Accelerating the Development of Intelligent, Vision-Enabled Devices at the Edge

Dirk Seidel

Senior Marketing Manager, Industrial

The Evolution of Embedded Vision

- 10 years ago
 - Primarily used in highly specialized applications
- Today
 - Exciting new use cases
 - Industrial
 - Automotive
 - Consumer
 - Advanced robotics
 - Machine learning
 - Industry 4.0

Technological Change

What Happened?

- Many key components and tools emerged
- Processing needs
- Low cost processors & programmable logic
 - Applications Processor (AP)
 - ASIC
 - ASSP
 - FPGA
 - Co-processing
 - Added horsepower

The Three Catalysts

Mobile Influence

Rapid development of mobile market

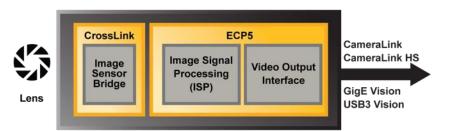
High performance processor at low power

- Success of Mobile Industry Interface (MIPI)
 - Compliant HW and SW
- Low-cost sensors and cameras
 - High integration at low cost

mipralliance

Designer's Challenge

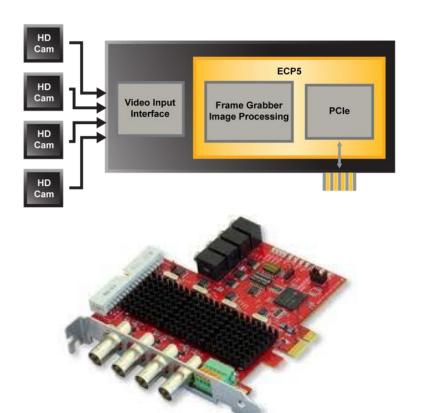
- Addressing connectivity challenges
- Leveraging economies of scale
- Preserving investment in legacy devices
- Creating customized prototypes quickly
 - Cost-effectively
 - Reusing existing designs


Industrial Use Case #1

Machine Vision Smart Camera

Manufacturing process monitoring

- Quality management
- Compact vision systems
- Processor module
- FPGA
 - Image Signal Processing pipeline
 - Connectivity
 - USB Vision
 - GigE Vision

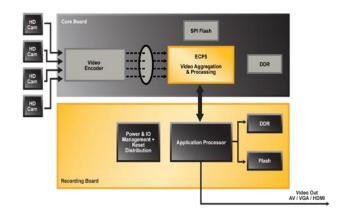


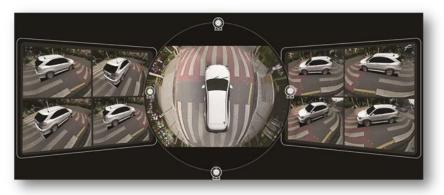
Lattice Semiconductor [6]

Industrial Use Case #2

Video Grabber

- Data aggregation
 - Multiple cameras
 - Image pre-processing
 - Host processor connectivity
 - PCIe Interface

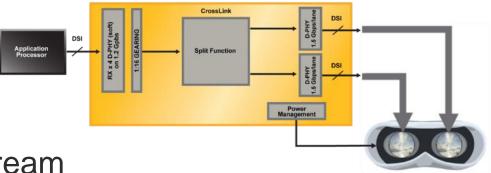




Automotive Use Case #1

Bird's-eye-view 360 Automotive Camera System

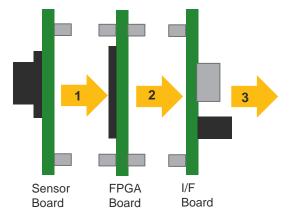
- Advanced Driver Assistance Systems (ADAS)
- Backup cameras
- Lane departure
 - Lane detection algorithm
- Smart camera module
 - Analytics algorithm

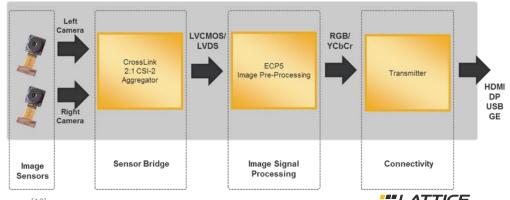


Consumer Use Case

FPGA-based Virtual Reality System

- Augmented reality (AR)
- Virtual reality (VR)
- Converting single video stream
 - By splitting the content to a dual display
- Low cost mobile MIPI DSI displays
 - Low latency
 - Minimal power consumption




Lattice Semiconductor [5

Master the Challenge

Rapid Prototyping with an Embedded Vision Development Kit

- Use a modular approach
- Fast product development cycle
- Lowest cost
- Lowest power
- Customizable prototyping system
- Based on existing hardware and software
- Reuse existing element
- Sensor bridging
- Image processing
- Connectivity

Lattice Semiconductor [10]

Lattice's Embedded Vision Development Kit

Stackable Modular Video Interface Platform (VIP)

CrossLink Input Bridge Board

- LIF-MD6000 pASSP
- Two Sony IMX 214 Cameras
- 2:1 CSI-2 MUX

Sensor Interface

- Prototyping header
- Easy programming via USB interface

ECP5-85 FPGA

NOW

\$199*

· Image Signal Processing

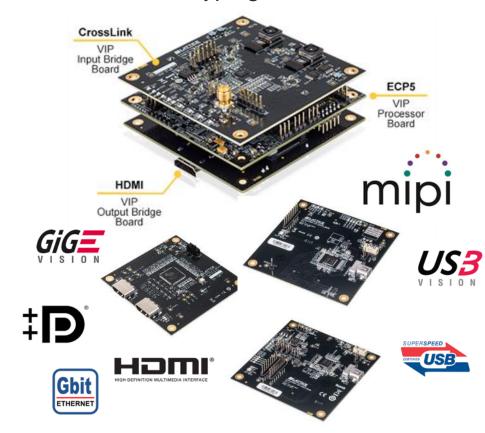
HDMI Output Bridge Board

- Sil1136 HDMI ASSP
- Non-HDCP Output

Video Interface Platform (VIP)

Smart Modular Solution for Embedded Session Prototyping

Seamlessly interconnect


- Highly flexible
- Cost efficient

Supports multiple I/O standards

- USB
- GE
- DP
- HDMI®
- MIPI

Mobile influenced platform for

- Industrial
- Automotive
- Consumer

Summary

- Use a modular approach
- Consider mobile influenced technology
- Take advantage of existing hardware building blocks
- Lattice's Embedded Vision Development Kit offers modular solution

attice Semiconductor [13]

