

iCE40 UltraPlus 6:1 MIC Aggregation over SPI Demo

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronymns in This Document	4
1. Introduction	5
2. Functional Description	5
2.1. Demo Design Overview	5
3. Demo Setup	6
3.1. Hardware Requirements	6
3.2. Software Requirements	6
3.3. Configuring the MDP Board	6
3.3.1. Setting Jumpers and Switches	6
4. Programming the Demo	8
4.1. Programming the Bitstream to the iCE40 UltraPlus MDP	8
5. Running the Demo	10
5.1. Using Windows Application	10
5.2. Oscilloscope Connection Points	11
Appendix A. Schematic Diagram	12
Appendix B. Bill of Materials	13
Technical Support	14
Revision History	15
Figures	
Figure 2.1. iCE40 UltraPlus 6:1 MIC Aggregation over SPI Demo Overview	5
Figure 2.2. iCE40 UltraPlus 6:1 MIC Aggregation over SPI Demo Block Diagram	5
Figure 3.1. iCE40 UltraPlus MDP Configuration	
Figure 3.2. 8 to 1 Mic Aggregator Board (Daughter Board)	7
Figure 3.3. iCE40 UltraPlus MDP and 8 to 1 Mic Aggregator Board	
Figure 4.1. Device Properties	8
Figure 5.1. J30 Section on MDP Board	11
Figure 5.2. Header to Connect to the Oscilloscope	11
Tables	
Table 3.1. Detailed Information of the Board Configuration	7

Acronymns in This Document

A list of acronyms used in this document.

Acronym	Definition
I ² S	Inter-IC Sound
PCM	Pulse Code Modulation
PDM	Pulse Density Modulation
FPGA	Field-Programmable Gate Array
MDP	Mobile Development Platform
SPI	Serial Peripheral Interface
SSP	System Solution Platform

1. Introduction

I²S (Inter-IC Sound) bus is widely used to communicate Pulse Code Modulation (PCM) audio data between integrated circuits in an electronic device. The standard I²S protocol, however, is designed to transfer only two channels (LEFT and RIGHT) on a data line. This limitation can be addressed by using Serial Peripheral Interface (SPI), an interface bus commonly used to send data between microcontrollers and small peripherals.

The iCE40 UltraPlus™ 6:1 MIC Aggregation over SPI demo addresses a market opportunity to transfer up to six microphones channels using an SPI bus.

2. Functional Description

2.1. Demo Design Overview

The iCE40 UltraPlus 6:1 MIC Aggregation over SPI demo implements an SPI bus using the iCE40 UltraPlus FPGA. The demo uses FPGA-B on the primary iCE40 UltraPlus Mobile Development Platform (MDP), plus a daughter board with six Pulse Density Modulation (PDM) microphones for the input sources. Sound generated by the microphones can be captured and heard through Windows applications. This version of the the project design uses the Lattice Radiant Software tool.

Figure 2.1 shows an overview diagram of the iCE40 UltraPlus 6:1 MIC Aggregation over SPI demo.

Figure 2.1. iCE40 UltraPlus 6:1 MIC Aggregation over SPI Demo Overview

Figure 2.2 shows the iCE40 UltraPlus 6:1 MIC Aggregation over SPI demo block diagram.

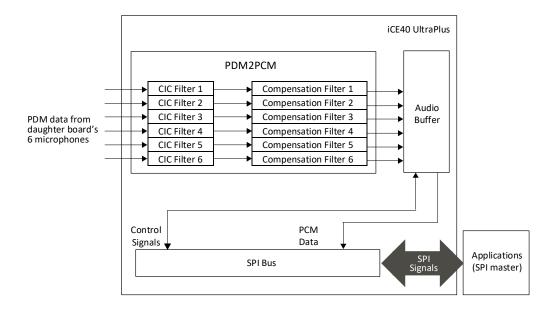


Figure 2.2. iCE40 UltraPlus 6:1 MIC Aggregation over SPI Demo Block Diagram

3. Demo Setup

The following hardware and software are required to run the iCE40 UltraPlus 6:1 MIC Aggregation over SPI demo.

3.1. Hardware Requirements

- iCE40 UltraPlus MDP (PN: iCE40UP5K-MDP-EVN)
- 8 to 1 Mic Aggregator Board (Daughter Board) (PN: LF-81AGG-EVN)

3.2. Software Requirements

- Lattice Radiant 1.0
- Radiant Programmer (Version 1.0 or later)
- System Solution Platform (SSP)

Note: SSP installer and installation guide are included with this solution under SSP folder. Follow the instructions in the guide to install this application properly.

3.3. Configuring the MDP Board

3.3.1. Setting Jumpers and Switches

Board reconfiguration is needed before running this demo. Figure 3 highlights (in orange boxes) all switches and jumpers need to be verified or reconfigured on Mobile Development Platform (MDP) board.

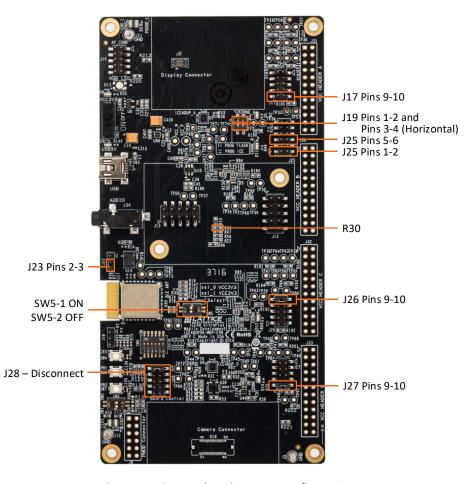


Figure 3.1. iCE40 UltraPlus MDP Configuration

Note: This demo uses FPGA-B.

Table 3.1 lists the detailed information of these configurations on switches and jumpers.

Table 3.1. Detailed Information of the Board Configuration

Items	Configuration	Description
J17, J26, J27	Shunt pin 9-10	Disable ICE40UP5K_A/C/D devices.
J25	Shunt pin 1-2, 5-6	Enable ICE40UP5K_B device.
J28	Disconnect all	Disable Board control for programming SPI Flash.
J19	Shunt pin 1-2, 3-4 (horizontal)	Enable iCE40 CRAM Programming
J23	Shunt pin 2-3	Use Xtal U14 as clock source.
SW2	Set to ON	Power switch, slide down for power-on.
SW5	Set SW5-1 to ON, and SW5-2 to off.	Select ICE40UP5K_B as target device.

Before programming the MDP, perform the following steps:

- 1. On the iCE40 Ultraplus MDP, install a $0-\Omega$ (0603) resistor at R30 if not yet installed.
- 2. Connect the 8 to 1 Mic Aggregator Board on top of the MDP board.

Figure 3.2. 8 to 1 Mic Aggregator Board (Daughter Board)

Figure 3.3. iCE40 UltraPlus MDP and 8 to 1 Mic Aggregator Board

4. Programming the Demo

4.1. Programming the Bitstream to the iCE40 UltraPlus MDP

Use the Lattice Radiant Programmer tool to program the bitstream to the iCE40 UltraPlus MDP:

- 1. Connect the iCE40 UltraPlus MDP to the PC using a USB cable.
- 2. Power ON the iCE40 UltraPlus MDP.
- 3. Start the Radiant Programmer software tool (version 1.0 or later).
- In the Getting Started dialog box, select Create a new project file from a scan and click OK.
- 3. The iCE40 UltraPlus device is detected and displayed in the main interface.
 - Device Family: iCE40 UltraPlus
 - Device: iCE40UP5K

Right-click on the device and select **Device Properties** in the context menu.

5. In the **Device Properties** dialog box, apply the settings as shown in Figure 4.1.

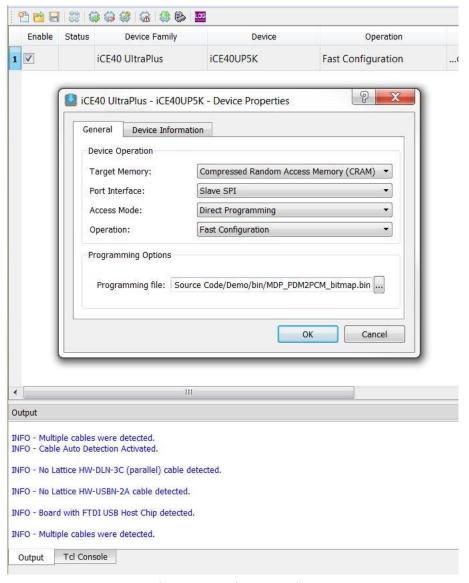


Figure 4.1. Device Properties

- Target Memory: Set to Compressed Random Access Memory (CRAM).
- Port Interface: Set to Slave SPI.
- Access Mode: Set to Direct Programming.
- Operation: Set to Fast Configuration.
- **Programming File**: Path of the bitstream file for demo.
- 4. Click **OK** to exit the **Device Properties** dialog box.

Click the **Program Device** button on the main interface to download the bitstream file.

Running the Demo

5.1. Using Windows Application

To run the demo:

- 1. Load the bitstream into the FPGA-B on the iCE40 UltraPlus MDP.
- 2. Using Windows Explorer, navigate to the .../SSP folder.
- 3. Delete the previously run data.txt file.
- 4. Run the batch file named run_pcm_emu.bat to start capturing audio data on the microphone sensor. A new file data.txt file is created.
- 5. Press Ctrl + C to stop the audio capture.
- 6. Copy the generated data.txt file to the ../tool folder.
- 7. In the ..tool/ folder, run the pcm_processor.exe file.

This converts the data.txt file into hexadecimal and decimal files for checking. In addition, a wave file is also generated for audio playback.

```
D:\Project_dev\PDM_to_PCM\release_6ch_upload\tool\8bit_to_16bit.exe

Source file processing ...
Channel 0 processing ...
Channel 1 processing ...
Channel 2 processing ...
Channel 3 processing ...
```

Figure 5.1. Running pcm_processor.exe

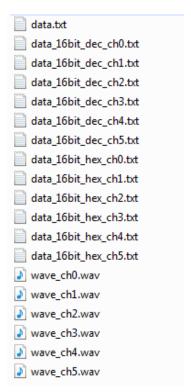


Figure 5.2. Files Generated by Running pcm_processor.exe

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5.2. Oscilloscope Connection Points

You can use an oscilloscope to observe signals of the SPI interface. The signals are available at FPGA-B header J30 on the iCE40 UltraPlus MDP.

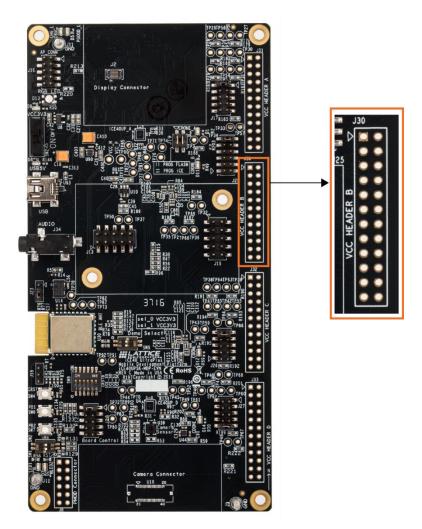


Figure 5.1. J30 Section on MDP Board

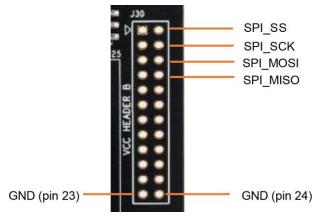
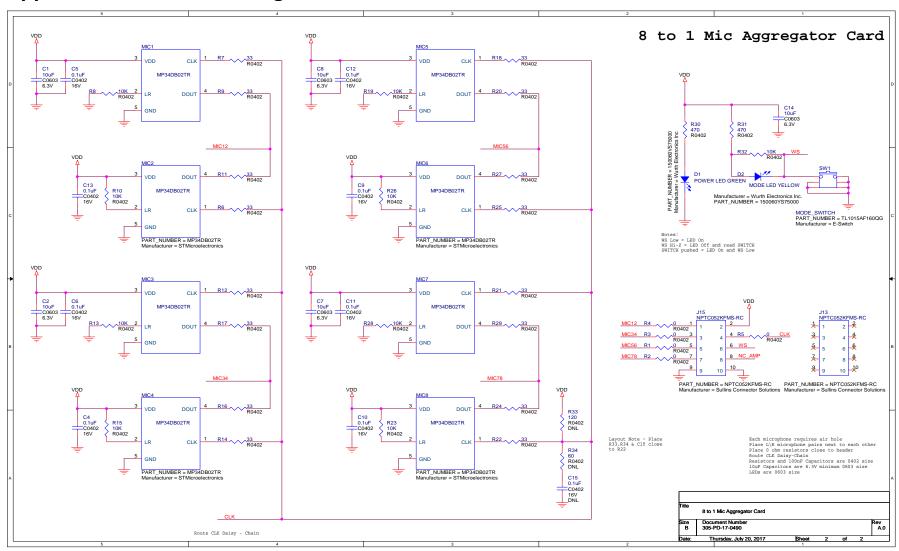



Figure 5.2. Header to Connect to the Oscilloscope

Appendix A. Schematic Diagram

8 to 1 Mic Aggregator Card

Appendix B. Bill of Materials

8 to 1 Mic Aggregator Board Bill of Materials

Item	Reference Designator	QTY	Description	Package	Manufacturer	Part Number	Notes
1	C1,C2,C7,C8, C14	5	Capacitor Ceramic 10 uF 20% 6.3V X5R 0603	0603	Murata Electronics	GRM188R61A475ME15D	
2	C4,C5,C6,C9, C10,C11,C12, C13	8	Capacitor Ceramic 0.1 uF 10% 16V X7R 0402	0402	Murata Electronics	GRM155R71C104KA88J	
3	C15	1	Capacitor Ceramic 0.1 uF 10% 16V X7R 0402	0402	Murata Electronics	GRM155R71C104KA88J	DNL
4	D1	1	LED Green 0603	0603	Wurth	150060VS75000	
5	D2	1	LED Yellow 0603	0603	Wurth	150060YS75000	
6	J13,J15	2	Connector Header Female 2x5 0.1" Pitch	2x5 0.1" Pitch	Sullins	NPTC052KFMS-RC	
7	MIC1,MIC2, MIC3,MIC4, MIC5,MIC6, MIC7,MIC8	8	Microphone PDM Omnidirectional -26DB	RHLGA (3x4x1) mm 4LD	STMicro- electronics	MP34DB02TR	
8	R1,R2,R3,R4, R5	5	Resistor 0.0 Ω 5% 1/16W 0402	0402	Yageo	RC0402JR-070RL	
9	R6,R7,R9,R11, R12,R14,R16, R17,R18,R20, R21,R22,R24, R25,R27,R29	16	Resistor 33 Ω 5% 1/16W 0402	0402	Yageo	RC0402JR-0733RL	
10	R8,R10,R13, R15,R19,R23, R26,R28,R32	9	Resistor 10 K Ω 5% 1/16W 0402	0402	Yageo	RC0402JR-0710KL	
11	R30,R31	2	Resistor 470 Ω 5% 1/16W 0402	0402	Yageo	RC0402FR-07470RL	
12	R33	1	Resistor 120 Ω 1% 1/16W 0402	0402	Yageo	RC0402FR-07120RL	DNL
13	R34	1	Resistor 62 Ω 5% 1/16W 0402	0402	Yageo	RC0402FR-0762RL	DNL
14	SW1	1	Switch Push Button Momentary SPST-NO 0.05A 12 V	3.90 mm x 2.90 mm	E-Switch	TL1015AF160QG	
15	8 to 1 MIC AGGREGATOR CARD REVA.0 PCB	1	Bare PCB		Pactron	305-PD-17-0490	

Technical Support

For assistance, submit a technical support case at www.latticesemi.com/techsupport.

Revision History

Revision 1.1, May 2020

Section	Change Summary	
Disclaimers	Added this section	
Running the Demo	Changed callout to SPI_SS in Figure 5.2. Header to Connect to the Oscilloscope.	
_	Updated the revision history and back cover format.	

Revision 1.0, June 2018

Section	Change Summary
All	Initial release

www.latticesemi.com