

Single-Wire Signal Aggregation

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronym	ns in This Document	
-	roduction	
1.1.	Features List	6
1.2.	Block Diagram	6
2. Para	ameters and Port List	8
2.1.	Compiler Directives	
2.2.	Parameters	10
2.3.	Configuration Examples	
2.4.	Top-Level I/O	
3. Det	tailed Description	21
3.1.	Link Establishment upon Power up and Reset Release	21
3.2.	Link Status	21
3.3.	TX Rights Negotiation	22
3.4.	Packet Transmission	22
3.5.	TX Rights Release	24
3.6.	System Level I ² C Transactions	24
3.7.	System Level I2S Transactions	26
3.8.	System Level DP-AUX Transactions	27
4. Pac	kaged Design	28
5. Res	source Utilization	29
	ces	
Technica	al Support Assistance	30
Revision	History	31

Figures

Figure 1.1. Single-wire Block Diagram	7
Figure 3.1. Link Establishment	21
Figure 3.2. I ² S Clock Training	21
Figure 3.3. TX Rights Negotiation and Packet Transmission	22
Figure 3.4. Packet Structure	22
Figure 3.5. Example of Bi-phase Mark Encoding	23
Figure 3.6. Example of I ² C Packet	23
Figure 3.7. I ² C Transaction #1 (Sub-address Write for Read Transaction)	24
Figure 3.8. I ² C Transaction #2 (Repeated Start Followed with Read Transaction)	24
Figure 3.9. Link Delay Example #1 (I ² C Start)	
Figure 3.10. Link Delay Example #2 (I ² C ACK)	25
Figure 3.11. System Level I2S Transaction	
Figure 3.12. I ² S Delay from Master to Slave FPGA	26
Figure 3.13. System Level DP-AUX Transaction	27
Figure 3.14. DP AUX Delay from Master Packet Data to Response by the Slave on the Master Port	
with 64 Bit Payload	27
Figure 3.15. DP AUX Delay from Master Packet Data to Response by the Slave on the Master Port	
with 128 bit Payload	
Figure 4.1. Packaged Design Directory Structure	28
Tables	
Table 2.1. Top-level Compiler Directives	8
Table 2.2. Top-level Parameters	
Table 2.3. Configuration Example 1	12
Table 2.4. Configuration Example 2	14
Table 2.5. Configuration Example 3	16
Table 2.6. Configuration Example 4	18
Table 2.7. Single-wire Top-Level I/O	20
Table 5.1. Resource Utilization Examples	29

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
ACK	Acknowledge bit sent from RX side to TX side to indicate the received data parity check is OK
DP-AUX	Display Port Auxiliary Channel
GPIO	General Purpose Inputs and Outputs
I ² C	Inter-Integrated Circuit
I ² S	Inter-IC Sound
MDP	Mobile Development Platform
PID	Payload ID
PLL	Phase Locked Loop
PT	Payload Type
RX	Receiver
TDM	Time Domain Multiplexing
TX	Transmitter

1. Introduction

Single-Wire is a single-ended single-wire connection between two FPGAs to provide TDM-based bidirectional communication, aggregating multiple data such as DP-AUX, I²C, I2S, and GPIO to add more flexibility to a customer's system and board design. The design is targeted to the iCE40 UltraPlus™ device and compiled by the Lattice Radiant® software to generate a bit file. Hardware behavior is verified by aggregating multiple I²C and GPIO signals on the iCE40 UltraPlus Breakout Board. Hardware behavior on I2S is verified on the iCE40 UltraPlus MDP (Mobile Development Platform). Lastly, DP-Aux is verified in simulation. Consult technical support for the software patch if you encounter compilation issues on Lattice Radiant 1.1.

1.1. Features List

- Up to 7 channels can be aggregated in total
- Variable packet length for efficient use of the bandwidth
- Retransmit feature is offered when parity error is detected on the Receiver (RX) side. This feature is applicable for I²C and GPIO data.
- Supports I²C at 100 kbps, fast-mode (400 kbps) and fast-mode plus (1 Mbps)
- Supports up to two channels of I2S data
- Supports DP Aux channel with up to 152 bits of data payload*
- Supports an I2S Controller option to generate SCK and WS for the I2S transmit device
- I²C interrupts can be realized by GPIO with event-based transmission
- Raw data rate on Single-Wire is ~7.5 Mbps or higher depending on the target device and configuration

1.2. Block Diagram

Figure 1.1 shows a block diagram of the Single-Wire reference design (RD) in a typical configuration with DP AUX, I²C, I2S, and GPIO aggregation, which has a Master FPGA and Slave FPGA. There are two essential design differences between the Master FPGA and Slave FPGA:

- Upon the power-up, Master FPGA generates a low pulse on the Single-Wire link and waits for another low pulse generated by the Slave FPGA as an acknowledgement.
- If I2S data was enabled, an I2S SCK pulse is sent by the Master FPGA on the link for Slave FPGA clock training. This is after the link acknowledgement by the Slave FPGA.
- The Master FPGA always wins the very first transmitter (TX) request contention after power-up.

In general, regarding the I²C interface, both I²C master bridge and I²C slave bridge can reside in both Master and Slave FPGAs. For the I2S interface, both I2S master and slave can reside in both Master and Slave FPGA. Each I2S channel may a different Sample rate, Sample Depth and Buffer Depth per I2S channel. GPIO data width can be different between gpio_in and gpio_out, but gpio_in/gpio_out data width on Master FPGA must match the corresponding gpio_out/gpio_in data width on the Slave FPGA. The channel relationships between two the FPGAs must be properly maintained. Channel configuration is flexible.

^{*}Note: Payload above 64 bits may go above maximum allowable respond time from Display to Host according to DP Aux specification.

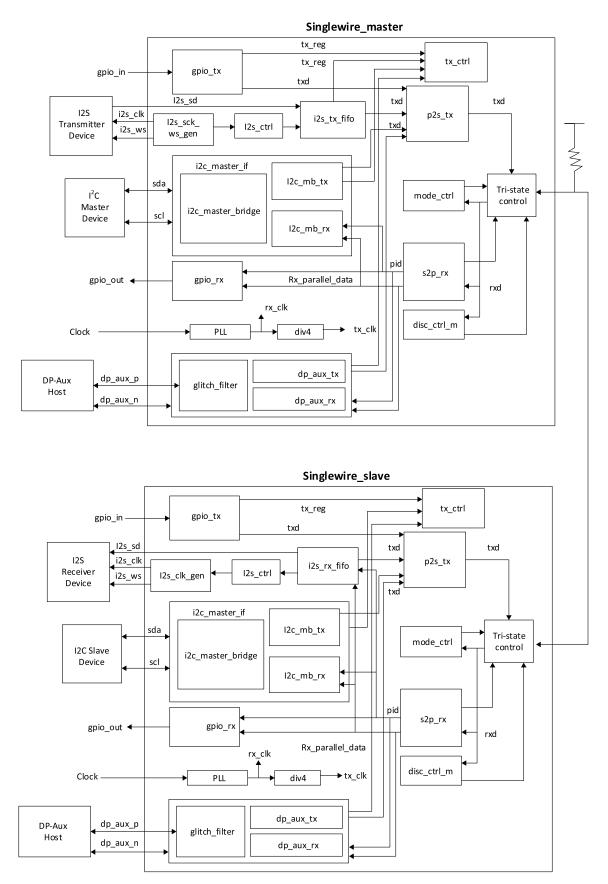


Figure 1.1. Single-wire Block Diagram

2. Parameters and Port List

Compiler directives and parameters are included in the top-level Verilog files of singlewire_master.v and singlewire_slave.v. You can modify these directives and parameters based on your own configurations.

2.1. Compiler Directives

Table 2.1 shows the compiler directives affecting the Single-Wire RD. Compiler directives can be defined by creating a module with the corresponding define directives or by defining Verilog compiler directives at the command line during compilation. Only one directive is set in each category. As shown in Table 2.1 and Table 2.2, some parameter selections are restricted by other parameter settings.

Table 2.1. Top-level Compiler Directives

Category	Compiler Directive	Remarks
	NUM_OF_I2C_CH_0	
	NUM_OF_I2C_CH_1	
	NUM_OF_I2C_CH_2	
I ² C channel count ¹	NUM_OF_I2C_CH_3	Number of I ² C channels aggregated. Only one of
i C chamilei count	NUM_OF_I2C_CH_4	these eight directives must be defined.
	NUM_OF_I2C_CH_5	
	NUM_OF_I2C_CH_6	
	NUM_OF_I2C_CH_7	
	I2C1_TYPE_MB	Connection of I ² C channel #1MB for I ² C Master
	I2C1_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C1_TYPE_NA	that I ² C channel #1 is not used. Only one of these three directives must be defined.
	I2C2_TYPE_MB	Connection of I ² C channel #2MB for I ² C Master
	I2C2_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C2_TYPE_NA	that I ² C channel #2 is not used. Only one of these three directives must be defined.
	I2C3_TYPE_MB	Connection of I ² C channel #3MB for I ² C Master
	I2C3_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C3_TYPE_NA	that I ² C channel #3 is not used. Only one of these three directives must be defined.
	I2C4_TYPE_MB	Connection of I ² C channel #4MB for I ² C Master
I ² C Type ²	I2C4_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C4_TYPE_NA	that I ² C channel #4 is not used. Only one of these three directives must be defined.
	I2C5_TYPE_MB	Connection of I ² C channel #5MB for I ² C Master
	I2C5_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C5_TYPE_NA	that I ² C channel #5 is not used. Only one of these three directives must be defined.
	I2C6_TYPE_MB	Connection of I ² C channel #6MB for I ² C Master
	I2C6_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C6_TYPE_NA	that I ² C channel #6 is not used. Only one of these three directives must be defined.
	I2C7_TYPE_MB	Connection of I ² C channel #7MB for I ² C Master
	I2C7_TYPE_SB	and _SB for I ² C Slave connectionNA is used if
	I2C7_TYPE_NA	that I ² C channel #7 is not used. Only one of these three directives must be defined.
	NUM_OF_GPIO_TX_CH_0	
CDIO Ty chons at account 1	NUM_OF_GPIO_TX_CH_1	Number of GPIO TX channels aggregated. Only
GPIO Tx channel count ¹	NUM_OF_GPIO_TX_CH_2	one of these eight directives must be defined.
	NUM_OF_GPIO_TX_CH_3	

Category	Compiler Directive	Remarks
	NUM_OF_GPIO_TX_CH_4	
	NUM_OF_GPIO_TX_CH_5	
	NUM_OF_GPIO_TX_CH_6	
	NUM_OF_GPIO_TX_CH_7	
	NUM_OF_GPIO_RX_CH_0	
	NUM_OF_GPIO_RX_CH_1	
	NUM_OF_GPIO_RX_CH_2	
CDIO Du chamal accept	NUM_OF_GPIO_RX_CH_3	Number of GPIO TX channels aggregated. Only
GPIO Rx channel count ¹	NUM_OF_GPIO_RX_CH_4	one of these eight directives must be defined.
	NUM_OF_GPIO_RX_CH_5	
	NUM_OF_GPIO_RX_CH_6	
	NUM_OF_GPIO_TX_CH_7	
	NUM_OF_I2S_CH_0	
I ² S channel count ¹	NUM_OF_I2S_CH_1	Number of I ² S channels aggregated. Only one of
	NUM_OF_I2S_CH_2	these three directives must be defined.
	NUM_OF_I2S_TX_CH_0	Number of I ² S channels that acts as TX for
I ² S TX count	NUM_OF_I2S_TX_CH_1	Transmitter connection. Only one of these three
	NUM_OF_I2S_TX_CH_2	directives must be defined.
	NUM_OF_I2S_RX_CH_0	Number of I ² S channels that will act as a RX for
I ² S RX count	NUM_OF_I2S_RX_CH_1	the Receiver Connection. Only one of these three
	NUM_OF_I2S_RX_CH_2	directives must be defined.
	NUM_OF_I2S_CLK_0	
I ² S Clock count	NUM_OF_I2S_CLK_1	Number of I ² S clocks to be used. Only one of
	NUM_OF_I2S_CLK_2	these three directives must be defined.
I ² S RX CLK Types	I2S1_RX_MASTER	Directive to let the FPGA outputs I ² S CLK/WS on the RX side.
CLK_SEND	I2S1_CLK_SEND	This enables the FPGA to send I ² S CLK to the other FPGA for training or clock learning.
Enable I ² S Controller	12S1_CONTROLLER	Master device generates the SCK and WS for the Transmitter Device. Do not define if the Transmitter device will provide its SCK and WS.
DP-AUX Channel ¹	DP_AUX	Enable one DP-AUX Channel.
·		

Notes:

- 1. Maximum total number of channels is seven. The sum of channel numbers specified by NUM_OF_I2C_CH_*; NUM_OF_I2S_CH_* and max (NUM_OF_GPIO_TX_CH_*, NUM_OF_GPIO_RX_CH_*) must not exceed seven.
- 2. I²C Type of unused I²C channel must be set to TYPE_NA.

2.2. Parameters

Table 2.2 shows the global parameters of the Single-Wire RD. Some parameters are applicable only to associated I/O.

Table 2.2. Top-level Parameters

Single-wire RD Parameters	Values	Remarks
FPGA_ID	0 or 1	Set to 0 for Master FPGA. Set to 1 for Slave FPGA.
NUM_OF_CH	1 to 7	Total number of channels aggregated
MAX_PAYLOAD_LENGTH	1 to 32	Maximum Payload data length. If I2S channel is set, set the value to the highest I2S Sample Depth assigned. If I2S channel is not set, the value must be 9 if I ² C is used and GPIO data width is 9 or less. Otherwise, set the GPIO data width.
MAX_TX_LENGTH	4 to 35	Maximum of TX data length. If I2S channel is set, set the value of the highest I2S sample depth assigned. If I2S channel is not set, the value must be 14 if I ² C is used and GPIO data width is 11 or less. Otherwise, set the GPIO data width + 3.
CH1_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB	CH #1 data type
CH2_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #2 data type
CH3_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #3 data type
CH4_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #4 data type
CH5_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #5 data type
CH6_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #6 data type
CH7_TYPE [6*8:1]	GPTXRX, GPIOTX, GPIORX, I2C_MB, or I2C_SB, or UNUSED	CH #7 data type
I2C1_FREQ_K [9:0]	400 to 1000	I ² C #1 clock rate in kHz
I2C2_FREQ_K [9:0]	400 to 1000	I ² C #2 clock rate in kHz
I2C3_FREQ_K [9:0]	400 to 1000	I ² C #3 clock rate in kHz
I2C4_FREQ_K [9:0]	400 to 1000	I ² C #4 clock rate in kHz
I2C5_FREQ_K [9:0]	400 to 1000	I ² C #5 clock rate in kHz
I2C6_FREQ_K [9:0]	400 to 1000	I ² C #6 clock rate in kHz
I2C7_FREQ_K [9:0]	400 to 1000	I ² C #7 clock rate in kHz
GPIO1_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #1 Tx trigger type
GPIO2_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #2 Tx trigger type
GPIO3_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #3 Tx trigger type
GPIO4_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #4 Tx trigger type
GPIO5_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #5 Tx trigger type
GPIO6_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #6 Tx trigger type
GPIO7_TX_TYPE [6*8:1]	SAMPLE or EVENTS	GPIO #7 Tx trigger type
GPIO1_TX_RATE_K [10:0]	1 to 2000	GPIO #1 Tx data rate in kbps
GPIO2_TX_RATE_K [10:0]	1 to 2000	GPIO #2 Tx data rate in kbps
GPIO3_TX_RATE_K [10:0]	1 to 2000	GPIO #3 Tx data rate in kbps
GPIO4_TX_RATE_K [10:0]	1 to 2000	GPIO #4 Tx data rate in kbps
GPIO5_TX_RATE_K [10:0]	1 to 2000	GPIO #5 Tx data rate in kbps

Single-wire RD Parameters	Values	Remarks
GPIO6_TX_RATE_K [10:0]	1 to 2000	GPIO #6 Tx data rate in kbps
GPIO7_TX_RATE_K [10:0]	1 to 2000	GPIO #7 Tx data rate in kbps
GPIO1_TX_WIDTH [3:0]*	1 to 15	GPIO #1 Tx data width
GPIO2_TX_WIDTH [3:0]*	1 to 15	GPIO #2 Tx data width
GPIO3_TX_WIDTH [3:0]*	1 to 15	GPIO #3 Tx data width
GPIO4_TX_WIDTH [3:0]*	1 to 15	GPIO #4 Tx data width
GPIO5_TX_WIDTH [3:0]*	1 to 15	GPIO #5 Tx data width
GPIO6_TX_WIDTH [3:0]*	1 to 15	GPIO #6 Tx data width
GPIO7_TX_WIDTH [3:0]*	1 to 15	GPIO #7 Tx data width
GPIO1_RX_WIDTH [3:0]*	1 to 15	GPIO #1 Rx data width
GPIO2_RX_WIDTH [3:0]*	1 to 15	GPIO #2 Rx data width
GPIO3_RX_WIDTH [3:0]*	1 to 15	GPIO #3 Rx data width
GPIO4_RX_WIDTH [3:0]*	1 to 15	GPIO #4 Rx data width
GPIO5_RX_WIDTH [3:0]*	1 to 15	GPIO #5 Rx data width
GPIO6_RX_WIDTH [3:0]*	1 to 15	GPIO #6 Rx data width
GPIO7_RX_WIDTH [3:0]*	1 to 15	GPIO #7 Rx data width
GPIO_TX_MAX_WIDTH [3:0]	1 to 15, shows the maximum bit width among all GPIO Tx channels	The value of Master FPGA has to be matched GPIO_RX_MAX_WIDTH of Slave FPGA, vice versa.
GPIO_RX_MAX_WIDTH [3:0]	1 to 15, shows the maximum bit width among all GPIO Rx channels	The value of Master FPGA has to be matched GPIO_TX_MAX_WIDTH of Slave FPGA, vice versa.
I2S1_SAMPLE_DEPTH	1 to 32	I ² S Channel 1 Bit Depth per word line
I2S2_SAMPLE_DEPTH	1 to 32	I ² S Channel 2 Bit Depth per word line
I2S1_BUFFER_DEPTH	Default = 6	I ² S Channel 1 FIFO Buffer Depth
I2S2_BUFFER_DEPTH	Default = 6	I ² S Channel 1 FIFO Buffer Depth
I2S1_SAMPLE_RATE_K	Default: 48	I ² S Channel 1 Sample rate in kHz
I2S2_SAMPLE_RATE_K	Default: 48	I ² S Channel 2 Sample rate in kHz

Note: GPIO*_TX_WIDTH in Maser FPGA has to match GPIO*_RX_WIDTH in Slave FPGA. GPIO*_RX_WIDTH in Master FPGA has to match GPIO*_TX_WIDTH in Slave FPGA when those GPIOs are used.

2.3. Configuration Examples

Two examples of compiler directives and parameter settings are shown below.

Example 1: MPU communicates with two I²C Slave Devices using two interrupts.

Table 2.3. Configuration Example 1

CE_UP	
ICE_UP 1	
NUM_OF_I2C_CH_2	
I2C1_TYPE_MB 2	
12C2_TYPE_MB 2	
12C3_TYPE_NA	
12C4_TYPE_NA	
12C5_TYPE_NA	
12C6_TYPE_NA	
I2C7_TYPE_NA	
NUM_OF_GPIO_TX_CH_0 NUM_OF_GPIO_TX_CH_1² NUM_OF_GPIO_RX_CH_0 NUM_OF_GPIO_RX_CH_0 NUM_OF_I2S_CH_0 NUM_OF_I2S_CH_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_TX_CH_0 NUM_OF_I2S_TX_CH_0 NUM_OF_I2S_RX_CH_0 NUM_OF_I2S_RX_CH_0 Parameters FPGA_ID = 0² FPGA_ID = 1² NUM_OF_CH = 3² NUM_OF_CH = 3² TX_LOOP_CNT_M1 = 0¹ TX_LOOP_CNT_M1 = 0¹ MAX_PAYLOAD_LENGTH = 9² MAX_PAYLOAD_LENGTH = 9² MAX_TX_LENGTH = 14² MAX_TX_LENGTH = 14² CH1_TYPE = I2C_MB² CH1_TYPE = I2C_SB² CH2_TYPE = I2C_MB² CH2_TYPE = I2C_SB² CH3_TYPE = GPIORX² CH3_TYPE = UNUSED CH4_TYPE = UNUSED CH4_TYPE = UNUSED CH5_TYPE = UNUSED CH6_TYPE = UNUSED CH7_TYPE = UNUSED CH6_TYPE = UNUSED CH7_TYPE = UNUSED CH7_TYPE = UNUSED I2C1_FREQ_K = 10'd400 I2C2_FREQ_K = 10'd400² I2C2_FREQ_K = 10'd400 I2C3_FREQ_K = 10'd400 I2C4_FREQ_K = 10'd400 I2C4_FREQ_K = 10'd400 I2C5_FREQ_K	
NUM_OF_GPIO_RX_CH_1² NUM_OF_GPIO_RX_CH_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_CLK_0 NUM_OF_I2S_TX_CH_0 NUM_OF_I2S_TX_CH_0 Parameters FPGA_ID = 0² FPGA_ID = 1² NUM_OF_CH = 3² NUM_OF_CH = 3² TX_LOOP_CNT_M1 = 0¹ MAX_PAYLOAD_LENGTH = 9² MAX_PAYLOAD_LENGTH = 9² MAX_TX_LENGTH = 14² CH1_TYPE = I2C_SB² CH2_TYPE = I2C_MB² CH2_TYPE = I2C_SB² CH3_TYPE = GPIOTX² CH4_TYPE = UNUSED CH4_TYPE = UNUSED CH5_TYPE = UNUSED CH6_TYPE = UNUSED CH6_TYPE = UNUSED CH7_TYPE = UNUSED CH6_TYPE = UNUSED CH7_TYPE = UNUSED CH6_TYPE = UNUSED CH7_TYPE = UNUSED CH2_FREQ_K = 10'd400 12C1_FREQ_K = 10'd400	

Master FPGA	Slave FPGA
GPIO1_TX_RATE_K = 11'd1	GPIO1_TX_RATE_K = 11'd1
GPIO2_TX_RATE_K = 11'd1	GPIO2_TX_RATE_K = 11'd1
GPIO3_TX_RATE_K = 11'd1	GPIO3_TX_RATE_K = 11'd1
GPIO4_TX_RATE_K = 11'd1	GPIO4_TX_RATE_K = 11'd1
GPIO5_TX_RATE_K = 11'd1	GPIO5_TX_RATE_K = 11'd1
GPIO6_TX_RATE_K = 11'd1	GPIO6_TX_RATE_K = 11'd1
GPIO7_TX_RATE_K = 11'd1	GPIO7_TX_RATE_K = 11'd1
GPIO1_TX_WIDTH = 4'd1	GPIO1_TX_WIDTH = 4'd2 ²
GPIO2_TX_WIDTH = 4'd1	GPIO2_TX_WIDTH = 4'd1
GPIO3_TX_WIDTH = 4'd1	GPIO3_TX_WIDTH = 4'd1
GPIO4_TX_WIDTH = 4'd1	GPIO4_TX_WIDTH = 4'd1
GPIO5_TX_WIDTH = 4'd1	GPIO5_TX_WIDTH = 4'd1
GPIO6_TX_WIDTH = 4'd1	GPIO6_TX_WIDTH = 4'd1
GPIO7_TX_WIDTH = 4'd1	GPIO7_TX_WIDTH = 4'd1
GPIO1_RX_WIDTH = 4'd2 ²	GPIO1_RX_WIDTH = 4'd1
GPIO2_RX_WIDTH = 4'd1	GPIO2_RX_WIDTH = 4'd1
GPIO3_RX_WIDTH = 4'd1	GPIO3_RX_WIDTH = 4'd1
GPIO4_RX_WIDTH = 4'd1	GPIO4_RX_WIDTH = 4'd1
GPIO5_RX_WIDTH = 4'd1	GPIO5_RX_WIDTH = 4'd1
GPIO6_RX_WIDTH = 4'd1	GPIO6_RX_WIDTH = 4'd1
GPIO7_RX_WIDTH = 4'd1	GPIO7_RX_WIDTH = 4'd1
GPIO_TX_MAX_WIDTH = 4'd1	GPIO_TX_MAX_WIDTH = 4'd2 ²
GPIO_RX_MAX_WIDTH = 4'd2 ²	GPIO_RX_MAX_WIDTH = 4'd1
12S1_BIDIR = 0	I2S1_BIDIR =0
I2S1_SAMPLE_DEPTH = 0	I2S1_SAMPLE_DEPTH = 0
I2S1_BUFFER_DEPTH = 0	I2S1_BUFFER_DEPTH = 0
I2S1_SAMPLE_RATE_K = 0	I2S1_SAMPLE_RATE_K = 0
I2S2_SAMPLE_DEPTH = 0	I2S2_SAMPLE_DEPTH = 0
I2S2_BUFFER_DEPTH = 0	I2S2_BUFFER_DEPTH = 0
I2S2_SAMPLE_RATE_K = 0	I2S2_SAMPLE_RATE_K = 0

Notes:

- 1. Directives and parameters that should not be changed by users.
- 2. Active Directives/parameters active in this configuration.

Example 2: Add a third I²C (opposite Master/Slave) and UART GPIO (4 bits/3 bits) to Example 1.

Table 2.4. Configuration Example 2

able 2.4. Configuration Example 2			
Master FPGA	Slave FPGA		
	Compiler Directives		
ICE_UP ¹	ICE_UP ¹		
NUM_OF_I2C_CH_3 ²	NUM_OF_I2C_CH_3 ²		
I2C1_TYPE_MB ²	I2C1_TYPE_SB ²		
I2C2_TYPE_MB ²	I2C2_TYPE_SB ²		
I2C3_TYPE_SB ²	I2C3_TYPE_MB ²		
I2C4_TYPE_NA	I2C4_TYPE_NA		
I2C5_TYPE_NA	I2C5_TYPE_NA		
I2C6_TYPE_NA	I2C6_TYPE_NA		
I2C7_TYPE_NA	I2C7_TYPE_NA		
NUM_OF_GPIO_TX_CH_1 ²	NUM_OF_GPIO_TX_CH_2 ²		
NUM_OF_GPIO_RX_CH_2 ²	NUM_OF_GPIO_RX_CH_1 ²		
NUM_OF I2S_CH_0	NUM_OF_I2S_CH_0		
NUM_OF_I2S_CLK_0	NUM_OF_I2S_CLK_0		
NUM_OF_I2S_TX_CH_0	NUM_OF_I2S_TX_CH_0		
NUM_OF_I2S_RX_CH_0	NUM_OF_I2S_RX_CH_0		
	Parameters		
$FPGA_ID = 0^2$	FPGA_ID = 1 ²		
$NUM_OF_CH = 5^2$	$NUM_OF_CH = 5^2$		
$TX_LOOP_CNT_M1 = 0^1$	$TX_LOOP_CNT_M1 = 0^1$		
MAX_PAYLOAD_LENGTH = 9 ²	MAX_PAYLOAD_LENGTH = 9 ²		
MAX_TX_LENGTH = 14 ²	MAX_TX_LENGTH = 14 ²		
CH1_TYPE = I2C_MB ²	CH1_TYPE = I2C_SB ²		
CH2_TYPE = I2C_MB ²	CH2_TYPE = I2C_SB ²		
CH3_TYPE = I2C_SB ²	CH3_TYPE = I2C_MB ²		
CH4_TYPE = GPTXRX	CH4_TYPE = GPTXRX		
CH5_TYPE = GPIORX	CH5_TYPE = GPIOTX		
CH6_TYPE = UNUSED	CH6_TYPE = UNUSED		
CH7_TYPE = UNUSED	CH7_TYPE = UNUSED		
I2C1_FREQ_K = 10'd400	I2C1_FREQ_K = 10'd400 ²		
I2C2_FREQ_K = 10'd400	I2C2_FREQ_K = 10'd400 ²		
I2C3_FREQ_K = 10'd400 ²	I2C3_FREQ_K = 10'd400		
I2C4_FREQ_K = 10'd400	I2C4_FREQ_K = 10'd400		
I2C5_FREQ_K = 10'd400	I2C5_FREQ_K = 10'd400		
I2C6_FREQ_K = 10'd400	I2C6_FREQ_K = 10'd400		
I2C7_FREQ_K = 10'd400	I2C7_FREQ_K = 10'd400		
GPIO1_TX_TYPE = SAMPLE ²	GPIO1_TX_TYPE = SAMPLE ²		
GPIO2_TX_TYPE = EVENTS	GPIO2_TX_TYPE = EVENTS ²		
GPIO3_TX_TYPE = EVENTS	GPIO3_TX_TYPE = EVENTS		
GPIO4_TX_TYPE = EVENTS	GPIO4_TX_TYPE = EVENTS		
GPIO5_TX_TYPE = EVENTS	GPIO5_TX_TYPE = EVENTS		
GPIO6_TX_TYPE = EVENTS	GPIO6_TX_TYPE = EVENTS		
GPIO7_TX_TYPE = EVENTS	GPIO7_TX_TYPE = EVENTS		
GPIO1_TX_RATE_K = 11'd1 ²	GPIO1_TX_RATE_K = 11'd1 ²		
GPIO2_TX_RATE_K = 11'd1	GPIO2_TX_RATE_K = 11'd1		
GPIO3_TX_RATE_K = 11'd1	GPIO3_TX_RATE_K = 11'd1		
	_ _ _ _		

Master FPGA	Slave FPGA
GPIO4_TX_RATE_K = 11'd1	GPIO4_TX_RATE_K = 11'd1
GPIO5_TX_RATE_K = 11'd1	GPIO5_TX_RATE_K = 11'd1
GPIO6_TX_RATE_K = 11'd1	GPIO6_TX_RATE_K = 11'd1
GPIO7_TX_RATE_K = 11'd1	GPIO7_TX_RATE_K = 11'd1
GPIO1_TX_WIDTH = 4'd4 ²	GPIO1_TX_WIDTH = 4'd3 ²
GPIO2_TX_WIDTH = 4'd1	GPIO2_TX_WIDTH = 4'd2 ²
GPIO3_TX_WIDTH = 4'd1	GPIO3_TX_WIDTH = 4'd1
GPIO4_TX_WIDTH = 4'd1	GPIO4_TX_WIDTH = 4'd1
GPIO5_TX_WIDTH = 4'd1	GPIO5_TX_WIDTH = 4'd1
GPIO6_TX_WIDTH = 4'd1	GPIO6_TX_WIDTH = 4'd1
GPIO7_TX_WIDTH = 4'd1	GPIO7_TX_WIDTH = 4'd1
GPIO1_RX_WIDTH = 4'd3 ²	GPIO1_RX_WIDTH = 4'd4 ²
GPIO2_RX_WIDTH = 4'd2 ²	GPIO2_RX_WIDTH = 4'd1
GPIO3_RX_WIDTH = 4'd1	GPIO3_RX_WIDTH = 4'd1
GPIO4_RX_WIDTH = 4'd1	GPIO4_RX_WIDTH = 4'd1
GPIO5_RX_WIDTH = 4'd1	GPIO5_RX_WIDTH = 4'd1
GPIO6_RX_WIDTH = 4'd1	GPIO6_RX_WIDTH = 4'd1
GPIO7_RX_WIDTH = 4'd1	GPIO7_RX_WIDTH = 4'd1
GPIO_TX_MAX_WIDTH = 4'd4 ²	GPIO_TX_MAX_WIDTH = 4'd3 ²
GPIO_RX_MAX_WIDTH = 4'd3 ²	GPIO_RX_MAX_WIDTH = 4'd4 ²
12S1_BIDIR = 0	I2S1_BIDIR =0
I2S1_SAMPLE_DEPTH = 0	I2S1_SAMPLE_DEPTH = 0
I2S1_BUFFER_DEPTH = 0	I2S1_BUFFER_DEPTH = 0
I2S1_SAMPLE_RATE_K = 0	I2S1_SAMPLE_RATE_K = 0
I2S2_SAMPLE_DEPTH = 0	I2S2_SAMPLE_DEPTH = 0
I2S2_BUFFER_DEPTH = 0	I2S2_BUFFER_DEPTH = 0
I2S2_SAMPLE_RATE_K = 0	I2S2_SAMPLE_RATE_K = 0

Notes:

- 1. Directives and parameters that should not be changed by users.
- 2. Directives and parameters that are active in this configuration.

Regarding channel assignments, I²C channels always have to be assigned to lower channels versus GPIO channels.

Example 3: One I²S channel from Master to Slave, two I²C and UART GPIO (4 bits/3 bits).

Table 2.5. Configuration Example 3

Master FPGA	Slave FPGA	
	Compiler Directives	
ICE_UP ¹	ICE_UP ¹	
NUM OF I2C CH 3 ²	NUM_OF_I2C_CH_3 ²	
I2C1_TYPE_MB ²	I2C1_TYPE_SB ²	
I2C2_TYPE_MB ²	I2C2_TYPE_SB ²	
I2C3_TYPE_SB ²	I2C3_TYPE_MB ²	
I2C4_TYPE_NA	I2C4_TYPE_NA	
I2C5 TYPE NA	I2C5 TYPE NA	
I2C6 TYPE NA	I2C6_TYPE_NA	
I2C7_TYPE_NA	I2C7_TYPE_NA	
NUM_OF_GPIO_TX_CH_1 ²	NUM_OF_GPIO_TX_CH_2 ²	
NUM_OF_GPIO_RX_CH_2 ²	NUM_OF_GPIO_RX_CH_1 ²	
NUM_OF I2S_CH_1	NUM_OF_I2S_CH_1	
NUM_OF_I2S_CLK_1	NUM_OF_I2S_CLK_0	
NUM_OF_I2S_TX_CH_1	NUM_OF_I2S_TX_CH_0	
NUM_OF_I2S_RX_CH_0	NUM_OF_I2S_RX_CH_1	
I2S1_CLK_SEND	I2S1 RX MASTER	
I2S1_CONTROLLER		
	Parameters	
FPGA ID = 0^2	FPGA ID = 1 ²	
NUM OF $CH = 5^2$	NUM OF CH = 5 ²	
TX_LOOP_CNT_M1 = 0 ¹	TX_LOOP_CNT_M1 = 0 ¹	
MAX_PAYLOAD_LENGTH = 32 ²	MAX_PAYLOAD_LENGTH = 32 ²	
MAX_TX_LENGTH = 35 ²	MAX_TX_LENGTH = 35 ²	
CH1_TYPE = I2S_TX	CH1 TYPE = I2S RX	
CH2_TYPE = I2C_MB ²	CH2_TYPE = I2C_SB ²	
CH3_TYPE = I2C_MB ²	CH3_TYPE = I2C_SB ²	
CH4_TYPE = I2C_SB ²	CH4 TYPE = I2C MB ²	
CH5_TYPE = GPTXRX	CH5 TYPE = GPTXRX	
CH6_TYPE = GPIORX	CH6_TYPE = GPIOTX	
CH7 TYPE = UNUSED	CH7_TYPE = UNUSED	
I2C1_FREQ_K = 10'd400	I2C1_FREQ_K = 10'd400 ²	
I2C2 FREQ K = 10'd400	I2C2 FREQ K = 10'd400 ²	
I2C3_FREQ_K = 10'd400 ²	I2C3_FREQ_K = 10'd400	
I2C4 FREQ K = 10'd400	I2C4_FREQ_K = 10'd400	
I2C5_FREQ_K = 10'd400	I2C5_FREQ_K = 10'd400	
I2C6_FREQ_K = 10'd400	I2C6_FREQ_K = 10'd400	
I2C7_FREQ_K = 10'd400	I2C7_FREQ_K = 10'd400	
GPIO1_TX_TYPE = SAMPLE ²	GPIO1_TX_TYPE = SAMPLE ²	
GPIO2_TX_TYPE = EVENTS	GPIO2_TX_TYPE = EVENTS ²	
GPIO3_TX_TYPE = EVENTS	GPIO3_TX_TYPE = EVENTS	
GPIO4_TX_TYPE = EVENTS	GPIO4_TX_TYPE = EVENTS	
GPIO5_TX_TYPE = EVENTS	GPIO5_TX_TYPE = EVENTS	
GPIO6_TX_TYPE = EVENTS	GPIO6_TX_TYPE = EVENTS	
GPIO7_TX_TYPE = EVENTS	GPIO7_TX_TYPE = EVENTS	
GPIO1_TX_RATE_K = 11'd12	GPIO1_TX_RATE_K = 11'd1 ²	
-::: <u></u>	1 0027	

Master FPGA	Slave FPGA
GPIO2_TX_RATE_K = 11'd1	GPIO2_TX_RATE_K = 11'd1
GPIO3_TX_RATE_K = 11'd1	GPIO3_TX_RATE_K = 11'd1
GPIO4_TX_RATE_K = 11'd1	GPIO4_TX_RATE_K = 11'd1
GPIO5_TX_RATE_K = 11'd1	GPIO5_TX_RATE_K = 11'd1
GPIO6_TX_RATE_K = 11'd1	GPIO6_TX_RATE_K = 11'd1
GPIO7_TX_RATE_K = 11'd1	GPIO7_TX_RATE_K = 11'd1
GPIO1_TX_WIDTH = 4'd4 ²	GPIO1_TX_WIDTH = 4'd3 ²
GPIO2_TX_WIDTH = 4'd1	GPIO2_TX_WIDTH = 4'd2 ²
GPIO3_TX_WIDTH = 4'd1	GPIO3_TX_WIDTH = 4'd1
GPIO4_TX_WIDTH = 4'd1	GPIO4_TX_WIDTH = 4'd1
GPIO5_TX_WIDTH = 4'd1	GPIO5_TX_WIDTH = 4'd1
GPIO6_TX_WIDTH = 4'd1	GPIO6_TX_WIDTH = 4'd1
GPIO7_TX_WIDTH = 4'd1	GPIO7_TX_WIDTH = 4'd1
GPIO1_RX_WIDTH = 4'd3 ²	GPIO1_RX_WIDTH = 4'd4 ²
GPIO2_RX_WIDTH = 4'd2 ²	GPIO2_RX_WIDTH = 4'd1
GPIO3_RX_WIDTH = 4'd1	GPIO3_RX_WIDTH = 4'd1
GPIO4_RX_WIDTH = 4'd1	GPIO4_RX_WIDTH = 4'd1
GPIO5_RX_WIDTH = 4'd1	GPIO5_RX_WIDTH = 4'd1
GPIO6_RX_WIDTH = 4'd1	GPIO6_RX_WIDTH = 4'd1
GPIO7_RX_WIDTH = 4'd1	GPIO7_RX_WIDTH = 4'd1
GPIO_TX_MAX_WIDTH = 4'd4 ²	GPIO_TX_MAX_WIDTH = 4'd3 ²
GPIO_RX_MAX_WIDTH = 4'd3 ²	GPIO_RX_MAX_WIDTH = 4'd4 ²
I2S1_BIDIR = 0	I2S1_BIDIR =0
I2S1_SAMPLE_DEPTH = 32	I2S1_SAMPLE_DEPTH = 32
I2S1_BUFFER_DEPTH = 6	I2S1_BUFFER_DEPTH = 6
I2S1_SAMPLE_RATE_K = 48	I2S1_SAMPLE_RATE_K = 48
I2S2_SAMPLE_DEPTH = 0	I2S2_SAMPLE_DEPTH = 0
I2S2_BUFFER_DEPTH = 0	I2S2_BUFFER_DEPTH = 0
I2S2_SAMPLE_RATE_K = 0	I2S2_SAMPLE_RATE_K = 0

Notes:

- 1. Directives and parameters that should not be changed by users.
- 2. Directives and parameters that are active in this configuration.

Regarding channel assignments, I2S channels always have to be assigned to lower channels followed by I^2C channels and then GPIO channels.

Example 4: One DP Aux, one I²S channel from Master to Slave, two I²C and UART GPIO (4 bits/3 bits).

Table 2.6. Configuration Example 4

Able 2.6. Configuration Example 4 Waster FPGA Slave FPGA					
	mpiler Directives				
ICE_UP¹ ICE_UP¹					
NUM OF I2C CH 3 ²	NUM OF I2C CH 3 ²				
I2C1_TYPE_MB ²	I2C1_TYPE_SB ²				
I2C2_TYPE_MB ²	I2C2_TYPE_SB ²				
I2C3_TYPE_SB ²	I2C3_TYPE_MB ²				
I2C4_TYPE_NA	I2C4_TYPE_NA				
I2C5 TYPE NA	I2C5 TYPE NA				
I2C6 TYPE NA	I2C6_TYPE_NA				
I2C7_TYPE_NA	I2C7_TYPE_NA				
NUM_OF_GPIO_TX_CH_1 ²	NUM_OF_GPIO_TX_CH_2 ²				
NUM_OF_GPIO_RX_CH_2 ²	NUM_OF_GPIO_RX_CH_1 ²				
	+				
NUM_OF I2S_CH_1	NUM_OF_I2S_CH_1				
NUM_OF_I2S_CLK_1	NUM_OF_I2S_CLK_O				
NUM_OF_I2S_TX_CH_1	NUM_OF_I2S_TX_CH_0				
NUM_OF_I2S_RX_CH_0	NUM_OF_I2S_RX_CH_1				
I2S1_CLK_SEND	I2S1_RX_MASTER				
I2S1_CONTROLLER	- DD ALIV				
DP_AUX	DP_AUX				
FDCA ID 02	Parameters 500 A ID 112				
FPGA_ID = 0 ²	FPGA_ID = 1 ²				
NUM_OF_CH = 5 ²	NUM_OF_CH = 5 ²				
TX_LOOP_CNT_M1 = 0 ¹	TX_LOOP_CNT_M1 = 0 ¹				
MAX_PAYLOAD_LENGTH = 32 ²	MAX_PAYLOAD_LENGTH = 32 ²				
MAX_TX_LENGTH = 35 ²	MAX_TX_LENGTH = 35 ²				
CH1_TYPE = I2S_TX	CH1_TYPE = I2S_RX				
CH2_TYPE = DP_AUX	CH2_TYPE = DP_AUX				
CH3_TYPE = I2C_MB2	CH3_TYPE = I2C_SB2				
CH4_TYPE = I2C_MB2	CH4_TYPE = I2C_SB2				
CH5_TYPE = I2C_SB2	CH5_TYPE = I2C_MB2				
CH6_TYPE = GPTXRX	CH6_TYPE = GPTXRX				
CH7_TYPE = GPIORX	CH7_TYPE = GPIOTX				
I2C1_FREQ_K = 10'd400	12C1_FREQ_K = 10'd400 ²				
I2C2_FREQ_K = 10'd400	12C2_FREQ_K = 10'd400 ²				
I2C3_FREQ_K = 10'd400 ²	12C3_FREQ_K = 10'd400				
I2C4_FREQ_K = 10'd400	12C4_FREQ_K = 10'd400				
I2C5_FREQ_K = 10'd400	12C5_FREQ_K = 10'd400				
I2C6_FREQ_K = 10'd400	12C6_FREQ_K = 10'd400				
I2C7_FREQ_K = 10'd400	12C7_FREQ_K = 10'd400				
GPIO1_TX_TYPE = SAMPLE ²	GPIO1_TX_TYPE = SAMPLE ²				
GPIO2_TX_TYPE = EVENTS	GPIO2_TX_TYPE = EVENTS ²				
GPIO3_TX_TYPE = EVENTS	GPIO3_TX_TYPE = EVENTS				
GPIO4_TX_TYPE = EVENTS	GPIO4_TX_TYPE = EVENTS				
GPIO5_TX_TYPE = EVENTS	GPIO5_TX_TYPE = EVENTS				
GPIO6_TX_TYPE = EVENTS	GPIO6_TX_TYPE = EVENTS				
GPIO7 TX TYPE = EVENTS	GPIO7_TX_TYPE = EVENTS				

Master FPGA	Slave FPGA
GPIO1_TX_RATE_K = 11'd1 ²	GPIO1_TX_RATE_K = 11'd1 ²
GPIO2_TX_RATE_K = 11'd1	GPIO2_TX_RATE_K = 11'd1
GPIO3_TX_RATE_K = 11'd1	GPIO3_TX_RATE_K = 11'd1
GPIO4_TX_RATE_K = 11'd1	GPIO4_TX_RATE_K = 11'd1
GPIO5_TX_RATE_K = 11'd1	GPIO5_TX_RATE_K = 11'd1
GPIO6_TX_RATE_K = 11'd1	GPIO6_TX_RATE_K = 11'd1
GPIO7_TX_RATE_K = 11'd1	GPIO7_TX_RATE_K = 11'd1
GPIO1_TX_WIDTH = 4'd4 ²	$GPIO1_TX_WIDTH = 4'd3^2$
GPIO2_TX_WIDTH = 4'd1	$GPIO2_TX_WIDTH = 4'd2^{2}$
GPIO3_TX_WIDTH = 4'd1	GPIO3_TX_WIDTH = 4'd1
GPIO4_TX_WIDTH = 4'd1	GPIO4_TX_WIDTH = 4'd1
GPIO5_TX_WIDTH = 4'd1	GPIO5_TX_WIDTH = 4'd1
GPIO6_TX_WIDTH = 4'd1	GPIO6_TX_WIDTH = 4'd1
GPIO7_TX_WIDTH = 4'd1	GPIO7_TX_WIDTH = 4'd1
GPIO1_RX_WIDTH = 4'd3 ²	GPIO1_RX_WIDTH = 4'd4 ²
GPIO2_RX_WIDTH = 4'd2 ²	GPIO2_RX_WIDTH = 4'd1
GPIO3_RX_WIDTH = 4'd1	GPIO3_RX_WIDTH = 4'd1
GPIO4_RX_WIDTH = 4'd1	GPIO4_RX_WIDTH = 4'd1
GPIO5_RX_WIDTH = 4'd1	GPIO5_RX_WIDTH = 4'd1
GPIO6_RX_WIDTH = 4'd1	GPIO6_RX_WIDTH = 4'd1
GPIO7_RX_WIDTH = 4'd1	GPIO7_RX_WIDTH = 4'd1
GPIO_TX_MAX_WIDTH = 4'd4 ²	GPIO_TX_MAX_WIDTH = 4'd3 ²
GPIO_RX_MAX_WIDTH = 4'd3 ²	GPIO_RX_MAX_WIDTH = 4'd4 ²
12S1_BIDIR = 0	I2S1_BIDIR =0
I2S1_SAMPLE_DEPTH = 32	I2S1_SAMPLE_DEPTH = 32
I2S1_BUFFER_DEPTH = 6	I2S1_BUFFER_DEPTH = 6
I2S1_SAMPLE_RATE_K = 48	I2S1_SAMPLE_RATE_K = 48
I2S2_SAMPLE_DEPTH = 0	I2S2_SAMPLE_DEPTH = 0
I2S2_BUFFER_DEPTH = 0	I2S2_BUFFER_DEPTH = 0
I2S2_SAMPLE_RATE_K = 0	I2S2_SAMPLE_RATE_K = 0

Notes:

- 1. Directives and parameters that should not be changed by users.
- 2. Directives and parameters that are active in this configuration.

Regarding channel assignments, I2S channels always have to be assigned to lower channels followed by DP_AUX channel, I²C channels, and then GPIO channels.

2.4. Top-Level I/O

Table 2.7 shows the top-level I/O of the Single-Wire RD with a typical I²C, I2S, and GPIO configuration. Actual I/O depend on the user's channel configuration. All necessary I/O ports are automatically declared by compiler directives and parameter settings mentioned above.

Table 2.7. Single-wire Top-Level I/O

Port Name	Default	Direction	Clock Domain	Description			
Reset							
rst_n	1'b1	Input	Async	Asynchronous system reset, active low.			
Status							
status[1:0]	2'b00	Output	N/A	Indicate the link connection status. See the Link Status section.			
		Link					
link	Hi-Z	Inout	tx_clk	Single-wire link between FPGAs. Requires strong pullup.			
	I ² C Interface						
scl[#-1:0]	Hi-Z	Inout	Async	I ² C Clock			
sda[#-1:0]	Hi-Z	Inout	Async	I ² C Data			
		DP-AUX Interfac	e				
dp_aux_in_p	Hi-Z	Input	Async	DP-AUX Input Data			
dp_aux_out_p	Hi-Z	Out	Async	DP-AUX De-aggregated Data			
dp_aux_out_n	Hi-Z	Output	Async	DP-AUX De-aggregated Data Pair			
	I ² S Interface						
I2s[#-1:0]_tx/rx_ws	Hi-Z	Input or Output	Async	I2S Word Select			
I2s[#-1:0]_tx/rx_sd	Hi-Z	Input or Output	Async	I2S Data			
I2s[#-1:0]_tx/rx_sclk	Hi-Z	Input or Output	Async	I2S Clock			
GPIO Interface							
gpio#_in[GPIO_TX_WIDTH[#-1]-1:0]	_	Input	Async	GPIO # input			
gpio#_out[GPIO_RX_WIDTH[#-1]-1:0]	0	Output	N/A	GPIO # output			

Note: # denotes the number of respective channels configured.

3. Detailed Description

This RD can take up to 7 TX/RX channels to aggregate and communicate over a single wire between two FPGAs. The two FPGAs have to be properly configured such as number of channels, data content on specified channels, data width, etc., to transmit and retrieve proper information. The Single-Wire link must be pulled up by a strong external resistor, for example, 200 Ω . The ~24 MHz clock is generated by the internal oscillator and geared up to ~60 MHz by the on-chip PLL. For designs with an I2S channel, an external clock must be used to be feed to the PLL. This ~60 MHz clock is used as a sampling clock on the RX side and a ~15 MHz clock is used as a TX clock. Two TX clock cycles are required for bi-phase mark coding to transmit one bit of data. Therefore, the transmission data rate is ~7.5 Mbps. In the case of iCE40 devices, the tolerance of the internal oscillator is \pm 10%, which means both RX sides have to assume a ~ \pm 20 % clock frequency difference versus the TX sides. The clock speed limitation depends on channel configuration.

The link must have a strong pull-up resistor since it is not driven high for the whole '1' period. The FPGA drives the link low for the entire '0' period, but drives high only for a short time (< 10 ns of beginning of '1' period).

3.1. Link Establishment upon Power up and Reset Release

When the FPGAs are powered up and reset is released after configuration, the internal oscillator begins generating a ~24 MHz clock (for designs with I2S channels, an external clock is used) and the PLL generates a ~60 MHz clock using the oscillator clock. This clock is divided by 4 to provide a TX clock of ~15 MHz. Figure 3.1 shows the transactions for Link Establishment. After the PLL is locked and a proper TX clock is generated, the Master FPGA pulls the link low for 3 TX clock cycles to be discovered by the Slave FPGA. It repeats this every 32 clock cycles until it detects 5 cycles or more of link = 0 as a sign of connection acknowledgement. Upon reset release, the Slave FPGA waits for link = 0 for 2 TX clock cycles, then pulls the link low for 7 TX clock cycles.

Figure 3.1. Link Establishment

For I²S application, I2S clock learning/training is done after link acknowledgement. To achieve this, a Master FPGA or a Slave FPGA I2S sends eight SCK pulses on the link, which the other FPGA receives and processes as shown in Figure 3.2.

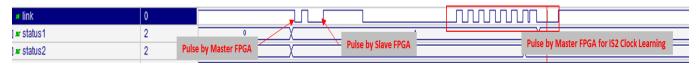


Figure 3.2. I²S Clock Training

3.2. Link Status

The Single-Wire RD provides a three-bit status output to indicate seven conditions:

- 000 : powered up with rst n = 0
- 001 : Discovery stage, in which the FPGA is trying to establish the Single-Wire connection.
- 010 : Connected state, link connection established by the pulse exchange shown in the Link Establishment upon Power up and Reset Release section.
- 011 : Active state indicates active payload data transmission on Single-Wire link.
- 100: This indicates the FPGA failed to establish TX data on the link
- 110: This indicates the FPGA is requesting TX data
- 111: This indicates a Parity Error on the payload received...

3.3. TX Rights Negotiation

Figure 3.3 shows an example of TX rights negotiation between two FPGAs. After the link connection is confirmed, both sides can request the TX transaction by pulling the link low for two TX clock cycles. The other side pulls the link low for five TX clock cycles as a grant. In case that both sides send TX request at the same time, the long pulse cannot be detected on both sides. In that case, the side previously on RX side gets the TX right and send TX request pulse again. The other side does not send the TX request pulse again, and waits for TX request pulse coming from the other side, then send the grant pulse. If this case happens in the very first transaction after reset release, Slave FPGA will give up sending a new TX request pulse and Master FPGA will have the TX rights.

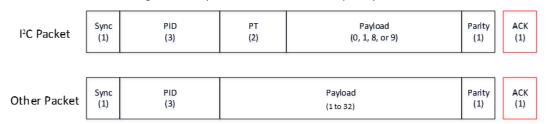


Figure 3.3. TX Rights Negotiation and Packet Transmission

3.4. Packet Transmission

Single-Wire employs packet-based TDM data transmission. Figure 3.4 shows packet structures. Every packet has a start bit, payload ID (PID), and a parity bit. The length of the payload data depends on the PID, Payload Type (in case of I²C), and data width (in case of GPIO). Packet structure is different between I²C, I2S and GPIO. In the case of I²C, two-bit payload type (PT) indicates the type of payload since those payloads have different data lengths. PID assignments have to be matched between both FPGAs, otherwise the RX side cannot retrieve the correct data. These assignments are compile options and cannot be changed dynamically. Parity polarity is determined by the payload length to end the parity bit as high all the time. After the completion of the packet transmission, the RX side returns a short pulse, 4 cycles of Rx clock, as an acknowledge bit (ACK) to notify Parity check is OK. The TX side retransmits the same packet data again if it does not receive an ACK from the RX side.

Bi-phase mark encoding is used to transmit the packet data. Figure 3.5 shows an example of Bi-phase mark encoding and Figure 3.6 shows an example of the bit pattern of an I²C packet. The link status is always high in the idle state. Therefore the Sync bit, data = 1, is always encoded as 01 followed by PID data. Even parity is used when the number of payload bits is even. Odd parity is used when the number of payload bits is odd. Using this method, the parity bit pattern is either 01 or 11, so the ACK bit is easily recognizable on the TX side. Two TX cycles are assigned to detect the ACK bit on the TX side considering the clock phase difference and frequency tolerance between two FPGAs.

Remarks:

- () denotes bit length.
- PID : Payload ID, PID = 7 is reserved and cannot be used for customer purposes.
- PT: Payload Type for I²C
 Mater-to-Slave --- 00: Start/Repeated start with byte data(8), 01: write data(8), 10: ACK/NACK bit(1), 11: stop (0)
 Slave-to-Master --- 00: ACK + read data (9), 01: read data (8), 10: ACK bit (1), 11: reserved
- Payload length in non I²C packet is pre-determined by the data width associated with PID.
- Parity: Even Parity is used when payload length is even; Odd Parity is used when payload length is odd
- ACK: ACK bit is returned from RX side to TX side when Parity Check on Rx side is OK. TX side retransmits the same packet if it does not receive ACK bit.

Figure 3.4. Packet Structure

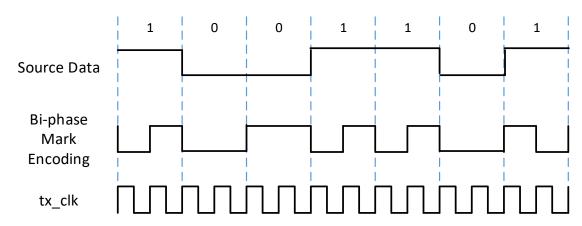


Figure 3.5. Example of Bi-phase Mark Encoding

Figure 3.6. Example of I²C Packet

24

FPGA-RD-02039-1 2

3.5. TX Rights Release

The TX side can send a packet of all channels if they are ready to be sent once that FPGA obtains TX rights. Starting from the lower numbered channels, it keeps sending packets one after another until all available TX channel data are sent. After that, that FPGA releases TX rights. Therefore a new negotiation is necessary when it needs to send the next data packet. The RX side sets the waiting period after it returns an ACK for the current TX data reception. If it does not receive the start bit within that period and has internal TX requests, it sends a TX request to the other side.

3.6. System Level I²C Transactions

Figure 3.7 and Figure 3.8 show an example of system-level I²C transactions. Two I²C master devices are connected to the Single-Wire Master FPGA, such as SCL1M/SDA1M and SCL2M/SDA2M, and two I²C slave devices are connected to the Single-Wire Slave FPGA, such as SCL1S/SDA1S and SCL2S/SDA2S. In Figure 3.7, both I²C masters issue Start commands followed by I²C address 0x60 and write commands. Then SCL is pulled low, clock stretching, by the Single-Wire Master, while *Start Command + I²C address + write command* is forwarded to I²C slave device through the link. The Single-Wire Slave FPGA receives an I²C ACK from the I²C slave device which is forwarded to the I²C master device through Single-Wire link and Single-Wire Master FPGA. In other words, the I²C master device SCL is held low after the I²C master sends a byte of data until the I²C ACK comes back from the other end through the link for write transactions. Figure 3.8 shows a Repeated Start command and read transactions. In the case of read transactions, the master I²C SCL is held low until the Master FPGA gets I²C ACK+ read data from the slave side through the link. Since both sides have to replicate the transactions originated from the other side, I²C transactions take at least twice the time compared to non-Single-Wire transactions. The overhead of Single-Wire depends on other link transactions.

Figure 3.7. I²C Transaction #1 (Sub-address Write for Read Transaction)

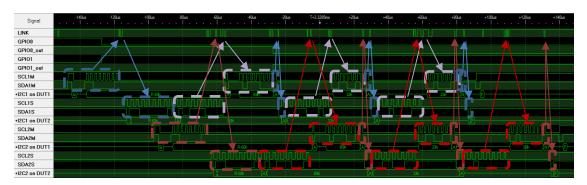


Figure 3.8. I²C Transaction #2 (Repeated Start Followed with Read Transaction)

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 3.9 and Figure 3.10 show examples of link delay in case of I²C Start and I²C ACK. Actual delay time depends on several conditions including data sample timing, TX Request collision, link occupancy, TX cue, and others.

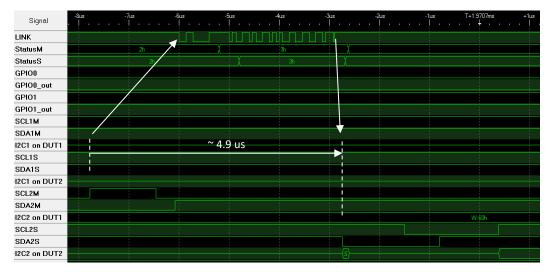


Figure 3.9. Link Delay Example #1 (I²C Start)

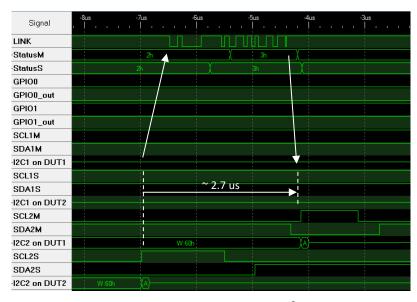


Figure 3.10. Link Delay Example #2 (I²C ACK)

3.7. System Level I2S Transactions

Figure 3.11 shows an example of a system-level I2S transaction. One I2S Transmitter is connected to the Master FPGA while its I2S Receiver is connected to the Slave FPGA. I2S data are sent to the Single-Wire link every Word line, which corresponds to the I2S WS. If there are other types of data (I²C for example) connected in the system, data transmission is handled in a round robin manner. For example, in Figure 3.11 the I²C Packet is sent to the Single-Wire after the first packet of I2S data is sent.

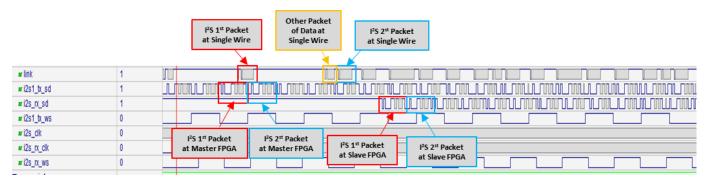


Figure 3.11. System Level I2S Transaction

Figure 3.12 shows an example of I2S delay from Master to Slave FPGA with a sample rate of 48 kHz, using 32 bit I2S word length. Delay may vary according to the configuration of other data on the link.

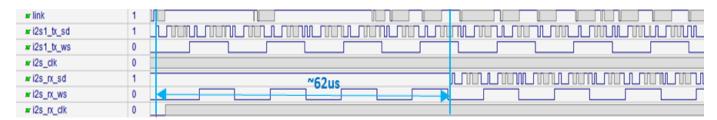


Figure 3.12. I2S Delay from Master to Slave FPGA

3.8. System Level DP-AUX Transactions

DP Aux is a half-duplex, bidirectional, AC-coupled, doubly terminated differential pair. Mancheser-II is used as the channel coding for an AUX transaction over this channel. The Source device (sometimes also called the Host) is the master and the Sink device (sometimes also called the Display) is the slave.

Figure 3.13 shows an example of a system-level DP AUX Transaction. One DP Aux Transmitter is connected to the Master FPGA while its One DP Aux Receiver is connected to the Slave FPGA. If there are other types of data (I²C for example) connected in the system, data transmission is handled in a round robin manner.

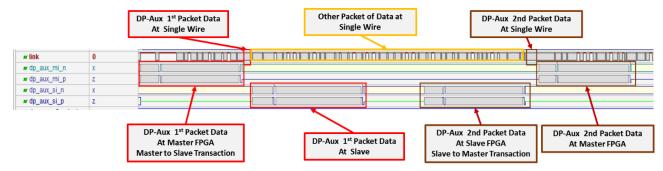


Figure 3.13. System Level DP-AUX Transaction

Figure 3.14 and Figure 3.15 show examples of DP AUX delay from Master packet data to the response by the slave on the master port. Though DP Aux channel can accommodate up to a 152 bit payload, it may exceed the maximum allowable response time from the Display to Host for payloads above 64 bits versus the DP Aux spec of 300 microseconds.

Figure 3.14. DP AUX Delay from Master Packet Data to Response by the Slave on the Master Port with 64 Bit Payload

Figure 3.15. DP AUX Delay from Master Packet Data to Response by the Slave on the Master Port with 128 bit Payload

4. Packaged Design

The Single-Wire Signal Aggregation Reference Design for iCE40 UltraPlus is available on latticesemi.com. Figure 4.1 shows the directory structure. The design is targeted for iCE40UP5K-SG48I and configured for one I2S, one DP Aux, two I²C and 2 bits of TX and RX GPIO:

- CH #0: I2S Master on Master FPGA and I2S Slave on Slave FPGA
- CH #1: DP Aux on Master FPGA and DP Aux Slave on Slave FPGA
- CH #1: I²C Master on Master FPGA and I²C Slave on Slave FPGA
- CH #2: I²C Master on Master FPGA and I²C Slave on Slave FPGA
- CH #3: GPIO TX (2 bits) & RX (2 bits) on both FPGA

There are two projects for Master FPGA and Slave FPGA. The user can change the configuration by modifying compiler directives and parameters in two top-level Verilog files; singlewire_master.v and singlewire_slave.v.

Functional simulation setup for Aldec Active-HDL is also included. The script can be executed from Active-HDL window through Radiant. The testbench and related files need to be modified for different configurations along with two top-level Verilog design files.

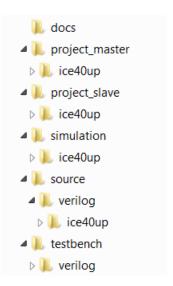


Figure 4.1. Packaged Design Directory Structure

5. Resource Utilization

Resource utilization depends on the configuration. Table 5.1 shows the utilization under some typical configurations on iCE40 UltraPlus. Actual usage can vary.

Table 5.1. Resource Utilization Examples

Configuration	FPGA	LUT	FF	EBR	PLL	1/0
CH#0: I ² C (Master on M)	М	545	261	0	1	7
CH#1: GPIO (1 bit Interrupt), S to M only	S	626	286	0	1	7
CH#0: I2S	М	892	449	1	1	13
CH#1: I ² C (Master on M)						
CH#2: I ² C (Master on M)	S	1030	494	1	1	13
CH#3: GPIO (4 bits), M to S only						
CH#0: I2S						
CH#1: DP Aux	M	1702	760	3	1	15
CH#2: I ² C (Master on M)						
CH#3: I ² C (Master on M)	S	1719	814	3	1	15
CH#4: GPIO (4 bits), M to S, S to M	3	1713	014	3	_	13

Note: M denotes Master FPGA. S denotes Slave FPGA.

References

For more information on the FPGA device, visit http://www.latticesemi.com/Products/FPGAandCPLD/iCE40UltraPlus. For complete information on the Lattice Radiant Project-Based Environment, Design Flow, Implementation Flow, as well as the Simulation Flow, see the Lattice Radiant User Guide.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.2, September 2020

Section	Change Summary
_	Added Disclaimers section.
Acronyms in This Document	Updated list.
_	Added DP AUX information in various sections.
_	Minor editorial/styles changes.

Revision 1.1, September 2018

Section	Change Summary
Introduction	Updated Features List section.
	Updated Figure 1.1. Single-wire Block Diagram.
Parameters and Port List	 Updated Table 2.1. Top-level Compiler Directives. Added a few rows at the end of GPIO Rx channel count category.
	 Updated Table 2.2. Top-level Parameters. Added a few rows at the end of GPIO_RX_MAX_WIDTH [3:0].
	 Updated Table 2.3. Configuration Example 1. Added a few rows at the end of Compiler Directives and Parameters.
	 Updated Table 2.4. Configuration Example 2. Added a few rows at the end of Compiler Directives and Parameters.
	Added Table 2.5. Configuration Example 3.
	Updated Table 2.7. Single-wire Top-Level I/O. Added I ² S Interface section.
Detailed Description	Updated text in Detailed Description section.
	Updated text in Link Establishment upon Power up and Reset Release section.
	Added Figure 3.11. System Level I2S Transaction
	Added Figure 3.12. I2S Delay from Master to Slave FPGA.
Packaged Design	Updated text in Packaged Design section.

Revision 1.0, May 2018

Section	Change Summary
All	Initial release.

www.latticesemi.com