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Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type 
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[ ] Optional items in syntax descriptions. In bus specifications, the 
brackets are required.

( ) Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.
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Chapter 1

Introduction

The Reveal software included in Diamond is a next-generation FPGA on-chip 
debug tool. It offers several key usability benefits including the following 
features:

 Integration with the Diamond design flow

 One-button operation to insert debug logic into the design

 Simple flow for modifying the original design or the debug configuration

 Advanced triggering capabilities for more flexible dynamic triggers

 Improved logic analyzer waveform usability

You can use Reveal with all FPGAs and with MachXO and MachXO2 devices 
of 1200 or more LUTs.

This user guide contains all the necessary information for getting started with 
the Reveal software. It contains two primary sections: the Reveal Inserter and 
the Reveal Analyzer. 

The Reveal Inserter section contains information on how to add debug 
information to your design. It also contains detailed information on how to use 
and set up the triggering architecture used in Reveal. The triggering 
architecture, which is based on trigger units and trigger expressions, has 
some differences from other systems but offers increased capabilities and 
flexibility for an internal logic analyzer. 

The Reveal Analyzer section contains information on how to use and connect 
the software to the design running on the target hardware.
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Using the Reveal Example Project
If you want to get some hands-on experience with the Reveal tools, try using 
the example project while studying the online help.

The example is a simple 3-bit counter coded in Verilog. It already has a 
Reveal module inserted. It also already has trace data that can be viewed in 
Reveal Analyzer. A test board is not required to open the Reveal tools or to 
view the existing trace data. But, to actually run Reveal Analyzer to collect 
new data, you need a test board.

To start the Reveal example project:

1. Choose File > Open > Design Example.

The Open Example dialog box opens.

2. Double-click counta_reveal_XP2.

3. Choose count.ldf.

4. Click Open.

The count design project opens. At this point, you can open Reveal 
Inserter.

5. In the Process view, double-click Export Files to implement the design.

At this point, you can open Reveal Analyzer.

If you want to use the example project with a test board, change the device 
type to match the board by double-clicking the device in the File List view. 
Then run the design implementation process.

Using the Reveal Debug Projects
If you are having trouble running Reveal with your design, Lattice provides the 
following pre-verified Reveal Debug Projects to allow you to verify that Reveal 
is working correctly on your computer.

 counter_impl_ECP2M

 counter_reveal_ECP2

 counter_reveal_ECP3

 counter_reveal_ECP5

 counter_reveal_LIFMD

 counter_reveal_MACHXO2

 counter_reveal_XO

Note

If you want to preserve the original example for future experiments, choose File > 
Archive Project now.
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 counter_reveal_XP2

The Reveal Debug Projects are located in a folder in the examples directory:

<diamond_install_path>\examples\reveal_debugger\

Your computer must be connected to a board with the appropriate Lattice 
device.

The reference design is a 32-bit counter which includes one input reset and 4 
outputs LEDPIO_OUT0, LEDPIO_OUT1, LEDPIO_OUT2 and 
LEDPIO_OUT3.

Choose the appropriate device package and locate the output ports to see if 
the counter is toggling with the LED.

The clock signal is driven by internal oscillator and the OUTPOT_OUT3 to 
OUTPUTPIO_OUT0 are connecting to the most significant bit cnt[31:28].    
This reference design has a Reveal module inserted and has trace signal TU1 
that monitoring cnt[5:0] equal to 6b'100000 as trigger condition.

To start the Reveal example project:

1. Choose File > Open > Project.

The Open Example dialog box opens.

2. Browse to the desired Reveal Debug Project folder, and choose the 
apppropriate .ldf file.

3. Click Open.

4. Ensure that the Diamond project settings match the device on your board.

5. Follow the steps outlined in the “Performing Logic Analysis” section of the 
Diamond online help.

 If you are able to run the Reveal Debug Project successfully in Reveal, 
then the problem may be with your design or in the clock source.

 If you are unable to run the Reveal Debug Project successfully in 
Reveal, contact Lattice Technical Support and send the project with 
the log files.
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Chapter 2

Reveal Inserter

Reveal Inserter enables you to select which design signals to use for debug 
tracing or triggering, then generate a core on the basis of these signals and 
their use. After generating the required core, it generates a modified design 
with the necessary debug connections and links it to the signals. Reveal 
Inserter supports VHDL, Verilog, mixed-HDL, and EDIF flows for debug 
insertion. Once the design has been modified for debug, it is mapped, placed, 
and routed with the normal design flow in Diamond.

After you generate the bitstream or JEDEC file, Reveal Analyzer helps you 
debug your FPGA circuitry by giving you access to internal nodes inside the 
device so you can observe their behavior. It enables you to set and change 
various values and combinations of trigger signals. Once the specified trigger 
condition is reached, the data values of the trace signals are saved in the 
trace buffer. After the data is captured, it is transferred from the FPGA through 
the JTAG ports to the PC.

You can also set up modules that allow you to adjust and monitor serdes 
functions in ECP5UM designs.

Using Soft JTAG Debugger
The LIFMD device family does not provide a hard JTAG block. Therefore, Reveal 
JTAG support is implemented using logic for JTAG state machine and GPIO pins for 
four JTAG pins (JTAG_TCK, JTAG_TDI, JTAG_TMS, and JTAG_TDO). 

Consider the following recommendations:

 Locate the JTAG_TCK pin to PCLK or GR_PCLK to avoid using general 
routing, as clock general routing may violate the CLK 1-PLC rule. For an 
example of the LOCATE preference:

"LOCATE COMP "JTAG_TCK" SITE "J2" ;
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 Locate pins JTAG_TCK, JTAG_TDI, JTAG_TMS, and JTAG_TDO on the 
same bank, preferably to bank-0 and make bank-1/bank-2 available for 
DDR, MIPI or LVDS usage. 

 Set the FREQUENCY preference as follows:

FREQUENCY PORT "JTAG_TCK" 6.000000 MHz ;

About Reveal Inserter
This section introduces some of the key features of Reveal Inserter: the 
devices that it supports, the steps in its design flow, its inputs, its outputs, and 
its limitations.

Reveal On-Chip Debug Design Flow
The Reveal Inserter design flow is shown in the following figure.

Figure 1: Reveal Inserter Design Flow

Note

Interactive synthesis is not compatible with the Reveal debugging flow. When you use 
Reveal, the interactive synthesis option is not available.
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To generate and insert debug logic cores, follow these general steps:

1. Start Reveal Inserter.

2. Create a new Reveal Inserter project or open an existing Reveal Inserter 
project.

3. Add new cores to the project, if needed.

4. For each core, set up the trace signals in the Trace Signal Setup tab.

5. For each core, set up the trigger signals in the Trigger Signal Setup tab.

6. Insert the debug logic.

This process generates and synthesizes the necessary debug logic.

The generated .rvl is automatically imported into Diamond if you enabled 
the “Import Reveal file to Diamond project” option in the Insert Debug to 
Design dialog box.

7. Translate the design in Diamond.

This process creates two or more .ngo files.

When Reveal is used for your design, the Translate Design process 
performs two extra steps:

 It builds a version of the design that contains the necessary 
connections for the debug logic to the signals that you are tracing or 
triggering.

 It adds logic for communicating with the JTAG pins for Reveal 
Analyzer. Newer software and IP from Lattice Semiconductor support 
a mechanism to allow multiple elements to share the JTAG pins. 
However, if the design was built with earlier software or IP and 
contains a JTAG primitive, this logic conflicts with the Reveal flow and 
results in an error in the Translate Design process.

8. Map, place, and route the design.

9. Generate the bitstream data or JEDEC file.

If you want to perform logic analysis with Reveal Analyzer, continue with 
these steps:

10. Set up the cable connection with Programmer.

11. Download the design onto the device.

12. Start Reveal Analyzer and perform logic analysis with it.

Inputs
The inputs to Reveal Inserter in the RTL flow are the following:

 VHDL, Verilog, and EDIF files

 A preference (.lpf) file, if it already exists



REVEAL INSERTER : About Reveal Inserter

16 Reveal User Guide

Outputs
Reveal Inserter generates the following files in the RTL flow:

 Reveal Inserter project (.rvl) file, which contains the signal connections for 
each core and some settings for the debugging logic, such as maximum 
sequence depth and maximum event counter. The information in this file 
is statically set in Reveal Inserter and cannot be changed in Reveal 
Analyzer.

 Reveal Inserter settings (.rvs) file, which contains settings that can be 
dynamically changed without regenerating the debug logic. This 
information includes trigger units, comparison types, values, and trigger 
expressions. The information in this file is dynamically set in either Reveal 
Analyzer or in both Reveal Analyzer and Reveal Inserter.

 Reveal Inserter parameter (.rvp) file, which contains information needed 
for debug logic generation, is produced during the design implementation 
process.

 JTAG hub (.hub) file produced by the Translate Design stage of the design 
implementation process. This file is used by Reveal Analyzer to sort the 
data coming from the different Reveal modules.

Reveal Inserter also modifies the logical preference (.lpf) file:

 Timing settings are modified for the debug logic.

 RVL_ALIAS preferences are added. RVL_ALIAS maps clock names 
generated by Reveal Inserter to the clock names used in the original 
design. So you do not need to change your preferences that refer to those 
clock signals.

Limitations
Reveal Inserter has the following limitations in the current release.

Unsupported VHDL and Verilog Features in Reveal 
Inserter
The following features that are valid in the VHDL and Verilog languages are 
not supported in Reveal Inserter when you use the RTL flow:

 Array types of two dimensions or more are not shown in the port or node 
section.

 Undeclared wires attached to instantiated component instances are not 
shown in the hierarchical design tree. You must declare these wires 
explicitly if you want to trace or trigger with them.

 Variables used in conditional statements like if-then-else statements are 
not available for tracing and triggering. 

 Variables used in selection statements like the case statement are not 
available for tracing and triggering.
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 If function calls are used in the array declaration, the actual size of the 
array is unknown to Reveal Inserter.

 Entity and architecture of the same design cannot be in different files. 

 In Verilog, you must explicitly declare variables at the very beginning of a 
module body to avoid obtaining different results from various synthesis 
tools.

 In VHDL, you must declare synthesis attributes within an entity, not within 
an architecture, to avoid obtaining different results from various synthesis 
tools.

Syn_keep and Preserve_signal Attributes
In VHDL, always define the syn_keep and preserve_signal attributes as 
Boolean types when you declare them in your design. Synplify defines them 
as Boolean types, and Reveal Inserter will issue an error message if you 
define them as strings.

Constants
You can use signals that are set to constant values as trace or trigger signals. 
Although it is not recommended that you use these signals as trace or trigger 
signals, Reveal Inserter will not issue an error message if you do.

You cannot use a signal for the sample clock that has been set to a constant 
value. The value of the sample clock must be able to change. However, 
Reveal Inserter will not generate an error message if you use a signal set to a 
constant value for the sample clock. It does not know whether a signal has 
been set to a constant value before synthesis and can only avoid displaying 
those that were originally declared as constants in the hierarchy tree.

Dangling or Unconnected Nets
Dangling, or unconnected, nets in Verilog or VHDL code are available for use 
with Reveal Inserter. However, if you are using EDIF files as your source, 
dangling nets are probably not available because synthesis tools, which 
produce EDIF files, normally optimize out dangling logic.

Getting Started
After you create a project in Diamond, you can start Reveal Inserter and 
create a Reveal project. Or open an existing Reveal project for modification.

Starting Reveal Inserter
Reveal Inserter is started from the main window. Open the desired design 
project to have access to the tools.
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To start Reveal Inserter:

 Do one of the following:

 In the main window, choose Tools >  Reveal Inserter.

 In the toolbar, click the Reveal Inserter  button.

When Reveal Inserter opens, it shows the active Reveal project or, if there are 
no existing projects, Reveal Inserter creates one.

When Reveal Inserter opens a design, it must parse and statically elaborate it. 
In some cases, code successfully synthesized with some synthesis tools may 
be flagged as having an error when Reveal Inserter tries to open the design. 
In these cases, Reveal Inserter is interpreting the HDL code more strictly than 
the chosen synthesis tool. It is likely that the code would not synthesize with a 
different synthesis tool or would have other compliance issues.

To correct this problem, see the reveal_error.log file in the project directory. 
This file contains information and error messages that enable you to see any 
problems found in the design.

Creating a New Reveal Inserter Project
After you create a project in Diamond, you can create a project in Reveal 
Inserter.

To create a new Reveal Inserter project:

1. Choose File > New >  File or click  in the toolbar and choose  
File from the drop-down menu.

The New File dialog box appears.

2. Under Source Files, choose  Reveal Project File.

3. Type in the base name for the .rvl file. The “.rvl” extension is added 
automatically.

4. If you do not want the file to be in the design project’s folder, click Browse 
and browse to the desired location.

5. If you do not want the Reveal project to be part of the design project , clear 
Add to project. Not recommended.

6. Choose a design implementation.

7. Click New.

If you want to use a different set of trace and trigger signals after you create 
the first Reveal Inserter project, you can create a new Reveal Inserter project 
for the same design project.
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Opening an Existing Reveal Inserter 
Project
To open an existing project, you must have available a Reveal Inserter project 
(.rvl) file and a Reveal Inserter settings (.rvs) file from a previous Reveal 
Inserter session.

To open an existing Reveal Inserter project:

1. Choose File > Open > File in the main window or click  in the toolbar 
and choose File.

2. In the Open File dialog box, browse to the .rvl file of interest and click 
Open.

If the desired .rvl file has been recently opened, you can open it directly from 
the File menu.

To open a recently opened .rvl file directly from the File menu:

 Choose File > Recent Files > <filename> from the list of the four most 
recently opened files near the bottom of the File menu.

Managing the Cores in a Project
Each Reveal Inserter project can include up to 15 debug logic cores. Each 
core has its own settings for the debug logic, such as trace signals, trigger 
signals, sample clock, sample enable, and trigger output signal. These 
settings are called a dataset. In many cases, a single core is all that is 
required to debug a design. However, in designs with multiple clock regions, it 
may be necessary to sample different clock regions at the same time. For 
those types of designs, it is recommended that you use multiple cores, one for 
each clock region where the clock is used as the sample clock for the core.

Adding a Core
When you open a new project, Reveal Inserter automatically adds the first 
debug logic core to the first dataset and gives it a name of 
<top_module>_LA<number>, where top_module is the name of the top 
module in the Reveal Inserter project, and number is a sequential number. 
For example, the third core added to the “counter” project would be named 
counter_LA3. The core name is case insensitive—for example, “core_LA0” is 
the same as “core_la0.”

All Reveal cores are listed in the Dataset pane in the Reveal Inserter window.

To add a core to a dataset:

1. Choose Debug > Add New Core or right-click in the Dataset pane and 
choose Add New Core.
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2. Choose the type of core.

Reveal Inserter creates a new core. The added cores are displayed in the 
Dataset pane.

Renaming a Core
You can rename a debug logic core if you want to change its initial name.

To rename a core or cores in a project:

1. Highlight the name of the core in the Dataset pane, and choose Debug > 
Rename Core, or right-click on the name of the core and choose Rename 
Core from the pop-up menu.

2. Type the new name of the module over the old name.

During the renaming process, Reveal Inserter verifies that:

 The core name begins with a letter and consists of letters, numbers, and 
underscores (_).

 The core name is not the same as that of any other core. 

 The core name is not the same as that of any module or instance in the 
design.

Removing a Core
You can also remove a debug logic core.

To remove a core or cores from a project:

 Select the core in the Dataset pane, and choose Debug > Remove Core, 
or right-click on the name of the core and choose Remove Core from the 
pop-up menu.

Viewing Signals in the Design Tree Pane
In the Design Tree pane of the Reveal Inserter window, you can display the 
hierarchy of the whole design, including the ports and nodes in the top module 
and submodules, so that you can choose the signals to use for data tracing 
and triggering. 

From the Design Tree pane, you can drag a signal to the upper half of the 
Trace Signal Setup tab to set it as a trace signal or drag it to the lower half of 
the tab to set it as a sample clock signal or a sample enable signal.

In the Design Tree pane, the names of trace, trigger, and control signals are in 
bold font if they are currently being used.
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To view all signals in the design tree:

 Right-click on the design name in the Design Tree pane and choose 
Expand All from the pop-up menu.

To view the buses, ports, top-level signals, and top level of the 
hierarchy:

 Right-click on the design name in the Design Tree pane and choose 
Collapse All from the pop-up menu.

You can also view signals and buses in the Trace Data pane of the Trace 
Signal Setup tab.

Searching for Signals
You can search for a signal or signals and set the selected signals as trace 
signals, trigger unit signals, sample clock signals,  or sample enable signals. 
You can search for signal names or patterns of characters.

To search for a signal:

1. In the Signal Search box in the Design Tree pane, enter the name of the 
signal or pattern to find. You can set a filter by using the case-insensitive 
alphanumeric characters and wildcards shown in the following table. 

2. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree 
pane.

If Reveal Inserter finds multiple signals, it opens the Search Result dialog 
box to list all the signals found. 

3. If you are searching for multiple signals, select the desired signals in the 
Search Result dialog box, and click OK.

 Shift-click to select contiguous signals.

 Control-click to select non-contiguous signals.

The selected signals are now highlighted in the Design Tree pane. 

From the Design Tree pane, you can drag signals to the Trace Data pane, the 
Sample Clock box, and the Sample Enable box in the Trace Signal Setup tab. 
You can also drag signals to the Signals (MSB:LSB) box in the Trigger Unit 
section of the Trigger Signal Setup tab.

Although the buses are displayed as “busname[n:m]” in the Design Tree 
pane, Reveal Inserter ignores the string after the bus name when it searches 
for buses. For example, if the design contains a bus called a[0:2], you can 
search for it by a pattern such as “a” or “a*,” but you cannot use a pattern such 
as “a[*.”
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If a bus is named xyz, a search for xyz highlights the entire bus. A search for 
xyz* brings up the Search Result dialog box and all the individual signals in 
the xyz bus.

The following wildcards are supported in searches:

Setting Up the Trace Signals
The first step in performing a logic analysis is to specify how the data from the 
trace bus will be captured. Use the Trace Signal Setup tab in the Reveal 
Inserter window to choose the signals from which to collect sample data in the 
selected core.

Selecting the Debug Logic Core
Before you configure the trace signals, select the debug logic core to 
configure in the Dataset pane.

Selecting the Trace Signals
You can use either of two methods to select trace signals: dragging and 
dropping or using a search engine to find them. You can select up to 512 trace 
signals in each core.

Wildcard 
Character

Characters to Replace Example

? Any single character ?a?

where “a” is the middle character in a 
three-character string

* Any sequence of 
characters

*a*

where the string contains the “a” character

[abc] “a,” “b,” or “c” [abc]* 

where the string begins with “a,” “b,” or “c”

[^abc] Any character except “a,” 
“b,” or “c”

[^abc]* 

where the string does not begin with “a,” 
“b,” or “c”

[a-d] Any character in the range 
of “a” through “d”

[a-d]* 

where the string begins with any character 
in the range of “a” through “d”

[^a-d] Any character except 
those in the range of “a” 
through “d”

[a-d]* 

where the string does not begin with any 
character in the range of “a” through “d”
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To select trace signals by dragging and dropping:

 Select the desired signals in the Design Tree pane and drag them to the 
Trace Data pane in the Trace Signal Setup tab.

To select trace signals by using a search engine:

1. In the Signal Search box in the Design Tree pane, enter the name or 
pattern of the signal to find. You can set a filter by using case-insensitive 
alphanumeric characters and wildcards. See “Searching for Signals” on 
page 21 for information about the wildcards that you can use.

2. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree 
pane. 

If Reveal Inserter finds multiple signals, it opens the Search Result dialog 
box to list all the signals found.

3. If you are searching for multiple signals, select the desired signals in the 
Search Result dialog box, and click OK.

The signals are now selected in the Design Tree pane.

4. Drag them to Trace Data pane in the Trace Signal Setup tab.

Viewing Trace Signals and Buses
In the Trace Data pane in the Trace Signal Setup tab, you can display the 
signals in buses or remove them from view.

To display all the signals in all the buses:

 Right-click in the Trace Data pane, and choose Expand All from the pop-
up menu.

To hide all the signals in all the buses:

 Right-click in the Trace Data pane, and choose Collapse All from the 
pop-up menu.

To display all the signals in an individual bus:

 Right-click on the bus and choose Expand from the pop-up menu.

To hide all the signals in an individual bus:

 Right-click on the bus and choose Collapse from the pop-up menu.

Grouping Trace Signals into a Bus
You can group trace signals, buses, or both into a bus.
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To group signals or buses into a bus or to add signals or buses to a bus:

1. In the Trace Data pane of the Trace Signal Setup tab, select the signals, 
buses, or both to be grouped.

2. Choose Debug > Group Trace Data.

3. Double-click the new bus and type in the desired name.

Ungrouping Trace Signals in a Bus
You can ungroup the signals or buses in a bus.

To ungroup the signals, buses, or both in a bus:

1. In the Trace Data pane in the Trace Signal Setup tab, select the signals, 
buses, or both to be ungrouped from the bus.

2. Choose Debug > UnGroup Trace Bus.

Removing Signals and Buses from the 
Trace Data Pane
You can remove signals from the Trace Data pane in the Trace Signal Setup 
tab.

To remove a signal or a bus from the Trace Data pane:

1. In the Trace Signal Setup tab, select the signals to be removed from the 
Trace Data pane.

2. Choose Debug > Remove Trace Data, or right-click and choose Remove 
from the pop-up menu. You can also press the Delete key.

Renaming a Bus
You can rename a bus.

To rename a bus:

1. In the Trace Data pane of the Trace Signal Setup tab, select the bus.

2. Choose Debug > Rename Trace Bus, or right-click and choose Rename 
from the pop-up menu.

3. Type the new name of the module over the old name.
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Setting Required Sample Parameters
For each core, you must set the certain sample parameters for the trace 
signals.

To set the required sample parameters:

1. In the Sample Clock box in the Trace Signal Setup tab, type the name of 
the clock signal or drag the clock signal from the design tree shown in the 
Design Tree pane.

2. In the Buffer Depth box, specify the size of the trace memory buffer. 

This parameter defines the number of trace bus samples that a core can 
capture. It can be set to a minimum of 16 or to powers of 2 from 16 to 
65536. The buffer size is determined by the amount of embedded memory 
in the FPGA.

3. In the Implementation box, specify how the debug logic is to be 
implemented in the FPGA. You can choose one of the following:

 EBR – Implements the debugging logic as embedded block RAM 
(EBR). This setting is the default.

 DistRAM – Implements the debugging logic as distributed RAM.

4. In the Data Capture Mode box, select Single Trigger Capture or Multiple 
Trigger Capture. Single Trigger Capture is enabled by default. 

5. If you choose Multiple Trigger Capture, you must also set the Minimum 
samples per trigger option, which specifies the minimum number of data 
samples to collect per trigger. The minimum is either 8 or 1/256 of the total 
buffer depth, whichever is greater. The maximum number of samples 
depends on the design.

6. If you select Multiple Trigger Capture and are creating a POR module, 
choose the “Number of triggers for POR.” For an explanation of POR 
modules, see “POR Debug” on page 27.

Setting Sample Options
In addition to the required parameters, you can set options for the data 
sample.

Note

On the board, make sure that the minimum sample clock frequency is at least that 
of the JTAG clock. If the sample clock speed is too slow, you will be unable to 
complete logic analysis with Reveal Analyzer.

The sample clock frequency should be no more than 200 MHz.
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Using a Sample Enable
A sample enable is an optional signal used to capture data only when the 
sample enable is active, either high or low. If you do not specify a sample 
enable signal, trace data is collected on every sample clock after the trigger.

You may want to use a sample enable in cases where you need to capture a 
lot of data, but the data is only important during certain times, not whenever 
the sample clock is running. In these cases, the sample enable is a “gate” that 
allows you to turn the capturing of data on and off. An example is a design 
that contains many different sections, but some sections only work during 
certain clock phases. You typically use a master clock and generate different 
signals for the phases. You could use one of the phases as the sample 
enable.

To set the sample enable:

 In the Sample Enable checkbox, indicate whether a sample enable signal 
is to be used. If you want to use a sample enable:

a. Select the checkbox to indicate that a sample enable signal will be 
used. The checkbox is deselected by default.

b. Enter the name of the sample enable signal in the box beneath the 
checkbox, or drag the signal from the Design Tree pane.

c. In the box to the right of the signal name box, select either Active 
High, which means that trace data is captured when the sample 
enable is high and the sample clock occurs, or Active Low, which 
means that trace data is captured when the sample enable is low and 
the sample clock occurs. Active High is the default.

Each sample shown in the trace buffer is only captured when the sample 
enable is active and there is a sample clock. Data samples can be 
discontiguous, unlike those in a normal data capture.

Additionally, it is possible that the actual trigger condition may occur when the 
sample enable is not active. This causes two changes from a normal data 
capture:

 The actual data values for the trigger condition may not be visible, 
because the data cannot be captured when the sample enable is inactive.

 Reveal Analyzer cannot accurately calculate the trigger point, since the 
trigger point may have occurred when the sample enable is inactive. 
Normally a trigger point is shown as a single marker on the clock on which 
the trigger occurred. If a sample enable is used, a trigger region that 
spans 5 clock cycles is shown instead. Reveal Analyzer can guarantee 
that the trigger occurred in this region, but it cannot determine during 
which clock cycle the trigger occurred.

The sample enable is a very useful feature, but it takes more understanding 
than a normal data capture.
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POR Debug
To monitor power-on reset (POR) functions an automatic “trigger enable” 
signal must be built into the Reveal module. This is because POR functions 
happen immediately after power-on of the test board, before Reveal Analyzer 
can be started. When the trigger enable signal transitions to active, the 
module will watch for the trigger and collect samples. This is similar to clicking 
the Run  button in Reveal Analyzer. When Reveal Analyzer starts, it loads 
and displays any data collected by the POR modules.

POR modules are only supported with ECP5, LatticeECP3, LatticeSC, 
LatticeXP2, MachXO2, and MachXO3L.

To set a POR trigger enable:

1. In the POR Debug section, select Trigger Enable.

2. Find the POR trigger signal in the Design Tree view and drag it to the text 
box in the POR Debug section.

3. Choose whether the signal is Active High or Active Low.

Adding Trigger Signals to Trace Signals
You can add trigger signals to the trace signals so that the data from the 
trigger signals is included in the trace data. Tracing trigger signals increases 
the amount of logic used by the trace buffer.

To add the trigger signals to the trace signals:

 Select the Include trigger signals in trace data option. This option is 
turned off by default. 

Adding Time Stamps to Trace Samples
In Reveal Inserter, you can optionally specify a sample clock count value to be 
stored with each trace sample to indicate the sample count clock value at 
which the sample was captured. This count is extra data (bits) captured into 
the trace buffer that increase the trace buffer’s width. This time stamp enables 
you to see how many sample clock intervals have elapsed between data 
captures when you use a sample enable. It is useful in some cases when it is 
necessary to know if you captured the right data. A time stamp is also useful 
when you try to synchronize data between multiple cores, off-chip data, or 
both. For example, if you trigger two cores at the same time, you can use the 
time stamps on the trace samples to calculate how the data between the 
cores compares.

To add time stamps to the trace samples:

1. Select the Timestamp box in the Trace Signal Setup tab.

2. In the drop-down menu in the Bits box next to the Timestamp box, select 
the amount of trace memory storage needed by the time stamp, in bits. 
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The number of bits for the timestamp is the number of bits in the maximum 
count of the timestamp. But each bit is equivalent to adding another signal 
to be traced, so the amount of trace memory needed is therefore much 
larger. The minimum number of bits that appears in the drop-down menu 
is obtained by multiplying the value in the Buffer Depth box by 2 and 
converting the result to an exponential value. For example, if the value in 
the Buffer Depth box is 256, the minimum number of bits in the Bits drop-
down menu is calculated as follows:

256 X 2 = 512

512 = 29

So the minimum number of bits available in the Bits menu in this case is 9. 

The maximum number of bits available in the Bits menu is always 63. 

Setting Up the Trigger Signals
The Reveal software has some similarities to and some differences from 
external logic analyzers. An external logic analyzer typically offers up to a few 
dozen signals or channels and megabits worth of capture data depth. Internal 
or embedded logic analyzers have different constraints. An internal logic 
analyzer can offer thousands of signal connections, since no extra pins are 
required to connect to the signal. But the resources inside an FPGA force a 
limitation on the amount of data that can be captured, typically constrained to 
several thousand bits. This difference drives different requirements. An 
internal logic analyzer requires the ability to accurately pinpoint the desired 
event in order to capture a smaller amount of data around that precise event. 
The capabilities in the Reveal software are designed specifically for the 
triggering requirements of an internal logic analyzer.

Triggering
With the Reveal software, it is easy to set up simple triggering conditions, as 
well as extremely complex triggers. Triggering in Reveal is based on the 
trigger unit and the trigger expression. A trigger unit is used to compare 
signals to a value, and a trigger expression is used to combine trigger units to 
form a trigger.

Some of Reveal’s triggering features are static and some are dynamic. Static 
features can only be changed in Reveal Inserter and require the design to be 
re-implemented by synthesis, map, place, and route. Although you can set 
most of the dynamic features in Reveal Inserter, you can change all dynamic 
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features when Reveal Analyzer is running, and you do not have to re-
implement the design.

Trigger Units
The trigger unit is used to compare a number of input signals to a value. A 
number of different operators are available for comparison and can be 
dynamically changed during analysis, along with the comparison value and 
the trigger unit name.

You can change the signals in a trigger unit only in Reveal Inserter. Changing 
the input signals requires the design to be re-implemented. 

You can specify up to 16 trigger units for each debug core. A common 
technique is to group associated input signals into a trigger unit. For example, 

Table 1: Where Trigger Features Can Be Changed

Feature Reveal
Inserter

Reveal
Analyzer

Trigger Units Add

Name

Signals

Operator

Radix

Value

Trigger Expressions Add

Remove

Name

Expression

RAM type

Maximum sequence depth

Maximum event counter

Multiple Trigger Capture Make available

Number of samples per trigger

Number of triggers

Other Features AND All versus OR All

Final event counter size

Trace buffer depth

Timestamp

Trigger position
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you might use a trigger unit for the address bus in a design, another for the 
data bus, and another for the control signals.

Most of the trigger unit operators use standard logical comparisons between 
the current value of the combined signals of the trigger unit and a specified 
value. But some of the operators are unusual and need some explanation.

With the exception of “serial compare,” the operators can be changed in 
Reveal Analyzer.

Standard Logical Operators Reveal includes the following operators:

 == equal to

 != not equal to

 > greater than

 >= greater than or equal to

 < less than

 <= less than or equal to

Rising-Edge and Falling-Edge Operators The “rising edge” and “falling 
edge” operators check for change in the signal value, not the value itself. So 
the trigger unit’s specified value is a bit mask showing which signals should 
have a rising or falling edge. A 1 means “look for the edge;” a 0 means “ignore 
this bit.” A multiple-bit value is true if any of the specified bits has the edge.

For example, consider a trigger unit defined as cout[3:0], rising edge, 1110. 
This trigger unit will be true only when cout[3], cout[2], or cout[1] have a rising 
edge. What happens on cout[0] does not matter.

 0000 > 1110

True because cout[3], cout[2], and cout[1] rose.

 0000 > 1111

True for the same reason. It does not matter whether cout[0] rises or not.

 0000 > 0100

True because a rising edge on any of the specified bits is sufficient.

 1000 > 1000

False because cout[3] did not rise. It just stayed high.

Serial Compare The “serial compare” operator checks for a series of values 
on a single signal. For example, if a trigger unit’s specified value is 1011, the 
“serial compare” operator looks for a 1 on the first clock, a 0 on the next clock, 
a 1 on the next clock, and a 1 on the last clock. Only after those four 
conditions are met in those four clock cycles is the trigger unit true.

Serial compare is available only when a single signal is listed in the trigger 
unit’s signal list. The radix is automatically binary.

You can only set the serial compare operator in Reveal Inserter. You cannot 
change it or select it in Reveal Analyzer as you can the other operators.
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Trigger Expressions
Trigger expressions are combinations of trigger units. Trigger units can be 
combined in combinatorial, sequential, and mixed combinatorial and 
sequential patterns. A trigger expression can be dynamically changed at any 
time. Each core supports up to 16 trigger expressions that can be dynamically 
enabled or disabled in Reveal Analyzer. Trigger expressions support AND, 
OR, XOR, NOT, parentheses (for grouping), THEN, NEXT, # (count), and ## 
(consecutive count) operators. Each part of a trigger expression, called a 
sequence, can also be required to be valid a number of times before 
continuing to the next sequence in the trigger expression.

Detailed Trigger Expression Syntax Trigger expressions in both Reveal 
Inserter and Reveal Analyzer use the same syntax.

Operators You can use the following operators to connect trigger units:

 & (AND) – Combines trigger units using an AND operator.

 | (OR) – Combines trigger units using an OR operator.

 ^ (XOR) – Combines trigger units using a XOR operator.

 ! (NOT) – Combines a trigger unit with a NOT operator.

 Parentheses – Groups and orders trigger units.

 THEN – Creates a sequence of wait conditions. For example, the 
following statement:

TU1 THEN TU2

means “wait for TU1 to be true, then wait for TU2 to be true.” 

The following expression:

(TU1 & TU2) THEN TU3

means “wait for TU1 and TU2 to be true, then wait for TU3 to be true.”

Reveal supports up to 16 sequence levels.

See “Sequences and Counters” on page 32 for more information on 
THEN statements.

 NEXT – Creates a sequence of wait conditions, like THEN, except the 
second trigger unit must come immediately after the first. That is, the 
second trigger unit must occur in the next clock cycle after the first trigger 
unit. See “Sequences and Counters” on page 32 for more information on 
NEXT statements.

 # (count) – Inserts a counter into a sequence. See “Sequences and 
Counters” on page 32 for information on counters.

 ## (consecutive count) – Inserts a counter into a sequence. Like # (count) 
except that the trigger units must come in consecutive clock cycles. That 
is, one trigger unit immediately after another with no delay between them. 
See “Sequences and Counters” on page 32 for information on counters.

Case Sensitivity Trigger expressions are case-insensitive.

Spaces You can use spaces anywhere in a trigger expression.
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Sequences and Counters Sequences are sequential states connected by 
THEN or NEXT operators. A counter counts how many times a state must 
occur before a THEN or NEXT statement or the end of the sequence. The 
maximum value of this count is determined by the Max Event Counter value. 
This value must be specified in Reveal Inserter and cannot be changed in 
Reveal Analyzer.

Here is an example of a trigger expression with a THEN operator:

TU1 THEN TU2

This trigger expression is interpreted as “wait for TU1 to be true, then wait for 
TU2 to be true.”

If the same example were written with a NEXT operator:

TU1 NEXT TU2

it is interpreted as “wait for TU1 to be true, then wait one clock cycle for TU2 
to be true.” If TU2 is not true in the next clock cycle, the sequence fails and 
starts over, waiting for TU1 again.

The next trigger expression:

TU1 THEN TU2 #2

is interpreted as “wait for TU1 to be true, then wait for TU2 to be true for two 
sample clocks.” TU2 may be true on consecutive or non-consecutive sample 
clocks and still meet this condition.

The following statement:

TU1 ##5 THEN TU2

means that TU1 must occur for five consecutive sample clocks before TU2 is 
evaluated. If there are any extra delays between any of the five occurrences 
of TU1, the sequence fails and starts over.

The next expression:

(TU1 & TU2)#2 THEN TU3

means “wait for the second occurrence of TU1 and TU2 to be true, then wait 
for TU3.”

The last expression:

TU1 THEN (1)#200

means “wait for TU1 to be true, then wait for 200 sample clocks.” This 
expression is useful if you know that an event occurs a certain time after a 
condition.

You can only use one count (# or ##) operator per sequence. For example, 
the following statement is not valid, because it uses two counts in a sequence:

TU1 #5 & TU2 #2
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Multiple count values are allowed for a single trigger expression, but only one 
per sequence. For two count operators to be valid in a trigger expression, the 
expression must contain at least one THEN or NEXT operator, as in the 
following example:

(TU1 & TU2) #5 THEN TU2 #2

This expression means “wait for TU1 and TU2 to be true for five sample 
clocks, then wait for TU2 to be true for two sample clocks.”

Also, the count operator must be applied to the entire sequence expression, 
as indicated by parentheses in the expression just given. The following is not 
allowed:

TU1 #5 & TU2 THEN TU2 #2

The count (#) operator cannot be used as part of a sequence following a 
NEXT operator. A consecutive count (##) operator may be used after a NEXT 
operator. The following is not allowed:

TU1 NEXT TU2 #2

The count (# or ##) operators can only be used in one of two areas:

 Immediately after a trigger unit or parentheses(). However, if the trigger 
unit is combined with another trigger unit without parentheses, a # cannot 
be used.

 After a closing parenthesis.

Precedence The symbols used in trigger expression syntax take the 
following precedence:

 Because it inserts a sequence, the THEN and NEXT operators always 
take the highest precedence in trigger expressions.

 Between THEN or NEXT statements, the order is defined by parentheses 
that you insert. For example, the following trigger expression:

TU1 & (TU2|TU3)

means “wait for either TU1 and TU2 or TU1 and TU3 to be true.”

If you do not place any parentheses in the trigger expression, precedence 
is left to right until a THEN or NEXT statement is reached.

For example, the following trigger expression:

TU1 & TU2|TU3

is interpreted as “wait for TU1 & TU2 to be true or wait for TU3 to be true.”

 The precedence of the ^ operator is same as that of the & operator and 
the | operator.

 The logic negation operator (!) has a higher precedence than the ^ 
operator, & operator, or | operator, for example:

!TU1 & TU2

means “not TU1 and TU2.”
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 The # and ## operators have the same precedence as the ^ operator, & 
operator, or | operator. However, they can only be used in one of two 
areas:

 Immediately after a trigger unit or trigger units combined in 
parentheses. However, if the trigger unit is combined with another 
trigger unit without parentheses, a # or ## operator cannot be used.

Here is an example of correct syntax using the count (#) operator:

TU1 #2 THEN TU3

This statement means “wait for TU1 to be true for two sample clocks, 
then wait for TU3.”

However, the following syntax is incorrect, because the count operator 
is applied to multiple trigger units combined without parentheses:

TU1 & TU2#2 THEN TU3

 After a closing parenthesis. Use parentheses to combine multiple 
trigger units and then apply a count, as in the following example:

(TU1 & TU2)#2 THEN TU3

This statement means “wait for the combination of TU1 and TU2 to be 
true for two sample clocks, then wait for TU3.”

Following is a series of examples that demonstrate the flexibility of trigger 
expressions.

Example 1: Simplest Trigger Expression Following is the simplest trigger 
expression:

TU1

This trigger expression is true, causing a trigger to occur when the TU1 trigger 
unit is matched. The value and operator for the trigger unit is defined in the 
trigger unit, not in the trigger expression.

Example 2: Combinatorial Trigger Expression An example of a 
combinatorial trigger expression is as follows:

TU1 & TU2 | TU3

This trigger expression is true when (TU1 and TU2) or TU3 are matched. If no 
precedence ordering is specified, the order is left to right.

Example 3: Combinatorial Trigger Expression with Precedence 
Ordering In the following example of a combinatorial trigger expression, 
precedence makes a difference:

TU1 & (TU2 | TU3)

This trigger expression gives different results than the previous one. In this 
case, the trigger expression is true if (TU1 and TU2) or (TU1 and TU3) are 
matched. 
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Example 4: Simple Sequential Trigger Expression Following is an 
example of a simple sequential trigger expression:

TU1 THEN TU2

This trigger expression looks for a match of TU1, then waits for a match on 
TU2 a minimum of one sample clock later. Since this expression uses a THEN 
statement, it is considered to have multiple sequences. The first sequence is 
“TU1,” since it must be matched first. The second sequence is “TU2,” 
because it is only checked for a match after the first sequence has been 
found. The “sequence depth” is therefore 2.

The sequence depth is an important concept to understand for trigger 
expressions. Since the debug logic is inserted into the design, logic must be 
used to support the required sequence depth. Matching the depth to the 
entered expression can be used to minimize the logic. However, if you try to 
define a trigger expression that has a greater sequence depth than is 
available in the FPGA, an error will prevent the trigger expression from 
running. The dynamic capabilities of the trigger expression can therefore be 
limited. To allow more flexibility, you can specify the maximum sequence 
depth when you set up the debug logic in Reveal Inserter. You can reserve 
more room for the trigger expression than is required for the trigger 
expression currently entered. If you specify multiple trigger expressions, each 
trigger expression can have its own maximum sequence depth.

Example 5: Mixed Combinatorial and Sequential Trigger Expression
Here is an example showing how you can mix combinatorial and sequential 
elements in a trigger expression:

TU1 & TU2 THEN TU3 THEN TU4 | TU5

This trigger expression only generates a trigger if (TU1 AND TU2) match, 
then TU3 matches, then (TU4 or TU5) match. You can set precedence for any 
sequence, but not across sequences. The expression (TU1 & TU2) | TU3 
THEN TU4 is correct. The expression (TU1 & TU2 THEN TU3) | TU4 is invalid 
and is not allowed.

Example 6: Sequential Trigger Expression with Sequence Counts The 
next trigger expression shows two new features, the sequence count and a 
true operator to count sample clocks:

(TU1 & TU2)#2 THEN TU3 THEN TU4#5 THEN (1)#200

This trigger expression means wait for (TU1 and TU2) to be true two times, 
then wait for TU3 to be true, then wait for TU4 to be true five times, then wait 
200 sample clocks. The count (# followed by number) operator can only be 
applied to a whole sequence, not part of a sequence. When the count 
operator is used in a sequence, the count may or may not be contiguous. The 
always true operator (1) can be used to wait or delay for a number of 
contiguous sample clocks. It is useful if you knew that an event that you 
wanted to capture occurred a certain time after a condition but you did not 
know the state of the trigger signals at that time.
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However, there is a limitation on the maximum size of the counter. This 
depends on how much hardware is reserved for the sequence counter. When 
you define a trigger expression, the Max Event Counter setting in the Trigger 
Expression section of Reveal Inserter and Reveal Analyzer specifies how 
large a count value is allowed in the trigger expression. Each trigger 
expression can have a unique Max Event Counter setting.

Trigger Expression and Trigger Unit Naming 
Conventions
You can rename trigger units and trigger expressions. The names can be a 
mixture of lower-case or upper-case letters, underscores, and digits from 0 
through 9. The first character must be either an underscore or a letter. The 
names can be any length.

Final Event Counter
The final event counter allows a counter to be added to the final trigger of one 
or more trigger expressions. In order to use the final event counter during 
logic analysis, you must specify it during insertion, along with the maximum 
count allowed. The actual count used by the counter during triggering can be 
dynamically changed during logic analysis.

Multiple Core Support for Triggers
Each core in a design has its own triggers and traced signals. When a design 
is “triggered” (meaning that the triggers are enabled and active so that the 
debug logic is running and looking for the trigger condition), you can specify 
which individual cores are enabled.

Simultaneous Trigger Activation in Multiple Cores Since each core is 
typically a different clock region, you can specify whether the triggering is 
enabled for each core when triggering for the device is activated.

For each core, you can indicate if the trigger or triggers should be enabled 
when triggering for the device is activated.

Cross-Triggering To support triggers based on multiple sample clocks, 
cross-triggering is available between different debug cores.

 Reveal provides an optional trigger-out signal in the triggering section for 
every core.

 If a design has multiple cores, trigger-out signals from other cores are 
listed as an available signal for triggers in another core. To use a trigger-
out signal as an input to another core, you must specify it as a “net” or 
“both” type. The I/O type is only used for connecting the trigger-out to an 
external I/O. Trigger-out signals are listed in the Trigger Output pane at 
the bottom left of the Reveal Inserter window.
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Adding Trigger Units
You can add trigger units only in Reveal Inserter. You cannot add them in 
Reveal Analyzer. You can change some of the trigger conditions defined in 
Reveal Inserter in Reveal Analyzer during hardware debugging.

All trigger units are automatically available for use in all trigger expressions 
defined. 

You can add up to 16 trigger units per core. Each trigger unit consists of the 
following:

 Trigger unit name (label)

 Signals in the trigger unit

 Comparison function

 Radix of the trigger unit value

 Value of the trigger unit

To add a trigger unit:

1. If you want the buses in the new trigger units that you will add to have a 
certain radix by default, set that radix in the Default Trigger Radix box in 
the Trigger Unit section of the Trigger Signal Setup tab before you add 
any trigger units.

Changing the trigger radix value does not affect any trigger units that were 
created before you made the change.

2. To add a new trigger unit, click Add in the Trigger Unit section of the 
Trigger Signal Setup tab.

A line now appears in the Trigger Unit section, with a default trigger unit 
named TU<number>, where number is a sequential number. The first 
trigger unit is named TU1 by default.

Renaming Trigger Units
You can rename a trigger unit.

To rename a trigger unit:

 Double-click in the appropriate box in the Name column of the Trigger Unit 
section of the Trigger Signal Setup tab, backspace over the existing 
name, and type in the new name.

Setting Up Trigger Units
All signals must be defined for a trigger unit in Reveal Inserter. You cannot 
change them in Reveal Analyzer.
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To set up a trigger unit:

1. If you want to change the default name of the trigger unit, backspace over 
the default name in the Name box in the Trigger Unit section of the Trigger 
Signal Setup tab and type the new name.

2. Specify the signals in the trigger unit:

a. Double-click in the box in the Signals (MSB:LSB) column.

The TU Signals dialog box appears.

b. In the Select Signals box of the dialog box, highlight the signal or 
signals that you want to use in the trigger unit, and click > to move 
them to the box on the right. (Shift-click to select multiple signals.)

Each trigger unit can have up to 256 signals. Since there are 16 
allowable trigger units, each core can have a maximum of 4096 trigger 
signals.

c. If you want to change the order of a signal in the list of signals, 
highlight its name and click the up arrow to move it up one line or the 
down arrow to move it down one line.

The order of the signals affects how the comparison is performed.

d. Click OK.

As an alternative to this procedure, you can drag and drop signals from 
the Design Tree pane to the Signals (MSB:LSB) box in a trigger unit. 

If you want to select certain signals by using a search engine:

a. In the Signal Search box in the Design Tree pane, enter the name or 
pattern of the signal to find. You can set a filter by using case-
insensitive alphanumeric characters and wildcards. See “Searching 
for Signals” on page 21 for information about the wildcards that you 
can use.

b. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design 
Tree pane. 

If Reveal Inserter finds multiple signals, it opens the Search Result 
dialog box to list all the signals found.

c. If you are searching for multiple signals, select the desired signals in 
the Search Result dialog box, and click OK.

The signals are now selected in the Design Tree pane.

d. Drag them to Signals (MSB:LSB) box in the Trigger Unit section of the 
Trigger Signal Setup tab.

If you move the cursor over a trigger-unit line in the Signals box, the 
software displays a complete list of the signals in that trigger unit.

3. In the Operator column, set the comparators for the trigger condition. You 
can choose from the following states:

 == equal to

 != not equal to
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 > greater than

 >= greater than or equal to

 < less than

 <= less than or equal to

 Rising edge – compares on the rising edge of the clock

 Falling edge – compares on the falling edge of the clock

 Serial compare – compares until the trigger condition is met. For 
example, if the trigger condition is 10011, the serial compare option 
looks for a 1 on the first clock, a 0 on the next clock, a 0 on the next 
clock, a 1 on the next clock, and a 1 on the last clock. Only if those five 
conditions are met in those five clock cycles will the serial compare 
output be active.

The serial comparator is available only when a single signal is listed in 
the Trigger Unit signal list. If you choose this option, you must choose 
Binary in the Radix box.

You can only set the serial compare operator in Reveal Inserter. You 
cannot change it as you can other operators in Reveal Analyzer.

The default comparator is == (equal to).

For more information on the effect of the “Rising edge” and “Falling edge” 
operators, see “Rising-Edge and Falling-Edge Operators” on page 30.

Both the operator type and the trigger unit value can be changed in 
Reveal Analyzer during hardware debugging.

4. In the Radix column, set the radix of the trigger unit value given in the 
Value box by selecting a radix from the drop-down menu. You can choose 
one of the following:

 Binary. This is the default. You must choose Binary if you selected 
“Serial compare” as a comparator.

 Octal

 Decimal

 Hexadecimal

 <token_set_name>. To select <token_set_name>, you must have 
created token sets in Reveal Analyzer. See “Creating Token Sets” on 
page 68 for instructions on creating token sets.

5. In the Value column, enter the comparison value.

This value is the pattern of highs and lows that you want on the trigger unit 
that will initiate collection of the trace data. The default is binary, unless 
you selected <token_set_name> in the Radix column.

If you selected <token_set_name> in the Radix column, a drop-down 
menu opens in the Value column. This menu lists all the tokens that you 
entered in the Token Manager dialog box for the chosen token set. Select 
any name. The only token sets available for a given bus must match the 
bit width of the bus. Other token sets will not be listed as choices for that 
bus.
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You can use “x” for a don’t-care value in the Value column if you selected 
Binary, Octal or Hexadecimal in the Radix column and if you selected the 
==, !=, or serial compare operators in the Operator column.

Removing Trigger Units
You can remove trigger units in Reveal Inserter, but you cannot remove them 
in Reveal Analyzer.

To remove a trigger unit:

1. In the Trigger Unit section of the Trigger Signal Setup tab, click in any box 
in the line representing the trigger unit that you want to remove.

2. Click Remove.

Adding Trigger Expressions
Trigger expressions are combinatorial or sequential equations of trigger units 
or both. Trigger expressions can be defined during insertion and changed in 
Reveal Analyzer. You can add up to 16 trigger expressions. 

You can add trigger expressions only in Reveal Inserter. You cannot add them 
in Reveal Analyzer.

You can dynamically enable or disable individual trigger expressions before 
triggering is activated during hardware debugging.

To add a trigger expression:

 In the Trigger Expression section of the Trigger Signal Setup tab, click 
Add.

A line appears with the default trigger expression called TE<number>, 
where <number> is a sequential number. The first trigger expression is 
named TE1 by default. You can rename the trigger expression by 
backspacing over the name and typing a new name.

Renaming Trigger Expressions
You can rename a trigger expression.

To rename a trigger expression:

 Double-click in the appropriate box in the Name column of the Trigger 
Expression section of the Trigger Signal Setup tab, backspace over the 
existing name, and type in the new name.
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Setting Up Trigger Expressions
You set up the initial trigger expressions in Reveal Inserter, but you can 
change them and their names in Reveal Analyzer. You can also enable or 
disable trigger expressions in Reveal Analyzer. However, you cannot change 
the sequence depth, the maximum sequence depth, or the maximum event 
counter of the trigger expressions in Reveal Analyzer.

To set up a trigger expression:

1. If you want to change the default name of the trigger expression, 
backspace over the default name in the Name box in the Trigger 
Expression section of the Trigger Signal Setup tab and type the new 
name.

You can also change the name of a trigger expression in Reveal Analyzer.

2. In the Expression box, enter the names of the trigger units and the 
operators that you want to use to connect them.

You can use the following operators to connect trigger units:

 & (AND) – Combines trigger units using an & operator.

 | (OR) – Combines trigger units using an OR operator.

 ^ (XOR) – Combines trigger units using a XOR operator.

 ! (NOT) – Combines a trigger unit with a NOT operator.

 Parentheses – Groups and orders trigger units.

 THEN – Creates a sequence of wait conditions. For example, the 
following statement:

TU1 THEN TU2 

means “wait for TU1 to be true,” then “wait for TU2 to be true.” 

The following expression:

(TU1 & TU2) THEN TU3 

means “wait for TU1 and TU2 to be true, then wait for TU3 to be true.”

Reveal supports up to 16 sequence levels.

See “Sequences and Counters” on page 32 for more information on 
THEN statements.

 NEXT – Creates a sequence of wait conditions, like THEN, except the 
second trigger unit must come immediately after the first. That is, the 
second trigger unit must occur in the next clock cycle after the first 
trigger unit. See “Sequences and Counters” on page 32 for more 
information on NEXT statements.

 # (count) – Inserts a counter into a sequence. See “Sequences and 
Counters” on page 32 for information on counters.

 ## (consecutive count) – Inserts a counter into a sequence. Like # 
(count) except that the trigger units must come in consecutive clock 
cycles. That is, one trigger unit immediately after another with no 
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delay between them. See “Sequences and Counters” on page 32 for 
information on counters.

For more information on the precedence of these symbols in trigger 
expression syntax, see “Precedence” on page 33.

Reveal Inserter checks the syntax and displays the syntax in red font if it is 
erroneous.

Both the trigger units and operators associated with a trigger expression 
can be changed in Reveal Analyzer during hardware debugging.

3. From the drop-down menu in the Ram Type box, specify how the trigger 
expression is to be implemented in the debug logic. You can choose one 
of the following:

 EBR – Implements the trigger expression as embedded block RAM 
(EBR). Reveal Inserter calculates the appropriate number of EBRs. By 
default, the trigger expression is implemented as EBR.

 <number> Slices – Implements the trigger expression as slices. 
Reveal Inserter calculates the appropriate number of slices.

The Sequence Depth box is read-only, so you do not need to enter data 
in this box.

4. From the drop-down menu in the Max Sequence Depth box, specify the 
maximum number of sequences, or trigger units connected by THEN 
operators, that can be used in a trigger expression.

You can choose 1, 2, 4, 8, or 16. Reveal supports up to 16 maximum 
sequence levels. 

If the number in the Sequence Depth box is higher than that set in the Max 
Sequence Depth box, the number in the Max Sequence Depth box 
appears in red to indicate an error.

The Max Sequence Depth value is set statically in Reveal Inserter and 
cannot be changed in Reveal Analyzer.

5. From the drop-down menu in the Max Event Counter box, specify the 
maximum size of the count in the trigger expression (the count is how 
many times a sequence must occur before a THEN statement). You can 
choose 1 and powers of 2 from 2 to 65,536. The maximum is 65,536. The 
default is 1. If the largest counter value used in the trigger expression is 
larger than that set in the Max Event Counter box, the number in the Max 
Event Counter box appears in red.

You cannot change the Max Event Counter setting in Reveal Analyzer. 
You can only change it in Reveal Inserter.

You can also add a counter to the output of the final trigger from all the 
trigger expressions. This counter adds an option to the final trigger output 
that combines all the trigger expressions. It is similar to the AND All and 
OR All options in the Analyzer. 

6. To add a counter to the output of the final trigger, do the following:

a. Select the Enable final trigger counter checkbox in the lower left 
portion of the Trigger Signal Setup tab.
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b. From the drop-down menu in the Event Counter Value box, select 
the maximum size of the count of all the trigger expression outputs 
combined. You can choose powers of 2 between 2 and 65536.

Leaving the “Enable final trigger counter” option unselected is equivalent 
to setting the counter to a value of 1.

You can change the value of this parameter in Reveal Analyzer, but you 
cannot make the value bigger, so be sure to reserve enough space for the 
count that you think you will need.

7. If you want create a trigger-out signal, do the following in the Trigger Out 
section:

a. Select the Enable Trigger Out option.

b. If you want to create a net, type in the name of the signal that you 
want to use as the trigger output signal in the Net box.

The default name of the trigger output signal is 
reveal_debug_<default_core_name>_net. An example is 
reveal_debug_count_LA0_net.

c. In the drop-down menu next to the Net box, select one of the 
following:

 NET – Creates a net signal that can be connected to the input of a 
trigger unit of another core. This setting is the default.

 IO – Creates an I/O signal that can trigger outside the chip. 

 BOTH – Creates a signal that can both connect to the input of a 
trigger unit of another core and trigger outside the chip.

d. In the Polarity box, select the polarity of the trigger output signal from 
the drop-down menu, either Active High or Active Low.

e. In the “Minimum pulse width” box, enter the minimum pulse width of 
the trigger output signal, measured in cycles of the sample clock. You 
can input any value of 0 or greater as the minimum pulse.

f. If you chose IO or BOTH for the Net type, go into the .lpf file and add a 
LOCATE preference to specify which pin the trigger-out should go to. 
For example:

LOCATE COMP "reveal_debug_count_LA0_net" SITE "J2" ;

Once you create a net as a trigger output signal, its name appears in the 
Trigger Output pane beneath the Design Tree pane.

Removing Trigger Expressions
You can disable a trigger expression from being used by deselecting the 
checkbox to the left of the trigger expression name in Reveal Analyzer, but 
you can remove a trigger expression only in Reveal Inserter.

To remove a trigger expression:

1. Click in any box in the line representing the expression that you want to 
remove.
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2. Click Remove.

Checking the Debug Logic Settings
Reveal Inserter automatically checks the settings of the debug logic before 
saving the project or inserting the debug logic cores, but you may want to 
check them independently beforehand. With one DRC command (Debug > 
Design Rule Check), you can verify the following:

 The core names begin with a letter and consist of letters, numbers, and 
underscores (_).

 A core name is not the same as that of any other core.

 The core name is not the same as that of any module already defined in 
the design.

 The number of cores is between 1 and 15.

 The number of trace signals is between 1 and 512.

 The number of trigger signals is between 1 and 4096.

 The number of trigger units and trigger expressions is between 1 and 16.

 The number of trigger signals in a trigger unit is between 1 and 256.

 A sample clock is specified.

 The sample clock signal is a 1-bit signal already defined in the design.

 A sample enable is specified.

 The sample enable signal is a 1-bit signal already defined in the design.

 The name of the trigger-out signal is given if this signal is enabled.

 The name of the trigger-out signal is not the same as any signal already 
defined in the design.

 The number of EBRs needed does not exceed the number available.

 The design includes an input signal.

 The syntax of the trigger expressions is correct.

 The trigger expression sequence is less than or equal to the maximum 
sequence.

 The trigger output signal is specified, if the Enable Trigger Out option is 
enabled.

 The trigger output signal is not the same as the name of any signal in the 
design.

 The values of the trigger unit are correct.

 The names of the trigger units and the trigger expressions conform to the 
guidelines given in the “Trigger Expression and Trigger Unit Naming 
Conventions” on page 36.

 The bit widths of the token values are the same as the bit widths of the 
trigger unit signals.
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To check the logic debugging settings:

 Choose Debug > Design Ruler Check or click  in the toolbar.

The results of the check are displayed in the Message tab. The Message tab 
also displays the total resource utilization, as in the following example:

The number of EBRs needed is 2.
The number of DistRAM (logic/ROM/RAM) slices needed is 0.

Creating SERDES Debug Modules
SERDES Debug modules help in debugging the serdes function by giving you 
read and write access to control registers. In Reveal Analyzer you can 
monitor what is happening in the serdes and experiment with different control 
settings. These modules are only available with ECP5UM designs that use 
the DCU block.

To add a SERDES Debug module:

1. Choose Debug > Add New Core > Add SERDES Debug.

A new module appears in the Dataset view and the Serdes Debub Setup 
tab appears.

2. Select the sample clock in the Design Tree view and drag it to the Serdes 
Debug Setup tab. For help finding signals, see “Searching for Signals” on 
page 21. For more about sample clocks, see “Setting Required Sample 
Parameters” on page 25.

3. Select the serdes reset signal in the Design Tree view and drag it to the 
Serdes Debug Setup tab.

4. When you have set up all your modules, add them to the design project by 
choosing Debug >  Insert Debug and running the design 
implementation process. See “Inserting the Debug Logic Cores” on 
page 46.

Saving a Project
Once you set the debug options, save the project so that the project 
information is saved in an .rvl and an .rvs file. Reveal Inserter automatically 
performs a design rule check before it saves these files.



REVEAL INSERTER : Inserting the Debug Logic Cores

46 Reveal User Guide

When you select Debug >  Insert Debug or click the  button, Reveal 
Inserter saves the project information in an .rvl and an .rvs file.

To save the project settings in the current directory:

 Choose File > Save or click  in the toolbar to save the project in .rvl 
and .rvs files in your current directory.

To save the project settings in another directory:

 Choose File > Save As to save the project in .rvl and .rvs files in a 
directory other than the current directory. In the Select Project dialog box, 
browse to the desired directory, enter the name of the .rvl file in the File 
Name box, select .rvl in the Files of Type box, and click Save.

Inserting the Debug Logic Cores
Once you set all the options in the tabs in Reveal Inserter window, you can 
insert the debug logic cores into the design. 

To insert the debug logic cores into the design:

1. Choose Debug >  Insert Debug or click  in the Reveal Inserter 
toolbar.

2. In the Insert Debug to Design dialog box, select the cores to insert.

3. Select Activate Reveal file in design project.

You should usually select this option. If the .rvl file is not active in the 
design project, the Reveal modules will not be included during synthesis.

4. Click OK.

Reveal Inserter performs a design rule check and saves the Reveal (.rvl) 
file. The Output view shows resource requirements and the DRC report 
for the modules. The .rvl file is listed in the File List pane under Debug 
Files.

You should now see the .rvl file listed in the File List view, if it was not listed 
there before.

Note

 Reveal Inserter generates a “signature” or tracking mechanism each time that debug 
logic is inserted into the design. The signature is placed into the project file and into the 
debug logic. Reveal Analyzer reads this signature to ensure that the FPGA has been 
programmed with the latest debug logic. Reveal Inserter generates a new signature 
every time the .rvl file is written, and Reveal Analyzer checks this signature each time 
that it runs the design. If you save the project in Reveal Inserter without re-running the 
implementation process, Reveal Analyzer issues an error message, even if the debug 
logic was not changed. 
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Removing Debug Logic from the Design
You may want to remove the debug logic cores in pre-production versions of 
your device to free block RAM resources and LUT-based logic and to expand 
the design. If you want to remove the debug logic cores from your design, you 
must remove the .rvl file or set it as inactive. Otherwise, the cores will 
continue to be inserted.

To remove the debug logic cores from the design:

1. In the File List view, highlight the .rvl file and right-click.

2. Do one of the following:

 To remove the Reveal modules but keep the project, choose Set as 
Inactive.

 To delete the Reveal project, choose Remove.

The .rvl file is now removed from the design.

Closing a Project

To close a Reveal Inserter project:

 Choose File > Close.

Exiting Reveal Inserter

To exit Reveal Inserter:

 Click  in the Reveal Inserter tab.

Translating the Design

To build the design project database:

 Double-click the Translate Design process in the Process view. 
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During this process, Diamond invokes the synthesis tool.

Mapping, Placing, and Routing the Design

To map, place, and route the design:

1. Double-click the Map Design process in the Process view.

2. Double-click the Place & Route Design process in the Process view.

All core clock pins must be located and driven by valid signals to ensure 
successful hardware debugging.

Generating a Bitstream or JEDEC File

To generate a bitstream:

 Double-click the Export Files process.

This process creates a .bit or .jed file for FPGAs that is ready for 
downloading into the device.

Connecting to the Evaluation Board
Reveal Analyzer requires that a Lattice Semiconductor or USB download 
cable and a power supply be installed between your computer and evaluation 
board. Refer to the Programmer online Help for more information about 
setting up a cable connection.

Downloading Design onto the Device
For more information about downloading your design onto the device, refer to 
the Programmer online Help.

Note

If your design contains an unlicensed IP block, the Hardtimer mechanism enables you 
to evaluate the IP. You can control this mechanism by highlighting the Translate 
Design Process, selecting Properties, and setting the Hardware Evaluation option to 
Enable. 

If you use the Reveal tools on a design that includes an unlicensed IP block, you 
cannot disable the Hardtimer mechanism. It is required to generate the bitstream data 
or JEDEC file for Reveal Analyzer. If you set the Hardware Evaluation option to 
Disable, the Reveal flow overwrites the Hardtimer mechanism. However, the option 
automatically reverts to Disable when you exit the Reveal flow.
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Performing Logic Analysis with Reveal Analyzer
After you have created your design project database with Diamond software, 
generated a debug logic core with Reveal Inserter, mapped, placed, and 
routed your design, and downloaded the design to the evaluation board, you 
can perform a logic analysis with Reveal Analyzer. Refer to “Reveal Analyzer” 
on page 51 for more information about performing logic analysis.

User Interface Descriptions
The Reveal Inserter window appears when you first choose Tools > Reveal 
Inserter or click on the  icon.

The Reveal Inserter window includes the following features:

Dataset pane Lists the cores in the current dataset. You debug a design 
with Reveal Inserter debug logic, using a certain sample clock. If you want to 
debug a multi-clock design, you can create a core for each sample clock 
region. These cores are listed in the Dataset pane. This pane can be 
detached as a separate window and can be hidden using the View menu.

Design Tree pane Lists all the buses and signals in the design. The names 
of trace, trigger, and control signals are in bold font if they are currently being 
used. 

One of the following strings appears after each signal name to indicate its 
use:

 @Tc indicates that the signal is a trace signal.

 @Tg indicates that the signal is a trigger signal.

 @C indicates that the signal is a control signal.

Similarly, one of the following strings appears after each bus name to indicate 
its use:

 @Tc indicates that all the signals in the bus are used only as trace signals.

 @Tg indicates that all the signals in the bus are used only as trigger 
signals.

 @Tc, Tg indicates that all the signals in the bus are used as trace signals 
and trigger signals. It also appears if all the signals are used as trigger 
signals and none of the signals in the bus are used as control signals and 
you selected the “Include trigger signals in trace data” option.

 @Mx indicates the following:

 At least one signal in the bus is used as a control signal.

 Some signals in the bus are used both as trigger signals and as other 
kinds of signals.

 Some signals in the bus are used both as trace signals and as other 
kinds of signals, except that all the signals are used as trigger signals, 
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none of the signals are used as control signals, and you selected the 
“Include trigger signals in trace data” option.

If you select or deselect the “Include trigger signals in trace data” option, the 
signal and bus names are immediately updated in the Design Tree pane. If 
you set a signal as a trigger signal and select the “Include trigger signals in 
trace data” option, the use of the signal is displayed as Tc, Tg, even though 
you did not drag the signal name to the Trace Data pane.

If you select a signal in the hierarchy, the Signal Information tab at the bottom 
of the Reveal Inserter window displays information about how it is used.

You can enlarge the width of this pane to see longer signal names by 
dragging the splitter at the right edge of the pane. This pane can be detached 
as a separate window and can be hidden using the View menu.

Signal Search box Enables you to search for a signal or a group of signals. 
You can enter a signal name or pattern. You can set a filter by using the case-
insensitive alphanumeric characters and wildcards described in “Searching 
for Signals” on page 21.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree pane. 
If it finds multiple signals, it opens the Search Signals dialog box to list all the 
signals found. When you click OK, the selected signals are highlighted in the 
Design Tree pane. From the Design Tree pane, you can drag signals to the 
Trace Data pane, the Sample Clock box, and the Sample Enable box in the 
Trace Signal Setup tab. You can also drag signals to the Signals (MSB:LSB) 
box in the Trigger Unit section of the Trigger Signals Setup tab.

Trigger Output pane Displays the names of the trigger output signals 
defined in the Trigger Out box in the Trigger Signal Setup tab.

This field displays the trigger output signals for all but the first core and only 
those output signals for which NET or BOTH were chosen. From the Trigger 
Out Nets box, you can drag the signal names to the top half of the Trace 
Signal Setup tab. This pane can be detached as a separate window and can 
be hidden using the View menu.

Trace Signal Setup Activates the Trace Signal Setup tab.

Trigger Signal Setup Activates the Trigger Signal Setup tab.

Trace Data pane Displays the selected trace signals in the Trace Signal 
Setup tab.

Serdes Debug Setup Serdes Debug Setup is where you specify signals to 
control the current SERDES Debug module. Select signals by dragging them 
from the Design Tree view. See “Creating SERDES Debug Modules” on 
page 45.

Note

The Serdes Debug Setup tab is only visible when you select a Serdes Debug module 
in the Dataset pane.
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Chapter 3

Reveal Analyzer

Logic analyzers enable you to view signal information to debug design 
functionality. With external logic analyzers, you connect to pins on a board, 
set one or more trigger conditions, and sample and view collected data. 
Internal logic analyzers, such as Reveal Analyzer, depend on additional logic 
placed into the design for triggering and tracing, then transferring the data to a 
PC, usually through a JTAG connection, for viewing and analysis.

Reveal Inserter handles the task of inserting debug logic into your design. 
Before using Reveal Analyzer, you must use Reveal Inserter to allow debug 
access.

Reveal Analyzer enables you to configure trigger settings and extract 
information from a programmed device through the JTAG ports. It interfaces 
directly to the Reveal cores in the design. You can set up triggers, select 
capture modes, and run or stop the triggers. Reveal Analyzer displays the 
data captured on the silicon according to the settings that you specify.

Reveal Analyzer's graphical user interface enables you to view the trace data 
of a signal or bus in a waveform viewer.

Although an evaluation board is normally required to run Reveal Analyzer, 
Reveal Analyzer includes a demonstration design that you can run without the 
evaluation board so that you can learn how to use the tool.

Reveal Analyzer requires the Programmer programming software to configure 
the specified device. The acquired data is displayed in the waveform viewer.

You can export waveform data to a value change dump (.vcd) file, which can 
be imported by such third-party tools as ModelSim or Active-HDL. You can 
also output a file in ASCII tabular format for exporting the data into other tools 
such as Excel.
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About Reveal Analyzer
This section introduces some of the key features of Reveal Analyzer: the 
devices that it supports, the steps in its design flow, its inputs, and its outputs.

Reveal On-Chip Debug Design Flow
The following figure shows the Reveal insertion and logic analysis design 
flow.

Before accessing Reveal Analyzer, you must install a Lattice Semiconductor 
or USB download cable and a power supply between your computer and the 
evaluation board. Refer to “Connecting to the Evaluation Board” on page 55 
for information on this procedure.

You do not need to install a cable and a power supply if you want to run the 
demonstration design that comes with Reveal Analyzer so that you can learn 
how to use the tool. See “Using the Reveal Example Project” on page 10.

You must also have a design project that has had on-chip debug logic 
inserted by the Reveal Inserter software.

The general steps involved in performing a logic analysis are the following:

Figure 2: Reveal Design Flow
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1. Start Reveal Inserter.

2. Configure the trace and trigger signal settings in Reveal Inserter.

3. Insert the debug logic with Reveal Inserter.

4. Build the database in the Process view.

5. Map, place, and route the design.

6. Generate the bitstream data or JEDEC file.

7. Set up a cable connection.

8. Download the design onto the device by using Programmer.

9. Start Reveal Analyzer.

10. Create a new Reveal Analyzer project or open an existing one.

11. Configure the trigger settings for each core in each device that you want 
to use to perform logic analysis of the design.

12. Click the Run  button to perform the logic analysis, and wait for the 
design to trigger and download the trace information into Reveal Analyzer 
from the board.

13. View the resulting waveforms for each core.

14. Optionally, you can export the waveform data for each core in a value 
change dump (.vcd) file for use in third-party tools or in an ASCII-format 
text (.txt) file.

Inputs
Reveal Analyzer requires the following as input: 

 A design project

 A Reveal Analyzer settings (.rvs) file, which is output by Reveal Inserter or 
Reveal Analyzer. It contains all the dynamically changeable trigger 
settings, such as trigger unit operators, trigger unit values, and any trigger 
expressions.

 An existing Reveal Inserter project (.rvl file), which contains the 
connections for each core and all the static settings of the debugging 
logic. The information in this file is statically set in Reveal Inserter and 
cannot be changed in Reveal Analyzer.

 A Reveal Analyzer project (.rva) file, which is the project file output by 
Reveal Analyzer in a previous session. It contains the information used by 
Reveal Analyzer, such as window settings, waveform trace signal 
positions, radixes, markers, and signal colors.

 JTAG hub (.hub) file, which is used by Reveal Analyzer to sort the data 
coming from the different Reveal modules.

 Optionally, a scan chain configuration (.xcf) file, which is generated by 
Programmer for programming devices in a JTAG daisy chain. The .xcf file 
contains information about each device, the data files targeted, and the 
operations to be performed. The .xcf file must reside in the design project 
directory for Reveal Analyzer to use it.
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An .xcf file is required as input only if you will be programming devices in a 
JTAG daisy chain. It is not required if you will be programming a single device. 
It is recommended that an .xcf file be used since extra information such as the 
TCLKDelay value can be directly read from this file avoiding having to 
manually set this within Reveal Analyzer.

Outputs
Reveal Analyzer generates the following files:

 A Reveal Analyzer project (.rva) file, which contains the information such 
as window settings, waveform trace signal positions, radixes, markers, 
and signal colors. This file is also an input file when you re-open a project 
that you previously saved.

 A Reveal Analyzer trace (.trc) file, which contains the waveform 
information acquired from previous runs of Reveal Analyzer. When you 
first open Reveal Analyzer, the waveform displays this information until 
you press the Run button. If the debug signals have been changed from a 
previous Reveal Analyzer run, incorrect information is displayed in the 
waveform when it is first opened. Once a run has been completed, the 
waveform contains valid information with the changed debug 
configuration.

 Optionally, a value change dump (.vcd) file, in which you can export 
waveform data for display in third-party tools such as ModelSim and 
Active-HDL. The .vcd file is an ASCII file containing header information, 
variable definitions, and variable value changes. Its format is specified by 
the IEEE 1364 standard.

 Optionally, an ASCII-format text (.txt) file, in which you can export 
waveform data for display in third-party tools such as ModelSim and 
Active-HDL. The .txt file is in a simple ASCII character-tab-delimited 
format. It includes a header line with the signal names, then each line 
contains the value for each signal, one line per each sample clock.

Inserting the Debug Logic
Before performing logic analysis with Reveal Analyzer, you must use Reveal 
Inserter to generate the debug logic and insert it into your design. You must 
also set up the trace and trigger signals to be used in Reveal Inserter.

Translating the Design
After you insert the debug logic in the Reveal Inserter, you return to the 
Process view to translate the design.

Note

Only one device can be debugged in a JTAG daisy chain.
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To translate the design:

 Double-click the Translate Design process. 

During this process, Diamond invokes the synthesis tool.

Mapping, Placing, and Routing the Design
Once you build the translate the design, you map, place, and route the 
design.

To map, place, and route the design:

1. Double-click the Map Design process.

2. Double-click the Place & Route Design process.

All core clock pins must be located and driven by valid signals for successful 
hardware debugging.

Generating a Bitstream or JEDEC File
Now you generate a bitstream or JEDEC file, as appropriate, to download into 
the device.

To generate a bitstream or JEDEC file:

 Double-click the Export Files process in the Process view.

This process creates a .bit or .jed file that is ready for downloading into the 
device.

Connecting to the Evaluation Board
Reveal Analyzer requires that a Lattice Semiconductor parallel port cable or 
USB download cable and a power supply be installed between your computer 
and the evaluation board so that you can program the device with 
Programmer.

To connect the evaluation board to your computer:

1. Install a driver for the download cable, if it has not been previously 
installed.

2. Reboot your computer, if the driver was not previously installed.

3. Attach the parallel port or USB cable to the parallel port or USB port of 
your system.
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4. Plug in the AC adapter to a wall outlet, and plug the other end into the 
power jack provided on the evaluation board.

5. In Diamond, choose Tools > Programmer.

6. Select Options > Cable and IO Port Setup.

7. Click Auto Detect, then click OK.

8. Attach the JTAG connector cable to the appropriate JTAG programming 
header of the evaluation board. See the device evaluation board 
documentation for details.

Refer to the Programmer Help for more information about your cable 
connection.

Downloading a Design onto the Device
To download a design onto the device, use Programmer. This process creates 
a scan chain configuration (.xcf) file. An .xcf file is not necessary to use 
Reveal Analyzer, unless you will be programming or debugging devices in a 
daisy chain (see “Programming and Debugging Devices in a Daisy Chain” on 
page 61 for more information). Reveal Analyzer derives the information in the 
downloaded design directly from the device on the board.

To download the design onto the device:

1. In Programmer, select File > New.

A new chain configuration window appears.

2. Choose ispTools > Scan Chain or click the Scan toolbar icon.

Programmer detects the device that you are using and adds it to the list.

3. Select the first device in the New Scan Configuration Setup list. 

4. In the popup box labeled Multi Match Device’s ID List, select the 
appropriate device.

5. Highlight the selected device and choose Edit Device from the pop-up 
menu.

6. In the Device Information dialog box, click the Select button of the Device 
section to open the Select Device dialog box.

7. In the Select Device dialog box, do the following:

a. In the Device Family box, select the appropriate device family.

b. In the Device box, select the device, as appropriate for your revision of 
the standard evaluation board.

Note

You should follow the handling and power-up advice provided in the Lattice 
Semiconductor device evaluation board documentation when using the evaluation 
board.
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c. In the Package box, select the appropriate package.

d. Click OK.

8. Click the Browse button of the Data File section. 

9. Select the <design_name>.bit or .jed file, and click Open.

10. In the Operation box, select Fast Program, if it is not already selected.

11. Click OK to close the Device Information dialog box.

12. Choose Project > Download, or click the GO button on the toolbar.

After a few moments, the download and programming activity will end. A 
green PASS button appears in the New Scan Configuration Setup dialog 
box.

13. Select File > Save As to save the configuration setup as an .xcf file. 

The .xcf file must reside in the design project directory for Reveal 
Analyzer to use it.

14. In the File Name box in the dialog box that appears, type in 
<design_name>.xcf, and click Save.

15. Choose File > Exit in Programmer.

See the Programmer Help for detailed instructions on the downloading 
process.

Starting Reveal Analyzer
Before starting Reveal Analyzer you need to decide if you want to work with a 
new Reveal Analyzer (.rva) file or an existing one. The .rva file defines the 
Reveal Analyzer project and contains data about the display of signals in the 
LA Waveform view. You may want to start Reveal Analyzer with a new file to 
set up a new test. Start with an existing file to rerun a test, to set up a new test 
based on existing settings, or to just view the waveforms from an earlier test. 
(See “Starting with an Existing File” on page 59.)

How you start Reveal analyzer also depends on whether you are using it 
integrated with Diamond or using the stand-alone version, and on your 
operating system.

Starting with a New File
Before you can start Reveal Analyzer with a new .rva file, you need to be 
connected to your evaluation board with a download cable and have the 
board’s power turned on.

Note

An .xcf file is not required unless you will be programming or debugging devices in 
a daisy chain. See “Programming and Debugging Devices in a Daisy Chain” on 
page 61 for more information.



REVEAL ANALYZER : Starting Reveal Analyzer

58 Reveal User Guide

To start Reveal Analyzer with a new file:

1. Issue the start command:

 For integrated with Diamond, go to the Diamond main window and 

choose Tools >  Reveal Analyzer.

 For stand-alone in Windows, go to the Windows Start menu and 
choose Programs > Lattice Diamond Reveal > Reveal Logic 
Analyzer.

 For stand-alone in Linux, go to a command line and enter the 
following:

<Reveal install path>/bin/lin/rvamain

If Reveal Analyzer finds just one .rva file in the active implementation, 
Reveal Analyzer opens with the data from that file. Otherwise, the Reveal 
Analyzer Startup Wizard dialog box appears.

2. If Reveal Analyzer opens with an existing file, choose File > Save <file> 
As.

The Save Reveal Analyzer File dialog box opens. Change the filename 
and click Save. You now have a new .rva file ready to work with.

3. (Stand-alone only) In the Reveal Analyzer Startup Wizard dialog box, 
browse to the implementation directory. This is where the Reveal Inserter 
project (.rvl) file should be and where the .rva file will be created.

4. In the Reveal Analyzer Startup Wizard dialog box, select Create a new 
file (at the upper-left of the dialog box).

The dialog box presents a few rows of boxes that need to be filled in.

5. In the next row, type in the base name of the file. The extension is added 
automatically.

6. If there are daisy-chained devices, select Multiple Device in JTAG 
Chain.

7. To the right of this row is a drop-down menu. Choose the type of cable that 
your board is connected to.

Another row in the dialog box changes to select the port.

8. Select the specific port. The method depends on the port type:

 If USB, click Detect. Then choose from the active ports found. The 
following figure shows the second row after choosing a USB type.

 If parallel, select the port address. If it’s not one of the standard 
addresses given, select 0x and type in the hexadecimal address. 
Then click Check to verify that the connection is working. The 
following figure shows the second row after choosing a parallel type.
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9. If there are daisy-chained devices, click Browse in the XCF source row to 
find the XCF source file.

10. Click Scan to find the FPGA.

11. If there is more than one FPGA on your board, go to the “Debug device” 
menu and choose one that has a Reveal  icon. The icon indicates the 
presence of a Reveal module.

12. Click Browse in the RVL source row to find the Reveal Inserter project 
(.rvl) file.

13. To add the new .rva file to the File List view, select Import file into 
current implementation. (Not available in stand-alone.) The .rva file 
works the same either way.

14. Click OK.

Starting with an Existing File
If you want to start with an existing file, you just need to have that .rva file in 
the design project. You need to be connected to the evaluation board only if 
you want to run a test and capture data.

To start Reveal Analyzer with an existing file:

1. Issue the start command. To start:

 In the Diamond main window, choose Tools >  Reveal Analyzer.

 The stand-alone Reveal Analyzer in Windows, go to the Windows 
Start menu and choose Programs > Lattice Diamond Reveal > 
Reveal Logic Analyzer.

 The stand-alone Reveal Analyzer in Linux, enter the following on a 
command line:

<Reveal install path>/bin/lin/rvamain

If Reveal Analyzer finds just one .rva file in the active implementation, 
Reveal Analyzer opens with the data from that file. Otherwise, the Reveal 
Analyzer Startup Wizard dialog box appears.

If Reveal Analyzer opens with the .rva file you want to use, you’re ready to 
go. Otherwise continue with the following steps.

2. (Stand-alone only) In the Reveal Analyzer Startup Wizard dialog box, 
browse to the implementation directory. This is where the Reveal Inserter 
project (.rvl) file and where the .rva file should be.

3. In the Reveal Analyzer Startup Wizard dialog box, select Open an 
existing file (in the lower part of the dialog box).



REVEAL ANALYZER : Creating a New Reveal Analyzer Project

60 Reveal User Guide

4. In the “File name” box, choose one of the available .rva files.

5. If the file you want is not in the menu, click Browse and browse to the 
desired .rva file.

6. To add the new .rva file to the File List view, select Import file into 
current implementation. (Not available in stand-alone.) The .rva file 
works the same either way.

7. Click OK.

If the connection to your evaluation board has changed, either in the cable 
type or the computer port used, you need to tell Reveal Analyzer about the 
new connection. See “Changing the Cable Connection” on page 60.

Changing the Cable Connection
If you need to change how your evaluation board is connected to your 
computer, go ahead and make the change. Then go through the following 
procedure to change the Reveal Analyzer project.

To change the cable setting in a Reveal Analyzer project:

1. Make sure your evaluation board is connected and that its power is on.

2. If Reveal Analyzer is not already open, start it as described in “Starting 
with an Existing File” on page 59.

3. Choose Design > Cable Connection Manager.

The Cable Connection Manager dialog box opens.

4. In the dialog box, choose the cable type.

The second row in the dialog box changes to select the specific port.

5. Select the specific port. The method depends on the port type:

 If USB, click Detect. Then choose from the active ports found.

 If parallel, select the port address. If it’s not one of the standard 
addresses given, select 0x and type in the hexadecimal address. 
Then click Check to verify that the connection is working.

6. To change the clock speed of the cable connection, adjust the value of 
TCK Low Pulse Width Delay.

7. Click OK.

Creating a New Reveal Analyzer Project
In order to create a new Reveal Analyzer project, you must first have available 
a design directory with a Reveal project (.rvl) file generated by Reveal 
Inserter.
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To open a new Reveal Analyzer project:

1. Choose File > New >  File or click  in the toolbar and choose  
File from the drop-down menu.

The New File dialog box appears.

2. Under Categories, choose Other Files.

3. Under Source Files, choose  Reveal Analyzer Files.

4. Type in the base name for the .rva file. The “.rva” extension is added 
automatically.

5. If you do not want the file to be in the design project’s folder, click Browse 
and browse to the desired location.

It is recommended that you save the Reveal Analyzer project files in the 
project directory for the design into which the debug logic has been 
inserted.

6. Click New.

The Reveal Analyzer Startup Wizard opens.

7. Type in the base name of the file. The extension is added automatically.

8. From the menu, choose the port that is connected to your board and click 
Scan to find the Reveal module.

9. Browse to the Reveal Inserter project (.rvl) file.

10. If you will be programming devices in a JTAG daisy chain, choose the 
name of the .xcf file from the drop-down menu in the XCF source box. 
See “Programming and Debugging Devices in a Daisy Chain” on page 61.

The .xcf file must reside in the design project directory for Reveal 
Analyzer to use it.

11. Click OK.

On the basis of the settings in the .rvl file, Reveal Analyzer now verifies 
that the project directory contains the correct design .hub file and creates 
the new project.

Programming and Debugging Devices 
in a Daisy Chain
For an evaluation board using multiple FPGAs in a JTAG daisy chain, Reveal 
Analyzer has the following requirements:

 Only one device can be debugged at a time.

 The .xcf file must be in the design project directory.

Note

Only one device can be debugged in a JTAG daisy chain.
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To program an FPGA with a Reveal module in a daisy chain:

1. In Programmer, uncheck the Process column of the devices that do not 
get the Reveal module. This sets the operation of these devices to Bypass 
mode.

2. Ensure that the Process column of the device that does get the Reveal 
module is checked.

3. Double-click in the row of the device that does get the Reveal module.

The Device Properties dialog box opens.

4. In the Device Properties dialog box, choose Fast Program from the drop-
down menu.

5. Click OK.

For an FPGA that contains its own SPI flash, flash programming is also an 
option.

Opening an Existing Reveal Analyzer Project
To open an existing project, you must have available a Reveal Analyzer 
project (.rva) file from a previous Reveal Analyzer session.

Opening an Existing Project
You can open an existing project in Reveal Analyzer by using the File menu to 
open a dialog box.

To open an existing Reveal Analyzer project:

1. Choose File > Open >  File.

2. In the Open File dialog box, browse to the desired .rva file.

3. Click Open.

Opening a Recently Opened Project
If the desired .rva file has been recently opened, you can open it directly from 
the File menu.

To open a recently opened .rva file directly from the File menu:

 Choose File > Recent Files > <filename> from the list of the four most 
recently opened files near the bottom of the File menu.
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Selecting a Reveal Analyzer Core
After you have created a project, each Reveal core in the design will have a 
Reveal Analyzer window available to set triggers and view captured data.

To display a Reveal Analyzer core:

 Choose the core from the drop-down menu in the Reveal Analyzer 
toolbar.

Setting Up the Trace Signals
Although you can add trace signals only in Reveal Inserter, you can set 
radixes for them by using the LA Waveform tab.

Setting the Trace Bus Radix
You can set the radix of a trace bus displayed in the LA Waveform tab. You 
can choose a binary, octal, decimal, or hexadecimal radix. You can also use 
any token set whose bit width matches the bus.

To set the bus radix of a signal bus:

1. In the LA Waveform tab, select one or more buses.

To select one bus, click on it. To select more than one, Control-click on 
each one. To select all buses in a range, click on one end of the range and 
Shift-click the other end. If you want to change all the signals in the 
waveform to the same radix, you do not need to select anything.

2. Right-click in one of the selected waveforms and choose Set Bus Radix. 
Be careful to click in the same row as one of your selections, or you will 
change the selection.

The Set Bus Radix dialog box opens.

3. In the drop-down menu, choose the radix or token set.

4. In the Range drop-down menu, choose Selected signals or, if you want 
to change all the signals in the waveform to the same radix, choose All 
signals.

5. Click OK.

Note

The darker gray background in certain fields in the LA Trigger tab indicates that you 
can change these values only in Reveal Inserter. You cannot change them in Reveal 
Analyzer.
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Adding Time Stamps to Trace Samples
In the Reveal Inserter, you can optionally specify a sample clock count value 
to be stored with each trace sample to indicate the sample count clock value 
at which the sample was captured. This count is extra data (bits) captured into 
the trace buffer that increase the trace buffer’s width. This time stamp enables 
you to see how many sample clock intervals have elapsed between data 
captures when you use a sample enable. It is useful in some cases when it is 
necessary to know if you captured the right data. A time stamp is also useful 
when you try to synchronize data between multiple cores, off-chip data, or 
both. For example, if you trigger two cores at the same time, you can use the 
time stamps on the trace samples to calculate how the data between the 
cores compares.

See Adding Time Stamps to Trace Samples in the Reveal Inserter online Help 
for information on adding time stamps to trace samples in Reveal Inserter.

Setting Up the Trigger Signals
Before you perform logic analysis, you must define the conditions under which 
the trigger will start or stop the collection of data on the trace signals specified 
in Reveal Inserter. You must define these triggers for each core. Use the LA 
Trigger tab of the Reveal Inserter window to specify the trigger units and 
trigger expressions that start the collection of the sample data for the selected 
core. In Reveal Analyzer, you cannot add or remove new trigger units or 
trigger expressions, but you can change the values and operators in the 
trigger units and trigger expressions. In addition, you can disable a trigger 
expression from being used by clearing the checkbox to the left of the trigger 
expression name. You must make sure in Reveal Inserter that all signals that 
you might want to trigger on are included in the trigger units. In addition, you 
may want to create several trigger expressions ahead of time.

Renaming Trigger Units
You can rename a trigger unit.

To rename a trigger unit:

 Click in the appropriate box in the Name column of the Trigger Unit 
section of the LA Trigger tab, backspace over the existing name, and type 
in the new name.

Setting Up Trigger Units
All signals for a trigger unit must be defined in Reveal Inserter. You cannot 
change them in Reveal Analyzer.
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To set up a trigger unit:

1. If you want to change the default name of the trigger unit, backspace over 
the default name in the Name column and type the new name.

2. If you want to add, change, or remove the signals in the Signals 
(MSB:LSB) column, you must add, change, or remove them in Reveal 
Inserter. You cannot add, change, or remove signals in Reveal Analyzer.

3. In the Operator column, set the comparators for the trigger condition. You 
can choose from the following states: 

 == equal to

 != not equal to

 > greater than

 >= greater than or equal to

 < less than

 <= less than or equal to

 Rising edge – compares on the rising edge of the clock

 Falling edge – compares on the falling edge of the clock

 Serial compare – compares until the trigger condition is met. For 
example, if the trigger condition is 10011, the serial compare option 
looks for a 1 on the first clock, a 0 on the next clock, a 0 on the next 
clock, a 1 on the next clock, and a 1 on the last clock. Only if those five 
conditions are met in those five clock cycles will the serial compare 
output be active. 

Other operators cannot be changed to a serial compare, and a serial 
compare cannot be changed to another operator in Reveal Analyzer. 
These can only be changed in Reveal Inserter.

The serial comparator is available only when a single signal is listed in 
the Trigger Unit signal list. If you choose this option, you must choose 
Binary in the Radix box. 

The default comparator is == (equal to).

4. In the Radix column, select a radix from the drop-down menu to set the 
radix of the trigger bus value given in the Value box. You can choose one 
of the following:

 Binary. This is the default. You must choose Binary if you selected 
“Serial compare” as a comparator.

 Octal

 Decimal

 Hexadecimal

 <token_set_name>. To select <token_set_name>, you must have 
created token sets in Reveal Inserter. See the Reveal Inserter online 
Help for information on this procedure.

5. In the Value column, enter the comparison value.
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This value is the pattern of highs and lows that you want on the trigger unit 
that will initiate collection of the trace data. The default is binary, unless 
you selected <token_set_name> in the Radix column. 

If you selected <token_set_name> in the Radix column, a drop-down 
menu opens in the Value column. This menu lists all the tokens that you 
entered in the Token Manager dialog box for the chosen token set. Select 
any name. 

You can use ”x” for a don’t-care value in the Value column if you selected 
Binary, Octal or Hexadecimal in the Radix column and if you selected the 
==, !=, or serial compare operators in the Operator column.

Renaming Trigger Expressions
You can rename a trigger expression.

To rename a trigger expression:

 Click in the appropriate box in the Name column of the Trigger Expression 
section of the LA Trigger tab, backspace over the existing name, and type 
in the new name.

Setting Up Trigger Expressions
You must set up the initial trigger expressions in Reveal Inserter, but you can 
change their names and some values in Reveal Analyzer. You can also 
enable or disable trigger expressions in Reveal Analyzer. However, you 
cannot change the sequence depth, the maximum sequence depth, or the 
maximum event counter of the trigger expressions in Reveal Analyzer.

To set up a trigger expression:

1. To enable a trigger expression, click the checkbox in the Enable column.

2. In the Expression box, enter the names of the trigger units that you want 
to use and the operators that you want to use to connect them.

You can use the following operators to connect trigger units:

 & (AND)

 | (OR)

 ^ (XOR)

 ! (NOT)

 Parentheses

 THEN

 NEXT

 # (count)

 ## (consecutive count)
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See “Trigger Expressions” on page 31 for information on these operators. 

Reveal Analyzer checks the syntax and displays the syntax in red font if it 
is erroneous.

The setting in the Sequence Depth box is set by the software, so it is 
read-only. See “Trigger Expressions” on page 31 for more information on 
this parameter.

3. If you want to change the setting in the Max Sequence Depth box, you 
must change it in Reveal Inserter; you cannot change it in Reveal 
Analyzer. The number of sequences in the Trigger Expression box cannot 
exceed the number specified in the Max Sequence Depth box.

4. If you want to change the setting in the Max Event Counter box, you 
must change it in Reveal Inserter; you cannot change it in Reveal 
Analyzer.

5. Specify whether the final trigger occurs when one or all of the conditions 
specified by the trigger expressions is met before trace data is captured:

 AND All indicates that the conditions specified by all the trigger 
expressions must be met before the trace data is captured. 

 OR All indicates that the conditions of one of the trigger expressions 
must be met before the trace data is captured. This option is the 
default.

Only trigger expressions whose checkboxes are enabled are included in 
the AND or OR.

Setting Trigger Options
You can set a number of options to control the triggering.

To set trigger options in Reveal Analyzer:

1. If you want to add a counter to the output of the final trigger, do the 
following:

a. Select the Final Event Counter checkbox in the lower left portion of 
the LA Trigger tab. 

b. In the drop-down menu next to Event Counter, select the number of 
times that the conditions specified by AND All or OR (whichever you 
have selected) must occur before trace data capture begins. The 
lowest value of the counter is 1 time, and the maximum value is the 
value set in Reveal Inserter. The default value is 1 time. Leaving this 
option unselected is equivalent to setting the counter to a value of 1 
time. 

2. In the Samples Per Trigger box, select the number of samples to collect 
per trigger. The minimum is 16. The maximum is the trace buffer depth 
chosen in Reveal Inserter when the core is generated. The values 
available in the Samples Per Trigger box also change according to the 
number of triggers. If the number of triggers is set higher than 1, the 
samples per trigger multiplied by the selected number of triggers cannot 
exceed the trace buffer depth. Reveal Analyzer adjusts the Samples Per 
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Trigger value, if necessary. The default number of samples per trigger is 
the sample buffer depth. For example, if the sample buffer depth is 2048, 
the default sample per trigger is 2048.

3. In the Number of Triggers box, select the trace buffer depth divided by 
the samples per trigger. The trace buffer depth is specified by the setting 
of the Buffer Depth parameter in the Trace Signal Setup tab in Reveal 
Inserter. The default is 1.

4. In the Trigger Position field, select Pre-selected Position or User-
selected Position. See “Trigger Position” on page 85 for information on 
these options.

Creating Token Sets
You can create sets of “tokens,” or text labels, for values that might appear on 
trace buses. You can create tokens such as ONE, TWO, THREE, or Reset, 
Boot, Load. Tokens can make reading the waveforms in Reveal Analyzer 
easier and can highlight the occurrence of key values. See the following figure 
for an example. The row for the chstate bus uses tokens.

To create or modify a token set:

1. Choose Design > Token Set Manager.

The Token Manager dialog box opens. If the Reveal project already has 
token sets defined, they are listed in the dialog box.

2. If you want to use token sets that were previously saved to a separate file, 
right-click in the dialog box and choose Import. In the Import Tokens 
dialog box, browse to the token (.rvt) file and click Open.

The token sets in the .rvt file are added to the list in Token Manager.

3. To create a new token set, click Add Set.

A new token set is started with default values. But it has no tokens defined 
yet.

4. To change the size of the token values, double-click the value in the Num. 
of Bits column and type in the new width, in bits. The width can be up to 

Figure 3: LA Waveform View Using Tokens
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256. The width must be the same as the bus that the token set will be 
used with.

The Num. of Bits value can only be changed when the token set is empty. 
If there are any tokens, you will get an error message.

5. To create a new token, select a token set. Then click Add Token.

A new token is created with default values. Repeat for as many new 
tokens needed.

6. You can modify token sets by doing any of the following:

 To change the name of a token or token set, double-click the name 
and type a new name. The name can consist of letters, numbers, and 
underscores (_). It must start with a letter.

 To change the value of a token, double-click the value and type in a 
new value. Token values must be prefixed by one of the radix 
indicators shown in the following table:

If a value does not have a prefix, its radix is assumed to be binary. You 
can use an “x” in binary numbers as a don’t-care value.

 To remove a token or token set, select it. Then click Remove.

7. You can save the collection of token sets showing in the dialog box to a 
separate file for use in another project. To save the token sets, right-click 
and choose Export. In the Export Tokens dialog box, browse to the 
desired location and type in the name of the new token (.rvt) file. Click 
Save.

8. When you are done, click Close to close the dialog box. The token sets 
are automatically applied to the current Reveal project.

Performing Logic Analysis
After you have configured trigger settings in the LA Trigger tab, you can 
perform a logic analysis using up to 15 cores, depending on the number of 
cores you created in Reveal Inserter, and view the trace buffer data in 
waveform format in the LA Waveform tab. 

To perform logic analysis:

1. In the <design_name>_LA<core_number> check box in the toolbar, select 
the cores on which to perform logic analysis.

Radix Prefix Example

Binary b’ b’110x0

Octal o’ o’53

Decimal d’ d’123

Hexadecimal h’ x’0F2
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2. Click  on the Reveal Analyzer toolbar.

The Run button changes into the Stop  button and the status bar next 
to the button shows the progress.

Reveal Analyzer first configures the cores selected for the correct trigger 
condition, then waits for the trigger conditions to occur. Once the specified 
trigger has occurred, the data is downloaded to the PC. The resulting 
waveforms appear in the LA Waveform tab.

If the trigger condition is not met, Reveal Analyzer will continue running. In 
that case, you can use manual triggering, described in “Using Manual 
Triggering” on page 72.

Data Capture with Sample Enable
Triggers occur at every sample clock edge when the condition is met. Trace 
data is also captured on the sample clock edge. If a sample enable is used, 
each sample shown in the trace buffer is only captured when the sample 
enable is active and there is a sample clock. Data samples can be 
discontiguous, unlike those in a normal data capture.

It is also possible that the actual trigger condition may occur when the sample 
enable is not active, causing two changes from a normal data capture:

 The actual data values for the trigger condition may not be visible, 
because the data cannot be captured when the sample enable is inactive.

 Reveal Analyzer cannot accurately calculate the trigger point, since the 
trigger point may have occurred when the sample enable was inactive. 
Normally a trigger point is shown as a single marker on the clock on which 
the trigger occurred. If a sample enable is used, a trigger region that 
spans five clock cycles is shown instead. Reveal Analyzer can guarantee 
that the trigger occurred in this region, but it cannot determine during 
which clock cycle the trigger occurred.

The sample enable is a very useful feature, but it takes more understanding 
than a normal data capture.

Common Error Conditions
Reveal Analyzer may fail to generate waveforms and instead issue an error 
message because of problems with the inserted core or cores.

Clock Causes Core to Malfunction
If Reveal Analyzer issues the following error message, the core may not be 
functional because of a clock problem:

Incorrect HUB ID. Check the clock or cable setup.
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In this case, be sure the clock is running on the target hardware.

Signature in .rvl File Does Not Match Signature in 
Bitstream
If you have defined a token set and Reveal Analyzer issues an error message 
similar to the following, the core may be functional, but the signature in the .rvl 
file does not match the signature in the bitstream:

Incorrect core signature 1234 from core(core1), expected 
signature is 1235.

This problem can be caused by saving the Reveal Inserter project file, even if 
you have made no changes, without re-implementing the design.

If you receive this message, regenerate the bitstream or JEDEC file, or 
download another file whose signature matches that of the .rvl file.

Sample Clock Runs Too Slowly
The sample clock is used by Reveal debug logic to clock data into the trace 
buffer and in the triggering logic. The sample clock is also needed when 
Reveal Analyzer communicates with the debug logic through JTAG. If the 
sample clock is not running or is running too slow, Reveal Analyzer cannot 
detect that the Reveal debug logic is available. This information is especially 
important when you create a new Reveal Analyzer project. Reveal Analyzer 
checks the debug logic for a signature to make sure that the bitstream 
matches the design. If Reveal Analyzer cannot communicate with the debug 
logic because the sample clock is not running, the project creation or the 
Reveal Analyzer run command will fail with an error, and Reveal Analyzer 
issues an error message similar to that shown in Figure 4. For these reasons, 
the sample clock should be a signal with a reasonably regular frequency 
rather than a signal with intermittent pulses. The frequency of the sample 
clock should also be faster than the speed of the JTAG clock that is used.

Performing Logic Analysis on Multiple Devices
You can perform logic analysis on one device in a scan chain of multiple 
devices on a board or multiple boards. The maximum number of boards is 
specified by Programmer.

Figure 4: Reveal Analyzer Sample Clock Error Message
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When you perform logic analysis on a device in a scan chain, you must 
generate a scan chain configuration (.xcf) file. See the Programmer online 
Help for instructions on generating this file.

Stopping a Logic Analysis
You can stop a logic analysis while it is running. 

To stop a logic analysis:

 Click .

This command only stops the logic analysis on the current core in the active 
window. You must stop each core separately.

Using Manual Triggering
If you set up a trigger but triggering fails to occur or you want to trigger 
manually instead of triggering when a signal condition occurs, you can use 
manual triggering to capture data. The captured data may then help you find 
out why triggering did not occur as you originally intended.

When you select manual triggering, Reveal Analyzer fills the buffer with data 
captured from that moment. In single-trigger capture mode, it fills the buffer 
and stops. In multiple-trigger capture mode, it captures one trigger and data. 
You can then continue to manually trigger as many times as the original 
triggering setup specified. If you want to capture fewer triggers, you can 
manually trigger the desired number of times, then press the Stop ( ) button 
to stop the logic analysis. The buffer starts downloading the data.

To use manual triggering:

1. After you start the logic analysis with the  button, click .

This command only applies to the logic analysis on the current core in the 
active window. You must trigger each core separately.

2. When you have captured the desired number of triggers in multiple trigger 
capture mode, click .

Note

A logic analysis must be running before you can use the Manual Trigger command.
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Viewing Waveforms
After running your logic analysis, you can view the trace buffer data in 
waveform format in the LA Waveform tab. Whenever the trace stops, Reveal 
Analyzer reads the trace samples back from the trace memory and 
automatically updates the signal waveforms.

If you perform a logic analysis, exit Reveal Analyzer, and then reopen it, the 
old data is displayed in the waveform until you perform a new logic analysis.

Viewing Logic Analyses

To view a logic analysis:

1. Click the LA Waveform tab.

2. Choose a module from the drop-down menu in the Reveal Analyzer 
toolbar.

Adjusting the Waveform Display
You can adjust the waveform display by panning and zooming. You can also 
adjust the colors.

Panning
You can move the waveform display in the LA Waveform tab so that you can 
view any part of it.

To pan the waveform display:

1. Right-click in the waveform and choose Pan Mode.

2. Press and drag the left mouse button to the left or the right.

Zooming In and Out
You can zoom in and out on a waveform in the Reveal Analyzer LA Waveform 
tab to increase or decrease the displayed time interval. 

To zoom in on a waveform:

 Choose View > Zoom In, click , or right-click on the waveform and 
choose Zoom > Zoom In.
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To zoom in on a specified area:

1. Right-click the waveform and choose Zoom Mode.

The pointer changes to a cross: .

2. Hold down the left mouse button and drag the pointer across the area you 
want to zoom in on.

A shaded area appears on the waveform display.

3. Release the mouse button.

The shaded area expands to fill the display.

To zoom out on a waveform:

 Choose View > Zoom Out, click , or right-click on the waveform and 
choose Zoom > Zoom Out.

To show the entire waveform in the window:

 Choose View >  Zoom Fit.

To zoom to the trigger point:

 Right-click in the waveform and choose Zoom > Zoom Trigger

To zoom to the start of the display:

 Right-click in the waveform and choose Zoom > Zoom Start

To zoom to the end of the display:

 Right-click in the waveform and choose Zoom > Zoom End

Setting a Trace Bus Radix
You can set the radix of a trace bus displayed in the LA Waveform tab. You 
can choose a binary, octal, decimal, or hexadecimal radix. You can also use 
any token set whose bit width matches the bus.

To set the bus radix of a signal or bus:

1. In the LA Waveform tab, click in the Data cell of the signal or bus.

A menu appears showing the different radices and any token sets that fit.

2. Choose the desired radix or token set.

To set the bus radix of multiple signals and buses:

This method can set several signals to the same radix but cannot use tokens.

1. In the LA Waveform tab, select one or more buses.
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To select one bus, click on it. To select more than one, Control-click on 
each one. To select all buses in a range, click on one end of the range and 
Shift-click the other end. If you want to change all the signals in the 
waveform to the same radix, you do not need to select anything.

2. Right-click in one of the selected waveforms and choose Set Bus Radix. 
Be careful to click in the same row as one of your selections, or you will 
change the selection.

The Set Bus Radix dialog box opens.

3. In the drop-down menu, choose the radix.

4. In the Range drop-down menu, choose Selected signals or, if you want 
to change all the signals in the waveform to the same radix, choose All 
signals.

5. Click OK.

Changing LA Waveform Colors
You can change the colors used by the waveform.

To change the colors:

1. Open the Options dialog box. Depending on which version of Reveal 
Analyzer you’re using, do one of the following:

 If integrated with Diamond, choose Tools > Options. Then, in the 
Options dialog box, choose Reveal Analyzer > Colors.

 If stand-alone, choose Design > Options.

2. Click on the color sample for the desired part of the LA Waveform view.

The Select Color dialog box opens.

3. Select a color.

4. In the Select Color dialog box, click OK.

5. To see the effect of the change, click Apply.

6. Change other colors if desired.

7. Click OK.

Specifying the Clock Period
You can specify a clock period for your logic analysis. Setting the frequency 
enables you to determine the location of your cursors, as well as the distance 
between them. Frequency is determined by dividing 1 by the period.

To set the clock frequency:

1. Right-click the waveform and choose Set Clock Period.
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2. In the Specify Clock Period dialog box, choose either picoseconds or 
nanoseconds for the period interval selector. Click the box next to Period 
to select picoseconds (ps) or nanoseconds (ns). 

3. Place the cursor in either the Period or Frequency text box and type in the 
desired value. The other text box fills in automatically.

Only integers are allowed. If you try to specify a frequency that would 
require a non-integer period, the period is truncated to an integer and the 
frequency is automatically adjusted. For example, typing 150 in the 
Frequency text box gives you a period of 6 and a frequency of 166.

4. Click OK.

Placing, Moving, and Locating Cursors
The LA Waveform view comes with three types of “cursors” to highlight 
moments in the waveform. The cursors are vertical lines cutting through all 
the signals at the leading edge of a clock cycle. See Figure 6 on page 87. The 
three types are:

 Trigger. A purple line with a “T” at the top, trigger cursors are automatically 
placed at the moment of each final trigger event. If the module used a 
sample enable signal and the exact moment of the trigger is unknown, the 
waveform shows a trigger cursor five clock cycles before the sample 
enable signal turned inactive and sampling stopped.

 Active. A red line appears wherever you click in the waveform. The Data 
column shows the values of the signals and buses at the moment 
highlighted by the active cursor.

 User. A blue line can be placed anywhere you want. Use these cursors to 
mark moments of interest. You can also use these cursors to maneuver 
about a long waveform with the Go to Cursor command.

Most cursor functions require that the LA Waveform view be in Select mode: 
right-click in the LA Waveform view and choose Select Mode.

To create a user cursor:

1. Click in the desired clock cycle.

The active cursor appears. Make sure it is where you want the user cursor 
to be.

2. Right-click and choose Add Cursor.

To move a user cursor:

1. Zoom in so you can easily see and click in individual samples.

2. Click in the desired location.

The active cursor appears. Make sure it is where you want the user cursor 
to be.

3. Carefully click in the sample to the right of the user cursor.
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You must click on or to the right of the user cursor. Otherwise you are just 
moving the active cursor to a neighboring sample.

The user cursor and the active cursor exchange locations.

To jump to a user cursor:

 Right-click in the waveform and choose Go to Cursor > <cursor>. 
Cursors are identified by the sample index as shown in the green bar at 
the top of the waveform display.

To remove a user cursor:

1. Click on or near the cursor.

The active cursor appears. Make sure it is on or next to the user cursor 
you want to remove.

2. Right-click and choose Remove Cursor.

To remove all user cursors:

 Right-click in the waveform and choose Clear All Cursor.

Counting Samples
You can easily count the number of samples in a range on the display.

To count samples:

 Click where you want to start counting and drag to the end of the range.

While you’re dragging, the LA Waveform view shows two red lines and the 
number of samples between the lines.

Exporting Waveform Data
You can export waveform data to a value change dump (.vcd) file, which can 
be imported by such third-party tools as ModelSim or Active-HDL, or to an 
ASCII-format text (.txt) file. You must have performed a logic analysis, 
implemented a trigger on hardware, and captured data that is shown in the 
waveform display before you can export data. 

To export data:

1. Choose the module from the drop-down menu in the Reveal Analyzer tool 
bar.

2. If you want the data to include an approximate measure of time instead of 
a simple count of clock cycles, right-click the waveform and choose Set 
Clock Period. See “Specifying the Clock Period” on page 75.
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3. If you want to export only some of the signals, select them in the 
waveform. You can only export whole buses. If you select only some of 
the signals in a bus, you get the whole bus.

4. Right-click in the waveform and choose Export Waveform.

The Export Waveform dialog box opens.

5. Browse to the location where you want to export the file.

6. Type in a name in the File name box.

7. Choose a file type.

8. If you are exporting only some of the signals, choose Selected signals in 
the Range box.

9. If you are exporting to .vcd, type in a module name. This will form the title 
in the .vcd file. If you leave the field empty, the module name will be 
“<unknown>”.

10. Click Save.

Saving a Project
You can save the trigger settings and waveform setup settings in a Reveal 
Analyzer project (.rva) file that you can use as an input file in the future. You 
can also save an existing .rva file in a file with a different name.

To save a Reveal Analyzer project:

 Choose File >  Save <file>.

The project data is now output into an .rva file.

To save the project file with a different name:

1. Choose File > Save <file> As.

The Save Reveal Analyzer File dialog box appears.

2. Browse to the directory in which you want to save the project.

3. In the File name box, type the file name.

4. Click Save.

Controlling Serdes
Reveal Analyzer provides two methods for controlling serdes functions in an 
ECP5UM device. You can use:

 A Serdes Debug module created with Reveal Inserter to experiment with 
control registers and monitor system status

 A Wishbone bus in the design to set and monitor register values
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Setting Serdes Debug Registers
You can adjust a large variety of serdes settings while running tests. Settings 
can be changed individually or by importing previously saved settings. You 
can also restore the design’s original values from the configuration SRAM.

You can also monitor the following items in the Serdes Debug tab (green for 
good, red for bad):

 PLL lock status

 Receive input signal status

 CDR loss status

To set the serdes registers:

1. Click the Serdes Debug tab.

2. Click the DCUA drop-down menu and choose the block.

3. Click the Channel drop-down menu and choose the channel.

4. Change settings as desired.

5. Click Apply.

The new values are immediately written to the FPGA.

To use previously saved settings:

1. Click the Serdes Debug tab.

2. Click the DCUA drop-down menu and choose the block.

3. Click the Channel drop-down menu and choose the channel.

4. Click Import.

5. In the Import SERDES File dialog box, browse to the desired serdes 
register (.srv) file.

6. Click Open.

The file’s settings are appear in the Serdes Debug tab.

7. Click Apply.

The new values are immediately written to the FPGA.

To restore the design’s original values:

1. Click the Serdes Debug tab.

2. Click the DCUA drop-down menu and choose the block.

3. Click the Channel drop-down menu and choose the channel.

4. Click Config SRAM Reload.

The original settings are appear in the Serdes Debug tab.

5. Click Apply.

The new values are immediately written to the FPGA.
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Saving Serdes Debug Settings
You can save your Serdes Debug settings for later use.

To save the Serdes Debug settings:

1. In the Serdes Debug tab, click Export.

The Export SERDES Register File dialog box opens.

2. Browse to where you want to save the file.

3. Type in a name in the File name box.

4. Click Save.

Reading and Writing with a Wishbone 
Bus
If you have a Wishbone bus in your design, you can write directly into the 
serdes registers, manually or using a file, and read values from them.

To write to a serdes register:

1. Click the Wishbone Debug tab.

2. Enter the address of the register.

3. In the Data box, type a 1-byte value.

4. Click Write.

The value in the Data box is written to the register.

To write to several serdes registers from a file:

1. Click the Wishbone Debug tab.

2. Click Load.

The Load SERDES File dialog box opens.

3. Browse to the desired Tcl file.

4. Click Open.

The addresses and values defined in the file are written to the FPGA.

To read a serdes register:

1. Click the Wishbone Debug tab.

2. Enter the address of the register.

3. If you want to monitor the value in the register continuously, select 
Continuous.

4. Click Read.
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The value in the register appears in the Data box. If you selected 
Continuous, the value changes as the register changes.

Exiting Reveal Analyzer

To exit Reveal Analyzer:

 Choose File > Close.

User Interface Descriptions
The Reveal Analyzer window consists of the LA Trigger, LA Waveform, 
Serdes Debug, and Wishbone Debug tabs.

LA Trigger Tab
The LA Trigger tab enables you to select the trigger signals and define the 
data values or pattern of data values that cause trace data collection to begin.

Trigger Unit
The parameters in the Trigger Unit section enable you to configure the trigger 
units, which are the basic trigger comparison mechanism in Reveal Inserter 
and Reveal Logic Analyzer. Trigger units allow comparison of the signal to a 
value that is entered during hardware debug. You can include up to 16 trigger 
units in a core. Each trigger unit consists of the following information:

Name Specifies the name of the trigger unit. See “Trigger Expression and 
Trigger Unit Naming Conventions” on page 86 for the guidelines governing 
trigger unit names. The default name is TU<number>, where <number> is a 
sequential number. The first trigger unit is named TU1 by default.

Signals Lists the signals in the trigger unit. You can select up to 4096 trigger 
signals. You can specify these signals only in Reveal Inserter. 

Operator Specifies the comparators that Reveal will use to compare the 
states of the trigger bus signals to the pattern of signal states that you set in 
the Trigger Signal Setup tab of Reveal Logic Analyzer. You can choose from 
the following states:

Note

The darker gray background in certain fields in the Trigger Signal Setup tab indicates 
that you can change these values only in Reveal Inserter. You cannot change them in 
Reveal Logic Analyzer.



REVEAL ANALYZER : User Interface Descriptions

82 Reveal User Guide

 == equal to. This comparator is the default.

 != not equal to

 > greater than

 >= greater than or equal to

 < less than

 <= less than or equal to

 Rising edge – Compares on the rising edge of the clock

 Falling edge – Compares on the falling edge of the clock

 Serial compare – Compares until the trigger condition is met. For 
example, if the trigger condition is 10011, the serial compare option looks 
for a 1 on the first clock, a 0 on the next clock, a 0 on the next clock, a 1 on 
the next clock, and a 1 on the last clock. Only if those five conditions are 
met in those five clock cycles will the serial compare output be active.

Other operators cannot be changed to a serial compare, and a serial 
compare cannot be changed to another operator in Reveal Logic 
Analyzer. These can only be changed in Reveal Inserter.

The serial comparator is available only when a single signal is listed in the 
Trigger Unit signal list. If you choose this option, you must choose Binary 
in the Radix box.

Radix Specifies the radix of the trigger bus. It can be one of the following:

 Binary. This is the default. You must choose Binary if you selected “Serial 
compare” as a comparator.

 Octal

 Decimal

 Hexadecimal

 <token_set_names>. To select <token_set_name>, you must have 
created token sets in Reveal Inserter. See the Reveal Inserter online Help 
for information on this procedure.

Value Specifies the comparison value. This value is the pattern of highs and 
lows that you want on the trigger unit that will initiate collection of the trace 
data. The default is binary. 

If you selected a <token_set_name> in the Radix column, a drop-down menu 
opens in the Value column. This menu lists all the tokens that you entered in 
the Token Manager dialog box for the chosen token set. Select any name. 

You can use “x” for a don’t-care value in the Value column if you selected 
Binary, Octal or Hexadecimal in the Radix column and if you selected the ==, 
!=, or serial compare operators in the Operator column. 
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Trigger Expression
The parameters in the Trigger Expression section of the Trigger Signal Setup 
tab enable you to configure the trigger expressions, which are combinatorial, 
sequential, or both combinatorial and sequential equations of trigger units that 
define when the collection of the trace data samples begins. You can add up 
to 16 trigger expressions. Each trigger expression consists of the following 
information:

Enable Determines whether the trigger expression is active when the 
triggering is enabled by the Run button.

Name Specifies the name of the trigger expression. The default name is 
TE<number>, where <number> is a sequential number. The first trigger 
expression is named TE1 by default.

Expression Specifies the trigger units and the operator or operators that 
indicate the relationship of one trigger unit to other trigger units. You can use 
the following operators to connect trigger units:

 & (AND) – Combines trigger units using an & operator.

 | (OR) – Combines trigger units using an OR operator.

 ^ (XOR) – Combines trigger units using a XOR operator.

 ! (not) – Combines a trigger unit with a NOT operator.

 Parentheses – Groups and orders trigger units.

 THEN – Creates a sequence of wait conditions. For example, the 
following statement:

TU1 THEN TU2 

means “wait for TU1 to be true,” then “wait for TU2 to be true.” 

The following expression:

(TU1 & TU2) THEN TU3 

means “wait for TU1 and TU2 to be true, then wait for TU3 to be true.”

Reveal supports up to 16 sequence levels.

 NEXT – Creates a sequence of wait conditions, like THEN, except the 
second trigger unit must come immediately after the first. That is, the 
second trigger unit must occur in the next clock cycle after the first trigger 
unit.

 # (count) – Inserts a counter into a sequence. Sequences are groups of 
combinatorial operations connected by THEN operators. The counter 
counts how many times a sequence must occur before a THEN 
statement. The maximum value of this count is determined by the Max 
Event Counter value. It must be specified in Reveal Inserter and cannot 
be changed in Reveal Logic Analyzer.

Here are some examples.

The following statement:

TU1 #5 THEN TU2
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means that TU1 must be true for five consecutive or non-consecutive 
sample clocks before TU2 is evaluated. The counts do not have to be 
sequential. TU1 does not have to be true five times in a row to satisfy this 
condition. It only has to be true fives times to meet this condition.

The next expression:

(TU1 & TU2)#2 THEN TU3 

means “wait for the second occurrence of TU1 and TU2 being true, then 
wait for TU3.”

The last expression:

TU1 THEN (1)#200

means “wait for TU1 to be true, then wait for 200 sample clocks.” This 
expression is useful if you know that an event occurs a certain time after a 
condition.

You can only use one count (#) operator per sequence. For example, the 
following statement is not valid, because it uses two counts in a sequence:

TU1 #5 & TU2 #2

 ## (consecutive count) – Inserts a counter into a sequence. Like # (count) 
except that the trigger units must come in consecutive clock cycles. That 
is, one trigger unit immediately after another with no delay between them.

Sequence Depth Specifies the number of sequences, which are groups of 
combinatorial operations connected by THEN operators, used in a trigger 
expression. Reveal supports up to 16 sequence levels.

For example, in the following figure, TE1 consists of one sequence, since it 
has no THEN operator. It therefore has a sequence depth of 1. TE2 has two 
sequences, TU1|TU2 and TU3 & TU2, linked by a THEN operator, so its 
sequence depth is 2. TE3 has three sequences: 

 TU1 & TU3 & TU2 followed by THEN

 TU1 followed by THEN

 TU3

TE3 therefore has a sequence depth of 3. 

Max Sequence Depth Specifies the maximum number of sequences, or 
trigger units connected by THEN operators, that can be used in a trigger 
expression. You can set this option only in Reveal Inserter.

Figure 5: Trigger Expression Sequences
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Max Event Counter Determines the maximum size of the count in the 
trigger expression (the count is how many times a sequence must occur 
before a THEN statement). You can set this option from 1 to 64,000. The 
maximum is 64,000. The default is 1. You can set this option only in Reveal 
Inserter.

AND All Indicates that the conditions specified by all the trigger expressions 
must be met before the trace data is captured.

OR All Indicates that the conditions of one of the trigger expressions must 
be met before the trace data is captured. This option is the default.

Final Event Counter Specifies the number of times that AND All or OR all 
must be met before triggering occurs and trace data is captured. In effect, it 
adds an extra counter to the final trigger logic. The lowest value of the counter 
is 2 times, and the maximum value is 65536 times. The default value is 8 
times. Leaving this option unselected is equivalent to setting the counter to a 
value of 1 time. This option is unselected by default. 

Samples Per Trigger Specifies the number of samples to collect per trigger. 
The minimum is 16. The maximum is the trace buffer depth chosen in Reveal 
Inserter when the core is generated. The values available in the Samples Per 
Trigger box also change according to the number of triggers. If the number of 
triggers is set higher than 1, the samples per trigger multiplied by the selected 
number of triggers cannot exceed the trace buffer depth. Reveal Logic 
Analyzer adjusts the Samples Per Trigger value, if necessary. The default 
number of samples per trigger is the sample buffer depth. For example, if the 
sample buffer depth is 2048, the default sample per trigger is 2048.

Number of Triggers Specifies the trace buffer depth divided by the 
samples per trigger. The trace buffer depth is specified by the setting of the 
Buffer Depth parameter in the Trace Signal Setup tab in Reveal Inserter. The 
default is 1.

Trigger Position

Pre-selected Position Specifies the position of the trigger point in the data 
stream. For example, 32/512 means the trigger point is the 32nd sample in 
the trace memory that has a total depth of 512 samples (from sample 0 to 
sample 511). You can use one of the following samples in the Position box:

 Pre-Trigger – Sets the trigger point at 1/16 of the total number of samples 
in the trace memory. For example, when the trace memory has a total 
number of 512 samples, 1/16 of these would be 32. The 32 setting means 
that 32 data samples are collected before the trigger occurs. The Pre-
Trigger setting is helpful if you are mostly interested in the data states that 
occurred after the trigger event. Using the example just given, only 32 
samples of data (from sample 0 to sample 31) that occur before the trigger 
are stored, but 480 samples of data (from sample 32 to sample 511) that 
occur after the trigger are stored.

 Center-Trigger – Sets the trigger point at 50 percent (1/2) of the total 
number of samples in the trace memory. For example, when the trace 
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memory has a total number of 512 samples, 50 percent of these would be 
256, so the trigger point would be set at 256. The Center-Trigger setting 
provides equal amounts of trace data before and after the trigger event. 
Using the example just given, 256 samples of data (from sample 0 to 
sample 255) that occur before the trigger are stored, and 256 samples of 
data (from sample 256 to sample 511) that occur after the trigger are 
stored.

 Post-Trigger – Sets the trigger point at 15/16 of the total number of 
samples in the trace memory. For example, when the trace memory has a 
total number of 512 samples, 15/16 of these would be 480. The Post-
Trigger setting is helpful if you are mostly interested in the data states that 
occurred before the trigger event. Using the example just given, 480 
samples of data (from sample 0 to sample 479) that occur before the 
trigger are stored, but only 31 samples of data that occur after the trigger 
are stored.

User-Selected Position Enables you to choose the trigger point from 
certain points selected by the tool.

Trigger Position Shows the position of the trigger point in relation to the 
number of samples per trigger. It is in read-only notation at the very bottom of 
the Trigger Position section. For example, if you selected the Center-Trigger 
setting for the Pre-selected Position option and you selected 1024 samples in 
the Samples Per Trigger box, the Trigger Position field would display a trigger 
point equal to half the samples, 512/1024.

Trigger Expression and Trigger Unit Naming 
Conventions
You can rename trigger units and trigger expressions. The names can be a 
mixture of lower-case or upper-case letters, underscores, and digits from 0 
through 9. The first character must be either an underscore or a letter. The 
names can be any length.

LA Waveform Tab
Waveforms are presented in a grid layout as shown in Figure 6 along with 
several features to help you find and analyze the data.

Note

The actual trigger position in the captured samples may not match the trigger position 
that you set in the Trigger Signal Setup tab. For example, if the trigger condition occurs 
before the trigger position set in the Trigger Signal Setup tab, the actual trigger position 
is earlier than that specified in the Trigger Signal Setup tab. Since the trigger occurred 
before enough samples were captured to fill the buffer, both the position is different 
and the total number of captured samples will be less than the set value. This condition 
is more likely to occur using the post-trigger setting. To avoid this, do not use a trigger 
condition that occurs immediately or very frequently.
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Bus/Signal Column Displays the names of the trace buses and signals in 
the selected module.

Data Column Displays the value of the bus or signal at the active cursor (a 
solid, red line that you can set in the waveform display). Buses also have a 
drop-down menu for setting the radix used in the Data column and in the 
waveform display. The menu includes token sets whose bit width matches the 
bus. See “Setting the Trace Bus Radix” on page 63.

Waveform Display Displays the trace data in waveform format. When there 
is room, bus values are included the display using the radix set in the Data 
column. You can zoom in and out, pan, and jump to various points.

The waveform display includes several other elements to help you read the 
display and analyze the data:

 Timestamp. The gray bar at the top of the display shows “timestamps” of 
the trace frames (actually, a simple count of the clock cycles). Timestamps 
are shown only if the Timestamp trace option was selected for the module 
in Reveal Inserter. See “Adding Time Stamps to Trace Samples” on 
page 64.

 Sample Index. The green bar near the top of the display shows a count of 
triggers and trace samples within each trigger’s data set. The sample 
indexes have the form <trigger>:<sample>. For example, 0:2 indicates the 
first trigger and the third trace sample for that trigger (the counts are zero-
based). 2:10 indicates the third trigger and the eleventh trace sample for 
that trigger.

 Pointer. A red line that cuts across the timestamp and sample index bars, 
the pointer follows the horizontal movement of the mouse pointer across 
the waveform display. Use the pointer to see where you are in time as you 
examine the waveform.

Figure 6: Elements of the LA Waveform View
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 Cursors. Vertical lines cutting through all the signals, cursors mark 
moments in the waveform. See “Placing, Moving, and Locating Cursors” 
on page 76.

Serdes Debug Tab
You can adjust a large variety of serdes settings while running tests on an 
ECP5UM device. Settings can be changed individually or by importing 
previously saved settings. You can also restore the design’s original values 
from the configuration SRAM.

You can also monitor the following items in the Serdes Debug tab (green for 
good, red for bad):

 PLL lock status

 Receive input signal status

 CDR loss status

Wishbone Debug Tab
If you have a Wishbone bus in an ECP5UM design, you can write directly into 
the serdes registers, manually or using a file, and read values from them.
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