s LATTICE

Key Phrase Detection Using Compact CNN
Accelerator IP

Reference Design

FPGA-RD-02066-1.0

October 2019

Key Phrase Detection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Contents

WA Yol oY o170 s F T o T I o T o ol U Ly =T o | SRS 7
N 1 4 o T [¥ ot o o TR SRTPPRRP 8
1.1. DESIGN PrOCESS OVEIVIEW ...eeiiiiiiieiiiiiieiiitee ettt st s et e e st e e e sab e e e s e e e e sab et e s s aab e e e s eabae e s sbbeeeeanraeesnnnees 8
2. Setting Up the BasiC ENVIFONMENT ...cccuuiiiiiiiiieiieitt ettt ettt st e s bt e bt e s bt e e beesabeeesaee s beeensee s beeenneesane 9
2.1. Tools aNd HardWare REQUITEMENTS.cciiii ittt iiiee ettt st e e sttt e s sttt e s saeeessbteeesssbaeessasaeessnseeessnasaeesnnseens 9
2 O B -1 i 4 ol e Yo | £ T S P STPUROTSPOPP 9
D N & Yo 1Y T T USROS 9
2.2. Setting Up the Linux Environment for Maching Training.........ccceeeiiiie i ree st 10
2.2.1. Installing the CUDA Toolkit
2.2.2. cuDNN Installation................
2.2.3. Installing the Anaconda and Python3
2.2.4. Installing TensorFlow v1.12
2.2.5. Installing the Python Package
T T o= Yo T T=] d TN D F= Y = T SRR
3.1. Yl Lot AT d (TN D =Y = Y <] USRS
3.2. DOWNIOAAING the DAT@SET.....ccciiiieeeiiiee ettt eere e e ete e e st e e e et e e e setbeeeesabaeeeettaeesassaaeesnsseseanstaeseassaaeessseeennns
3.3. Data AUZMENTATION c...eiiiiieeeie ettt s e e s e e e e s e e s e e e e senb et e e s b e e e s e nne e e sanneee s e rreeeenne
4. TrainiNg the IMACKHINE .. .coiiieee ettt st e st e s a bt e s a et e st e e sat e e sabeesaseesabeesateesabeennteesabeenees
4.1. TraiNiNg COOE SEIUCTUIE .oueiiitiieiie ettt ettt et e st e e bt e sttt e bt e st e e s bt e sabeeebeesabeeeneesbeeeneenane
4.2, NeUral NetWOrK ArCITECIUIEueiieiiie ettt e ere e st e e e st e e e s ate e e sateeeesntaeessssteeesnnseeeesnsseesnnnns
4.2.1. Neural Network Architecture
4.2.2. Key Phrase Detection NetWork OULPULccuiiiiiiiii ettt e e e e e e e trrr e e e e e e s eaaeaaeeeeaesennnnnnes
4.2.3. Training Code Overview
4.2.4. Training from Scratch and/or Transfer Learning
LT O T Y [= a0 1.2=Y o I 11 PSR
5.1. Generating the Frozen (.p0) FIl ... ettt st s e e s ae e st e e s aeesabe e saseesateesareennnas
Creating Binary File WIth SENSALo et e e e st e e et e e s sate e e e st eeeeenseeeesssaeeeansseeeensseeesanneeas
[E e N T =l [y Vo] (=T 0 a =T o1 = 1 (o o PR PURRNt
7.1. TOP LEVEI INFOIMATION «.ecieiiee ettt e et e et e e e s bb e e e e abe e e eeabaeeeebbeeaeestaeeeesbaeesassesaeansanaeannes
% T O 1 [Yo | B 1 =Y =4 =Y USRI
7.1.2. OVerall OperationNal FIOWccicciiiiiiiee ettt e e sttt e e e e e s et e e e e e e s esaaetaeeeeeeseenastaaseeeeeesnnnsaaneeaens
7.1.3. COre CUSTOMIZATIONuiiiiiiiiii ettt st et e e s s e e s e e e sne e e e e sab e e e s emr et e smnneessaneeesenrneesannnees
8. RTL BitStream GENEIATION ..cccccuiiieiiiieeiiiiee ettt ste ettt e e ettt e e s er e e e s b et e e e s b e e e saane e e e saneeeeeanbeeeeenreeesnneeeesaneeesanrneesannneas
9. Programming the Key Phrase Detection Demo
9.1. Functional DesCriptionceieiiiiiiiiiiee e e e
9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash .
9.3. Run iCE40 Key Phrase Detection Demo 0N HAardWareoccuuiiiiieeiieiiiiiieee et e e e esntvee e e e e e e s sntraeeeaeeeene 45
B=Tel VoY o I VT oY o Yo o A AN [- [T <SP RURP P 46
ATy o] T L1 oY Y APPSR 47

N

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.

Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.
Figure 2.16.
Figure 2.17.

Lattice Machine Learning DESIZN FIOWceiiiiiii ittt e et e e ate e e save e e e s tr e e e entaeesnsaeeesnsaeaeanns 8
Lattice Himax HMO1BO Upduino Shield Boardcoceiiiieiiiiiiieeii ettt 9
CUDA REPO DOWNIOAM ...ttt ettt ettt ettt e st e it e st e ebt e e sab e e sabeesabeeeabeesabeesnbeesareesaneesas 10
CUDA REPO INSTAIAION ...eitiieiieee ettt sttt ettt e st e st e sab e e sabeesabeesabeesabeesaneenas 10
FEECI KBYS ettt ettt s b e e b e st e e bt e st e e bt e s bt e et e e sa bt e e bt e s bt e e bt e s b e e e bt e s beeeneesares 10
Updated Ubuntu Package REPOSITOMIESeeiiiiieieiiiieccitee e citteeeite e e eetee e e stree e e satr e e e eaaeeesssvaeeenntaeeesnnneesssseeean 10
CUDA Installation COMPIETEccccuiiiiiiiee ettt et e e e e et e e s et e e e s taeeeeata e e s nsaeeesasseeeanssseessnnnes 11
(o010 N I o Y=Y VA T 0 1y =1L F=1 o o SRS 11
ANAcoNda Package DOWNIOAM......cccccuiiiiiiiiee e cieee ettt ee e st e e e e tte e e s eaae e e e s treeeestaeesssaeeesstseesanssseesansaeeessreeannes 11
F Ve ToleTaTe - 11 1 - 4 o] o I OSSPSR 12

LIiCENSE TEIMS PrOMPT «.eeiiiiiiieieitiee ettt s e s s be e e s e b e e e s e sne e e smb e e e s sabeeesensneeesnnnes 12
Installation Path ConfirMationcccuiiiiiiii e e et e e e e e e et r e e e e e e seeaaraeeeeeeeeennraeeeas 12
Launch/Initialize Anaconda Environment Installation CoOmMPIeteccoveviieviieiiiicie e 12
Anaconda Environment ACTIVAtIONeeiii it e e e e s e e e e e s s e earatr e e e e e e s e nnraeeeas 12
=T g 1Yo T B (o XNV [T = | =Yoo DO S URURR 13
TensorFlow Installation CoNfirMationcoociiiieiiiie e e e e et e e e s tre e e e eatae e e eaaaeesnraeaas 13
TensorFlow INStallation COMPIETEcooiiiiiiiiieee et st e s b e e e 13
EQSYdICt INSEAllatioN c...ceeeeeeie ettt s et b e e b e et e e e aeeeanes 13

Figure 2.18. Anaconda Env — [ibrosa INSTallationoceeiieiiiiiiii ettt s 14
Figure 3.1. Convert Sample Rate SCript EXECULIONciiiuiiiiii ittt ettt e bt e s b e s sae e e saneenneees 15
Figure 4.1. Training Code DireCtOry STFUCTUIE ..o e e e e e st e e e e e e s eabetr e e e e e e sesnntaaneeeseesnnnees 16
Figure 4.2. Training Code FIOW DI@Bramccieiiiiiiiiiiiiee e eccciiitee e e e e secatte e e e e e s e st taeeeeee e e s asbaasaeeseesessstseseeessasastreneesssensnnses 19
Figure 4.3. Code SNippet — MOl SEELINES .. .uuiii it e e e e e e e st r e e e e e e seabbareeeeeesesnntaaneeaseensnses 20
Figure 4.4. Code SNIPPEt — AUIO PrOCESSONeiiuiiiitieiieettteite ettt ettt ettt e site ettt e sate s bt e e btessbae e satesbeeesateebeeesabeesneeesanesneeas 20
Figure 4.5. Code Snippet — Quantization Parameters SELHINGcuiv ettt s 22
Figure 4.6. Code Snippet — FOrward Graph Fir€ LAYEIS ...cccuiiiiecieieiciieeestieeeeste e e setee e staeesesateeessaaeassnseeesnssaeessnneeessnnseeens 23
Figure 4.7. Code Snippet — Convolution QUAaNTIZAtioN........c.uiiieiiiii it e s e e see e s e e s st e e e esataeeesneeessnneeeas 23
Figure 4.8. Code SNIPPet — TraiNiNg LOOP ...uuuuiieiiieiiiiiiiee e e e ceiitttee e e e e eesttre et e e e se st baaeeeeesesassaaseeeeeesaassstseseasssessstsnneesseensnnses 23
Figure 4.9. Code Snippet — Train IMOMEIoeeeiiieiiiiee e e e e e st e e e e e e sebbareeeeeeeesnntbaneeaseesnnnses 24
Figure 4.10. Code Snippet — SaVe ChECKPOINTScc..eiiiiiiee ettt e e e e e e e s et b e e e e e e s e saareeeeeseessnntbaneeeseessnses 24
Figure 4.11. Code Snippet — Config File CONTIG.Sh.....cuuiii ettt e e et e e e ba e e e e aaee e s areeaan 25
Figure 4.12. Key Phrase Detection — Trigger Training with Default Options (Phase 1)........ccccoevvvrienienierienrienee e 25
Figure 4.13. Key Phrase Detection — Training from Scratch (Phase 2).........ceeeciiiiiciie et 26
Figure 4.14. Key Phrase Detection — Trigger Training with Transfer LEarning........cccccevvcveeeeiiiescciee et eeseee e s 26
Figure 4.15. Key Phrase Detection — TrainiNg LOZSuuuiiiiiiiiiiiiieee e ettt e e e eescitte e e e e e e setvar e e e e e e s e assteseaeeseesnntaaseeassesnnses 27
Figure 4.16. TeNSOrBoard — LAUNCIccoeiiiiiiiiee et e e e e e e st e e e e e e e e s abbeaeeaaeeseesabbeeeaeeeesanntaaneeassennnnses 27
Figure 4.17. TensorBoard — Link Default QULPUL IN BrOWSETcciiiiiiiiiiiiieiee e ettt e e e e e ceitee e e s e e e sebrare e e e e e e eesantaeseeeeeesnnnees 27
Figure 4.18. Checkpoint Storage Dir€CtOry STUCTUIEccii it e s e e e e e s et b e e e e e e e e e sanbaaseeeeeesnnnees 28
Figure 5.1. Generating .phtXt FOI INTEIENCEccoceiiii e e e e e e s ae e e st e e e e sataeeesaneeeesnneeean 29
Figure 5.2. Generated .phtXt fOr INfEIENCEoooc e e s e e e e e s ar e e e st e e e esataeeesaneeeesnreeean 29
Figure 5.3. Run genpb.py to Generate INFEreNCe .pboiiiiii it e e s e e e ta e e e s naee e snreee s 29
Figure 5.4. Frozen INference .ph OULPUL........ciii ettt e e e e e et e e e e e e e e seabbaaeeaeeeseasatreseaeesesanntaaseeaesessnnses 30
PO ST Y =T o I A B o (o] ¢ TS Yol 1= o [P PP PPPPPPPPPPRE 31
Figure 6.2. SENSAI —NEtWOIrK Fil@ SEIECTLION ...ccieiiiiiiiiee et e e e e e seba e e e s e e e s e bbaaeeeeeeeeesantaaseeaeeessnnses 32
Figure 6.3. SensAl —Image Data File SEIECTIONuuiiiiee e e e e e e e e e e e s e aaa e e e e e e e eesantaaeeeaaeesnnnees 32
Figure 6.4. SENSAL — ProjeCt SETHINGS ..viiiiiiiiiiiiiiiiiiiiiiiitieeeeeee ettt et e e et et e e e e e e s et e e e e e et e e e e e e s e s e s e s e sesesesesesesesesesesenenens 33
FIUre 6.5. SENSAI — ANGIYZE PrOJECE ...cuuiieeiiieeeeiee ettt et e et e e st e e et e e e e ate e e eeateeeesataeeeastaeesensaeeesnseeeanstaeeeansnneesnsseeenn 33
Figure 7.1. Top Level Block Diagram Key Phrase Detection iCEAD.........coccuuieeeiiiieieiiee e cteee e eree e eeee et e e s satae e e enaee e snreee s 35
Figure 8.1. LattiCe RAdiant SOftWAIEuiiiiiiee ettt e e et e e et e e e et e e e s ta e e e estaeesansaeeesnseeeenstaeeeanneeeesssenenn 37
Figure 8.2. Lattice Radiant SOftWare — QPN PrOJECT.....ocii ittt ettt e e e e e e e e s e arr e e e e e e eesnnbaeseeaeeessnnees 37
Figure 8.3. Lattice Radiant Software — Bitstream GENEIratioNcoccciiiiiiee it e e e e e e et ae e e e e e e e e eanees 38
Figure 8.4. Lattice Radiant Software — Bitstream Generation EXport REPOITSueeieeiiiiiiiiiiiee e e 38

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATTICE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

Figure 9.1. iICE40 Key Phrase DEMO DI@ZIamccueieicuieeeiiieeeeiieeesiteeeesttesesstseeeseassasessseessssssseesssssssassesesssssessssssesesssseseans
Figure 9.2. Radiant Programmer — Creating New Project
Figure 9.3. Radiant Programmer — Initial Project WiNQOWccccioiiiiiiieiieiiieieee ettt sttt st
Figure 9.4. Radiant Programmer —iCE40 UltraPlus Device Family Selectioncccceeriiiiiieiiieinieeieeeee e 40
Figure 9.5. Radiant Programmer —iCE40 UltraPlus Device Selection .
Figure 9.6. Radiant Programmer — Bitstream Flashing SEttiNgScooiiiiiiiiiiiiiie e e
Figure 9.7. Radiant Programmer — Filter-Firmware Bin File Flashing SEttingccccceiviieeeiciii e 43
Figure 9.8. Radiant Programmer — Firmware Bin File FIashing SETtiNGcccovviiiiei it 44
Figure 9.9. Camera and LED LOCATIONceieiiiieeciii e ettt e cttee e etee e et e e e st e e e ette e e sataeeesataeeeesssaeesassaeessnsseeeansssesennsneeessssenanns 45

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 5

http://www.latticesemi.com/legal

Key Phrase DeFection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

Tables

Table 4.1. Key Phrase Detection Training NEtWork TOPOIOZYuvviieuiiieiiiieeciiiee ettt eere e e st e e e rae e e naa e e sareee s 17
Table 7.1. CNN OULPUL FOIMAT .o..viiiiiiiiii ettt ettt ettt sttt s bt e bee e eb et e s bt e e bt e e sab e e abe e e sabeenbeeesaneesbeeesnneeneeas 35
TADIE 7.2, COE PAT@MELEIS ...uveieieiieieeiiee sttt e ettt e et e e e sttt e e s sabe e e s abeeeessbbeeeesbeeesaasseessasaeeesasbaeesanseaeesasbeeesnsbaeesnasenessnssenean 36

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

CKPT Checkpoint

CNN Convolutional Neural Network
EVDK Embedded Vision Development Kit
FPGA Field-Programmable Gate Array
LED Light-emitting diode

MLE Machine Learning Engine

NN Neural Network

NNC Neural Network Compiler

SD Secure Digital

SDHC Secure Digital High Capacity
SDXC Secure Digital extended Capacity
SPI Serial Peripheral Interface

VIP Video Interface Platform

usB Universal Serial Bus

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

1. Introduction

This document describes the key phrase detection design process using an iCE40 UltraPlus™ FPGA platform (HiMax
HMO01BO0 UPduino Shield).

1.1. Design Process Overview
The design process involves the following steps:
1. Training the model

e Setting up the basic environment

e Preparing the dataset

e Training the machine

e Training the machine and creating the checkpoint data

e Creating the frozen file (*.pb)
2. Compiling Neural Network

e Creating the filter and firmware binary files with Lattice SensAl 2.1 program
3. FPGA design

e Creating the FPGA Bitstream file
4. FPGA Bitstream and Quantized Weights and Instructions

e Flashing the binary and bitstream files to iCE40 UPduino hardware

m— : NN Compiler
Training E) o Quantized Weights
Dataset _ Tained |— o o ... | andinstructions
Model L I

Training
Scripts * ML Frameworks

Training Model Lattice FPGA

i
. FPGA

Bitstream
Interface
FPGA FPGA Tools

Design

Figure 1.1. Lattice Machine Learning Design Flow

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

- . .
H- LATTICE Key Phrase Detection Using Compact CNN Accelerator. IP
Reference Design

2. Setting Up the Basic Environment

2.1. Tools and Hardware Requirements

This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Tools
e Lattice Radiant Tool v1.1 — Refer to http://www.latticesemi.com/latticeradiant
e Lattice Radiant Programmer v1.1 — Refer to http://www.latticesemi.com/latticeradiant

e Lattice SensAl Compiler v2.1 — Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

2.1.2. Hardware

This design uses the HiMax HM01B0 UPduino Shield as shown in Figure 2.1. Refer to
http://www.latticesemi.com/en/Products/DevelopmenBoardsAndKits/HimaxHMO1BO.

Figure 2.1. Lattice Himax HMO01B0 Upduino Shield Board

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 9

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
http://www.latticesemi.com/en/Products/DevelopmenBoardsAndKits/HimaxHM01B0

Key Phrase Detection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

2.2. Setting Up the Linux Environment for Machine Training

2.2.1. Installing the CUDA Toolkit
To install the NVIDIA CUDA toolkit, run the commands below:

1.

Download the NVIDIA CUDA toolkit.

$ curl -0
https://developer.download.nvidia.com/compute/cuda/repos/ubuntul604/x86 64/cu

da-repo-ubuntul6e04 10.1.105-1 amd64.deb

(base) sib:~/kishan$ curl -0 https://developer.download. nvidia.com/compute/cuda/repos/ubuntul604/x86_64/cuda-repo-ubuntu1604 10.1.105-1_amd64. deb
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
10 2832 160 2832 @] 514 @ §:00:05 0:00:05 --:--:-- 584
(base) sib:~/kishans _

Figure 2.2. CUDA Repo Download

Install the deb package.
$ sudo dpkg -i ./cuda-repo-ubuntul604 10.1.105-1 amd64.deb

(base) sib:~/kishans sudo dpkg -1 ./cuda-repo-ubuntuilé@d 10.1.105-1_amdé4.deb
Selecting previously unselected package cuda-repo-ubuntulédd.

(Reading database ... 288236 files and directories currently instalied.)
Preparing to unpack .../ cuda-repo-ubuntuleP4 10.1.105-1_amded.deb ...
Unpacking cudag-repo-ubuntulé@4 (10.1.105-1) ...

Setting up cuda-repo-ubuntulé@d (10.1.105-1) ...

(base) sib:~/kishan$ _

Figure 2.3. CUDA Repo Installation

Proceed with the installation.

$ sudo apt-key adv --fetch-keys
http://developer.download.nvidia.com/compute/cuda/repos/ubuntul604/x86 64/7fa

2af80.pub

(base) sib:~/kishan$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntul1604/x86_64/7fa2af80.pub
Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homedir /tmp/tmp.oqotmhcGn@ --no-auto-check-trustdb --trust-model
ng /etc/apt/trusted.gpg --keyring /etc/apt/trusted.gpg.d/diesch-testing.gpg --keyring /etc/apt/trusted.gpg.d/george-edison55-cmake-3_x.gpg -
--fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntul1604/x86_64/7fa2af80.pub

apg: key 7FA2AF80: "cudatools <cudatools@nvidia.com>" not changed

gpg: Total number processed: 1

apg: unchanged: 1

Figure 2.4. Fetch Keys

$ sudo apt-get update

(base) sib:~/kishan$ sudo apt-get update

Ign http://dl.google.com stable InRelease

Ign http:/farchive.ubuntu.com trusty InRelease
Ign http://extras.ubuntu.com trusty InRelease

Hit https://deb.nodesource.com trusty InRelease
Ign http:/farchive.canonical.com precise InRelease
Hit http://ppa. launchpad. net trusty InRelease

Figure 2.5. Updated Ubuntu Package Repositories

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

::LATTICE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

$ sudo apt-get install cuda-9-0

(base) sib:~/kishans sudo apt-get install cuda-9-0
Reading package [ists... Done

Building dependency tree

Reading state information... Done

Figure 2.6. CUDA Installation Completed

2.2.2. cuDNN Installation
To install the cuDNN:
1. Create Nvidia developer account in https://developer.nvidia.com.

2. Download cuDNN library in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN:
$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/

libcudnn*

ks tar xvf cudnn-9.0-linux-x64-v7.1.tgz

cuda/inc lude/cudnn. h

cuda/NVIDIA SLA cuDNN_Support. txt

cuda/Tibs4/1ibcudnn. so

cuda/libs4/libcudnn. so. 7

cuda/libs4/Tibcudnn.so. 7. 1.4
cuda/1ibs4/Tibcudnn_static.a

ks sudo cp cuda/includes/cudnn.h fusr/local/cuda/include
ks sudo cp cuda/libs4/Tibcudnn* fusr/local/cuda/Tib64
ks sudo chmod a+r fusr/local/cuda/include/cudnn.h Jfusr/local/cuda/s1libe4/1ibcudnn*
kS _

Figure 2.7. cuDNN Library Installation

2.2.3. Installing the Anaconda and Python3
To install the Anaconda and Python 3:
1. Go to https://www.anaconda.com/distribution/#download.

2. Download the Python 3 version of Anaconda for Linux.

sib:~/kishan$ wget https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh

--2019-04-18 11:34:54-- https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh

Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.131.3, 104.16.130.3, 2606:4700::6810:8303, ...
Connecting to repo.anaconda.com (repo.anaconda.com)[104.16.131.3/:443... connected.

HTTP request sent, awaiting response... 200 0K

Length: 685906562 (654M) [application/x-sh]

Saving to: ‘Anaconda3-2019.03-Linux-x86_64.sh’

100%[-

Figure 2.8. Anaconda Package Download

3. Runthe command below to install the Anaconda environment.
$ sh Anaconda3-2019.03-Linux-x86 64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh version may vary based on the release.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

11

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/distribution/#download

Key Phrase Detection Using Compact CNN Accelerator IP ::LATTICE

Reference Design

sib:~/kishan$ sh Anaconda3-2019.03-Linux-x86_64.sh

Welcome to Anaconda3 2019.83

In order to continue the installation process, please review the license
agreement.

Please, press ENTER to continue
g

Figure 2.9. Anaconda Installation

4. Accept the license.

Do you accept the license terms? [ves/no]
[no] »>> yes_

Figure 2.10. License Terms Prompt
5. Confirm the installation path. Follow the instructions onscreen to change the default path.

Do you accept the license terms? [ves/no]
[na] =»>> yes

Anaconda3 will now be installed into this location:
Shome/sibridge/anaconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below

[/home/sibridge/anaconda3] >=>> /home/sibridge/kishan/anacondas_

Figure 2.11. Installation Path Confirmation

6. Afterinstallation, enter No as shown in Figure 2.12.

installation finished.

Do you wish the installer to initialize Anaconda3
by running conda init? [yes[na]

[noj ==> no_

Figure 2.12. Launch/Initialize Anaconda Environment Installation Complete

2.2.4. Installing TensorFlow v1.12

To install the TensorFlow v1.12:
1. Activate the conda environment by running the command below:

$ source <conda directory>/bin/activate

sib:~/kishans source anacenda3/bin/activate
(base) sib:~/kishans _

Figure 2.13. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:

$ conda install tensorflow-gpu==1.12.0

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

::LATTICE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

(base) sib:~/kishan$ conda install tensorflow-gpu==1.12.0

WARNING: The conda.compat module is deprecated and will be removed in a future release.
Collecting package metadata: done

Solving environment: done

Package Plan
environment location: fhome/sibridge/kishan/anaconda3

added / updated specs:
- tensorflow-gpu==1.12.8

Figure 2.14. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.15.

wurlitzer 1.0.2-py37 @ --> 1.0.2-py36_0
xlrd 1.2.0-py37 @ --> 1.2.0-py36 0
xIwt 1.3.0-py37 @ --> 1.3.0-py36_0
Zict @.1.4-py37 @ --> 0.1.4-py36_ 0
zipp @.3.3-py37 1 --> 0.3.3-py36_1

Proceed ([v]/n)? y_

Figure 2.15. TensorFlow Installation Confirmation

Figure 2.16 shows TensorFlow installation is completed.

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) sib:~/kishans _

Figure 2.16. TensorFlow Installation Complete

2.2.5. Installing the Python Package
To install the Python package:

1. Install Easydict by running the command below:

$ conda install -c conda-forge easydict

(base) sib:~/kishans conda install -¢ conda-forge easydict
Collecting package metadata: done

Solving environment: done

#% Package Plan #%

environment lecation: /home/sibridge/kishan/anaconda3

added / updated specs:
- easydict

Figure 2.17. Easydict Installation

2. Install Easydict by running the command below:

$ conda install -c conda-forge librosa==0.6.0

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 13

http://www.latticesemi.com/legal

Key Phrase DeFection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

(base)jay:~5 conda install -c conda-forge librosa==0.6.0

Collecting package metadata (current_repodata.json): done

Solving environment: failed with initial frozen solve. Retrving with flexible solve.
Collecting package metadata (repodata.json): done

Solving environment: done

Package Plan
environment location: Shome/jay/anaconda3

added / updated specs:
- librosa==0.6.0

certifi pkgs/main --> conda-forge
conda pkgs/main --> conda-forge
openssl pkgs/main: :openssl-1.1.1c-h7b6447c_1 --> conda-forge: :openssl-1.1.1c-h51699%_@

Proceed ([y]/n)? v

Preparing transaction: done
Verifyving transaction: done
Executing transaction: done

Figure 2.18. Anaconda Env - librosa Installation

Figure 2.18 shows the successful installation.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

:.ILATT'CE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

3. Preparing the Dataset

This chapter describes how to create a dataset using examples from Google Speech Command.

3.1. Selecting the Dataset

Below are two options of dataset for Key Phrase Detection models which can be used for training:
e Google Speech Command Dataset v0.01
e Google Speech Command Dataset v0.02

3.2. Downloading the Dataset
To download the dataset:

1. Go to the links below to download the Google Speech Command Dataset:
e Google speech command dataset v0.01:
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
e Google speech command dataset v0.02:
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz
2. Convert the sample rate of 16 KHz .wav files to 8 KHz by running the commands below:

a. Install the necessary dependency:
S sudo apt-get install sox

b. Convert the dataset:
Spython convert-samplerate.py

. /speech_commands_v0.02/ --output_dir ./speech_commands_v0.02_out --sample_rate 8000

Figure 3.1. Convert Sample Rate Script Execution

3.3. Data Augmentation

Dataset Augmentation is done by adding background noise in training-code itself. Background noises are used from the
dataset’s _background_noise_ directory. Refer to README.md in the background noise directory for more information
on how to add noise files.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 15

http://www.latticesemi.com/legal
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

= LATTICE

4. Training the Machine

4.1. Training Code Structure

4 fm| iCE40_keyphrase_training
4 fml logs

cmd_seven

cmd_seven.filter

set_prefilter

[
f
I
[setd_seven.filter
binary_ops.py
config.sh

genpb.py
genpbixt.sh
input_data.py
models.py

train.py

train.sh

O
[
[
O
[
|
[
[
[

train_filter.sh

Figure 4.1. Training Code Directory Structure

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

4.2. Neural Network Architecture

4.2.1. Neural Network Architecture
This section provides information on the Convolution Neural Network Configuration of the Key Phrase Detection design.

Table 4.1. Key Phrase Detection Training Network Topology
Audio Input (8320)

Convld-(64, 64) Conv1d basically performs convolution on 1d data and gives an
Relu output of 2D data. In this case,. the output is 64 x 64.

Freqconv

Conv3 - # where:
¢ Conv3 -3 x 3 Convolution filter Kernel size
e #-The number of filters
For example, Conv3 - 8 = 8 3 x 3 convolution filter
Batchnorm Batchnorm : Batch Normalization
Relu FC - # where:
¢ FC-—Fully connected layer
¢ #-The number of outputs

Reshape Reshape- (64, 1, 64)
Transpose Transpose-(64, 64, 1)
Conv3 -16

Fire 1

Maxpool
Conv3 —-16
Fire 2 Batchnorm

Relu
Conv3 —-20
Batchnorm

Fire 3
Relu

Maxpool
Conv3 -20

Fire 4 Batchnorm

Relu
Conv3-20

Batchnorm

Fire 5
Relu

Maxpool
Conv3-—-24

Batchnorm

Fire6
Relu

Maxpool

Dropout Dropout - 0.50
fc4 FC — (2 + Num-keywords)

e InTable 4.1, Layer contains Convolution (conv), batch normalization (bn), Relu and dropout layers.
e Output of layer fc4 is number of classes in dataset along with silence and unknown considered as 2 keywords, so
total number of outputs of fc4 layer is # of classes + 2.
e Layer information
e Convolutional Layer
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (l.e.
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves & other high-level
features. For example, the filters on the first layer convolve around the input image and activate (or compute
high values) when the specific feature (for example, curve) it is looking for is in the input volume.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Relu (Activation layer)

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that Relu layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The Relu layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

Pooling Layer

After some Relu layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This basically takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. Second is that it
controls over fitting. This term refers to when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

Batchnorm Layer
Batch normalization layer reduces the internal covariance shift. In order to train a neural network, we do some
preprocessing to the input data. For example, we could normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, etc.
But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:
e Calculate the mean and variance of the layers input.

o Normalize the layer inputs using the previously calculated batch statistics.

e Scales and shifts in order to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be
carefree about weight initialization, works as regularization in place of dropout, and other regularization
techniques.

Drop-out layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network do not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. That means the network should be able to
provide the right classification or output for a specific example even if some of the activations are dropped
out. It makes sure that the network isn’t getting too fitted to the training data and thus helps alleviate the over
fitting problem. An important note is that this layer is only used during training, and not during test time.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

- . .
H- LATTICE Key Phrase Detection Using Compact CNN Accelerator. P
Reference Design

e Fully connected layer
This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding
it) and outputs an N dimensional vector where N is the number of classes that the program must choose from.

e Quantization
Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

4.2.2. Key Phrase Detection Network Output

Key phrase detection network gives N + 2 values from last output node, where N is number of keywords trained. Two
additional values represent Silence and Unknown as 2 keywords.

4.2.3. Training Code Overview

|’ Model settings |

v

| Audio processor

4
Model building

o
%

:
:

g
=
2
g

|

VAN
r e
/ Y - -
_~Generate inference-. YES Save
™ phtxt - inference .pbtxt
“« p . J
™, ~
R
NO
Training loop

data

‘

Train Model

E
&

-

4 ‘

z

o

Figure 4.2. Training Code Flow Diagram

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 19

http://www.latticesemi.com/legal

= LATTICE

4.2.3.1. Model Settings
model settings = models.prepare_model settings|
(input_data.prepare_words_list(FLAGS.wanted wo

FLAGS.sample_rate, FLAGS.clip duration_ms, F
FLAGS.window_stride_ms, FLAGS.dct_coefficient_count)

Figure 4.3. Code Snippet — Model Settings

e prepare_model_settings function calculates and returns the dictionary containing all common settings for training
from given parameters like label_count (# of keywords), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms and dct_coefficient_count. More details about parameters are as follows:

e label_count — Number of classes.

e sample_rate — Number of audio samples per second.

e clip_duration_ms — Length of each audio clip to be analyzed.

e window_size_ms — Duration of frequency analysis window.

e window_stride_ms — Length of move in time between frequency windows.
e dct_coefficient_count — Number of frequency bins to use for analysis.

4.2.3.2. Audio Processor

audio _processor = input_data.AudioProcessor(
FLAGS.data url, FLAGS.data dir, FLAGS.silence percentage,

FLAGS .unknown_percentage,
FLAGS .wanted words.split(',"), FLAGS.validation percentage,
FLAG5.testing_percentage, model settings)

Figure 4.4. Code Snippet — Audio Processor

AudioP
"""Handles I g, _ (paring audio training data.™™"
__ipit (self, data url, data dir, silence percentage, unknown_ percentage,
wanted words, wvalidation percentage, testing percentage,
model settings):
.data dir = data_dir

.maybe download and extract dataset(data url, data dir)

.prepare_data_index(silence percentage, unknown_percentage,
wanted words, validation percentage,
testing percentage)

.prepare_background data()

.prepare_processing graph(model settings)

Figure 4.5. Audio Processor Class Object

AudioProcessor function handles the loading, partitioning, and preparing of audio training data. It also downloads the
dataset from given data_url in argument if dataset is not present.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

desired_samples = model_settings["desired_ "]
.wav_filename placeholder = tf.placeholder(tf.string, [])
wav_loader = io ops.read file(-wav_filename_placeholder)

oder = contrib_audio.decode_wav(
_loader, desired_channels=1, desired_samples=dezired_samples)

.foreground volume placeholder = tf.placeholder(tf.float32, [])
scaled foreground = tf.multiply(wav_decoder.audio,
.foreground_volume_placeholder_)

.time shift padding placeholder = tf.placeholder(tf.int32, [2, 2]}

.time shift _offset_placeholder_ = tf.placeholder(tf.int32, [2])
padded_foreground = tf.pad(

ccaled_foreground,

.time shift padding placeholder ,

mode= ANT ")

sliced foreground = tf.slice(padded_foreground,
.time shift_offset_placeholder_,
[desired samples, -1])

[desired
.background volume placeholder = tf.placeholder(tf.floa
background mul = tf.multiply(.b: round_data placeholder_,
.background_volume_placeholder_)
background_add = tf.add(background mul, sliced foreground)
background_clamp = tf.clip_by wvalue(background_add, -1.8, 1.8)

Figure 4.6. Code Snippet — Decoding the Audio, Scaling and Adding of Noise

4.2.3.3. Model Building

Placeholders

audio_input = tf.placeholder(
tf.float32, | , desired_samples], name="audio_input’)

ground_truth_input = tf.placeholder(
tf.inte4, [], name=' undtruth_input”)

Figure 4.7. Code Snippet — Placeholders
e qaudio_input is placeholder to feed preprocessed audio input to network.

e ground_truth_input is placeholder to feed targeted labels of given batch. It is later used for evaluating training and
optimization purpose.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

CNN Architecture Generation

logits, dropout_prob, fingerprint_4d = models.create_model(
audio_input,
model_ settings,
FLAGS .model architecture,
is_training- .

norm_binw=FLAGS.norm_binw,
downsample=FLAGS .downsample,

lock prefilter=FLAGS.lock_prefilter,
add_prefilter bias=FLAGS.prefilter bias,
use down_avgfilt=FLAGS.use down_avgfilt)

Figure 4.8. Code Snippet — Create Model

create_model creates training graph or training model using given configuration. More details about flags are as
follows:

e audio_input — TensorFlow node that gives audio feature map as output.

e model_settings — Dictionary of information about the model.

e model_architecture — The default architecture is tinyvgg_conv defined in config.sh.
e is_training — Whether the model is going to be used for training.

create tinyvgg conv_model({fingerprint input, model settings,
is training,
filt k=1,
depthwise_co

Figure 4.9. Code Snippet — Create_tinyvgg_conv_model

Quantization and Network Model Configuration

max_rng

Figure 4.5. Code Snippet — Quantization Parameters Setting

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

_fire laye

fire2 = fire layer('fi : [: =ml_w & en= 5
. rng=m g, b b 1, training=is_training)
fire3 _fire_layer('fi ", Tire2 s :

. rng=m g, b b ining=is training)

fired = fire layer('fired’, : »

. rng=m
fire5 = fire layer({'fi , Tired,o 4], » w_bin b bin in,

- rag=m h 5_on, training=is_training)
fire6 = fire layer('fi ; » w_bin o1 in,

x_rng=max_rng, b n, training=is_training)
fire o = fireé

Figure 4.6. Code Snippet — Forward Graph Fire Layers

8-bit quantization is done on weights and activations in this model. Based on value of w_bin and a_bin, it is
decided if quantization is to be done or not.

w_bin ==

kernel guant = lin_8b quant(kernel)

tf.summary.histogram(: iant’, kernel_quant)

conv = tf.nn.conv2d(i 4 i , g ution")

bias _on:
biases = _wariable_on_devic ", [filters], bias_init, trainable=(not freeze})
biases quant = lin_8b _quant(biase
tf.summary.histogra » biases_quant)
conv_bias = tf.nn.bias add(conv, biases quant, name=

conv_bias = conv

conv = tf.nn.conv2d(inputs, kernel, [1, stride, stride, 1], padding=padding, name="
S ET
biases = wariable on_devic ", [filters], bias_init, trainable={not freeze))
conv_bias = tf.nn.bias_add(conv, ases, name='bia dd")

conv_bias = conv
Figure 4.7. Code Snippet — Convolution Quantization

4.2.3.4. Training Loop

Training Loop is divided in three segments:
e Fetching Data

train_audio, train_ground truth = audio processor.get data(
FLAGS .batch_s 8, model settings, FLAGS.background frequency,

FLAGS.background volume, time shift samples, "train

» 5ess)

Figure 4.8. Code Snippet — Training Loop

Using audio_processor object, the code shown in Figure 4.8 fetches the next batch for training.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Training Model

train_summary, train_accuracy, cross_entropy_value, _, _, fingerprint_4d val =

[

merged summaries, evaluation step, cross entropy mean, train step,
increment global step, fingerprint 4d

417

feed dict={
audio input: train_audio,
ground truth input: train_ground truth,
learning_rate_input: learning_rate_value,
dropout_prob: 8.5

Figure 4.9. Code Snippet — Train Model

Using session.run code feeds next batch to network placeholders and evaluates desired operations mentioned
in argument.

Saving Checkpoints

{(training step ¥ FLAGS.save step interwval == 8 or
training step == training steps max):
checkpoint_path = os.path.join(FLAGS.train_dir,

FLAGS .model architecture +

tf.logging.info(
saver.save(sess,

Figure 4.10. Code Snippet — Save Checkpoints

Trained Checkpoints are periodically saved based on flag specified save_step_interval at checkpoint_path.

4.2.4. Training from Scratch and/or Transfer Learning

Training of Key Phrase Detection model has two phases:

Phase 1 — Training with all keywords available in dataset (Filter training).
Phase 2 — Training for wanted keywords using the checkpoint of phase 1 model (Keyword training).

4.2.4.1. Modifying Training Keywords and Other Configurations

To configure keywords or other parameters, modify config.sh under training directory. Default parameter values for
Key Phrase Detection training are as shown in Figure 4.11.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

- . .
H- LATTICE Key Phrase Detection Using Compact CNN Accelerator. P
Reference Design

config.sh

DATA_DIR=./data/speech_commands

FILTER_TRAIN DI flog seven.filter
TRAIN DIR=./logs/set prefilter

Figure 4.11. Code Snippet — Config File config.sh

e Update DATA_DIR with the path to root directory of speech commands dataset.
e Update FILTER_TRAIN_KEYWORD with all available keywords in dataset.

e Update TRAIN_KEYWORD with all keywords that need to be trained by model.
e You can also configure additional parameters in train_filter.sh and train.sh if needed.

4.2.4.2. Filter training

After configuring (only if required) parameters mentioned in Modifying Training Keywords and Other Configurations
section, run the script below to start filter training from scratch.

./train filter.sh

Ti major: 7 minor: 5 memoryClockRate{GHz): 1.
0000:01:00.0
: 10.73GiB freeMemory: 10.34GiB
3:10.864151: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding vis e gpu devices: @

raining from

_loader.cc: - CUDA library libcubla .10.0 locally
entropy

entropy 4.

entropy 4.34

entropy 4.

entropy

entropy

entropy

accuracy

:tensorflow e e 9100008, accuracy
orflow e P8O, accuracy
orflow e POBO, accuracy

2 accuracy

accuracy

accuracy

Vi~~~ W

Figure 4.12. Key Phrase Detection — Trigger Training with Default Options (Phase 1)

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02066-1.0

25

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP :.ILATT'CE

Reference Design

4.2.4.3. Keyword Training
e For phase 2 training, update the path of phase 1 checkpoint in train.sh by running the command below:
e Make sure that below line refers to checkpoints generated by Phase 1 training.

TRAIN OPT = “STRAIN OPT -set prefilter=<path to traindir/tinyvgg conv.ckpt-
50000> --lock prefilter”

e After configuring (only if required) parameters mentioned in Modifying Training Keywords and Other
Configurations section, run the script below to start training from scratch.

./train.sh

/train.sh
yrce RTX 2080 Ti major: 7 minor: y ryClockRate(GHz): 1

mmon_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: @

.filter/tinyvgg_conv.ckpt-50000
ning from

123.611075: e stream_exe 0 oader.cc:152] successfully opened Cl library libcublas.so.18.8 locally
1660600, accuracy 6

0.010000, accuracy

0.010000, accuracy

0.010000, accuracy

0.010000, accuracy

0.010000, accuracy

0.010000, accuracy

0.010000, accuracy

ate 0.010080, accuracy

SN NI RN N

-

Figure 4.13. Key Phrase Detection — Training from Scratch (Phase 2)

4.2.4.4. Transfer Learning

e For transfer learning, SFILTER_TRAIN_DIR and/or STRAIN_DIR should point to last iteration’s log directory in
config.sh and the latest checkpoint name should be updated in training script. New checkpoints are stored at the
path given in STRAIN_DIR and/or SFILTER_TRAIN_DIR.

e Modify below line in train_filter.sh and train.sh to specify checkpoints from where training should resume:

TRAIN OPT="STRAIN OPT --start checkpoint=$TRAIN DIR/SNETWORK.ckpt-50000"

X 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.
0.0
10.3 B
rfl core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: @

ers from ./logs/set_prefilter/tinyvgg_conv.ckpt-200

ccessfully openec library libcublas.so.10.0 locally

, accuracy 53.0

t_prefilter/tin

] accuracy
accuracy

accuracy

accuracy

accuracy

0.001000, accuracy

Figure 4.14. Key Phrase Detection — Trigger Training with Transfer Learning

4.2.4.5. Training Status
e Training status can be checked in logs by observing different terminologies like cross entropy loss, learning rate,
and training accuracy.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

INFO:tensorflow:s
c . ACCUr:
accuUr:

dCCUTr ¢
dCCUr:e

Figure 4.15. Key Phrase Detection — Training Logs

e You can use the TensorBoard utility for checking training status.
e Runthe command below to start TensorBoard:

S tensorboard -logdir=<log directory of training>

earth:~$ tensorboard --logdir L«
TensorBoard 1.12.8 at http://e:

accuracy

[FER Y]

L)

ntropy
ntropy
ntropy
ntropy
ntropy
ntropy
ntropy
entropy
entropy

[I % T o N 0 T L L

CTRL+C to quit)

Figure 4.16. TensorBoard — Launch

e This command provides the link http://<name>:6006 which needs to be copied and open in any browser like

Chrome, Firefox, and so on.

INACTIVE L -)

TensorBoard SCALARS GRAPHS DISTRIBUTIONS HISTOGRAMS
[[] Show data download links Q_ Filter tags (regular expressions supported)
Ignore outliers in chart scaling
accuracy
Tooltip sorting method: default -
- accuracy
Smoothing
0.985
—_———————® 0935 %
0.975
Horizontal Axis 0.965
RELATIVE WALL 0955
[Ok 20k 30k 40k 50k
Runs H— |
Write a regex to filter runs
cross_entropy_1
o
cross_entropy_1
0.12
0.08
0.04
0
TOGGLE ALL RUNS ‘
logs/train/ o 10k 20k 30k 40k 50k
HE—N |

Figure 4.17. TensorBoard - Link Default Output in Browser

e Similarly, other graphs can be investigated from the available list.

the frozen file (*.pb).

Check if the checkpoint, data, meta and index files are created at the log directory. These files are used for creating

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

27

http://www.latticesemi.com/legal

Key Phrase DeFection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

sek_prefilter

Name

| 7 checkpoint
tinyvgg_conv.ckpt-50000.data-00000-0f-00001
tinyvgg_conv.ckpt=50000.index
tinyvgg_conv.ckpt-50000.meta

| 7 tinyvgg_conv_labels.txt

|] tinyvgg conv_training.pbtxt

Figure 4.18. Checkpoint Storage Directory Structure

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

::LATT’CE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

5. Creating Frozen File

This section describes the procedure for freezing the model, which is aligned with the Lattice SensAl tool. Perform the
steps below to generate the frozen protobuf file:

. fgenpbtxt.sh

[None, 8320, 1]

[None, 64, 64]
[None, 64, 64, 1]
saved pbtxt for inference at log direcory:.flogs/set prefilter

Figure 5.1. Generating .pbtxt For Inference

set_prefilter

Name

|] checkpoint
tinyvgg_conv.ckpt-50000.data-00000-0f-00001
tinyvgg_conv.ckpt-50000.index
tinywvgg_conv.ckpt-50000.meka

|] tinywgg_conv.pbixt

|] tinywgg_conv_labels.txt

|] tinywgg_conv_Eraining.pbtxt

Figure 5.2. Generated .pbtxt for Inference

It generates the .pbtxt for inference under train log directory.

5.1. Generating the Frozen (.pb) File

Generate .pb file from latest checkpoint using below command from the training code’s root directory.

$ python genpb.py --ckpt dir <COMPLETE PATH TO LOG DIRECTORY>

earth:$ python genpb.py --ckpt dir log et prefilter/
using checkpoint :tinyvgg _conv.ckpt-58
inputShape ape [Mone, None, Mone, No
inputShape shapes [None, None, MNone, N

output_shapes of input Node [None, None, None, None]
TensorFlow: can not locate input shape information at: audio input
node to modify name: "audio input”

Figure 5.3. Run genpb.py to Generate Inference .pb

genpb.py uses the generated .pbtxt and latest checkpoint in train directory to generate frozen .pb file.

Once the genpb.py is executed successfully, the log directory now contains the <ckpt-prefix>_frozenforinference.pb file
as shown in Figure 5.4Figure 5.4.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 29

http://www.latticesemi.com/legal

Key Phrase DeFection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

set_prefilter

Name
| 7 checkpoint
tinyvgg_conv.ckpt-50000.data-00000-0f-00001
tinyvgg_conv.ckpt-50000.index

- | kin conv.ckpt-50000.meta
I .| tinyvgg_conv.ckpt-50000 frozenforinference.pb I

tinyvgg conv.pb.Inference

|] tinyvgg conv.pbtxt

|] tinyvgg conv.pbtxt.Iinference
|] tinyvgg_conv_labels.Ext

|] tinyvgg conv_training.pbtxt

Figure 5.4. Frozen Inference .pb Output

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

- . .
g LATTICE Key Phrase Detection Using Compact CNN Accelerator. IP
Reference Design

6. Creating Binary File with SensAl

This chapter describes how to generate binary file using the Lattice SensAl version 2.1 program.

E Lattice SensAl Software - X

File Process View Debug Help

V‘,%s% ‘

Figure 6.1. SensAl Home Screen

To create the project in SensAl tool:
1. Click File > New.
2. Enter the following settings:
e Project Name
e Framework — TensorFlow
e Class—CNN
e Device — UltraPlus

3. Click Network File and select the network (PB) file.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 31

http://www.latticesemi.com/legal

Key Phrase De!:ection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

Project Windows x

Project keyphrase Frameuwork l TensorF Low Il - J Class l CHH i » J
Directory g 900 | Tevice lUltra Plus ”I; J [TMOBILEMET moce

Irnput Files ftnpdt ingvee_cony,ckpt -50000_f rozenfor Inference ,ph
Model File

InageAideo/Audio Data

[i = | ["Sean Data Lager
keyehrase ,unl
keyphrase, lzcml Remove

Output. Files

Post Processzing {(Optional}

Cancel HEXT

Figure 6.2. SensAl —Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Project Windows %

Project keyphrase Framnzwaork l TenzorF low HI; J Class { CHH ”I; J.
Directory Amp 000 | Device l Ultra Plus e J [TMOBILEMET mode

Tt Falles Atmp At ingveg_conw,ckpt-50000_frozenfor Inference., pb Metwork Fils
fLmpdon, way

Model File

I Inage/\Video Audio Data I

L R =1 =] [~ Scan Data Laver
keyphrase,ynl
keyphraze, lecnl Remove

Output Files

Post. Processing (Optionall

Cancel MEXT

Figure 6.3. SensAl —Image Data File Selection

5. Click Next.

6. Configure your project settings as shown in Figure 6.4.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

@ Project Windows — s
Implementation Name: |Impl0

Number Of Convolution Engines: |1 Fixed for Ultra Plus device

On-Chip Memory Block Size: l[15384 I > J 16K,/32K/64K 16-bit entry

Scratch Memory Size: l[40‘36 I > J AK/1K

Input Memory Assignment: |C

Output Memaory Assignment: |1

Off-Chip Memory Address: |D [T Do Not Use

[~ store nput

[~ store Output

Mean Value for Data Pre-Processing: |O

Scale Value for Data Pre-Processing: |0.0000305151
Required output depth range: |

Sample Rate for Data Pre-Processing: |SODD

Down Sampling for Data Pre-Processing: |1

Cancel |

Keep Default values to bypass preprocessing

Operation:input Data =(Input Data - Mean) x Scale

F=

Click OK to create project.
Double-click Analyze.

Figure 6.4. SensAl — Project Settings

H Lattice SensAl Software

File Process View Toocls Help

LHEGO 5P

Process [Files [Tpl-] [Implﬂl]
Project: keyphrase ImplQ Blobs Data |
Python
Compile Convolution2
B Sirnulate(Qptional) BatchMorm1
FdFloating Point Model Scalel
EdFixed Point Model Poclingl

Edinference Engine Model

Convolution3

Post Processing BatchMorma

Download Scaled

Run Convolutiond
BatchMorm3
Scale3

_——— = = = === ==

[T AL [T DEBUG W INFO ¥ WARNING |¥ ERROR

- L L]

Figure 6.5. SensAl — Analyze Project

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

33

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

= LATTICE

9.

Double-click Compile to generate the Firmware file.

Lattice Sens

File Process Wiew Tools Help

EEISEY

Process [Files | Inpl [InplQ]
Project: keyphrase Impl(Bloks Data Fornat {Analyzed: Stored D

Analyze Puthionl 8.7 .
B Simulateilptionall BatchMorml 8.7
FdFloat.ing Point Model Scalel 3.7
FdFixed Point Model Poolingl 8.7
FlInference Engine Model Convolution3 8.7
Fost. Processing Bat.chMormz2 8.7
Dounload Scale2 8.7
Run Convolutiond 8.7
BatchMornd 8.7
Scale3 8.7
PoolingZ 8.7
Convolutiong 8.7
BatchMornd 8.7
Scaled 8.7
Convolutiong 8.7
BatchMorng 8.7
|¥ Scales 8.7
Pooling3 8.7

Figure 6.6. Compile Project

Firmware bin file location is displayed in the compilation log. Use the generated firmware and filter bin on the
hardware for testing which gives you two output bin files:

e <Project name>_filter.bin — contains weights to generate spectrogram from audio input.

e <Project name>.bin — contains remaining neural network and weights.

34

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

1
1
; Result
Eiternai 1 ST oader Compact CNN Accelerator (6 Classes)| Comparator
Flash ! } (spi_loader2_single_spram) Eagine > &
1 L -=INGIe_sp {compact_cnn.ipx) Window Filter
1
1
! B4 X 64
1
1
! Filter Bank Storage - Audipitobingeprnt
1) : (audio iced 0 fc_eu)
: ({iced0_audio fb_storage) {ice40_audio_fb_cu)
1
1
! Audic | Samples
1
1
External | 125 Master ol Audio Buffer

Michrephone 1 (i2sm_in) il (iced 0 audio_buffer)
1
1
1

Figure 7.1. Top Level Block Diagram Key Phrase Detection iCE40

7.1.2. Overall Operational Flow

This section provides a brief idea about the data flow across ice40 Upduino2 Board.

e The I12S master module communicates with 12S microphone on Upduino2 board. It receives the serial audio data
from the External Microphone and transports the data to the audio buffer module for storing purpose.
e The SPI loader module reads the external flash for two different files: the command sequence file and the filter

bank storage file.

e The command sequence file is sent to the compact CNN IP core while the filter bank storage file is sent to the filter
bank module. A filter bank storage module is used while converting audio data into a spectrogram-like picture for

CNN input.

e The audio fingerprint module takes the stored audio data from the audio buffer along with the filter bank values
from filter bank storage and creates an image of 64 x 64 which is then passed to CNN IP.
e As per command sequence received from SPI Loader, CNN IP performs operations on 64 x 64 input audio image
and provides six values as output for six classes in following order:

Table 7.1. CNN Output Format

Index 0 1 2 3 4 5
Class Silence Unknown Seven Marvin On Happy
(No Keyword) (Keyword) (Keyword) (Keyword) (Keyword)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e CNN outputs are passed to the audio post processing unit to compare all the six output values and generate
difference value between 1 maximum value and 2" maximum value (No Keyword). The index of 15 maximum
value is verified to check whether it belongs to a valid keyword or not (valid Keyword Index values = 2, 3, 4, 5).

e The calculated difference value is compared with two Thresholds defined in Top module which is then used to
drive the LEDs. The Detection LED logic uses another Threshold for Keyword Length which relates to the duration
of the Keyword spoken. Currently the threshold values are as following:

e Lower Threshold value = 1536 (Decimal)
e Higher Threshold Value = 4096 (Decimal)
e Keyword Length Threshold = 8 (Decimal)
e There are six LEDs with potential to turn on. According to the parameter EN_DEBUG_LED configuration, the demo
has following two output representations.
e Configuration 1 (EN_DEBUG_LED =0)
e LED D1-Itis ON if active audio is detected (including noise), and OFF when silence is detected.
e LEDD2-OFF
e LEDD3-OFF
e LED D4 -OFF
e LED D5 -OFF
e LED D6 (Detection LED) — It is ON if any of the Keywords (Sheila, Marvin, On, Off) is detected and Keyword
Length Threshold is crossed.
e Configuration 2 (EN_DEBUG_LED =1)
LED D1 and D6 are driven same as configuration 1 above. LED D2 to D5 is used for debugging information.

e LED D1-Itis ON if active audio is detected (including noise), and OFF when silence is detected.

e LED D2: -t has similar behavior as LED D6.

e LED D3 -Itis ON if any of the Keywords is detected with the calculated difference value greater than
Higher Threshold.

e LED D4 -Itis ON if any of the Keywords is detected with the calculated difference value greater than
Lower Threshold.

e LED D5 -Itis ON if any of the Keywords is detected with the calculated difference value lesser than both
the Thresholds.

e LED D6 (Detection LED) — It is ON if any of the Keywords (Sheila, Marvin, On, Off) is detected and Keyword
Length Threshold is crossed.

7.1.3. Core Customization

Table 7.2. Core Parameters

Parameter Default Description
(Decimal)

Configurable Parameters

EN_DEBUD_LED 0 Enable additional LED detection for threshold value debugging.

1: D2 - D5 LEDs represents debug information for keyword detection with
difference value in between certain threshold range.

0: D2 - D5 LEDs are always Off.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

8. RTL Bitstream Generation

This section provides the procedure for creating your FPGA bitstream file using Lattice Radiant Software.

Note: This reference design includes a Compact CNN [P that requires a license to be able to generate a bitstream.
Lattice provides a 30-day evaluation license for this IP for those who want to evaluate the IP and reference design. You
can obtain an evaluation license from the Lattice website Software Licensing page.

Lattice Radiant software version 1.1 is required to generate a bitstream along with a software license patch. You can
obtain the software patch file from the Lattice website through Lattice Radiant 1.1 Software Patch.

To create the FPGA bitstream file:
1. Open the Lattice Radiant software.

Lattice Radiant Software - Start Page
File Edit View Project Design Tools Window Help

-5-8 2 Q@ @ w7

el
5|

L]

72 Start Page

LATTICE
RADIANT

DESIGN SOFTWARE

Project

| A=

New Project Open Project Open Example

Information Center

=y |

Welcome Back

Recent Project List

Figure 8.1. Lattice Radiant Software

2. Click File > Open > Project. Browse and open Radiant project file for iCE40 key phrase detection RTL.

13 CEESO

Welcome Back

Recent Project List

ce40_shield_audio

himax_upduino2_humandet

Latfice Radiant Software - Start Page
Open Project
® < b L« RTL » iced0 shield_audio » v ¢ | Searchiceld shicld audio £ | By~ [IF] EN N-.
Organize v New folder =y I @
X rmotes N Datemocified Typs ———
B Desktop compact_can PM File folder
& Downloads ice40 shield_audio_ter.dir M File folder
£ Recent places impl_1 M File folder
human_det 2_1 source PM File folder
|| ice40 shield_audio.rdf ;59PM_ RDFFile
*& Homegroup
% This PC
j Desktop
| Documents.
% Downloads
W Music
=1 Pictures V1< 2
File name: | iced0_shield_audio.rdf v| | Project Files (*.rdf) v
Information Center
Getting Started Tutorials User Guides Support Center

Figure 8.2. Lattice Radiant Software — Open Project

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

37

http://www.latticesemi.com/legal
http://www.latticesemi.com/Support/Licensing
http://www.latticesemi.com/view_document?document_id=52612

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

2z LATTICE

3. Click Export Files to generate the bit file.

Lattice Radiant Software - Reports
File Edit View Project Design Tools Window Help

@A @aaaaq

HAaL @GFPNEEERCGOBE SO

Synthesize Design ‘ . Map Design ‘ Place & Route Design ‘ Export Files | 3 Export Files completed.
~ [iced0_shield_audio) startpage x =1 Reports x [Eal
10 iCE40UPSK-SG4BI
- [Strategies
[+ Area Reports Ice40_shield_audio Project Summary
[@2 Implementation Name impl_1 Performance Grade High-Perf
=] Timing
57 Strategyl Strategy Name Strategy1 Operating Condition: IND
- R »
1 impl1 (Synplify Pro) Part Number ICE40UP5K-SG48I Synthesis synplify P
~ [Input Files » [5] synthesis Reports
) Jsrcfshield_audio_top.v Devics Family ICE40UP Timing Errors (F;“Sf:)@‘ &
Jsre/iced0_audio_buffery
2 + [5 Map Reports Device Type: ICE40UPSK Project Created 2019/091
Gl wisrefizsm_iny
) Jsrc/iced0_audio_clkgen.v Package Type: 5648 Project Updated 201910812
Gl w/sre/iced0_audio_fb_cuv * [7] Place & Route Reports - R 40, shield.audiofcedd. shietd audiordr
4 fsrc/iced0_audio_fb_storage. fo Tojer ile: ice40_shield_audiofice40_shield_audio.r
Tt w/sre/audic_icedd fe_euv » [Export Reports Implementation Location CuRTLIice40 shield audiofimpl 1
4l Jsrc/audio_posty
~ 1} shield_sudio_top - shield_audio_top.v v [Misc Reports. Resource Usage
{F spi_loader2_single_spram(u_spi_loader) - spi_loader2_singl LUTa: 5229 10 Buffers 0

% Isc_uart(g_on_en_uart.u_lsc_uart) - lsc_uarty

1F Isc_led_con(u_lsc_led_con) - Isc_led_con.v

7% iced resetn(u_resetn) - iced0_resetnv INFO - C:/RTL/iced0_shield audic/compact_cnn/rtl/compact_cnn.v(0,1-0,1) (VERI-9000) elaborating module '##'
™HFO

C:/RTL/iced0_shield_sudic/compact,

/rtl/co

1% iced0_audio_fls_storage(u_ice40_audio_fb_storage] - iced0_., ing module '#4"
1E icedt_audio_fb_cu(u_iced0_audio_fb_cu) - iced0_audio_fb_.
1 icetd audio_clkgen(u_ice40_audio_clkgen) - ice40_audio_c..
1k icedD_audio_buffer(u_iced0_audio_buffer) - iced0_audio_b.
TE %em infus i2em ind - i2em inar

O Fleust [l sourceTemplate £l 1P Catalog

(0,1-0,1) (VERT-8000) =labor

design load finished with (0) errors, and (3) waraings

Td Console E output

Figure 8.3. Lattice Radiant Software — Bitstream Generation

4. The Export Reports displays the generated bitstream as shown in Figure 8.4.

[a}

Lattice Radiant Software - Reports -
File Edit View Project Design Tools Window Help

@A @aQaaq

Synthesize Design ‘ . Map Design Place 8 Route Design ‘

B ok @ @

Export Files | i

EEEcGOoEE8S0

~ [iced0_shield_audio Y startpage x L] Reports x [Eal

nepuIts
3 iCEAOUPSK-SGdg L
- [Strategies =
2] Area Project Summary Contents
&=| Quick Preference Sumary:
=] Timing + [Synthesis Reports
[i7 Strategyl
= [impl1 (Synplify Pro) | Preference | Current Setting |
% impl_
. » [£] Map Reports
[Input Files: P Rep * Default setting.
4} Jsrefshield_audio_top.v %% The specified sectting matches the default secting.
o) wisreficed0_audio_bufferv + (7] Place & Route Reports
R 6 Creating bit map...
T} /src/iced0_audio_clkgen.v Saving bit stream in "C:\RTL\ice40_shield audio\impl_1\iced0_shield aud
Tl W/src/ice40_audio_fb_cuv ~ [/ Export Reports
s -/src/iced0_audio_fb_storage [l
T wisre/audio_iced0 fc_euw) A
) fsrc/audio_posta
~ £} shield_sudio_top - shield_sudio_topa ESleiz
{F spi_loader2_single_spram(u_spi_loader) - spi_loader2_singl
» T Isc_uart(g_on_en_uart.u_lsc_uart) - lsc_uarty » [£] Misc Reports
1F Isc_led_con(u_lsc_led_con) - Isc_led_con.v .
TF icedD resetn(u_resetn) - iced0_resetna #% The specified setting matches the default setting.

T
x

1 iced0_audio_fb_storage(u_ice40_audio_fb_storage) - iced0_...
1E icedt_audio_fb_cu(u_iced0_audio_fb_cu) - iced0_audio_fb_. Cresting bit mep...
F icedD_audio_clkgen(u_ice40_audio_clkgen) - icedd_audio_ Saving bit stream in "C:\RTL\ice40_shield audio\impl 1\iced0 shield audic_impl 1.bin".
I icedD_audio_buffer(u_iced0_sudio_buffer) - iced0_audio_b. Done: corpleted successiully
TE %em infus i2em ind - i2em inar

O rieust [El sourceTemplate] 1P catalog

Td Console E output

Figure 8.4. Lattice Radiant Software — Bitstream Generation Export Reports

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

9. Programming the Key Phrase Detection Demo

9.1. Functional Description

Figure 9.1 shows the diagram of the Key Phrase demo. The microphone captures audio and sends it to the iCE40
UltraPlus device. iCE40 UltraPlus uses the audio data with the firmware file from the external SPI Flash to determine
the result.

Audio Data ICE40 UltraPlus Cutcome

Audio Device

> LED

Y
Firmware

External SPI Flash

Figure 9.1. iCE40 Key Phrase Demo Diagram

9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash
This section provides the procedure for programming the SPI Flash on the Himax HM01B0 UPduino Shield Board.
Two different files should be programmed into the SPI Flash. These files are programmed to the same SPI Flash, but at
different addresses:
e Bitstream
e Firmware
To program the SPI Flash in Radiant Programmer:
1. Connect the Himax HM01BO0 UPduino Shield board to the PC using a micro USB cable. Note that the USB connector
on board is delicate, so handle it with care.
Start Radiant Programmer.
In the Radiant Programmer Getting Started dialog box, select Create a new blank project.
Click OK /|

£ Radiant Programmer - Getting Started ?

Mew Project:
Project Name: keyphrase|
Project Location: | C:f W Browse...

() Create a new project from a scan

Fahlas HWA ISEN-98 (ETRTY Part: | FTLISB-0
Cable: W-LISBN-2B (FTDI) ort: UsE-0

o
)
o
b

(@) Create a new blank project

Open Project:

'3::1' Open an existing programmer project

m
o
@
i

Figure 9.2. Radiant Programmer — Creating New Project

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP

Refe

rence Design

= LATTICE

- o

4] Radiant Programmer - keyphrasexcf *
File Edit View Run Tools Help
PEEERIEE B
Enable Status Device Family Device Operation File Name File Date Time Checksum USERCODE Cable Setup 8 x
1 Generic ITAG Device IJTAG-NOP Bypass Cable Settings
Detect Cable
Cable: HW-USBN-28 (FTDT) ™
Fort: FTUSE-0 hd
Custom port:
Programming Speed Settings
(@) Use default Clock Divider
O Use custom Clock Divider
TCK Divider Setting (0-30x): 1 |+
1/0 Settings
(@) Use default 1/0 settings
() Use custom /O settings
R v
< >
Cutput 8 x

Lattice VM Drivers detected (HW-DLN-3C (Paralle))
Programmer device database loaded

Output | Td Console
Ready

Figure 9.3. Radiant Programmer - Initial Project Window

Initially, the .xcf have the option to add only one bin file. But since you need to program three bin files in case of

key phrase demo, add two more devices by clicking the @ button from the toolbar.

Set Device Family to iCE40 UltraPlus and Device to iCE40UP5K for all three cases.

Radiant Programmer - Unfifledxct =

Generic JTAG Device

iCE40 UltraPlus

File Edit View Run Tools Help
IR I L)
Enable Status Device Family Device Operation File Name File Date/Time Checksum USERCODE Cable Setup 5 o
1 iCE40 UltraPlus iCE40UPSK quration Cable Settings
2 ICE4D UltraPlus iCE40UPSK ...quration Detect Cable
3 ICE40 UltraPlus ~ | ICE40UPSK ..guration Cable: HW-USBN-26 (FTDD) ~
Port: FTUSE-0 v

Custom port:

Programming Speed Settings
(®) Use default Clock Divider

() Use custom Clock Divider
TCK Divider Setting (0-30x): |1 &
10 Settings

se default 1/0 settings
) Use custom 1/0 settings

T i b

Figure 9.4. Radiant Programmer — iCE40 UltraPlus Device Family Selection

40

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

:.ILATT'CE Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

a2 Radiant Programmer - Untitled.xcf * - ﬁl
File Edit View Run Tools Help

fEd REE Rk 6 E

Enable Status Device Family Device Operation File Name File Date/Time Checksum USERCODE Cable Setup 8 x
1 ICE40 UttraPlus ICEADUPSK quration Cable Settings
2 ICE40 UltraPlus ICE4DUPSK quration Detect Cable
3 ICE40 UltraPlus ICE40UP3K * | .guation Cable: HW-USBN-28 (FTDD) ~
Port: FTUSE-0 -
ICE40UP 5K
Custom port:

Programming Speed Settings
(®) Use default Clock Divider

() Use custom Clock Divider

TCK Divider Setting (0-30x): |1 |3

1/0 Settings
(®) Use default I/0 settings

() Use custom /O settings

TNTT i crcertad

< >
Cutput a8 x
Verifying... A
Finalizing....

INFO - Execution time: 00 min : 02 sec
INFO - Elapsed time: 00 min : 02 sec

INFO - Operation: successful,

INFO - Scanning USB2 Port FTUSB-0...

Figure 9.5. Radiant Programmer — iCE40 UltraPlus Device Selection

Click the iCE40 UltraPlus row and select Edit > Device Properties.
In the Device Properties dialog box, apply the settings below that are common to the two files to program.
Under Device Operation, select the options below:
e Target Memory — External SPI Flash Memory
e Port Interface — SPI
e Access Mode - Direct Programming
e Operation — Erase, Program, Verify
Under SPI Flash Options, select the options below:
e Family — SPI Serial Flash
e Vendor — Winbond
e Device-W25Q32
e Package - 8-pin SOIC
9. To program the bitstream file, select the options below as shown inFigure 9.6.
e Under Programming Options, select the key phrase RTL bitstream file in Programming file.
e Click Load from File to update the Data file size (Bytes) value.
e Ensure that the following addresses are correct:
e Start Address (Hex) — 0x00000000
e End Address (Hex) — 0x00010000
10. Click OK.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02066-1.0 41

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

£3 iCE40 UttraPlus - iCE40UPSK - Device Properties 7 >

General Device Information

Device Operation

Target Memaory: External SPI Flash Memary (SPI FLASH) -
Port Interface: SPI A
Arcess Mode: Direct Programming -
Operation: Erase,Program, Verify =

Programming Options

Programming file: |:,.'I'~"IL,.’KEyphrasefrelEasE,."Bits11'Eam,.'k.eyphrase_bitsh’eam_debug_nn.bin

SPI Flash Options
Family: SPI Serial Flash b
Vendor: WinBond -
Device: W25Q32 hd
Package: &-pin SOIC hd

SPI Programming

Data file size (Bytes): |1[J41 56 Load from File
Start address (Hex): 0x00000000 b
End address (Hex): 0x000 10000 -

|:| Erase SPI part on programming erraor

[] secure SPI flash golden pattern sectors

Concel

Figure 9.6. Radiant Programmer — Bitstream Flashing Settings

11. To program the filter binary firmware for generating the spectrogram, select the options below as shown in Figure
9.7.
e Under Programming Options, select the key phrase filter bin firmware generated by SensAl tool.
e Click Load from File to update the Data file size (Bytes) value. Change Data file size (Bytes) value to 32768.
e Ensure that the following addresses are correct:
e Start Address (Hex) — 0x00020000
e End Address (Hex) — 0x00030000
12. Click OK.
© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
42 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

General Device Information
Device Operation
Target Memory:
Port Interface:
Access Mode:

Operation:

Programming Options

ﬂ ICE40 UltraPlus - iCE40UPSEK - Device Properties

External SPI Flash Memory (SPI FLASH) -
SPI 7
Direct Programming hd
Erase,Program,Verify A

Programming file: baniEI,."::Iata,ﬂ_SCC,."I'~"IL,.'K.ey'phrasE,."rEIEasefBitsh’eamﬂceyphrase_ﬁlter.I:uin

SPI Flash Options

|:| Erase SPI part on programming error

[] secure SPI flash golden pattern sectors

Family: SPI Serial Flash
Vendar: WinBond
Device: W25032
Package: 8-pin 50IC
SPI Programming
Data file size (Bytes): |32?68
Start address (Hex): Ox00020000
End address (Hex): 0x00030000

Load from File

Cancel

Figure 9.7. Radiant Programmer — Filter-Firmware Bin File Flashing Setting

13. To program firmware bin which contains model architecture, select the options below as shown in Figure 9.8.
e Under Programming Options, select the key phrase firmware binary file generated by SensAl tool.

e Click Load from File to update the Data file size (Bytes) value. Change Data file size (Bytes) value to 31048 (In
case model is changed, write the actual size of the file).

e Ensure that the following addresses are correct:

e Start Address (Hex) — 0x00030000
e End Address (Hex) — 0x00040000

14. Click OK.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

43

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

= LATTICE

General Device Information
Device Operation
Target Memory:
Port Interface:
Access Mode:

Operation:

Programming Options

£3 iCE40 UltraPlus - iCE40UPSK - Device Properties ? >

External SPI Flash Memary (SPI FLASH) -
SPI 7
Direct Programming =
Erase,Program,Verify -

Programming file: IEI,."da13,.'LSCCML;Keyphrase,.’release,.’Eitst'eam,."l-c.eyphrase_ﬁrmware.bin

|:| Erase SPI part on programming error

[] secure SPI flash golden pattern sectors

SPI Flash Options
Family: SPI Serial Flash -
Vendor: WinBond -
Device: W25032 =
Package: 8-pin 50IC -
SPI Programming
Data file size (Bytes): |31[HB Load from File
Start address (Hex): 0x00030000 -
End address (Hex): 0x00040000 -

Cancel

Figure 9.8. Radiant Programmer — Firmware Bin File Flashing Setting

15. In the main interface, click Program Device to program the binary file.

44

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

http://www.latticesemi.com/legal

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP

Reference Design

9.3. RuniCE40 Key Phrase Detection Demo on Hardware
To run the demo and observe results on the board:

1. Power ON the Himax HMO01BO UPduino Shield Board.

2. Speak the keyword in front of the board.

3. An LED light turns on if the keyword is detected. Refer to Figure 9.9 for the LED information.

e D1-1tis ON if active audio is detected (including noise), and OFF when silence is detected.

4
Camera &
»
*.
e
R
A
&
r
Ay
/
Microphone ;
; Y
D1 (Active audio) o Jom e
4 P
D2 (Debug) 5 =
- HES)
D2 (Debug) - TR
’ oo
D3 (Debug) JR e
D ua
D4 (Debug) 5 o
L W e
D6 (Detection) JoEn

&
=
.

Figure 9.9. Camera and LED Location

e D2-D4 —These are Debug LEDs. For more information, refer to Overall Operational Flow section.
e D6 - This LED is turned on when the keyword is detected.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

45

http://www.latticesemi.com/legal

Key Phrase DeFection Using Compact CNN Accelerator IP .I.ILATTICE
Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02066-1.0

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

= LATTICE

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

Revision History

Revision 1.0, October 2019

Section

Change Summary

All

Initial release.

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0

47

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Key Phrase Detection Using Compact CNN Accelerator IP
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Tools and Hardware Requirements
	2.1.1. Lattice Tools
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. cuDNN Installation
	2.2.3. Installing the Anaconda and Python3
	2.2.4. Installing TensorFlow v1.12
	2.2.5. Installing the Python Package

	3. Preparing the Dataset
	3.1. Selecting the Dataset
	3.2. Downloading the Dataset
	3.3. Data Augmentation

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Neural Network Architecture
	4.2.2. Key Phrase Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Settings
	4.2.3.2. Audio Processor
	4.2.3.3. Model Building
	Placeholders
	CNN Architecture Generation
	Quantization and Network Model Configuration

	4.2.3.4. Training Loop

	4.2.4. Training from Scratch and/or Transfer Learning
	4.2.4.1. Modifying Training Keywords and Other Configurations
	4.2.4.2. Filter training
	4.2.4.3. Keyword Training
	4.2.4.4. Transfer Learning
	4.2.4.5. Training Status

	5. Creating Frozen File
	5.1. Generating the Frozen (.pb) File

	6. Creating Binary File with SensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Overall Operational Flow
	7.1.3. Core Customization

	8. RTL Bitstream Generation
	9. Programming the Key Phrase Detection Demo
	9.1. Functional Description
	9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash
	9.3. Run iCE40 Key Phrase Detection Demo on Hardware

	Technical Support Assistance
	Revision History
	Revision 1.0, October 2019

