

Key Phrase Detection Using Compact CNN
Accelerator IP

Reference Design

FPGA-RD-02066-1.0

October 2019

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02066-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 3

Contents
Acronyms in This Document ... 7
1. Introduction .. 8

1.1. Design Process Overview .. 8
2. Setting Up the Basic Environment .. 9

2.1. Tools and Hardware Requirements... 9
2.1.1. Lattice Tools .. 9
2.1.2. Hardware .. 9

2.2. Setting Up the Linux Environment for Machine Training .. 10
2.2.1. Installing the CUDA Toolkit ... 10
2.2.2. cuDNN Installation .. 11
2.2.3. Installing the Anaconda and Python3 ... 11
2.2.4. Installing TensorFlow v1.12 .. 12
2.2.5. Installing the Python Package ... 13

3. Preparing the Dataset ... 15
3.1. Selecting the Dataset .. 15
3.2. Downloading the Dataset .. 15
3.3. Data Augmentation ... 15

4. Training the Machine .. 16
4.1. Training Code Structure .. 16
4.2. Neural Network Architecture .. 17

4.2.1. Neural Network Architecture ... 17
4.2.2. Key Phrase Detection Network Output .. 19
4.2.3. Training Code Overview .. 19
4.2.4. Training from Scratch and/or Transfer Learning .. 24

5. Creating Frozen File .. 29
5.1. Generating the Frozen (.pb) File ... 29

6. Creating Binary File with SensAI ... 31
7. Hardware Implementation ... 35

7.1. Top Level Information ... 35
7.1.1. Block Diagram ... 35
7.1.2. Overall Operational Flow .. 35
7.1.3. Core Customization... 36

8. RTL Bitstream Generation .. 37
9. Programming the Key Phrase Detection Demo .. 39

9.1. Functional Description .. 39
9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash ... 39
9.3. Run iCE40 Key Phrase Detection Demo on Hardware .. 45

Technical Support Assistance ... 46
Revision History .. 47

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02066-1.0

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 8
Figure 2.1. Lattice Himax HM01B0 Upduino Shield Board ... 9
Figure 2.2. CUDA Repo Download .. 10
Figure 2.3. CUDA Repo Installation ... 10
Figure 2.4. Fetch Keys ... 10
Figure 2.5. Updated Ubuntu Package Repositories .. 10
Figure 2.6. CUDA Installation Completed ... 11
Figure 2.7. cuDNN Library Installation .. 11
Figure 2.8. Anaconda Package Download ... 11
Figure 2.9. Anaconda Installation ... 12
Figure 2.10. License Terms Prompt .. 12
Figure 2.11. Installation Path Confirmation .. 12
Figure 2.12. Launch/Initialize Anaconda Environment Installation Complete ... 12
Figure 2.13. Anaconda Environment Activation ... 12
Figure 2.14. TensorFlow Installation ... 13
Figure 2.15. TensorFlow Installation Confirmation .. 13
Figure 2.16. TensorFlow Installation Complete .. 13
Figure 2.17. Easydict Installation .. 13
Figure 2.18. Anaconda Env – librosa Installation .. 14
Figure 3.1. Convert Sample Rate Script Execution .. 15
Figure 4.1. Training Code Directory Structure .. 16
Figure 4.2. Training Code Flow Diagram ... 19
Figure 4.3. Code Snippet – Model Settings ... 20
Figure 4.4. Code Snippet – Audio Processor ... 20
Figure 4.5. Code Snippet – Quantization Parameters Setting .. 22
Figure 4.6. Code Snippet – Forward Graph Fire Layers .. 23
Figure 4.7. Code Snippet – Convolution Quantization .. 23
Figure 4.8. Code Snippet – Training Loop ... 23
Figure 4.9. Code Snippet – Train Model ... 24
Figure 4.10. Code Snippet – Save Checkpoints ... 24
Figure 4.11. Code Snippet – Config File config.sh ... 25
Figure 4.12. Key Phrase Detection – Trigger Training with Default Options (Phase 1) ... 25
Figure 4.13. Key Phrase Detection – Training from Scratch (Phase 2) .. 26
Figure 4.14. Key Phrase Detection – Trigger Training with Transfer Learning .. 26
Figure 4.15. Key Phrase Detection – Training Logs ... 27
Figure 4.16. TensorBoard – Launch .. 27
Figure 4.17. TensorBoard – Link Default Output in Browser .. 27
Figure 4.18. Checkpoint Storage Directory Structure ... 28
Figure 5.1. Generating .pbtxt For Inference ... 29
Figure 5.2. Generated .pbtxt for Inference ... 29
Figure 5.3. Run genpb.py to Generate Inference .pb ... 29
Figure 5.4. Frozen Inference .pb Output... 30
Figure 6.1. SensAI Home Screen ... 31
Figure 6.2. SensAI –Network File Selection .. 32
Figure 6.3. SensAI –Image Data File Selection .. 32
Figure 6.4. SensAI – Project Settings .. 33
Figure 6.5. SensAI – Analyze Project ... 33
Figure 7.1. Top Level Block Diagram Key Phrase Detection iCE40 .. 35
Figure 8.1. Lattice Radiant Software ... 37
Figure 8.2. Lattice Radiant Software – Open Project .. 37
Figure 8.3. Lattice Radiant Software – Bitstream Generation .. 38
Figure 8.4. Lattice Radiant Software – Bitstream Generation Export Reports ... 38

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 5

Figure 9.1. iCE40 Key Phrase Demo Diagram ... 39
Figure 9.2. Radiant Programmer – Creating New Project .. 39
Figure 9.3. Radiant Programmer – Initial Project Window ... 40
Figure 9.4. Radiant Programmer – iCE40 UltraPlus Device Family Selection ... 40
Figure 9.5. Radiant Programmer – iCE40 UltraPlus Device Selection ... 41
Figure 9.6. Radiant Programmer – Bitstream Flashing Settings ... 42
Figure 9.7. Radiant Programmer – Filter-Firmware Bin File Flashing Setting ... 43
Figure 9.8. Radiant Programmer – Firmware Bin File Flashing Setting .. 44
Figure 9.9. Camera and LED Location ... 45

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02066-1.0

Tables
Table 4.1. Key Phrase Detection Training Network Topology .. 17
Table 7.1. CNN Output Format ... 35
Table 7.2. Core Parameters .. 36

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 7

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CKPT Checkpoint

CNN Convolutional Neural Network

EVDK Embedded Vision Development Kit

FPGA Field-Programmable Gate Array

LED Light-emitting diode

MLE Machine Learning Engine

NN Neural Network

NNC Neural Network Compiler

SD Secure Digital

SDHC Secure Digital High Capacity

SDXC Secure Digital extended Capacity

SPI Serial Peripheral Interface

VIP Video Interface Platform

USB Universal Serial Bus

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02066-1.0

1. Introduction
This document describes the key phrase detection design process using an iCE40 UltraPlus™ FPGA platform (HiMax
HM01B0 UPduino Shield).

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

 Setting up the basic environment

 Preparing the dataset

 Training the machine

 Training the machine and creating the checkpoint data

 Creating the frozen file (*.pb)

2. Compiling Neural Network

 Creating the filter and firmware binary files with Lattice SensAI 2.1 program

3. FPGA design

 Creating the FPGA Bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

 Flashing the binary and bitstream files to iCE40 UPduino hardware

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 9

2. Setting Up the Basic Environment

2.1. Tools and Hardware Requirements
This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Tools
 Lattice Radiant Tool v1.1 – Refer to http://www.latticesemi.com/latticeradiant

 Lattice Radiant Programmer v1.1 – Refer to http://www.latticesemi.com/latticeradiant

 Lattice SensAI Compiler v2.1 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

2.1.2. Hardware

This design uses the HiMax HM01B0 UPduino Shield as shown in Figure 2.1. Refer to
http://www.latticesemi.com/en/Products/DevelopmenBoardsAndKits/HimaxHM01B0.

Figure 2.1. Lattice Himax HM01B0 Upduino Shield Board

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
http://www.latticesemi.com/en/Products/DevelopmenBoardsAndKits/HimaxHM01B0

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02066-1.0

2.2. Setting Up the Linux Environment for Machine Training

2.2.1. Installing the CUDA Toolkit

To install the NVIDIA CUDA toolkit, run the commands below:

1. Download the NVIDIA CUDA toolkit.

$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu

da-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. CUDA Repo Download

2. Install the deb package.
$ sudo dpkg -i ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

3. Proceed with the installation.
$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa

2af80.pub

Figure 2.4. Fetch Keys

$ sudo apt-get update

Figure 2.5. Updated Ubuntu Package Repositories

http://www.latticesemi.com/legal
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 11

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation Completed

2.2.2. cuDNN Installation

To install the cuDNN:

1. Create Nvidia developer account in https://developer.nvidia.com.

2. Download cuDNN library in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN:
$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/

libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.3. Installing the Anaconda and Python3

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/distribution/#download.

2. Download the Python 3 version of Anaconda for Linux.

Figure 2.8. Anaconda Package Download

3. Run the command below to install the Anaconda environment.
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh version may vary based on the release.

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/distribution/#download

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02066-1.0

Figure 2.9. Anaconda Installation

4. Accept the license.

Figure 2.10. License Terms Prompt

5. Confirm the installation path. Follow the instructions onscreen to change the default path.

Figure 2.11. Installation Path Confirmation

6. After installation, enter No as shown in Figure 2.12.

Figure 2.12. Launch/Initialize Anaconda Environment Installation Complete

2.2.4. Installing TensorFlow v1.12

To install the TensorFlow v1.12:

1. Activate the conda environment by running the command below:

$ source <conda directory>/bin/activate

Figure 2.13. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:

$ conda install tensorflow-gpu==1.12.0

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 13

Figure 2.14. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.15.

Figure 2.15. TensorFlow Installation Confirmation

Figure 2.16 shows TensorFlow installation is completed.

Figure 2.16. TensorFlow Installation Complete

2.2.5. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:

$ conda install -c conda-forge easydict

Figure 2.17. Easydict Installation

2. Install Easydict by running the command below:

$ conda install –c conda-forge librosa==0.6.0

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02066-1.0

Figure 2.18. Anaconda Env – librosa Installation

Figure 2.18 shows the successful installation.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 15

3. Preparing the Dataset
This chapter describes how to create a dataset using examples from Google Speech Command.

3.1. Selecting the Dataset
Below are two options of dataset for Key Phrase Detection models which can be used for training:

 Google Speech Command Dataset v0.01

 Google Speech Command Dataset v0.02

3.2. Downloading the Dataset
To download the dataset:

1. Go to the links below to download the Google Speech Command Dataset:

 Google speech command dataset v0.01:
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz

 Google speech command dataset v0.02:
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz

2. Convert the sample rate of 16 KHz .wav files to 8 KHz by running the commands below:

a. Install the necessary dependency:
$ sudo apt-get install sox

b. Convert the dataset:
$python convert-samplerate.py

Figure 3.1. Convert Sample Rate Script Execution

3.3. Data Augmentation
Dataset Augmentation is done by adding background noise in training-code itself. Background noises are used from the
dataset’s _background_noise_ directory. Refer to README.md in the background noise directory for more information
on how to add noise files.

http://www.latticesemi.com/legal
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02066-1.0

4. Training the Machine

4.1. Training Code Structure

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 17

4.2. Neural Network Architecture

4.2.1. Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Key Phrase Detection design.

Table 4.1. Key Phrase Detection Training Network Topology

Audio Input (8320)

Freqconv
Conv1d-(64, 64) Conv1d basically performs convolution on 1d data and gives an

output of 2D data. In this case,. the output is 64 x 64.

Conv3 - # where:

 Conv3 – 3 x 3 Convolution filter Kernel size

 # - The number of filters

For example, Conv3 - 8 = 8 3 x 3 convolution filter

Batchnorm : Batch Normalization

FC - # where:

 FC – Fully connected layer

 # - The number of outputs

Relu

Reshape Reshape- (64, 1, 64)

Transpose Transpose-(64, 64, 1)

Fire 1

Conv3 – 16

Batchnorm

Relu

Maxpool

Fire 2

Conv3 – 16

Batchnorm

Relu

Fire 3

Conv3 – 20

Batchnorm

Relu

Maxpool

Fire 4

Conv3 – 20

Batchnorm

Relu

Fire 5

Conv3 – 20

Batchnorm

Relu

Maxpool

Fire6

Conv3 – 24

Batchnorm

Relu

Maxpool

Dropout Dropout - 0.50

fc4 FC – (2 + Num-keywords)

 In Table 4.1, Layer contains Convolution (conv), batch normalization (bn), Relu and dropout layers.

 Output of layer fc4 is number of classes in dataset along with silence and unknown considered as 2 keywords, so
total number of outputs of fc4 layer is # of classes + 2.

 Layer information

 Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (I.e.
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves & other high-level
features. For example, the filters on the first layer convolve around the input image and activate (or compute
high values) when the specific feature (for example, curve) it is looking for is in the input volume.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02066-1.0

 Relu (Activation layer)

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that Relu layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The Relu layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

 Pooling Layer

After some Relu layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This basically takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. Second is that it
controls over fitting. This term refers to when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

 Batchnorm Layer

Batch normalization layer reduces the internal covariance shift. In order to train a neural network, we do some
preprocessing to the input data. For example, we could normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, etc.

But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

 Calculate the mean and variance of the layers input.

 Normalize the layer inputs using the previously calculated batch statistics.

 Scales and shifts in order to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be
carefree about weight initialization, works as regularization in place of dropout, and other regularization
techniques.

 Drop-out layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network do not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. That means the network should be able to
provide the right classification or output for a specific example even if some of the activations are dropped
out. It makes sure that the network isn’t getting too fitted to the training data and thus helps alleviate the over
fitting problem. An important note is that this layer is only used during training, and not during test time.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 19

 Fully connected layer

This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding
it) and outputs an N dimensional vector where N is the number of classes that the program must choose from.

 Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

4.2.2. Key Phrase Detection Network Output

Key phrase detection network gives N + 2 values from last output node, where N is number of keywords trained. Two
additional values represent Silence and Unknown as 2 keywords.

4.2.3. Training Code Overview

Figure 4.2. Training Code Flow Diagram

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02066-1.0

4.2.3.1. Model Settings

Figure 4.3. Code Snippet – Model Settings

 prepare_model_settings function calculates and returns the dictionary containing all common settings for training
from given parameters like label_count (# of keywords), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms and dct_coefficient_count. More details about parameters are as follows:

 label_count – Number of classes.

 sample_rate – Number of audio samples per second.

 clip_duration_ms – Length of each audio clip to be analyzed.

 window_size_ms – Duration of frequency analysis window.

 window_stride_ms – Length of move in time between frequency windows.

 dct_coefficient_count – Number of frequency bins to use for analysis.

4.2.3.2. Audio Processor

Figure 4.4. Code Snippet – Audio Processor

Figure 4.5. Audio Processor Class Object

AudioProcessor function handles the loading, partitioning, and preparing of audio training data. It also downloads the
dataset from given data_url in argument if dataset is not present.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 21

Figure 4.6. Code Snippet – Decoding the Audio, Scaling and Adding of Noise

4.2.3.3. Model Building

Placeholders

Figure 4.7. Code Snippet – Placeholders

 audio_input is placeholder to feed preprocessed audio input to network.

 ground_truth_input is placeholder to feed targeted labels of given batch. It is later used for evaluating training and
optimization purpose.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02066-1.0

CNN Architecture Generation

Figure 4.8. Code Snippet – Create Model

create_model creates training graph or training model using given configuration. More details about flags are as
follows:

 audio_input – TensorFlow node that gives audio feature map as output.

 model_settings – Dictionary of information about the model.

 model_architecture – The default architecture is tinyvgg_conv defined in config.sh.

 is_training – Whether the model is going to be used for training.

Figure 4.9. Code Snippet – Create_tinyvgg_conv_model

Quantization and Network Model Configuration

Figure 4.5. Code Snippet – Quantization Parameters Setting

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 23

Figure 4.6. Code Snippet – Forward Graph Fire Layers

8-bit quantization is done on weights and activations in this model. Based on value of w_bin and a_bin, it is
decided if quantization is to be done or not.

Figure 4.7. Code Snippet – Convolution Quantization

4.2.3.4. Training Loop

Training Loop is divided in three segments:

 Fetching Data

Figure 4.8. Code Snippet – Training Loop

Using audio_processor object, the code shown in Figure 4.8 fetches the next batch for training.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02066-1.0

 Training Model

Figure 4.9. Code Snippet – Train Model

Using session.run code feeds next batch to network placeholders and evaluates desired operations mentioned
in argument.

 Saving Checkpoints

Figure 4.10. Code Snippet – Save Checkpoints

Trained Checkpoints are periodically saved based on flag specified save_step_interval at checkpoint_path.

4.2.4. Training from Scratch and/or Transfer Learning

Training of Key Phrase Detection model has two phases:

 Phase 1 – Training with all keywords available in dataset (Filter training).

 Phase 2 – Training for wanted keywords using the checkpoint of phase 1 model (Keyword training).

4.2.4.1. Modifying Training Keywords and Other Configurations

 To configure keywords or other parameters, modify config.sh under training directory. Default parameter values for
Key Phrase Detection training are as shown in Figure 4.11.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 25

Figure 4.11. Code Snippet – Config File config.sh

 Update DATA_DIR with the path to root directory of speech commands dataset.

 Update FILTER_TRAIN_KEYWORD with all available keywords in dataset.

 Update TRAIN_KEYWORD with all keywords that need to be trained by model.

 You can also configure additional parameters in train_filter.sh and train.sh if needed.

4.2.4.2. Filter training

After configuring (only if required) parameters mentioned in Modifying Training Keywords and Other Configurations
section, run the script below to start filter training from scratch.

./train_filter.sh

Figure 4.12. Key Phrase Detection – Trigger Training with Default Options (Phase 1)

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02066-1.0

4.2.4.3. Keyword Training

 For phase 2 training, update the path of phase 1 checkpoint in train.sh by running the command below:

 Make sure that below line refers to checkpoints generated by Phase 1 training.

TRAIN_OPT = “$TRAIN_OPT –set_prefilter=<path_to_traindir/tinyvgg_conv.ckpt-

50000> --lock_prefilter”

 After configuring (only if required) parameters mentioned in Modifying Training Keywords and Other
Configurations section, run the script below to start training from scratch.

./train.sh

Figure 4.13. Key Phrase Detection – Training from Scratch (Phase 2)

4.2.4.4. Transfer Learning

 For transfer learning, $FILTER_TRAIN_DIR and/or $TRAIN_DIR should point to last iteration’s log directory in
config.sh and the latest checkpoint name should be updated in training script. New checkpoints are stored at the
path given in $TRAIN_DIR and/or $FILTER_TRAIN_DIR.

 Modify below line in train_filter.sh and train.sh to specify checkpoints from where training should resume:

TRAIN_OPT="$TRAIN_OPT --start_checkpoint=$TRAIN_DIR/$NETWORK.ckpt-50000"

Figure 4.14. Key Phrase Detection – Trigger Training with Transfer Learning

4.2.4.5. Training Status

 Training status can be checked in logs by observing different terminologies like cross entropy loss, learning rate,
and training accuracy.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 27

Figure 4.15. Key Phrase Detection – Training Logs

 You can use the TensorBoard utility for checking training status.

 Run the command below to start TensorBoard:

$ tensorboard –logdir=<log directory of training>

Figure 4.16. TensorBoard – Launch

 This command provides the link http://<name>:6006 which needs to be copied and open in any browser like
Chrome, Firefox, and so on.

Figure 4.17. TensorBoard – Link Default Output in Browser

 Similarly, other graphs can be investigated from the available list.

 Check if the checkpoint, data, meta and index files are created at the log directory. These files are used for creating
the frozen file (*.pb).

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02066-1.0

Figure 4.18. Checkpoint Storage Directory Structure

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 29

5. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the
steps below to generate the frozen protobuf file:

Figure 5.1. Generating .pbtxt For Inference

Figure 5.2. Generated .pbtxt for Inference

It generates the .pbtxt for inference under train log directory.

5.1. Generating the Frozen (.pb) File
Generate .pb file from latest checkpoint using below command from the training code’s root directory.

$ python genpb.py --ckpt_dir <COMPLETE_PATH_TO_LOG_DIRECTORY>

Figure 5.3. Run genpb.py to Generate Inference .pb

genpb.py uses the generated .pbtxt and latest checkpoint in train directory to generate frozen .pb file.

Once the genpb.py is executed successfully, the log directory now contains the <ckpt-prefix>_frozenforinference.pb file
as shown in Figure 5.4Figure 5.4.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02066-1.0

Figure 5.4. Frozen Inference .pb Output

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 31

6. Creating Binary File with SensAI
This chapter describes how to generate binary file using the Lattice SensAI version 2.1 program.

Figure 6.1. SensAI Home Screen

To create the project in SensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project Name

 Framework – TensorFlow

 Class – CNN

 Device – UltraPlus

3. Click Network File and select the network (PB) file.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02066-1.0

Figure 6.2. SensAI –Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3. SensAI –Image Data File Selection

5. Click Next.

6. Configure your project settings as shown in Figure 6.4.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 33

Figure 6.4. SensAI – Project Settings

7. Click OK to create project.

8. Double-click Analyze.

Figure 6.5. SensAI – Analyze Project

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02066-1.0

9. Double-click Compile to generate the Firmware file.

Figure 6.6. Compile Project

Firmware bin file location is displayed in the compilation log. Use the generated firmware and filter bin on the
hardware for testing which gives you two output bin files:

 <Project name>_filter.bin – contains weights to generate spectrogram from audio input.

 <Project name>.bin – contains remaining neural network and weights.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 35

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

Figure 7.1. Top Level Block Diagram Key Phrase Detection iCE40

7.1.2. Overall Operational Flow

This section provides a brief idea about the data flow across ice40 Upduino2 Board.

 The I2S master module communicates with I2S microphone on Upduino2 board. It receives the serial audio data
from the External Microphone and transports the data to the audio buffer module for storing purpose.

 The SPI loader module reads the external flash for two different files: the command sequence file and the filter
bank storage file.

 The command sequence file is sent to the compact CNN IP core while the filter bank storage file is sent to the filter
bank module. A filter bank storage module is used while converting audio data into a spectrogram-like picture for
CNN input.

 The audio fingerprint module takes the stored audio data from the audio buffer along with the filter bank values
from filter bank storage and creates an image of 64 x 64 which is then passed to CNN IP.

 As per command sequence received from SPI Loader, CNN IP performs operations on 64 x 64 input audio image
and provides six values as output for six classes in following order:

Table 7.1. CNN Output Format

Index 0 1 2 3 4 5

Class Silence Unknown

(No Keyword)

Seven

(Keyword)

Marvin

(Keyword)

On

(Keyword)

Happy

(Keyword)

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02066-1.0

 CNN outputs are passed to the audio post processing unit to compare all the six output values and generate
difference value between 1st maximum value and 2nd maximum value (No Keyword). The index of 1st maximum
value is verified to check whether it belongs to a valid keyword or not (valid Keyword Index values = 2, 3, 4, 5).

 The calculated difference value is compared with two Thresholds defined in Top module which is then used to
drive the LEDs. The Detection LED logic uses another Threshold for Keyword Length which relates to the duration
of the Keyword spoken. Currently the threshold values are as following:

 Lower Threshold value = 1536 (Decimal)

 Higher Threshold Value = 4096 (Decimal)

 Keyword Length Threshold = 8 (Decimal)

 There are six LEDs with potential to turn on. According to the parameter EN_DEBUG_LED configuration, the demo
has following two output representations.

 Configuration 1 (EN_DEBUG_LED = 0)

 LED D1 – It is ON if active audio is detected (including noise), and OFF when silence is detected.

 LED D2 – OFF

 LED D3 – OFF

 LED D4 – OFF

 LED D5 – OFF

 LED D6 (Detection LED) – It is ON if any of the Keywords (Sheila, Marvin, On, Off) is detected and Keyword
Length Threshold is crossed.

 Configuration 2 (EN_DEBUG_LED = 1)

LED D1 and D6 are driven same as configuration 1 above. LED D2 to D5 is used for debugging information.

 LED D1 – It is ON if active audio is detected (including noise), and OFF when silence is detected.

 LED D2: – t has similar behavior as LED D6.

 LED D3 – It is ON if any of the Keywords is detected with the calculated difference value greater than
Higher Threshold.

 LED D4 – It is ON if any of the Keywords is detected with the calculated difference value greater than
Lower Threshold.

 LED D5 – It is ON if any of the Keywords is detected with the calculated difference value lesser than both
the Thresholds.

 LED D6 (Detection LED) – It is ON if any of the Keywords (Sheila, Marvin, On, Off) is detected and Keyword
Length Threshold is crossed.

7.1.3. Core Customization

Table 7.2. Core Parameters

Parameter Default

(Decimal)

Description

Configurable Parameters

EN_DEBUD_LED 0 Enable additional LED detection for threshold value debugging.

1: D2 - D5 LEDs represents debug information for keyword detection with
difference value in between certain threshold range.

0: D2 - D5 LEDs are always Off.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 37

8. RTL Bitstream Generation
This section provides the procedure for creating your FPGA bitstream file using Lattice Radiant Software.

Note: This reference design includes a Compact CNN IP that requires a license to be able to generate a bitstream.
Lattice provides a 30-day evaluation license for this IP for those who want to evaluate the IP and reference design. You
can obtain an evaluation license from the Lattice website Software Licensing page.

Lattice Radiant software version 1.1 is required to generate a bitstream along with a software license patch. You can
obtain the software patch file from the Lattice website through Lattice Radiant 1.1 Software Patch.

To create the FPGA bitstream file:

1. Open the Lattice Radiant software.

Figure 8.1. Lattice Radiant Software

2. Click File > Open > Project. Browse and open Radiant project file for iCE40 key phrase detection RTL.

Figure 8.2. Lattice Radiant Software – Open Project

http://www.latticesemi.com/legal
http://www.latticesemi.com/Support/Licensing
http://www.latticesemi.com/view_document?document_id=52612

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02066-1.0

3. Click Export Files to generate the bit file.

Figure 8.3. Lattice Radiant Software – Bitstream Generation

4. The Export Reports displays the generated bitstream as shown in Figure 8.4.

Figure 8.4. Lattice Radiant Software – Bitstream Generation Export Reports

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 39

9. Programming the Key Phrase Detection Demo

9.1. Functional Description
Figure 9.1 shows the diagram of the Key Phrase demo. The microphone captures audio and sends it to the iCE40
UltraPlus device. iCE40 UltraPlus uses the audio data with the firmware file from the external SPI Flash to determine
the result.

Figure 9.1. iCE40 Key Phrase Demo Diagram

9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash
This section provides the procedure for programming the SPI Flash on the Himax HM01B0 UPduino Shield Board.

Two different files should be programmed into the SPI Flash. These files are programmed to the same SPI Flash, but at
different addresses:

 Bitstream

 Firmware

To program the SPI Flash in Radiant Programmer:

1. Connect the Himax HM01B0 UPduino Shield board to the PC using a micro USB cable. Note that the USB connector
on board is delicate, so handle it with care.

2. Start Radiant Programmer.

3. In the Radiant Programmer Getting Started dialog box, select Create a new blank project.

4. Click OK.

Figure 9.2. Radiant Programmer – Creating New Project

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02066-1.0

Figure 9.3. Radiant Programmer – Initial Project Window

5. Initially, the .xcf have the option to add only one bin file. But since you need to program three bin files in case of

key phrase demo, add two more devices by clicking the button from the toolbar.

6. Set Device Family to iCE40 UltraPlus and Device to iCE40UP5K for all three cases.

Figure 9.4. Radiant Programmer – iCE40 UltraPlus Device Family Selection

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 41

Figure 9.5. Radiant Programmer – iCE40 UltraPlus Device Selection

7. Click the iCE40 UltraPlus row and select Edit > Device Properties.

8. In the Device Properties dialog box, apply the settings below that are common to the two files to program.

Under Device Operation, select the options below:

 Target Memory – External SPI Flash Memory

 Port Interface – SPI

 Access Mode – Direct Programming

 Operation – Erase, Program, Verify

Under SPI Flash Options, select the options below:

 Family – SPI Serial Flash

 Vendor – Winbond

 Device – W25Q32

 Package – 8-pin SOIC

9. To program the bitstream file, select the options below as shown inFigure 9.6.

 Under Programming Options, select the key phrase RTL bitstream file in Programming file.

 Click Load from File to update the Data file size (Bytes) value.

 Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00010000

10. Click OK.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02066-1.0

Figure 9.6. Radiant Programmer – Bitstream Flashing Settings

11. To program the filter binary firmware for generating the spectrogram, select the options below as shown in Figure
9.7.

 Under Programming Options, select the key phrase filter bin firmware generated by SensAI tool.

 Click Load from File to update the Data file size (Bytes) value. Change Data file size (Bytes) value to 32768.

 Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00020000

 End Address (Hex) – 0x00030000

12. Click OK.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 43

Figure 9.7. Radiant Programmer – Filter-Firmware Bin File Flashing Setting

13. To program firmware bin which contains model architecture, select the options below as shown in Figure 9.8.

 Under Programming Options, select the key phrase firmware binary file generated by SensAI tool.

 Click Load from File to update the Data file size (Bytes) value. Change Data file size (Bytes) value to 31048 (In
case model is changed, write the actual size of the file).

 Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00030000

 End Address (Hex) – 0x00040000

14. Click OK.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02066-1.0

Figure 9.8. Radiant Programmer – Firmware Bin File Flashing Setting

15. In the main interface, click Program Device to program the binary file.

http://www.latticesemi.com/legal

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 45

9.3. Run iCE40 Key Phrase Detection Demo on Hardware
To run the demo and observe results on the board:

1. Power ON the Himax HM01B0 UPduino Shield Board.

2. Speak the keyword in front of the board.

3. An LED light turns on if the keyword is detected. Refer to Figure 9.9 for the LED information.

Figure 9.9. Camera and LED Location

 D1 – It is ON if active audio is detected (including noise), and OFF when silence is detected.

 D2-D4 – These are Debug LEDs. For more information, refer to Overall Operational Flow section.

 D6 – This LED is turned on when the keyword is detected.

http://www.latticesemi.com/legal

Key Phrase Detection Using Compact CNN Accelerator IP
Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02066-1.0

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

 Key Phrase Detection Using Compact CNN Accelerator IP
 Reference Design

© 2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02066-1.0 47

Revision History

Revision 1.0, October 2019

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Key Phrase Detection Using Compact CNN Accelerator IP
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Tools and Hardware Requirements
	2.1.1. Lattice Tools
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. cuDNN Installation
	2.2.3. Installing the Anaconda and Python3
	2.2.4. Installing TensorFlow v1.12
	2.2.5. Installing the Python Package

	3. Preparing the Dataset
	3.1. Selecting the Dataset
	3.2. Downloading the Dataset
	3.3. Data Augmentation

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Neural Network Architecture
	4.2.2. Key Phrase Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Settings
	4.2.3.2. Audio Processor
	4.2.3.3. Model Building
	Placeholders
	CNN Architecture Generation
	Quantization and Network Model Configuration

	4.2.3.4. Training Loop

	4.2.4. Training from Scratch and/or Transfer Learning
	4.2.4.1. Modifying Training Keywords and Other Configurations
	4.2.4.2. Filter training
	4.2.4.3. Keyword Training
	4.2.4.4. Transfer Learning
	4.2.4.5. Training Status

	5. Creating Frozen File
	5.1. Generating the Frozen (.pb) File

	6. Creating Binary File with SensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Overall Operational Flow
	7.1.3. Core Customization

	8. RTL Bitstream Generation
	9. Programming the Key Phrase Detection Demo
	9.1. Functional Description
	9.2. Programming Key Phrase Detection Demo on iCE40 SPI Flash
	9.3. Run iCE40 Key Phrase Detection Demo on Hardware

	Technical Support Assistance
	Revision History
	Revision 1.0, October 2019

