

Lattice Sentry QSPI Master Streamer IP Core for MachXO3D - Lattice Propel Builder

User Guide

Lattice Sentry QSPI Master Streamer IP Core for MachXO3D - Lattice Propel Builder User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	5
1. Introduction	6
1.1. Features	6
1.2. Conventions	7
1.2.1. Nomenclature	7
1.2.2. Signal Names	7
1.2.3. Host	7
1.2.4. Attribute Names	7
2. Functional Description	8
2.1. Block Diagram	8
2.2. Signal Description	9
2.3. Attribute Summary	10
2.4. Register Description	11
2.5. APB Slave Interface	13
2.6. External FIFO Interface	13
2.7. Operation	14
2.7.1. Transaction Phases	14
2.7.2. Width Conversion	16
2.7.3. FIFO Empty/Full Behavior	16
2.8. User Interface Timing Diagram	17
2.8.1. APB Slave interface Timing	17
2.8.2. External Rx FIFO Interface to ESB Timing	17
2.8.3. Typical Flash Read/Program Flow	18
3. Ordering Part Number	19
Appendix A. Resource Utilization	20
References	21
Technical Support Assistance	22
Revision History	23

Figures

Figure 2.1. QSPI Master Streamer Block Diagram	8
Figure 2.2. QSPI Master Streamer programmable phases	
Figure 2-3. Example for PP Program Sequence	15
Figure 2-4. Example for FAST_READ Sequence	
Figure 2-5. Example for RDID Sequence	16
Figure 2.6. Example for QREAD4B Sequence	
Figure 2.7. APB Writing Timing	17
Figure 2.8. APB Reading Timing	17
Figure 2.9. Interrupt Generation and Acknowledge Timing	
Figure 2.10. External Rx FIFO Interface Timing	
Figure 2.11. Typical Flash Read/Program Flow	18

Tables

Table 2.1. QSPI Master Streamer Signal Description	<u>c</u>
Table 2.2. Attributes Table	
Table 2.3. Attribute Description	10
Table 2-4. Summary of QSPI Master Streamer IP Core Registers	
Table 2-5. Access Type Definition	13
Table A.1. Resource Utilization	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition				
APB	Advanced Peripheral Bus				
CPU	Central Processing Unit				
FIFO	irst In, First Out				
FPGA	Field-Programmable Gate Array				
PFR	Platform Firmware Resiliency				
QSPI	Quad Serial Peripheral Interface				
SPI	Serial Peripheral Interface				

1. Introduction

A Quad-Serial Peripheral Interface (QSPI) is a serial interface, where four data lines are used to read, write, and erase flash chips. It is faster than the traditional Serial Peripheral Interface (SPI) and is specifically designed to communicate with flash chips that support this interface. Unlike the traditional SPI that uses separate data lines for input and output (MISO and MOSI), the QSPI interface configures the data lines on the fly so that they act as outputs to send some information to the flash memory and act as inputs to read some memory contents.

The Lattice Semiconductor Sentry™ QSPI Master Streamer IP core for MachXO3D™ supports SPI and QSPI transactions. The design is implemented in Verilog HDL. It can be configured and generated using Lattice Propel™ Builder. It can be targeted to MachXO3D™ FPGA devices and implemented using the Lattice Diamond® software Place and Route tool integrated with the Synplify Pro® synthesis tool.

1.1. Features

The key features of the QSPI Master Streamer IP include:

- Generation of SPI and QSPI transactions
- Support for long SPI transactions (up to 256 byte write and 4 Gb read) with no CPU interactions
- Programmable transaction type and length
- Provision of external 8-bit FIFO interface for connecting to other blocks
- Support for AMBA 3 APB Protocol v1.0

1.2. Conventions

1.2.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.2.2. Signal Names

Signal names that end with:

- _n are active low (asserted when value is logic 0)
- _*i* are input signals
- _o are output signals
- _io are bi-directional input/output signals

1.2.3. Host

The logic unit inside the FPGA interacts with the QSPI Master Streamer IP through APB.

1.2.4. Attribute Names

Attribute names in this document are formatted in title case and italicized (Attribute Name).

2. Functional Description

The QSPI Master Streamer is a configurable SPI master, which can support SPI and QSPI slaves. It contains FIFOs for Tx and Rx data, which support page read and page program (256 bytes). It also provides an external Rx FIFO output interface (8-bit) which can be connected to other IP blocks to stream data in long bursts.

The QSPI Master Streamer provides significant performance improvement by supporting data read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI transaction. The external Rx FIFO output interface (8-bit) also enables direct transmission of input data from the SPI slave to another block, without tying up the CPU or system bus.

2.1. Block Diagram

QSPI Master Streamer Block Diagram is shown in Figure 2.1. There are Tx and Rx FIFOs with each having a 32-bit access port for the system bus (APB) and an 8-bit access port for the SPI Master state machine. 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs. The endianness of the 32-bit data is determined by the *Tx FIFO Endianness* and *Rx FIFO Endianness* in the attributes table (see Table 2-2).

Figure 2.1. QSPI Master Streamer Block Diagram

2.2. Signal Description

Table 2.1. QSPI Master Streamer Signal Description

Port	Width	Direction	· · · · · · · · · · · · · · · · · · ·			
System	System					
clk_i	1	Input	Master clock input			
reset_i	1	Input	Asynchronous reset active high			
int_o	1	Output	Interrupt request			
АРВ						
apb_psel_i	In	1	Select signal			
anh naddr i	In	32	Indicates that the slave device is selected and a data transfer is required. Address signal			
apb_paddr_i		32				
apb_pwdata_i apb_pwrite_i	In In	1	Write data signal Direction signal			
apb_pwrite_i	""	1	Write = 1, Read = 0			
apb_penable_i	In	1	Enable signal			
		_	Indicates the second and subsequent cycles of an APB transfer.			
apb_pready_o	Out	1	Ready signal			
			Indicates transfer completion. Slave uses this signal to extend an APB transfer.			
apb_prdata_o	Out	32	Read data signal			
QSPI Master						
spi_mst_csn_o	1	Output	Chip select			
spi_mst_sck_o	1	Output	SPI/QSPI clock			
spi_mst_si_i	4	Input	SPI: spi_mst_si_i[1]=MISO, spi_mst_si_i[3:2]=unused, spi_mst_si_i[0]=unused			
			QSPI: spi_mst_si_i[3:0] = serial data input			
spi_mst_so_o	4	Output	SPI: spi_mst_so_o[0]=MOSI, spi_mst_so_o[3:1]=unused			
			QSPI: spi_mst_so_o[3:0] = serial data output			
spi_mst_oe_o	3	Output	spi_mst_oe_o[0]: direction control for qpi_sio0 I/O pad (1=output, 0=input)			
			spi_mst_oe_o[1]: direction control for qpi_sio1 I/O pad (1=output, 0=input)			
			spi_mst_oe_o[2]: direction control for qpi_sio2 and qpi_sio3 I/O pads (1=output, 0=input)			
External Rx FIFO	(Optiona					
rxfifo_clk_o	1	Output	Clock output for external Rx FIFO			
rxfifo_valid_o	1	Output	Output data is valid			
rxfifo_data_o	8	Output	SPI input data to write to external FIFO			
rxfifo_last_o	1	Output	Indicates that the current data output is the last received byte of the SPI transaction. Example usage: Connect this signal to bit 31 on ESB's High Speed Port to use as the last_byte_indicator for SHA calculations.			
rxfifo_full_i	1	Input	FIFO full indicator Any SPI/QSPI transactions in progress stall until FIFO is no longer full.			

^{*}Note: This interface is only present when *No. of External Rx FIFO Interfaces* > 0.

2.3. Attribute Summary

The QSPI Master Streamer IP's configurable attributes are shown in Table 2.1 and are described in Table 2.3.

Table 2.2. Attributes Table

Attribute	Selectable Values	Default	Dependency on Other Attributes
General			
SPI Mode	0, 3	0	_
Configuration			
SPI Clock Divider	0, 1, 2, 3, 4, 5	2	_
Tx FIFO Size	4 – 512	512	_
Tx FIFO Almost Full Flag	4 – Tx FIFO Size	256	_
Tx FIFO Almost Empty Flag	4 – Tx FIFO Size	4	_
Tx FIFO Endianness	big, little	big	_
Rx FIFO Size	4 – 1024	256	_
Rx FIFO Almost Full Flag	4 – Rx FIFO Size	252	_
Rx FIFO Almost Empty Flag	4 – Rx FIFO Size	4	_
Rx FIFO Endianness	big, little	big	_
No. of External Rx FIFO Interfaces	0, 1	1	_

Table 2.3. Attribute Description

Parameter	Description						
General	•						
SPI Mode	Default value for the spi_mode bit field in the qspi_ctrl register						
Configuration	·						
SPI Clock Divider	Default value for the clock divisor sck_div bit field in the qspi_ctrl register						
	• 0: Fqpi_sck_o = Fclk_i						
	• 1: Fqpi_sck_o = Fclk_i/2						
	• 2: Fqpi_sck_o = Fclk_i/4						
	• 3: Fqpi_sck_o = Fclk_i/8						
	• 4: Fqpi_sck_o = Fclk_i/16						
	• 5: Fqpi_sck_o = Fclk_i/32						
Tx FIFO Size	Size of the transmit FIFO, in bytes						
	Must be a multiple of 4 (that is, 32-bit aligned)						
Tx FIFO Almost Full Flag	Threshold value for signaling that the FIFO is almost full						
Tx FIFO Almost Empty Flag	Threshold value for signaling that the FIFO is almost empty						
Tx FIFO Endianness	Specifies the order of Tx FIFO bytes at the 32-bit APB interface.						
	Transmit bytes over SPI in this order (from 0-3):						
	APB Tx FIFO Data 31:24 23:16 15:8 7:0						
	Big endian 0 1 2 3						
	Little endian 3 2 1 0						
Rx FIFO Size	Size of the receive FIFO, in bytes						
	Must be a multiple of 4 (that is, 32-bit aligned)						
Rx FIFO Almost Full Flag	Threshold value for signaling that the FIFO is almost full						
Rx FIFO Almost Empty Flag	Threshold value for signaling that the FIFO is almost empty						

Parameter	Description					
Rx FIFO Endianness	Specifies the order of Rx FIFO bytes at the 32-bit APB interface. Received bytes from SPI are packed in this order (from 0-3):					
	Received bytes from SPI	are раске	a in this	oraer (t	rom 0-3)	
	APB Rx FIFO Data 31:24 23:16 15:8 7:0					
	Big endian	0	1	2	3	
	Little endian	3	2	1	0	
No. of External Rx FIFO Interfaces	Number of external Rx FIFO interfaces (8-bit)					
	Default is 1					

2.4. Register Description

The QSPI Master Streamer IP core register map is shown in the Table 2-4.

Table 2-4. Summary of QSPI Master Streamer IP Core Registers

Offset	Name	Access	Description	
0x00	QSPI_CTRL	RW	spi_mode[1:0]	
			• 00: SPI mode 0	
			• 01: reserved	
			• 10: reserved	
			• 11: SPI mode 3	
			sck_div[4:2]:	
			• 0: Fqpi_sck_o = Fclk_i	
			• 1: Fqpi_sck_o = Fclk_i/2	
			• 2: Fqpi_sck_o = Fclk_i/4	
			• 3: Fqpi_sck_o = Fclk_i/8	
			• 4: Fqpi_sck_o = Fclk_i/16	
			• 5: Fqpi_sck_o = Fclk_i/32	
			reserved[30:5]	
			soft_reset[31]	
			Writing 1 to this bit resets all of the internal logic, flushes the FIFOs (resets the	
			read/write pointers), and restores all registers to their default settings.	
			Reads return 0. Intended for error recovery.	
0x04	CMD_DATA	RW	Command data to transmit in transaction phase 1 (always big endian)	
0x08	TX_FIFO_DATA	WO	Data to transmit in transaction phase 2	
			When the Tx FIFO is full, register writes to this address is blocked until the FIFO is no	
			longer full. Tx FIFO status is available in the fifo_ctrl and int_status registers.	
			Endianness depends on Tx FIFO Endianness attribute.	
0x0C	RX_FIFO_DATA	RO	Data received in transaction phase 4	
			If the Rx FIFO contains less than four bytes when a 32-bit read is received on the system bus and there is a SPI transaction currently in progress, the read is blocked	
			until 4 bytes are received or the SPI transaction completes.	
			Endianness depends on Rx FIFO Endianness attribute.	
0x10	TRANSACTION CTRL1	RW	ph1 num bytes[2:0] – Number of bytes from cmd data to transmit in transaction	
UXIU	TRANSACTION_CTRL1	KVV	phase 1 (legal values: 0-4)	
			ph2_num_bytes[11:3] – Number of bytes from Tx FIFO to transmit in transaction	
			phase 2 (legal values: 0- <i>Tx FIFO Size</i>)	
			ph3_dummy_cycles[16:12] – Number of dummy cycles to transmit in transaction	
			phase 3	
			ph1_mode[18:17] – Transmit phase 1 data in:	
			0: SPI mode	
			• 1: reserved	
			• 2: QSPI mode	
			• 3: reserved	

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Offset	Name	Access	Description	
			ph2_mode[20:19] – Transmit phase 2 data in:	
			0: SPI mode	
			• 1: reserved	
			2: QSPI mode	
			3: reserved	
			ph3_mode[22:21] – Transmit phase 3 dummy cycles in:	
			0: SPI mode	
			• 1: reserved	
			2: QSPI mode	
			• 3: reserved	
			ph4_mode[24:23] – Receive phase 4 data in:	
			0: SPI mode	
			• 1: reserved	
			2: QSPI mode	
			• 3: reserved	
			rxfifo_last_en[25] – Enable(1)/Disable(0) assertion of rxfifo_last_o for the last	
			received byte of the SPI transaction	
			reserved[30:26]	
			start[31] – Write 1 to start an SPI transaction (reads return 0)	
0x14	TRANSACTION_CTRL2	RW	ph4_num_bytes[31:0] – Number of bytes to receive in transaction phase 4	
0x18	STATUS	RO	tx_fifo_empty[0] – Tx FIFO is empty	
			tx_fifo_almost_empty[1] – Tx FIFO is not empty and has less than Tx FIFO Almost	
			Empty Flag bytes	
			tx_fifo_almost_full[2] – Tx FIFO is not full and has more than <i>Tx FIFO Almost Full Flag</i> bytes	
			tx_fifo_full[3] – Tx FIFO is full	
			rx_fifo_empty[4] – Rx FIFO is empty	
			rx_fifo_almost_empty[5] – Rx FIFO is not empty and has less than Rx FIFO Almost Empty Flag bytes	
			rx_fifo_almost_full[6] – Rx FIFO is not full and has more than Rx FIFO Almost Full Flag bytes	
			reserved[30:8]	
			busy[31] – SPI transaction is in progress	
0x1C	FIFO CTRL	RW	reserved[6:0]	
0/120	0_02		tx_fifo_flush[7] – Flush contents of Tx FIFO (reset read and write pointers)	
			rx_fifo_dest[9:8]:	
			0: internal Rx FIFO	
			1: external Rx FIFO interface	
			2: reserved	
			3: internal Tx FIFO	
			reserved[14:10]	
			rx_fifo_flush[15]: flush contents of Rx FIFO (reset read and write pointers)	
			reserved[31:16]	
0x20	INT_STATUS	RW	Interrupt status:	
			done_int[0] – Done interrupt (SPI transaction completed)	
			tx_fifo_empty_int[1] – Tx FIFO Empty interrupt	
			tx_fifo_almost_empty_int[2] – Tx FIFO Almost Empty interrupt	
			tx_fifo_almost_full_int[3] – Tx FIFO Almost Full interrupt	
			tx_fifo_full_int[4] – Tx FIFO Full interrupt	
			rx_fifo_empty_int[5] – Rx FIFO Empty interrupt	
			rx_fifo_almost_empty_int[6] – Rx FIFO Almost Empty interrupt	
			rx_fifo_almost_full_int[7] – Rx FIFO Almost Full interrupt	

13

Offset	Name	Access	Description	
			rx_fifo_full_int[8] – Rx FIFO Full interrupt reserved[31:9] Writing 1 to a bit clears that interrupt FIFO interrupts are triggered on the rising edge of the corresponding FIFO condition (empty, full, etc.) and stay asserted until cleared by writing a 1 to this register to clear the interrupt. Current status of the FIFO conditions is always available in the status register.	
0x24	INT_ENABLE	RW	Interrupt enable: done_en[0] – Enable Done interrupt (SPI transaction completed) tx_fifo_empty_en[1] – Enable Tx FIFO Empty interrupt tx_fifo_almost_empty_en[2] – Enable Tx FIFO Almost Empty interrupt tx_fifo_almost_full_en[3] – Enable Tx FIFO Almost Full interrupt tx_fifo_full_en[4] – Enable Tx FIFO Full interrupt rx_fifo_empty_en[5] – Enable Rx FIFO Empty interrupt rx_fifo_almost_empty_en[6] – Enable Rx FIFO Almost Empty interrupt rx_fifo_almost_full_en[7] – Enable Rx FIFO Almost Full interrupt rx_fifo_full_en[8] – Enable Rx FIFO Full interrupt	
0x28	INT_SET	RW	reserved[31:9] Interrupt set: done_set[0] – Set Done interrupt (SPI transaction completed) tx_fifo_empty_set[1] – Set Tx FIFO Empty interrupt tx_fifo_almost_empty_set[2] – Set Tx FIFO Almost Empty interrupt tx_fifo_almost_full_set[3] – Set Tx FIFO Almost Full interrupt tx_fifo_full_set[4] – Set Tx FIFO Full interrupt rx_fifo_empty_set[5] – Set Rx FIFO Empty interrupt rx_fifo_almost_empty_set[6] – Set Rx FIFO Almost Empty interrupt rx_fifo_almost_full_set[7] – Set Rx FIFO Almost Full interrupt rx_fifo_full_set[8] – Set Rx FIFO Full interrupt reserved[31:9]	

The behavior of registers to write and read access is defined by its access type, which is defined in Table 2.5.

Table 2-5. Access Type Definition

Access Type	Behavior on Read Access	Behavior on Write Access	
RO	Returns register value	Ignores write access	
WO	Returns 0	Updates register value	
RW	Returns register value	Updates register value	
RW1C	Returns register value	Writing 1'b1 on register bit clears the bit to 1'b0.	
		Writing 1'b0 on register bit is ignored.	
RSVD	Returns 0	Ignores write access	

2.5. APB Slave Interface

The APB slave interface provides an APB slave interface for CPU access of the register set.

2.6. External FIFO Interface

The external FIFO interface supports the transfer of large streams of data from one SPI flash to another SPI flash. An example of this is boot image recovery between two separate SPI flash devices. Enabling this feature adds an external 8-bit interface into the Tx FIFO so that the Rx FIFO output of one QSPI Master Streamer can be connected to the Tx FIFO input of a separate QSPI Master Streamer. In this configuration, the CPU can set up an SPI flash read transaction for the source flash device and an SPI page program transaction for the destination flash device. The data is streamed directly between the two without further CPU interaction.

^{© 2020} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.7. Operation

2.7.1. Transaction Phases

The QSPI Master Streamer generates an SPI or a QSPI transaction in multiple phases, as shown in Figure 2.2. Each phase is controlled by separate register settings. In the typical usage model, the CPU programs all of the transaction phase registers with the settings for the desired transaction, then programs the Start register to start the transaction. For transactions which use data, the CPU should write data to the FIFO before starting the transaction (see examples sequence below for details).

Figure 2.2. QSPI Master Streamer programmable phases

Phase 1: Transmit ph1 num bytes (0-4) bytes from cmd data register

- For SPI flash devices, this normally includes 1 command byte and 0 or 3 address bytes.
- Data is transmitted in SPI mode or QSPI mode depending on the ph1_mode setting in transaction_ctrl1.
- Serial data input is ignored

Phase 2: Transmit ph2_num_bytes (0-1028) bytes from Tx FIFO

- For SPI flash devices, this is normally used for page program data and/or 4 byte addressing.
- Data is transmitted in SPI mode or QSPI mode depending on the ph2_mode setting in transaction_ctrl1.
- Serial data input is ignored.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

15

Phase 3: Transmit ph3 num dummy bits (0-15) bits

- For SPI flash devices, this is normally used to generate dummy cycles for read data commands.
- Dummy data (0) is transmitted in SPI mode or QSPI mode depending on the ph3_mode setting.
- Serial data input is ignored.

Phase 4: Receive ph4 num bytes (0-4GB) bytes and send to Rx FIFO

- For SPI flash devices, this is normally used for read commands.
- Data is received in SPI mode or QSPI mode depending on the ph4 mode setting.
- Received data is stored in Rx FIFO or sent out the External Rx FIFO interface depending on the rx fifo dest.
- Serial data output is 0 for SPI or high impedance for QSPI.
- SPI slave ignores the data.

SPI Flash Page Program example:

```
cmd_data = 0x02xxxxxx (where xxxxxx = 24-bit Flash address).
Tx FIFO contains DataByte1...DataByte16 values
ph1_num_bytes = 4, ph1_mode = 0
ph2_num_bytes = N, ph2_mode = 0 (N=16 in example)
ph3_num_dummy_bits = 0, ph3_mode = 0
ph4_num_bytes = 0, ph4_mode = 0
```


Figure 2-3. Example for PP Program Sequence

SPI Flash FAST_READ example:

Figure 2-4. Example for FAST_READ Sequence

SPI RDID example:

```
cmd_data = 0x9F000000
ph1_num_bytes = 1, ph1_mode = 0
ph2_num_bytes = 0, ph2_mode = 0
ph3_num_dummy_bits = 0, ph3_mode = 0
ph4_num_bytes = 3, ph4_mode = 0
```

^{© 2020} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-5. Example for RDID Sequence

SPI Flash QREAD4B example:

Figure 2.6. Example for QREAD4B Sequence

2.7.2. Width Conversion

Each Tx and Rx FIFO has a 32-bit access port for the system bus (APB) and an 8-bit access port for the SPI Master state machine. The 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs. The endianness of the 32-bit data is determined by the Tx FIFO Endianness and Rx FIFO Endianness attributes. See Table 2.2.

Wherever possible, the implementation should avoid stalling the system bus while doing width conversions. For example, on the Tx FIFO, the 32-bit write value should be stored in a local register and the system bus write cycle should be terminated before doing the four 8-bit writes to the Tx FIFO. On the Rx FIFO, the logic should read bytes from the Rx FIFO into a local 32-bit register whenever the Rx FIFO is not empty, so that the 32-bit value can be returned immediately whenever a system bus read is received. This avoids tying up the system bus and stalling the CPU while the width conversions are being performed.

2.7.3. FIFO Empty/Full Behavior

The recommended usage model is for the CPU to write all of the data for a transaction to the Tx FIFO (for example, a full 256 byte page) before starting the transaction so that the Tx FIFO does not become empty in the middle of a transaction.

If the Rx FIFO indicates that it is full before the transaction is completed, then the SPI/QSPI state machine stalls until the Rx FIFO is no longer full. When this stall occurs, qpi_csn_o is held asserted but the SPI/QSPI clock is gated off (held in the inactive state). When the Rx FIFO is not full, the clock is gated back on and data is received over SPI/QSPI.

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.8. User Interface Timing Diagram

2.8.1. APB Slave interface Timing

APB write operation from APB master is shown in Figure 2.7.

Figure 2.7. APB Writing Timing

APB read operation from APB master is shown in Figure 2.8.

Figure 2.8. APB Reading Timing

Interrupt generation and acknowledge between APB master and slave is in Figure 2-9.

Figure 2.9. Interrupt Generation and Acknowledge Timing

2.8.2. External Rx FIFO Interface to ESB Timing

You can connect QSPI Master Streamer to ESB (for image authentication). The timing diagram is described in Figure 2-10.

Figure 2.10. External Rx FIFO Interface Timing

© 2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.8.3. Typical Flash Read/Program Flow

The typical flash (MX25L12845G, MACRONIX, CO, Ltd) read/program flow is shown in Figure 2.11.

Figure 2.11. Typical Flash Read/Program Flow

3. Ordering Part Number

The Ordering Part Number (OPN) for the QSPI Master Streamer IP Core targeting MachXO3D FPGA devices are the following:

- QSPIMS-M3D-U Project License
- QSPIMS-M3D-UT Site License

Appendix A. Resource Utilization

Table A.1. Resource Utilization

FPGA Resource Utilization	Registers	LUTs	EBRs	Target Device	Synthesis Tools
Number of resources	945	1335	2	MachXO3D	Synopsys® Synplify Pro N-2018.03L-SP1-1

References

- MachXO3D FPGA Web Page in latticesemi.com
- Lattice Propel 1.0 User Guide
- Lattice Diamond Software 3.11 User Guide

FPGA-IPUG-02109-1.0

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

22

Revision History

Revision 1.0, May 2020

Section	Change Summary
All	Initial release.

www.latticesemi.com