4.16. I/O Resistance Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
50RS	Output Drive Resistance when 50RS Drive Strength Selected	V _{CCIO} = 1.8 V, 2.5 V, or 3.3 V	_	50	-	Ω
R _{DIFF}	Input Differential Termination Resistance	Bank 3, Bank 4, and Bank 5 for I/O selected to be differential	_	100	_	Ω
			36	40	64	
SE Input	Input Single Ended Termination Resistance	Bank 3, Bank 4, and Bank 5 for I/O selected to be Single Ended	46	50	80	Ω
Termination			56	60	96	12
			71	75	120	

Table 4.17. V_{IN} Maximum Overshoot/Undershoot Allowance – Wide Range^{1, 2}

	•	<u> </u>	
AC Voltage Overshoot	% of UI at -40 °C to 125 °C	AC Voltage Undershoot	% of UI at -40 °C to 125 °C
V _{CCIO} + 0.4	100.0%	-0.4	100.0%
V _{CCIO} + 0.5	100.0%	-0.5	44.2%
V _{CCIO} + 0.6	94.0%	-0.6	10.1%
V _{CCIO} + 0.7	21.0%	-0.7	1.3%
V _{CCIO} + 0.8	10.2%	-0.8	0.3%
V _{CCIO} + 0.9	2.5%	-0.9	0.1%

Notes:

- The peak overshoot or undershoot voltage and the duration above V_{CCIO} + 0.2 V or below GND 0.2 V must not exceed the values in this table.
- 2. For UI less than 20 μs.

Table 4.18. V_{IN} Maximum Overshoot/Undershoot Allowance – High Performance^{1, 2}

AC Voltage Overshoot	% of UI at -40 °C to 125 °C	AC Voltage Undershoot	% of UI at -40 °C to 125 °C
V _{CCIO} + 0.5	100.0%	-0.5	100.0%
V _{CCIO} + 0.6	47.3%	-0.6	47.3%
V _{CCIO} + 0.7	10.9%	-0.7	10.9%
V _{CCIO} + 0.8	2.7%	-0.8	2.7%
V _{CCIO} + 0.9	0.7%	-0.9	0.7%

Notes:

- The peak overshoot or undershoot voltage and the duration above V_{CCIO} + 0.2 V or below GND 0.2 V must not exceed the values in this table.
- 2. For UI less than 20 μ s.

4.12. sysI/O Differential DC Electrical Characteristics

4.12.1. LVDS

LVDS input buffer on Certus-NX is operating with $V_{CCAUX} = 1.8 \text{ V}$ and independent of Bank V_{CCIO} voltage. LVDS output buffer is powered by the Bank V_{CCIO} at 1.8 V.

LVDS can only be supported in Bank 3, Bank 4, and Bank 5. LVDS25 output can be emulated with LVDS25E in Bank 0, Bank 1, Bank 2, Bank 6, and Bank 7. This is described in LVDS25E (Output Only) section.

Table 4.19. LVDS DC Electrical Characteristics¹

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{INP} , V _{INM}	Input Voltage	_	0	_	1.60	V
V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.05	_	1.55 ²	V
V _{THD}	Differential Input Threshold	Difference between the two Inputs	±100	_	_	mV
I _{IN}	Input Current	Power On or Power Off	_	_	±10	μΑ
V _{OH}	Output High Voltage for V _{OP} or V _{OM}	R _T = 100 Ω	_	1.425	1.60	V
V _{OL}	Output Low Voltage for V _{OP} or V _{OM}	R _T = 100 Ω	0.9	1.075	_	V
V _{OD}	Output Voltage Differential	$(V_{OP} - V_{OM})$, $R_T = 100 \Omega$	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low	_	_	_	50	mV
V _{OCM}	Output Common Mode Voltage	$(V_{OP} + V_{OM})/2$, $R_T = 100 \Omega$	1.125	1.25	1.375	V
ΔV_{OCM}	Change in V _{OCM} , V _{OCM(MAX)} - V _{OCM(MIN)}	_	_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0 V Driver outputs shorted to each other	_	_	12	mA
ΔV_{OS}	Change in V _{OS} between H and L	_	_	_	50	mV

Notes:

- LVDS input or output are supported in Bank 3, Bank 4, and Bank 5. LVDS input uses V_{CCAUX} on the differential input comparator
 and can be in any V_{CCIO} voltage bank. LVDS output uses V_{CCIO} on the differential output driver, and can only be in bank with
 V_{CCIO} = 1.8 V.
- 2. V_{ICM} is depending on V_{ID} , input differential voltage, so the voltage on pin cannot exceed $V_{INP/INN(min/max)}$ requirements. $V_{ICM(min)} = V_{INP/INN(min)} + \frac{1}{2} V_{ID}$, $V_{ICM(max)} = V_{INP/INN(max)} \frac{1}{2} V_{ID}$. Values in the table is based on minimum V_{ID} of +/- 100 mV.

4.12.2. LVDS25E (Output Only)

Three sides of the Certus-NX devices, Top, Left and Right, support LVDS25 outputs with emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 4.2 is one possible solution for point-to-point signals.

Table 4.20. LVDS25E DC Conditions

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (±1%)	158	Ω
R _P	Driver Parallel Resistor (±1%)	140	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

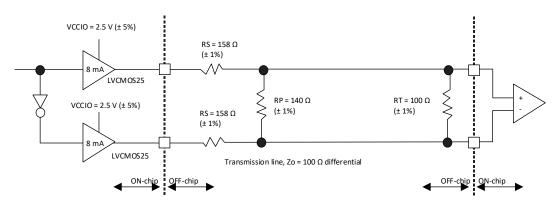


Figure 4.2. LVDS25E Output Termination Example

4.12.3. SubLVDS (Input Only)

SubLVDS is a reduced-voltage form of LVDS signaling, very similar to LVDS. It is a standard used in many camera types of applications. Being similar to LVDS, the Certus-NX devices can support the subLVDS input signaling with the same LVDS input buffer. The output for subLVDS is implemented in subLVDSE/subLVDSEH with a pair of LVCMOS18 output drivers (see SubLVDSE/SubLVDSEH (Output Only) section).

Table 4.21. SubLVDS Input DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V_{ID}	Input Differential Threshold Voltage	Over V _{ICM} range	70	150	200	mV
V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.4	0.9	1.4	V

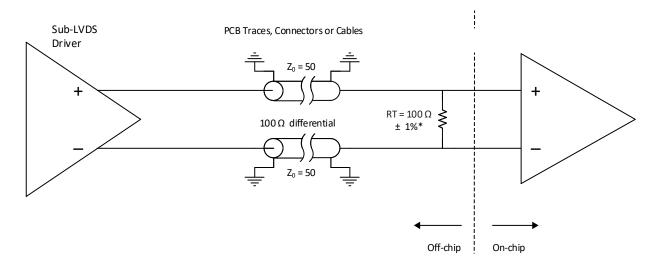


Figure 4.3. SubLVDS Input Interface

4.12.4. SubLVDSE/SubLVDSEH (Output Only)

SubLVDS output uses a pair of LVCMOS18 drivers with True and Complement outputs. The V_{CCIO} of the bank used for subLVDSE or subLVDSEH needs to be powered by 1.8V. SubLVDSE is for Bank 0, Bank 1, Bank 2, Bank 5, and Bank 6; and subLVDSEH is for Bank 3, Bank 4, and Bank 5.

Performance of the subLVDSE/subLVDSEH driver is limited to the performance of LVCMOS18.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 4.22. SubLVDS Output DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{OD}	Output Differential Voltage Swing	_	_	150	_	mV
V _{OCM}	Output Common Mode Voltage	Half the sum of the two Outputs	_	0.9	_	V

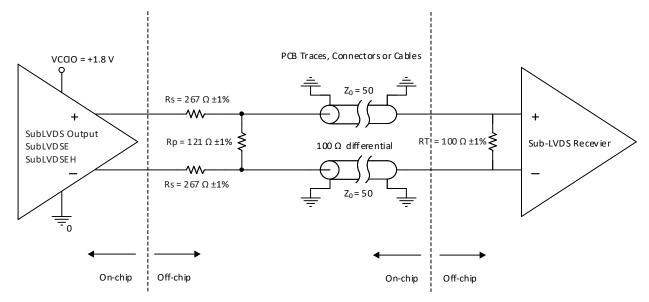


Figure 4.4. SubLVDS Output Interface

4.12.5. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard with smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The Certus-NX devices receive SLVS differential input with the LVDS input buffer. This LVDS input buffer is design to cover wide input common mode range that can meet the SLVS input standard specified by the JEDEC standard.

Table 4.23. SLVS Input DC Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{ID}	Input Differential Threshold Voltage	Over V _{ICM} range	70	1	I	mV
V _{ICM}	Input Common Mode Voltage	Half the sum of the two Inputs	70	200	330	mV

The SLVS output on Certus-NX is supported with the LVDS drivers found in Bank 3, Bank 4, and Bank 5. The LVDS driver on Certus-NX is a current controlled driver. It can be configured as LVDS driver or configured with the 100 Ω differential termination with center-tap set to V_{OCM} at 200 mV. This means the differential output driver can be placed into bank with V_{CCIO} = 1.2 V, 1.5 V, or 1.8 V, even if it is powered by V_{CCIO} .

Table 4.24. SLVS Output DC Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
				1.2,		
V _{CCIO}	Bank V _{CCIO}	_	-5%	1.5,	+ 5%	V
				1.8		
V _{OD}	Output Differential Voltage Swing	_	140	200	270	mV
V _{OCM}	Output Common Mode Voltage	Half the sum of the two Outputs	150	200	250	mV
Zos	Single-Ended Output Impedance	_	37.5	50	80	Ω

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

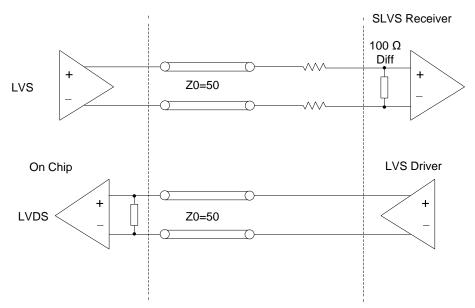


Figure 4.5. SLVS Interface

4.12.6. Differential HSTL15D (Output Only)

Differential HSTL outputs are implemented as a pair of complementary single-ended HSTL outputs.

4.12.7. Differential SSTL135D, SSTL15D (Output Only)

Differential SSTL is used for differential clock in DDR3/DDR3L memory interface. All differential SSTL outputs are implemented as a pair of complementary single-ended SSTL outputs. All allowable single-ended output classes (class I and class II) are supported.

4.12.8. Differential HSUL12D (Output Only)

Differential HSUL is used for differential clock in LPDDR2 memory interface. All differential HSUL outputs are implemented as a pair of complementary single-ended HSUL12 outputs. All allowable single-ended drive strengths are supported.

4.12.9. Differential LVCMOS25D, LVCMOS33D, LVTTL33D (Output Only)

Differential LVCMOS and LVTTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output drive strengths are supported.

4.13. Maximum sysI/O Buffer Speed

Table 4.25. Maximum I/O Buffer Speed^{1, 2, 3, 4, 7}

Buffer	Description	Banks	Max	Unit
Maximum sysl/O Input Frequency		<u>'</u>		•
Single-Ended				
LVCMOS33	LVCMOS33, V _{CCIO} = 3.3 V	0, 1, 2, 6, 7	200	MHz
LVTTL33	LVTTL33, V _{CCIO} = 3.3 V	0, 1, 2, 6, 7	200	MHz
LVCMOS25	LVCMOS25, V _{CCIO} = 2.5 V	0, 1, 2, 6, 7	200	MHz
LVCMOS18 ⁵	LVCMOS18, V _{CCIO} = 1.8 V	0, 1, 2, 6, 7	200	MHz
LVCMOS18H	LVCMOS18, V _{CCIO} = 1.8 V	3, 4, 5	200	MHz
LVCMOS15 ⁵	LVCMOS15, V _{CCIO} = 1.5 V	0, 1, 2, 6, 7	100	MHz
LVCMOS15H ⁵	LVCMOS15, V _{CCIO} = 1.5 V	3, 4, 5	150	MHz
LVCMOS12 ⁵	LVCMOS12, V _{CCIO} = 1.2 V	0, 1, 2, 6, 7	50	MHz
LVCMOS12H ⁵	LVCMOS12, V _{CCIO} = 1.2 V	3, 4, 5	100	MHz
LVCMOS10 ⁵	LVCMOS 1.0, V _{CCIO} = 1.2 V	0, 1, 2, 6, 7	50	MHz
LVCMOS10H ⁵	LVCMOS 1.0, V _{CCIO} = 1.0 V	3, 4, 5	50	MHz
LVCMOS10R	LVCMOS 1.0, V _{CCIO} independent	3, 4, 5	50	MHz
SSTL15_I, SSTL15_II	SSTL_15, V _{CCIO} = 1.5 V	3, 4, 5	1066	Mbps
SSTL135_I, SSTL135_II	SSTL_135, V _{CCIO} = 1.35 V	3, 4, 5	1066	Mbps
HSUL12	HSUL_12, V _{CCIO} = 1.2 V	3, 4, 5	1066	Mbps
HSTL15	HSTL15, V _{CCIO} = 1.5 V	3, 4, 5	250	Mbps
Differential		<u> </u>		
LVDS	LVDS, V _{CCIO} independent caBGA256, csBGA289, and caBGA400	3, 4, 5	1250	Mbps
	LVDS, V _{CCIO} independent csfBGA121	3, 4, 5	1500	Mbps
subLVDS	subLVDS, V _{CCIO} independent caBGA256, csBGA289, and caBGA400	3, 4, 5	1250	Mbps
	subLVDS, V _{CCIO} independent csfBGA121	3, 4, 5	1500	Mbps
SLVS	SLVS similar to MIPI HS, V _{CCIO} independent caBGA256, csBGA289, caBGA400	3, 4, 5	1250	Mbps
	SLVS similar to MIPI HS, V _{CCIO} independent csfBGA121	3, 4, 5	1500	Mbps
SSTL15D	Differential SSTL15, V _{CCIO} independent	3, 4, 5	1066	Mbps
SSTL135D	Differential SSTL135, V _{CCIO} independent	3, 4, 5	1066	Mbps
HUSL12D	Differential HSUL12, V _{CCIO} independent	3, 4, 5	1066	Mbps
HSTL15D	Differential HSTL15, V _{CCIO} independent	3, 4, 5	250	Mbps
Maximum sysI/O Output Frequence	у			
Single-Ended				
LVCMOS33 (all drive strengths)	LVCMOS33, V _{CCIO} = 3.3 V	0, 1, 2, 6, 7	200	MHz
LVCMOS33 (RS50)	LVCMOS33, V_{CCIO} = 3.3 V, R_{SERIES} = 50 Ω	0, 1, 2, 6, 7	200	MHz
LVTTL33 (all drive strengths)	LVTTL33, V _{CCIO} = 3.3 V	0, 1, 2, 6, 7	200	MHz
LVTTL33 (RS50)	LVTTL33, $V_{CCIO} = 3.3 \text{ V}$, $R_{SERIES} = 50 \Omega$	0, 1, 2, 6, 7	200	MHz
LVCMOS25 (all drive strengths)	LVCMOS25, V _{CCIO} = 2.5 V	0, 1, 2, 6, 7	200	MHz

Buffer	Description	Banks	Max	Unit
LVCMOS25 (RS50)	LVCMOS25, V_{CCIO} = 2.5 V, R_{SERIES} = 50 Ω	0, 1, 2, 6, 7	200	MHz
LVCMOS18 (all drive strengths)	LVCMOS18, V _{CCIO} = 1.8 V	0, 1, 2, 6, 7	200	MHz
LVCMOS18 (RS50)	LVCMOS18, $V_{CCIO} = 1.8 \text{ V}$, $R_{SERIES} = 50 \Omega$	0, 1, 2, 6, 7	200	MHz
LVCMOS18H (all drive strengths)	LVCMOS18, V _{CCIO} = 1.8 V	3, 4, 5	200	MHz
LVCMOS18H (RS50)	LVCMOS18, $V_{CCIO} = 1.8 \text{ V}$, $R_{SERIES} = 50 \Omega$	3, 4, 5	200	MHz
LVCMOS15 (all drive strengths)	LVCMOS15, V _{CCIO} = 1.5 V	0, 1, 2, 6, 7	100	MHz
LVCMOS15H (all drive strengths)	LVCMOS15, V _{CCIO} = 1.5 V	3, 4, 5	150	MHz
LVCMOS12 (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	0, 1, 2, 6, 7	50	MHz
LVCMOS12H (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	3, 4, 5	100	MHz
LVCMOS10H (all drive strengths)	LVCMOS12, V _{CCIO} = 1.2 V	3, 4, 5	50	MHz
SSTL15_I, SSTL15_II	SSTL_15, V _{CCIO} = 1.5 V	3, 4, 5	1066	Mbps
SSTL135_I, SSTL135_II	SSTL_135, V _{CCIO} = 1.35 V	3, 4, 5	1066	Mbps
HSUL12 (all drive strengths)	HSUL_12, V _{CCIO} = 1.2 V	3, 4, 5	1066	Mbps
HSTL15	HSTL15, V _{CCIO} = 1.5 V	3, 4, 5	250	Mbps
Differential				
LVDS	LVDS, $V_{CCIO} = 1.8 \text{ V}$ caBGA256, csBGA289, and caBGA400	3, 4, 5	1250	Mbps
	LVDS, V _{CCIO} = 1.8 V csfBGA121	3, 4, 5	1500	Mbps
LVDS25E ⁶	LVDS25, Emulated, V _{CCIO} = 2.5 V	0, 1, 2, 6, 7	400	Mbps
SubLVDSE ⁶	subLVDS, Emulated, V _{CCIO} = 1.8 V	0, 1, 2, 6, 7	400	Mbps
SubLVDSEH ⁶	subLVDS, Emulated, V _{CCIO} = 1.8 V	3, 4, 5	800	Mbps
SLVS	SLVS similar to MIPI, V _{CCIO} = 1.2 V caBGA256, csBGA289, caBGA400	3, 4, 5	1250	Mbps
	SLVS similar to MIPI, V _{CCIO} = 1.2 V csfBGA121	3, 4, 5	1500	Mbps
SSTL15D	Differential SSTL15, V _{CCIO} = 1.5 V	3, 4, 5	1066	Mbps
SSTL135D	Differential SSTL135, V _{CCIO} = 1.35 V	3, 4, 5	1066	Mbps
HUSL12D	Differential HSUL12, V _{CCIO} = 1.2 V	3, 4, 5	1066	Mbps
HSTL15D	Differential HSTL15, V _{CCIO} = 1.5 V	3, 4, 5	250	Mbps

Notes:

- 1. Maximum I/O speed is the maximum switching rate of the I/O operating within the guidelines of the defining standard. The actual interface speed performance using the I/O also depends on other factors, such as internal and external timing.
- 2. These numbers are characterized but not test on every device.
- 3. Performance is specified in MHz, as defined in clock rate when the sysl/O is used as pin. For data rate performance, this can be converted to Mbps, which equals to 2 times the clock rate.
- 4. LVCMOS and LVTTL are measured with load specified in Table 4.41.
- 5. These LVCMOS inputs can be placed in different V_{CCIO} voltage. Performance may vary. Please refer to Lattice Design Software
- 6. These emulated outputs performance is based on externally properly terminated as described in LVDS25E (Output Only) and SubLVDSE/SubLVDSEH (Output Only).
- 7. All speeds are measured with fast slew.
- 8. For maximum differential I/O performance, only Differential I/O should be placed in the bottom I/O banks. If this is not possible, the following will impact on maximum performance:
 - If Fast Slew Rate LVCMOS I/O are used, they should be limited to no more than nine I/O (adjacent), four I/O (same bank),
 55 I/O (left/right banks) to keep degradation below 50%.
 - b. If non-Differential I/O (SLOW SLEW) are placed on the bottom but not within the same bank as differential I/O, then the maximum Differential performance is degraded to 70% of original when 21 aggressors are toggling.
 - c. If non-Differential I/O (SLOW SLEW) are placed within the same bank as Differential I/O then the maximum performance is degraded to 50% of original when 16 aggressor are toggling.
 - d. No performance impact if MIPI LP and MIPI HS are in the same bank.
 - e. If Differential RX/TX I/O are both placed within the same bank, then the maximum performance is degraded to 90%.
 - f. For DDR3/DDR3L/LPDDR2 separate DQ/DQS groups from Address/Commands/CLK groups into separate banks.

4.14. Typical Building Block Function Performance

These building block functions can be generated using Lattice Design Software Tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.

Table 4.26. Pin-to-Pin Performance¹

Function	Typ. @ V _{CC} = 1.0 V	Unit
16-bit Decoder (I/O configured with LVCMOS18, Left and Right Banks)	5.5	ns
16-bit Decoder (I/O configured with HSTL15_I, Bottom Banks)	5.1	ns
16:1 Mux (I/O configured with LVCMOS18, Left and Right Banks)	6	ns
16:1 Mux (I/O configured with HSTL15_I, Bottom Banks)	6.1	ns

Note:

These functions are generated using the Lattice Radiant Design software tool. Exact performance may vary with the device and
the design software tool version. The design software tool uses internal parameters that have been characterized but are not
tested on every device.

Table 4.27. Register-to-Register Performance^{1, 3, 4}

Function	Typ. @ V _{CC} = 1.0 V	Unit
Basic Functions		
16-bit Adder	500 ²	MHz
32-bit Adder	496	MHz
16-bit Counter	402	MHz
32-bit Counter	371	MHz
Embedded Memory Functions		
512 × 36 Single Port RAM, with Output Register	340 ²	MHz
1024 × 18 True-Dual Port RAM using same clock, with EBR Output Registers	340 ²	MHz
1024 × 18 True-Dual Port RAM using asynchronous clocks, with EBR Output Registers	3402	MHz
Large Memory Functions		
32 k × 32 Single Port RAM, with Output Register	165 ²	MHz
32 k × 32 Single Port RAM with ECC, with Output Register	130 ²	MHz
32 k × 32 True-Dual Port RAM using same clock, with Output Registers	340	MHz
Distributed Memory Functions		
16 × 4 Single Port RAM (One PFU)	340 ²	MHz
16 × 2 Pseudo-Dual Port RAM (One PFU)	340 ²	MHz
16 × 4 Pseudo-Dual Port (Two PFUs)	340 ²	MHz
DSP Functions		
9 × 9 Multiplier with Input Output Registers	340	MHz
18 × 18 Multiplier with Input/Output Registers	260	MHz
36 × 36 Multiplier with Input/Output Registers	184	MHz
MAC 18 × 18 with Input/Output Registers	189	MHz
MAC 18 × 18 with Input/Pipelined/Output Registers	260	MHz
MAC 36 × 36 with Input/Output Registers	111	MHz
MAC 36 × 36 with Input/Pipelined/Output Registers	145	MHz

Notes:

- 1. The Clock port is configured with LVDS I/O type. Performance Grade: 8_High-Performance_1.0V.
- 2. Limited by the Minimum Pulse Width of the component.
- 3. These functions are generated using Lattice Radiant Design Software tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.
- 4. For the Pipelined designs, the number of pipeline stages used are 2.

4.15. LMMI

Table 4.28 summarizes the performance of the LMMI interface with supported IPs. Additional timing requirement and constraint can be identified through the Lattice Radiance design tools.

Table 4.28. LMMI F_{MAX} Summary

IP	F _{MAX} (MHz)
CDR0	73
CDR1	70
DPHY0	67
DPHY1	55
CRE	54
I ² C	38
PCle	57
PLL_ULC	59
PLL_LLC	55
PLL_LRC	37

4.16. Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Lattice Radiant design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Lattice Radiant design tool can provide logic timing numbers at a particular temperature and voltage.

4.17. External Switching Characteristics

Over recommended automotive operating conditions.

Table 4.29. External Switching Characteristics (Vcc = 1.0 V)

Davamatas	Description	−7 Auto		Unit
Parameter	Description	Min	Max	Unit
Clocks				
Primary Clock				
f _{MAX_PRI}	Frequency for Primary Clock	_	276	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	1.59	_	ns
t _{SKEW_PRI} 6	Primary Clock Skew Within a Device	_	653	ps
Edge Clock				
f _{MAX_EDGE}	Frequency for Edge Clock Tree	_	551.7	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	0.761	_	ns
t _{SKEW_EDGE} 6	Edge Clock Skew Within a Device	_	174	ps
Generic SDR Input				
General I/O Pin Par	rameters Using Dedicated Primary Clock Input without PLL			
t _{co}	Clock to Output – PIO Output Register	ı	7.91	ns
t _{SU}	Clock to Data Setup – PIO Input Register	0	_	ns
t _H	Clock to Data Hold – PIO Input Register	3.95	_	ns
t _{SU_DEL}	Clock to Data Setup – PIO Input Register with Data Input Delay	1.86	_	ns
t _{H_DEL}	Clock to Data Hold – PIO Input Register with Data Input Delay	0.26	_	ns

		−7 A		
Parameter	Description	Min	Max	Unit
General I/O Pin P	Parameters Using Dedicated Primary Clock Input with PLL		1	
COPLL	Clock to Output – PIO Output Register	_	5.57	ns
tsupll	Clock to Data Setup – PIO Input Register	1.31	_	ns
t _{HPLL}	Clock to Data Hold – PIO Input Register	1.44	_	ns
t _{su delpll}	Clock to Data Setup – PIO Input Register with Data Input Delay	4.99	_	ns
t _{H DELPLL}	Clock to Data Hold – PIO Input Register with Data Input Delay	0	_	ns
Generic DDR Inpu			1	-
Generic DDRX1 II	nputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sank 2, Bank 6, and Bank 7 Figure 4.6 and Figure 4.8	SCLK.Centere	ed) using PCL	K Clock Input –
, , , , , , , , , , , , , , , , , , ,		0.917	_	ns
t _{SU_GDDR1}	Input Data Setup Before CLK	0.275	_	UI
		0.917	_	ns
t _{HO_GDDR1}	Input Data Hold After CLK	0.275	_	UI
		1.008	_	ns
t _{DVB_GDDR1}	Output Data Valid After CLK Output	-0.659	_	ns + 1/2 UI
		1.008	_	ns
t _{DQVA_GDDR1}	Output Data Valid After CLK Output	-0.659	_	ns + 1/2 UI
f _{DATA GDDRX1}	Input/Output Data Rate		300	Mbps
f _{MAX_GDDRX1}	Frequency of PCLK		150	MHz
™AX_GDDRX1 ½ UI	Half of Data Bit Time, or 90 degree	1.667	_	ns
	It RX Margin per Edge	0.091		ns
		LK.Aligned)	using PCLK C	lock Input –
Generic DDRX1 II	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9	LK.Aligned)	1	- 1
Generic DDRX1 II Bank 0, Bank 1, B	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9	LK.Aligned)	-0.917	ns + 1/2 UI
Generic DDRX1 II Bank 0, Bank 1, B	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC	LK.Aligned)	-0.917 0.75	ns + 1/2 UI ns
Generic DDRX1 II Bank 0, Bank 1, B	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9		-0.917 0.75 0.225	ns + 1/2 UI ns UI
Generic DDRX1 II Bank 0, Bank 1, B t _{DVA_GDDR1}	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC rank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK		-0.917 0.75	ns + 1/2 UI ns UI ns + 1/2 UI
Generic DDRX1 II Bank 0, Bank 1, B t _{DVA_GDDR1}	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9		-0.917 0.75 0.225	ns + 1/2 UI ns UI ns + 1/2 UI
Generic DDRX1 II Bank 0, Bank 1, B tova_gddr1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) Input Data Valid After CLK Input Data Hold After CLK		-0.917 0.75 0.225 — —	ns + 1/2 UI ns UI ns + 1/2 UI ns
Generic DDRX1 II Bank 0, Bank 1, B tDVA_GDDR1 tDVE_GDDR1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output		-0.917 0.75 0.225 0.659	ns + 1/2 UI ns UI ns + 1/2 UI ns UI
Generic DDRX1 II Bank 0, Bank 1, B tova_gddr1 tove_gddr1 tola_gddr1 tola_gddr1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output		-0.917 0.75 0.225 0.659 0.659	ns + 1/2 UI ns UI ns + 1/2 UI ns + 1/2 UI ns UI ns
Generic DDRX1 II Bank 0, Bank 1, B tdva_gddr1 tdve_gddr1 tdia_gddr1 tdib_gddr1 fdata_gddrx1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate		-0.917 0.75 0.225 0.659 0.659 300	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns ns UI ns Mbps
Generic DDRX1 II Bank 0, Bank 1, B tdva_gddr1 tdve_gddr1 tdia_gddr1 tdib_gddr1 fdata_gddrx1 fmax_gddrx1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK		-0.917 0.75 0.225 0.659 0.659	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz
Generic DDRX1 II Bank 0, Bank 1, B tDVA_GDDR1 tDVE_GDDR1 tDIA_GDDR1 fDATA_GDDRX1 fMAX_GDDRX1 fMAX_GDDRX1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree		-0.917 0.75 0.225 0.659 0.659 300	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns
Generic DDRX1 II Bank 0, Bank 1, B tdva_GDDR1 tdve_GDDR1 tdbia_GDDR1 tdbia_GDDR1 fdata_GDDRX1 f_Max_GDDRX1 fy UI Output TX to Inpu Generic DDRX1 II	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree at RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.SC)		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns
Generic DDRX1 II Bank 0, Bank 1, B tdva_GDDR1 tdve_GDDR1 tdbia_GDDR1 tdbia_GDDR1 fdata_GDDRX1 f_Max_GDDRX1 fy UI Output TX to Inpu Generic DDRX1 II	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns Mbps MHz ns ns K Clock Input -
Generic DDRX1 II Bank 0, Bank 1, B tdvA_GDDR1 tdvE_GDDR1 tdbIA_GDDR1 fdDATA_GDDRX1 ff_MAX_GDDRX1 //2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree at RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.SC)		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns White the second se
Generic DDRX1 II Bank 0, Bank 1, B tdvA_GDDR1 tdvE_GDDR1 tdbIA_GDDR1 fdDATA_GDDRX1 ffMAX_GDDRX1 //2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sc) Input Data Setup Before CLK		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns As
Generic DDRX1 II Bank 0, Bank 1, B tdvA_GDDR1 tdvE_GDDR1 tdbIA_GDDR1 fdDATA_GDDRX1 ffMAX_GDDRX1 //2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Hold After CLK Output Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sc) Inputs/Outputs with Clock and Figure 4.8		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns ns K Clock Input -
Generic DDRX1 II Bank 0, Bank 1, B tdvA_GDDR1 tdvE_GDDR1 tdbIA_GDDR1 tdbIB_GDDR1 fdATA_GDDRX1 fMAX_GDDRX1 22 UI Output TX to Input Generic DDRX1 II Bank 3, Bank 4, a	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sc) Input Data Setup Before CLK		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Mbps MHz ns ns K Clock Input -
Generic DDRX1 II Bank 0, Bank 1, B tdvA_GDDR1 tdvA_GDDR1 tdvA_GDDR1 tdvA_GDDR1 fdATA_GDDRX1 ffMAX_GDDRX1 ffMAX_GDDRX1 ffMAX_GDDRX1 II Coutput TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sc) Input Data Setup Before CLK Input Data Hold After CLK		-0.917 0.75 0.225 — — 0.659 0.659 300 150 —	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns NS NS Mbps MHz ns ns UI ns ns NS The control of the
Generic DDRX1 II Bank 0, Bank 1, B tDVA_GDDR1 tDVA_GDDR1 tDIA_GDDR1 tDIB_GDDR1 fDATA_GDDRX1 fMAX_GDDRX1 V2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a tSU_GDDR1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.Sc) Input Data Setup Before CLK Input Data Hold After CLK	——————————————————————————————————————	-0.917 0.75 0.225 0.659 0.659 300 150	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Ns Ns Nbps MHz ns ns K Clock Input - ns ns ns
Generic DDRX1 II Bank 0, Bank 1, B tDVA_GDDR1 tDVA_GDDR1 tDIA_GDDR1 fDATA_GDDRX1 fMAX_GDDRX1 Y2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a tSU_GDDR1 tho_GDDR1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.SC) Input Data Setup Before CLK Input Data Hold After CLK Output Data Valid After CLK Output Data Valid After CLK Output		-0.917 0.75 0.225 0.659 0.659 300 150	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns NS NS NS Mbps MHz ns ns K Clock Input - ns ns ns rs rs rs rs rs rs rs
Generic DDRX1 II Bank 0, Bank 1, B tDVA_GDDR1 tDVA_GDDR1 tDIA_GDDR1 tDIA_GDDR1 fDATA_GDDRX1 //2 UI Output TX to Inpu Generic DDRX1 II Bank 3, Bank 4, a tSU_GDDR1 thO_GDDR1 tDVB_GDDR1	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.St) Input Data Setup Before CLK Input Data Hold After CLK Output Data Valid After CLK Output Data Valid After CLK Output Input/Output Data Rate	——————————————————————————————————————	-0.917 0.75 0.225 0.659 0.659 300 150	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns Ns Ns Nbps MHz ns ns K Clock Input - ns ns rs Ns
Generic DDRX1 II Bank 0, Bank 1, B tdva_GDDR1 tdve_GDDR1 tdbia_GDDR1 tdbia_GDDR1 fdata_GDDRX1 f_Max_GDDRX1 fy UI Output TX to Inpu Generic DDRX1 II	Inputs/Outputs with Clock and Data Aligned at Pin (GDDRX1_RX/TX.SC) ank 2, Bank 6, and Bank 7 Figure 4.7 and Figure 4.9 Input Data Valid After CLK Input Data Invalid After CLK Output Output Data Invalid Before CLK Output Input/Output Data Rate Frequency for PCLK Half of Data Bit Time, or 90 degree It RX Margin per Edge Inputs/Outputs with Clock and Data Centered at Pin (GDDRX1_RX/TX.SC) Input Data Setup Before CLK Input Data Hold After CLK Output Data Valid After CLK Output Data Valid After CLK Output		-0.917 0.75 0.225 0.659 0.659 300 150	ns + 1/2 UI ns UI ns + 1/2 UI ns UI ns UI ns NS NS NS Mbps MHz ns ns K Clock Input - ns ns ns rs rs rs rs rs rs rs

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

		-7 A	luto	
Parameter	Description	Min	Max	Unit
	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX and Bank 5 Figure 4.7 and Figure 4.9	1_RX/TX.SCLK.Aligned)	using PCLK C	lock Input –
		_	-0.9167	ns + 1/2 UI
t _{DVA_GDDR1}	Input Data Valid After CLK	_	0.75	ns
		_	0.225	UI
		0.9167	_	ns + 1/2 UI
t _{DVE_GDDR1}	Input Data Hold After CLK	2.5833	_	ns
		0.775	_	UI
t _{DIA_GDDR1}	Output Data Invalid After CLK Output	_	0.439	ns
t _{DIB_GDDR1}	Output Data Invalid Before CLK Output	_	0.439	ns
f _{DATA_GDDRX1}	Input/Output Data Rate	_	300	Mbps
f _{MAX GDDRX1}	Frequency for PCLK	_	150	MHz
½ UI	Half of Data Bit Time, or 90 degree	1.667	_	ns
Output TX to Inp	ut RX Margin per Edge	0.311	_	ns
Generic DDRX2 I	nputs/Outputs with Clock and Data Centered at Pin (GDDF gure 4.8	XX2_RX/TX.ECLK.Centere	ed) using PCL	K Clock Input –
	D . C	0.270	_	ns
t _{SU_GDDRX2}	Data Setup before CLK Input	0.162	_	UI
t _{HO GDDRX2}	Data Hold after CLK Input	0.270	_	ns
		0.658	_	ns
t _{DVB_GDDRX2}	Output Data Valid Before CLK Output	-0.176	_	ns + 1/2 UI
		0.658	_	ns
t _{DQVA_GDDRX2}	Output Data Valid After CLK Output	-0.176	_	ns + 1/2 UI
f _{DATA_GDDRX2}	Input/Output Data Rate	_	600	Mbps
f _{MAX_GDDRX2}	Frequency for ECLK	_	300	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.833	_	ns
f _{PCLK}	PCLK frequency	_	209.97	MHz
Output TX to Inp	ut RX Margin per Edge	0.408	_	ns
Generic DDRX2 I	nputs/Outputs with Clock and Data Aligned at Pin (GDDRX gure 4.9	2_RX/TX.ECLK.Aligned)	using PCLK C	lock Input –
			-0.458	ns + 1/2 UI
t _{DVA_GDDRX2}	Input Data Valid After CLK	_	0.375	ns
		_	0.225	UI
		0.458	_	ns + 1/2 UI
t _{DVE_GDDRX2}	Input Data Hold After CLK	1.292	_	ns
		0.775	_	UI
t _{DIA_GDDRX2}	Output Data Invalid After CLK Output	_	0.176	ns
t _{DIB_GDDRX2}	Output Data Invalid Before CLK Output		0.176	ns
f _{DATA_GDDRX2}	Input/Output Data Rate	_	600	Mbps
f _{MAX_GDDRX2}	Frequency for ECLK	_	300	MHz
½ UI	Half of Data Bit Time, or 90 degree	0.589	_	ns
f _{PCLK}	PCLK frequency	_	209.97	MHz
	ut RX Margin per Edge	0.091	_	ns

Dawawataw	Description	-7 A	−7 Auto		
Parameter	Description	Min	Max	Unit	
	puts/Outputs with Clock and Data Centered at Pin (GDDI	RX4_RX/TX.ECLK.Centere	ed) using PCI	K Clock Input –	
Figure 4.6 and Figi	ure 4.8	T		T	
t _{SU GDDRX4}	Input Data Set-Up Before CLK	0.220	_	ns	
		0.220	_	UI	
t _{HO_GDDRX4}	Input Data Hold After CLK	0.220	_	ns	
t _{DVB_GDDRX4}	Output Data Valid Before CLK Output	0.324	_	ns	
		-0.176 — 0.324 —		ns + 1/2UI	
t _{DQVA_GDDRX4}	Output Data Valid After CLK Output		_	ns /2	
		-0.176	-	ns + 1/2UI	
f _{DATA_GDDRX4}	Input/Output Data Rate		1000	Mbps	
f _{MAX_GDDRX4}	Frequency for ECLK		500	MHz	
½ UI	Half of Data Bit Time, or 90 degree	0.5		ns	
f _{PCLK}	PCLK frequency	_	125	MHz	
	t RX Margin per Edge	0.124		ns	
	puts/Outputs with Clock and Data Aligned at Pin (GDDR) nly – Figure 4.7 and Figure 4.9	(4_RX/TX.ECLK.Aligned)	using PCLK C	lock Input, Left	
and Right sides Or	ily – Figure 4.7 and Figure 4.9		-0.275	ns + 1/2 UI	
+ .	Input Data Valid After CLK		0.225		
t _{DVA_GDDRX4}	iliput Data Valid After CEK	_		ns UI	
		0.275	0.225	ns + 1/2 UI	
	land Data Hald After CLK			,	
t _{DVE_GDDRX4}	Input Data Hold After CLK	0.775 0.775	_	ns UI	
•	Output Data Invalid After CLK Output	0.775	0.176		
t _{DIA_GDDRX4}	Output Data Invalid After CLK Output Output Data Invalid Before CLK Output	_	0.176 0.176	ns	
t _{DIB_GDDRX4}		_	1000	ns Mhns	
f _{DATA_GDDRX4}	Input/Output Data Rate	_		Mbps	
f _{MAX_GDDRX4}	Frequency for ECLK	- 0.5	500	MHz	
½ UI	Half of Data Bit Time, or 90 degree	0.5	-	ns	
f _{PCLK}	PCLK frequency	-	125	MHz	
	t RX Margin per Edge	0.049		ns	
Figure 4.6 and Figure	puts/Outputs with Clock and Data Centered at Pin (GDD)	RX5_RX/TX.ECLK.Centere	ed) using PCI	.K Clock Input –	
rigare no ana rigo		0.22	_	ns	
t _{SU_GDDRX5}	Input Data Set-Up Before CLK	0.22	_	UI	
t _{HO GDDRX5}	Input Data Hold After CLK	0.22	_	ns	
twindow gddrx5c	Input Data Valid Window	0.44	_	ns	
-vviivDOvv_GDDRX3C	The state of the s	0.324	_	ns	
tdvb_gddrx5	Output Data Valid Before CLK Output	-0.176	_	ns+1/2UI	
		0.324		ns	
tdqva_gddrx5	Output Data Valid After CLK Output	-0.176	_	ns+1/2UI	
f _{DATA GDDRX5}	Input/Output Data Rate	-0.170	1000	Mbps	
f _{MAX GDDRX5}	Frequency for ECLK		500	MHz	
'MAX_GDDRX5 ½ UI	Half of Data Bit Time, or 90 degree	0.5		ns	
	PCLK frequency	0.5	100	MHz	
f _{PCLK}	t RX Margin per Edge	0.124	100	IVI∏Z	

Davamata:	Description	-7 <i>F</i>	Auto	l lmia			
Parameter	Description	Min	Max	Unit			
Generic DDRX5 Inp	outs/Outputs with Clock and Data Aligned at Pin (GDDRX5_RX/TX.EC	h Clock and Data Aligned at Pin (GDDRX5_RX/TX.ECLK.Aligned) using PCLK Cloc					
and Right sides On	ly – Figure 4.7 and Figure 4.9						
		_	-0.275	ns + 1/2 UI			
t _{DVA_GDDRX5}	Input Data Valid After CLK	_	0.225	ns			
		_	0.225	UI			
		0.275	_	ns + 1/2 UI			
t _{DVE_GDDRX5}	Input Data Hold After CLK	0.775	_	ns			
		0.775	_	UI			
twindow gddrx5a	Input Data Valid Window	0.55	_	ns			
t _{DIA GDDRX5}	Output Data Invalid After CLK Output	_	0.176	ns			
t _{DIB GDDRX5}	Output Data Invalid Before CLK Output	_	0.176	ns			
f _{DATA GDDRX5}	Input/Output Data Rate	_	1000	Mbps			
f _{MAX_GDDRX5}	Frequency for ECLK	_	500	MHz			
½ UI	Half of Data Bit Time, or 90 degree	0.5	_	ns			
f _{PCLK}	PCLK frequency	_	100	MHz			
	RX Margin per Edge	0.049	_	ns			
	Inputs/Outputs with Clock and Data Centered at Pin, using PCLK Clo			113			
3010 0-1111 001004	inputs outputs with clock and bata centered at 1 m, using 1 centered	0.21	T _	ns			
t _{SU_GDDRX4_MP}	Input Data Set-Up Before CLK	0.21	_	UI			
		0.2	_	ns			
t _{HO_GDDRX4_MP}	Input Data Hold After CLK	0.2	_	UI			
		0.2	_				
t _{DVB_GDDRX4_MP}	Output Data Valid Before CLK Output		_	ns			
		0.3	_	UI			
t _{DQVA GDDRX4 MP}	Output Data Valid After CLK Output	0.3	_	ns			
		0.3	_	UI			
f _{DATA_GDDRX4_MP}	Input Data Bit Rate for MIPI PHY		1000	Mbps			
½ UI	Half of Data Bit Time, or 90 degree	0.5	_	ns			
f _{PCLK}	PCLK frequency	_	125	MHz			
Output TX to Input	RX Margin per Edge	0.1	_	ns			
-	uts/Outputs with Clock and Data Aligned at Pin (GDDRX71_RX.ECLK)	using PLL C	lock Input –	Figure 4.11 and			
Figure 4.12							
t _{RPBi DVA}	Input Valid Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0	_	0.277	UI			
CRPBI_DVA	aligns with CLK)	_	-0.278	ns+(1/2+i)*UI			
t	Input Hold Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0	0.711	_	UI			
t _{RPBi_DVE}	aligns with CLK)	0.263	_	ns+(1/2+i)*UI			
t _{TPBi_DOV}	Data Output Valid Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	-	0.187	ns+i*UI			
t _{TPBi_DOI}	Data Output Invalid Bit "i" switch from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	-0.187	_	ns+(i+ 1)*UI			
t _{TPBi_skew_UI}	TX skew in UI	_	0.150	UI			
t _B	Serial Data Bit Time, = 1UI	1.247	_	ns			
f _{DATA TX71}	DDR71 Serial Data Rate	_	802	Mbps			
f _{MAX TX71}	DDR71 ECLK Frequency	_	401	MHz			
f _{CLKIN}	7:1 Clock (PCLK) Frequency	_	113.4	MHz			
	RX Margin per Edge	0.187	113.7	ns			

Davamatav	Bearinties	−7 A	uto	l luit
Parameter	Description	Min	Max	Unit
Memory Interface				
DDR3/DDR3L/LPDDR2	READ (DQ Input Data are Aligned to DQS) – Figure 4.7			
tovbdo_ddr3 tovbdo_ddr3L tovbdo_lpddr2	Data Input Valid before DQS Input	_	-0.277	ns + 1/2 UI
t _{DVADQ_DDR3} t _{DVADQ_DDR3L} t _{DVADQ_LPDDR2}	Data Input Valid after DQS Input	0.277	_	ns + 1/2 UI
f _{DATA_DDR3} f _{DATA_DDR3L} f _{DATA_LPDDR2}	DDR Memory Data Rate	_	904	Mb/s
fmax_eclk_ddr3 fmax_eclk_ddr3l fmax_eclk_lpddr2	DDR Memory ECLK Frequency	_	452	MHz
fmax_sclk_ddr3 fmax_sclk_ddr3l fmax_sclk_lpddr2	DDR Memory SCLK Frequency	_	113	MHz
DDR3/DDR3L/LPDDR2	2 WRITE (DQ Output Data are Centered to DQS) – Figure 4.10			
t _{DQVBS_DDR3} t _{DQVBS_DDR3L} t _{DQVBS_LPDDR2}	Data Output Valid before DQS Output	_	-0.277	ns + 1/2 UI
t _{DQVAS_DDR3} t _{DQVAS_DDR3L} t _{DQVAS_LPDDR2}	Data Output Valid after DQS Output	0.277	_	ns + 1/2 UI
f _{DATA_DDR3} f _{DATA_DDR3L} f _{DATA_LPDDR2}	DDR Memory Data Rate	_	904	Mb/s
fmax_eclk_ddr3 fmax_eclk_ddr3l fmax_eclk_lpddr2	DDR Memory ECLK Frequency	_	452	MHz
fmax_sclk_ddr3 fmax_sclk_ddr3l fmax_sclk_lpddr2	DDR Memory SCLK Frequency	_	113	MHz

Notes:

- Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Lattice Radiant software.
- 2. General I/O timing numbers are based on LVCMOS 1.8, 8 mA, Fast Slew Rate, 0 pf load.
 - Generic DDR timing are numbers based on LVDS I/O.
 - DDR3 timing numbers are based on SSTL15.
 - LPDDR2 timing numbers are based on HSUL12.
- 3. Uses LVDS I/O standard for measurements.
- 4. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
- 5. All numbers are generated with the Lattice Radiant software.
- 6. This clock skew is not the internal clock network skew. Nexus devices have very low internal clock network skew that can be approximated to 0 ps. These t_{SKEW} values measured externally at system level includes additional skew added by the I/O, wire bonding and package ball.

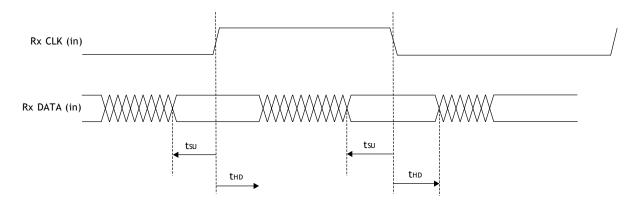


Figure 4.6. Receiver RX.CLK.Centered Waveforms

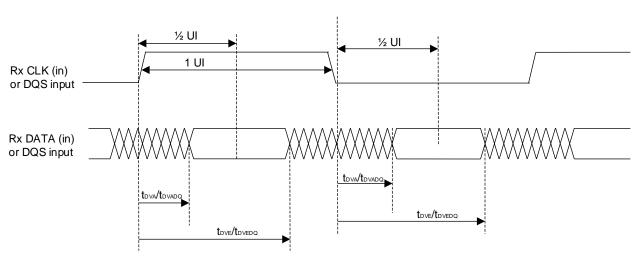


Figure 4.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms

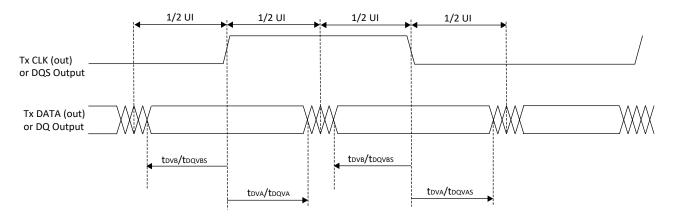


Figure 4.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

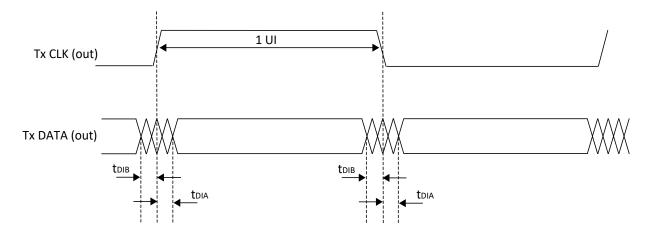
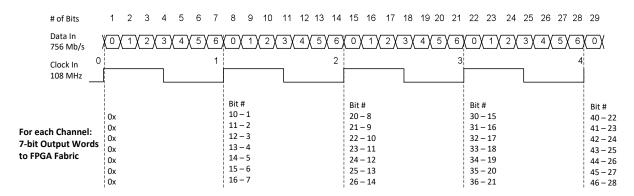



Figure 4.9. Transmit TX.CLK.Aligned Waveforms

Receiver - Shown for one LVDS Channel

Transmitter - Shown for one LVDS Channel

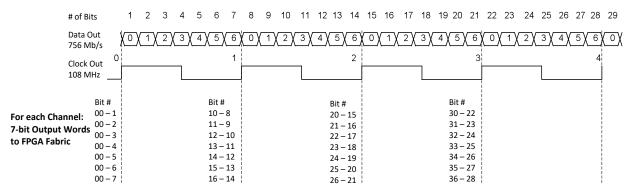


Figure 4.10. DDRX71 Video Timing Waveforms

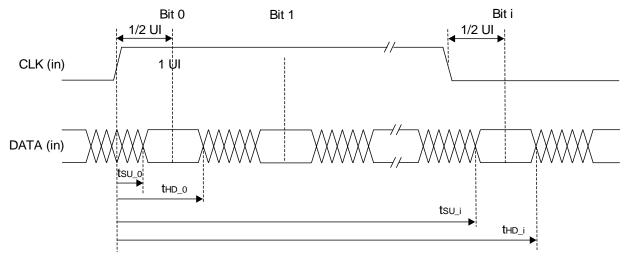


Figure 4.11. Receiver DDRX71_RX Waveforms

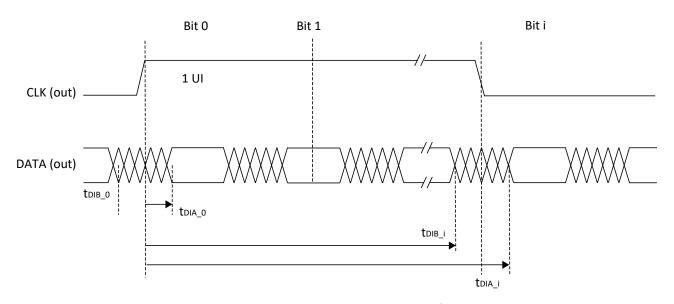


Figure 4.12. Transmitter DDRX71_TX Waveforms

4.18. sysCLOCK PLL Timing (V_{CC} = 1.0 V)

Table 4.30. sysCLOCK PLL Timing (V_{CC} = 1.0 V)

Parameter	Descriptions	Conditions	Min	Тур.	Max	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	_	18	1	500	MHz
f _{OUT}	Output Clock Frequency	_	6.25	_	800	MHz
f _{VCO}	PLL VCO Frequency	_	800	_	1600	MHz
£	Phase Detector Innut Frequency	Without Fractional-N Enabled	18	_	500	MHz
f _{PFD}	Phase Detector Input Frequency	With Fractional-N Enabled	18	_	100	MHz
AC Character	istics					
t _{DT}	Output Clock Duty Cycle	_	45	_	55	%
t _{PH} ⁴	Output Phase Accuracy	_	-5	_	5	%

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Parameter	Descriptions	Conditions	Min	Тур.	Max	Units
	Output Clask Pariod litter	f _{OUT} ≥ 200 MHz	_	_	250	ps p-p
	Output Clock Period Jitter	f _{OUT} < 200 MHz	_	_	0.05	UIPP
	Output Clock Cycle to Cycle litter	f _{OUT} ≥ 200 MHz	_	_	250	ps p-p
	Output Clock Cycle-to-Cycle Jitter	f _{OUT} < 200 MHz	_	_	0.05	UIPP
		f _{PFD} ≥ 200 MHz	_	_	250	ps p-p
t _{OPUT} 1	Output Clock Phase Jitter	$60 \text{ MHz} \le f_{PFD} < 200 \text{ MHz}$	_	_	400	ps p-p
LOPJIT-	Output Clock Phase Jittel	$30 \text{ MHz} \le f_{PFD} < 60 \text{ MHz}$	_	_	500	ps p-p
		$18 \text{ MHz} \le f_{PFD} < 30 \text{ MHz}$	_	_	725	ps p-p
	Output Clock Period Jitter (Fractional-N)	f _{OUT} ≥ 200 MHz	_	_	350	ps p-p
	Output Clock Period Sitter (Fractional-IV)	f _{OUT} < 200 MHz	_	_	0.07	UIPP
	Output Clock Cycle-to-Cycle Jitter	f _{OUT} ≥ 200 MHz	_	_	400	ps p-p
	(Fractional-N)	f _{OUT} < 200 MHz	_	_	0.08	UIPP
f_{BW}^3	PLL Loop Bandwidth	_	0.45		13	MHz
t _{LOCK} ²	PLL Lock-in Time	_	_	_	10	ms
t _{UNLOCK}	PLL Unlock Time (from RESET goes HIGH)	_	_	_	50	ns
+	Input Clock Period Jitter	f _{PFD} ≥ 20 MHz	_	_	500	ps p-p
t _{IPJIT}	Input Clock Period Sitter	f _{PFD} < 20 MHz	_	_	0.01	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	_	ns
t _{RST}	RST/ Pulse Width	_	1	_	_	ms
f _{SSC_MOD}	Spread Spectrum Clock Modulation Frequency	_	20	_	200	kHz
f _{SSC_MOD_AMP}	Spread Spectrum Clock Modulation Amplitude Range	_	0.25	_	2.00	%
f _{SSC_MOD_STEP}	Spread Spectrum Clock Modulation Amplitude Step Size	_	_	0.25	_	%

Notes:

- 1. Jitter sample is taken over 10,000 samples for Period jitter, and 1,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.
- 2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.
- 3. Result from the Lattice Radiant software.
- 4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency.

4.19. Internal Oscillators Characteristics

Table 4.31. Internal Oscillators (Vcc = 1.0 V)

Symbol	Parameter Description	Min	Тур	Max	Unit
f _{CLKHF}	HFOSC CLKK Clock Frequency	418.5	450	481.5	MHz
f _{CLKLF}	LFOSC CLKK Clock Frequency	18.2	32	45.8	kHz
DCH _{CLKHF}	HFOSC Duty Cycle (Clock High Period)	43	50	57	%
DCH _{CLKLF}	LFOSC Duty Cycle (Clock High Period)	45	50	55	%

4.20. User I2C Characteristics

Table 4.32. User I2C Specifications (Vcc = 1.0 V)

Sumbol	Darameter Description	9	TD Mode	2	F	AST Mod	е	FAS	T Mode P	lus²	Units
Symbol Parameter Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullits
f _{scl}	SCL Clock Frequency	_	_	100	_	_	400	_	_	1000	kHz
T _{DELAY} ¹	Optional delay through	_	_	62	_	_	62	_	_	62	ns

Notes

- 1. Refer to the I2C Specification for timing requirements. User design must set constraints in the Lattice Design software to meet this industrial I2C Specification.
- 2. Fast Mode Plus maximum speed may be achieved by using external pull up resistor on I2C bus. Internal pull up may not be sufficient to support the maximum speed.

4.21. Analog-Digital Converter (ADC) Block Characteristics

Table 4.33. ADC Specifications¹

Symbol	Description	Condition	Min	Тур	Max	Unit
V _{REFEXT_ADC} ³	ADC External Reference Voltage	_	1.0	_	1.8	>
N _{RES_ADC}	ADC Resolution	_	_	12	_	bits
ENOB _{ADC} ⁴	Effective Number of Bits	_	_	_	_	bits
V _{SR_ADC}	ADC Input	Bipolar Mode, External V _{REF}	V _{CM_ADC} — V _{REFEXT_ADC} /4	V _{REFEXT_ADC}	V _{CM_ADC} + V _{REFEXT_ADC} /4	V
3. <u>7</u> .80	Range	Uni-polar Mode, External V _{REF}	0	_	V _{REFEXT_ADC}	V
V _{CM_ADC}	ADC Input Common Mode Voltage (for fully differential signals)	External V _{REF}	_	V _{REFEXT_ADC} /2	_	V
f _{CLK_ADC}	ADC Clock Frequency	_	_	_	50	MHz
f _{CLK_FAB}	Max frequency of fab_clk_i input of the ADC block	_	_	_	40	MHz
f_{INPUT_ADC}	ADC Input Frequency	@Sampling Frequency = 620 ksps	_	_	310	kHz
FS _{ADC}	ADC Sampling Rate	_	_	_	620	ksps
R _{IN_ADC}	ADC Input Equivalent Resistance	_	_	116	_	kΩ
t _{CAL_ADC}	ADC Calibration Time	_	_	_	6500	cycles ²

Symbol	Description	Condition	Min	Тур	Max	Unit
T _{OUTPUT_ADC}	ADC Conversion Time	For the detailed calculations, refer to the ADC User Guide for Nexus Platform (FPGA-TN-02129).	-	_	_	_
DNL _{ADC}	ADC Differential Nonlinearity	_	-1	_	1	LSB
INL _{ADC}	ADC Integral Nonlinearity	_	-2	_	2.21	LSB
SFDR _{ADC}	ADC Spurious Free Dynamic Range	_	65.8	77	_	dBc
THD _{ADC}	ADC Total Harmonic Distortion	_	_	- 76	-66.4	dB
SNR _{ADC}	ADC Signal to Noise Ratio	_	61.6	68	_	dB
SNDR _{ADC}	ADC Signal to Noise Plus Distortion Ratio	_	61.5	67	_	dB
ERR _{GAIN_ADC}	ADC Gain Error	_	-0.5	_	0.5	% FS _{ADC}
ERR _{OFFSET_ADC}	ADC Offset Error	_	-2	_	2	LSB

Notes:

- 1. ADC is available in Automotive –7 speed grade.
- 2. ADC Sample Clock cycles. See ADC User Guide for Nexus Platform (FPGA-TN-02129) for more details.
- 3. The internal voltage reference is only for internal testing purposes. It is not recommended for customer design. You must always use the part with external voltage.
- 4. For error calculation, refer to section 4.5 of the ADC User Guide for Nexus Platform (FPGA-TN-02129) document.

4.22. Comparator Block Characteristics

Table 4.34. Comparator Specifications¹

Symbol	Description	Min	Тур	Max	Unit
f _{IN_COMP}	Comparator Input Frequency	_	1	10	MHz
V_{IN_COMP}	Comparator Input Voltage	0	1	VCC_ADC18	V
V _{OFFSET_COMP}	Comparator Input Offset	-34.3	-	36.44	mV
V _{HYST_COMP}	Comparator Input Hysteresis	10	_	31.62	mV
t _{LATENCY_COMP}	Comparator Latency	_	_	31.24	ns

Note:

4.23. Digital Temperature Readout Characteristics

Digital temperature Readout (DTR) is implemented in one of the channels of ADC1.

Table 4.35. DTR Specifications^{1, 2}

Symbol	Description	Condition	Min	Тур	Max	Unit
DTR _{RANGE}	DTR Detect Temperature Range	_	-40	1	125	°C
DTR _{ACCURACY}	DTR Accuracy	with external voltage reference range of 1.0 V to 1.8 V	-16	±6	16	°C
DTR _{RESOLUTION}	DTR Resolution	with external voltage reference	-0.3	_	0.3	°C

Notes:

- 1. External voltage reference (V_{REF}) should be 0.1% accurate or better. DTR sensitivity to V_{REF} is -4.1 °C per V_{REF} percent (for example, if the V_{REF} is 1 % low, then the DTR reads +4.1 °C high).
- 2. DTR is available in Automotive –7 speed grade.

^{1.} Comparator is available in Automotive –7 speed grade.

4.24. Hardened PCIe Characteristics

4.24.1. PCIe (2.5 Gb/s)

Table 4.36. PCIe (2.5 Gb/s)

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Transmitter ¹						
UI	Unit Interval	_	399.88	400	400.12	ps
BW _{TX}	Tx PLL bandwidth	_	1.5	_	22	MHz
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	_	0.8	_	1.2	Vp-p
V _{TX-DIFF-PP-LOW}	Low power differential p-p Tx voltage swing	_	0.4	_	1.2	Vp-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5dB	_	3	_	4	dB
T _{TX-RISE-FALL}	Transmitter rise and fall time	_	0.125	_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-EYE-MEDIAN-to-MAX-}	Max. time between jitter median and max deviation from the median	_	_	_	0.125	UI
RL _{TX-DIFF}	Tx Differential Return Loss, including pkg and silicon	_	10	_	_	dB
RL _{TX-CM}	Tx Common Mode Return Loss, including pkg and silicon	50 MHz < freq < 2.5 GHz	6	_	_	dB
Z _{TX-DIFF-DC}	DC differential Impedance	_	80	_	120	Ω
V _{TX-CM-AC-P}	Tx AC peak common mode voltage, RMS	_	_	_	20	mV, RMS
I _{TX-SHORT}	Transmitter short-circuit current	_	_	_	90	mA
$V_{TX-DC-CM}$	Transmitter DC common-mode voltage	_	0	_	1.2	V
$V_{TX\text{-}IDLE\text{-}DIFF\text{-}AC\text{-}p}$	Electrical Idle Output peak voltage	_	_	_	20	mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	_	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	_	20	_	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from El Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-Lane output skew		_	_	500 ps + 2 UI	ps
Receiver ²						
UI	Unit Interval	_	399.9	400	400.12	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	_	0.175	_	1.2	Vp-p
T _{RX-EYE} ³	Receiver eye opening time	_	0.4	_	_	UI
T _{RX} -EYE-MEDIAN-to-MAX- JITTER ³	Max time delta between median and deviation from median		_	_	0.3	UI
RL _{RX-DIFF}	Receiver differential Return Loss, package plus silicon	_	10	_	_	dB

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
RL _{RX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	1	ı	dB
Z _{RX-DC}	Receiver DC single ended impedance	_	40	_	60	Ω
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	_	120	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	_	200	-	-	kΩ
V _{RX-CM-AC-P} ³	Rx AC peak common mode voltage	_	_	_	150	mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65		175	mVp-p
L _{RX-SKEW}	Receiver –lane-lane skew	_	_	_	20	ps

Notes:

- 1. Refer to PCI Express Base Specification Revision 3.0 Table 4.18 test condition and requirement for respective parameters.
- 2. Refer to PCI Express Base Specification Revision 3.0 Table 4.24 test condition and requirement for respective parameters.
- 3. Spec compliant requirement

4.24.2. PCIe (5 Gb/s)

Table 4.37. PCIe (5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit Interval	_	199.94	200	200.06	ps
B _{WTX-PKG-PLL1}	Tx PLL bandwidth corresponding to PKG _{TX-PLL1}	_	8	_	16	MHz
B _{WTX-PKG-PLL2}	Tx PLL bandwidth corresponding to PKG _{TX-PLL2}	_	5	_	16	MHz
P _{KGTX-PLL1}	Tx PLL Peaking corresponding to PKG _{TX-PLL1}	_	_	_	3	dB
P _{KGTX-PLL2}	Tx PLL Peaking corresponding to PKG _{TX-PLL2}	_	_	_	1	dB
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	_	0.8	_	1.2	V, p-p
$V_{TX\text{-}DIFF\text{-}PP\text{-}LOW}$	Low power differential p-p Tx voltage swing	_	0.4	-	1.2	V, p-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5dB	_	3	_	4	dB
V _{TX-DE-RATIO-6dB}	Tx de-emphasis level ratio at 6dB	_	5.5	_	6.5	dB
T _{MIN-PULSE}	Instantaneous lone pulse width	_	0.9	_	_	UI
T _{TX-RISE-FALL}	Transmitter rise and fall time	_	0.15	_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-DJ}	Tx deterministic jitter > 1.5 MHz	_	_	_	0.15	UI
T _{TX-RJ}	Tx RMS jitter < 1.5 MHz	_	_	_	3	ps, RMS
T _{RF-MISMATCH}	Tx rise/fall time mismatch	_	_	_	0.1	UI
R _{LTX-DIFF}	Tx Differential Return Loss, including package and silicon	50 MHz < freq < 1.25 GHz 1.25 GHz < freq < 2.5 GHz	10 8	_	_	dB dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	50 MHz < freq < 2.5 GHz	6	_	_	dB

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Z _{TX-DIFF-DC}	DC differential Impedance	_	_	_	120	Ω
V _{TX-CM-AC-PP}	Tx AC peak common mode voltage, peak-peak	_		-	150	mV, p-p
I _{TX-SHORT}	Transmitter short-circuit current	_	_	_	90	mA
V _{TX-DC-CM}	Transmitter DC common-mode voltage	_	0	_	1.2	V
V _{TX-IDLE-DIFF-DC}	Electrical Idle Output DC voltage	_	0	_	5	mV
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Differential Output peak voltage	_	_	_	20	mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	_	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	_	20	_	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from EI Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-Lane output skew	_	_	_	500 + 4 UI	ps
Receive ²						
UI	Unit Interval	_	199.94	200	200.06	ps
$V_{\text{RX-DIFF-PP}}$	Differential Rx peak-peak voltage	_	0.343	-	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	_	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	_	_	_	88	ps
R _{LRX-DIFF}	Receiver differential Return	50 MHz < freq < 1.25 GHz	10	_	_	dB
NLRX-DIFF	Loss, package plus silicon	1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	_	_	dB
Z _{RX-DC}	Receiver DC single ended impedance	_	40	_	60	Ω
Z _{RX} -HIGH-IMP-DC	Receiver DC single ended impedance when powered down	_	200	_	_	kΩ
V _{RX-CM-AC-P} ³	Rx AC peak common mode voltage	_	_	_	150	mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65	_	175³	mv, pp
L _{RX-SKEW}	Receiver –lane-lane skew	_	_	_	8	ns

Notes:

- 1. Refer to PCI Express Base Specification Revision 3.0 Table 4.18 test condition and requirement for respective parameters.
- 2. Refer to PCI Express Base Specification Revision 3.0 Table 4.24 test condition and requirement for respective parameters.
- 3. Spec compliant requirement

4.25. Hardened SGMII Characteristics

Table 4.38. SGMII¹

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
f _{DATA}	SGMII Data Rate	_	_	1.25	_	Gb/s
f _{REFCLK}	SGMII Reference Clock Frequency (Data Rate / 10)	_	_	125	_	MHz
J _{TOL_Rj}	Jitter Tolerance, Random (RMS)	_	_	_	15	mUlrms
J _{TOL_Dj}	Jitter Tolerance, Deterministic	Periodic jitter 1 kHz–22 MHz		_	0.05 ²	UI
J _{TOL_Tj}	Jitter Tolerance, Total	Periodic jitter 1 kHz–22 MHz		_	0.26 ²	UI
Δf/f	Data Rate and Reference Clock Accuracy	_	-300	_	300	ppm

Notes:

- 1. The SGMII interface using LVDS I/O has limitations when operating across the full specified temperature range. Lattice recommends using alternative interfaces, such as SERDES or RGMII, for designs requiring Gigabit Ethernet. Refer to the Knowledge Database article for details. Contact your local Lattice sales representative for more information.
- 2. J_{TOT} can meet the following deterministic jitter mask specification: 0 to 3.5 kHz: 10 UI; 3.5 to 700 kHz: log-log slope 10 UI to 0.05 UI; above 700 kHz: 0.05 UI.

4.26. sysCONFIG Port Timing Specifications

Table 4.39. sysCONFIG Port Timing Specifications

Symbol	Parameter	Device	Min	Тур.	Max	Unit
Master SPI POR/	REFRESH Timing		•		•	
t _{ICFG}	Time during POR, from V_{CC} , V_{CCAUX} , V_{CCIO0} or V_{CCIO1} (whichever is the last) pass POR trip voltage, or REFRESH command executed, to the last rising edge of INITN	_	_	_	5	ms
t _{VMC}	Time from last rising edge of INITN to the valid Master MCLK	_	_	_	5	μs
f _{MCLK_DEF}	Default MCLK frequency (Before MCLK frequency selection in bitstream)	_	_	3.5	_	MHz
Slave SPI/I2C/I30	CPOR					
t _{MSPI_INH}	Time during POR, from V_{CC} , V_{CCAUX} , V_{CCIO0} or V_{CCIO1} (whichever is the last) pass POR trip voltage, to pull PROGRAMN LOW to prevent entering MSPI mode	_	-	_	1	μs
t _{ACT_PROGRAMN_H}	Minimum time driving PROGRAMN HIGH after last activation clock	_	50	_	_	ns
tconfig_cclk	Minimum time to start driving CCLK (SSPI) after PROGRAMN HIGH	_	50	_	_	ns
t _{CONFIG_SCL}	Minimum time to start driving SCL (I2C/I3C) after PROGRAMN HIGH	_	50	_	_	ns
PROGRAMN Con	figuration Timing					
t _{PROGRAMN_L}	PROGRAMN LOW pulse accepted	_	50	_	_	ns
t _{PROGRAMN_H}	PROGRAMN HIGH pulse accepted	_	60	_	_	ns
t _{PROGRAMN_RJ}	PROGRAMN LOW pulse rejected	_	_	_	25	ns
t _{INIT_LOW}	PROGRAMN LOW to INITN LOW	_	_	_	100	ns
t _{INIT_HIGH}	PROGRAMN LOW to INITN HIGH	_	_	_	50	μs
t _{DONE_LOW}	PROGRAMN LOW to DONE LOW	_	_	_	55	μs

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Symbol	Parameter	Device	Min	Тур.	Max	Unit
t _{DONE_HIGH}	PROGRAMN HIGH to DONE HIGH	_		_	2	S
t _{IODISS}	PROGRAMN LOW to I/O Disabled	_	_	_	125	ns
Master SPI						
f _{MCLK} ¹	Max selected MCLK output frequency	_	_	112.5	124	MHz
f _{MCLK_DC}	MCLK output clock duty cycle	_	40	_	60	%
t _{MCLKH}	MCLK output clock pulse width HIGH	_	3.5	_	_	ns
t _{MCLKL}	MCLK output clock pulse width LOW	_	3.5	_	_	ns
t _{SU_MSI}	MSI to MCLK setup time	_	3	_	_	ns
t _{HD_MSI}	MSI to MCLK hold time	_	0.5	_	_	ns
t _{CO_MSO}	MCLK to MSO delay	_	_	_	12	ns
Slave SPI		1	·	I	I	
f _{CCLK_W}	CCLK input clock frequency (For write transaction) ⁴		_	_	120	MHz
f_{CCLK_R}	CCLK input clock frequency (For read transaction) ⁵	_	_	_	6	MHz
t _{CCLKH}	CCLK input clock pulse width HIGH	_	3.5	_	_	ns
t _{CCLKL}	CCLK input clock pulse width LOW	_	3.5	_	_	ns
tvmc_slave	Time from rising edge of INITN to Slave CCLK driven	_	50	_	_	ns
t _{VMC MASTER}	CCLK input clock duty cycle	_	40	_	60	%
t _{SU_SSI}	SSI to CCLK setup time	_	3.2	_	_	ns
t _{HD SSI}	SSI to CCLK hold time	_	1.9	_	_	ns
t _{co sso}	CCLK falling edge to valid SSO output	_	3.07	_	30 ⁷	ns
t _{EN SSO}	CCLK falling edge to SSO output enabled	_	3.07	_	30 ⁷	ns
t _{DIS SSO}	CCLK falling edge to SSO output disabled	_	3.07	_	30 ⁷	ns
t _{HIGH} SCSN	SCSN HIGH time	_	74	_	_	ns
t _{SU SCSN}	SCSN to CCLK setup time	_	3.5	_	_	ns
t _{HD SCSN}	SCSN to CCLK hold time	_	1.6	_	_	ns
12C/I3C			1	1		
f _{SCL_I2C}	SCL input clock frequency for I2C	_	l _	I _	1	MHz
f _{SCL_I3C}	SCL input clock frequency for I3C	_	_	_	12	MHz
t _{SCLH 12C}	SCL input clock pulse width HIGH for I2C	_	400	_	_	ns
t _{SCLL 12C}	SCL input clock pulse width LOW for I2C	_	400	_	_	ns
t _{SU_SDA_I2C}	SDA to SCL setup time for I2C	_	250	_	_	ns
t _{HD SDA I2C}	SDA to SCL hold time for I2C	_	50	_	_	ns
t _{SU_SDA_I3C}	SDA to SCL setup time for I3C	_	30	_	_	ns
t _{HD SDA I3C}	SDA to SCL hold time for I3C	_	30	_	_	ns
t _{CO SDA}	SCL falling edge to valid SDA output	_	_	_	200	ns
t _{EN SDA}	SCL falling edge to SDA output enabled	_	_	_	200	ns
t _{DIS SDA}	SCL falling edge to SDA output disabled	_	_	_	200	ns
Wake-Up Timing	,		1	1		
twakeup_done_high ²	Last configuration clock cycle to DONE going HIGH	_	_	_	60	μs
t _{FIO_EN} 2	User I/O enabled in Early I/O Mode	LFD2NX-40 LFD2NX-28	_	_	31184	cycles
STIO_EIN	Soc. 1/0 chasica in Early 1/0 Mode	LFD2NX-17 LFD2NX-9	_	_	20688	cycles

Symbol	Parameter	Device	Min	Тур.	Max	Unit
t _{IOEN} ²	Config clock to user I/O enabled	_	150	_	_	ns
t _{MCLKZ} ^{2, 3}	Master MCLK to Hi-Z	_	_	_	2.5	μs

Notes:

- 1. f_{MCLK} has a dependency on HFOSC and is 1/3 of f_{CLKHF} .
- 2. Based on 30k uncompressed/unauthenticated/default MCLK timing (3.5 MHz)/x1. Other permutations result in different values.
- 3. Measured using LVCMOS18, default MCLK frequency, slow slew rate.
- 4. Supported input clock frequency for bursting in configuration bitstream to the device.
- 5. Supported input clock frequency for reading out data transactions from the device.
- 6. Refer to the following equations to determine the supported input clock frequency for read transaction. Assumption: The skew between CCLK and SSO on board is zero.

$$\frac{1}{2}$$
 CCLK - $tCO(max)$ - $Tsu > 0$

$$CCLK > 2(tCO(max) + Tsu)$$

CCLK – Input clock period. $f_{CCLK_R} = 1/CCLK$.

 t_{CO} (max) – Equivalent to t_{CO} sso or t_{EN} sso max value.

T_{su} – Setup time requirement for host controller I/O.

For customer that can only use single clock for read/write operation, the Fmax is limited by the Fmax for read operation. For example: t_{CO} (max) = 30 ns and T_{SU} = 2 ns.

$$CCLK > 2(tCO(max) + Tsu)$$

$$CCLK > 2(30 ns + 2 ns)$$

$$fCCLK_R = \frac{1}{64 \, ns} = 15.62 MHz$$

For the customer that wants to do the programming at 135 MHz or faster than Fmax for read operation:

- Have a mechanism in the host controller to switch between read clock and write clock for read/write transaction. For
 example, refer to SPI specification to switch between read and write clock by changing the SPI Baud Rate Register (SPIBR) if
 standard SPI controller is used as the host.
- Implementing a mechanism to adjust/calibrate the sampling clock edge when the valid data becomes available.
- 7. Based on SLOW (default) slew rate control on Config output pins.

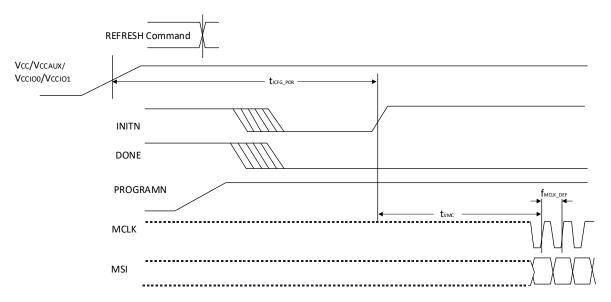


Figure 4.13. Master SPI POR/REFRESH Timing

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

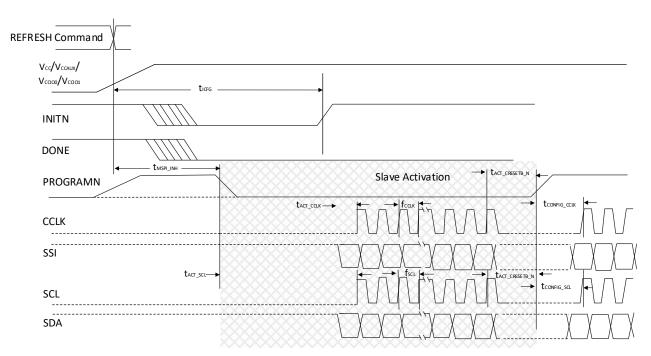


Figure 4.14. Slave SPI/I2C/I3C POR/REFRESH Timing

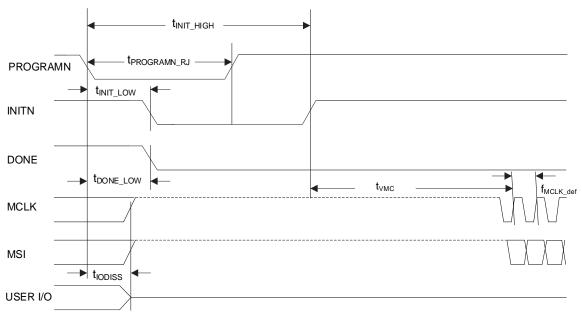


Figure 4.15. Master SPI PROGRAMN Timing

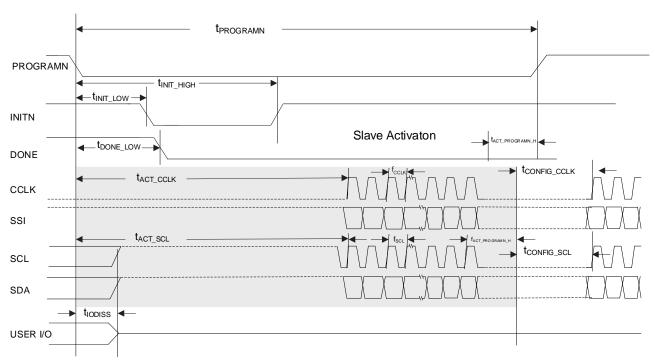


Figure 4.16. Slave SPI/I2C/I3C PROGRAMN Timing

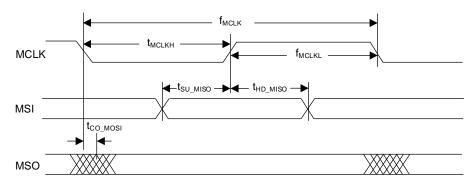


Figure 4.17. Master SPI Configuration Timing

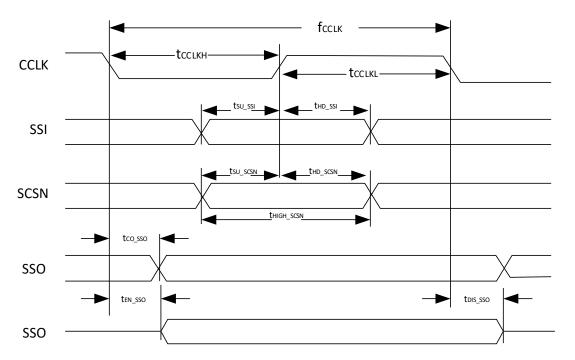


Figure 4.18. Slave SPI Configuration Timing

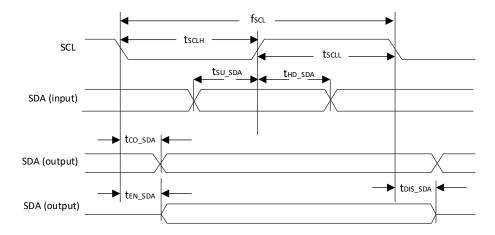


Figure 4.19. I2C/I3C Configuration Timing

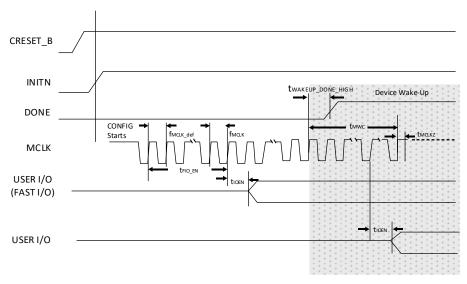


Figure 4.20. Master SPI Wake-Up Timing

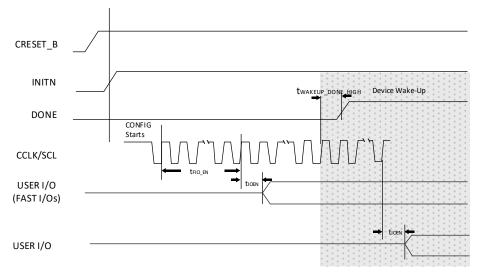


Figure 4.21. Slave SPI/I2C/I3C Wake-Up Timing

4.27. JTAG Port Timing Specifications

Table 4.40. JTAG Port Timing Specifications

Symbol	Parameter	Min	Тур.	Max	Units
f _{MAX}	TCK clock frequency	_	_	25	MHz
t _{BTCPH}	TCK clock pulse width high	20	_	_	ns
t _{BTCPL}	TCK clock pulse width low	20	_	_	ns
t _{BTS}	TCK TAP setup time	5	_	_	ns
t _{BTH}	TCK TAP hold time	5	_	_	ns
t _{BTRF}	TAP controller TDO rise/fall time1	100	_	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	_	14	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	_	14	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	_	14	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	_	ns
t _{BTCRH}	BSCAN test capture register hold time	25	_	_	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output —		_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable — — 25		ns		
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable — — 25		25	ns	

Note:

1. Based on default I/O setting of slow slew rate.

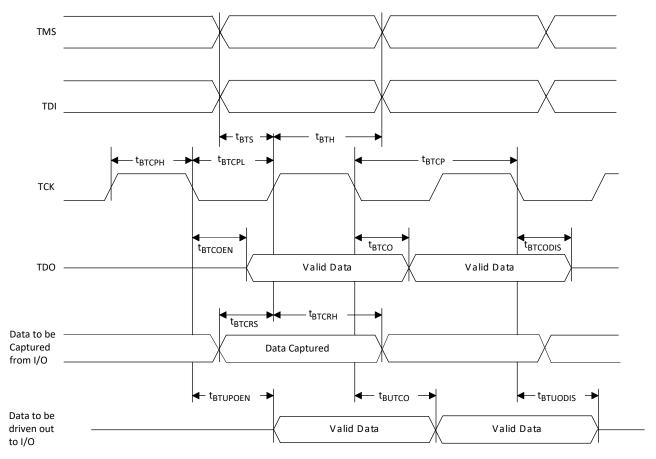
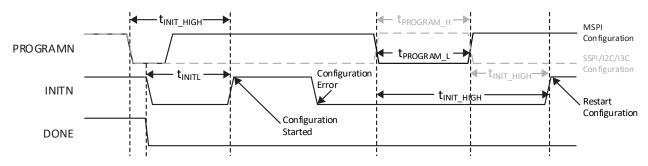
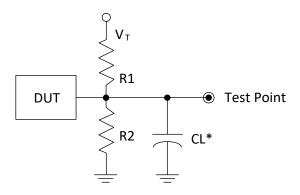



Figure 4.22. JTAG Port Timing Waveforms



Note: tintl = SRAM Memory Initialization Period

Figure 4.23. Configuration Error Notification

4.28. Switching Test Conditions

Figure 4.24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 4.41.

*CL Includes Test Fixture and Probe Capacitance

Figure 4.24. Output Test Load, LVTTL and LVCMOS Standards

Table 4.41. Test Fixture Required Components, Non-Terminated Interfaces¹

Test Condition	R ₁	R ₂	C _L	Timing Ref.	V _T
LVTTL and other LVCMOS settings (L ≥ H, H ≥ L)	∞	∞	0 pF	LVCMOS 3.3 = 1.5 V	_
				LVCMOS 2.5 = V _{CCIO} /2	_
				LVCMOS 1.8 = V _{CCIO} /2	-
				LVCMOS 1.5 = V _{CCIO} /2	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ H)	∞	1 ΜΩ	0 pF	V _{CCIO} /2	-
LVCMOS 2.5 I/O (Z ≥ L)	1 ΜΩ	8	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)	∞	100	0 pF	V _{OH} - 0.10	_
LVCMOS 2.5 I/O (L ≥ Z)	100	∞	0 pF	V _{OL} + 0.10	V _{CCIO}

Note:

1. Output test conditions for all other interfaces are determined by the respective standards.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5. Pinout Information

5.1. Signal Descriptions

Table 5.1. Signal Descriptions¹

Signal Name	Bank	Туре	Description
Power and GND			
V _{SS}	_	GND	Ground for internal FPGA logic and I/O.
V _{SSSD}	_	GND	Ground for the SERDES block.
V _{SSADC}	_	GND	Ground for ADC block.
V _{CC} , V _{CCECLK}	_	Power	Power supply pins for core logic. V _{CC} is connected to a 1.0 V (nom.) supply voltage. Power On Reset (POR) monitors this supply voltage.
V _{CCAUXA}	_	Power	Auxiliary power supply pin for internal analog circuitry. This supply is connected to a 1.8 V (nom.) supply voltage.
V _{CCAUX}	_	Power	Auxiliary power supply pin for I/O WRIO Banks. This supply is connected to a 1.8 V (nom.) supply voltage and is used for generating stable drive current for the I/O. POR monitors this supply voltage.
V _{CCAUXHx}	3–5 or 5–6	Power	Auxiliary power supply pin for I/O HPIO Banks. This supply is connected to a 1.8 V (nom.) supply voltage and is used for generating stable current for the differential input comparators and stable drive current for the I/O.
V _{CCIOX}	0–11	Power	Power supply pins for I/O bank x. For x = 0, 1, 2, 6, and 7, V_{CCIO} can be connected to (nom.) 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V. For x = 3, 4, and 5, V_{CCIO} can be connected to (nom.) 1.0 V, 1.2 V, 1.35 V, 1.5 V, or 1.8 V. There are dedicated and shared configuration pins in banks 0 and 1. POR monitors these banks supply voltages.
V _{CCADC18}	_	Power	1.8 V (nom.) power supply for the ADC block.
V _{CCSD0}	_	Power	1.0 V (nom.) power supply for the SERDES block.
V _{CCPLLSD0}	_	Power	1.8 V (nom.) power supply for the PLL in the SERDES block.
V _{CCAUXSD}	_	Power	1.8 V (nom.) auxiliary power supply for the SERDES block.
Dedicated Pins			a (a) a a a pipe a supply a second a second
Dedicated Configuration I/O	Pin		
JTAG_EN	1	Input	LVCMOS input pin. This input selects the JTAG shared GPIO to be used for JTAG. 0 = GPIO 1 = JTAG
Dedicated ADC I/O Pins ²			·
ADC_REFP0, ADC_REFP1	_	Input	ADC reference voltage for each of the two ADC converters. If not used, tie it to the ground.
ADC_DP0, ADC_DN0, ADC_DP1, ADC_DN1	_	Input	Dedicated ADC input pairs for each of the two ADC converters. If not used, tie it to the ground.

Signal Name	Bank	Туре	Description		
Dedicated SERDES I/O Pins			,		
SD0_RXDP/N	_	Input	SERDES Data Differential Input Pairs.		
SD0_TXDP/N	_	Output	SERDES Data Differential Output Pairs.		
SD0_REFCLKP/N	_	Input	SERDES Reference Clock Differential Input Pairs.		
SDO_REXT	_	Input	SERDES External Reference Resistor Input. The resistor connects between this pin and the SDO_REFRET pin. This is used to adjust the onchip differential termination impedance based on the external resistance value. $R_{\text{EXT}} = 909 \ \Omega, \ R_{\text{DIFF}} = 80 \ \Omega \\ R_{\text{EXT}} = 976 \ \Omega, \ R_{\text{DIFF}} = 85 \ \Omega \\ R_{\text{EXT}} = 1.02 \ k\Omega, \ R_{\text{DIFF}} = 90 \ \Omega \\ R_{\text{EXT}} = 1.15 \ k\Omega, \ R_{\text{DIFF}} = 100 \ \Omega$		
SDO_REFRET	_	Input	SERDES Reference Return Input. These pins should be AC-coupled to the V_{CCPLLSD0} supply.		
Dedicated D-PHY I/O Pins					
D-PHY[0-1]_DP/N[0-3]	_	Input, Output	Hardened D-PHY Data Input/Output Pairs, for each of the 4 High Speed lanes in the 2 Hardened D-PHY Blocks		
D-PHY[0-1]_CKP/N	_	Input, Output	Hardened D-PHY Clock Input/Output Pairs, for each of the 2 Hardened D-PHY Blocks		
Misc Pins					
NC		_	No connect.		
RESERVED		_	This pin is reserved and should not be connected to anything on the board.		
General Purpose I/O Pins	1	1			
P[T/B/L/R] [Number]_[A/B]	T = Top R = Right B = Bottom L = Left	Input, Output, Bi-Dir	Programmable User I/O: [T/B/L/R] indicates the package pin/ball is on the T (Top), B (Bottom), L (Left), or R (Right) edges of the device. [Number] identifies the PIO [A/B] pair. [A/B] shows the package pin/ball is an A or B signal in the pair. PIO A and PIO B are grouped as a pair. Each A/B pair in the bottom HPIO banks supports true differential input and output buffers. When configured as differential input, a differential termination of 100 Ω can be selected. Each A/B pair in the top, left, right, and bottom WRIO banks does not support a true differential input or output buffer. It supports all single-ended inputs and outputs and can be used for an emulated differential output buffer. Some of these user-programmable I/O are used during configuration, depending on the configuration mode. The user needs to make an appropriate connection on the board to isolate the two different functions before/after configuration. Some of these user-programmable I/O are shared with special function pins. These pins, when not used as special-purpose pins, can be programmed as I/O for user logic. During configuration, the user-programmable I/O is tri-stated with an internal weak pull-down resistor enabled. If any pin is not used (or not bonded to a package pin), it is tri-stated and defaults to having weak pull-down enabled after configuration.		

Signal Name	Bank	Туре	Description

Shared Configuration Pins^{1, 2}

- 1. These pins can be used for configuration during configuration mode. When configuration is completed, these pins can be used as GPIO, or shared functions in GPIO. When these pins are used for dual functions, the user needs to isolate the signal paths for the dual functions on the board.
- The pins used are defined by the configuration modes detected. Slave SPI or I2C/I3C modes are detected during slave activation. Pins that are not used in the configuration mode selected are tri-stated during configuration and can connect directly as GPIOs in the user's function.

unectly as GFIOs in the us	directly as GPIOs in the user's function.						
PRxxx/SDA/USER_SDA	1	Input, Output, Bi-Dir	Configuration: I2C/I3C Mode: SDA signal User Mode: PRxxx: GPIO User_SDA: SDA signal for I2C/I3C interface				
PRxxx/SCL/USER_SCL	1	Input, Output, Bi-Dir	Configuration: I2C/I3C Mode: SCL signal User Mode: PRxxx: GPIO User_SDA: SCL signal for I ² C/I3C interface				
PRxxx/TDO/SSO	1	Input, Output, Bi-Dir	Configuration: Slave SPI Mode: Slave Serial Output User Mode: PRxxx: GPIO TDO: When JTAG_EN = 1, used as TDO signal for JTAG				
PRxxx/TDI/SSI	1	Input, Output, Bi-Dir	Configuration: Slave SPI Mode: Slave Serial Input User Mode: PRxxx: GPIO TDI: When JTAG_EN = 1, used as TDI signal for JTAG				
PRxxx/TMS/SCSN	1	Input, Output, Bi-Dir	Configuration: Slave SPI Mode: Slave Chip Select User Mode: PRxxx: GPIO TMS: When JTAG_EN = 1, used as TMS signal for JTAG				
PRxxx/TCK/SCLK	1	Input, Output, Bi-Dir	Configuration: Slave SPI Mode: Slave Clock Input User Mode: PRxxx: GPIO TCK: When JTAG_EN = 1, used as TCK signal for JTAG				
PTxxx/MCSNO	0	Input, Output, Bi-Dir	Configuration: Master SPI Mode: Chip Select Output User Mode: PTxxx: GPIO				
PTxxx/MD3	0	Input, Output, Bi-Dir	Configuration: Master Quad SPI Mode: I/O3 User Mode: PTxxx: GPIO				
PTxxx/MD2	0	Input, Output, Bi-Dir	Configuration: Master Quad SPI Mode: I/O2 User Mode: PTxxx: GPIO				

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	Bank	Туре	Description
PTxxx/MSI/MD1	0	Input, Output, Bi-Dir	Configuration: Master SPI Mode: Master Serial Input Master Quad SPI Mode: I/O1 User Mode: PTxxx: GPIO
PTxxx/MSO/MD0	0	Input, Output, Bi-Dir	Configuration: Master SPI Mode: Master Serial Output Master Quad SPI Mode: I/O0 User Mode: PTxxx: GPIO
PTxxx/MCSN/PCLKT0_1	0	Input, Output, Bi-Dir	Configuration: Master SPI Mode: Master Chip Select Output User Mode: PTxxx: GPIO PCLKTO_0: Top PCLK Input
PTxxx/MCLK/PCLKT0_0	0	Input, Output, Bi-Dir	Configuration: Master SPI Mode: Master Clock Output User Mode: PTxxx: GPIO PCLKTO_1: Top PCLK Input
PTxxx/PROGRAMN	0	Input, Output, Bi-Dir	Configuration: PROGRAMN: Initiate the configuration sequence when asserted LOW. User Mode: PTxxx: GPIO
PTxxx/INITN	0	Input, Output, Bi-Dir	Configuration: INITN: Open Drain I/O pin. This signal is driven to LOW when the configuration sequence is started to indicate the device is in the initialization state. This signal is released after initialization is completed, and the configuration download can start. The user can keep driving this signal LOW to delay configuration download to start. User Mode: PTxxx: GPIO
PTxxx/DONE	0	Input, Output, Bi-Dir	Configuration: DONE: Open Drain I/O pin. This signal is driven to LOW during configuration time. It is released to indicate the device has completed configuration. The user can keep driving this signal LOW to delay the device from waking up from configuration. User Mode: PTxxx: GPIO

Shared User GPIO Pins^{1, 2, 3, 4}

- 1. Shared User GPIO pins are pins that can be used as GPIO, or functional pins that connect directly to specific functional blocks, when the device enters User Mode.
- 2. Declaring and assigning the pin as a GPIO or specific functional pin is done by configuration bitstream, except for JTAG pins.
- 3. JTAG pins are controlled by the JTAG_EN signal. When JTAG_EN = 1, the pins are used for the JTAG interface. When JTAG = 0, the pins are used as GPIOs or specific functional pins defined by the configuration bitstream.
- 4. Refer to package pin file.

Signal Name	Bank	Туре	Description
Shared JTAG Pins			
PRxxx/TDO/ yyyy	1	Input, Output, Bi-Dir	User Mode: PRxxx: GPIO TDO: When JTAG_EN = 1, used as TDO signal for JTAG yyyy: Other possible selectable specific functional
PRxxx/TDI/yyyy	1	Input, Output, Bi-Dir	User Mode: PRxxx: GPIO TDI: When JTAG_EN = 1, used as TDI signal for JTAG yyyy: Other possible selectable specific functional
PRxxx/TMS/ yyyy	1	Input, Output, Bi-Dir	User Mode: PRxxx: GPIO TMS: When JTAG_EN = 1, used as TMS signal for JTAG yyyy: Other possible selectable specific functional
PRxxx/TCK/ yyyy	1	Input, Output, Bi-Dir	User Mode: PRxxx: GPIO TCK: When JTAG_EN = 1, used as TCK signal for JTAG Yyyy: Other possible selectable specific functional

Shared CLOCK Pins ¹

1. Some PCLK pins can also be used as GPLL reference clock input pin. Refer to sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095).

PBxxx/PCLK[T,C][3,4,5]_[0-3]/yyyy	3, 4, 5	Input, Output, Bi-Dir	User Mode: PBxxx: GPIO PCLK: Primary Clock or GPLL Refclk signal [T,C] = True/Complement when using differential signaling [3,4,5] = Bank [0-3] Up to 4 signals in the bank yyyy: Other possible selectable specific functional
PTxxx/PCLKT0_[0-1]/yyyy	0	Input, Output, Bi-Dir	User Mode: PTxxx: GPIO PCLKT: Primary Clock or GPLL Refclk signal (Only Single Ended) [0-1] Up to 2 signals in the bank yyyy: Other possible selectable specific functional
PRxxx/PCLKT[1,2]_[0-2]/yyyy	1, 2	Input, Output, Bi-Dir	User Mode: PRxxx: GPIO PCLKT: Primary Clock or GPLL Refclk signal (Only Single Ended) [0-2] Up to 3 signals in the bank yyyy: Other possible selectable specific functional
PLxxx/PCLKT[6,7]_[0-2]/yyyy	6, 7	Input, Output, Bi-Dir	User Mode: PLxxx: GPIO PCLKT: Primary Clock or GPLL Refclk signal (Only Single Ended) [0-2] Up to 3 signals in the bank yyyy: Other possible selectable specific functional
PBxxx/LRC_GPLL[T,C]_IN/yyyy	3	Input, Output, Bi-Dir	User Mode: PBxxx: GPIO LRC_GPLL: Lower Right GPLL Refclk signal (PLLCK) [T,C] = True/Complement when using differential signaling yyyy: Other possible selectable specific functional

Signal Name	Bank	Туре	Description
PBxxx/LLC_GPLL[T,C]_IN/yyyy	5	Input,	User Mode:
		Output,	PBxxx: GPIO
		Bi-Dir	LLC_GPLL: Lower Left GPLL Refclk signal (PLLCK)
			[T,C] = True/Complement when using differential signaling
			yyyy: Other possible selectable specific functional
PLxxx/ULC_GPLLT_IN/yyyy	7	Input,	User Mode:
		Output,	PLxxx: GPIO
		Bi-Dir	ULC_GPLL: Upper Left GPLL Refclk signal (Only Single Ended) (PLLCK)
			yyyy: Other possible selectable specific functional
PRxxx/yyyy	1	Input,	User Mode:
		Output,	PRxxx: GPIO
		Bi-Dir	yyyy: Other possible selectable specific functional
Shared V _{REF} Pins		T	
PBxxx/V _{REF} [3,4,5]_[1-2]/yyyy	3, 4, 5	Input,	User Mode:
		Output,	PBxxx: GPIO
		Bi-Dir	V _{REF} : Reference Voltage for DDR memory function
			[3,4,5] = Bank
			[1-2] Up to V _{REF} s for each bank
			yyyy: Other possible selectable specific functional
Shared ADC Pins ²			
PBxxx/ADC_C[P,N]nn/yyyy	3, 4, 5	Input,	User Mode:
		Output,	PBxxx: GPIO
		Bi-Dir	ADC_C: ADC Channel Inputs
			[P,N] = Positive or Negative Input
			nn = ADC Channel number (0 – 15)
			yyyy: Other possible selectable specific functional
Shared Comparator Pins ²			
PBxxx/COMP[1-3][P,N]/yyyy	3, 5	Input,	User Mode:
		Output,	PBxxx: GPIO
		Bi-Dir	COMP: Differential Comparator Input
			[P,N] = Positive or Negative Input
			[1-3] = Input to Comparators 1-3
			yyyy: Other possible selectable specific functional

Notes:

- 1. Not all signals are available as external pins in all packages. Refer to the Pinout List file for various package details.
- 2. ADCs and Comparators are available in Commercial/Industrial –8 and –9 speed grades and Automotive –7 speed grade.

5.2. Pin Information Summary

Table 5.2. Pin Information Summary for Logic Optimized Device

Pin		LFD2f	NX-9	LFD2	NX-17		LFD2NX-28		LFD2NX-40		
PIN		csfBGA121	caBGA196	csfBGA121	caBGA196	csfBGA121	caBGA196	caBGA256	csfBGA121	caBGA196	caBGA256
User I/O Pins											
	Bank 0	12	12	12	12	12	12	12	12	12	12
	Bank 1	10	11	10	11	11	17	21	11	17	21
General	Bank 2	_	_	_	_	_	20	28	_	20	28
Purpose	Bank 3	16	16	16	16	32	32	32	32	32	32
Inputs/Output	Bank 4	16	16	16	16	16	16	32	16	16	32
s per Bank	Bank 5	16	16	16	16	10	10	10	10	10	10
	Bank 6	_	ı	ı	_	_	25	28	_	25	28
	Bank 7	_	_	_	_	_	18	22	_	18	22
Total Single-En I/O	ded User	70	71	70	71	81	150	185	81	150	185
	Bank 0	6	6	6	6	6	6	6	6	6	6
	Bank 1	5	5	5	5	2	7	10	2	7	10
	Bank 2	_	_	_	_	0	10	14	0	10	14
Differential	Bank 3	8	8	8	8	16	16	16	16	16	16
Input/Output Pairs	Bank 4	8	8	8	8	8	8	16	8	8	16
1 4113	Bank 5	8	8	8	8	5	5	5	5	5	5
	Bank 6	_	_	_	_	0	12	14	0	12	14
	Bank 7	_	_	_	_	0	9	11	0	9	11
Total Different	ial I/O	35	35	35	35	37	73	92	37	73	92
Power Pins											
V _{CC} , V _{CCECLK}		3	5	3	5	3	5	5	3	5	5
V _{CCAUXA}		1	_	1	_	1	1	1	1	1	1
V _{CCAUX}		1	6	1	6	1	2	2	1	2	2
$V_{CCAUXHx}$		3	_	3	_	3	3	3	3	3	3
V _{CCAUXSD}		0	_	0	_	1	_	1	1	_	1
	Bank 0	1	1	1	1	1	1	1	1	1	1
	Bank 1	1	1	1	1	1	1	1	1	1	1
	Bank 2	_	1	1	_	_	1	1	_	1	1
V	Bank 3	2	2	2	2	2	2	1	2	2	1
V _{CCIO}	Bank 4	1	1	1	1	1	1	1	1	1	1
	Bank 5	1	1	1	1	1	1	1	1	1	1
	Bank 6	_	_	_	_	_	1	1	_	1	1
	Bank 7	_	1	1	_	_	1	1	_	1	1
V _{CCSD0}		_	_	_	_	1	_	1	1	_	1
V _{CCPLLSD0}		_	-	-	_	1	_	1	1	_	1
V _{CCADC18}		1	1	1	1	_	1	1	_	1	1
Total Power Pi	ns	15	18	15	18	18	21	23	18	21	23

		LFD2I	NX-9	LFD21	NX-17		LFD2NX-28		LFD2NX-40		
Pin		csfBGA121	caBGA196	csfBGA121	caBGA196	csfBGA121	caBGA196	caBGA256	csfBGA121	caBGA196	caBGA256
GND Pins									l .		
V _{SS}		13	17	13	17	9	17	27	9	17	27
V _{SSADC}		1	1	1	1	_	1	1	_	1	1
V_{SSSD}		_	-	_	_	5	_	5	5	_	5
Total GND Pins	5	14	18	14	18	14	18	33	14	18	33
Dedicated Pins	S						•			•	
Dedicated ADC Channels (pair		2	2	2	2	0	2	2	0	2	2
Dedicated ADO Reference Volt		2	2	2	2	0	2	2	0	2	2
Dedicated SER	DES Pins	_	_	-	-	8	0	8	8	0	8
Dedicated DPF	IY Pins	20	_	20	_	_	_	_	_	_	_
Dedicated Mis	c Pins										
JTAGEN		1	1	1	1	1	1	1	1	1	1
NC		14	82	14	82	_	_	_	_	_	_
RESERVED		_	_	-	-	-	_	_	_	_	_
Total Dedicate	d Pins	15	83	15	83	1	1	1	1	1	1
Shared Pins											
	Bank 0	10	10	10	10	10	10	10	10	10	10
	Bank 1	6	6	6	6	6	6	6	6	6	6
	Bank 2	_	_	_	_	_	0	0	_	0	0
Shared Configuration	Bank 3	0	0	0	0	0	0	0	0	0	0
Pins	Bank 4	0	0	0	0	0	0	0	0	0	0
	Bank 5	0	0	0	0	_	0	0	_	0	0
	Bank 6	_	_	_	_	_	0	0	_	0	0
	Bank 7	_	_	_	_	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0	0
	Bank 1	4	4	4	4	4	4	4	4	4	4
	Bank 2	_	_	_	_	_	0	0	_	0	0
Shared JTAG	Bank 3	0	0	0	0	0	0	0	0	0	0
Pins	Bank 4	0	0	0	0	0	0	0	0	0	0
	Bank 5	0	0	0	0	0	0	0	0	0	0
	Bank 6	_	_	_	_	_	0	0	_	0	0
	Bank 7	_	_	_	_	_	0	0	_	0	0
	Bank 0	2	2	2	2	2	2	2	2	2	2
	Bank 1	3	3	3	3	3	3	3	3	3	3
	Bank 2	_	_	-	_	_	3	3	_	3	3
Shared PCLK	Bank 3	8	8	8	8	8	8	8	8	8	8
Pins	Bank 4	8	8	8	8	4	4	8	4	4	8
	Bank 5	8	8	8	8	8	8	8	8	8	8
	Bank 6	_	_	_	_	_	3	3	_	3	3
	Bank 7	_	_	_	_	_	3	3	_	3	3

Di		LFD2	NX-9	LFD2I	NX-17		LFD2NX-28		LFD2NX-40		
Pin		csfBGA121	caBGA196	csfBGA121	caBGA196	csfBGA121	caBGA196	caBGA256	csfBGA121	caBGA196	caBGA256
	Bank 0	0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	_	0	0	_	0
	Bank 2	_	_	_	_	_	0	0	_	0	0
Shared GPLL	Bank 3	2	2	2	2	2	2	2	2	2	2
Pins	Bank 4	0	0	0	0	0	_	0	0	_	0
	Bank 5	2	2	2	2	2	2	2	2	2	2
	Bank 6	_	_	_	_	_	0	0	_	0	0
	Bank 7	_	_	_	_	_	2	2	_	2	2
	Bank 0	0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0	0
	Bank 2	_	_	_	_	_	0	0	_	0	0
Shared V _{REF}	Bank 3	2	2	2	2	2	2	2	2	2	2
Pins	Bank 4	2	2	2	2	1	1	2	1	1	2
	Bank 5	2	2	2	2	2	2	2	2	2	2
	Bank 6	_	_	-	1	_	0	0	_	0	0
	Bank 7	_	_	_	_	_	0	0	_	0	0
	Bank 0	0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0	0
	Bank 2	_	_	_	_	_	0	0	_	0	0
Shared ADC Channels	Bank 3	7	7	7	7	12	12	12	12	12	12
(pairs) ¹	Bank 4	0	0	0	0	0	_	0	0	_	0
,	Bank 5	4	4	4	4	4	4	4	4	4	4
	Bank 6	_	_	_	_	_	0	0	_	0	0
	Bank 7	_	_	_	_	_	0	0	_	0	0
	Bank 0	0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0	0
Shared	Bank 2	_	_	_	_	_	0	0	_	0	0
Comparator	Bank 3	0	0	0	0	3	3	3	3	3	3
Channels	Bank 4	0	0	0	0	0	_	0	0	_	0
(pairs) ^{1, 2}	Bank 5	3	3	3	3	3	3	3	3	3	3
	Bank 6	_	_	1	_		0	0	_	0	0
	Bank 7	_	_	_	-	_	0	0	_	0	0

Notes:

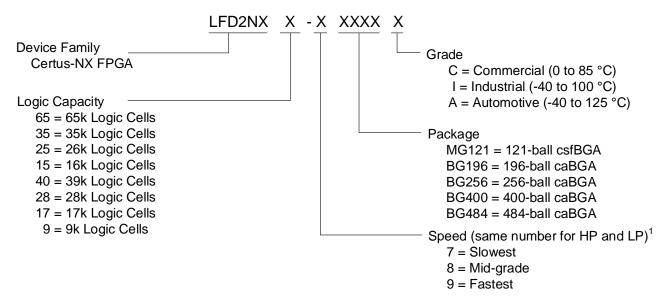
- 1. ADCs and Comparators are available in Commercial/Industrial –8 and –9 speed grades and Automotive –7 speed grade.
- 2. Comparator inputs are selected in the software to be separate (Bank 3) or combined with ADC Channels (Bank 5).

Table 5.3. Pin Information Summary for I/O Optimized Device

- :		LFD2	NX-15	LFD2	NX-25	LFD2N	IX-35	LFD2N	X-65
Pin		caBGA256	caBGA400	caBGA256	caBGA400	caBGA400	caBGA484	caBGA400	caBGA484
User I/O Pins									
	Bank 0	24	40	24	40	40	40	40	40
	Bank 1	26	36	26	36	42	36	42	36
	Bank 2	23	31	23	31	31	37	31	37
	Bank 3	16	32	16	32	32	38	32	38
General	Bank 4	12	24	12	24	24	36	24	36
Purpose Inputs/Outputs	Bank 5	20	24	20	24	24	24	24	24
per Bank	Bank 6	20	24	20	24	24	24	24	24
	Bank 7	12	24	12	24	26	32	26	32
	Bank 8	16	32	16	32	32	38	32	38
	Bank 9	24	32	24	32	32	40	32	40
	Bank 11	_	-	_	_	_	20	_	20
Total Single-Ende	ed User I/O	193	299	193	299	307	365	307	365
	Bank 0	12	20	12	20	20	20	20	20
	Bank 1	13	18	13	18	21	18	21	18
	Bank 2	11	15	11	15	15	18	15	18
	Bank 3	8	16	8	16	16	19	16	19
Differential	Bank 4	6	12	6	12	12	18	12	18
Input/Output	Bank 5	10	12	10	12	12	12	12	12
Pairs	Bank 6	10	12	10	12	12	12	12	12
	Bank 7	6	12	6	12	12	16	12	16
	Bank 8	8	16	8	16	16	19	16	19
	Bank 9	12	16	12	16	16	20	16	20
	Bank 11	_	1	_	_	_	10	_	10
Power Pins				•		•	•		•
Vcc, Vcceclk		4	6	4	6	14	19	14	19
V _{CCAUXA}		2	2	2	2	2	2	2	2
V _{CCAUX}		2	3	2	3	3	3	3	3
V _{CCAUXHx}		2	2	2	2	2	2	2	2
	Bank 0	2	3	2	3	3	2	3	2
	Bank 1	2	3	2	3	3	2	3	2
	Bank 2	2	2	2	2	2	2	2	2
	Bank 3	1	2	1	2	2	2	2	2
	Bank 4	1	2	1	2	2	2	2	2
V _{CCIO}	Bank 5	2	2	2	2	2	2	2	2
	Bank 6	2	2	2	2	2	2	2	2
	Bank 7	1	2	1	2	2	2	2	2
	Bank 8	1	2	1	2	2	2	2	2
	Bank 9	2	2	2	2	2	2	2	2
	Bank 11	_	_	_		_	2	_	2
V _{CCADC18}		1	1	1	1	1	1	1	1
V _{CCAUXSD0}		_	_	_	_	_	1	_	1
V _{CCSD0}		_	_	_		_	1	_	1
V _{CCPLLSD0}		_	_	_		_	1	_	1
V _{CCPL_ULC}		_	ı	_	ı	1	1	1	1
Total Power Pins		27	36	27	36	45	53	45	53

n!		LFD2	NX-15	LFD2	NX-25	LFD2N	IX-35	LFD2N	X-65
Pin		caBGA256	caBGA400	caBGA256	caBGA400	caBGA400	caBGA484	caBGA400	caBGA484
GND Pins									
V_{SS}		22	30	22	30	40	43	40	43
V _{SSADC}		1	1	1	1	1	1	1	1
V_{SSSD}		_	_	_	_	_	7	_	7
Total GND Pins		23	31	23	31	41	51	41	51
Dedicated Pins									
Dedicated ADC ((pairs)	Channels	2	2	2	2	2	2	2	2
Dedicated ADC F Voltage Pins	Reference	2	2	2	2	2	2	2	2
Dedicated Misc	Pins								
JTAGEN		1	1	1	1	1	1	1	1
NC		6	27	6	27	0	0	0	0
RESERVED		0	0	0	0	0	0	0	0
Total Dedicated	Pins	13	34	13	34	7	15	7	15
Shared Pins									
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	8	8	8	8	8	8	8	8
	Bank 2	4	4	4	4	4	4	4	4
	Bank 3	0	0	0	0	0	0	0	0
Shared	Bank 4	0	0	0	0	0	0	0	0
Configuration Pins	Bank 5	0	0	0	0	0	0	0	0
3	Bank 6	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	4	4	4	4	4	4	4	4
	Bank 3	0	0	0	0	0	0	0	0
Shared JTAG	Bank 4	0	0	0	0	0	0	0	0
Pins	Bank 5	0	0	0	0	0	0	0	0
	Bank 6	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0
	Bank 0	2	2	2	2	2	2	2	2
	Bank 1	2	2	2	2	2	2	2	2
	Bank 2	3	3	3	3	3	3	3	3
	Bank 3	2	2	2	2	2	2	2	2
Shared PCLK	Bank 4	2	2	2	2	2	2	2	2
Pins	Bank 5	8	8	8	8	8	8	8	8
	Bank 6	8	8	8	8	8	8	8	8
	Bank 7	2	2	2	2	2	2	2	2
	Bank 8	2	2	2	2	2	2	2	2
	Bank 9	0	3	0	3	3	3	3	3

		LFD2	NX-15	LFD2	NX-25	LFD2N	IX-35	LFD2NX-65	
Pin		caBGA256	caBGA400	caBGA256	caBGA400	caBGA400	caBGA484	caBGA400	caBGA484
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0
	Bank 3	0	0	0	0	0	0	0	0
Shared GPLL	Bank 4	0	0	0	0	0	0	0	0
Pins	Bank 5	2	2	2	2	2	2	2	2
	Bank 6	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	1	1	1	1	1	1	1	1
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0
	Bank 3	0	0	0	0	0	0	0	0
Charad V Dina	Bank 4	0	0	0	0	0	0	0	0
Shared V _{REF} Pins	Bank 5	2	2	2	2	2	2	2	2
	Bank 6	2	2	2	2	2	2	2	2
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0
	Bank 3	0	0	0	0	0	0	0	0
Shared ADC Channels	Bank 4	0	0	0	0	0	0	0	0
(pairs)	Bank 5	5	7	5	7	7	7	7	7
.,	Bank 6	8	9	8	9	9	9	9	9
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0
Shared	Bank 3	0	0	0	0	0	0	0	0
Comparator	Bank 4	0	0	0	0	0	0	0	0
Channels	Bank 5	3	3	3	3	3	3	3	3
(pairs)	Bank 6	3	3	3	3	3	3	3	3
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0


Pin		LFD2	NX-15	LFD2	NX-25	LFD2N	IX-35	LFD2N	(-65
PIII		caBGA256	caBGA400	caBGA256	caBGA400	caBGA400	caBGA484	caBGA400	caBGA484
	Bank 0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0
	Bank 3	0	0	0	0	0	0	0	0
Shared SGMII	Bank 4	0	0	0	0	0	0	0	0
Channels (pairs)	Bank 5	0	0	0	0	0	0	0	0
	Bank 6	2	2	2	2	2	2	2	2
	Bank 7	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0
	Bank 9	0	0	0	0	0	0	0	0

6. Ordering Information

Lattice provides a wide variety of services for its products, including custom marking, factory programming, known good dies, and application-specific testing. Contact the local sales representatives for more details.

6.1. Part Number Description

Note:

1. Input Comparator, ADC, EBR ECC, and DTR are only available in -7 (-A), -8 (-C/I), and -9 (-C/I) speeds and grades.

6.2. Ordering Part Numbers

6.2.1. Commercial

Part Number	Speed	Package	Pins	Temp.	Logic Cells (k)
LFD2NX-9-7MG121C	-7	Lead free csfBGA	121	Commercial	9
LFD2NX-9-8MG121C	-8	Lead free csfBGA	121	Commercial	9
LFD2NX-9-9MG121C	-9	Lead free csfBGA	121	Commercial	9
LFD2NX-9-7BG196C	-7	Lead free caBGA	196	Commercial	9
LFD2NX-9-8BG196C	-8	Lead free caBGA	196	Commercial	9
LFD2NX-9-9BG196C	-9	Lead free caBGA	196	Commercial	9
LFD2NX-17-7MG121C	-7	Lead free csfBGA	121	Commercial	17
LFD2NX-17-8MG121C	-8	Lead free csfBGA	121	Commercial	17
LFD2NX-17-9MG121C	-9	Lead free csfBGA	121	Commercial	17
LFD2NX-17-7BG196C	-7	Lead free caBGA	196	Commercial	17
LFD2NX-17-8BG196C	-8	Lead free caBGA	196	Commercial	17
LFD2NX-17-9BG196C	-9	Lead free caBGA	196	Commercial	17
LFD2NX-28-7MG121C	-7	Lead free csfBGA	121	Commercial	28
LFD2NX-28-8MG121C	-8	Lead free csfBGA	121	Commercial	28
LFD2NX-28-9MG121C	-9	Lead free csfBGA	121	Commercial	28
LFD2NX-28-7BG196C	-7	Lead free caBGA	196	Commercial	28
LFD2NX-28-8BG196C	-8	Lead free caBGA	196	Commercial	28
LFD2NX-28-9BG196C	-9	Lead free caBGA	196	Commercial	28
LFD2NX-28-7BG256C	-7	Lead free caBGA	256	Commercial	28
LFD2NX-28-8BG256C	-8	Lead free caBGA	256	Commercial	28
LFD2NX-28-9BG256C	-9	Lead free caBGA	256	Commercial	28
LFD2NX-40-7MG121C	-7	Lead free csfBGA	121	Commercial	39
LFD2NX-40-8MG121C	-8	Lead free csfBGA	121	Commercial	39
LFD2NX-40-9MG121C	-9	Lead free csfBGA	121	Commercial	39
LFD2NX-40-7BG196C	-7	Lead free caBGA	196	Commercial	39
LFD2NX-40-8BG196C	-8	Lead free caBGA	196	Commercial	39
LFD2NX-40-9BG196C	- 9	Lead free caBGA	196	Commercial	39
LFD2NX-40-7BG256C	-7	Lead free caBGA	256	Commercial	39
LFD2NX-40-8BG256C	-8	Lead free caBGA	256	Commercial	39
LFD2NX-40-9BG256C	-9	Lead free caBGA	256	Commercial	39
LFD2NX-15-7BG256C	-7	Lead free caBGA	256	Commercial	16
LFD2NX-15-8BG256C	-8	Lead free caBGA	256	Commercial	16
LFD2NX-15-9BG256C	- 9	Lead free caBGA	256	Commercial	16
LFD2NX-15-7BG400C	-7	Lead free caBGA	400	Commercial	16
LFD2NX-15-8BG400C	-8	Lead free caBGA	400	Commercial	16
LFD2NX-15-9BG400C	- 9	Lead free caBGA	400	Commercial	16
LFD2NX-25-7BG256C	-7	Lead free caBGA	256	Commercial	26
LFD2NX-25-8BG256C	-8	Lead free caBGA	256	Commercial	26
LFD2NX-25-9BG256C	-9	Lead free caBGA	256	Commercial	26
LFD2NX-25-7BG400C	-7	Lead free caBGA	400	Commercial	26
LFD2NX-25-8BG400C	-8	Lead free caBGA	400	Commercial	26
LFD2NX-25-9BG400C	-9	Lead free caBGA	400	Commercial	26
LFD2NX-35-7BG400C	-7	Lead free caBGA	400	Commercial	35
LFD2NX-35-8BG400C	-8	Lead free caBGA	400	Commercial	35
LFD2NX-35-9BG400C	-9	Lead free caBGA	400	Commercial	35

Part Number	Speed	Package	Pins	Temp.	Logic Cells (k)
LFD2NX-35-7BG484C	- 7	Lead free caBGA	484	Commercial	35
LFD2NX-35-8BG484C	-8	Lead free caBGA	484	Commercial	35
LFD2NX-35-9BG484C	- 9	Lead free caBGA	484	Commercial	35
LFD2NX-65-7BG400C	- 7	Lead free caBGA	400	Commercial	65
LFD2NX-65-8BG400C	-8	Lead free caBGA	400	Commercial	65
LFD2NX-65-9BG400C	- 9	Lead free caBGA	400	Commercial	65
LFD2NX-65-7BG484C	- 7	Lead free caBGA	484	Commercial	65
LFD2NX-65-8BG484C	-8	Lead free caBGA	484	Commercial	65
LFD2NX-65-9BG484C	- 9	Lead free caBGA	484	Commercial	65

6.2.2. Industrial

Part Number	Speed	Package	Pins	Temp.	Logic Cells (k)
LFD2NX-9-7MG121I	-7	Lead free csfBGA	121	Industrial	9
LFD2NX-9-8MG121I	-8	Lead free csfBGA	121	Industrial	9
LFD2NX-9-9MG121I	-9	Lead free csfBGA	121	Industrial	9
LFD2NX-9-7BG196I	-7	Lead free caBGA	196	Industrial	9
LFD2NX-9-8BG196I	-8	Lead free caBGA	196	Industrial	9
LFD2NX-9-9BG196I	-9	Lead free caBGA	196	Industrial	9
LFD2NX-17-7MG121I	-7	Lead free csfBGA	121	Industrial	17
LFD2NX-17-8MG121I	-8	Lead free csfBGA	121	Industrial	17
LFD2NX-17-9MG121I	-9	Lead free csfBGA	121	Industrial	17
LFD2NX-17-7BG196I	-7	Lead free caBGA	196	Industrial	17
LFD2NX-17-8BG196I	-8	Lead free caBGA	196	Industrial	17
LFD2NX-17-9BG196I	-9	Lead free caBGA	196	Industrial	17
LFD2NX-28-7MG121I	-7	Lead free csfBGA	121	Industrial	28
LFD2NX-28-8MG121I	-8	Lead free csfBGA	121	Industrial	28
LFD2NX-28-9MG121I	-9	Lead free csfBGA	121	Industrial	28
LFD2NX-28-7BG196I	-7	Lead free caBGA	196	Industrial	28
LFD2NX-28-8BG196I	-8	Lead free caBGA	196	Industrial	28
LFD2NX-28-9BG196I	- 9	Lead free caBGA	196	Industrial	28
LFD2NX-28-7BG256I	-7	Lead free caBGA	256	Industrial	28
LFD2NX-28-8BG256I	-8	Lead free caBGA	256	Industrial	28
LFD2NX-28-9BG256I	-9	Lead free caBGA	256	Industrial	28
LFD2NX-40-7MG121I	-7	Lead free csfBGA	121	Industrial	39
LFD2NX-40-8MG121I	-8	Lead free csfBGA	121	Industrial	39
LFD2NX-40-9MG121I	-9	Lead free csfBGA	121	Industrial	39
LFD2NX-40-7BG196I	-7	Lead free caBGA	196	Industrial	39
LFD2NX-40-8BG196I	-8	Lead free caBGA	196	Industrial	39
LFD2NX-40-9BG196I	-9	Lead free caBGA	196	Industrial	39
LFD2NX-40-7BG256I	-7	Lead free caBGA	256	Industrial	39
LFD2NX-40-8BG256I	-8	Lead free caBGA	256	Industrial	39
LFD2NX-40-9BG256I	-9	Lead free caBGA	256	Industrial	39
LFD2NX-15-7BG256I	-7	Lead free caBGA	256	Industrial	16
LFD2NX-15-8BG256I	-8	Lead free caBGA	256	Industrial	16
LFD2NX-15-9BG256I	-9	Lead free caBGA	256	Industrial	16
LFD2NX-15-7BG400I	-7	Lead free caBGA	400	Industrial	16
LFD2NX-15-8BG400I	-8	Lead free caBGA	400	Industrial	16

Part Number	Speed	Package	Pins	Temp.	Logic Cells (k)
LFD2NX-15-9BG400i	-9	Lead free caBGA	400	Industrial	16
LFD2NX-25-7BG256I	-7	Lead free caBGA	256	Industrial	26
LFD2NX-25-8BG256I	-8	Lead free caBGA	256	Industrial	26
LFD2NX-25-9BG256I	-9	Lead free caBGA	256	Industrial	26
LFD2NX-25-7BG400I	- 7	Lead free caBGA	400	Industrial	26
LFD2NX-25-8BG400I	-8	Lead free caBGA	400	Industrial	26
LFD2NX-25-9BG400I	- 9	Lead free caBGA	400	Industrial	26
LFD2NX-35-7BG400I	-7	Lead free caBGA	400	Industrial	35
LFD2NX-35-8BG400I	-8	Lead free caBGA	400	Industrial	35
LFD2NX-35-9BG400I	-9	Lead free caBGA	400	Industrial	35
LFD2NX-35-7BG484I	- 7	Lead free caBGA	484	Industrial	35
LFD2NX-35-8BG484I	-8	Lead free caBGA	484	Industrial	35
LFD2NX-35-9BG484I	-9	Lead free caBGA	484	Industrial	35
LFD2NX-65-7BG400I	- 7	Lead free caBGA	400	Industrial	65
LFD2NX-65-8BG400I	-8	Lead free caBGA	400	Industrial	65
LFD2NX-65-9BG400I	-9	Lead free caBGA	400	Industrial	65
LFD2NX-65-7BG484I	-7	Lead free caBGA	484	Industrial	65
LFD2NX-65-8BG484I	-8	Lead free caBGA	484	Industrial	65
LFD2NX-65-9BG484I	- 9	Lead free caBGA	484	Industrial	65

6.2.3. Automotive

Part Number	Speed	Package	Pins	Temp.	Logic Cells (k)
LFD2NX-9-7MG121A	-7	Lead free csfBGA	121	Automotive	9
LFD2NX-9-7BG196A	-7	Lead free caBGA	196	Automotive	9
LFD2NX-17-7MG121A	-7	Lead free csfBGA	121	Automotive	17
LFD2NX-17-7BG196A	-7	Lead free caBGA	196	Automotive	17
LFD2NX-28-7MG121A	-7	Lead free csfBGA	121	Automotive	28
LFD2NX-28-7BG196A	-7	Lead free caBGA	196	Automotive	28
LFD2NX-28-7BG256A	-7	Lead free caBGA	256	Automotive	28
LFD2NX-40-7MG121A	-7	Lead free csfBGA	121	Automotive	39
LFD2NX-40-7BG196A	-7	Lead free caBGA	196	Automotive	39
LFD2NX-40-7BG256A	-7	Lead free caBGA	256	Automotive	39

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

References

For more information, refer to the following documents:

- sysCLOCK PLL Design and Usage Guide for Nexus Platform (FPGA-TN-02095)
- sysDSP Usage Guide for Nexus Platform (FPGA-TN-02096)
- sysCONFIG User Guide for Nexus Platform (FPGA-TN-02099)
- sysl/O Usage Guide for Nexus Platform (FPGA-TN-02067)
- Soft Error Detection (SED)/Correction (SEC) User Guide for Nexus Platform (FPGA-TN-02076)
- Memory Usage Guide for Nexus Platform (FPGA-TN-02094)
- ADC Usage Guides for Nexus Platform (FPGA-TN-02129)
- Certus-NX High-Speed I/O Interface (FPGA-TN-02216)
- Power Management and Calculation for Certus-NX Devices (FPGA-TN-02214)
- Certus-NX 40K Pinout File (FPGA-SC-02004)
- Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide (FPGA-UG-02039)
- sub-LVDS Signaling Using Lattice Devices (FPGA-TN-02028)
- Multi-Boot Usage Guide for Nexus Platform (FPGA-TN-02145)
- TransFR Usage Guide for Nexus Platform (FPGA-TN-02173)
- I2C Hardened IP Usage Guide for Nexus Platform (FPGA-TN-02142)

For package information, refer to the following documents:

- PCB Layout Recommendations for BGA Packages (FPGA-TN-02024)
- Solder Reflow Guide for Surface Mount Devices (FPGA-TN-02041)
- Thermal Management (FPGA-TN-02044)
- Package Diagrams (FPGA-DS-02053)
- High Speed PCB Design Considerations (FPGA-TN-02148)
- Advanced Configuration Security Usage Guide for Nexus Platform (FPGA-TN-02176)
- Hardware Checklist (FPGA-TN-02151)

For further information on interface standards, refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL) www.jedec.org
- PCI www.pcisig.com

For more info on this FPGA device, refer to the following:

- Certus-NX FPGA web page
- Lattice Radiant Software FPGA web page
- Lattice Insights for Lattice Semiconductor training courses and learning plans

Revision History

Revision 2.4, July 2025

Section	Change Summary
All	Added support to LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65 devices across the document.
General Description	 Updated section to change 39k to 65k LCs, 56 to 128 multipliers, 2.9 to 3.3 Mb embedded memory, and added logic and I/O optimized devices paragraph. Updated the following in the Features section: Updated logic cells to 9k to 65k logic cells. Updated sysDSP blocks to 12 to 128. Updated embedded memory to 1 to 3.3 Mb. Updated sysCLOCK bullet item to Up to three PLLs. Updated sysMEM Embedded Block RAM to 3.3 Mb and distributed RAM to 57k to 432k in Flexible memory resources bullet item. Added 28k, 35k, and 65k LC device in SERDES – PCle Gen2 x 1 channel bullet item. Added footnote 5 and reference to footnote 5 in Less than 15 ms full device configuration for LFD2NX-40 bullet item. Updated Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide to categorize devices to Logic Optimized and I/O Optimized section including adding LFD2NX-15, LFD2NX-25, LFD2NX-35 and LFD2NX-65 devices, updated Embedded Memory Bits and Distributed RAM row values, and added caBGA400 and caBGA484 packages for I/O Optimized devices.
	Added Table 1.3. Specification Status for Certus-NX Devices .
Architecture DC and Switzking Characteristics	 Updated Overview section content including adding Figure 2.3. Simplified Block Diagram, LFD2NX-15 and LFD2NX-25 Devices (Top Level) and Figure 2.4. Simplified Block Diagram, LFD2NX-35 and LFD2NX-65 Devices (Top Level). Updated Clock Distribution Network section content including updating figure caption to Figure 2.9. Clocking for Certus-NX Logic Optimized Device and adding Figure 2.10. Clocking for Certus-NX I/O Optimized Device. Updated Edge Clock section to add logic optimized and I/O optimized devices information. Updated Clock Dividers section to add <i>up to</i> text for twelve ECLKDIV dividers. Updated DDRDLL section to change figure caption to Figure 2.15. DDRDLL Architecture for Logic Optimized Device and added Figure 2.16. DDRDLL Architecture for I/O Optimized Device. Updated SGMII TX/RX section to add logic optimized and I/O optimized devices information. Updated sysI/O Buffer section content including adding 15k, 25k, 35k, and 65k devices, WRIO and HPIO bottom banks information, updating figure caption to Figure 2.31. sysI/O Banking for Logic Optimized Device, added Figure 2.32. sysI/O Banking for I/O Optimized Device, and updated Table 2.12. Single-Ended I/O Standards Supported on Various Sides and Table 2.13. Differential I/O Standards Supported on Various Sides to add WRIO and HPIO information. Added 35 and 65 devices in Peripheral Component Interconnect Express (PCIe) section.
DC and Switching Characteristics for Commercial and Industrial	 Updated Table 3.1. Absolute Maximum Ratings to change banks to WRIO and HPIO in the Parameter column. Updated Table 3.2. Recommended Operating Conditions to change banks to WRIO and HPIO in the Condition column. Updated table note to change left and right to HPIO banks in Table 3.5. On-Chip Termination Options for Input Modes. Updated Table 3.13. sysI/O Recommended Operating Conditions to change banks to WRIO and HPIO in the Support Banks column and in the table note.

Section	Change Summary		
	Updated Table 3.14. sysI/O DC Electrical Characteristics – Wide Range I/O to change banks to WRIO Banks in the table note.		
	 Updated Table 3.16. I/O Resistance Characteristics to change banks in the Test Conditions column. 		
	 Updated sysI/O Differential DC Electrical Characteristics section content, including correcting device name to Certus-NX, to change banks to WRIO and HPIO including in the table notes. 		
	 Updated Table 3.29. Maximum I/O Buffer Speed to change banks to WRIO and HPIO in the Banks column. 		
	 Updated Table 3.33. External Switching Characteristics (VCC = 1.0 V) to change banks to WRIO and HPIO in the Generic DDR Input/Output section. 		
Pinout Information	 Updated the following in Table 5.1. Signal Descriptions: Updated V_{CCAUX} row to change banks to WRIO Banks in the Description column. Updated V_{CCAUXHX}, V_{CCIOX}, and P[T/B/L/R] [Number]_[A/B] to update Bank column values and change banks to WRIO Banks in the Description column. Changes table caption to Table 5.2. Pin Information Summary for Logic Optimized Device. Added Table 5.3. Pin Information Summary for I/O Optimized Device. 		
Ordering Information	 Updated figure in Part Number Description to add 15, 25, 35, 65 devices and caBGA400 and caBGA484 packages. 		
	 Updated Ordering Part Numbers section to add 15, 25, 35, 65 OPNs in the Commercial and Industrial tables. 		

Revision 2.3, May 2025

Section	Change Summary	
All	Added the following note where applicable: The SGMII interface using LVDS I/O has limitations when operating across the full specified temperature range. Lattice recommends using alternative interfaces, such as SERDES or RGMII, for designs requiring Gigabit Ethernet. Refer to the Knowledge Database article for details. Contact your local Lattice sales representative for more information	
Acronyms in this Document	Added RGMII, SERDES, and SGMII to the list.	
General Description	 Updated Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide to add this text: Each ADC has a dedicated differential pair of input pins and a V_{REF} pin. Corrected to V_{REF} format in the Table 1.2. Certus-NX Automotive Family Selection Guide footnote. Updated PROGRAMN text to The PROGRAMN signal must be held low for a minimum of 50 ns following the last activation clock edge in Device Configuration. 	
DC and Switching Characteristics		
for Commercial and Industrial	 Updated the following in Table 3.37. ADC Specifications: Added reference to table note 3 in V_{REFEXT_ADC}. Corrected Min and Max values for V_{SR_ADC}. Corrected Typ value and removed Min and Max values for V_{CM_ADC}. Removed Not tested; guaranteed by design table note. Updated table note reference in Unit for t_{CAL_ADC}. Fixed subscript symbol from t_{OUTput} to t_{OUTPUT}. Removed N_{TRACK_ADC} and C_{IN_ADC} rows. Updated table note to add Commercial/Industrial -8/-9 speed grades and corrected V_{IN_COMP} to remove subscript of Max value in Table 3.38. Comparator Specifications. Removed the asterisk in the DTR_{ACCURACY} condition in Table 3.39. DTR Specifications. 	
DC and Switching Characteristics for Automotive	 Updated the following in Table 4.33. ADC Specifications: Added reference to table note 3 in V_{REFEXT_ADC}. Corrected table note reference from 5 to 4 in ENOB_{ADC}. Removed V_{REFINT_ADC} row. 	

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary
	 Removed Bipolar Mode, Internal V_{REF} row and Uni-polar Mode, Internal V_{REF}; corrected Min and Max values for Bipolar Mode, External V_{REF} in V_{SR_ADC}. Removed Internal V_{REF} row and corrected Typ value for External V_{REF} in V_{CM_ADC}. Updated f_{CLK_ADC} to remove Typ value. Added f_{CLK_FAB} row. Updated condition to 620 ksps and Max value of 310 in f_{INPUT_ADC}. Updated Max and Unit values and remove Typ value in FS_{ADC}. Removed Not tested; guaranteed by design table note and updated table note reference in Unit fort_{CAL_ADC}, and L_{OUTPUT_ADC}. Updated symbol from L_{OUTPUT_ADC} to T_{OUTPUT_ADC} and updated condition values, removed Min and Unit values. Removed N_{TRACK_ADC} and C_{IN_ADC} rows. Updated table note to add Automotive -7 speed grade and corrected V_{IN_COMP} to
Pinout Information	 remove subscript of Max value in Table 4.34. Comparator Specifications. Updated the following in Table 5.1. Signal Descriptions:
	 Moved the POR monitors this supply voltage text from V_{CCAUXA} to V_{CCAUX} signal in the Description column. Added reference to table note 2 in Shared ADC Pins and Shared Comparator Pins sections and updated table note 2 to ADCs and Comparators.
	• Updated table note 1 to ADCs and Comparators in Table 5.2. Pin Information Summary.

Revision 2.2, January 2025

Section	Change Summary
All	Changed I ² C to I2C across the document.
General Description	 Updated Dual ADC to ADC block bullet point, including the content, in the Features section. Updated Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide to update ADC blocks to ADC block with 2 SAR ADCs and value from 2 to 1 Updated Table 1.2. Certus-NX Automotive Family Selection Guide to update ADC blocks to ADC block with 2 SAR ADCs and value from 2 to 1 and to update table note 2 to add – 8 speed grade.
Architecture	 Updated Analog Interface section content. Updated range to 1.7578 MHz to 225 MHz in the On-Chip Oscillator section.
DC and Switching Characteristics for Commercial and Industrial	 Updated the following in Table 3.37. ADC Specifications: Removed V_{REFINT_ADC} and ENOB_{ADC} Rows. Updated f_{CLK_ADC} description, min, and typ values. Added f_{CLK_FAB} row. Updated f_{INPUT_ADC} max value to 310. Updated FS_{ADC} typ and max values. Changed symbol to t_{OUTOUT_ADC} and updated row content. Updated f_{INPUT_ADC} condition to @Sampling Frequency = 620 ksps.
DC and Switching Characteristics for Automotive	Updated min and typ values, added footnote and reference to footnote 5 of ENOB _{ADC} in Table 4.33. ADC Specifications.

Revision 2.1, August 2024

Section	Change Summary
General Description	Updated footnote 3 in Features section to add -7 speed grade support.
DC and Switching Characteristics for Commercial and Industrial	 Updated section description to Over recommended commercial and industrial in External Switching Characteristics. Updated heading names of speed grades in Table 3.33. External Switching Characteristics (VCC = 1.0 V) to add C/I. Updated Min and Max values of fCLKHF in Table 3.35. Internal Oscillators (VCC = 1.0 V).
DC and Switching Characteristics for Automotive	Updated section description to Over recommended automotive in External Switching Characteristics.
Ordering Information	 Updated diagram in Part Number Description to add temperature ranges in the grades and added Mid-grade to -8 speed. Adjusted row entry of LFD2NX-28-7MG121C in Commercial.

Revision 2.0, July 2024

Change Summary		
Changed SerDes to SERDES across the document.		
 Updated Features section to change 17k to 39k logic cells to 9k to 39k logic cells and added footnote and reference to footnote 3 in Two Channels of CDR bullet point. Updated Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide to add LFD2NX-9 and LFD2NX-28 devices, including adding caBGA196 for -17 device. Updated Table 1.2. Certus-NX Automotive Family Selection Guide to add LFD2NX-9 and LFD2NX-28 devices, including adding caBGA196 package row. 		
 Updated Overview section to change to this statement: In addition, Certus-NX devices provide various system level hard IP functional and interface blocks such as PCIe (LFD2NX-28 and LFD2NX-40 only), I2C, SGMII/CDR, and ADC blocks. Added LFD2NX-9 and LFD2NX-28 devices to the ff figure captions: Figure 2.1. Simplified Block Diagram, LFD2NX-28 and LFD2NX-40 Devices (Top Level) and Figure 2.2. Simplified Block Diagram, LFD2NX-9 and LFD2NX-17 Devices (Top Level). Updated table notes for Table 2.12. Single-Ended I/O Standards Supported on Various Sides and Table 2.13. Differential I/O Standards Supported on Various Sides to add LFD2NX-9. 		
Updated Figure 2.27. sysl/O Banking to add LFD2NX-9 in the footnote.		
Added -28 device in Peripheral Component Interconnect Express (PCIe) section.		
 Updated Table 3.34. sysCLOCK PLL Timing (VCC = 1.0 V) to collapse tIPJIT in one row and keep max value at 500 ps p-p. Updated the following in Table 3.43. sysCONFIG Port Timing Specifications: Removed LIFCL-40 and LIFCL-17 and make t_{INIT_HIGH} in one row, removed 30 value in Typ column, and changed Max value to 40. Added LIFCL-9 and LIFCL-28 in t_{FIO_EN}. Updated t_{PROGRAMN} symbol to t_{PROGRAMN_L}. Added row for t_{PROGRAMN_H}. Updated f_{CCLK_T} row. Updated Min and Typ column values for t_{CO_SSO}, t_{EN_SSO}, and t_{DIS_SSO} and added table note 7 reference for Max column values. Added table notes 4 to 7. Changed LIFCL to LFD2NX devices in t_{FIO_EN} row. Updated some symbol names (to be consistent with the naming convention in the Slave SPI spec table) in Figure 3.19. Slave SPI Configuration Timing. 		

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary		
DC and Switching Characteristics for Automotive	 Updated the following in Table 4.39. sysCONFIG Port Timing Specifications: Removed LIFCL-40 and LIFCL-17 and make t_{INIT_HIGH} in one row, removed 30 value in Typ column, and changed Max value to 50. Added LIFCL-9 and LIFCL-28 in t_{FIO_EN}. Updated t_{PROGRAMN} symbol to t_{PROGRAMN_L}. Added row for t_{PROGRAMN_H}. Updated f_{CCLK_T} f_{CCLK_W} and added For write transaction in the Parameter field. Added f_{CCLK_T} row. Updated Min and Typ column values for t_{CO_SSO}, t_{EN_SSO}, and t_{DIS_SSO} and added table note 7 reference for Max column values. Added table notes 4 to 7. Changed LIFCL to LFD2NX devices in t_{FIO_EN} row. Updated some symbol names (to be consistent with the naming convention in the Slave SPI spec table) in Figure 4.18. Slave SPI Configuration Timing. 		
Pinout Information	 Added Figure 4.23. Configuration Error Notification. Added Dedicated PHY I/O Pins section and removed Shared SGMII Pins section in Signal Descriptions. Updated the following in Table 5.2. Pin Information Summary: Added columns for LFD2NX-9 and LFD2NX-28 devices. Added column for LFD2NX-17 caBGA196 package. Updated GPIO Bank 1 and Total Single Ended User I/O values for LFDNX-17. Updated Differential I/O Pairs and Total Differential I/O values for LFDNX-17 and LFD2NX-40. Added SERDES and DPHY Pins rows. Updated values from 0 to — for csfBGA121 (LFD2NX-40) in Shared Config Pins (Bank 2, 5, 6), Shared JTAG Pins (Bank 2, 6, 7), Shared GPLL Pins (Bank 2, 6, 7); Updated values from — to 0 for csfBGA121 (LFD2NX-40) in Shared GPLL Pins (Bank 1, 4), Shared ADC (Bank 4), and Shared Comparator (Bank 4). Updated values from 0 to — for csfBGA121 (LFD2NX-17) in Reserved, Shared VREF Pins (Bank 2) and Shared Comparator (Bank 6, 7). Removed Shared SGMII Channels section. 		
Ordering Information	 Merged diagrams of LFD2NX-40 and LFD2NX-17 and added LFD2NX-9 and LFD2NX-28 devices in Part Number Description. Added LFD2NX-9 and LFD2NX-28 device packages in the Ordering Part Numbers tables, including adding 7/8/9BGA196 for -17 devices in Commercial and Industrial tables and updating Automotive table to add rows for 7BGA196A OPN. 		

Revision 1.9, January 2024

Section	Change Summary	
General Description	Added the following in the Features section: • Available in Commercial, Industrial, and Automotive temperature grades.	
DC and Switching Characteristics for Commercial and Industrial	 Replaced Typ. @ VCC = 1.0 V values of Distributed Memory Functions from 500 to 340 in Table 3.31. Register-to-Register Performance1, 3, 4. Removed the statement, and follow the SMIA 1.0, Part 2 CCP2 Specification" in section 3.12.3. Updated the following values in Table 3.37. ADC Specifications. ADC Clock Frequency: Max → 50 MHz ADC Input Frequency: Condition → @Sampling frequency = 1 Mbps. ADC Input Equivalent Resistance: Condition → (removed value). Removed ADC Clock Duty Cycle from the table. Add table note 4 to Table 3.37. ADC Specifications. 	

165

Section	Change Summary
	 Updated the following descriptions in Table 3.33. External Switching Characteristics (VCC = 1.0 V) under Generic DDRX4 Inputs/Outputs with Clock and Data Centered at Pin (GDDRX4_RX/TX.ECLK.Centered) using PCLK Clock Input.
	• t _{DQVA_GDDRX4} : Output Data Valid After CLK Output
	f _{DATA GDDRX4} : Input/Output Data Rate
	F _{MAX_GDDRX4} : Frequency for ECLK
	f _{PCLK} : PCLK frequency
	 Add the following units in Table 3.33. External Switching Characteristics (VCC = 1.0 V) under Generic DDRX4 Inputs/Outputs with Clock and Data Centered at Pin (GDDRX4_RX/TX.ECLK.Centered) using PCLK Clock Input.
	• t _{DVB_GDDRX4} : ns, and ns + 1/2UI
	• t _{DQVA_GDDRX4} : ns, and ns + 1/2UI
DC and Switching Characteristics for Automotive	 Replaced Typ. @ VCC = 1.0 V values of Distributed Memory Functions from 500 to 340 in Table 4.27. Register-to-Register Performance1, 3, 4.
	Removed table note 5 under Table 4.2. Recommended Operating Conditions.
	• Removed the statement, and follow the SMIA 1.0, Part 2 CCP2 Specification" in section 4.12.3.
	Updated the following values in Table 4.33. ADC Specifications.
	ADC Clock Frequency: Max → 50 MHz
	 ADC Input Frequency: Condition → @Sampling frequency = 1 Mbps.
	 ADC Input Equivalent Resistance: Condition → (removed value).
	Removed ADC Clock Duty Cycle from the table.
	Add table note 4 to Table 4.33. ADC Specifications.
	 Updated the following descriptions in Table 4.29. External Switching Characteristics (VCC = 1.0 V) under Generic DDRX4 Inputs/Outputs with Clock and Data Centered at Pin (GDDRX4_RX/TX.ECLK.Centered) using PCLK Clock Input.
	• t _{DQVA_GDDRX4} : Output Data Valid After CLK Output
	F _{MAX_GDDRX4} : Frequency for ECLK
	f _{PCLK} : PCLK frequency
	 Add the following units in Table 4.29. External Switching Characteristics (VCC = 1.0 V) under Generic DDRX4 Inputs/Outputs with Clock and Data Centered at Pin (GDDRX4_RX/TX.ECLK.Centered) using PCLK Clock Input.
	• t _{DVB_GDDRX4} : ns, and ns + 1/2UI
	• t _{DQVA_GDDRX4} : ns, and ns + 1/2UI

Revision 1.8, October 2023

Section	Change Summary
Disclaimers	Updated this section

Revision 1.7, August 2023

Section	Change Summary
All	Deleted all mentions of LPDD3 in below sections:
	General Description
	Overview
	DQS Grouping for DDR Memory
	Differential HSUL12D (Output Only)
	External Switching Characteristics
	Differential HSUL12D (Output Only)
	External Switching Characteristics

Section	Change Summary
General Description	 Updated the below information in Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide and Table 1.2. Certus-NX Automotive Family Selection Guide: Changed the title of the cell from Wide Range (WR) GPIO (Top/Left/Right Banks)/High Performance (HP) GPIO (Bottom Banks)/ADC/5G PCIe Lane to Total I/O (Wide Range, High Performance, ADC3) / PCIe Lane4. Updated the format of the values from 23/48/6/0 to 77 (23/48/6) / 0. Added footnote 3 and 4 for ADC and PCIe clarity as given below: Each ADC pin count reflects using dedicated complement pair and vRef. Each PCIe lane consists of a Tx and Rx complement pair.
Architecture	Added MIPI_D-PHY value in Table 2.11. Differential I/O Standards and Table 2.13. Differential I/O Standards Supported on Various Sides.
DC and Switching Characteristics for Commercial and Industrial	 Added MIPI D-PHY (LP Mode) and MIPI D-PHY (HS Mode) values under Maximum sysl/O Input Frequency in Table 3.29. Maximum I/O Buffer Speed1, 2, 3, 4, 7. Added MIPI D-PHY (LP Mode) and MIPI D-PHY (HS Mode) values under Maximum sysl/O Output Frequency in Table 3.29. Maximum I/O Buffer Speed1, 2, 3, 4, 7.
DC and Switching Characteristics for Automotive	 Updated tICFG data and added tICFG_POR data in Table 4.39. sysCONFIG Port Timing Specifications. Updated Figure 4.14. Slave SPI/I2C/I3C POR/REFRESH Timing and Figure 4.16. Slave SPI/I2C/I3C PROGRAMN Timing.
Reference	Added web page links for Certus-NX, Lattice Radiant, and Lattice Insights.

Revision 1.6, March 2023

Section	Change Summary
DC and Switching Characteristics for Commercial and Industrial	Updated table note 1.b information from Bank 3, Bank 4, and Bank 5 I/O can only mix into banks with V_{CCIO} higher than the pin standard, due to clamping diode on the pin in these banks to Bank 3, Bank 4, and Bank 5 I/O can only mix into banks with V_{CCIO} higher than or equal to the pin standard, due to clamping diode on the pin in these banks in Table 3.13. sysI/O Recommended Operating Conditions.
Technical Support Assistance	Added Technical Support Assistance section.

Revision 1.5, January 2023

Section	Change Summary
Acronyms in This Document	Removed MLVDS.
Architecture	Adjusted Clocking Structure to second level heading.
Pinout Information	Updated pin information for the LFD2NX-17 csfBGA121 package in Table 5.2. Pin Information Summary.
All	Minor adjustment in the table footnote style.

Revision 1.4, November 2022

Section	Change Summary
DC and Switching Characteristics for Commercial and Industrial	Updated Table 3.33. External Switching Characteristics (VCC = 1.0 V). Added footnote to t_{SKEW_PRI} and t_{SKEW_EDGE} .
DC and Switching Characteristics for Automotive	Updated Table 4.29. External Switching Characteristics (VCC = 1.0 V). Added footnote to $t_{\text{SKEW_PRI}}$ and $t_{\text{SKEW_EDGE}}$.

167

Revision 1.3, September 2022

Section	Change Summary
General Description	Updated Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide and Table 1.2. Certus-NX Automotive Family Selection Guide. Indicated supported speed grades in footnotes.
Architecture	Updated the Analog Interface and the sysMEM Memory Block sections. Indicated supported speed grades.
DC and Switching Characteristics for Commercial and Industrial	 Added Table 3.17. VIN Maximum Overshoot/Undershoot Allowance – Wide Range and Table 3.18. VIN Maximum Overshoot/Undershoot Allowance – High Performance. Updated Table 3.34. sysCLOCK PLL Timing (VCC = 1.0 V). Indicated Min value of 18 in f_{IN} parameter. Indicated Min value of 18 in f_{PFD} parameter and removed footnote. Removed and added conditions in topJIT parameter to accurately reflect PLL jitter performance. Updated Table 3.37. ADC Specifications and Table 3.39. DTR Specifications. Indicated supported speed grades in footnotes. Removed 72QFN from Table 3.29. Maximum I/O Buffer Speed. Updated the Hardened SGMII Characteristics section. Revised section heading. Revised sub-section heading to SGMII Specifications. Modified table caption to Table 3.42. SGMII.
DC and Switching Characteristics for Automotive	 Added Table 4.17. VIN Maximum Overshoot/Undershoot Allowance – Wide Range and Table 4.18. VIN Maximum Overshoot/Undershoot Allowance – High Performance. Updated Table 4.29. External Switching Characteristics (VCC = 1.0 V). Removed the column for –8 Auto speed grade. Updated Table 4.30. sysCLOCK PLL Timing (VCC = 1.0 V). Indicated Min value of 18 in f_{IN} parameter. Indicated Min value of 18 in f_{PFD} parameter and removed footnote. Removed and added conditions in topjit parameter to accurately reflect PLL jitter performance. Updated Table 4.33. ADC Specifications and Table 4.35. DTR Specifications. Indicated supported speed grades in footnotes. Removed 72QFN from Table 4.25. Maximum I/O Buffer Speed. Updated the Hardened SGMII Characteristics section. Revised section heading. Revised sub-section heading to SGMII Specifications. Modified table caption to Table 4.38. SGMII.
Pinout Information	Updated Table 5.1. Signal Descriptions and Table 5.2. Pin Information Summary. Indicated supported speed grades in footnotes.

Revision 1.2, August 2022

Section	Change Summary
Architecture	Changed section header to SGMII TX/RX and updated contents.
DC and Switching Characteristics for Commercial and Industrial	 Updated max value of Z_{OS} in Table 3.22. SLVS Output DC Characteristics. Updated Table 3.27. Maximum I/O Buffer Speed. Corrected footnote reference of Differential to 8. Added DSP functions and adjusted footnotes in in Table 3.29. Register-to-Register Performance. Corrected t_{PH} parameter footnote in Table 3.32. sysCLOCK PLL Timing (VCC = 1.0 V).
DC and Switching Characteristics for Automotive	 Updated V_{CCIO} (Input) - Typ. values of the LVDS and subLVDS standards in Table 4.13. sysl/O Recommended Operating Conditions. Updated max value of Z_{OS} in Table 4.22. SLVS Output DC Characteristics.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-DS-02078-2.4

Section	Change Summary
	Updated Table 4.23. Maximum I/O Buffer Speed. Corrected footnote reference of Differential to 8.
	Added DSP functions and adjusted footnotes in Table 4.25. Register-to-Register Performance. In footnote 1, changed speed grade to 8.
	Corrected tPH parameter footnote in Table 4.28. sysCLOCK PLL Timing (VCC = 1.0 V) Table 4.30. sysCLOCK PLL Timing (VCC = 1.0 V).
All	Removed product name from headings and captions of figures and tables.
	Minor changes in style and formatting.

Revision 1.1, April 2022

Character Common
Change Summary
 Added footnotes to indicate the availability of features or devices only in select speed grades. Added links to the Ordering Information section. Added footnote to the Features section, Table 1.1. Certus-NX Commercial/Industrial Family Selection Guide, and Table 1.2. Certus-NX Automotive Family Selection Guide.
 Updated the sysMEM Memory Block section. Indicated that EBR provides a build in ECC engine only in select speed grades. Added link to the Ordering Information section. Updated the Tri-state Register Block section. Changed port to T[1:0]. Updated the DDR Memory Support section. Revised label to DELAYCODE_I and DELAYCODE_O in Figure 2.26. DQS Control and Delay Block (DQSBUF). Updated the Analog Interface section. Indicated that the Certus-NX family provides an analog interface only in select speed grades. Added link to the Ordering Information section.
 Indicated Commercial and Industrial grade in the ESD Performance section. Modified the V_{CCIO} (Input) - Typ. values of the LVDS and subLVDS standards in Table 3.13. sysI/O Recommended Operating Conditions. Updated V_{IH}, V_{IL}, I_{OL}, I_{OH} values and table notes in Table 3.14. sysI/O DC Electrical Characteristics — Wide Range I/O and in Table 3.15. sysI/O DC Electrical Characteristics — High Performance I/O. In Table 3.17. LVDS DC Electrical Characteristics: Added footnote to V_{INP}, V_{INM} Max value. Corrected instances of V_{INP/INN} to V_{INP/INM} in footnote. Added footnote to V_{ICM} Max value in Table 3.19. SubLVDS Input DC Electrical Characteristics. Updated Generic DDRX1 group to add WRIO and HPIO in Table 3.31. Certus-NX External Switching Characteristics (VCC = 1.0 V). Updated values in Table 3.35. ADC Specifications. Added footnote to indicate the availability of ADC only in select speed grades. Added link to the Ordering Information section. Added footnote to Table 3.37. DTR Specifications to indicate the availability of DTR only in select speed grades. Added link to the Ordering Information section. Updated V_{IH}, V_{IL}, I_{OL}, I_{OH} values and table notes in Table 4.14. sysI/O DC Electrical Characteristics — High Performance I/O. Updated Generic DDRX1 group to add WRIO and HPIO in Table 4.27. Certus-NX External Switching Characteristics (VCC = 1.0 V). Updated values in Table 4.31. ADC Specifications. Added footnote to indicate the availability of ADC only in select speed grades. Added link to the Ordering Information section. Added footnote to Table 4.32. Comparator Specifications to indicate the availability of comparator only in select speed grades. Added link to the Ordering Information section. Added footnotes to Table 4.33. DTR Specifications regarding V

Section	Change Summary
	 Updated Table 4.37. Certus-NX sysCONFIG Port Timing Specifications. Updated row name to Slave SPI/I2C/I3C POR, description of t_{MSPI_INM} and t_{FIO_EN}, max value for t_{FIO_EN}; Changed t_{DONE_HIGH} to t_{WAKEUP_DONE_HIGH} in Wake-Up Timing row, and added footnotes 2 and 3.
Pinout Information	Updated the Dedicated ADC I/O Pins in Signal Descriptions.
Ordering Information	Added footnote to LIFCL-40 Speed in the Certus-NX Part Number Description section.
All	Adjustments in formatting and wording across the document, including changing the reference document names from Usage Guide to User Guide and changing table footnote with asterisk (*) to one (¹).

Revision 1.0, November 2021

Section	Change Summary
All	Production release.

www.latticesemi.com