

# **EFB Module IP – Lattice Propel Builder**

# **User Guide**



#### **Disclaimers**

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.



## **Contents**

| Contents                                    | 3  |
|---------------------------------------------|----|
| Acronyms in This Document                   | 4  |
| 1. Introduction                             | 5  |
| 1.1. Features                               | 5  |
| 1.2. Conventions                            | 6  |
| 1.2.1. Nomenclature                         | 6  |
| 1.2.2. Signal Names                         | 6  |
| 1.2.3. Attribute Names                      | 6  |
| 2. Functional Description                   | 7  |
| 2.1. Overview                               | 7  |
| 2.2. Block Diagram                          | 7  |
| 2.3. Signal Description                     |    |
| 2.4. Attribute Summary                      |    |
| 2.5. Register Description                   |    |
| References                                  |    |
| Technical Support Assistance                | 10 |
| Revision History                            |    |
|                                             |    |
| Figures                                     |    |
| Figure 2.1. EFB Module IP Block Diagram     | 7  |
|                                             |    |
| Tables                                      |    |
| Table 2.1. EFB Module IP Signal Description | 7  |
| Table 2.2. Attributes Table                 |    |
| Table 2.2 Pegister Description              |    |



# **Acronyms in This Document**

A list of acronyms used in this document.

| Acronym | Definition                                |
|---------|-------------------------------------------|
| AMBA    | Advanced Microcontroller Bus Architecture |
| APB     | Advanced Peripheral Bus                   |
| CPU     | Central Processing Unit                   |
| EFB     | Embedded Functional Block                 |
| FPGA    | Field Programmable Gate Array             |
| I2C     | Inter-Integrated Circuit                  |
| MSB     | Most-Significant Bit                      |
| RISC    | Reduced Instruction Set Computer          |
| UFM     | User Flash Memory                         |



5

## 1. Introduction

The Lattice EFB Module IP for the MachXO3D™ FPGA device is a hard architectural block that is known as the Embedded Function Block (EFB). The EFB includes an I2C, access to Configuration Blocks (CFG1), and User Flash Memory (UFM). All of these hard IP peripherals are addressable through the Advanced the Peripheral Bus (APB) interface of the Advanced Microcontroller Bus Architecture (AMBA) 3 protocol.

The design is implemented in Verilog HDL. It can be configured and generated using the Lattice Propel™ Builder software. It can be targeted to MachXO3D FPGA devices and implemented using the Lattice Diamond® software Place and Route tool integrated with the Synplify Pro® synthesis tool.

#### 1.1. Features

The key features of the EFB Module IP include:

- AMBA 3 APB Protocol v1.0 interface
- One I2C block (I2C2)
- Support for the initialization of Configuration Block 1 (CFG1)
- Support for the initialization of User Flash Memory 2 (UFM2)

For more information on the EFB hardware, refer to Using Hardened Control Functions in MachXO3D Devices (FPGA-TN-02117).



6

### 1.2. Conventions

#### 1.2.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

### 1.2.2. Signal Names

Signal names that end with:

- \_n are active low (asserted when value is logic 0)
- \_i are input signals
- \_o are output signals
- \_io are bi-directional input/output signals

#### 1.2.3. Attribute Names

Attribute names in this document are formatted in title case and italicized (Attribute Name).



# 2. Functional Description

#### 2.1. Overview

The EFB block described in this document focuses on three available functions: I2C, CFG1, and UFM2. The I2C block is accessed through the APB bus and its pins are routed directly outside the device for inter-chip communication. The CFG1 and UFM2 memory blocks can also be accessed through the APB and can be initialized based on your intended function. The equivalent I2C discussed here refers to I2C2 (I2C Secondary) in Using Hardened Control Functions in MachXO3 Devices Reference Guide (FPGA-TN-02064) and its equivalent programming registers.

### 2.2. Block Diagram

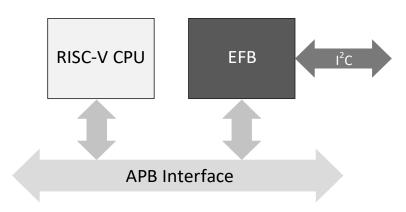



Figure 2.1. EFB Module IP Block Diagram

## 2.3. Signal Description

**Table 2.1. EFB Module IP Signal Description** 

| Port          | Direction | Width | Description                                                                                   |
|---------------|-----------|-------|-----------------------------------------------------------------------------------------------|
| System        | <u>.</u>  |       |                                                                                               |
| clk_i         | Input     | 1     | Master clock input                                                                            |
| reset_i       | Input     | 1     | Asynchronous reset active high                                                                |
| int_o         | Output    | 1     | Interrupt request                                                                             |
| APB           |           |       |                                                                                               |
| apb_psel_i    | In        | 1     | Select signal Indicates that the slave device is selected and a data transfer is required.    |
| apb_paddr_i   | In        | 32    | Address signal                                                                                |
| apb_pwdata_i  | In        | 32    | Write data signal                                                                             |
| apb_pwrite_i  | In        | 1     | Direction signal Write = 1, Read = 0                                                          |
| apb_penable_i | In        | 1     | Enable signal Indicates the second and subsequent cycles of an APB transfer.                  |
| apb_pready_o  | Out       | 1     | Ready signal Indicates transfer completion. Slave uses this signal to extend an APB transfer. |
| apb_prdata_o  | Out       | 32    | Read data signal                                                                              |
| apb_pslverr_o | Out       | 1     | Tied 0                                                                                        |



8

| Port                | Direction | Width | Description            |
|---------------------|-----------|-------|------------------------|
| External I2C Protoc | ol        |       |                        |
| i2c2_scl            | In/Out    | 1     | Clock of I2C interface |
| i2c2_sda            | In/Out    | 1     | Data of I2C interface  |

## 2.4. Attribute Summary

The EFB Module IP's configurable attributes are as shown in Table 2.2 and are described in Table 2.3.

Table 2.2. Attributes Table

| Table 1111 / tetribates Table |                         |         |                                     |
|-------------------------------|-------------------------|---------|-------------------------------------|
| Attribute                     | Selectable Values       | Default | Dependency on Other Attributes      |
| General                       |                         |         |                                     |
| Data-Width                    | 8-32                    | 32      | _                                   |
| Addr-Width                    | 10-32                   | 32      | _                                   |
| Enable Initialization (CFG1)  | True, False             | False   | _                                   |
| Initialization File (CFG1)    | <file_path></file_path> | "none"  | Enable Initialization (CFG1) = True |
| Enable Initialization (UFM2)  | True, False             | False   | _                                   |
| Initialization File (UFM2)    | <file_path></file_path> | "none"  | Enable Initialization (UFM2) = True |

### 2.5. Register Description

The EFB Module IP follows the register mapping for the MachXO3 device EFB. For further information, refer to Using Hardened Control Functions in MachXO3 Devices Reference Guide (FPGA-TN-02064). There are certain offsets, however, that you should be mindful of in performing transactions on the APB bus, particularly on the address. There is a 2-bit shift to the left for the equivalent address in the APB interface compared with the ones in the document. Some examples:

**Table 2.3. Register Description** 

| Register Name | TN1294 | APB Equivalent |
|---------------|--------|----------------|
| I2C_2_CR      | 0x4A   | 0x128          |
| I2C_2_CMDR    | 0x4B   | 0x12C          |
| I2C_2_BR0     | 0x4C   | 0x130          |

In terms of data, the upper MSBs in configurations with data-widths larger than 8 are tied to 0 when writing. In the same way, writing only the lower 8-bits is significant. This is implemented to reduce the total number of logic required and improve the overall speed of the IP, in exchange for a small amount in the memory map.



# References

- MachXO3D web page
- Lattice Diamond Software web page
- Lattice Propel Design Environment web page
- Using Hardened Control Functions in MachXO3D Devices (FPGA-TN-02117)
- Using Hardened Control Functions in MachXO3 Devices Reference Guide (FPGA-TN-02064)
- Lattice Solutions IP Cores web page
- Lattice Insights web page for Lattice Semiconductor training courses and learning plans



# **Technical Support Assistance**

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, please refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.



# **Revision History**

#### Revision 1.1, June 2025

| 110101011 212, 54110 2025    |                                                |
|------------------------------|------------------------------------------------|
| Section                      | Change Summary                                 |
| All                          | Added IP to the document title.                |
|                              | Replaced QSPI Monitor with EFB Module IP.      |
|                              | • Updated I <sup>2</sup> C to I2C.             |
|                              | Made editorial fixes.                          |
| Disclaimers                  | Updated boilerplate.                           |
| Acronyms in This Document    | Removed EAR, QSPI, PLD, and SPI.               |
|                              | Added EFB, FPGA, I2C, MSB, RISC, and UFM.      |
| References                   | Updated this section.                          |
| Technical Support Assistance | Added the Lattice Answer Database information. |

### Revision 1.0, May 2020

| Section | Change Summary   |
|---------|------------------|
| All     | Initial release. |



www.latticesemi.com