
 

Object Counting using Mobilenet CNN 
Accelerator IP 

 

Reference Design 

FPGA-RD-02067-1.0 

October 2019 

 



Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

2  FPGA-RD-02067-1.0 

Disclaimers 
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its 
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely 
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been 
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the 
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s 
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this 
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any 
products at any time without notice. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  3 

Contents 
Acronyms in This Document ................................................................................................................................................. 8 
1 Introduction .................................................................................................................................................................. 9 

1.1 Design Process Overview .................................................................................................................................... 9 
1.1.1 Training Model ............................................................................................................................................... 9 
1.1.2 Neural Network Compiler .............................................................................................................................. 9 
1.1.3 FPGA Design ................................................................................................................................................... 9 
1.1.4 FPGA Bitstream and Quantized Weights and Instructions ............................................................................. 9 

2 Setting Up the Basic Environment .............................................................................................................................. 10 
2.1 Tools and Hardware Requirements................................................................................................................... 10 

2.1.1 Lattice Tools ................................................................................................................................................. 10 
2.1.2 Win32 MicroSD Disk Imager ......................................................................................................................... 10 
2.1.3 Hardware ...................................................................................................................................................... 10 

2.2 Setting Up the Linux Environment for Machine Training .................................................................................. 11 
2.2.1 Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU............................. 11 

2.2.1.1 Installing the CUDA Toolkit .............................................................................................................. 11 
2.2.1.2 Installing the cuDNN ........................................................................................................................ 12 

2.2.2 Setting Up the Environment for Training and Model Freezing Scripts ......................................................... 12 
2.2.2.1 Installing the Anaconda Python ....................................................................................................... 12 

2.2.3 Installing the TensorFlow v1.12.................................................................................................................... 14 
2.2.4 Installing the Python Package ...................................................................................................................... 15 

3 Preparing the Dataset ................................................................................................................................................. 17 
3.1 Downloading the Dataset .................................................................................................................................. 17 
3.2 Visualizing and Tuning/Cleaning Up the Dataset .............................................................................................. 19 
3.3 Data Augmentation ........................................................................................................................................... 21 

3.3.1 Configuring the Augmentation ..................................................................................................................... 21 
3.3.2 Running the Augmentation .......................................................................................................................... 22 

4 Training the Machine .................................................................................................................................................. 23 
4.1 Training Code Structure .................................................................................................................................... 23 
4.2 Neural Network Architecture ............................................................................................................................ 24 

4.2.1 Human Count Training Network Layers ....................................................................................................... 24 
4.2.2 Human Count Detection Network Output ................................................................................................... 26 
4.2.3 Training Code Overview ............................................................................................................................... 27 

4.2.3.1 Model Config ................................................................................................................................... 27 
4.2.3.2 Model Building ................................................................................................................................. 29 
4.2.3.3 Training ............................................................................................................................................ 35 

4.3 Training from Scratch and/or Transfer Learning ............................................................................................... 36 
5 Creating Frozen File .................................................................................................................................................... 40 

5.1 Generating the frozen .pb File .......................................................................................................................... 40 
6 Creating Binary File with Lattice SensAI ..................................................................................................................... 41 
7 Hardware Implementation ......................................................................................................................................... 45 

7.1 Top Level Information ....................................................................................................................................... 45 
7.1.1 Block Diagram ............................................................................................................................................... 45 
7.1.2 Operational Flow .......................................................................................................................................... 45 
7.1.3 Core Customization ...................................................................................................................................... 46 

7.2 Architecture Details .......................................................................................................................................... 46 
7.2.1 Pre-processing CNN ...................................................................................................................................... 46 

7.2.1.1 Pre-processing Flow ......................................................................................................................... 46 
7.2.2 Post Processing CNN .................................................................................................................................... 47 

7.2.2.1 Confidence Sorting .......................................................................................................................... 48 
7.2.2.2 Class Probability Detection .............................................................................................................. 49 
7.2.2.3 Bounding Box Calculation ................................................................................................................ 49 
7.2.2.4 NMS – Non Max Suppression .......................................................................................................... 50 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

4  FPGA-RD-02067-1.0 

7.2.2.5 Bounding Box Upscaling................................................................................................................... 51 
7.2.2.6 OSD Text Display .............................................................................................................................. 52 
7.2.2.7 HDMI Display Management ............................................................................................................. 52 

8 Creating FPGA Bitstream File ...................................................................................................................................... 53 
9 Programming the Demo ............................................................................................................................................. 55 

9.1 Programming the CrossLink SPI Flash ............................................................................................................... 55 
9.1.1 Erasing the CrossLink SRAM Prior to Reprogramming ................................................................................. 55 
9.1.2 Programming the CrossLink VIP Input Bridge Board .................................................................................... 56 

9.2 ProgrammingECP5 VIP Processor Board ........................................................................................................... 58 
9.2.1 Erasing the ECP5 Prior to Reprogramming ................................................................................................... 58 
9.2.2 Programming the ECP5 VIP Processor Board ............................................................................................... 60 

9.3 Programming the MicroSD Card Firmware ....................................................................................................... 62 
10 Running the Demo ...................................................................................................................................................... 63 
Appendix A. Other Labelling Tools ...................................................................................................................................... 64 
References .......................................................................................................................................................................... 65 
Technical Support Assistance ............................................................................................................................................. 66 
Revision History .................................................................................................................................................................. 67 

 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  5 

Figures 
Figure 1.1. Lattice Machine Learning Design Flow ............................................................................................................... 9 
Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board .............................................................................................. 10 
Figure 2.2. Download CUDA Repo ...................................................................................................................................... 11 
Figure 2.3. Install CUDA Repo ............................................................................................................................................. 11 
Figure 2.4. Fetch Keys ......................................................................................................................................................... 11 
Figure 2.5. Update Ubuntu Packages Repositories............................................................................................................. 12 
Figure 2.6. CUDA Installation .............................................................................................................................................. 12 
Figure 2.7. cuDNN Library Installation ................................................................................................................................ 12 
Figure 2.8. Anaconda Package Download ........................................................................................................................... 13 
Figure 2.9. Anaconda Installation ....................................................................................................................................... 13 
Figure 2.10. Accept License Terms ..................................................................................................................................... 13 
Figure 2.11. Confirm/Edit Installation Location .................................................................................................................. 13 
Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion ........................................................... 14 
Figure 2.13. Anaconda Environment Activation ................................................................................................................. 14 
Figure 2.14. TensorFlow Installation .................................................................................................................................. 14 
Figure 2.15. TensorFlow Installation Confirmation ............................................................................................................ 14 
Figure 2.16. TensorFlow Installation Completion ............................................................................................................... 15 
Figure 2.17. Easydict Installation ........................................................................................................................................ 15 
Figure 2.18. Joblib Installation ............................................................................................................................................ 15 
Figure 2.19. Keras Installation ............................................................................................................................................ 16 
Figure 2.20. OpenCV Installation ........................................................................................................................................ 16 
Figure 2.21. Pillow Installation ........................................................................................................................................... 16 
Figure 3.1. Open Source Dataset Repository Cloning ......................................................................................................... 17 
Figure 3.2. OIDv4_Toolkit Directory Structure ................................................................................................................... 17 
Figure 3.3. Dataset Script Option/Help ............................................................................................................................... 18 
Figure 3.4. Dataset Downloading Logs ............................................................................................................................... 18 
Figure 3.5. Downloaded Dataset Directory Structure ........................................................................................................ 18 
Figure 3.6. OIDv4 Label to KITTI Format Conversion .......................................................................................................... 19 
Figure 3.7. Toolkit Visualizer ............................................................................................................................................... 19 
Figure 3.8. Manual Annotation Tool – Cloning ................................................................................................................... 20 
Figure 3.9. Manual Annotation Tool – Directory Structure ................................................................................................ 20 
Figure 3.10. Manual Annotation Tool – Launch ................................................................................................................. 20 
Figure 3.11. Augmentation Directory Stucture .................................................................................................................. 21 
Figure 3.12. config.py Configuration File Parameters ........................................................................................................ 21 
Figure 3.13. Selecting the Augmentation Operations ........................................................................................................ 22 
Figure 3.14. Running the Augmentataion ........................................................................................................................... 22 
Figure 4.1. Training Code Directory Structure .................................................................................................................... 23 
Figure 4.2. Training Code Flow Diagram ............................................................................................................................. 27 
Figure 4.3. Code Snippet – Input Image Size Config ........................................................................................................... 28 
Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes) ................................................................................... 28 
Figure 4.5. Code Snippet – Anchors Per Grid Config #2...................................................................................................... 28 
Figure 4.6. Code Snippet – Anchors Per Grid Config #3...................................................................................................... 28 
Figure 4.7. Code Snippet – Training Parameters ................................................................................................................ 29 
Figure 4.8. Code Snippet – Quantization Setting ................................................................................................................ 30 
Figure 4.9. Code Snippet – Forward Graph Fire Layers with Mobilenet ............................................................................. 30 
Figure 4.10. Code Snippet – ‘_mobile_layer’ ...................................................................................................................... 31 
Figure 4.11. Code Snippet – Forward Graph Last Convolution Layer ................................................................................. 31 
Figure 4.12. Grid Output Visualization #1 ........................................................................................................................... 32 
Figure 4.13. Grid Output Visualization #2 ........................................................................................................................... 32 
Figure 4.14. Code Snippet – Interpret Output Graph ......................................................................................................... 33 
Figure 4.15. Code Snippet – Bbox Loss ............................................................................................................................... 34 
Figure 4.16. Code Snippet – Confidence Loss ..................................................................................................................... 34 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

6  FPGA-RD-02067-1.0 

Figure 4.17. Code Snippet – Class Loss ............................................................................................................................... 35 
Figure 4.18. Code Snippet – Training .................................................................................................................................. 35 
Figure 4.19. Training Code Snippet for Mean and Scale ..................................................................................................... 36 
Figure 4.20. Training Code Snippet for Dataset Path .......................................................................................................... 36 
Figure 4.21. Create File for Dataset train.txt ...................................................................................................................... 36 
Figure 4.22. Training Input Parameter ................................................................................................................................ 37 
Figure 4.23. Execute Run Script .......................................................................................................................................... 37 
Figure 4.24. TensorBoard – Generated Link ....................................................................................................................... 37 
Figure 4.25. TensorBoard .................................................................................................................................................... 38 
Figure 4.26. Image Menu of TensorBoard .......................................................................................................................... 38 
Figure 4.27. Example of Checkpoint Data Files at Log Folder ............................................................................................. 39 
Figure 5.1. pb File Generation from Checkpoint ................................................................................................................. 40 
Figure 5.2. Frozen pb File .................................................................................................................................................... 40 
Figure 6.1. SensAI Home Screen ......................................................................................................................................... 41 
Figure 6.2. SensAI –Network File Selection ........................................................................................................................ 42 
Figure 6.3. SensAI –Image Data File Selection .................................................................................................................... 42 
Figure 6.4. SensAI – Project Settings .................................................................................................................................. 43 
Figure 6.5. SensAI – Analyze Project ................................................................................................................................... 43 
Figure 7.1. RTL Top Level Block Diagram ............................................................................................................................ 45 
Figure 7.2. Masking and Zoning .......................................................................................................................................... 46 
Figure 7.3. Downscaling ...................................................................................................................................................... 47 
Figure 7.4. CNN Output Data Format.................................................................................................................................. 48 
Figure 7.5. Confidence Sorting ............................................................................................................................................ 49 
Figure 7.6. Intersection-Union Area NMS ........................................................................................................................... 51 
Figure 8.1. Lattice Diamond – Default Screen .................................................................................................................... 53 
Figure 8.2. Lattice Diamond – Open ECP5 Face Identification Diamond Project File ......................................................... 53 
Figure 8.3. Lattice Diamond – Trigger Bitstream Generation ............................................................................................. 54 
Figure 8.4. Lattice Diamond – Bit File Generation Report Window .................................................................................... 54 
Figure 9.1. Diamond Programmer – Default Screen ........................................................................................................... 55 
Figure 9.2. Diamond Programmer – Device Selection ........................................................................................................ 55 
Figure 9.3. Diamond Programmer – Device Operation ...................................................................................................... 56 
Figure 9.4. Diamond Programmer – Selecting Device Properties Options for Crosslink Flashing ...................................... 56 
Figure 9.5. Diamond Programmer – Output Console ......................................................................................................... 57 
Figure 9.6. Diamond Programmer – Default Screen ........................................................................................................... 58 
Figure 9.7. Diamond Programmer – Device Family Selection ............................................................................................. 59 
Figure 9.8. Diamond Programmer – Device Selection ........................................................................................................ 59 
Figure 9.9. Diamond Programmer – Device Operation ...................................................................................................... 59 
Figure 9.10. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing .......................................... 60 
Figure 9.11. Diamond Programmer – Output Console ....................................................................................................... 61 
Figure 9.12. Win32 Disk Imager .......................................................................................................................................... 62 
Figure 10.1. Connecting the MicroSD Card ......................................................................................................................... 63 
Figure 10.2. Running the Demo .......................................................................................................................................... 63 
 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  7 

Tables 
Table 4.1. Human Counting Training Network Topology ................................................................................................... 24 
Table 7.1. Core Parameter .................................................................................................................................................. 46 
Table 7.2. Data Parameters of CNN Output ....................................................................................................................... 47 
Table 7.3. Pre-Selected Width and Height of Anchor Boxes............................................................................................... 49 
Table 7.4. Grid Center Values (X, Y) for Anchor Boxes ....................................................................................................... 50 
Table 9.1. Diamond Programmer – SPI Flash Options ........................................................................................................ 57 
Table 9.2. Diamond Programmer – SPI Flash Options ........................................................................................................ 61 
Table A.1. Other Labelling Tools ......................................................................................................................................... 64 
 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

8  FPGA-RD-02067-1.0 

Acronyms in This Document 
A list of acronyms used in this document. 

Acronym Definition 

CKPT Checkpoint 

CNN Convolutional Neural Network 

EVDK Embedded Vision Development Kit 

FPGA Field-Programmable Gate Array 

ML Machine Learning 

MLE Machine Learning Engine 

SPI Serial Peripheral Interface 

VIP Video Interface Platform 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  9 

1 Introduction 
This document describes the Human Counting Design process of Mobilnet using the ECP5™ EVDK FPGA platform. 
Human Counting is a subset of the generic Object Counting base design.  

1.1 Design Process Overview 
The design process involves the following steps: 

1.1.1 Training Model 
 Setting up the basic environment 

 Preparing the dataset 

 Preparing 224 x 224 Image 

 Labeling dataset of human bounding box 

 Training the machine 

 Training the machine and creating the checkpoint data 

 Creating Frozen file (*.pb) 

1.1.2 Neural Network Compiler 
 Creating Binary file with Lattice SensAI™ 2.1 program 

1.1.3 FPGA Design 
 Creating FPGA Bitstream file 

1.1.4 FPGA Bitstream and Quantized Weights and Instructions 
 Flashing Binary and Bitstream files 

 Binary File to MicroSD 

 Bitstream to Flash Memory on VIP Board 

 

Figure 1.1. Lattice Machine Learning Design Flow 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

10  FPGA-RD-02067-1.0 

2 Setting Up the Basic Environment  

2.1 Tools and Hardware Requirements 
This section describes the required tools and environment setup for FPGA Bitstream and Flashing. 

2.1.1 Lattice Tools 
 Lattice Diamond® Tool – Refer to http://www.latticesemi.com/latticediamond. 

 Lattice Diamond Programmer – Refer to http://www.latticesemi.com/programmer. 

 Lattice SensAI Compiler v2.1 – Refer to 
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler. 

2.1.2 Win32 MicroSD Disk Imager 

Refer to https://sourceforge.net/projects/win32diskimager/ 

2.1.3 Hardware 
 ECP5 FPGA VIP Board – Refer to http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP. 

CrossLink VIP

Input Bridge Board

ECP5 VIP 

Processor Board

HDMI VIP Output

Bridge Board

MicroSD Card 

Adapter Board

Camera Sensor CN2

Camera Sensor CN1

 

Figure 2.1. Lattice EVDK with MicroSD Card Adapter Board 

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticediamond
http://www.latticesemi.com/programmer
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
https://sourceforge.net/projects/win32diskimager/
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/VIP


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  11 

2.2 Setting Up the Linux Environment for Machine Training 
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS.  

Note: NVIDIA library and TensorFlow version is dependent on PC and Ubuntu/Windows version. 

2.2.1 Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 

2.2.1.1 Installing the CUDA Toolkit 

To install the CUDA toolkit, run the following commands in the order specified below: 

$ curl -O 

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb 

 

Figure 2.2. Download CUDA Repo 

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb 

 

Figure 2.3. Install CUDA Repo 

$ sudo apt-key adv --fetch-keys 

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub 

 

Figure 2.4. Fetch Keys 

$ sudo apt-get update 

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

12  FPGA-RD-02067-1.0 

 

Figure 2.5. Update Ubuntu Packages Repositories 

$ sudo apt-get install cuda-9-0 

 

Figure 2.6. CUDA Installation 

2.2.1.2 Installing the cuDNN  

To install the cuDNN: 

1. Create Nvidia developer account: https://developer.nvidia.com. 

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1 

3. Execute below commands to install cuDNN  

$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz  

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include  

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64  

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 

 

Figure 2.7. cuDNN Library Installation 

2.2.2 Setting Up the Environment for Training and Model Freezing Scripts 

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu 
16.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux. 

2.2.2.1 Installing the Anaconda Python 

To install the Anaconda and Python 3: 

1. Go to https://www.anaconda.com/distribution/#download-section 

2. Download Python 3 version of Anaconda for Linux. 

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/distribution/#download-section


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  13 

 

Figure 2.8. Anaconda Package Download 

3. Run the command below to install the Anaconda environment: 

$ sh Anaconda3-2019.03-Linux-x86_64.sh 

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release 

 

Figure 2.9. Anaconda Installation 

4. Accept the license. 

 

Figure 2.10. Accept License Terms 

5. Confirm the installation path, follow the instruction on screen if you want to change the default path. 

 

Figure 2.11. Confirm/Edit Installation Location 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

14  FPGA-RD-02067-1.0 

6. After installation, enter No as shown in Figure 2.12.  

 

Figure 2.12. Launch/Initialize Anaconda Environment on Installation Completion 

2.2.3 Installing the TensorFlow v1.12 

To install the TensorFlow v1.12: 

1. Activate the conda environment by running the command below: 

$ source <conda directory>/bin/activate 

 

Figure 2.13. Anaconda Environment Activation 

2. Install the TensorFlow by running the command below: 

$ conda install tensorflow-gpu==1.12.0 

 

Figure 2.14. TensorFlow Installation 

3. After installation, enter Y as shown in Figure 2.15. 

 

Figure 2.15. TensorFlow Installation Confirmation 

Figure 2.16 shows TensorFlow installation is complete. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  15 

 

Figure 2.16. TensorFlow Installation Completion 

2.2.4 Installing the Python Package 

To install the Python package: 

1. Install Easydict by running the command below: 

$ conda install –c conda-forge easydict 

 

Figure 2.17. Easydict Installation 

2. Install Joblib by running the command below: 

$ conda install joblib 

 

Figure 2.18. Joblib Installation 

3. Install Keras by running the command below: 

$ conda install keras 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

16  FPGA-RD-02067-1.0 

 

Figure 2.19. Keras Installation 

4. Install OpenCV by running the command below: 

$ conda install opencv 

 

Figure 2.20. OpenCV Installation 

5. Install Pillow by running the command below: 

$ conda install pillow 

 

Figure 2.21. Pillow Installation 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  17 

3 Preparing the Dataset 
This chapter describes how to create a dataset using Google Open Image Dataset as an example. 

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features 
more than 600 classes of images. The Person class of images includes human annotated and machine annotated labels 
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0. 

3.1 Downloading the Dataset 
To download the dataset, run the commands below: 

1. Clone the OIDv4_Toolkit repository: 

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git 

$ cd OIDv4_ToolKit 

 

Figure 3.1. Open Source Dataset Repository Cloning 

Figure 3.2 shows the OIDv4 code directory structure. 

 

Figure 3.2. OIDv4_Toolkit Directory Structure 

View the OIDv4 Toolkit Help menu: 

$ python3 main.py -h 

http://www.latticesemi.com/legal
https://storage.googleapis.com/openimages/web/index.html
https://github.com/EscVM/OIDv4_ToolKit.git


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

18  FPGA-RD-02067-1.0 

 

Figure 3.3. Dataset Script Option/Help 

2. Use the OIDv4 Toolkit to download dataset. Download the Person class images: 

$ python3 main.py downloader --classes Person --type_csv validation 

 

Figure 3.4. Dataset Downloading Logs 

Figure 3.5 shows the downloaded dataset directory structure. 

 

Figure 3.5. Downloaded Dataset Directory Structure 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  19 

3. Lattice training code uses KITTI (.txt) format. However, the downloaded dataset is not in exact KITTI format. Convert 
the annotation to KITTI format. 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/* 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/* 

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/* 

 

Figure 3.6. OIDv4 Label to KITTI Format Conversion 

Note:  

KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90 

It has class ID followed by truncated, occluded, alpha, Xmin, Ymin, Xmax, Ymax. 

Code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as bounding box rectangle coordinates. 

3.2 Visualizing and Tuning/Cleaning Up the Dataset 
To visualize and annotate the dataset, run the command below: 

1. Visualize the labeled images. 

$ python3 main.py visualizer 

 

Figure 3.7. Toolkit Visualizer 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

20  FPGA-RD-02067-1.0 

2. Clone the manual annotation tool from the GitHub repository. 

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git 

 

Figure 3.8. Manual Annotation Tool – Cloning 

3. Go to annotate to KITTI. 

$ cd annotate-to-KITTI 

$ ls 

 

Figure 3.9. Manual Annotation Tool – Directory Structure 

4. Install the dependencies (OpenCV 2.4). 

$ sudo apt-get install python-opencv 

5. Launch the utility. 

$ python3 annotate-folder.py 

6. Set the dataset path and default object label.  

 

Figure 3.10. Manual Annotation Tool – Launch 

7. For annotation, run the script provided in the website below. 

https://github.com/SaiPrajwal95/annotate-to-KITTI 

For information on other labeling tools, see Table A.1. 

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI.git
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  21 

3.3 Data Augmentation 
Data Augmentation needs large amount of training data to achieve good performance. Image Augmentation creates 
training images through different ways of processing or combination of multiple processing such as random rotation, 
shifts, shear and flips, and so on. 

 

Figure 3.11. Augmentation Directory Stucture 

 data_aug – It contains basic methods and augmentation classes. 

 augmentation.py – This file reads the input images (input labels) and performs preferred augmentation on it. 

 config.py – Contains parameters that are used in augmentation operations. 

3.3.1 Configuring the Augmentation 

To configure the augmentation: 

1. Configure the config.py file which contains the parameters shown in Figure 3.12. 

 

Figure 3.12. config.py Configuration File Parameters 

2. Choose the operations to perform on the dataset. The operations can be selected in augmentation.py by editing 
the list all_op. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

22  FPGA-RD-02067-1.0 

 

Figure 3.13. Selecting the Augmentation Operations 

3. Add or Remove the operation by commenting/uncommenting the operation in the all_op list as shown in Figure 
3.13. 

3.3.2 Running the Augmentation 

Run the augmentation by running the following command: 

python augmentation.py --image_dir <Path_To_InputImage_Dir> --label_dir 

<Path_To_InputLabel_Dir> --out_image_dir <Path_To_OutputImage_Dir> --

out_label_dir <Path_To_OutputLable_Dir> 

 

Figure 3.14. Running the Augmentataion 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  23 

4 Training the Machine 

4.1 Training Code Structure 

 

Figure 4.1. Training Code Directory Structure 

  

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

24  FPGA-RD-02067-1.0 

4.2 Neural Network Architecture 

4.2.1 Human Count Training Network Layers 

This section provides information on the Convolution Network Configuration of the Human Presence Detection design. 
The Neural Network model of the Human Presence Detection design uses MobileNet NN base model and the detection 
layer of SqueezeDet model. 

Table 4.1. Human Counting Training Network Topology 

Image Input (224 x 224 x 3) 

Fire 1 Conv3 - 32 Conv3 - # where: 

 Conv3 = 3 x 3 Convolution filter Kernel size 

 # = The number of filter 

DWConv3 - 32- # where: 

 DWConv3 = Depthwise convolution filter with 3x3 size 

 # = The number of filter 

Conv1 - 32- # where: 

 Conv1 = 1 x 1 Convolution filter Kernel size 

 # = The number of filter 

For example, Conv3 - 16 = 16 3 x 3 convolution filters 

BN – Batch Normalization 

BN 

Relu 

Fire 2 DWConv3 - 32 

BN 

Relu 

Conv1 - 32 

BN 

Relu 

Fire 3 DWConv3 - 32 

BN 

Relu 

Maxpool 

Conv1 - 32 

BN 

Relu 

Fire 4 DWConv3 - 32 

BN 

Relu 

Conv1 - 64 

BN 

Relu 

Fire 5 DWConv3 - 64 

BN 

Relu 

Maxpool 

Conv1 - 64 

BN 

Relu 

Fire 6 DWConv3 - 64 

BN 

Relu 

Conv1 - 128 

BN 

Relu 

Fire 7 DWConv3 - 128 

BN 

Relu 

Maxpool 

Conv1 - 128 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  25 

BN 

Relu 

Conv12 Conv3 – 42 

 

 Human Count Network structure consists of 7 fire layers followed by one convolution layer. Fire layer contains 
convolution, depth wise convolution, batch normalization and relu layers with pooling layer only in fire 3, fire 5 
and fire 7. Layers fire 2, fire 4 and fire 6 do not contain pooling. 

 Fire 1 layer has stride=2 in convolution layer while all other conv operation in fire layers has stride = 1 

 In Table 4.1, the layer contains convolution (conv), batch normalization (bn) and relu layers. 

 Layer information: 

 Convolutional Layer 

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters 
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (that is 
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these 
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves and other high-
level features. For example, the filters on the first layer convolve around the input image and activate (or 
compute high values) when the specific feature (for example, curve) it is looking for is in the input volume. 

 Relu (Activation layer) 

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward. 
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear 
operations during the conv layers (element-wise, multiplications and summations). In the past, nonlinear 
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because 
the network is able to train a lot faster (because of the computational efficiency) without making a significant 
difference to the accuracy. The ReLu layer applies the function f(x) = max (0, x) to all of the values in the input 
volume. In basic terms, this layer just changes all the negative activations to 0. This layer increases the 
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv 
layer. 

 Pooling Layer 

After some ReLu layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer. 
In this category, there are also several layer options, with max pooling being the most popular. This basically 
takes a filter (normally by size 2 x 2) and a stride of the same length. It then applies it to the input volume and 
outputs the maximum number in every sub region that the filter convolves around.  

The intuitive reasoning behind this layer is that once you know that a specific feature is in the original input 
volume (there is a high activation value), its exact location is not as important as its relative location to the 
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the 
width change but not the depth) of the input volume. This serves two main purposes. The first is that the 
number of parameters or weights is reduced by 75%, thus lessening the computation cost. Second is that it 
controls over fitting. This term refers to when a model is so tuned to the training examples that it is not able to 
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or 
99% on the training set, but only 50% on the test data. 

 

 Batch Normalization 

Batch Normalization layer reduces the internal covariance shift. In order to train a neural network, perform 
preprocessing to the input data. For example, you can normalize all data so that it resembles a normal 
distribution (that means, zero mean and a unitary variance). The reason being is to prevent the early saturation 
of nonlinear activation functions (like the sigmoid function), assuring that all input data is in the same range of 
values, and so on. 

But the problem appears in the intermediate layers because the distribution of the activations is constantly 
changing during training. This slows down the training process because each layer must learn to adapt them to 
a new distribution in every training step. This problem is known as internal covariate shift. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

26  FPGA-RD-02067-1.0 

The Batch Normalization layer forces the input of every layer to have approximately the same distribution in 
every training step by following below process during training time: 

 Calculate the mean and variance of the layers input. 

 Normalize the layer inputs using the previously calculated batch statistics. 

 Scales and shifts in order to obtain the output of the layer. 

This makes the learning of layers in the network more independent of each other and allows you to be care 
free about weight initialization, works as regularization in place of dropout and other regularization 
techniques. 

 Depthwise Convolution and 1 x 1 Convolution Layer  

Depthwise Convolutions are used to apply a single filter per each input channel (input depth). Pointwise 
convolution, a simple 1 x 1 convolution, is then used to create a linear combination of the output of the 
depthwise layer. 

Depthwise Convolution is extremely efficient relative to standard convolution. However, it only filters input 
channels, it does not combine them to create new features. So an additional layer that computes a linear 
combination of the output of depthwise convolution via 1 x 1 convolution is needed in order to generate these 
new features. 

A 1 x 1 convolutional layer that compresses an input tensor with large channel size to one with the same batch 
and spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensor 
shape [filter_height, filter_width, in_channels, channel_multiplier] containing in_channels convolutional filters 
of depth 1, depthwise_conv2d applies a different filter to each input channel, then concatenates the results 
together. The output has in_channels * channel_multiplier channels. 

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of 
the network and control over fitting. 

4.2.2 Human Count Detection Network Output 

From the input image model first extracts feature maps, overlays them with a WxH grid and at each cell computes K pre-
computed bounding boxes called anchors. Each bounding box has the following: 

 Four scalars (x, y, w, h) 

 A confidence score ( Pr(Object)xIOU ) 

 C° conditional class probability 

 The current model architecture has a fixed output of WxHxK(4+1+C).where:  

 W , H = Grid Size 

 K = Number of Anchor boxes 

 C = Number of classes for which you want detection 

 The model has a total of 8232 output values which are derived from the following: 

 14 x 14 grid 

 7 anchor boxes per grid 

 6 values per anchor box. It consists of: 

 4 bounding box coordinates (x, y, w, h) 

 1 class probability 

 1 confidence score 

So in total, 14 x 14 x 7 x 6 = 8232 output values. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  27 

4.2.3 Training Code Overview 

 

Figure 4.2. Training Code Flow Diagram 

Training Code is divided into the following parts: 

 Model config 

 Model building 

 Model freezing 

 Data preparation 

 Training for Overall Execution Flow 

Details of each can be found in subsequent sections. 

4.2.3.1 Model Config 

The design uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config() maintains all the configurable parameters 
for the model. Below is summary of configurable parameters: 

 Image size 

 Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in 
src/config/kitti_squeezeDet_config.py 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

28  FPGA-RD-02067-1.0 

 

Figure 4.3. Code Snippet – Input Image Size Config 

 Since there are three pooling layers and fire 1 layer has stride=2, grid dimension would be H = 14 and W = 14. 
anchor_shapes variable of set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and 
heights. Update it based on anchors per grid size changes  

 

Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes) 

 Batch size 

 Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size. 

 Anchors per grid 

 Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid. 

 

Figure 4.5. Code Snippet – Anchors Per Grid Config #2 

 Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here, B (value 
7) indicates anchors per grid. 

 If you want to run network on your own dataset, you need to adjust the anchor sizes. Anchors are kind of prior 
distribution over what shapes your boxes should have. The better this fits to the true distribution of boxes, the 
faster and easier your training is going to be.  

 In order to determine anchor shapes, first load all ground truth boxes and pictures, and if your images do not 
have all the same size, normalize their height and width by the images’ height and width. All images are 
normalized before being fed to the network, so you need to do the same to the bounding boxes and 
consequently, the anchors. 

 Second, perform a clustering on these normalized boxes. (I.e. you can just use k-means without feature 
whitening and determine the number of clusters either by eyeballing or by using the elbow method.) 

 Check for boxes that extend beyond the image or have a zero to negative width or height. 

 

Figure 4.6. Code Snippet – Anchors Per Grid Config #3 

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  29 

 Training Parameters 

 Other training related parameters like learning rate, loss parameters, and different thresholds can be 
configured from src/config/kitti_squeezeDet_config.py. 

 

Figure 4.7. Code Snippet – Training Parameters 

4.2.3.2 Model Building 

SqueezeDet class constructor builds model which is divided into the following sections: 

 Forward Graph 

 Interpretation Graph 

 Loss Graph 

 Train Graph 

 Visualization Graph 

Forward Graph 

 CNN architecture consist of Convolution, Batch Normalization, ReLu, Maxpool, and 1 x 1 depthwise convolution 
layers. 

 Forward Graph consists of seven fire layers as described in Table 4.1. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

30  FPGA-RD-02067-1.0 

 

Figure 4.8. Code Snippet – Quantization Setting 

 

Figure 4.9. Code Snippet – Forward Graph Fire Layers with Mobilenet 

 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  31 

 

Figure 4.10. Code Snippet – ‘_mobile_layer’ 

 

Figure 4.11. Code Snippet – Forward Graph Last Convolution Layer 

Interpretation Graph 

 The Interpretation Graph consists of the following sub-blocks: 

 interpret_output 
This block interprets output from network and extracts predicted class probability, predicated confidence 
scores and bounding box values. 

Output of the convnet is a 14 x 14 x 42 tensor: there are 42 channels of data for each of the cells in the grid 
that is overlaid on the image and contains the bounding boxes and class predictions, which means the 42 
channels are not stored consecutively but are scattered all over the place and you need to sort these out 
somehow. Figure 4.12 and Figure 4.13 explain the details. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

32  FPGA-RD-02067-1.0 

 

Figure 4.12. Grid Output Visualization #1 

For each grid cell values are aligned as shown in Figure 4.13. 

 

Figure 4.13. Grid Output Visualization #2  

As shown in the code below, the output from conv12 layer (4d array of batch size x 14 x 14 x 42) needs to be 
sliced with proper index to get all values of probability, confidence, and coordinates. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  33 

 

Figure 4.14. Code Snippet – Interpret Output Graph  

For confidence score, this must be a number between 0 and 1, so sigmoid is used. 

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a 
softmax to make it probability distribution. 

 bbox 

This block calculates bounding boxes based on anchor box and predicated bounding boxes. 

 IOU 

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes. 

 Probability 
This block calculates detection probability and object class. 

Loss Graph 

 This block calculates different types of losses which need to be minimized. In order to learn detection, localization 
and classification, model defines a multi-task loss function. There are three types of losses which are considered 
for calculation: 

 Bounding Box 

This loss is regression of the scalars for the anchors 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

34  FPGA-RD-02067-1.0 

 

Figure 4.15. Code Snippet – Bbox Loss 

 Confidence Score 

 To obtain meaningful confidence score, each box’s predicted value is regressed against the  of the real 
and the predicted box. During training, compare ground truth bounding boxes with all anchors and assign 
them to the anchors that have the largest overlap (IOU) with each of them.  

 The reason being, to select the closest anchor to match the ground truth box such that the transformation 
needed is reduced to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest 
overlap with a ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include 
the loss generated by the responsible anchors.  

 As there can be multiple objects per image, normalize the loss by dividing it by the number of objects 
(self.num_objects). 

 

Figure 4.16. Code Snippet – Confidence Loss 

 Class 

 The last part of the loss function is just cross-entropy loss for classification for each box to do 
classification, as you would for image classification. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  35 

 

Figure 4.17. Code Snippet – Class Loss 

So, in one model architecture, you obtain the bounding box prediction, the classification, as well as, the confidence 
score. 

Train Graph 

 This block is responsible for training the model with Momentum optimizer to reduce all losses. 

Visualization graph 

 This provides visitations of detected results. 

4.2.3.3 Training 

 

Figure 4.18. Code Snippet – Training 

sess.run feeds the data and labels batches to network and optimizes the weights and biases. The code above handles 
the input data method in case of multiple threads preparing batches or data preparation in main thread only. 
  

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

36  FPGA-RD-02067-1.0 

4.3 Training from Scratch and/or Transfer Learning 
To train the machine: 

 Go to the top/root directory of the Lattice training code from command prompt. 

The Model works on 224 x 224 images. 

Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Mean and 
scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.19. 

 

Figure 4.19. Training Code Snippet for Mean and Scale 

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the --
data_path option while triggering training using train.py to get the desired path. For example, you can have 
<data_path>/training/images and <data_path>/training/labels. 

 

Figure 4.20. Training Code Snippet for Dataset Path 

 Create a train.txt.  
$ cd data/humancnt/ 

$ python dataset_create.py 

 

Figure 4.21. Create File for Dataset train.txt 

Notes: 

 train.txt – file name of dataset images. 

 image_set – train (ImageSets/train.txt) 

 data_path – $ROOT/data/humandet/ 

 Images – $ROOT/data/humandet/images 

 Annotations – $ROOT/data/humandet/labels 

 Modify the training script. 

Training script at @scripts/train.sh is used to trigger training. Figure 4.22 shows the input parameters which can be 
configured. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  37 

 

Figure 4.22. Training Input Parameter  

 $TRAIN_DATA_DIR – dataset directory path. /data/humandet is an example. 

 $TRAIN_DIR – log directory where checkpoint files are generated while model is training. 

 $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use. 

 --summary_step – indicates at which interval loss summary should be dumped. 

 --checkpoint_step – indicates at which interval checkpoints are created. 

 --max_steps – indicates the maximum number of steps for which the model is trained. 

 Execute the run command script which starts training. 

 

Figure 4.23. Execute Run Script 

 Start TensorBoard. 
$ tensorboard –logdir=<log directory of training> 

For example: tensorboard –logdir=’./logs/’ 

 Open the local host port on your web browser. 

  

Figure 4.24. TensorBoard – Generated Link 

 Check the training status on TensorBoard. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

38  FPGA-RD-02067-1.0 

 

Figure 4.25. TensorBoard 

Figure 4.25 shows the image menu of TensorBoard. 

 

Figure 4.26. Image Menu of TensorBoard 

 Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory. 
These files are used for creating the frozen file (*.pb). 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  39 

 

Figure 4.27. Example of Checkpoint Data Files at Log Folder 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

40  FPGA-RD-02067-1.0 

5 Creating Frozen File 
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the 
steps below to generate the frozen protobuf file: 

5.1 Generating the frozen .pb File 
Generate .pb file from latest checkpoint using below command from the training code’s root directory. 

$ python src/genpb.py –ckpt_dir <log directory> --freeze 

For example, python src/genpb.py –ckpt_dir logs/humancnt/train –freeze. 

 

Figure 5.1. pb File Generation from Checkpoint 

Figure 5.2 shows the generated .pb file. 

 

Figure 5.2. Frozen pb File 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  41 

6 Creating Binary File with Lattice SensAI 
This chapter describes how to generate binary file using the Lattice SensAI version 2.1 program. 

 

Figure 6.1. SensAI Home Screen 

To create the project in SensAI tool: 

1. Click File > New. 

2. Enter the following settings: 

 Project Name 

 Framework – TensorFlow 

 Class – CNN  

 Device – UltraPlus 

3. Click Network File and select the network (PB) file. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

42  FPGA-RD-02067-1.0 

 

Figure 6.2. SensAI –Network File Selection 

4. Click Image/Video/Audio Data and select the image input file. 

 

Figure 6.3. SensAI –Image Data File Selection 

5. Click NEXT. 

6. Configure your project settings. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  43 

 

Figure 6.4. SensAI – Project Settings 

7. Click OK to create project. 

8. Double-click Analyze. 

 

Figure 6.5. SensAI – Analyze Project 

9. Double-click Compile to generate the Firmware file. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

44  FPGA-RD-02067-1.0 

 

Figure 6.6. Compile Project 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  45 

7 Hardware Implementation 

7.1 Top Level Information 

7.1.1 Block Diagram 

 

Figure 7.1. RTL Top Level Block Diagram 

7.1.2 Operational Flow 

This section provides a brief idea about the data flow across ECP5 board. 

 The CNN module is configured with the help of a binary (BIN) file stored in a SD card. The BIN file is a command 
sequence code which is generated by the Lattice Machine Learning software tool.  

 Command code is written in DRAM through AXI before the execution of CNN Accelerator IP Core starts. CNN reads 
command code from DRAM during its execution and does calculation with it per command code. Intermediate 
data may be transferred from/to DRAM per command code.  

 The external camera configured using I2C_top logic block captures the raw image and pass it to CSI2_to_DVI_top 
module. CSI2_to_DVI_top module separates the R, G, B pixels from raw data and makes separated colors to match 
the real world using gain and offset controls.   

 The RGB data from CSI2_to_DVI_top module is downscaled to 224 x 224 image resolution by 
crop_downscale_human_count module to match CNN’s input resolution. This data is written into internal memory 
block of CNN Accelerator IP Core through input data ports.  

 After command code and input data are available, CNN Accelerator IP Core starts calculation at the rising edge of 
start signal.  

 Output data of CNN is passed to det_out_filter for post processing. det_out_filter generates bounding box 
coordinates X, Y, W, H associated with top 20 confidence value indexes for 224 x 224 image resolution. 

 These coordinates are passed to crop_downscale_human_count again for resizing them to fit the actual image 
resolution on HDMI display. HDMI is configured using hdmi_i2c_top block. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

46  FPGA-RD-02067-1.0 

7.1.3 Core Customization 

Table 7.1. Core Parameter 

Constant Default 

(Decimal) 

Description 

CONF_THRESH 65472 

 (that is -64) 

It is signed confidence threshold value calculated as per Q-Format of Last Layer of 
CNN. 

For example, if threshold is to be kept is (-0.0625) and Q-Format is Q5.10, 
CONF_THRESH. 

= 2’s complement ((0.0625) * (2^10))  

= 2’s complement (64)  

= 65472 Decimal  = FFC0 Hex 

OVLP_TH_2X 5 Intersection Over Union Threshold 

NUM_FRAC 10 Fraction Part Width in Q-Format representation.  

Constant Parameters (Not to be modified) 

NUM_ANCHOR 1372 Number of reference bounding boxes for all grids  

NUM_GRID 196 Total number of Grids (X * Y) 

NUM_X_GRID  14 Number of X Grids 

NUM_Y_GRID  14 Number of Y Grids 

PIC_WIDTH 224 Picture Pixel Width (CNN Input) 

PIC_HEIGHT 224 Picture Pixel Height (CNN Input) 

NUM_CLASS 1 Number of probability classes 

TOP_N_DET 20 Number of Top confidence bounding boxes detection 

OBJECT BODY Detection of upper human body from input image 

7.2 Architecture Details 

7.2.1 Pre-processing CNN 

Output from CSI2_to_DVI_top module is a stream of RGB data that reflects the camera image which is given to 
crop_downscale_human_count module.  

The crop_downscale_human_count module processes that image data and generates input of 224x224 image data 
interface for CNN IP.   

7.2.1.1 Pre-processing Flow 

 RGB data values for each pixel are fed serially line by line for an image frame. 

 These RGB data values are considered as valid only when horizontal and vertical masks are inactive. Mask 
parameters are set such that it masks out boundary area of full HD resolution (1920 x 1080) to 1792 x 896.  

 

Figure 7.2. Masking and Zoning 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  47 

 The Frame of 1792 x 896 is further divided in half horizontally by making two blocks of 896 x 896 of the same 
frame as shown in Figure 7.2. This is done to make the downscaling process easier. 

 When the left zone is active pixel values from left zone are used to generate CNN input image data and pixel values 
from right zone are ignored. After data is sent to CNN, the active zone is changed to right zone. When CNN is ready 
to accept data, the pixel values from right zone are used to generate CNN input image data. 

 Each 896x896 frame block is downscaled into 224 x 224 resolution image as shown in the Figure 7.3. 

 

Figure 7.3. Downscaling  

 It generates a single accumulated pixel value for each 4 x 4 grid of pixels. This leads to generate 224 x 224 values 
(896/4 x 896/4) from 896 x 896 values.   

 This accumulated value is written into Frame Buffer. Frame Buffer is a True Dual-Port RAM. Accumulated R, G, B 
pixel values for 4 x 4 grids are stored in the same memory location.  

 When Data is read from memory each RGB value is divided by 16 (that is the area of 4 x 4 grid) to take the average 
of 4 x 4 grid matrix. 

Data from Memory is read and formatted for compatibility with the trained network according to CNN input Data layer 
configuration. According to CNN Input Data layer width configuration, RTL is implemented with half word write with 
byte mode. It sends 2 downscaled pixel Byte values concatenated in single clock cycle. 

7.2.2 Post Processing CNN 

CNN provides total of 8232 [1372 x 6 (C, P, X, Y, W, H)] values which are given to det_out_filter module. CNN output 
data consists of the following parameters. 

Table 7.2. Data Parameters of CNN Output 

Parameter Description 

C This parameter indicates the confidence of detected object class.  

For each grid cell (14x14), one confidence value (16 Bit) for each anchor box (7) is provided making total 
values of confidence 14*14*7 = 1372 from CNN Output. 

P This parameter indicates the probability of detected object class. 

For each grid cell (14x14), one probability value (16 Bit) for each anchor box (7) is provided making total 
values of probability 14*14*7 = 1372 from CNN Output. 

X This parameter indicates the Relative X coordinate to transform the anchor box into a predicted 
bounding box for detected object.  

For each grid cell, one Relative X value (16 Bit) for each anchor box is provided making total values of 
14*14*7 = 1372 for X from CNN Output. 

Y This parameter indicates the Relative Y coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative Y value (16 Bit) for each anchor box is provided making total values of 
14*14*7 = 1372 for Y from CNN Output. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

48  FPGA-RD-02067-1.0 

Parameter Description 

W This parameter indicates the Relative W (Width) coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative W value (16 Bit) for each anchor box is provided making total values of 
14*14*7 = 1372 for W from CNN Output. 

H This parameter indicates the Relative H (Height) coordinate to transform the anchor box into a predicted 
bounding box for detected object. 

For each grid cell, one Relative H value (16 Bit) for each anchor box is provided making total values of 
14*14*7 = 1372 for H from CNN Output. 

 

Figure 7.4 shows the format of CNN output. 

 

Figure 7.4. CNN Output Data Format 

The primary functionality of det_out_filter module is to capture the CNN valid output and modifying it to make it work 
with the crop_downscale_human_count module.  

The det_out_filter module contains 3 sub-modules: det_sort_conf, det_st_class and det_st_bbox. 

 1372 values of confidence are passed to det_sort_conf module. It sorts out top 20 highest confidence values and 
stores their indexes. Index values are passed to det_st_class and det_st_bbox modules. 

 1372 values of probability are passed to det_st_class module. It provides the valid class probability bitmap which is 
passed to det_st_bbox module. 

 1372 x 4 values of coordinates are passed to det_st_bbox module. It calculates the bounding box coordinates, 
performs NMS and provides valid box bitmap. 

The crop_downscale module contains logic for post processing 

 draw_box module calculates the box coordinates for 89 x 896 image from 224 x 224 coordinates. 

 lsc_osd_text module generates character bitmap for text display on HDMI. 

 HDMI display logic implements Muxing logic to provide final serial HDMI output interface. 

This module implements logic for providing box coordinates, text and masking information to HDMI interface serially. 

7.2.2.1 Confidence Sorting 

 All input confidence values (1372) are compared with threshold parameter CONF_THRESH value. Confidence values 
which are greater than threshold are considered as valid for sorting. 

 det_sort_conf module implements an anchor counter (0-1371) which increments on each confidence value. It 
provides the index of confidence value given by CNN output.  

 Two memory arrays are generated in this module (1) Sorted top 20 (TOP_N_DET) Confidence Value array (2) 
Sorted top 20 Confidence Index array. 

 For sorting a standard sorting algorithm is followed. As input confidence values start arriving, each value is compared 
with stored/initial value at each location of the confidence value array.  

 If the input value is greater than stored/initial value on any array location AND lesser than stored/initial value of 

previous array location then, the input value is updated on current array location. Previously stored value of current 

location is shifted into the next array location.  

 Refer to Figure 7.5 for sorting of new value of confidence into existing Confidence Value array. Calculated confidence 
index (anchor count value) is also updated in confidence index array along with confidence value array. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  49 

 

Figure 7.5. Confidence Sorting 

 This process is followed for all 1372 Confidence values. This module provides 20 indexes (o_idx_00 to o_idx_19) as 
output along with the count of valid indexes (o_num_conf). o_idx_00 contains highest confidence value index and 
o_idx_29 contains lowest confidence value index. 

7.2.2.2 Class Probability Detection 

 det_st_class module captures total NUM_CLASS * 1372 Probability Class values from CNN output. Currently 
NUM_CLASS is set to 1 for a single class of Human Upper Body detection.  

 This module checks the class probability value for the sorted index numbers obtained from det_sort_conf module. 
 If multiple Probability Class exist (NUM_CLASS>1), this module compares values of multiple probability classes for 

each sorted confidence index value. It marks the maximum valued probability class as valid (1) and other classes as 
invalid (0) for each sorted confidence index and store this information in a bitmap memory array.  

 This array is provided as output to det_out_filter module for differentiating bounding boxes of different probability 
class by different color. Green box is used for probability class 1. Similarly, red and blue boxes can be used for 
probability class 2 and 3 respectively. 

 For Single Probability Class, this module provides hardcoded value of 1 set as probability for each sorted 
confidence index value in bitmap array. This only infers green boxes in final output. 

7.2.2.3 Bounding Box Calculation 

SqueezeDet Neural Network for Object Detection is trained with 7 reference boxes of pre-selected shapes having 
constant W (Width) and H (Height). These reference boxes are typically referred as Anchors. 

Table 7.3. Pre-Selected Width and Height of Anchor Boxes 

Anchor No. 1 2 3 4 5 6 7 

W x H (pixel) 184x184 138x138 92x92 69x69 46x46 34x34 23x23 

 

Anchors are centered around 14 x 14 grid cells of image. So each grid center has above seven anchors with pre-selected 
shape. 14 x 14 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y) pixel values 
are assigned following. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

50  FPGA-RD-02067-1.0 

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes 

Grid No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

X (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209 

Y (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209 

 

CNN provides total 1372 (14 x 14 x 7) values of each relative coordinates X, Y, W, and H to transform the fixed size anchor 
into a predicted bounding box. Input X, Y, W, and H values associated with top 20 sorted confidence indexes are used for 
box calculation in det_st_bbox module. 

Each anchor is transformed to its new position and shape using the relative coordinates as shown in logic 1. 

LOGIC 1 

X’ = X coordinate of Predicted Box 

X = Grid Center X according to Grid number 

W = Width of Anchor according to Anchor number 

DeltaX = Relative coordinate for X (CNN output) 

 

X’ = X + W * DeltaX 

Y’ = Y + H * DeltaY 

W’= W * DeltaW 

H’ = H * DeltaH 

The predicted X’, Y’, W’ and H’ values are clamped so that the box remains out of masking area. This is shown in logic 2. 

LOGIC 2 

If (X’ < 0) => X’’ = 0   | Else if (X’ > 223) => X’’ = 223 | Else X’’ = X’ 

If (Y’ < 0) => Y’’ = 0   | Else if (Y’ > 223) => Y’’ = 223 | Else Y’’ = Y’ 

If (W’ < 0) => W’’ = 0   | Else if (W’ > 223) => W’’ = 223 | Else W’’ = W’ 

The final calculated X’’, Y’’, W’’ and H’’ values for all the boxes are stored in separate memory array each having highest 
confidence coordinate at 1st index and lowest confidence coordinate 20th index.  

The Box coordinates are passed to crop_downscale_human_count module after NMS process.  

7.2.2.4 NMS – Non Max Suppression 

NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out the 
overlapping boxes using OVLP_TH_2X value. 

NMS process is started when CNN output data is completely received.  

 It starts from box having highest Confidence coordinates: 0th location in X, Y, W, H array. 

These coordinates are compared against 2nd highest Confidence coordinates: 1st location in X, Y, W, H array. From 
this comparison, Intersection and Union coordinates are found. 

 From these coordinates, Intersection and Union area are calculated between highest confidence box and 2nd 
highest confidence box as shown is Figure 7.6. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  51 

 

Figure 7.6. Intersection-Union Area NMS 

 If Intersection Area * (OVLP_TH_2X/2) > Union Area, the box with lower Confidence value is blocked in final output.  

 This NMS calculation is performed between all the combinations of two boxes. 

 After all combinations are checked, output array o_bbox_bmap contains boxes which are correctly overlapped or 
non-overlapped. o_out_en provides valid pulse for  crop_downscale_human_count for further processing on these 
box coordinates.  

7.2.2.5 Bounding Box Upscaling 

 draw_box module converts X, Y, W, H input coordinates provided for 224 x 224 resolution into 896 x 896 
resolution as shown in logic 3.  

LOGIC 3 

X1 = (X’’ - W’’/2) * 4 + Horizontal-Mask (64/960) 

Y1 = (Y’’ – H’’/2) * 4 + Vertical-Mask (92) 

X2 = (X’’ + W’’/2) * 4 + Horizontal-Mask (64/960) 

Y2 = (Y’’ + H’’/2) * 4 + Vertical-Mask (92) 

 (X, Y) are considered as center of the Box of Width W and Height H for calculating extreme ends of the Box (X1, X2, 
and Y1, Y2). For converting from 224 to 896, the coordinates are multiplied with 4. Required offset value is added in 
coordinate calculations to keep the boxes out of mask area. X1, X2 and Y1, Y2 coordinates are calculated for each 
Box. 

 Pixel counter and Line counter keeps track of pixels of each line and Lines of each frame. Outer boundary of the box 
and Inner boundary of the box are calculated when Pixel and Line counter reaches to coordinates (X1, X2) and (Y1, 
Y2) respectively. Calculations are done as per logic 4. 

LOGIC 4 

Outer Box = (Pixel Count >= (X1 – 1)) and (Pixel Count <= (X2 + 1)) and  

                     (Line Count >= (Y1 – 1)) and (Line Count <= (Y2 + 1)) 

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and  

                     (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1)) 

 Each Bounding Box is calculated by removing the intersecting area of outer and inner box. Box is only displayed if 
Box-Bitmap for that box is set to 1(From det_st_bbox module). Box on calculations are as done as logic 5. 

LOGIC 5 

Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1] 

Box_on[2] = Outer Box[2] and ~Inner Box[2] and Box-Bitmap[2] 

. 

. 

Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20] 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

52  FPGA-RD-02067-1.0 

 o_box_obj signal is asserted when any of the above Box_on signal is set which is then connected to green_on signal 
and processed for Bounding Box display via HDMI. 

7.2.2.6 OSD Text Display 

 lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen. It 
takes count of detected Humans and Threshold value as input. 

 It sets an output signal (text_on) when text is to be displayed on HDMI. When text_on is set, RGB value for that 
pixel location is assigned FFF value (While color) and sent to HDMI output instead of original pixel value. 

7.2.2.7 HDMI Display Management 

RGB data is passed serially to HDMI and it is multiplexed by following values.  

 If Signal Text is on (text_on) – Pass all RGB value as FFF for While color display. 

 If Signal Green is on (green_on) – Pass only Green pixel value as FFF. Keep Red and Blue values as 0. 

 If Signal Mask is on (fmask_on) – Pass darker RGB pixel values.  

 Else – Pass Input RGB Data as it is. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  53 

8 Creating FPGA Bitstream File 
This section describes the steps to compile RTL bitstream using Lattice Diamond tool. 

To create the FPGA bitstream file: 

1. Open Lattice Diamond Software. 

 

Figure 8.1. Lattice Diamond – Default Screen 

2. Go to File > Open > Project. 

3. Open Diamond project file for ECP5 Face Identification Demo RTL. 

 

Figure 8.2. Lattice Diamond – Open ECP5 Face Identification Diamond Project File 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

54  FPGA-RD-02067-1.0 

4. Double-click Bitstream File to trigger bitstream generation. 

 

Figure 8.3. Lattice Diamond – Trigger Bitstream Generation 

5. The Lattice Diamond tool displays Saving bit stream in … message in Reports window as shown in Figure 8.4. 
Bitstream is generated at Implementation Location in Figure 8.3. 

 

Figure 8.4. Lattice Diamond – Bit File Generation Report Window 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  55 

9 Programming the Demo 

9.1 Programming the CrossLink SPI Flash 

9.1.1 Erasing the CrossLink SRAM Prior to Reprogramming 

If the CrossLink is already programmed (either directly or loaded from SPI Flash), erase the CrossLink SRAM before 
reprogramming the CrossLink SPI Flash. Keep the board powered on to prevent reloading on reboot. 

To erase the CrossLink device SRAM: 

1. Start Diamond Programmer. In the Getting Started dialog box, select Create a new blank project. 

 

Figure 9.1. Diamond Programmer – Default Screen 

2. Click OK. 

3. In the Diamond Programmer main interface, select LIFMD in Device Family and LIF-MD6000 in Device as shown in 
Figure 9.2. 

 

Figure 9.2. Diamond Programmer – Device Selection 

4. Click the CrossLink row and select Edit > Device Properties. 

5. In the Device Properties dialog box, select SSPI SRAM Programming in Access mode and Erase Only in Operation as 
shown in Figure 9.3. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

56  FPGA-RD-02067-1.0 

 

Figure 9.3. Diamond Programmer – Device Operation 

6. Click OK to close the Device Properties dialog box. 

7. In the Diamond Programmer main interface, click the Program button  to start the erase operation. 

Note: If you power OFF/ON the board, the SPI Flash reprograms the CrossLink device. In this case, you must repeat steps 
1 to 7. 

9.1.2 Programming the CrossLink VIP Input Bridge Board 

To program the CrossLink VIP Input Bridge Board: 

1. Ensure that the CrossLink device SRAM is erased by performing the steps in Erasing the CrossLink SRAM Prior to 
Reprogramming.  

2. In the Diamond Programmer main interface, click the CrossLink row and select Edit > Device Properties to open the 
Device Properties dialog boxes shown in Figure 9.4. 

 

Figure 9.4. Diamond Programmer – Selecting Device Properties Options for Crosslink Flashing 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  57 

3. Apply the settings below. 

 Under Device Operation, select the options below: 

 Access Mode – SPI Flash Programming 

 Operation – SPI Flash Erase, Program, Verify 

 Under Programming Options, select the bitstream file 
~/Demonstration/Dual_Camera_to_parallel_Crosslink.bit available in downloaded demo directory in 
Programming file. 

 For SPI Flash Options, refer to Table 9.1: 

Table 9.1. Diamond Programmer – SPI Flash Options 

Item Rev B Rev C - Option 1 Rev C – Option 2 

Family SPI Serial Flash SPI Serial Flash (SPI Serial Flash 
Beta for Diamond 3.10 SP1 or 

earlier) 

SPI Serial Flash (SPI Serial Flash 
Beta for Diamond 3.10 SP1 or 

earlier) 

Vendor Micron Micron Macronix 

Device SPI-M25PX16 SPI-N25Q128A MX25L12835F 

Package 8-pin S08W 8-pin SOP2 8-Land WSON 

 

 Click Load from File to update the Data file size (Bytes) value. 

 Ensure that the following addresses are correct: 

 Start Address (Hex) – 0x00000000 

 End Address (Hex) – 0x00020000 

4. Click OK. 

5. In the Diamond Programmer main interface, click the Program button  to start the programming operation. 

6. After successful programming, the Output console displays the result as shown in Figure 9.5. 

 

Figure 9.5. Diamond Programmer – Output Console  

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

58  FPGA-RD-02067-1.0 

9.2 ProgrammingECP5 VIP Processor Board 
Both the CrossLink VIP Input Bridge Board and the ECP5 VIP Processor Board must be configured and programmed. Also, 
the demo design firmware must be programmed onto the MicroSD Card which is plugged into the MicroSD Card Adaptor 
Board. 

9.2.1 Erasing the ECP5 Prior to Reprogramming 

If the ECP5 device is already programmed (either directly or loaded from SPI Flash), erase the ECP5 SRAM before 
reprogramming the ECP5 SPI Flash. Keep the board powered on to prevent reloading on reboot. 

To erase the ECP5 SRAM: 

1. Launch Diamond Programmer with Create a new blank project. 

 

Figure 9.6. Diamond Programmer – Default Screen 

2. Click OK. 

3. In the Diamond Programmer main interface, select ECP5UM in Device Family and LFE5UM-85F in Device as shown 
in Figure 9.8. 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  59 

 

Figure 9.7. Diamond Programmer – Device Family Selection 

 

Figure 9.8. Diamond Programmer – Device Selection 

4. Click the ECP5 row and select Edit > Device Properties. 

5. In the Device Properties dialog box, select JTAG 1532 Mode in Access mode and Erase Only in Operation (shown in 
Figure 9.9). 

 

Figure 9.9. Diamond Programmer – Device Operation 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

60  FPGA-RD-02067-1.0 

6. Click OK to close the Device Properties dialog box. 

7. In the Diamond Programmer main interface, click the Program button  to start the Erase operation. 

Note: If you power OFF/ON the board, the SPI Flash reprograms the ECP5 device. In this case, you must repeat 
steps 1 to 7. 

9.2.2 Programming the ECP5 VIP Processor Board 

To program the ECP5 VIP Processor Board: 

1. Ensure that the ECP5 device is erased by performing the steps in Erasing the ECP5 Prior to Reprogramming. 

2. In the Diamond Programmer main interface, click the ECP5 row and select Edit > Device Properties 

3. The Device Properties dialog box opens. Select human count demo bit file in Programming file: section as shown in 
Figure 9.10 (Rev B). 

 

Figure 9.10. Diamond Programmer – Selecting Device Properties Options for ECP5 Flashing 

http://www.latticesemi.com/legal


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  61 

4. Apply the settings below: 

 Under Device Operation, select the options below: 

 Access Mode – SPI Flash Background Programming 

 Operation – Erase, Program, Verify 

 Under Programming Options, select the appropriate bitstream file for respective demo in Programming file. 

 For SPI Flash Options, refer below table: 

Table 9.2. Diamond Programmer – SPI Flash Options 

Item Rev B Rev C - Option 1 

Family SPI Serial Flash SPI Serial Flash 

Vendor Micron Macronix 

Device SPI-N25Q128A MX25L12835F 

Package 8-pin SO8 8-Land WSON 

 

 Click Load from File to update the Data file size (Bytes) value. 

 Ensure that the following addresses are correct: 

 Start Address (Hex) – 0x00000000 

 End Address (Hex) – 0x001D0000 

5. Click OK. 

6. In the Diamond Programmer main interface, click the Program button  to start the programming operation. 

7. After successful programming, the Output console displays the result as shown in Figure 9.11. 

 

Figure 9.11. Diamond Programmer – Output Console 

  

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

62  FPGA-RD-02067-1.0 

9.3 Programming the MicroSD Card Firmware 
To write the image to the MicroSD Card: 

1. Download and install the Win32diskimager Image Writer software from the following link:  
https://sourceforge.net/projects/win32diskimager/. 

2. Use Win32diskimager to write the appropriate Flash image (binary firmware) file to the SD memory card. You may 
need SD Card reader and adapter to connect the MicroSD card to PC for firmware flashing. 

3. In Win32 Disk Imager, select the image file for respective demo firmware bin file as shown in Figure 9.12. 

4. Select the Card Reader in Device as shown in Figure 9.12. 

5. Click Write. 

 

Figure 9.12. Win32 Disk Imager 

Optionally, you can click Verify Only to confirm whether firmware write is correct. 

http://www.latticesemi.com/legal
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  63 

10 Running the Demo 
To run the demo: 

1. Insert the configured MicroSD Card into the MicroSD Card Adapter, and connect it to the Embedded Vision 
Development Kit. 

 

Figure 10.1. Connecting the MicroSD Card 

2. Cycle the power on the Embedded Vision Development Kit to allow ECP5 and CrossLink to be reconfigured from 
Flash. 

3. Connect the Embedded Vision Development Kit to the HDMI monitor. The camera image should be displayed on 
monitors shown in below figure. 

 

Figure 10.2. Running the Demo 

4. Demo output contains bounding boxes for detected humans in a given frame and it displays the total number of 
detected humans in a given frame on HDMI output. 

http://www.latticesemi.com/legal


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

64  FPGA-RD-02067-1.0 

Appendix A. Other Labelling Tools 
Table A.1 provides information on other labelling tools. 

Table A.1. Other Labelling Tools 

Software Platform License Reference Converts 
To 

Notes 

annotate-to-
KITTI 

Ubuntu/Windows 
(Python based 
utility) 

No License 
(Open 
source 
GitHub 
project) 

https://github.com/SaiPrajwal95/annotate-to-
KITTI 

KITTI Python based 
CLI utility. 
Just clone it 
and launch. 
Simple and 
Powerful. 

LabelBox JavaScript, HTML, 
CSS, Python  

Cloud or 
On-
premise, 
some 
interfaces 
are 
Apache-2.0 

https://www.labelbox.com/ json, csv, 
coco, voc 

web 
application 

LabelMe Perl, JavaScript, 
HTML, CSS, On 
Web 

MIT 
License 

http://labelme.csail.mit.edu/Release3.0/ xml converts only 
jpeg images 

Dataturks On web Apache 
License 2.0 

https://dataturks.com/ json converts to 
json format 
but creates 
single json file 
for all 
annotated 
images 

LabelImg ubuntu OSI 
Approved:: 
MIT 
License  

https://mlnotesblog.wordpress.com/2017/12/
16/how-to-install-labelimg-in-ubuntu-16-04/ 

xml need to 
install 
dependencies 
given in 
reference 

Dataset_ 

annotator 

Ubuntu 2018 

George 
Mason 
University 
Permission 
is hereby 
granted, 
Free of 
charge 

https://github.com/omenyayl/dataset-
annotator 

json Need to 
install 
app_image 
and run it by 
changing 
permissions 

 

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  65 

References 
 Google TensorFlow Object Detection GitHub 

 Pretrained TensorFlow Model for Object Detection 

 Python Sample Code for Custom Object Detection 

 Train Model Using TensorFlow 

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn


Object Counting using Mobilenet CNN Accelerator IP  
Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

66  FPGA-RD-02067-1.0 

Technical Support Assistance 
Submit a technical support case through www.latticesemi.com/techsupport. 

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport


 Object Counting using Mobilenet CNN Accelerator IP 
 Reference Design 
 

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02067-1.0  67 

Revision History 
Revision 1.0, October 2019 

Section Change Summary 

All Initial release 

 
 

http://www.latticesemi.com/legal


 

  

 
 
 
 

www.latticesemi.com 

http://www.latticesemi.com/

	Object Counting using Mobilenet CNN Accelerator IP
	Acronyms in This Document
	1 Introduction
	1.1 Design Process Overview
	1.1.1 Training Model
	1.1.2 Neural Network Compiler
	1.1.3 FPGA Design
	1.1.4 FPGA Bitstream and Quantized Weights and Instructions


	2 Setting Up the Basic Environment
	2.1 Tools and Hardware Requirements
	2.1.1 Lattice Tools
	2.1.2 Win32 MicroSD Disk Imager
	2.1.3 Hardware

	2.2 Setting Up the Linux Environment for Machine Training
	2.2.1 Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1 Installing the CUDA Toolkit
	2.2.1.2 Installing the cuDNN

	2.2.2 Setting Up the Environment for Training and Model Freezing Scripts
	2.2.2.1 Installing the Anaconda Python

	2.2.3 Installing the TensorFlow v1.12
	2.2.4 Installing the Python Package


	3 Preparing the Dataset
	3.1 Downloading the Dataset
	3.2 Visualizing and Tuning/Cleaning Up the Dataset
	3.3 Data Augmentation
	3.3.1 Configuring the Augmentation
	3.3.2 Running the Augmentation


	4 Training the Machine
	4.1 Training Code Structure
	4.2 Neural Network Architecture
	4.2.1 Human Count Training Network Layers
	4.2.2 Human Count Detection Network Output
	4.2.3 Training Code Overview
	4.2.3.1 Model Config
	4.2.3.2 Model Building
	Forward Graph
	Interpretation Graph
	Loss Graph
	Train Graph
	Visualization graph

	4.2.3.3 Training


	4.3 Training from Scratch and/or Transfer Learning

	5 Creating Frozen File
	5.1 Generating the frozen .pb File

	6 Creating Binary File with Lattice SensAI
	7 Hardware Implementation
	7.1 Top Level Information
	7.1.1 Block Diagram
	7.1.2 Operational Flow
	7.1.3 Core Customization

	7.2 Architecture Details
	7.2.1 Pre-processing CNN
	7.2.1.1 Pre-processing Flow

	7.2.2 Post Processing CNN
	7.2.2.1 Confidence Sorting
	7.2.2.2 Class Probability Detection
	7.2.2.3 Bounding Box Calculation
	7.2.2.4 NMS – Non Max Suppression
	7.2.2.5 Bounding Box Upscaling
	7.2.2.6 OSD Text Display
	7.2.2.7 HDMI Display Management



	8 Creating FPGA Bitstream File
	9 Programming the Demo
	9.1 Programming the CrossLink SPI Flash
	9.1.1 Erasing the CrossLink SRAM Prior to Reprogramming
	9.1.2 Programming the CrossLink VIP Input Bridge Board

	9.2 ProgrammingECP5 VIP Processor Board
	9.2.1 Erasing the ECP5 Prior to Reprogramming
	9.2.2 Programming the ECP5 VIP Processor Board

	9.3 Programming the MicroSD Card Firmware

	10 Running the Demo
	Appendix A. Other Labelling Tools
	References
	Technical Support Assistance
	Revision History


