
Address:

Lattice Semiconductor
111 5th Ave., Suite 700
Portland, Oregon 97204
United States

Phone: 1 (503) 268-8000

Contact us online:

www.latticesemi.com/contact
www.latticesemi.com/buy

A Lattice Semiconductor White Paper.

October 2018

Securing Enterprise Server
Firmware: A New Approach

Rev. 1.0 WP0016

Implementation of Platform Firmware Resilience (PFR) in hardware based on the new NIST SP 800
193 specification utilizing an FPGA-based root-of-trust device enables a new level of protection for
server firmware against cyberattacks. The new Lattice PFR development toolkit simplifies the path to
implement an FPGA-based PFR solution.

Learn more:

www.latticesemi.com/PFR

Securing Enterprise Server Firmware: A New Approach
WP0016

2 // 12

TABLE OF CONTENTS

Section 3 	 |	 The State of Firmware Security

Section 4 	 |	 Unified Extensible Firmware Interface (UEFI)

Section 5 	 |	 Baseboard Management Controller (BMC)

Section 6 	 |	 Platform Firmware Resiliency

Section 7 	 |	 PFR Requires Hardware-based Root-of-Trust

Section 8 	 |	 NIST Compliant PFR Implementations

Section 2 	 |	 Server Firmware Vulnerable to Cyberattack

Section 9 	 |	 Root-of-Trust Implementation Using MCU

Page 4

Page 5

Page 5

Page 5

Page 6

Page 4

Page 7

Page 3

Page 8

Section 11 	 | Benefits of RoT FPGA-based PFR Implementation Page 10

Section 10 	 |	 Root-of-Trust Implementation Using FPGA Page 9

Page 10Section 12 	 |	 Response to Supply Chain Attack: MCU vs. FPGA PFR Solution

Section 1 	 |	 Executive Summary

Page 11
Section 13 	 |	 PFR Development Toolkit Eases Path to Implement a FPGA-based 	
	 RoT

Page 12Section 14 	 |	 Summary

Securing Enterprise Server Firmware: A New Approach
WP0016

PROTECT DETECT RECOVER

- - -
Protect firmware against attack

- - -
Detect compromised firmware

stored in SPI flash

- - -
Recover by replacing

compromised firmware version
with a known good version

3 // 12

Executive Summary

A typical enterprise server contains multiple processing components, each having its own non-volatile
SPI flash memory cache for storing its firmware (the software for the processing component to boot
from immediately after powering on). While the use of flash memory is convenient for supporting in-
field upgrades and bug fixes, it’s also vulnerable to malicious attacks. Through unauthorized access
to firmware, hackers can surreptitiously install malicious code in a component’s flash memory. This
malicious code can hide from standard system-level detection methods and persist through updates and
hard disk swaps thereby leaving the system permanently compromised.

To address this, some processing components use on-chip hardware circuits to detect unauthorized
firmware modifications. However, other processing components on the board without such
countermeasures remain vulnerable, so the entire server is still exposed. To address this problem, the
National Institute of Standards and Technology (NIST) released the NIST SP 800 193 specification in
2018, which defines a uniform protection mechanism known as Platform Firmware Resilience (PFR).
This specification is based on three guiding principles:

PFR functionality relies on an external hardware (silicon) “root-of-trust (RoT)” device. Use of an FPGA-
based RoT device to implement a PFR solution results in a more secure, scalable and robust system
compared to a MCU-based RoT option. The new PFR development toolkit from Lattice enables server
OEMs to add PFR functionality to their existing designs quickly to take advantage of this new and
powerful security breakthrough. System architects and system integrators can now more easily design,
implement and maintain FPGA-based RoT devices that enable PFR compliance without the need for deep
security expertise.

Securing Enterprise Server Firmware: A New Approach
WP0016

4 // 12

Server Firmware Vulnerable to Cyberattack

Damages caused by cybercrime are expected to reach U.S. $6 trillion by 2021I. Cyber attackers
continually look for new ways to circumvent security measures in order to:

•	See and/or steal proprietary data (credit card numbers, company IP, etc.) stored on the server

•	See and/or steal data passing through the server

•	Hijack the server to participate in a DDoS attack against another target

•	Sabotage the server by making one or more of the server’s hardware components inoperable (known
as “bricking” the server)

Because operating systems and applications regularly update themselves to add new functionality or fix
bugs, they make an attractive target for hackers looking to breach a server. Accordingly, organizations
tend to focus their security resources and strategy on protecting operating system and application
software. But there’s another, less widely known attack vector for hacking a server: firmware.

Firmware includes the first bootable code executed immediately after a server component (i.e. CPUs,
network controllers, RAID-on-chip solutions, etc.) is first powered up. A component’s processor assumes
the firmware is a valid starting point, boots from it and uses it to verify and load higher-level functionality
in stages depending on the server’s configuration. In some cases, the processing component uses the
firmware to perform required functions throughout its entire operating life.

In a 2016 survey conducted by ISACA, over half of respondents that self-described as seeing hardware
security as a priority for their organization “reported at least one incident of malware-infected firmware
being introduced into a company system,” and 17 percent “revealed that the incident had a material
impactII.

The State of Firmware Security

Server firmware can be hacked at different stages in the supply chain, including:

•	At the OEM: a malicious operator installs compromised firmware during manufacturing.

•	At system integrator: unauthorized firmware is installed while configuring the server to meet
customer requirements.

•	In transit to a customer: a hacker downloads malicious code to component SPI memory by opening
the server’s packaging and downloading unauthorized firmware via a cable.

•	While operating in the field: a hacker compromises an automated firmware update to replace the
legitimate update with bogus firmware that can bypass any existing protection mechanisms.

Currently, a typical server mainboard uses at least two standard firmware instances: Unified Extensible
Firmware Interface (UEFI) and the Baseboard Management Controller (BMC). While these interfaces do
offer some form of firmware protection, that protection is limited.

Securing Enterprise Server Firmware: A New Approach
WP0016

5 // 12

Unified Extensible Firmware Interface (UEFI)

UEFI (previously known as BIOS) is a software program responsible for loading a server’s firmware
to its operating systemIII. Installed at the time of manufacturing, UEFI checks to see what hardware
components the server has, wakes the components up and hands them over to the operating system.
The specification can detect unauthorized firmware by using a process called secure boot: a security
feature that keeps a hardware component from booting if unauthorized firmware is detectedIV. However,
implementation and support for secure boot varies between components and vendors, leaving gaps in
the component’s security for hackers to exploit. If illegitimate firmware manages to get past a secure boot,
UEFI cannot restore the component’s firmware to an earlier authorized version and continue to function.

Baseboard Management Controller (BMC)

A BMC is a specialized microcontroller (MCU) on a motherboard responsible for monitoring the physical
state of a “computer, network server or other hardware device using sensors and communicating with the
system administrator through an independent connection.V” Many BMCs do screen their own firmware
installations to confirm they are legitimate, but they cannot do the same for other server components.
BMCs also cannot prevent malicious code from attacking other firmware on the board. For example, if
malicious code were installed in the unused portion of a component’s SPI memory, the BMC could not
stop the code from entering the server’s entire code stream.

Figure 1: Unified Extensible Firmware Interface (UEFI) and the Baseboard Management Controller
(BMC) interfaces offer limited firmware protection.

Platform Firmware Resiliency (NIST SP 800 193 Specification)

To address the security gaps of current firmware standards, in May 2018 NIST published a new standard
to provide comprehensive protection to all firmware, including UEFI and BMC. NIST SP 800, referred
to as PFR, provides “technical guidelines and recommendations supporting resiliency of platform
firmware and data against potentially destructive attacks.VI ” This specification provides a uniform method
of protecting all firmware in a system and can be configured to be non-intrusive for normal system
operations, yet still override any component if it determines that unauthorized firmware is attempting
to install. PFR also operates independently of whatever security features individual components may
support.

Securing Enterprise Server Firmware: A New Approach
WP0016

6 // 12

PFR Requires Hardware-based Root-of-Trust

According to the NIST specification, a secure PFR implementation requires a hardware “Root-of-Trust”
(RoT) device perform the protect, detect, and recover operations for firmware in the server. A NIST
compliant RoT device must perform protect, detect and recover operations on its own firmware before
booting and without the aid of any other external component.

A hardware RoT solution must also be:

•	Scalable – The RoT device must perform protect, detect and recover functions on external SPI
images with nanosecond-level response times. This performance requires dedicated processing and
I/O ports to keep server performance uncompromised.

•	Non-by-passable – Unauthorized firmware should not be able to bypass the RoT device to start
booting a server with compromised firmware.

•	Self-Protect – The RoT device must dynamically address a constantly evolving attack surface (the
sum of all points in a device or system where an unauthorized user can gain access) to protect itself
from external attacks.

•	Self-Detect – The RoT device must be able to detect unauthorized firmware using a non-by-passable
cryptographic hardware block.

•	Self-Recover – The RoT device must be able to switch over to an earlier golden firmware image
automatically when the device discovers unauthorized firmware, ensuring that the server remains in
operation.

The specification outlines three key principles for securing firmware:

•	Protect – Maintain the component’s firmware in a reliable state by preventing unauthorized write
access to protected zones of component SPI memory or attempts to erase all or part of the firmware.
In some cases, read access to the protected zones is also blocked.

•	Detect – The ability to validate firmware updates from the OEM before the component processor
boots from it. If corrupt or unauthorized firmware is detected, a recovery process is initiated.

•	Recover – If a compromised or corrupted firmware is detected, the processor boots from a previous
trusted version of the firmware (called a “golden image”) or enables a full-system recovery using new
firmware delivered through a trusted process.

Protection Bad firmware detected
before boot?

Recover from bad
firmware?

Protect all firmware from in-system
update attacks during operation?

Methods Embedded
in UEFI

YES NO NO

Hardware Blocks
embedded in BMC

YES NO NO

NIST PFR using RoT YES YES YES

Figure 2: Current firmware standards cannot protect component firmware during all phases of
operation.

Securing Enterprise Server Firmware: A New Approach
WP0016

7 // 12

Figure 3: NIST SP 800-193: Platform Firmware Resilience

As Figure 3 illustrates, the RoT device turns on first to cryptographically inspect all component firmware
and detect unauthorized modifications. If the RoT detects any corruption, it initiates a trusted firmware
recovery process. In extreme cases, when all firmware on the board is compromised, the RoT device
can initiate a full-system recovery (through the BMC) by using trusted firmware stored in the RoT device.
After the BMC boots from trusted firmware, it retrieves known good firmware from outside the system and
replaces the compromised firmware. The RoT device then revalidates all firmware and initiates a board-
level power-on procedure in which all the components on the board are turned on and forced to boot from
their known good firmware image, and begin normal operation.

To protect the SPI memory from future corruption attempts, the RoT actively monitors all SPI traffic
between the SPI memory and its corresponding processor to detect malicious attempts to update
firmware and stop its installation.

NIST compliant PFR Implementations

The challenge of implementing root-of-trust in a PLD is doing so in a manner that does not overly burden
the OEM. A root-of-trust hardware solution (including a PLD-based solution) must be scalable, meaning
it can protect all firmware in the server with response times measured in nanoseconds. It should be
able to detect the compromised firmware through cryptographic measurements using a non-modifiable
cryptographic block. Inclusion of the full boot sequence control for all server components in conjunction
with the PFR implementation makes it impossible to bypass the RoT. Finally, the solution should be able
to switch back to an earlier golden firmware image automatically so the server can continue to operate if it
discovers a breach of the current firmware.

A hardware-based RoT device, by definition, must be implemented in silicon, and the most commonly
used silicon platforms for this purpose are microcontrollers (MCUs) or field programmable gate arrays
(FPGAs). An examination of FPGA and MCU operating characteristics and features demonstrates that an
FPGA platform best supports PFR at scale.

Securing Enterprise Server Firmware: A New Approach
WP0016

8 // 12

Root-of-Trust Implementation Using MCU

In the past, MCUs have been used in server hardware products to establish a root-of-trust. In short, a
portion of the MCU surface area is reserved for a Trusted Execution Environment (TEE), a section of
the MCU physically isolated from the rest of the chip that continuously monitors firmware to confirm it is
authorized and functioning normally. Generally, PFR functionality is added to the server by adding a RoT
MCU to the existing hardware architecture.

MCUs have limited ability to support verification of multiple firmware instances in a server. This is
because they are not able to respond to in-system attacks against all firmware instances in a server
without the help of an external device such as a PLD (which monitors the SPI memory traffic in real-time
and detects and responds to breaches simultaneously).

The three components used to implement PFR using an MCU illustrated in Figure 4 are:

•	RoT MCU – The RoT MCU performs detect, recover and protect functions; it is the central component
for the RoT implementation.

•	Protect PLD – Enables PFR implementation at scale for comprehensive protection of the board by
simultaneously monitoring SPI transactions between all component processors and their SPI memory
devices.

•	Control PLD – This device integrates all board level power-on and reset sequencing functions
with other functions like fan control, SGPIO, I2C buffering, signal integration, and out-of-band
communication needed to boot the main board. The RoT MCU commands the control PLD to initiate
board power-on. If an extreme recovery is needed, the RoT MCU commands the control PLD to only
power on the section of the board used in the trusted recovery process.

Figure 4: A PFR compliant server using an MCU for root of trust requires additional components
(FPGAs) to provide performance if components are to boot simultaneously; a solution that is not

scalable for high volume server applications.

Securing Enterprise Server Firmware: A New Approach
WP0016

9 // 12

Root-of-Trust Implementation Using FPGA

Figure 5: The RoT FPGA integrates the functions of the RoT MCU, Control PLD and the Protect
PLD in a single-chip solution that is robust, scalable and impossible to bypass. In a server with

a PFR-compliant PLD, the PLD’s performance can monitor all component firmware in parallel
without the need for additional FPGAs.

The MCU-based approach to PFR has limitations. For example, the control PLD used in the circuit
diagrammed in Figure 4 cannot protect its own firmware, meaning this architecture is not fully compliant
with the NIST PFR specification. It would be possible to modify the control PLD code and render the RoT
MCU ineffective. It is also possible for a permanent denial of service (PDoS) attack to render the system
inoperable by erasing these PLDs, making the server incapable of booting. The protect and control PLDs’
security gaps make it hard to protect against firmware attacks when the component is in transit or during
system integration. In order to be NIST SP 800 193 standard compliant, the RoT MCU must implement
PFR functionality for the control PLD and the protect PLD. Implementing recovery and protection
functions for those devices using the MCU is difficult. Finally, the MCU-based approach requires
additional system-level processes to detect an attack trying to bypass the entire RoT circuit.

Root-of-Trust FPGA

Securing Enterprise Server Firmware: A New Approach
WP0016

10 // 12

Benefits of RoT FPGA based PFR Implementation

As their name implies, PLDs are a type of integrated circuit that can be reprogrammed remotely and
nearly instantaneously to adapt to changing conditions. A PLD can physically change its circuitry in a way
that, once it detects the presence of unauthorized firmware, makes that firmware unable to install.

Because they are designed to be reprogrammable, PLDs have more I/O connections than MCUs,
allowing them to perform multiple functions in parallel instead of in sequence. This makes them much
faster at identifying and responding to unauthorized firmware when detected.

Additionally, PLDs use sophisticated simulation software so engineers can confirm their PLD design
functionality. These same tools allow engineers to test their designs against various firmware
cyberattacks to confirm the PLD can protect itself. Firmware updates for an MCU need more elaborate
testing and verification than PLDs because MCUs cannot support functionality verification through
simulation. Instead, any updates to MCU firmware have to go through repeated regression (trial and
error) testing to confirm the new firmware will not adversely affect other functionality in the MCU; a much
lengthier process than running PLD simulation software.

When the characteristics of PLDs and MCUs are compared, it is clear that PLDs provide a higher
performing, more robust platform for implementing a RoT in hardware; a necessity for implementing the
PFR standard.

Response to Supply Chain Attack: MCU vs. FPGA PFR Solution

If a firmware attack occurs, the two different types of PFR systems take the following measures (in order
of implementation):

RoT MCU RoT FPGA

Detection: The RoT MCU inspects all SPI
memory devices by sequentially performing
cryptographic measurements to detect the
presence of unauthorized firmware. A control PLD
(compromised in the supply chain) can bypass
detection checks by RoT MCU and make the BMC
boot a compromised image.

Detection: The RoT FPGA inspects all SPI
memory devices by sequentially performing
cryptographic measurements to detect the
presence of unauthorized firmware. The FPGA
logs a fault within on-chip non-volatile memory for
future analysis. The RoT FPGA protects itself from
attacks in the supply chain.

If compromised firmware is detected, the recovery
process is initiated by either the protect PLD
managing the boot source SPI memory, or through
either the control or protect PLD and monitored by
the RoT MCU.

FPGA-based system integrates this functionality
into its hardware. No external communication
between RoT and control PLD is needed. That
makes the solution more rugged and immune to
external attacks.

After the server completes a full boot, the protect
PLD actively monitors all SPI transactions
simultaneously to block future attacks and inform
the RoT MCU when a breach is detected.

The resulting solution is simpler and fully complies
with NIST Standards.

Securing Enterprise Server Firmware: A New Approach
WP0016

11 // 12

PFR Development Toolkit Eases Path to Implement a FPGA-based RoT

Lattice now offers a PFR development toolkit to simplify FPGA-based RoT implementation. Server
component OEMs and system integrators implementing FPGA-based PFR can move forward more
quickly to meet time to market demands. The Lattice toolkit includes a software library of functions
along with associated IPs and three development boards to implement PFR (including the protect PLD
functions). The board-control PLD functions are added into the RoT FPGA design using the Lattice
Diamond software tool. The Lattice PFR development toolkit development boards include:

•	A RoT FPGA development board.

•	An ECP5 FPGA board running a Python script to simulate the server’s BMC. Developers can execute
commands from the Python script to simulate attacks against components’ SPI memory.

•	A PFR adapter card that stores BMC code in SPI memory. The PFR function implemented in the RoT
FPGA on the development board protects the PFR adapter card firmware from attack (meaning the
FPGA-based solution is NIST PFR compliant).

The Lattice toolkit enables users to design, implement and maintain NIST compliant custom PFR
implementations without the need for deep security expertise.

Figure 6: The Lattice FPGA RoT development toolkit features three boards: RoT FPGA
development board, an ECP5 board to simulate a server’s BMC and a SPI flash board to store the

simulated BMC firmware.

Address:

Lattice Semiconductor
111 5th Ave., Suite 700
Portland, Oregon 97204
United States

Phone: 1 (503) 268-8000

Contact us online:

www.latticesemi.com/contact
www.latticesemi.com/buy

Rev. 1.0 WP0016

Learn more:

www.latticesemi.com/PFR

For organizations operating in the digital domain, cybersecurity is a critical issue. Hackers are now
targeting enterprise server firmware to gain unauthorized access to data on a server or even render the
server permanently inoperative. To combat this, PFR implementation in an FPGA-based RoT device now
offers a robust, scalable, and complete based method to protect server component firmware against
attacks at any stage in the component supply chain. The new Lattice PFR development toolkit offers a
path to accelerate and simplify RoT device development for server security.

Summary

i https://www.csoonline.com/article/3153707/security/top-5-cybersecurity-facts-figures-and-statistics.html
ii http://www.isaca.org/Knowledge-Center/Research/Documents/CSX-Firmware_whp_eng_1016.pdf?regnum=461390
iii https://whatis.techtarget.com/definition/Unified-Extensible-Firmware-Interface-UEFI
iv https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
v https://searchnetworking.techtarget.com/definition/baseboard-management-controller
vi https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf

