s LATTICE

Lattice sensAl Neural Network Compiler
Software

User Guide

FPGA-UG-02052-7.0

December 2024

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 2

http://www.latticesemi.com/legal

= LATTICE

Contents
(61o] 01 1T o | £SO TP PP UTP U PUPPPPTPRTURPIRt 3
AbDbreviations iN ThisS DOCUMENT......c.uti ittt ettt ettt e e sttt e st e e s sbee e e sateeessabteeesabaeeessbeeesaasteeesasaaeesnabeeesnseeesssenens 9
N [4 e Yo [o1 4o o T OO UPTPRRPRNE 10
1.1. L Y=L o T L LT3 PPN 10
1.2. VT o To L] =TT O OO PP TRORPRPRPRPRPON 11
1.3. (70 T1 =) o o o LT P RSO P PP OPPUPTRPPRTORt 11
N (o1 & 11 Y= d V=T Yo) Y 2=] YRR 12
B GELEING STAMTEA .ttt ettt b e st e b e s bt bt e e bt e e bt e e b et e bt e s be e e beeebe e e nrneereas 15
3.1. Creating @ NEW PrOJECE.cii ittt s e e s e r e s ba e e e s e e e s na e e e snaee s 15
3.2. 0peNiNg an EXISTING PrOJECT .o e e e e e e e e e e e e e eaaes 18
3.3. SAVING @ PrOJECT .. e aaees 19
3.4. LY U £SO TP OO PRPTRORPRPRPRPRPON 19
3.5. [=] 1o PSPPSRt 20
3.6. COMMAND LINE INTEITACEeiiiiiiteeiet ettt ettt et be e e sa e e e bt e e bt e s bt e e beeebeeesbeeebeeenneesnnees 20
3.7. DI Fod oI =T 1 g o Ao o PSPPSR 23
3.8. NEXE SEEPS ettt e e st e e e e e e e s ba e e e e e e e s a e e e sna e e e s re e e sanrne 27
BT VoY ¢ T a YAV o I o o T[Tt €SS PR 28
4.1. [0 o1 (=T o Y= ol =Y o] o FJ TR ERUPPUUUUUPRTUPPSRRROt 28
4.2. [T T=Tor o = o PSPPSRt 29
4.3. VIS ettt ettt ettt e ettt e sttt e e sttt e e e bt e e e e a bt e e e s bb e e e s n b et e e e b et e e e an e e e e aab et e e e nb et e e nnaeeeaaReee e e nreee e nteeenbaeeeennreeenannee 35
4.4, [T Taa] o] [T 2 o =T P RSNt 40
5. Advanced Topics
5.1. Project IMmplementation SETHINGScouiiiiiiiiiie ettt e sareeeaee e 46
5.2. QUUANTIZATION ...ttt ettt ettt ettt et e e e ettt et e e e e e aaabeeeeeeeseaaas b e e e eeeeee s baeeeeeeees i nbeateeeeeesannnreeeeeeesannnnnaen 63
5.3. (0] oYula]v2=Yulo) o J 1Y o Te [T TR USSP PR 73
5.4, Yy A AT =Tel ¥ g o Uo YU 73
LT VT T o To T f=Te I 2 =T 11V o o GRS 75
6.1. (6 | 1 PP PP PP P PP 75
6.2. TENSOTFIOW ...ttt st e st e st e s a e st e e s abe e sabeesabeesabeesabeesabeesabeesaseesabeesabeesabeesnneesabeesnseenane 75
6.3. (1G] £ 1T U OO PR TS PRP PR PRPRPRPRPRPON 81
7. USB DEDUEEING ..eeneeeiiiieiieeeitteett ettt sttt sttt e sttt e sttt st e s a b e st e e s a b et s abeesab et s bt e sabe e e bt e sabeesabeesabeeebbeeabeeenneenareas 86
7.1. Hardware CONFIGUIATION.cocuiie ettt e e e e e et e e e ettt e e e e etaeeeesabeeeeetbeeesasseeaeastaseeansteeeessaaeeasreeesannes 86
7.2. DEDUZ WINAOW OPTIONS .. .uviiiiiiieececiiee e ettt ettt eeeette e e e ettee e e sttt eeeetbeeeeeasaeaesabeeeeessseesassesaaasteseeasseseasssaeeasreeesanses 92
7.3. [T V=T G a1 =1 | - 4o 1R PP UUUTOPRN 93
7.4. USB DEbUZEING APl INTEITACEvvieeeiiieeciiee ettt e ettt ettt e st e e e et e e e e ette e e e sate e e senttaeessteeeesstaeeeassaesesnssaesensseeeannsns 94
7.5. Board Detection TroubIESHOOTING.......ccccuiiiiiee et e e e e e e st e e et e e esante e e sanaeeeennseeeennnns 96
7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB DebUG.........covuiiiiieiiiiinieeiec e 97
S T Y [Yo 11 174 o Yo TSRS 102
8.1. MoOdEel ZOO WINAOW OPTIONSuvieeiiiiieeciieeeeieee ettt e eete e e e ett e e e ettt e e e taeeesbaeeaessbeeesessseeesbaeaeenssesesassaeaesasseaaans 102
S T Y IV (=T o W L= LT o | (o] PPN 104
9.1. YA (=T LU TSRS 104
9.2. Y0 LYol I VISV =T o W CT=Y V=T =1 o] ST N 104
9.3. Create @ NEW PrOJECE ..uuiiiiiii ittt e e e e st e e e e s s s et e e e e e s s e s s baeeeeeesesansbaneeaeeessasssssnaeeesssnnnes 105
9.4. 0pPENING AN EXISTING PrOJECT ...uuvviiiiiiii ittt e e e s e st e e e e s s e ba e e e e e e s s seasbareeeeeeessnsnraeasesssnnnns 108
9.5. Starting the SYStEM GENEIAtON.....cocuui ittt st sb e s bt e s b e e s bt e sabe e s st e sabeesneenane 108
9.6. AdVANCEA SYSTEM ANGIYSIS 1.eeeneeiiiieiieeecieee et et e e et e e e et e e eetee e e eetbeeeestbeeeeesbeeeessaeaeasbaseeansseeesassaaseaseeaans 110
9.7. RISC-V RegiSter INTEIface GENEIATONuviiieieeeeectee e ettt e e ettt e e ettt e e e tte e e etaeeeestbeeeeeaaeaesataeaeensteseeansaeaesasseaaans 112
Appendix A. Supported and Added Caffe LAYEIS.......ccicuiie ettt e e stee e e e tte e e s are e e esateeesensaeeesasaeeeessseeesannns 118
AppPendixX B. SUPPOITEA KEIas LAYEIS....cccuieeeeiiieeeiieee ettt e eeitteeeeiteeeestteeeeetteeesatsaseesateeesassasesssssaaassesssasessessssesssssesennsns 120
Appendix C. Supported Layer CONFIGUIATIONcccciiii e ccies ettt e st e e e st e e e et e e e snaeeeessteeesensaeeesananeessnseeesnnnns 122
Appendix D. Supported TENSOrFIOW OPEIratioNsccccuiieeecieieeiiieeestteeeeseeeeseteeeesteeesstteeesaseeeessteeesasseeesassnesssnseeesnnns 124

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

Appendix E. USB DebUZZING REGISTEN IMIAP ..c..uviiiiiiieeeciieeeeiee e ette ettt e s e ee e e stte e e e st e e eeasteeesanaeeeestaeesansseeesnsneessssenesnnnns 127
Appendix F. SUPPOrTEA ONNX LAYEIS ..cceiueiieieiiereiiieeeesieeeesstteeeeeteeeessteeeesseeeesssseeeessseeesssssesssssssesssssesssssssesssssseessssseessnnnes 128
Appendix G. Network TOpology and DEVICE TABIEcccuuiiiieiii ettt et e st e e s ae e e et e e e ssae e s saaeeeennreeesnnnes 129
Appendix H. Common CNN Blocks Used in Lattice NINC......c..coiiiiiiriiiiinitenieeteeie ettt ettt st sae et et st saaesaeesaee e 130
L2 0] =T =Y 1o YRR 143
TeChNICAl SUPPOIT ASSISTANCEviiieeiiee e ciieeeectee ettt e e sttt e e ettt e e eebae e e e taee e e bteeeeaasaeaesbssaaassseeaassasaesasssaeassasesansaaeesssnaaans 144
REVISION HISTOIY coiiiiiiiiiiiiicc eaeaeaaaaaees 145

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 4

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. Installation LOCation SPeCIfiCatioNcocuiiii it e et e e e et e e e et e e e snnaeeesanaeeens 12
Figure 2.2. Installation Component SPeCIfiCatioN........ocuiiiiiiiii et 13
Figure 2.3. Installation Ready t0 INStall DIAlOg BOXceiiiiieiiiiiiiiee ettt ettt e e e ettt e e e e e e et ta e e e e e e e esanraaeeeeeeesennnsenes 13
Figure 2.4. Lattice Neural Network Compiler Software for Windows Splash Screenoccccovveeiveiniiiniiinieenecnieeeene 14
Figure 3.1. Project SEtHINGS WINTGOWciiiiiiii ettt ettt e ettt e e e ettt e e eette e e sataeeesabaeeeesssaeeenssaeeesabaseeansseeesansaeeesssnaaans 15
Figure 3.2. EXample CMd fOr POST PrOCESSINGviiiiiuiieeeiiieeeeitiee e eeteeeesteeeeeetteeesettaeeesabaeeaesseseesssaeeesatasasasseeesansaeeessenaaans 15
Figure 3.3. Proto File SEIECION WINTAOW........iii it ettt e e e ettt e e e tte e e sate e e e s ataeeeeasteeesnsaeeesataeeeassseeesnsaeeesnseeaaans 16
Figure 3.4. Project Implementation Options WINGOW.........ceiiiiiiiiiiiee e eeiee e stee s sre e e e ere e e seatee e e sataeeesnsaeesnsneeesnsaeaans 17
Figure 3.5 Project Implementation Window 2 (Only for AdVanced IP)eeciiiiiiecie ittt ee e sae e 17
[T W I B T o e [=Tot dl Y/ T o o YRR
FIgUre 3.7. LOAd ProjECt WINTOW.......ciiuiiiiiiiiiiiiiteeitt ettt ettt ettt ettt ettt sht e bt e sbe e e s it e e sab e e snte e sbbe e st e e smbeennneesnneenneeens
Figure 3.8. Python Code fOr RAW INPUL.........uiiiiiee ettt e ettt e e et e e e etta e e e s ataeeeetbeeeeeabaeeesatasaeassaeesensaeeesaseeaans
Figure 3.9. Multiple INpUt SEIECTION WINGOWuiiiiiiiee ettt eete e e e s ta e e e ett e e e esataeeesataseeenasaeeensaeaesasaeaans
Figure 4.1. Project Implementation Options WINGOW..........eiiiiiiiiiiiiee e eeiee st e e see e e et e e seaae e e e sataeeeeataeesnnaeeesanaeeans
FIUIE 4.2. ANAIYZE RESUILSoeieeeiiee ettt e e et e et e e e st e e e eatte e e s ataeeesataeeeassseeeassaeeesnsaeaeansseeesnnsaeeesnsaeaanns
Figure 4.3. COMPIIE RESUILSooeieiii ettt e et s e e st e e e s ate e e s aaeeeesataeeeassseeeensseeeesnsaeeeansseeesnnsneeesnsenaaans
FIUIE 4.4, SIMUIGLE RESUILS.....ciiiiiiiiiiiiee ettt e eeiee et e e et e e e ettt e e se e e e e sateeeesaateeesaaeeeesssaeeaassseeeanssaeeessseeeeasseeesnnsneeesnsenanans
Figure 4.5. Data Histogram fOr the BIODcc.ui ittt s e s e sireesaee e
FIGUIE 4.6, POSE PrOCESSING c..uetiiiiiiiie ittt ettt r e s b e e e s b e e e s e bt e e s b e e e s sabe e e s enr e e e snaneessabaeesaas
Figure 4.7. Input Network — TENSOIFIOW OF KEBIaSuuiiiiiiiieceiiee ettt ettt e et e e et e e e et e e e e atae e e sataeaeeabaeeensaeeesaraeaans
Figure 4.8. CloSE TENSOIDOAIT PrOCESS....ccciuviieeeiiieeecitteeecteeeeette e e eeteeeestbeeeeettbeeesasbaeeesabseeeassaseeassaseeaatsseeasseeeeassaeeessenaaans
Figure 4.9. INPUL NEEWOIK = CAff@ ..uuiiiiiiiieiiiie ettt e et e e e e tre e e sta e e e sttt e e e eastee e s ssaeeesataeeeassseeesnnsaeeesnseeaaans
FIZUIE 4.10. GUI TREIMES ..eeiieiiieieiieeeiittee ettt e setteeestteeeessteeeesseeeessseaeaasseeeeansseeeasseesesssaeeeassseesanssaeeesnseeeeassseeesnnsneessnsenanans
FIUIE 4. 1L HTIMIL LOE ..veitiiiiieiiiiieeet e eeiittttee e e e e ettt et e e s sttt ettt e e e s eassbataeeessesssbaeaaaeeessasssasaaaeeessassssanaeesssasanssnneeasssssnnsnrees
Figure 4.12. Default VIeW OF HTIVIL IO ..cciuiiiiiiiiieeie ettt ettt ettt et sae e e sar e e st e e sareesmae e smneenneeens
Figure 4.13. Search Functionality Of Warning........cocei ittt sttt e s e e e
Figure 4.14. SIMUItion Data Graphi.......cecciiiii ettt e ettt e e e ettt eeeeetteeeeeateeeesabaeeeesseseeassaeeesbaseeassseeeansaeeesseeaaans
Figure 5.1. Project Implementation WINAOW — ECPS5oiiiiiiii ettt ete e e et e e e e ette e e eeatae e e sataeeeeateeeensaeeesabaeaanns
Figure 5.2. Project Implementation Window — UltraPlus (1)
Figure 5.3. Project Implementation Window — UltraPlus (2)

Figure 5.4. Project Implementation Window — CrossLink-NX-Optimized.......cccceeveuieeiiiieeieiiie e 49
Figure 5.5. Project Implementation Window — CrossLink-NX-COmMPaCtcoovuierierniienieiniienieesie et 50
Figure 5.6. Project Implementation Window — CertusPro-NX-Optimized.........cccocueeriienieiniieiieeeeeeeee e 51
Figure 5.7. Project Implementation Window — CertusPro-NX-COMPACEccccuviieiiiiieeiiiiieeeciee e eetie e etee e e e earaee e evaee e 52
Figure 5.8. Project Implementation Window — CertusPro-NX-EXteNdedcocoueiiiiiiieieiiii et e 53
Figure 5.9 Project Implementation Window — CertusPro-NX Advanced IP Part 1.........cccceeeciiiiiiiieeeciiee e 54
Figure 5.10 Project Implementation Window — CertusPro-NX Advanced IP Part 2cccecvvviecieeeecciiee e sveee e 54
Figure 5.11 Project Implementation Window — Avant Advanced IP Part 1........ccccccveriiiiieieiiei e 55
Figure 5.12 Project Implementation Window — Avant Advanced IP Part 2.........cccceeivieeieciir e svee e e 55
Figure 5.13. On-the-Fly POSt Processing FOIMATcooiuiiiiiiiiiiiii ittt ettt et et e s e saneesaee e 59
Figure 5.14. On-the-Fly Post Processing Data FIOWcoceiiiiiiiiiiiieiiiierieee ettt ettt s e e 59
Figure 5.15. Create QUaNTiZEd VEISION FIAEccccuiiiiiiiee ettt ettt e ettt e ettt e e e et e e e e ette e e e ataeeesabaeeeeareeeennsaeeesasaeaans 65
Figure 5.16. Tensor Graph QUAaNtization NOGESc..iiiieiriiiiieiiie ettt sre et steestae e sbeeesaeesateesaaeesbeeesseeesaseensaeessseensseens 69
Figure 5.17. Activation Data QUantization NOGEScceiviiiieiiiieciiiee e et eee e e stre e e e tre e e s sabeeeesataeeeasteeesnnsaeeesasenaaans 72
Figure 5.18. SensAl Security FIOW: ENCrYPt IMOENoooieiiiiieiie ettt e e e e e et e e e e e e snene e e snnaeeens 73
Figure 5.19. SensAl Security Flow: Encrypted Model SElECtION.........uuiiiiiiiieeee e e e 74
Figure 5.20. SensAl Security FIOW: ENCryPt MOElccuuiiiiiiiiiiiieeee ettt 74
Figure 6.1. Original TensorFIow Training MOEL.........cocueiiiiiiiiiie ettt sttt sabe e saee e saneesaee e 77
Figure 6.2. Simplified TensorFlow INfErence MOELooeieiiiieeee ettt e e e e e et e e eeaae e e s aaeaans 78
Figure 6.3. Tensorboard Visualization of BiNarizationcocuuiiiiiiii ettt e et e eerae e e aaeaens 80
Figure 6.4. Binary Neural Network Modes in TENSOIFIOWcc.uiiiiiieeiiiiieeciiee ettt e e et e e eeta e e e ste e e e eare e e eaaaeeesaraeaens 81

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

FIgUIE 7.1, CYPreSS WINGOWccceiiiiiiiieiieeeitiieeeeiteeesttee e et teeesstteeessaeeeassseeeeassseeeanseeeesssaeeaassseeesnnseesesnsseesasseeesnnsneeessseenans 87
Figure 7.2. Radiant Programmer — Default SCrEENuiiuii ittt sttt ettt e saneesaee s 88
Figure 7.3. Radiant Programmer DeViCe SEIECTIONcccuuiiiuiiiiiiiieeitee ettt st ettt e esaneesaee e 88
Figure 7.4. Radiant Programmer — DeViCe OPeratioN........cccuiiiiieiiieciiiieee e ettt e e e e e ettt e e e e e s e esanta e e e e e e eesasraaeeeseeesennnenes 88
Figure 7.5. Selecting Device Properties for CroSSLINK-NX........cccuiiiiiiieeiiiiieeeciee e eeieeeeeieeeeeetre e e eeteeeesteeeeesareeeeeasaeeesraeaans 89
Figure 7.6. Output Console after SUCCESSTUl FIaShiNG..........viiiiiii ettt e e et e e e eare e e eaaae e e s vaeaens 90
Figure 7.7 Avant Board With FX3 USB BOAIMueiiiiuiieeiiiieeeeiiee et e ettt e ee sttt e e ettae e e sataeeseataeeenataesesatasasansseeesansaeeesseeaaans 91
Figure 7.8. USB DeBUE WINTUOWouiiiiiieieiiieeceies e ctee ettt e e sttt e s ae e e ettt e e eeatteeesaataeessataeeeasssaeesssaeeasnsaeeeasssesesnnsaeeesnseneaans 92
Figure 7.9. USB3-GIgE VIP BOAId LAD@l.....c.uvieiciiie ettt ettt e ettt e e st e e st e e e e et e e e entaeeesataeeeansteeesnnsneeesnseeaanns 96
Figure 7.10. CNX-VNV BOAId LADEl........eeiieeeiiie ettt et e ettt e e st e e sae e e e s e e e e s ssteeesaseeeesnsaeeeansseeesnseeeesnsenaaans 96
Figure 7.11. CPNX-VNV BOArd LADel.......coeieieiiiieeiiie ettt ettt e e e et e st e e e sata e e e s ete e e sasaeeesataeeennsseeesnnaeeesnseeanans 96
FIGUre 7.12. USB DEDUEG WINTOWeiiiiiiiieiiet ettt ettt ettt ettt sat e e bt e sb b e e s at e e s abeesaee e sabe e st e e snbeennneesmseenneeens 97
Figure 7.13. USB Debug FIrmMWare GENEIAtIONccciuiieiiiiieeeiiee e ecieeeeett e e eette e e eeateeeestaeeeeateeeeessaesesatasaeassseesnssaeeesseeaaans 98
Figure 7.14. Upload FW, Input and RUN USB-DEDUEGZING......ccccciiiiiiiieiiiieeceiee et ettt e e et e e eetae e e stae e e earae s ensaeeesavaeaans 98
Figure 7.15. Read USB Data With BIOD SEIECTEAuviieiiieceee et e e et e e et e e e st e e e e et e e e ensaeeesanaeaens 99
Figure 7.16. Read USB Data Without Blob SEIECLE.ccuuiiiiiii et e et s e e e e saaeeeeas 99
FIGUIE 7.17. SQVE USB Data......uuuiiiiiiiiiiiiiiiiiee ettt te s s e ettt e e e e s sttt e e e e e s sesababeeeeeessasssbaaeeeessasasssaeaeasssesnssaneeasssssnsssnnens 100
Figure 7.18. Expected Values for Corresponding BlODcooeuiiiiiiiiii ittt e e e e are e e e aaeeas 100
Figure 7.19. Show EXPected VS HW IMAE ..ottt ettt ettt et s b e s bee e bt e s sbeeebeeeneesanees 101
FIUre 8.1, MOEI ZOO WINUOW ...coiuviiiiiiiiieeiitteite ettt et e etee st e st e bt e st e s sbaesbe e s btesabeesbaessbeesbaessbeesnbaeenbeesnsaesabaesnsaesnsens 102
Figure 9.1. Opening the Al SYSTEM GENEIATONiiiiciieeeciee e ecee et e st e e et e e e etee e e s aaee e s sateeeesasaeeesnaeeeensseeeenseeeesnssnens 104
Figure 9.2. System GENErator WINGOWcciiiiiiriiiiieeeiiieeeeiiee e sstte e e steeeesaae e e eeaee e e saaeeeessteeeesnssesesnsaeeesnssaeesassesssnssnes 105
Figure 9.3. Entering System Generator Project Name and LOCAtioNcocueriiiiiieriiiiiieeiec et 105
Figure 9.4. Specifying SensAl SDK and Model LOCATIONScccviriuiiiiiieiiiiiiieeiet ettt ettt st e sneas 106
FiUIE 0.5, Pre-proCeSSING Page. i e e e e e e e e e e e e e e e e e 106
Figure 9.6. System Generator Project INfOrmMationc..oe ittt e e e tee e e tbe e e e aaeeas 107
Figure 9.7. SYSTEM GENEIATON PrOJECTE. ...uuuiiiiiiiiieiciiteee e ettt e e e e st e e e e e e s s aabte e e e e e e sesaaetareeeeeeesanstaneeeeeessassnneeesesesasssnnens 107
Figure 9.8. Opening an EXisting System GENErator PrOjJECT......cuiiiiieciiiiieiee ittt e sesrere e e e s sserere e e e s s s sssbaneeeseesssnsnnnees 108
Figure 9.9. Analyzing Model and SEIECHING ML IPooiiiiiiee ettt s e e et e e e e e e snae e e entaeeeensaeeesnnaneas 108
Figure 9.10. Preferred ML IP and Other REQUIrEA IPSccc.ciiiiiiiiiiiieeie ettt s 109
Figure 9.11. Generating TCL, Bitstream, and Host or Application Code........cccuiiiiiriiiiiiiiiiieeeeec e 109
Figure 9.12. System Analysis WIiNdOW — Graph VIEWooiiiiiiieieie ettt e et ae e e et e e eetbe e e eanaeas 110
Figure 9.13. System Analysis Window — AbSOIULE ValUE VIEWc.uiiiiiiiieceeeeee ettt et 111
Figure 9.14. Opening the RISC-V SyStEM GENEIATON......cciiciiieiecieeeccieee et e e esee e e eeee e s ae e e e sate e e essaeeesnaeeeesssaeeesnseeeessnnes 112
Figure 9.15. System Generator HOME WINGOWcoiiiiiiiiiiiiec ettt e e et e e e e e e e esnbaa e e e e e eesnsbaaseesaeesennnnnnes 113
Figure 9.16. System Generator FUNCLIONScooiiiiiiiiei e e s e e e e 113
Figure 9.17. System Generator Add NEW REGISTENccviiiiiiiiieeie ittt ettt et sie e srte s sbe e s siaessbe e ssbaeesbe e s saseebaessaesnneas 114
Figure 9.18. System Generator Add and Remove Register Fieldcoouiiiiiiiiiiiiiiiiieec e 114
Figure 9.19. System Generator Register Bit Width Limitation.......cccccueeiiiiiieiiiiiiec e 114
Figure 9.20. System Generator ExXample CSR TEMPIALEcoeiiiiiiieiiee ettt ettt et e e e tae e e et e e e tbe e e eaaaeas 115
Figure 9.21. CSR REGISTEI EXAMIPIE «.eeneeeeee ettt ettt e et e e et e e e e e e saaaeeeenteee e nseaeesnnaeeeenseeeennseeeesnnnns 115
Figure 9.22. System Generator SAVE PrOjJECT ..o e e 116
Figure 9.23. System Generator GENErate IPK FIleeuiiiiiieieiie ettt e e et e e e e e s ae e e et e e e e nne e e snneeas 116
Figure B.1. SiZMOid FUNCHION ...co.uiiiiieiiii ettt ettt ettt e b e et s bt e sttt e bt e s bt e e bee e bt e s sbeesabeeenneeenneas 120
FIgUre B.2. Strided SliCE EXAMIPIE. i i iiiiiiieiiee ettt ettt ettt st e st sbt e s b e s baeebe e sbaeesbeesbaeenbeessaeenbaesnseesnseas 121
Figure D.1. BatCh NOImMalizationoccceeii ittt e e et e e e e e e e s e e e e e nteeeesnsaaeesnnaeaeessaeeennseeeesnnnnns 124
Figure D.2. Unpool IMPlemMentationoc.ueieiiiieee ettt ettt sttt e bt s bee s b e e nbeeebeeeneeeaneas 126
Figure H.1. Non-Quantized 3x3 CBSR 0Or 3x3 DepthWise CBSRccccuiiiiiiiiieriiieiieeiee ettt ettt st enees 130
Figure H.2. Quantized 3x3 CBSR 0r 3X3 DePthWise CBSRcccuiiiiiiiie et ettt ettt e e et e e eeate e e e aaeeeesabaeeeesaeeeenneeas 131
Figure H.3. NON-QUANTIiZEA IX1 CBSRuuiiiiiiieeieti ettt ettt e e e e e e e eaat e e e e e e e sesattaaeeaaeeeasstareeaaesesastaseeasaeesanssrnnns 131
Figure H.4. QUANTIZEA 1X1 CBSRooi ittt ettt e ettt e e ettt e e et a e e e s ta e e e e tteeeeeabaaeesasaeaaasteeeeansaaeessaeaeeassaeeeansseeesssnnas 132
Figure H.5. NON-QUAaNtiZEd Add BIOCKcccuuiieieiiie ettt tte e e et e e e et ae e e s tae e e e sabeeeeensaeeesasaeaesstaeeeansseeessaneas 132

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Figure H.6. QUANTIZEA A BIOCKuiiiiiiiiieeiee ettt st ae e st e s e et e s baeebe e s sbeesbeeesaesnbeas
FIUIE H.7. VGG tOY MOEI ...ttt ettt ettt ettt ettt s be e bt s b e ettt s bt e ettt e bt e s bt e eabeeeabeesaneeeaseesnseeennees
Figure H.8. MODIIENETVL BIOCK.....c.cuuiiiiiiiieete ettt ettt et ettt e bt e bt e s b e s beeebe e s bt e ebeeeseeenneas
Figure H.9. MODIlE@NEtVL TOY MOAEIuueiiiiiieeeiee ettt e e et e e e e e e s e st ta e e e e e e eesaasbareeaeeeeseastaseeasaeesennsnnens
Figure H.10. MODIIENETV2 BIOCK L... ...ttt e e e e e e et e e e e e e e e saaataaeeeeesesastaeeeaaeeesastaseeasaeesannsnnens
Figure H.11. MobileNetV2 Block 2..............

Figure H.12. ResNet Toy Model..................

Figure H.13. ResNet Block 2 Variation 1
Figure H.14. ResNet Block 2 Variation 2
Figure H.15. ResNet Block 2 Variation 3

Figure H.16. GOOgleNet INCEPLION BIOCK L......cciiuiiiiiiiee ettt e e e e eee e e s aae e e et e e e ana e e e snae e e ennsaeeennseeeeennaneas 139
Figure H.17. GoOgIeNEt INCEPLION BIOCK 2......uiiiiiiiiiieiieiite ettt ettt ettt ettt et st e st s sbe e s b e sneesaneas 139
FIBUIE H.18. INTT BIOCK ... uiiiiiiiiieeeitie ettt e e et e e e ettt e e e e te e e e e bae e e e tbeeeeaasaaeesasbaaeasbeseeanssseeesasaeestaeaeansbeeesssnnns 140
Figure H.19. DOWNSAMPIE BIOCK......ccciiiieeiiiiie et ettt e ettt e e ettt e e e ete e e e stae e e e ttaeeeeabaaeesasaeaeesabeseeansseeeasssaeeastaeseansseeeessnens 140
[T o T O A=Y= 0| =Y ol =] o ol SR 141
Figure H.21. UPSAmPIE BIOCKccuuiiiieiee ettt ettt e e e s e e e et e e s aea e e e s asaeeeesteee e nsaeeesnnaeaeessaeeennsseeeensenens 141

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 7

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Tables

Table 3.1. Arguments and Usage

Table 5.1. Learned Step Quantization Details with Device Type.........cc.c......

Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization)

Table 5.3. Signed 8-Bit Quantization (Fixed Point QUAaNtizatioNn)cceeeiieeiieiiiereiiecieeeseesree e e st e e sreeereeeaeesreeesaeeenne
Table 5.4. Fixed Point Quantization Details With DEVICE TYPE ...ccccuuiiiiiiiie ettt ettt e e e st e e e etre e e eaaeeeesateeeeeanes
Table 5.5 QUaNTIiZAtionN SUPPOIT iN LAYEIS.....cccciiiieeiiiee e cieeeeecite e eete e e e st eeeeetteeeeetaaeeesateeeeessseeeasssaaeastsseeassseesssssasessteeesanses
Table 5.6. SensAl Security Flow: File EXtENSION MapPPing....ccccuiiiiciiieeiiiiececiie e ceee e e see e eere e e ste e e eseta e e eeare e e snaaeessnteeesnnnns
Table C.1. Supported Layer CONfiGUIAtiONcccuiiiiciee ettt e te e e et e e e ere e e s ta e e e eeteeeseasaeeesntaeeeessaeesansseeesnssneanns
Table E.1. USB DebugZing REGISTEI IMIAPuueiieiuieiiieiieeeitieeeeitiee e eette s e sttt e e sttt e e seaaaeeesbaeeessteeesassaeessnseeeeasseeesnnseesessenenans
Table G.1. Network TOPOIOZY @Nd DEVICEcccccuiiiiiiiie e ettt ettt sttt e e ettt e e et e e e s taeeesateeeesasaeeesnsaeeeesseeesnnsaeeesnseeeanns
Table H.1. Enet EXample ArChiTECTUIEci ittt sttt e s b e st e sar e e sareesane e

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 8

http://www.latticesemi.com/legal

Abbreviations in This Document

A list of abbreviations used in this document.

= LATTICE

Abbreviation

Definition

BNN

Binarized Neural Networks

CLI Command Line Interface

CNN Convolutional Neural Network
CNX CrossLink-NX

CPNX Certus-Pro-NX

CSR Control and Status Register
DRAM Dynamic Random Access Memory
FC Fully Connected

FPQ Fixed Point Quantization

FPS Frames Per Second

GUI Graphic User Interface

HRAM Hyper Random-Access Memory

IP Intellectual Property

LRAM Large Random-Access Memory
LsQ Learned Step Quantization

LUT Lookup Table

ML Machine Learning

NCHW Number of Samples, Channels, Height, Width
NNC Lattice Neural Network Compiler tool
ONNX Open Neural Network Exchange
PTQ Post Training Quantization

RAM Random Access Memory

RelLU Rectified Linear Unit

RTL Register Transfer Level

TCL Tool Command Language

usB Universal Serial Bus

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

This document describes the usage and troubleshooting of Lattice Neural Network Compiler software.

1.1. Prerequisites

The hardware, software, connection, and general requirements for this demonstration are provided in the following
sections.

1.1.1. Hardware Requirements

The software requires the following hardware components:

e PC with either Windows 10 x64 or newer; or PC with compatible Ubuntu x64 distribution for running software flow
only.

e Llattice Inference Machine-compatible FPGA.

1.1.2. Software Requirements

This software product requires the following software components:

e Lattice Neural Network Compiler Software for Windows or Linux.

e Diamond Programmer System software for downloading the FPGA bitstream.

e Lattice Diamond™ Design Software for modifying the platform and regenerating the bitstream.
e Radiant Programmer System software for downloading the FPGA bitstream.

e Lattice Radiant™ Design Software for modifying the platform and regenerating the bitstream.

1.1.3. Connection Requirements

Programming the device and running Lattice Neural Network Compiler Software directly from the GUI requires a
Windows installation and a Windows-compatible connection, such as the USB driver for Lattice FPGA development
boards.

1.1.4. General Requirements

This document requires some knowledge of the following:
e Familiarity with Caffe, TensorFlow, or Keras Machine Learning Frameworks.

e Familiarity with Lattice FPGA development, including basic concepts and troubleshooting skills, and experience
establishing basic connectivity between the device and computer, or else utilizing some other hardware (such as
an SD card) for transferring data onto the intended hardware.

1.1.5. IP Requirements

e Neural Network Compiler 7.0 supports the current IP cores for the ECP5, iCE40 UltraPlus, CrossLink-NX,
CertusPro-NX, and Avant device families.

e For ECP5, use CNN Accelerator IP Core v2.1.

e For iCE40 UltraPlus, use Compact CNN Accelerator IP Core v2.0.0.

e For CrossLink-NX, use the Crosslink-NX CNN Accelerator IP Core v3.0.
e For CertusPro-NX, use the CertusPro-NX CNN Accelerator IP Core v3.0.
e For Avant, use the Advanced CNN Accelerator IP Core v3.0.

e The IP cores from previous releases may not work correctly with this release. Ensure that you are using the
versions provided by Lattice for Neural Network Compiler 7.0.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1.2. Purpose

This application shows the ability and features of Lattice Neural Network Compiler Software to:

e Analyze and compile a neural network for use with selected Lattice Semiconductor FPGA products.
e Simulate hardware to obtain expected fixed and floating-point output.

e Download and run neural networks directly on hardware via USB debugging.

e Manage multiple implementations per project to view the effects of different strategies.

1.3. Limitations

The following cautions apply to the software as a whole:

e Operations are conducted in fixed point notation on the hardware as a result of floating point values being
converted to and from fixed point representation.

e Specific neural network features, such as layers or functions, require certain configurations to function or may not
be supported.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

2. Installing the Software

The demonstration package of the Lattice Neural Network Compiler Software is available as an executable installer for
Windows and Linux systems. The software is installed on Windows by using the Machine Learning Software Setup
executable installer (.exe) or on Ubuntu Linux by using the run file (.run). Launch the installation process and customize
the options, as detailed in this section.

To install Lattice Neural Network Compiler Software:

1. Close all applications before starting the Lattice Neural Network Compiler Software installation.
Double-click on the Lattice Neural Network Compiler Software installer you downloaded.

The Welcome to the Lattice Machine Learning Software 7.0 Software Setup dialog box opens.
Click Next to select the Installation folder.

On Windows, the default destination folder is C:\Iscc\mI\7.0. On Linux, the default installation directory is
~/Iscc/ml/7.0. Click Browse to change the destination (Figure 2.1).

vk W

B Machine Learning Software 7.0 Setup X

Installation Folder ZLATTICE

Please specify the folder where Lattice Machine Leaming Software 7.0 will be
installed.

C:\iscc\mil\ 7.0 Browse...

Neural
Network

iler

< Back Next > Cancel

Figure 2.1. Installation Location Specification

Click Next to open the Product Options dialog box (Figure 2.2).

Select the Machine Learning Software components that you want to install by selecting or clearing each of the
listed options.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 12

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

! Machine Learning Software 7.0 Setup X
Select Components TTI
Please select the components you want to install, LA CE
(V] 3 3 This option installs Machine
Machine Learning SOK i are SOK.

This component will occupy
approximately 3.34 GB on your
hard disk drive.

Neural

Deselect All

<Back Next> Cancel

Figure 2.2. Installation Component Specification

Click Next to open the License Agreement dialog box.
Read the license agreement. If you agree, click | accept the license to open the Start Menu shortcuts dialog box.

10. Click Next to open the Select Program Folder dialog box. The default name is Lattice Machine Learning Software
7.0 If you want to change the name, change it in the Program Folder text box.

11. Click Next to display the Ready to Install dialog box (Figure 2.3). Review the current settings, including the
destination folder and components selected. If everything is correct, select Install to start the installation.

M achine Loarning Softwar 7.0 Setup X

Y N ZLATTICE

Setup Is now ready 10 begin instaling Lattice Machine Learning Software 7.0 00
your computer. Itallation will use 3.4 GB of dek space.

Current Settings
Setup tasks performed to the following folder:
C¥scy\ 7.0

Components selected to install:
Machine Loarning SDx

<Bock el Concel

Figure 2.3. Installation Ready to Install Dialog Box

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 13

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

12. In the Installation Wizard Complete dialog box, read the confirmation note and click Finish.

13. Run the executable, either by using the desktop or start menu shortcut if created, or by navigating to your
installation directory and running Isc_ml_compl.exe on Windows or Isc_ml_compl on Ubuntu Linux. You can then
see the main window, as shown in Figure 2.4.

H Lattice SensAl Software - X
File Process View Tools Help
& b Lp:se B

Figure 2.4. Lattice Neural Network Compiler Software for Windows Splash Screen

The installed software is now ready for use.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 14

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

3. Getting Started

In this chapter, you can learn how to use Lattice Neural Network Compiler Software to create new projects and edit
existing projects.

3.1. Creating a New Project

A project is a collection of all the files necessary to create and download your design to the selected device. The New
Project window guides you through the steps of specifying a project name and adding existing sources to the new
project.

To create a new project:

1. From the main window, click File > New. The Project Settings window opens, as shown in Figure 3.1.

Lattice SensAl Software

View Tools Help

tm

Change Default Workspace .U

o

LATTICE

Neural Network
mpiler Softwarg;

Figure 3.1. Project Settings Window

Enter a project name into the Project field at top-left.

Select a framework for your design. Currently, sensAl™ supports Caffe, TensorFlow, Keras, and ONNX
(experimental).

Select the device you intend to run this network on.

5. Enter an optional post processing command. Post Processing commands use the following format:

python test.py [<script-argl> <script-arg2> ..] <input-data-file> <simulation-npy-data-
file>

Figure 3.2. Example cmd for Post Processing

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

15

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

The input-data-file and simulation-npy-data-file arguments displayed in the angle brackets are added by the sensAl tool
in this command.

The script-arg parameters displayed in the brackets [] are script-dependent argument parameters.

1.

N o u ks

Select a class for your network. SensAl supports Convolution Neural Network (CNN) and Binary Neural Network
(BNN).

Select the MOBILENET mode checkbox if you want to use a model with the Mobilenet IP for ECP5 devices using the
CNN class. See the Advanced Topics section for more information on Mobilenet mode. Similarly, select Compact
mode, Optimized mode, or Extended mode from the drop-down list if you want to use a model for the respective
IPs of the CrossLink-NX device and the CertusPro-NX device.

Click on Network File. The Proto File Selection window opens, as shown in Figure 3.3.

¥ Select proto file x
This PC + Documents
’ N o e
T speedlimatdet proto
8 This PC
¥ 30 Objects
[Deskiop
Documents
& Downloads
D Music
&) Pictures
B Videos
& Windows (C:)
b Network
File pame: | speediimitdet proto Caffe Network Files (" protor*.p ~
oo

Figure 3.3. Proto File Selection Window

Navigate to your proto file and select it in the window.
Click Open to load the proto file into your project.
Click on Model File and follow a similar process to steps 3-5, selecting your model file this time.

Click Image/Video Data and follow a similar process to steps 3-5, this time selecting your image or video file. You
can check the Scan Data Layer to let the software attempt to locate your data file if it is defined in your network.

Click Next to open the Project Implementation Options Window, as shown in Figure 3.4.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 16

http://www.latticesemi.com/legal

9.

= LATTICE

I? Project Windows

Implementation Kame: Irmnplo

Scratch Pad Memoary Block Size: ‘ 5192 -

Enable Paired Convolution Engine: [{Dual Core Mode)

On-Chip Large Memory Size: ‘ 131072 -

Register out: [[(Cutput register for LRAM |

Debug mode Enable: [ResultReadout

Enable Embedded Mode: [(Embedded mode)

External memory interfaced (In bytes): 5356603
Data Section Base Address 7340032
Code Section Base address 0

[+ Store Input [store Cutput

GROID O0x0610 0000

Iean Yalue for Data Pre-Processing: |0
Scale Walue for Data Pre-Processing: |[0.0078125

[on-the-fly post processing

Required output depth range:

Cancel

1K/ 2K 4K fEK Byte entry

G4K/128K /256K Byte entry

V¥ HyperRam

walue pass to post-processing RTL

Keep Default values to bypass preprocessing

Operation:Input Data ={Input Data - Mean) x Scale

[oc |

Figure 3.4. Project Implementation Options Window

t? Project Windows

— X

Scratch Pad Memory Block Size: ‘ 8192

- ‘ 2048 entry [8K Byte Size

b ‘ 64K Byte entry

Allowed Value of VE SPD: 1-8
Stride = 1, Pad =Kernel // 2
16 bits is max value

2 / 16 bits depth

Allowed Value: 1

Segment Size: 65536
Number of Segments: 7
Number of VE SPD: 8
KMax Pooling Kernel size: 5

LUT Function input bits: 12

LUT Function output bits: 8
Number Of Convolution Engines: |1
Multi-port parallel: ‘ 4

- ‘ High input data BW for 1x1 ops

[~ MSB Clip Enable

Cancel

| = |

Figure 3.5 Project Implementation Window 2 (Only for Advanced IP)

The Project Implementation Window is automatically filled with default settings for the Implementation Name, as
well as the parameters. You can change the name and parameters if desired. For more information on how each
parameter works and their limitations, read the Project Implementation Settings section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

10. Click Ok to create your project. The Project Window opens, as shown in Figure 3.6.

Tl [Cphonad
EllFianting Paist Mol
¥ el Paeri Mog
Elirderance Enging Miadal

Pl Pioesing

Cigantasd

M oan 7 oeews B oawro B owecsane B oireos

Turseniacy Log Impid

B Lattice San st Sottanre - o *
Filt Protens Wiew Tosls Hep
LHGO 5P B
Pracess Filgi bnpl irmpld
[——— Blabs [Ty Te—— Stored Dats Fasrnm VatermalExteinal) Mern Bytes MAE_Sistiily
Syt
Cermipie

Figure 3.6. Project Window

3.2. Opening an Existing Project

1.
e |nthe Main Window, click the Open Project button.

e From the File menu, choose Open.
The Open Project Window opens, as shown in Figure 3.7.

Use one of the following methods to open an existing Lattice Neural Network Compiler Software project:

I seiect Project file
pa 2 %5 ThePC » Documents » VIP_SpeedSignDetectionDemo

% impl)

o VIP_SpeedSignDetectionDemo kdnn.

= Tha PC

¥ 30 Objects
I Desitop

Documents

& Downloads

D Masic

& Pctures

B videos

e Windows (C

@ Network

File name: | VIP_SpeedSignDetectionDemo idnn

project files (" dnn)

=

Figure 3.7. Load Project Window

2. Navigate to an existing LDNN type file and select it.
3. Click Open to open the project.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

18

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

3.3. Saving a Project

When working on a project you want to save, click on the floppy disk icon or navigate to File > Save in order to save
your project. This can save the files with the project name into the project directory, as specified in your project
settings.

3.4. Inputs

In addition to images, sensAl supports other types of input data as well.

3.4.1. Audio Input

The tool only accepts .wav files with a minimum length of 1 second. There is no preprocessing performed on audio
input as of version 7.0.

3.4.2. Raw Input

By enabling the Raw Input option when creating a new project, you can pass input data in the form of .npy array. The
array size should match exactly with the inputs in the network. This is because the array is directly fed to the network
without performing any preprocessing. For example, mean and scale are not used on raw input data. Preprocessing can
be performed in Python and then passed as a saved numpy array to sensAl.

To save an array, A, in a file, raw_input.npy, it only requires two lines of Python code, as shown in Figure 3.8.

import numpy as np
np.save(“raw_input.npy”,A)

Figure 3.8. Python Code for Raw Input

Note: For image input as raw input, the data must be in BGR format.

3.4.3. Multiple Input Selection

The tool automatically detects if the model has multiple inputs. Select the image or raw input according to the model
inputs. Model input names are displayed so you can select the input files accordingly. Figure 3.9 shows the input
selection window.

Project pri Framework | Keras v | Class I CNN v
Directory C/project/multi-input _J # Muitiple Input selection - X lzed CNN %
5 C/project/multi-input/LSC_FPQ_mult Ex A
Input Files 4 - / I % " - I Ve
C/project/multi-input/inpt-4.png input 4 [C:/project/multi-input/inpt-4.png choose file | | Ferwork T _,|
C./project/multi-input/inpt-1.png Mode X J
C/project/multi-input/inpt-2 png input_1 C/project/multi-input/inpt-1.png choose Mi] ALy
/ / i t/inpt-
C:/project/multi-input/inpt-3.png j¢/Video/Audio Data
— — input_2 |C/project/multi-input/inpt-2 png choose file
[« j {ate Quantized Version
-0 . i
status input 3 [C/project/multi-input/inpt-3.png choose file lot s Aies
ri.yml .
Pri Y 1 oK in Data Layer
prj.lseml
pribin

Output Files —J

Post Processing(Optional)

Cancel vex |

Figure 3.9. Multiple Input Selection Window

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 19

http://www.latticesemi.com/legal

= LATTICE

3.5. Help

For more software help, the Help menu contains links to relevant help topics.

3.5.1. About

To find out more version and license information, navigate to Help > About to bring up the About window, which has
tabs for different software information sections. The About tab contains information about the software. Your current
version and build number are displayed here. The License tab provides a convenient way to view the license
agreement.

3.5.2. User Guide

This user guide is routinely updated and may not be the latest version. To quickly go to the Lattice Semiconductor web
page, which contains the latest version of the User Guide as well as supplemental material, navigate to Help > User
Guide, and you will be taken to the correct page.

3.6. Command Line Interface

The executable can be used from a command line interface if you prefer not to use the GUI. To execute a command,
launch the executable from the command line and pass it the arguments you wish to use.

For example, to bring up the help Windows CLI in Cygwin, the command is:
1sc_ml_compl.exe --help

While on Linux, execute it as:

./1sc_ml_compl --help

This brings up the help menu for the CLI. You can see the usage and arguments in the following sections of this chapter.
3.6.1. Arguments and Usage

Table 3.1. Arguments and Usage

Argument Description

--h, --help Show this help message and exit

--cryptography To run encryption/decryption flow

--input_file_path Input model path that user wants to Encrypt/Decrypt
--input_file_path Output model path to store encrypted/decrypted model

--password Password to perform encryption/decryption

--mode To select mode from encrypt/decrypt

--gui [GUI] Invoke GUI tool

--cmd [CMD] Valid commands are analyze, compile, simulate, download, run, and all
- -framework Framework used to train the network. Currently, Caffe, TensorFlow, Keras, and
{TensorFlow,Keras,Caffe, ONNX} ONNX are supported.

--network_file NETWORK_FILE e Caffe .prototxt or .proto file

e TensorFlow .pb file
e Keras .h5file
e ONNX .onnx file

--model file MODEL_FILE .caffe model file
--image_files IMAGE_FILES .jpg Image file
--num_conv_eng NUM_CONV_ENG Number of convolution engines used. Only for CPNX and AVANT devices with

Advanced CNN IP 4*N number of output channels are getting generated in
parallel. N = 1 for CPNX and N = 1-4 for AVANT devices

--num_ebr NUM_EBR Number of embedded block ram.
--ebr_blk_size {16384,32768,65536} | Size of each embedded block ram for UltraPlus.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Argument

Description

--crosslink_scratch_pad_blk_size
{1024, 2048,4096,8192}

CrossLink-NX and CertusPro-NX scratch embedded block RAM size.

--crosslink_lram size
{65536,131072,262144}

CrossLink-NX and CertusPro-NX On-chip large RAM size.

--cross_link_external_mem_size
CROSS_LINK_EXTERNAL_MEM_SIZE

CrossLink-NX and CertusPro-NX External memory (dram/hyper ram) interfaced
size.

--crosslink_code_base_addr
CROSSLINK_CODE_BASE_ADDR

CrossLink-NX and CertusPro-NX Code/Binary base address of external memory.

--crosslink_data_base_addr
CROSSLINK_DATA_BASE_ADDR

CrossLink-NX and CertusPro-NX data base address of external memory.

--hyper_ram {0,1}

Use hyper RAM as external memory in CrossLink-NX or CertusPro-NX.

--extmem_start_addr
EXTMEM_START_ADDR

Starting address of external DRAM to store data.

--mean MEAN

Mean value used to preprocess data during training.

--scale SCALE

Scale value used to preprocess data during training.

--sample_rate SAMPLE_RATE

Sample rate value used for sampling the audio file.

--down_sampling DOWN_SAMPLING

Down sampling value used for down sampling the audio file.

--extmem_off {0,1}

Turn off using external memory to store data. By default, external memory is
used to store input/output and scratch data.

--load_from_extmem {0,1}

By default, data is loaded from external memory to internal memory. If this
option is '0', it makes sure data is directly loaded to EBR from sensor or host.

--store_to_extmem {0,1}

By default, data is output to external memory. If this option is '0', it makes sure
to read data from internal memory.

--project_name PROJECT_NAME

Sets the project name.

--project_dir PROJECT_DIR

Project Directory.

--device {Ultra Plus, ECP5,
CrossLink-NX, CertusPro-NX, AVANT}

Sets the Device to ECP5, UltraPlus, CrossLink-NX, CertusPro-NX or Avant.

--mobilenet_mode {0, 1}

Enable MOBILENET mode by setting value to 1. Default is 0.

--ip_mode {Optimized_CNN,
Compact_CNN, Extended_CNN,
Advanced_ CNN}

Sets the machine learning (ML) intellectual property (IP).

--nnMode {0,1}

Sets class CNN(0)/BNN(1).

--bnn_sign_mode {0,1}

Quantization mode for BNN(0: “0/1” and 1: “+1/-1")

--enable_hw_sim {0,1}

Enable Hardware simulation. Default is 1.

--enable_fixed_sim {0,1}

Enable Fixed-point simulation. Default is 1.

--enable_float_sim {0,1}

Enable Floating-point simulation. Default is 1.

--collapse_layer {0,1}

Collapse layers. Default is 0.

--enable_dualcore {0,1}

Enable Dual core functionality. Default is 1.--enable_dualcore {0,1}

--enable_quadcore {0,1}

Enable Quad core functionality for CertusPro-NX Optimized Only. Default is 0.

--enable_embedded_mode{0,1}

Enable Embedded Mode. Default is 0.

--input_ebr INPUT_EBR

Specify comma separated input EBR numbers.

--output_ebr OUTPUT_EBR

Specify comma separated output EBR numbers.

--reg out {0,1}

Enable Register out functionality for CrossLink-NX, CPNX and Avant device.
Default: 0.

--required_output_depth_range
REQUIRED OUTPUT DEPTH_RANGE

Specify Required Output Depth Range. For example, “7-13” only processes the
7t to 13 filters of the output convolution layer.

--user_added_yml USER_ADDED_YML

Specify User added yml file.

--convlxl_mode {single,quad,dual}

Specify convlx1 mode like quad, dual or single. Default single for iCE40 UltraPlus,
CrossLink-NX and CertusPro-NX Compact.

--scratch_blk size
{1024,2048,4096,8192}

Size of scratch embedded block RAM for UltaPlus. Default: 8192.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Argument

Description

--arg_max {4096, 8192}

Size of memory block RAM for arg max operation. Functionality for Extended and
advanced CNN only. Default: 4096.

--otf_post_processing {0,1}

Specify on the fly post processing for UltraPlus. Default: 0.

--number_of_det_class
NUM_OF DET_CLASS

Size of scratch embedded block RAM for UltaPlus. Default: 4096.

--enable_debug_mode {0,1}

Enable debug mode or not. Supported only in CNX, CPNX and Avant devices.
Default: 0.

--segment_number

LRAM Segment numbers we want to use . Iram size will be equal to (number of
segments x segment size) value ranges from 1 to 7 for CPNX Advanced CNN and 1
to 16 for Avant Advanced CNN IP. Default value : 16.

--segment_size

Size of segment for advanced CNN IP. For CPNX and Avant device, advanced IP,
with 32 bit datapath size segment size has fixed value of 65536. For Avant device,
for 64 bit datapath size, segment size is 131072.

--ve_spd_number

Number of the VE scratchpad in advanced CNN IP. Values ranges from 1 to 8.

--multi_port

Multi-Port Parallel Values for advanced CNN IP. Values : {2,4}.

--kmax_pooling_kernel

Kernel size of KMAX pooling for the advanced CNN IP.

--datapath_width {32, 64}

Width of datapath for transferring of data within IP. More datapath width means
more bytes of data transferred in each transaction.

--lut_input_bits
{5,6,7,8,9,10,11,12}

Input bits for LUT for activation function. Only available in Advanced IP.

--lut_output_bits {8, 16}

Output bits of data given by LUT of activation function.

--msb_clip_enable {0,1}

Clip MSB of input data bit for LUT of activation function.

--create_quantized_version {0, 1}

Create a quantized version of the selected input model. If the input model is not
quantized, enabling this creates a quantized version of the input model to be
used for further network compilation processing. Default: 0.

--validation_data_path {path of
directory}

Path of directory containing validation data. The compiler tool uses the
validation data contained in this directory when creating the quantized version
of a model.

--enable_fc_4 bit_weights {0, 1}

Enable weights of Fully Connected (FC) engine to be converted into 4 bits.
Otherwise, used as 8 bits. Default: 0.

--number_of_ml_ips

Number of ML IP used to run the network. Default: 1.

--external_memory_port

Active only when LPDDR4 is selected. Based on the external memory port, logical
external memory addresses are derived when the compiler generates
instructions. This external memory port mapping must match with the hardware
address mapping used in the RTL design.

Commands for Multi-Input Network

--image_files
“inputl_name:IMAGE1_PATH;
input2_name:IMAGE2 PATH”

Specify the input image names according to the input model. Separate input
image names with the semicolon (;).

--multi_input_scale

“inputl_name:0.0078125;input2 name:

0.0078125”

Specify the different scale values for each input.

--multi_input_mean “inputl_name:1;
input2_name: 1”

Specify the different mean values for each input.

--multi_input_sample_rate
“inputl_name:
8000; input2_name:8000”

Specify the different sample rate values for each input.

--multi_input_down_sampling
“inputl_name:0;input2_name:0”

Specify the different down sampling values for each input.

--multi_input_load_address
“inputl_name:0;input2_name:1000”

Specify the address of the different locations to store each input.

--validation_data_path
“inputl_name:DATASET1_DIRECTORY;
input2_name: DATASET2_DIRECTORY”

Path to directory for each input validation dataset. While creating the quantized
version, this validation directory is used. A validation directory must be provided
for each input in the model.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.7. Design Restrictions

There are a few constraints and restrictions that should be kept in mind when designing a neural network with sensAl.
The general hardware, software, and framework restrictions are listed below.

3.7.1. General Restrictions

The mean operation is not performed in the network itself. It must be implemented in your RTL. For more information,
see the Data Preprocessing section.

To support asymmetric padding on hardware, the Convolution layer should be followed by BatchNorm operation.

3.7.2. ECP5 Restrictions

e Mean is not supported in firmware.

e Binary Convolution and Convolution: The maximum kernel size for Convolution is 9x9, while Binary Convolution
has a maximum size of 3. The pad is recommended to be 1.
e If there is asymmetric padding in the convolution layer, then the convolution layer should be followed by Batch-
Normalization layer.
e Pooling
e Global Average Pooling
e The kernel must be symmetric.
e The stride must be 1. The pad must be 0.
e Max Pooling
e The kernel must be symmetric.
e Therecommended size is 2 x 2.
e The pad must be symmetric. It is recommended to use a kernel size of 9 x 9 or smaller to reduce the
number of cycles used.

e For leaky_RelLU, the negative activation slope is fixed to 1/16 in hardware. Models must be trained with alpha =
0.0625 (1/16) in leaky_ReLU.

3.7.3. ECP5 - Mobilenet Mode Restrictions

In addition to the previously-stated ECP5 restrictions, Mobilenet mode has a few additional restrictions to consider.

e Depthwise Convolution only supports kernel sizes of 3 x 3, with stride restricted to 1 or 2, and pad values restricted
toOor1l.

e 1 x1 convolution must have the pad set to 0.

e Mobilenet mode supports branching and merging using eltwise addition. Both inputs and outputs of eltwise
addition must be in the same format [either in 16b or in 8b].

e The Depth wise kernel input is restricted to 8,192. For given channels (C, H, W), this means that (W * H/2) must be
less than or equal to 8, 192.

e The number of engines cannot be changed. sensAl disables the ability to change this number to prevent generating

an invalid firmware file. The number of engines used is eight convolution engines, eight depthwise convolution
engines, and 64 1 x 1 convolution engines.

e Because the eight Convolution engines are in dual core configuration, there are only four dual core engines.
This is less than the limit of the normal ECP5 mode, meaning that the number of output EBRs is four when
using the dual core engines instead of eight.

e There are still eight output EBRs when using the eight depthwise convolution engines.

e RelU6 is not supported in Neural Network Compiler 7.0. Ensure that the model does not contain this activation.

e Currently, if Mobilenet is trained with TensorFlow and the first convolution layer uses padding, the hardware
simulation results may be inexact when compared to the actual hardware output. Test the hardware in this
situation. The TensorFlow implementation of padding introduces differences from the present implementation
employed in hardware.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.7.4. UltraPlus Restrictions

Binary Convolution and Convolution: When using a CNN design in UltraPlus, the Convolution Layer should have a
weight size of less than or equal to three and a stride (conv_stride) of 1. It is recommended to keep the pad size at
1, while larger pad sizes can be supported. There may be data lost due to the fixed-point width losing significant
figures as the padding size increases. When using a BNN design on UltraPlus, the BinaryConvolution Layer has the
same constraints as the standard Convolution Layer.

o Kernel sizes are restricted to 3 x 3 for BNN and 3 x3 and 1 x 1 for CNN.

Pooling: The Pooling layer must have a stride (pool_stride) and kernel (pool_ksize) size of two, and a pad
(pool_pad) of 0.

Mean and Scale are not supported in firmware.

All intermediate data in a model except the output is represented in unsigned 8-bit format in the hardware, using
the format 1.7 to represent the data. Because of this, you should use Mean = 0 and Scale = 0.0078125 in settings
for UltraPlus for any design you intend to run on the UltraPlus IP.

Bias is not supported for the Convolution layer.

BNN supports input dimensions of 32 x 32.

CNN supports the 32 x 32, 64 x 64, 128 x 128, and 160 x 160 input dimensions. 160 x 160 support requires Quad
SPRAM.

Unlike ECPS5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a1 x 1
convolution, then the software will automatically generate firmware for handling Mobilenet.

ReLU®6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

3.7.5. CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions

CrossLink-NX and CertusPro-NX devices only support CNN designs. At this time, there is no support for BNN-based
networks. Use ECP5 or UltraPlus if binary network support is required.

Weights and activations must be quantized for CrossLink-NX and CertusPro-NX. Refer to the Fixed Point
Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant section for more details on how to
guantize your network correctly.

3 x3and1x1arethe only supported convolution kernel sizes. The stride required to be 1 for both types. The pad
can be 0 or 1 for 3x3 kernels, and the pad is required to be 0 for 1 x 1 convolution.

Depthwise Convolution only supports 3 x 3 kernel size, with the stride required to be 1, and the pad can be either
Oorl.

Bias is supported in any convolution layer.

4-bit weights quantization is only supported with the Learned Step Quantized model in the Optimized IP mode.

2 x 2 is the only supported pooling kernel size. The stride is required to be 2, and the pad is required to be 0. Odd
input to the pooling layer is not supported.

ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The
QuantRelLU must be present before each RelLU.

QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.

The fully connected layer is only supported at last (no intermediate fully connected is supported).

The last layer must be fully connected, or CBSR. In CBSR, convolution types should be normal, depthwise, or 1x 1
convolution.

Mean and Scale are not supported in the firmware.

Unlike ECPS5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed bya 1 x 1
convolution, then the software automatically generates firmware for handling Mobilenet.

RelLU®6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

Branching or merging structures, such as Concat and ELTwise addition, are not supported in compact mode. Use
either the optimized mode or extended mode if you wish to use the ELTwise or Concat operations. Also, both
inputs and outputs of eltwise addition must be in 8b quantized format.

CrossLink-NX and CertusPro-NX utilize external memory by allowing the base address for the data and code to be
specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

available for the data or the firmware. If the data base section address leaves insufficient room for the data, the
analysis stage produces an error indicating this. Likewise, if the code base address leaves insufficient room for the
code, the analysis stage produces an error stating as much. In either case, the address must be changed to allow
for sufficient space.

Depths/Channels used in Crosslink-NX and CertusPro-NX are recommended to be multiples of 4 for depthwise and
1x1 convolution for better performance.

CrossLink-NX with Quad LRAM (i.e., 262144 bytes) on-chip large memory size is available only for the CLNX-17k
device, and due to the limitation of EBR on the 17k device, it will be available with a 1k scratch pad size only. The
user must not use firmware compiled with a Quad LRAM size for the CLNX-40k device. For CertusPro-NX, all the
scratch pad sizes are supported with Quad LRAM.

Large input resolutions like VGA and QVGA are only supported in CrossLink-NX optimized, CrossLink-NX extended
mode, CertusPro-NX optimized mode, and CertusPro-NX extended mode.

Embedded mode is only supported for CrossLink-NX Optimized and CertusPro-NX Optimized devices.

Embedded mode only allows dual or Quad LRAM (i.e., with Embedded Mode on, the user cannot use 64 KB of
LRAM).

Embedded mode does not allow users to use external memory. If you observe the memory error, please reduce
the filter size or model dimension, or else the user can run the model with Embedded Mode off.

Branching structure with Concat layer is not supported in the Embedded mode.

Focus Layer is supported as the first layer only in the Optimized IP mode.

4-bit activation is only supported in the Optimized IP mode.

4-bit input data to Fully Connected layer is not supported.

3.7.6. CertusPro-NX and Avant Advanced CNN IP Restrictions

Currently, the CertusPro-NX and Avant devices advanced CNN only supports the following layers.

Convolution (kernel size: 7x7, 5x5, 3x3, 1x1)

Eltwise addition

Concat

Fully Connected

Pooling (2x2 kernel, stride 2, pad 0)

Pooling (K x K kernel, stride 1, pad K/2)

Multiply, subtract, divide and reciprocate.

The focus layer is currently implemented using RTL and has to be part of pre-processing. It is always supported
after the input layer.

Resize operation

CPNX and Avant devices only support CNN designs. At this time, there is no support for BNN-based networks. Use
ECPS5 or UltraPlus if binary network support is required.

Weights and activations must be quantized for CPNX and Avant devices. Refer to the Fixed Point Quantization for
iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant section for more details on how to quantize your network
correctly.

3x3,1x1,5x5,and 7x7 are the only supported convolution kernel sizes. The stride required to be 1 fora5 x5
type pad is 2. The 3 x 3, stride = 2, pad is supported asymmetrically in order to get the output dimension (H/2,
W/2). Currently, Pad 0 is not supported with the 3x3 kernel.

Depthwise Convolution supports 5x5, 3x3 kernel size, with the stride required to be 1, and the pad 1.

The 2 x 2 kernel is supported for pooling. The stride is required to be 2, and the pad is required to be 0. Odd input
to the pooling layer is not supported.

For pooling with a K x K kernel, stride needs to be 1, and padding required should be half of K.

ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The
QuantRelLU must be present before or after each RelLU.

QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e The fully connected layer is supported as the last and intermediate layer. The intermediate fully connected layer
should be followed by the fully connected layer. The intermediate fully connected layer should be quantized.

e The last layer must be fully connected, CBSR, or resized bilinear. In CBSR, convolution types should be normal,
depthwise, or 1 x 1 convolution.

e Mean and Scale are not supported in the firmware.

e Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a1 x 1
convolution, then the software automatically generates firmware for handling Mobilenet.

e RelUG6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

e CPNX and Avant devices utilize external memory by allowing the base address for the data and code to be
specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory
available for the data or the firmware. If the data base section address leaves insufficient room for the data, the
analysis stage produces an error. Likewise, if the code base address leaves insufficient room for the code, the
analysis stage produces a warning stating as such. In either case, the address must be changed to allow for
sufficient space for both data and code.

e Depths/Channels use in CPNX and Avant are recommended to be multiples of 4 for depthwise and 1 x 1
convolution for better performance.

e Currently, 2 and 4 multiport modes are supported. This takes more resources but speeds up the 1 x 1 conv layer
execution.

e The focus layer is supported as the first layer only.
e 4-bit activation is not supported in the Advanced IP.

3.7.7. Caffe Restrictions

SensAl supports reading the current Caffe protofile format. Older keywords, such as using layers instead of layer, are
not supported.

See the Supported and Added Caffe Layers section for more requirements for individual layers.

3.7.8. Keras Restrictions

See the Supported Keras Layers section for more requirements for individual layers.

3.7.9. TensorFlow Restrictions

Versions 1.14, 2.0, 2.3, 2.5, and 2.9 of TensorFlow are supported by sensAl. Networks designed for other versions may
not be compatible.

See the Supported TensorFlow Operations section for more requirements for individual operations.

3.7.10. AutoKeras Restrictions

e The model training was done considering a multiclass CLASSIFICATION task only.

e The model architectures were experimented with an input size of 32 x 32 x 1.

e The optimizer that AutoKeras chooses sometimes has a very small initial learning rate, and sometimes it is used
along with learning rate decay, which affects training accuracy and loss. Hence, a constant optimizer was used
(SGD with an initial LR=0.1 and a learning rate scheduler callback option).

e For now, the only hyperparameter that is varying is the number of channels (depth) in each layer. If the number of
layers is kept as a hyperparameter, then it tries to go for a very large depth near the FC layer, and this creates the
FC output value to explode. So the number of layers is now fixed.

e The max model size parameter is tested with a few experiments (with a given seed and resolution) to create a
model (.bin file size) smaller than the limit for certain devices like UltraPlus.

e For reproducibility, when the seed is provided, it searches through the same hyperparameter combinations every
time we run the script. However, the loss value that the AutoKeras get might differ slightly, and as a result, they
may not have the same architecture as earlier. But the accuracy remains approximately within the +/-3% range.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

e Note that if FC layer output crosses the range of [-32,+32], then we may experience a little higher MAE in the
Neural Network Compiler, which is expected.

Refer to AutoKeras Reference Design document to know about training a model in AutoKeras for NNC.

3.7.11. ONNX Restrictions

ONNX model support is experimental. Only float and PTQ models are supported. The input to the network should be in
the NCHW format. See the Supported ONNX Layers section for more requirements on individual operations.

3.8. Next Steps

Now that you have created or opened a project, you are ready to edit your project and run through the design flow, as
detailed in the next section.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 27

http://www.latticesemi.com/legal

= LATTICE

4. Working with Projects

4.1. Implementations

Implementations organize the structure of your design and allow you to try alternate structures and tool settings to
determine which one can give you the best results. To help determine which scenario best meets your project goals, try
using a different implementation of a design with different settings. Each implementation has associated active
settings. When you create a new implementation, you must select its active settings.

4.1.1. Creating a New Implementation

To try a new implementation with different strategies within an existing project, you must create a new
implementation.

1. Choose File > Add Impl to bring up the Implementation Options window.

2. The Implementation Options window has the same parameters as the one you encountered when creating your
project initially. You can change the implementation name to a unique string if desired. Within the project, each
implementation must have a unique name.

3. Change the implementation settings from the default settings, if desired.

4.1.2. Editing an Implementation

You can edit an existing implementation to change the specific input and output files, as well as the implementation
settings.

1. Choose File > Edit Impl to bring up the Project Settings window.

2. The Project Implementation Settings Window opens, as shown in Figure 4.1.

7 Project Windaws — *
Implementation Name; Impld
scratch Pad Memory Block Size: ‘ 8192 b ‘ 1K/2k/4K/BK Byte entry
Enable Paired Convolution Engine: ™ (Dual Core Mode)
On-Chip Large Memory Size: ‘ 131072 b ‘ GAK128K/256K Byte entry
Register out: I [Dutput register for LRARM)
Debug mode Enable: ™ Result Readout
Enable Embedded Mode: ™ (Embedded made)
External memary interfaced [In bytes): 8388608 IV HyperRam
Data Section Base Address 7340032
Code Section Base Address]
¥ store Input ™ store Output
GPOID 0x0&10 (0000 walue pass to post-processing RTL
Mean value for Data Pre-Processing: |0 Keep Defaultvalues to bypass preprocessing
scale Walue for Data Pre-Processing: |0.0078125 Operation:Input Data =(Input Data - Mean) x 3cale
[” On-the-fly post processing
Required output depth range:
Cancel oK

Figure 4.1. Project Implementation Options Window

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Edit your existing settings and click OK to apply them to your Project Implementation. For more information on
parameters and their limitations, refer to the Project Implementation Settings section.

4.2. Project Flow

4.2.1. Analyze

You must first run the Analyze function on your project before you can progress to the Compile or Simulate stages. It
analyzes your code to verify compatibility with the Lattice CNN Compiler. You can run the Analyzer by selecting
Process > Analyze.

B Lattice Sensal Software - m] X

File Process \iew Tools Help

[Q]..a 4 3T

Process | Files ‘ gl I Impl0

Project: humanpresence [mpld Blobs Data Format (Analyzed) Stored Data Format Internal(External) Merm Bytes B AE_Sirnulati

batch 105 105 24576

Compile fireTfcomudx3fc 123 123 Mone

— Simulate(Optional) fire1/bn/batchr 510 510 MNone

EdFloating Point Madel fire1/Relu--0 310 310 MNone

Edinferznce Engine Model firel/poolitdax 510 510 32768

Post Pracessing fire2fcomnudx3fc 6.9 6.9 Mone

Dawnload fire2/bnfbatchr 510 510 Mone

Run fire2/Relu--0 5.10 510 32766

fire3fconudx3fc 510 510 Mone

fire3/bnfbatchr 510 510 Mone

g fire3/Relu--0 411 411 Nane

[T all [DEBUS W INFO ¥ waRNING W ERRCR

Summary | Log: Impl0

o T SOOI DR S TATT ¢ & TS

INFO IMFG - blobifirel/convax3/convolution--0): 16x32:32 -+ 1 mblks "
INFO IMFO : blabifire2/conv3x3fconvalution--0): 16x32x32 -» 1 mblks
INFQ IMFO : blobifire3/conv3x3/convolution--0); 16x16x16 -> 1 mblks
INFO - IMFG - blobifired/convSx3/convolution--D): 20x16x16 -> 1 mblks
INFO :INFO - blobifireS/convax3/convalution--0): 20:8%8 -= 1 mblks
INFO IMFO : blabifires/conv3x3fconvalution--0): 32x4x4 -= 1 mblks
INFC (IMFO : blobfconvl2/convolution--0): 36:x4x4 -= 1 mblks
INFO IMFO :layer name CBSR_convl2fcorwolution addition 10368 multiplication 165888
INFO INFO :layer name CBSR_fired/cory 3x3fcarwalution_fire6/bn/batchnorm/Rsgrt_fire6/Relu_fireg/poal /MaxPoal addition 10496 multiplication 93440
INFO IMFO :laver name CBSR_fireSfconw 3x3fcanvalution_fireS/bn/batchnarm/Rsagrt_fire5/Relu_fireS/poal /MaxPoal addition 28160 multiplication 235520
INFC (IMFO :layer name CBIR_firedfcony 3x3/convolution_fired/bn/batchnorm/Rsgrt_fired/Relu addition 26256 multiplication 741376
INFO :IMFO layer name CBSR_fire3/conv3x3/convolution_fire3/bn/batchnorm/Rsart_fire3/Relu_fire3/pool fMaxPool addition 90112 multiplication 8062058
INFO IMFO :laver name CBSR_fire2/comw 3x3fcanvalution_fire2/bn/batchnarm/Rsaqrt_fire2/Relu addition 311296 multiplication 2375650
INFO IMFO :laver name CBSR_firelfconw 3x3fcanvalution_firel/bn/batchnarm/Rsaqrt_firel/Relu_firel/poal /MaxPoal addition 307200 multiplication 454656
INFC (INFO : total addition 853888 total multiplication 4672765
INFO :IMFO Succesfully completed input netwark analysis. This network/configuration can be compiled to generate firmware
INFO :IMFO : Process Finished
v

Figure 4.2. Analyze Results

After successfully analyzing a neural network file, the implementation window is updated with a set of columns listing

the properties of your neural network under the current settings.

e Blobs: Each blob that is detected and implemented by the software is listed in this column. Some blobs that are in
the network file are not implemented in the hardware, such as those used for external data processing, and are
not listed here.

e Data Format: This column lists the breakdown of the fixed-point representation of the blob. The number preceding
the period is the number of bits used to represent the integer component of the number, while the number
following it is the number of bits used in the fractional component. For signed data, the total number of bits is one
less than the total number of bits used, as one bit is always used for signage.

e For clarification, the following represents a 16-bit signed number, using 15 bits to represent the integer and
fraction:
e 3.12 represents a signed number with 3 integer bits and 12 fractional bits. The sum of the two values is
15. The software thus uses a 16-bit signed format.
e For a signed 8-bit number, the total would be 7, as shown:
e 5.2 represents a signed number with 5 integer bits and 2 fractional bits. The sum of the two values is 7.
The software thus uses an 8-bit signed format. Finally, unsigned numbers can be used in 8-bit format.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e 5.3 represents an unsigned number. The sum of the two values is 8. The software thus uses an 8-bit
unsigned format. SensAl only supports unsigned 8-bit and signed 8- and 16-bit formats. Some settings,
such as layer collapse, force a certain combination of integer and fractional bits.

Stored Data Format: This column is a user-editable list of the fixed-point representations of each blob. It is

populated with the default values that are automatically calculated by the software. Values are written in the same

format as the signed data format entry above. In order to edit the stored data format for a blob, double-click the

entry in that column for the blob in question.

You can allocate how many bits you want dedicated to the integer and fractional components for EBR storage for

the specified blob. You have to specify whether the EBR accepts 16-bit mode or 8-bit mode. To use 16-bit mode,

your two values need to add up to 15. To use 8-bit mode, your two values need to add up to 7.

e 12.3 represents EBR storage in 16-bit mode with 12 integer bits and 3 fraction bits.

e 6.1 represents EBR storage in 8-bit mode with 6 integer bits and 1 fraction bit.

Required Memory Bytes: The memory required to implement each blob is listed in this column. See the Project

Implementation Settings section for more details on the effects your settings may have on this.

e UltraPlus: Lists the required SPRAM.

e CrossLink-NX, CertusPro-NX, and ECP5: Lists the required internal (LRAM/EBR), and external (HRAM/DRAM)
memory.

Distribution of Input Data into Memory Blocks

During the analysis process, input data is divided into memory blocks based on the input layer dimension. The
following subsections explain the details of how this division is handled. This example uses a three-channel BGR
input, though your data input may use more or less than three channels.

e Fraction setting of the input layer: If the input values can fit in 8 bits, then the fraction settings to store input
data are in 8-bit (byte mode). Hence, 16384 (for ECP5) input values can fit in a single memory block; otherwise
8192 values can be stored in one memory block.

e Based on the values that can fit into a single memory block (16384 total values for byte mode on ECP5), there
could be four different conditions: cases where all the channels fit into a single memory block, cases where at
least one channel can fit into a single memory block, cases where a single channel cannot fit into a memory
block, and cases when memory blocks are not sufficient to fit input data.

e All the channels (BGR) can fit in a single memory block.
If the input dimensions are 3 x 32 x 32, then the total number of input values is 3,072, which is less than
16,384 values.
In this case, all the data values are stored in a single memory block in sequential order. In this example,
input data is stored in the first memory block, from address 0 to address 3071.

e Atleast one channel can fit in a single memory block:
There is also the case where all of the channels cannot fit into a single memory block, but it is still possible
to put one or more channels into one.
For cases where only a single channel can fit within a memory block, consider a case where the input
dimension is 3 x 128 x 128. This corresponds to 49,152 entries, which cannot fit into a single memory
block. However, a single channel has a size of 1 x 128 x 128. This is 16,384 values, which can fit within a
single memory block.
In this case, data is divided into 3 memory blocks, and each memory blocks can have a single channel of
data values.
Note: Even if there is some extra space remaining in the memory block, the next channel values are not
stored in that space unless a second channel could fit within, as explained in the next subsection.
In another example, consider an input dimension of 3 x 90 x 90. Once again, all three channels correspond
to a size (24,300), which cannot fit within a single memory block. Even though two channels would take
up 2 x 90 x 90, or 16,200 entries, which can fit in a single memory block, data is divided into memory
blocks equally.
In this case, the data is divided into three memory blocks. The first memory block has the data from the
first (B), the second memory block has the second (G) channel, and the third memory block has the data
from the third (R) channel.
In this case, the last 8,284 values of each memory block are not used.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

A single channel cannot fit in a single memory block, but memory blocks are sufficient to fit input data.
Consider a larger network with input dimensions of 3 x 224 x 224. In this case, there are 150,528 input
values, which is far too large for a single memory block. Additionally, a single channel (1 x 224 x 224) has
50,176 values, which is still too large for a single memory block.
Because of this large size, the Analyze stage attempts to divide each single channel into smaller pieces
that can fit in each memory block using the following three steps:
1. Calculate the required memory per depth:
Number of memory blocks = Ceiling [(224x224)/16,384] = 4
In this case, the memory per depth is 4.
2. Calculate the height per memory block:
Height per memory block = Total height / memory per depth value
For a total height of 224 divided by a depth of 4, this results in a height per memory block of
224/4, which is 56 in one memory block.
3. Because there are 4 memory blocks per depth and 3 channels, a total of 12 memory blocks are used
to store the input data.
Because each memory block stores the values of 56 heights (56 x 224), it uses 12,544 entries per memory
block, and the remaining space in each memory block is unused. In this case, the data is divided as listed
below:
e 1*memory block: Channel 0 (B) 0 — 55 height values
e 2" memory block: Channel 0 (B) 56 — 111 height values
e 3™ memory block: Channel 0 (B) 112 — 167 height values
e 4™ memory block: Channel 0 (B) 168 — 223 height values
e 5" memory block: Channel 1 (G) 0 — 55 height values

e 11" memory block: Channel 2 (R) 112 — 167 height values
e 12" memory block: Channel 2 (R) 168 — 223 height values

Memory blocks are not sufficient to fit input data.

Consider a larger network with input dimensions of 3 x 300 x 300. In this case, there are 270,000 input
values, which is too large for all memory blocks, where the total memory size of all blocks is 162,144

(16 x 16384). In cases where the total memory block size is not enough to store all input channels, DRAM
is required to store input data. For the input layer, you need to enable the Store Input option. For
intermediate layers, the DRAM address is auto assigned. During processing, data is copied from DRAM to
EBR. Because of this large size, the Analyze stage attempts to divide each single channel into smaller
pieces that can fit in one memory block, as above. Analyze flow assigns one or more memory blocks to
process data in the engine. As data is already in DRAM, the same memory block(s) can be reused for the
next piece. So even if data cannot fit into assigned memory blocks, it is not overwritten. In this case, the
data is divided as listed below:

e 1tmemory block: Channel 0 (B) 0 — 50 height values

e 1*memory block: Channel 0 (B) 51 — 100 height values

e 1*memory block: Channel 0 (B) 251 — 300 height values
e 2"¥memory block: Channel 1 (G) 0 — 50 height values
e 2"¥memory block: Channel 1 (G) 51 — 100 height values

e 2" memory block: Channel 1 (G) 251 — 300 height values
e 3™ memory block: Channel 2 (R) 0 — 50 height values
e 3 memory block: Channel 2 (R) 51 — 100 height values

e 3™ memory block: Channel 2 (R) 251 — 300 height values

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.2.2. Analyzer for USB Debugging

To debug ECP5 via the USB interface, this checkbox should be enabled. The analyzer adds the required external
memory address information to the output files.

For ECP5, layer outputs are read out after running. As a result, the outputs of layers that have their outputs overwritten
by subsequent layers cannot be read directly.

4.2.3. Compile

You can create a firmware file for your analyzed network by running the compilation flow. This generates an Iscml-type
file, which can be used to download the network to your hardware by the software or by another tool. You can run the
compiler by selecting Process > Compile.

B Lattice Sensdl Saftware - O X
File Process “iew Tools Help
"
HaQSpiem
Process Files Impl Impl0
Praject: SqueezeDet lmpld EBlobs Data Format {@nalyzed) Stored Data Format Internal(External) e Bytes MASE_Simulat]

batch 8.7 1.7 Maone
3 firelfcome3x 3/t 510 5.10 Maone
— Simulate(Optional) CBSR_firel/con a7 17 Mone
Floatmg Point Model fire2_Tx1fconw” 5.10 5.10 Maone
Einference Engine Maodel CBSR. fire2_Tx1. a7 1.7 Mone
Post Pracessing fire2_3=3_2fcar 5.10 5.10 Maone
Dowenload CBSR_fired_3x3 a7 17 Mone
Run fire2_Tx1_1/car 5.10 5.10 Maone
CBSR_fire?_Tx1 a7 17 Mone
Concat_fired_ct 510 5.10 Mone
Concat_fired_ct a7 17 Mone

[T an [perus W OINFO W waRNING W ERROR

Summary | Log: Impl0

o e P =i e
INFO CINFO {'channel': '26', A Size' "
INFO :INFO {'channel" '27', 'Data Size" "
INFO CINFO {'channel': '28', 'Data Size": "
INFO :INFO {'channel" '29', 'Data Size" "
INFO CINFO {'channel': '30', 'Data Size": "
INFO :INFO {'channel" '31, 'Data Size" "
INFO CINFO {'channel' '32', 'Data Size": "
INFO :INFO {'channel" '33, 'Data Size" "
INFO CINFO {'channel': '34', 'Data Size" "
INFO :INFO {'channel" '35, 'Data Size" "
INFO CINFO {'channel': '36', 'Data Size": "
INFO :INFO {'channel" '37', 'Data Size" "
INFO INFO {'channel’ '38", 'Data Size" "
INFO :INFO {'channel" '39', 'Data Size" "
INFO CINFO {'channel’ '40', 'Data Size" "
INFO :INFO {'channel" 'a1’, 'Data Size" "
INFO :INFCO : Process Finished

', 'LR&M address" 'Dxlead'}
', 'LR&M address' '0x2028'}
', 'LR&M address" '0x21b0'}
', 'LR&M address': '0x2338'}
', 'LR&M address" '0x24c0'}
', 'LR&M address' '0x2648'}
', 'LR&M address" '0x27d0'}
', 'LR&M address' '0x2958'}
', 'LR&M address" 'Dx2ae0'}
', 'LR&M address' '0x2c68'}
', 'LR&M address" 'Ox24df0'}
!, 'LR&M address' '0x2f75'}
', 'LR&M address" '0x3100'}
!, 'LR&M address' '0x3288'}
', 'LR&M address” '0x3410'}

Figure 4.3. Compile Results

After your network has been successfully compiled, you are presented with performance information. ECP5 designs
also report details on channel/height storage and the start/end addresses for each input EBR. The cycles used by your
neural network given the specified settings are reported, with a breakdown of cycles spent on DRAM access,
convolution, pooling, fully connected, and scale.

e DRAM: These are the cycles that are spent accessing or storing data in the DRAM. Designs that use more of the
EBR for storage will have fewer cycles used in the DRAM stage, and this number will increase as your settings
offload more storage from the EBR to the DRAM.

e Conv: The cycles used in performing convolution are reported here. In a conventional neural network, this
represents the standard convolution cycle. In a binary neural network, it displays the cycles used during binary
convolution. In designs utilizing EBR, it typically represents the largest share of cycles in your design.

e Pool: These cycles are used to implement pooling in your neural network.

e FC: This entry corresponds to cycles used to implement fully connected (or inner product) vector operations.

e Scale: Scaling cycles are spent performing the scale operation.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

4.2.4. Simulate

It is recommended that you run the simulation to verify the results. This is not a required step to compile your project.
You can simulate your analyzed network using the Simulate feature. By selecting the green or red check boxes in the
process window of the left pane, the simulation type can be changed between the floating-point network, fixed-point
network, or inference engine model. By default, all types of simulation are selected. You can run the simulator by
selecting Process > Simulate.

File Pro

s

) Lattice SensAl Software

cess View Tools Help

Ged tbaem

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
WARNING
WARNING
WARNING
WARNING
WARNING

WARNING
WARNING

WARNING

WARNING :

[—

Process | F—— ‘ Impl J Impl0
Project: example Impl0 Blobs Data Format (Analyzed) | Stored Data Format(User Edit) | Required Memery Bytes MAE_Simulation
I Analyze data 14 20 16384 N/A
Compile corvl 14 14 131072 N/A
[Simulate({Opticnal) norm1 3.10 5.10 131072 N/A
Post Processing peoll 3.10 5.10 32768 N/A
Download conv2 310 510 131072 N/A
Run norm2 310 510 131072 N/A
pool2 5.10 510 16384 N/A
com3 5.10 510 131072 N/A
norm3 5.10 510 131072 N/A
prob 5.10 5.10 16384 007804

[T a7 peBUG W INFO W WARNING W ERROR

Summary | Log: Impl0

covi N/A
norml N/A
pooll N/A
conv2 N/A
norm2 N/A
pool2 N/A
convd NfA
norm3 N/A

prob 0.07804030179977417
Total cycles: 456,536
dram: 4,096
conv: 264,024
pool: 81,920
for 16,384
scale9o,112
: The size of external memory (in Bytes) required: 0x4000
: Number of External Memory Access: 1

INFO :Completed simulation using HW model

: Simulation finished

INFO :Process Finished

Figure 4.4. Simulate Results

The inputs and outputs of the simulation are determined by your neural network and your source file. The total cycles
reported are identical to those found in the compilation stage.

Data Histogram Graph

After the analysis is complete, you can double-click on the blob name in the implementation window to view the data
histogram for the particular blob.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG

-02052-7.0

33

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

f Data Histogram - O ped
Number of Bins |50
8000 A
7000 4 MinValue |-748.774072265625
6000 -
:‘ Max Value |609.3563232421875
~ 5000 A
5
5 4000 4
D
3000 -
2000 A
Refresh |
1000 4
0 .
-800 -600 -400 -200 0 200 400 600
V/aluies 4“]”” Qum

Figure 4.5. Data Histogram for the Blob

A data histogram provides information on the minimum and maximum values and distribution of data. The histogram
also helps to derive the proper fraction for the blob. Clicking on Apply can select a frac value, so it can store the
maximum (on both positive and negative) possible values.

Note: The data histogram is only available for ECP5 and UltraPlus devices.

4.2.5. Post Processing

If the Post Processing command is configured in the project setting as shown in Figure 3.2, this operation runs the post
processing script on the input data (a selected image or .npy) with the simulation result .npy file. You can run post
processing by selecting Process > Post Processing as shown in Figure 4.6.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 34

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Bl Lattice SensAl Software - m] *

File Process ‘“iew Tools Help

HGQ sk

Process | il ‘ mpl I Impld

Project: wehicle [mpld Blobs | Data Format (fAnalyzed) | Stored Data Format({User Edit) | InternaliExternal) Merm Bytes | MAE_Simulat

b Analyze data 123 8.0 196608 (196608

Caompile cone] 123 12.3 63536 (1835008)

- Simulate(Optional) scalel 87 a7 65536 (1835008)

Floating Point Model pooll 87 a7 131072 (524288)

Fdinference Engine hodel conw 87 a7 131072 (1048576

g scale? 7.8 78 131072 (1048576)

Daownload poal2 7.8 78 131072 (262144

Run conyd 7.8 78 131072 (524288)

scaled 7.8 7.8 131072 (524288)

poal? 7.8 7.8 131072 (131072)

| o ® 78 A

[T all [T DEeus W INFO ¥ waRNING ¥ ERROR

Summary | Log: Impld

[k T T e T e T Ty e e e e T e Ty e e N Iy e Ty

INFO :IMFO :layer name pool3 addition 0 multiplication 0 ~
INFO CIMFO :layer name poold addition 0 multiplication 0
INFO :IMFO :layer name poolS addition 0 multiplication 0
INFO CIMFO :layer name poolé addition 0 multiplication 0
INFO :IMFO : total addition 0 total multiplication 0
INFO CIMFO : Succesfully completed input netwark analysis. This network fconfiguration can be compiled to generate firmware
INFO :IMFO :Process Finished
INFOQ CIMFO
LSC_ML_COMPL- A Compiler for Deep Neural Metwork Inference
Copyright{c) 2017-2025 Lattice Semiconductor Corporation
Version:We.l Alpha
Build: 2023-09-06
INFO :IMFO : Started Post Pracessing
INFO :IMFO :Finished Post Processing
INFO :IMFO :Process Finished
v

Figure 4.6. Post Processing

4.2.6. Download

Lattice Neural Network Compiler Software is capable of directly downloading a project to a compatible board that is
connected to the computer. The test board must be connected via USB. You can run the download tool by selecting
Process > Download. See the USB Debugging section for more information on the USB debugger.

4.3. Views

The View menu in the software allows you to view the input network, analyzed network, log file, and simulation data
graph in different windows. Also, it allows users to select GUI themes.

4.3.1. Input Network

The Input Network view displays a visualization of your input network, consisting of the layers, blobs, and connections
in your network file.

TensorFlow-Keras Input Network

This option opens the TensorBoard graph in your default browser, as seen in Figure 4.7.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 35

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

«LATTICE

9 Google Chrome ~ 0.4 KiB/s 04K00K & ¥ O ~
B TensorBoard x + - 8 x
<« C ©® localhost:37303/#graphs&run=. * O
TensorBoard GRAPHS JRACTIVE
import i
Search nodes. Regexes supported. s Subgraph: 80 nodes C)
(el
Fit to S F
o sereen Attributes (0)
¥ Download PNG Inputs (0)
RURI(T) . Outputsl]
Session runs = Remove from main graph
©
Upload choose File

__J® Trace inputs

Color @ Structure

~ Close legend.

Graph (* = expandable)
Namespace* 2
OpNode 2
Unconnected series* 2
Connected series* 2.
Constant

Bo

Summary 2

Dataflow edge 2

Control dependency edge 2
Reference edge 2

Fi

Figure 4.7. Input Network — TensorFlow or Keras

Close Tensorboard

When you return to the sensAl tool, you are asked if you wish to close the Tensorboard process. If you choose not to
close, you can close it later from upper left corner tool bar as shown in Figure 4.8.

€)>C 0 ® localhost 54009
© LatticeveN @ Genit % Lattice TP G Outiook

qgraphs&run= -9 yinmoe =

TensorBoal
Debug Help
© P ejBl<s
Search nodes. Regt
Fitto Screen | Process Files Impl Impl0
Project: objectcount Impl) Blobs Data Format (Analyzed) Stored Data Format(User Edit) Required Memory Bytes MAE Simul
¥ Download PNG | Analyze data 105 80 196608
) Analyze for USB Debugging Convolution! 105 105 1835008
Run (1) 4l compite Scalel 69 69 1835008
Session runs (0) & Simulate{Optional) Pooling 69 69 0288
.| Floating Point Model ¢ 69 69 1048576
Upload 7 Fived Point Model Scale2 H Woming 1048576
1 Inference Engine Model Pooling2 w214
B Traceinputs || PostProcessing Convolution3 Sinsorbosedn 524288
Download Scale3 0 ot ol Sl s24288
Color @ stucture Run Pooling3 13107
O evice || | Convolutiond 224
O XLACluster =] Yo
I ALL [~ DEBUG ¥ INFO ¥ WARNING ¥ ERROR

QO Compute tig
Summary Log: Impl0
v Close legend tensorflow.python.platform.gfile) is and will be removed in a future version.
Instructions for updating:
Graph (*=expandabl{ Use tf.gfile.GFile.
INFO : Tensorboard link http://localhost:S3593
Namespace* 2| 1nFo ensorboard terminated
OpNode 2 INFO :
Unconnected §[LSC_ML_COMPL - A Compiler for Deep Neural Network Inference
Copyright (c) 2017-2019 Lattice Semiconductor Corporation
Connected sefl lversson: v2.0.0-Beta

O Constant? |[Build: 2019-04-24
m Summary 2
Dataflow edge|(INFO : Launching Tensorboard
Control depeng TNFO 3 Temsorboazd link huep://localnostiSd00s
Reference edg(___ v

Figure 4.8. Close Tensorboard Process

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 36

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

Caffe Input Network
This option displays your input Caffe network, as seen in Figure 4.9.

¥ Larice Sensal Software - o x

QaqQ

Figure 4.9. Input Network - Caffe

4.3.2. Analyzed Network

The Analyzed Network View displays a visualization of your analyzed network. This is only available after the analyze
stage of the project flow. In addition to its entry in the view menu, you can also click the View Analyzed Network
button to the right of the Run button to bring up the display.

4.3.3. GUI Themes

The GUI Themes menu (Figure 4.10) allows you to update the look of sensAl. Simply click on one of the many options to

choose the theme that suits you.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

37

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide
[Lattice Sensal Software - u] X
File Process View Tools Help
H ¥ Input Netwark
] Analyzed Network
Lauati Blobs] Data Format (Analyzed) I Stored Data Farmat | Internal(External} Mem Bytes | MAE Simulat
HTML Log Clearlooks
Analyze e Graph o ch 37 1.7 Nene
Rl bl fcomixdf 510 510 Mane
< Simulate(Optional) CBSR firel/con 87 1.7 None
[E&Floating Point Madel fire2_1x1/cany” 510 510 Nene
Einferance Engine Mode| CBSR_fired_Tx1 87 1.7 Nene
Past Pracessing fire2_3x3_2fcor 510 510 None
Download CBSR_fired_3x3 37 1.7 Nene
Run fired_1x1_1/cor 510 510 None
CBSR fired_Tx1 87 1.7 None
Cancat fired_ct 510 510 Nene
Coneat fire2_cc 87 1.7 None
[&Ll [DEBUG W INFO [wWaRNING ¥ ERRCR
Summary | Logi Impld
T o oSy
INFO :INFO {'channel’" ! 'LRAM address' '0x1d15'} ~
INFO :INFO {'channel’;'27"," ! 'LRAM address' 'Oxleal’}
INFO :INFO : {'channel:' ' 'LRAM address': '0x2025'}
INFO :INFO : {'channel:' ' 'LRAM address': '0x21b0'}
INFO :INFO : {'channel’: ‘30", " ' 'LRAM address': '0x2335'}
INFO :INFO :{'channel’: '31", " ! LRAM address’: '0x24c0'}
INFO :INFO : {'channel’; ‘32", ' LRAM address': '0x2645')
INFO :INFO : {'channel":' ' LRAM address': '0x27d0'}
INFO : INFO : {'channel" ' ' 'LRAM address’ '0x2355')
INFO :INFO : {'channel " '35, " ! LRAM address’: 'Ix2ae0’}
INFO : INFO : {'channel" ' ' LRAM address’: '0x2c68'}
INFO INFO LRAM address': 'Ox2df0"}
INFO INFO ' 'LRAM address' '0x2f78'}
INFO : INFO L ! 'LRAM address’: '0x3100'}
INFO : INFO : {'channel: '40°, 'Data Size": '196", 'LRAM address' '0x3285')
INFO :INFO : {'channel: '41, 'Data Size": '196", 'LRAM address' '0x3410'}
INFO :INFO : Process Finished
v

Figure 4.10. GUI Themes

4.3.4. LogFile

The Log File view allows you to view the output log of your project. This is a history of operations you have initiated
and the output that was generated as a result. If you would prefer to use a text viewer of your choice, the contents of
your log file are stored in a .log file in your project directory.

4.3.5. HTML Log File

This HTML log file is simply a view of log files in HTML pages. You can open the HTML log in two ways. You can open an
HTML log webpage by clicking View > HTML log, as shown in Figure 4.11. When you open the same project multiple
times, new HTML pages are created. When you open the HTML log in your browser, there are four log sections: debug,
info, warning, and error. There are refutations of each section's arguments. The default view of this webpage is a
combination of four sections. Whenever you click on any section, they show the log of each section donly. There is a
search option available for each section. Figure 4.12 shows the default view of the HTML log. Figure 4.13 shows the
search option for the warning. The background colors for each portion are different.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 38

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

=LATTICE

Efl Lattice Senstl Sofeware

File Process Wiew Tools Help

L, m ‘;:? Input Metwork

Analyzed Metwork

Process | F GUIThemes 3 Imp\D‘

LogFile Blobs]

Data Format (Analyzed) | Stored Data Format(User Edit) | Merm Bytes | MAE_Sirulat]

- Analyze ul ‘ " data
oty __Simulation Dats Grap .

Compile norm1

) paoll
Post Processing conv?
Download norm?
Fun paolz
comv3

narm3

prab

—_——

114 80 16384 (HAL) /&
114 114 131072 (MFE) /&
510 510 131072 (NFA) MfA
510 510 32768 (N/AY N
510 510 131072 (NAA) e
510 510 131072 (NAA) N
510 510 163684 (N/A) Wi
510 5.10 131072 (/&) N7&
510 5.10 131072 (MFE) /&
510 510 16384 (16384) 0.07804

" AL 7 DEBUG [V INFO W WARNING ¥ ERROR

Summary | Log: Impld

INFO +INFO : Simulation output is stored in DAproj ect vl
INFO - INFO

D obewise Mean Absolute Errorteer

INFO :INFO : Blob_name MAE

INFO :INFO : data N/

INFO :INFO : convl — Nf&

INFO :INFO : norml N4

INFO :INFO : pooll N/&

INFO :INFO @ ctomw2 Nj&

INFO :INFO : norm2 N4

INFO :INFO : pool2 N/&

INFO INFO : convd NjA

INFO :INFO : norm3 N4

INFO :INFO : prob 0.07603899049758911
INFO :INFO : Completed simulation using H model
WARNING | WARNING © Sirnulation finished

INFO :INFO :Pracess Finished

td atdog_cat_ npy file

Figure 4.11. HTML Log

L LOGS

16:35:13.157028 Started analysis of input network
16:35:13.157088 Using weights in model file .
16:35:13.157131 Implementation Options
16:35:13.157170 framework : Caffe

16:35:13.157207 device : ECP5

nnMode : @

16:35:13.157424 bnnSignMode : 1
16:35:13.157484 model_file :
16:35:13.157548 network_file :
16:35:13.157596 raw_input : @
16:35:13.157655 hwcfg yaml file : b*
16:35:13.157713 1sml_out_file : b’
16:35:13.157768 gpo : 0x056006000
825 mean : @
16:35:13.157881 scale : 1.8
16:35:13.157936 sample_rate : 8660
16:35:13.157999 down_sampling : 1

INFO: 2391 DEBUG: 0

WARNING: 697 ERROR: 0

examples/catdog/catdog/ . ./catdog.proto
examples/catdog/catdog/. . /catdog.caffemodel

examples/catdog/catdog/. ./catdog.caffemodel
‘examples/catdog/catdog/. . /catdog.proto

fexamples/catdog/catdog/Inpl@/catdog.yml*
2xamples/catdog/catdog/Impl8/catdog. lscml’

Figure 4.12. Default View of HTML log

16:35:13.159343 Building network Model ...
16:35:25.745753 Building network Model ...

Input activation quant range supported

16:35:27.252187) :
and simulation to match hardware specs

Input activation quant range supported

16:35:27.583834) :
and simulation to match hardware specs

Input activation quant range supported

16:35:27.931507
and simulation to match hardware specs

Input activation quant range supported

16:35:28.364689
and simulation to match hardware specs

Input activation quant range supported

16:35:28.824194
and simulation to match hardware specs

Input activation quant range supported

16:35:29.143706
and simulation to match hardware specs

16:35:29.481753 Input activation quant range supported
and simulation to match hardware specs

16:35:29.817713
and simulation to match hardware specs

Input activation quant range supported i

INFO: 2301 DEBUG: 0

LL LOGS

WARNING: 697 ERROR: 0

0 to 255 but user given value is 0 to 256 . It will be changed during compilation

0 to 255 but user given value is @ to 256 . It will be changed during compilation

0 to 255 but user given value is @ to 256 . It will be changed during compilation

0 to 255 but user given value is @ to 256 . It will be changed during compilation

0 to 255 but user given value is © to 256 . It will be changed during compilation

® to 255 but user given value is @ to 256 . It will be changed during compilation

® to 255 but user given value is @ to 256 . It will be changed during compilation

0 to 255 but user given value is @ to 256 . It will be changed during compilation

Figure 4.13. Search Functionality of Warning

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

39

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

4.3.6. Simulation Data Graph

The simulation data graph (Figure 4.14) shows the comparison of the predicted values of the floating-point network,
fixed-point network, and hardware after running the simulation step. This view is accessible after completing a
software simulation. The graph can zoom in or out, and it allows you to configure subplots and export them as an
image or a PDF file.

§ Simulation Data Graph — 8 X

Comparison of Caffe floating-point, Caffe fixed-point and HW Simulation Output Values

16004 — Floating Point Model
—— Fixed Point Model
—— Inference Engine Model

1400

1200 1

1000 4

800

Value

600

400

2004

0 50000 100000 150000 200000 250000 300000 350000 400000
Number of output values from 'Scalel' layer

‘|"]*| *IQ|§| | x=132750 y=140354

Figure 4.14. Simulation Data Graph

4.4. Example Projects

This section provides project samples that you can work on to become more familiar with the software before starting
your own project.

The Neural Network Compiler includes several example projects as a reference for using the tool. The CatDog and
HumanPresence projects can be loaded from the sensAl user interface and run through the analysis, compilation, and
simulation stages. The post processing, meanwhile, contains a Yolo vehicle detection post processing operation script
for the given input image and last layer output data (.npy).

4.4.1. Catdog

This catdog example network can take an input image of size 32 x 32 x 3 and determine whether it is a picture of a cat
or a dog, with accuracy depending on the images it was trained with and the test image used.

To launch the catdog project:

1. Launch the sensAl Neural Network compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/catdog directory and select catdog./dnn. Click Open. This loads the catdog project.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 40

http://www.latticesemi.com/legal

= LATTICE

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Choose Process > Analyze from the menu.
2. After the network is analyzed, compile the project. Click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.2. Humanpresence

The humanpresence example network can take an input image of size 64 x 64 x 3 and determine humans in it. The
accuracy depends on the images it was trained with and the test image used.

To launch the humanpresence project:

1. Launch the Lattice sensAl Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/humanpresence directory and select humanpresence.ldnn. Click Open.

This loads the humanpresence project.
Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to enable them. Click
Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point
model.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4.3. GoogleNet

This GoogleNet network example can take an input image of size 224 x 224 x 1 and determine the number of humans
in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this GoogleNet project:
1. Launch the Lattice sensAl Neural Network Compiler software.
2. Click File > Open. You can also click the Open File button.

Navigate to the examples/GoogleNet directory and select GoogleNet.ldnn. Click Open. This loads the GoogleNet
project.

Now that the project is loaded, you are able to use several of the features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. You can click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button in the GULI. The Lattice sensAl
Neural Network Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the GUI in order to enable and disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can view the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.4. SqueezeDet

This SqueezeDet example network can take an input image of size 224 x 224 x 1 and determine the number of humans
in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this SqueezeDet project:
1. Launch the Lattice sensAl Neural Network Compiler software.
2. Click on File > Open. You can also click the Open File button.

Navigate to the examples/SqueezeDet directory and select SqueezeDet.ldnn. Click Open. This loads the SqueezeDet
project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network with a single click.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.5. Handgesture

This Handgesture example network can take an input image of size 32 x 32 x 1 and determine hand gesture in the
image. The accuracy depends on the images it was trained with and the test image used. The Handgesture model is
non-quantized. Lattice has quantized it using the Post Training Quantization Flow of SensAl.

To launch this Handgesture project:
1. Launch the Lattice sensAl Neural Network Compiler software.
2. Click on File > Open. You can also click the Open File button.

Navigate to the examples/Handgesture directory and select Handgesture.ldnn. Click Open. This loads the
Handgesture project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.6. MV1 (MobileNet V1)

This MV1 example network can take an input image of size 240 x 320 x 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used.

To launch this MV1 project:

1. Launch the Lattice sensAl Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/MV1 directory and select MobileNet_v1.ldnn. Click Open.
This loads the MobileNet v1 project.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.7. MV2 (MobileNet V2)

This MV2 example network can take an input image of size 240 x 320 x 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used. This model is trained with the Learned
Step Quantization (LSQ) technique.

To launch this MV2 project:

1. Launch the Lattice sensAl Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/MV2 directory and select MobileNet_V2.ldnn. Click Open.
This loads the MobileNet v2 project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4.8. YoloV5s

This YoloV5 example network can take an input image of size 160 x 160 x 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used.

To launch this YoloV5 project:

1. Launch the Lattice sensAl Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/YoloV5 directory and select YoloV5.ldnn. Click Open.
This loads the YoloV5 project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:
1. Click Process > Analyze from the menu.
2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAl Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.
5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.9. Toy_mnist

This example network can take an input image of size 28 x 28 x 1 and recognize digit. The accuracy depends on the
data set it was trained with and the test image used. You can find the project file under the examples/toy_mnist
directory. The steps to load and run the model are the same as YoloV5. Refer to the YoloV5 example for more details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. Advanced Topics

5.1. Project Implementation Settings

Each project has several main settings for customizing your neural network implementation. These settings are
accessed either during new project creation (see the Creating a New Project section) or by editing an existing
implementation (see the Editing an Implementation section). These settings are visible in the Project Implementation
Window, as shown in Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure
5.9, and Figure 5.11.

ProjectWindows = X
Irnplementation Marme: Irnpl0
Murmber Of Convolution Engines: g Alloweed Walue: 1-8
Enable Paired Convolution Engine: [(Dual Core Maode) [~ Collapse Layer
Mumber Of On-Chip Memory Blocks: 1a flin: Wum of Conw Engine + 1
Data Section Base Address 2516558240
Input Memory Assignment: Mlemories used to store input data (Comma seperated val ues)
Qutput Memory Assignment: Mlemories used to store output data (Comma seperated wal ues)
Off-Chip Mermaory Address: i} [Do MotUse
[Store Input [Store Qutput
GROID 0x0610 (0000 value pass to post-processing RTL
Iean walue for Data Pre-Processing: |0 Keep Defaultwalues to bvpass preprocessing
Scalewalue for Data Pre-Processing: (1.0 Operation:nput Data =[Input Data - Mean) x Scale
Cancel oK

Figure 5.1. Project Implementation Window — ECP5

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Project Windowrs

Implementation Mame:
Mumber Of Corwolution Engines:
On-Chip Memory Block Size:
Corlxl:
scratch Memory Size:

Input Memory &ssignrment:
Output Memory Assignment:

Off-Chip Memory Address:

[Store Input

Impld

1 Fixed for Ultra Plus device
16554 b 16K,/32K/64K 16-bit entry
single b single, dual, quad modes. Applicable anly for 1x1
4096 b Cuad mode uses 2x scratch size

a

1

0 [Do Mot Use

[Store Cutput

GPOID 0x0610 0000

Mean Yalue for Data Pre-Processing:

icale Walue for Data Pre-Processing:
I On-the-fly post processing

Required output depth range:

Cancel

a

1.0

value pass to post-processing RTL
Keep Defaultwalues to bypass preprocessing

Dperation:lnput Data =(Input Data - Mean] x Scale

N

Figure 5.2. Project Implementation Window — UltraPlus (1)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

t? Project Windows

Irnplementation Marme:
Murmber Of Convolution Engines:
Qn-Chip Mermory Block $ize:
Conwlxl:

Scratch Memory Size;
Ihput Merory Assighrment:
Cutput Mermory Assighment:

Off-Chip Memory Address:

[T store Input

Itnpld

Fixed for Ultra Plus device

16354

¥ | 18K/32K/64K 16-bit entry

single

- single, dual, quad modes. Applicable only for 1xl

4036

b Quad mode uses 2x scratch size

™ store Cutput

GRPOID 0x0610 (0000

Mean walue for Data Pre-Processing

srale walue for Data Pre-Processing:
I On-the-fly post processing

Required output depth range:

Quantization Mode for BN ;

Cancel

0

1.0

[DoMotUse

value pass to post-processing RTL

Keep Defaultvalues to bypass preprocessing

Operation: nput Data ={nput Data - Mean) x Scale

+1/-1

o]

Figure 5.3. Project Implementation Window — UltraPlus (2)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

) Project Windows

Implementation Name:

Scratch Pad Memory Block Size:

Enable Paired Convalution Engine:

On-Chip Large Memory Size:

Register out:
Debugz mode Enable:

Enable Embedded Mode:

External mermory interfaced [In bytes):

Data Section Base Address

Code Section Base Address

[v store Input

GFOID

Mean Yalue for Data Pre-Processing:

scale Walue for Data Pre-Processing:

[~ On-the-fly post pracessing

Required output depth range:

Cancel

Impld

8192 b

I (Dual Core Mode]

131072 b

Ox0610

[[Dutput register for LRAM |
[Result Readout

[[Ernbedded rmode)
§358608

7340032

u]

[Store Output

oooo

00075125

1K/ 2K 4K/ 8K Byte entry

64K /1 28K/ 256K Byte entry

W HyperRam

value pass to post-processing RTL

Keep Defaultvalues to bypass preprocessing

Cperation:lnput Data ={Input Data - Mean) x Scale

Ce]

Figure 5.4. Project Implementation Window — CrossLink-NX-Optimized

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Project Windows - X
Implementation MNarne: Impl0
Conwlxl: quad - Applicable only for Lkl
fcratch Pad Memory Block Size: g192 - Cuad mode uses 2x scratch size
On-Chip Large Memory Size: 131072 b 64K/ 128K,/256K Byte entry
Register out: [[Output register for LRAM)
Debug rode Enable: [~ Result Readout
External memaory interfaced [In bytes): 83386035 ¥ HyperRam
Data Section Base Address 7340032
Code Section Base Address a
W Store Input [Store Output
GPOID 0x0&610 |0000 value pass to post-processing RTL
Mean Yalue for Data Pre-Processing: |0 keep Default walues to bypass preprocessing
Scale value for Data Pre-Processing, |0.0078125 Operation:Input Data =[Input Data - Mean) x Scale
I On-the-fly post processing
Required output depth range:
Cancel OK

Figure 5.5. Project Implementation Window — CrossLink-NX-Compact

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

F Project Windows — X
Implementation Marme: Implo
Scratch Pad Mermary Block Size: §192 b 1K/2EfK/8K Byte entry
Enable Paired Convolution Engine: [[Dual Core Mode]
Enable Quad Convolution Engine: [(Quad Core Mode)
On-Chip Large Mermaory Size: 131072 b B4k 1 26K 256K Byte entry
Debugz mode Enable: [T Result Readout
Enable Embedded Mode: [(Embedded rmode)
External memary interfaced [In bytes): |83886085 v HyperRAM
Data Section Base Address 7540032
Code Section Base Address 0
v Store Input [Store Cutput
GFO D 0x0&10 |(0000 value pass to post-processing RTL
Mean Yalue for Data Pre-Processing: |0 Keep Defaultvalues to bypass preprocessing
Scale Value for Data Pre-Processing: |0.0078125 Operation:Input Data ={Input Data - Mean) x Scale
[On-the-fly post processing
Required output depth range:
Cancel o]4

Figure 5.6. Project Implementation Window — CertusPro-NX-Optimized

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

§ Project Windows - >
Implementation Mame: Impl0
Cony1x1: quad - Applicable only for 1xl
Scratch Pad Memary Block Size: §192 - Quad mode uses 2x scratch size
On-Chip Large Memaory Size: 131072 b B4kf126K 256K Byte entry
Debugz mode Enable: [Result Readout
External memory interfaced (In bytes): (8388608 W HyperRAk
Data Section Base Address 7340032
Code Section Base Address a
W Store Input [Store Output
GFOID Ox0&610 0000 value pass to post-processing RTL
Mean Value for Data Pre-Processing: |0 Keep Default values to bypass preprocessing
Scale value for Data Pre-Processing: 0.0078125 Operation:Input Data ={Input Data - Mean] x Scale
[~ On-the-fly post processing
Required output depth range:
Cancel Ok

Figure 5.7. Project Implementation Window — CertusPro-NX-Compact

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

¢ Project Windows - *
Implementation Narme: Implo
ARGE MAX Size: 4096 - 4K 8K Byte entry
icratch Pad Memory Block Size: §192 b 1ES2E/AKBE Byte entry
Enable Paired Convolution Engine: [(Dual Core Mode)
On-Chip Large Memaory Size: 151072 b 6AK/126K /256K Byte entry
Debugz rode Enable: [~ Result Readout
External memory interfaced (In bytes): 8388608 v HyperRam
Data Section Base Address 7340032
Code Section Base Address 0
v store Input [Store Output
GFPOID 0x0610 |0000 value pass to post-pracessing RTL
IMean walue for Data Pre-Processing, |0 Keep Defaultvalues to bypass preprocessing
Scale value for Data Pre-Processing: |0.0073125 Qperation: nput Data ={Input Data - Mean) x Scale
[on-the-fly post pracessing
Required output depth range:
Cancel oK

Figure 5.8. Project Implementation Window — CertusPro-NX-Extended

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Q? Project Windows

Implementation MNarme:

ARGE MaX Size:

Debug mode Enable:

Enable Embedded Maode:

External mermory interfaced [In bytes):
Data Section Base Address

Code Section Base aAddress

¥ Store Input

GPOID 00610

IMean value for Data Pre-Processing:
Scalevalue for Data Pre-Processing
[~ On-the-fly post pracessing

Required output depth range:

Cancel

Impld

4096

[¥ ResultReadout
[(Ernbedded mode)
53558608

7340032

0

[Store Qutput
aooo

1]

0.0078125

Ak EK Byte entry

¥ HyperRam

walue pass to post-processing RTL

Keep Defaultvalues to bypass preprocessing

Cperation:nput Data =[Input Data - Mean)] x Scale

MEXT

Figure 5.9 Project Implementation Window — CertusPro-NX Advanced IP Part 1

t? Project Windous

Scratch Pad Memory Block Size:

Segment Size:

Murmber of Segments:
Murnber of YE SPD:

KMax Pooling Kernel size:
LUT Function input bits:

LUT Function output bits:

Mumber Of Convolution Engines:

rAulti-port parallel:

[M5B Clip Enable

Cancel

3192

b 2048 entry / 8K Byte Size

65536

b 64k Byte entry

Allowed Yalue of Segments: 1-7
Allowed Yalue of WE SPD: 1-8
Stride=1, Pad = Kernel f/ 2

16 hits is max value

& /16 bits depth

Allowed Walue: 1

High input data B for 1x1 ops

[l

Figure 5.10 Project Implementation Window — CertusPro-NX Advanced IP Part 2

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

= LATTICE

? Project Windows

Implementation Name:

ARGS MAX Size

Register Out
Debug Mode Enable
Enable Embedded Mode

Enable FC 4-bit Weight

Number of ML IPs
External Memory Port

External Memory Base Address

Implo

4096 -

[T (Output Register for LRAM)
[¥ Result Readout
[~ (Embedded mode)

I (Enable FC 4-bit Weight)

- b |

2147483648

External Memory Interfaced (In Bytes) 268435456

Data Section Base Address
Code Section Base Address

¥ store Input

251658240

0

[V store Output

GPO ID Ox0610 0000

[On-the-fly Post Processing

Required Output Depth Range

Cancel

4K/8K Byte entry

Valid ports [1-9]

[~ HyperRAM

Value pass to post-processing RTL

Need to pass output range like 7-41

NEXT

Figure 5.11 Project Implementation Window — Avant Advanced IP Part 1

t? Project Windows

Scratch Pad Memory Block Size:

Segment Size:

Mumber of Segments:
Murmber of %E 5PD:

KMax Pooling Kernel size:
LUT Function input bits:

LUT Function output bits:

Mumber Of Convolution Engines:

rulti-port parallel:

Data Path Length

[~ M5B Clip Enable

Cancel

G192 -
151072 -
16
&
5
12
&
4
4 b
4 -

— *
2048 entry J/ GK Byte Size

G4k Byte entry

Allowed Walue of Segments; 1-16
Allowed Walue of WE SPD: 1-32
Stride =1, Pad = Kernel J/ 2

16 bits is max value

8/ 16 bits depth

Allowed value: 1-4

Hizh input data B for 1x1 ops

[or |

Figure 5.12 Project Implementation Window — Avant Advanced IP Part 2

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

55

http://www.latticesemi.com/legal

= LATTICE

The settings that are visible and can be adjusted depend on the device, network type, and framework. For example,
UltraPlus has a single convolution engine with a fixed size (Figure 5.2), causing those options to be grayed out, while
the option for changing your quantization type is only available for BNN projects.

5.1.1. Number of Convolution Engines

You can change the number of convolution engines used by your design, whether they are standard convolution
engines or binary convolution engines, to be less than the maximum amount supported on your device. The ability to
use less than the maximum depends on the specific device. For example, certain LatticeECP5 products can support up
to eight CNN engines, allowing you to reduce your usage. For CertusPro-NX and Avant devices, with Advanced CNN IP
4*N, a number of output channels are generated in parallel. N = 1 for the CertusPro-NX device, and N = 1-4 for Avant
devices.

5.1.2. Enable Dual Core Mode

Selecting Enable Dual Core Mode enables dual core mode in ECP5, CrossLink-NX (Optimized, Extended), or
CertusPro-NX (Optimized, Extended) devices. When enabled, it uses two DSP blocks per convolution engine. This option
is checked and enabled by default. This feature is only supported in ECP5, CrossLink-NX (Optimized, Extended), and
CertusPro-NX (Optimized, Extended) devices.

5.1.3. Enable Quad Core Mode

Selecting Enable Quad Core Mode enables quad core mode in CertusPro-NX (optimized) devices. When enabled, it uses
four DSP blocks per convolution engine. This option is checked and enabled by default. This feature is only supported in
CertusPro-NX (optimized) devices.

5.1.4. On-Chip Memory Block Size

The On-Chip Memory Block size option is only visible for projects targeting iCE40 UltraPlus devices, allowing you to
select from three entries from the drop-down menu: 16,384, 32,768, and 65,536. These correspond to three possible
memory configurations.

e 16,384 - 16k, 16-bit (32 Kilobyte) Single SPRAM
e 32,768 - 32k, 16-bit (64 Kilobyte) Dual SPRAM
e 65,536 - 64k 16-bit (128 Kilobyte) Quad SPRAM

When using single SPRAM mode, the rest of the memory, over 128 kilobytes, can be used for storing firmware. When
using Quad SPRAM, provide external memory for storing firmware.

5.1.5. Number of On-Chip Memory Blocks

The Number of On-Chip Memory Blocks setting specifies the number of discrete blocks in the EBR that are utilized in
the DNN Inference Machine. On ECP5 devices, you are required to have a minimum of one plus an additional one for
each convolution engine used by your design. For designs using the iCE40 UltraPlus device, the number of blocks is
fixed.

5.1.6. Mobilenet Mode for iCE40 UltraPlus, CrossLink-NX Compact, and CertusPro-NX Compact

Mobilenet Mode allows you to select Convix1 mode for devices. Three modes, single, dual, and quad, are available to
perform 1 x 1 convolutions for iCE40 UltraPlus devices. Quad mode provides the best performance and highest
resource. consumption. The single mode is the slowest among the three but uses the least resources.

For CrossLink-NX Compact and CertusPro-NX Compact, only quad mode is available.

5.1.7. Argmax Memory Size

The Argmax Memory Size option allows you to select memory 4k/8k for Argmax pooling metadata, which can be
reused while unpooling. This option is available for Extended and Advanced CNN IPs only.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.8. Scratch Memory Size

The Scratch Memory Size option is only visible for projects targeting iCE40 UltraPlus, CrossLink-NX, and CertusPro-NX
devices, allowing you to select from two entries in the drop-down menu: 1,024, 2048, 4096, and 8192 based on
selected devices. These four options select whether the design uses 1K, 2K, 4K, or 8K of the scratch memory. For iCE40
UltraPlus, the default is 4K and is the recommended setting, though in some cases that require reduced resource
utilization, 1K can be selected. Whereas for CrossLink-NX and Certus-NX devices, 8192 is the default and recommended
setting. Some designs that utilize less resources may wish to select the other options.

Note: For iCE40 UltraPlus devices, with Quad mode as Conv1x1l mode, all other convolutions (except 1 x 1 convolution)
use 2x scratch size. For example, if you select a 2048-byte scratch size internally, 3 x 3 convolutions use 4096-byte
scratch memory, and 1 x 1 convolution uses two separate convolutions with a 2048-byte scratch size each.

5.1.9. Debug Mode Enable

This Debug Mode Enable option can be used to enable the write/debug signal on post processing RTL. If unchecked,
write mode is enabled; otherwise debug mode is enabled.

5.1.10. Embedded Mode for CrossLink-NX Optimized and CertusPro-NX Optimized

This option is only visible for projects targeting CrossLink-NX Optimized and CertusPro-NX Optimized devices. This
option allows you to run your model without using external memory when embedded mode is enabled. Embedded
mode also supports branching structures (only residual blocks, not concat structures) and multiple-output networks
like single-shot detector (SSD) architectures.

Note: If you observe a memory error, such as a particular layer requiring more memory than the current LRAM size,
you can try with a higher LRAM size (for example, QUAD LRAM if currently DUAL LRAM is being used). If it is not
possible, reduce the filter or dimension. To run the same model, turn off embedded mode so the tool can use external
memory.

5.1.11. Input Memory Assignment

This setting specifies which EBR memory blocks should be used to store input data in cases where specific memory
blocks should be used. The values must be comma-separated. For example, “1, 2” specifies that EBR 1 and 2 should be
used. If left blank, the software automatically assigns memory blocks.

5.1.12. Output Memory Assignment

Similar to input memory assignment, the output memory assignment setting identifies which EBR should be used when
specified and is automatically assigned when left blank.

5.1.13. Off-Chip Data Memory Start Address

This setting determines the memory address in DRAM where the convolution design starts storing and loading data.
The amount of DRAM required depends on your neural network and your EBR settings, with larger networks or
implementations with lower EBR usage requiring more DRAM. If you intend to read or write input or output to a
memory location, you must have storage enabled, while having it disabled requires you to provide input and output
from something external to the provided IP block.

Do Not Use (ECP5 Only)
The Do Not Use option disables all DRAM usage. In addition to not storing the input or output in DRAM, it also disables
the ability to store data from intermediate stages in the DRAM. This mode may not be compatible with all networks.

Store Input

Enabling Store Input indicates that external memory (HyperRAM/DRAM) is used for input rather than another source.
Disabling this setting prevents external memory from being used to store input. In this case, you need another way of
providing input into your design.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Store Output

Similar to Store Input, the Store Output option indicates that external memory (HyperRAM/DRAM) is used for output
rather than another source.

5.1.14. Collapse Layer

The Collapse Layer option enables you to merge the layers Convolution, BatchNorm, and Scale during the Compile and
Simulation stages, implementing them as a single Convolution layer in hardware. This feature is applicable for networks
with convolution, batch norm, and scale layer architectures. Designs using this optimization should see a reduction in
scale cycles, and a possible reduction in memory access cycles.

5.1.15. Data Preprocessing

The supported preprocessing is shifting (mean), scaling (scale), and resizing. For demo designs, some preprocessing is
already applied to the hardware. Refer to the IP documentation to learn more about the preprocessing in a specific
design.

Scaling of the input data can be implemented using the firmware. The stored_frac bit is adjusted to perform scaling of
the input data. For more information, check the Lattice sensAl Human Counting Al Demo, where scaling of the input
image from 0-255 to 0-2 is performed on the firmware by setting the stored_frac bits to 1.7 in sensAl.

Note: The shifting (mean) preprocessing must be done using the preprocessing RTL, not sensAl firmware. It is included
in the user interface for testing purposes, but the final implementation of your network must have the mean
preprocessing performed in your RTL design and your mean set to 0 in sensAl. The iCE40 UltraPlus device does not
support scaling in sensAl. Scaling and resizing are supported in sensAl.

For example, an input image with a range of 0 to 255, a scale of 0.0078125, and a mean of 128. The input data range is
from -1 to 1. When the firmware is generated, only the scaling is performed using the stored_frac value in sensAl,
which results in a range of 0 to 1. This is because the signed format (0.7) in stored_frac is not being shifted. Perform the
shifting operation in the preprocessing RTL to implement the mean. To bypass Mean/Scale preprocessing, use the
default values of mean =0 and scale = 1.0.

For designs with input image data, preprocessing can be managed in the source files used by sensAl. In Caffe, the
preprocessing is part of the protofile, while in TensorFlow and Keras, preprocessing can be added with extra node
operations.
For a given mean and scale, the final output feed to the network is:
Output Pixel = (Input Pixel — Mean) x Scale
Mean subtraction is always carried out before scaling. The mean value is an integer, and the scale value data is a float.
For a better understanding of how sensAl (not the firmware) calculates ranges, consider the following examples:
e Input image pixel range is 0 to 255, Mean is 128, and Scale is 1/256 (0.00390625):

e Output pixel range is: —0.5 to 0.5.
e Input image pixel range is 0 to 255, Mean is O (default value), and Scale is 1/256 (0.00390625):

e Output pixel rangeis: 0to 1.
e Input image pixel range is 0 to 255, Mean is 128, and Scale is 1.0 (default value)

e QOutput pixel range is: =128 to 127.
e Input image pixel range is 0 to 255, Mean is O (default value), and Scale is 1/128 (0.0078125)

e Output pixel range is: 0 to 2

The final type of preprocessing is resizing. Resizing is required, and the input image is automatically resized into the
input data blob using the interpolation function. You cannot bypass it.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/demos/humancounting

= LATTICE

Mean Value for Data Pre-Processing

The Mean Value is used for normalizing input data. You must specify a value or use the default. If you wish to use
something other than the default, it must be specified in this setting. It is not inferred from your neural network files.
The mean value is subtractive. For example, a mean value of 1 subtracts 1 from all of your results. The default is 0,
which does not manipulate the output. As mentioned in the previous section, the final implementation of your network
must have the mean preprocessing performed in your RTL design. Your mean is set to 0 in sensAl.

Scale Value for Data Pre-Processing

The Scale Value is used for scaling data values. You must specify a value or use the default. If a value other than the
default is used, it must be specified in this setting. It is not inferred from your neural network files. The scale value is
multiplicative. For example, a mean value of 0.5 multiplies all of your results by 0.5. The default is 1, which does not
scale the output. The maximum scale value supported by sensAl (without using additional RTL preprocessing) is 1.0. For
this reason, it is recommended to do your scaling in your preprocessing RTL in most cases.

When using a scale value with a mean value, note that the mean is subtracted first, and then the scale is applied to the
result.

Output Pixel = (Input Pixel - Mean) x Scale

Note: If your preprocessing RTL is handling scaling, it must be set to 1.0 in sensAl.

5.1.16.GPOID

The GPIO ID option is available for communication from firmware to outside blocks. The total value of the GPO ID is 32
bits. The first 16 bits are fixed and indicate the sensAl tool version. You can configure the last 16 bits.

5.1.17. On the Fly Post Processing

The On-the-Fly-Post-Processing option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices
only. Readout single data at a time for on-the-fly post-processing of the result without storing complete output on the
post-processing side RTL. It is only applicable to detection-type of networks. It is useful for reducing on-chip memory
utilization in post-processing RTL. The expected output depths are shown below in order for the N class.

Conf [1depth/anchor] class prob[N depth/anchor] Bbox [4 depth x,y,w,h / anchor]

Figure 5.13. On-the-Fly Post Processing Format

Select the on-the-fly post processing checkbox and provide the number of classes in the number of classes for
detection field. The number of anchors and grid dimension are calculated using the dimension of the output and the
number of classes provided by the user, as follows:

If output dimension is (D,H,W) and number of classes are N: then
Number of anchors = D//(conf + class probabilities + (x,y,h,w)) =D // (1 + N + 4)
And grid size=Hx W

For example, if the number of classes for detection is 2, then the NNC compiler will postprocess thed data flow with a
single anchor and grid as per the below order and repeat it for all other results.

Confidence Class—-0 Class—1 X — Offset Y — Offset W — Offset H - Offset

Figure 5.14. On-the-Fly Post Processing Data Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.18. Required Output Depth Range

The option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices only. If the last layer in a
network is a convolution layer, this option allows for only processing selected filters from that convolution layer. This
sets weight_slice, i_weight_slice, and output_data_length values in the .yml file at the time of analysis.

For example, if the required ‘output depth range’ value is ‘7-13’, then it processes only the 7 to 13t filters (including
the 13%™) and stores the output at the output address.

5.1.19. Sample Rate for Data Pre-Processing

If the input data is audio data (.wav), this option is displayed in the implementation window. This feature reflects the
sample rate of audio data. The equation used for audio preprocessing is: window_duration =
(network_input_dimension/sample_rate) * down_sampling. The following example demonstrates this.

Sample Rate

Network input_dimension = [1,1,8320,1], sample_rate = 8000 ,down_sampling = 1
window_duration = (8320/8000)*1
window_duration 1.04

5.1.20. Down Sampling for Data Pre-Processing

If the input data is audio data (.wav format), this option is displayed in the implementation window. This feature
samples the audio data.

5.1.21. On-Chip Large Memory Size

CrossLink-NX, CertusPro-NX, and Avant devices only. This option selects the size of the Large Random-Access Memory
(LRAM) block available. For Crosslink-NX and CertusPro-NX devices and IP other than Advanced IP, this option allows
you to select from three entries from the drop-down menu: 65,536, 131,072, and 262,144 (Quad LRAM). These
correspond to two possible IP-dependent memory configurations:

e 65,536 - 0.5 megabytes (16384 x 32)

e 131,072 - 1 megabyte (32768 x 32)

e 262144 -2 megabyte (65536 x 32)

For Advanced IP, you can select the size of Large Random-Access Memory(LRAM) by giving the number of segments.
For Advanced IP with a 32-bit datapath, each segment size is 65,536 bytes, and with a 64-bit datapath, the segment
size is 131072 bytes.

For Certus-Pro devices with Advanced IP, the range of segments you can choose from is from 1 to 7. For Avant Device,
you can choose segment numbers from 1 to 16.

5.1.22. External Memory Interfaced (In Bytes)

CrossLink-NX, CertusPro-NX, and Avant devices only. This option specifies the size of the external memory in bytes.

HyperRAM

This option enables addressing for HyperRAM rather than DRAM for external memory. HyperRAM is enabled by
default, but designs for setups that do not utilize HyperRAM wish to disable this feature.

5.1.23. Code Section Base Address

CrossLink-NX, CertusPro-NX, and Avant devices only. This setting determines the memory address in external memory
where the firmware is stored.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.24. Register Out

CrossLink-NX devices only. This parameter in the GUI is equivalent to the LRAM_OREG configuration parameter in
Optimized CNN and Compact CNN IP [Crosslink-NX device].

For Crosslink-NX device,

e Register Out is Unchecked: Do not use the output register for LRAM. The firmware will be backward compatible,
and it can be utilized with older IPs.

e Register Out is Checked: If you use the output register option for LRAM, NNC will generate ML firmware to
compensate for the latency produced by registering the output of LRAM.
Using the output register option in CNN IP for LRAM will provide better timing with less than 1% cycle degradation.

For the CertusPro-NX device, the output register is always used for LRAM, and by default, NNC generates proper
firmware to compensate for the latency of that device.

5.1.25. Data Section Base Address

CrossLink-NX, ECP5, CertusPro-NX, and Avant devices only. This setting determines the memory address in external
memory where the convolution design is to be stored and loaded.

For example, below are the default memory sizes in ECP5 DRAM:

e code section size is 240MB — (0 to 251658240/0xF000000)

e data section size is 16MB — (251658240/0xFO00000 to 268435456/0x10000000)

e data section base address —251658240/0xFO00000

By changing the data section base address to lower values, you can increase the memory allocated for data (the same

amount of memory allocated for code is decreased). To allocate 48MB to the data section, the data section base
address should be 218103808 (0xD000000).

e code section size 208MB (256-48) — (0 to 218103808/0xD000000)
e data section size 48MB - (218103808/0xD000000 to 268435456/0x10000000)
e data section base address - 218103808/0xD000000

5.1.26. Number of Segments

For CertusPro-NX and Avant devices, Advanced IP only. This setting determines the total Iram size available. Valid
values range from 1 to 7 for CPNX Advanced and 1 to 16 for Avant Advanced. LRAM size will be equal to (number of
segments x segment size). The default value of the number of segments is 16 for advanced.

5.1.27. Segment Size

For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the segment size, which,
along with the number of segments, determines the LRAM size. For the CPNX device, the advanced IP segment size is
fixed to 65536 bytes. For the Avant device, if 64-bit datapath mode is selected, segment sides will be 131072 each.

5.1.28. Number of VE SPD

For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the number of VE spd,
for 1x1 and Eltwise addition operations. The valid value ranges from 1 to 8. The default value is 8.

5.1.29. Multiport Parallel

For CertusPro-NX, advanced IP, and Avant devices only. This setting determines the input data bandwidth for 1x1
operations. A parallel port will speed up the execution of 1x1 operations, but at the cost of increased resource
utilization.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.30. Kmax Kernel Pooling

For CertusPro-NX and Avant devices, advanced CNN IP only. This setting determines the maximum pooling kernel size
(KxK) for pooling operations.

5.1.31. Datapath Width

This setting is only available for Avant devices and advanced IP. This setting determines the width of the datapath
inside the IP. As the datapath width increases, more bytes will be transferred in each memory transaction cycle.

5.1.32. LUT Input Bits
Setting for input bits for the LUT of the sigmoid or DivNoNan function. Input ranges from 5 to 12 bits.

5.1.33. LUT Output Bits
Output bits for the LUT of sigmoid or DivNoNan function.

5.1.34. LUT MSB Clip

Clip MSB from the number of LUT input bits. If function output saturates on both higher and lower values of input, we
can consider those saturating values as constant and clip the MSB if input bits for less resource utilization by LUT and
also better performance, and now LUT instead of k bits of input uses k-1 bits.

5.1.35. Create Quantized Version

If the input model is not quantized, enabling this option generates a quantized version of the input model. The
compiler tool includes the QuantReLU node after every ReLU node and generates the model, which will be used for
further network compilation processing. When generating the quantized version of the input model, validation data
can be provided by specifying the Validation Datapath so that the compiler uses validation data when creating the
quantized model. If the input model is already quantized, enabling this option has no impact. For a partially quantized
input model, the tool gives an error.

5.1.36. Validation Datapath

Specify the path to the validation data. Validation data is used when creating the quantized version of the input model.

5.1.37. Enable FC 4 Bit Weight

Enable FC weights in 4 bits data width while performing FC computations in engine. While training the model, use
learned step quantization and 4 bits for the Dense/Fully Connected layer. When providing the trained model as input to
the compiler, enable this flag to indicate to the compiler that this feature is active.

This feature is available only for the Optimized IP.

5.1.38. Number of ML IPs

Number of ML IPs used to run the network. Default is 1.

5.1.39. External Memory Port

From this given external memory port number, the logical address for the interfaced external LPDDR4 memory is
derived.

5.1.40. Initial LPDDR4 Address

This is used for USB debugging and to convert logical address into physical address.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.2. Quantization

5.2.1. Learned Step Quantization (LSQ)

This quantization methodology is based on the paper Learned Step Size Quantization. In this approach, the float step
size is learned during training to represent weights and activation data in low precision. The proposed methodology
performs computations such as Convolution and Fully Connected layers in low precision and then retrieves the high
precision output using the learned step sizes. In SensAl, LSQ is used to perform Convolution, Fully Connected, and
Elementwise (Eltwise) addition operations in integer format.

Training Learned Step Quantization Model Using Lscquant Package

Models can be trained using Learned Step Quantization with the Lscquant package provided at the Lattice website. You
can train models using 8-bit or 4-bit learned step quantization with the different schemes available in the package. For
more information, refer to the document provided with the Lscquant package. For the reference model trained using
LSQ, refer to the example in the MV2 (MobileNet V2) section. The current version of the compiler only supports the
following schemes from the Lscquant package:

e LSQ_CONV8_ACT8U_DENSE8 OUT16S

e LSQ_CONV8_ACT8U_DENSE4S_OUT16S

e LSQ_CONV8_ACT4U_DENSE8 OUT16S

e LSQ_CONV8_ACT4U_DENSE4S_OUT16S

To train the model using LSQ, use the custom layers discussed here and set quantization="Isq” to create the neural
network. These custom layers are also compatible with keras base classes arguments. The following layers are defined
in the Lscquant package.

Lscquant.layers.QuantizeConv2D(do_quant_bias=False, quantization="Isq”, bits=8, range_min=None,
range_max=None, **kwargs)

e 3 x3and1x1convolution layers.

e Always use per_channel_quant = False.

e Derived from tensorflow.keras.layers.Conv2D, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeDepthwise2D(do_quant_bias=False, quantization="lsq”, bits=8, range_min=None,
range_max=None, **kwargs)

e 3 x 3 depth-wise convolution layer.

e Always use per_channel_quant = False.

e Derived from tensorflow.keras.layers.DepthwiseConv2D, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeDense(do_quant_bias=False, quantization="Isq”, bits=8, range_min=None, range_max=None,
**kwargs)

e Dense/Inner product/Fully Connected layer.

e Always use per_channel_quant = False.

e Derived from tensorflow.keras.layers.Dense, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeAdd(quantization="Isq”, bits=8, is_signed=False, range_min=None, range_max=None,
**kwargs)

e Eltwise addition layer.

e Derived from tensorflow.keras.layers.Add, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeActivation(activation="relu”, quantization="Isq”, bits=8, range_min=None, range_max=None,
**kwargs)
e Derived from tensorflow.keras.layers.Activation, kwargs are all arguments supported by the base class.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://arxiv.org/abs/1902.08153

= LATTICE

Lscquant.layers.QuantizeConcat(axis=-1, quantization="Isq”, **kwargs)

e Derived from tensorflow.keras.layers.Concatenate, kwargs are all arguments supported by the base class.
Lscquant.layers.QuantizeOutput(quantization="lsq”, bits=16, is_signed=False, range_min=None, range_max=None,
step_size=1/1024, **kwargs)

e Derived from tensorflow.keras.layers.Layer, kwargs are all arguments supported by the base class.

e Fixed step size of 1/1024 results in a quantized output with the Q5.10 fixed point representation format.

Lscquant.layers.FocusLayer(focus_kernel_size=(2, 2) , **kwargs)
e Derived from tensorflow.keras.layers.Layer, kwargs are all arguments supported by the base class.
e focus_kernel_size is a 2-dimensional tuple specifying the vertical and horizontal strides.

Quantizing Keras Model Using Schemes

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, RelLU, Lambda
from tensorflow.keras import Model, Input

from tensorflow.keras import backend as K

import lscquant

def create_model():
ip = Input(shape=(64,64,3))
X = Conv2D(filters=4, kernel size=3, strides=1, padding="same")(ip)
x = BatchNormalization()(x)
out = ReLU()(x)
model = Model(inputs=ip, outputs=out)
return model

creating model without quantization
model = create_model()

selecting schemes from lscquant package
scheme = 'lsqg-default’

generating quantized version of model
1sg_model = lscquant.model.build.build_quantization_model(model, scheme)

There are various schemes available in the Lscquant package to quantize a model. Shown here is a selected Isq-default
scheme which quantizes activation and weights in 8 bits.

After successfully creating the model using native keras functions such as Conv2d, Depthwise2d, Add, ReLU, Dense, and
Concat, call the build_quantization_model() function defined in the Lscquant package to quantize the model with an
available scheme in the Lscquant package. For more information, refer to the Lscquant package documentation.

Post Training Quantization with Learned Step Quantization

Post training quantization offers a conversion method capable of shrinking model size while simultaneously enhancing
hardware response times. This process involves quantizing a pre-trained float TensorFlow or keras model.

When you provide the float model as input in SensAl, you can enable the Create Quantized Version option from the
Project Window as shown in Figure 5.15 to use post training quantization. This generates the post training quantized
version of the input model. The step sizes of the PTQ model (generated quantized model) are dynamic similar to the
learned step quantization step sizes. However, these step sizes are calculated from the validation data manually given
through the location as specified by the validation data path option. If validation data is not provided, parameters are
derived from the single input image selected while creating the project.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

F Project Windows — X
Praject chx_opt_lsq_convbias Framewark Keras - Class CHM -
Directory D:fproject/tool s trunk ml J Device CrossLink-Nx hd IP Qptirmized_CMM -
Input Files D:/project/toal sftrunk/ml fsrcfregression/zolden/convBiasModel s/L5C_OLSO_testhS e Network File

D:/project/toal sftrunk/ml fsrcfregression/zolden/convBiasMaodel s/LS0_image.png Model File

ImageMideo/audio Data

W Create Quantized Yersion

[« H walidation data directory

[” scan Data Layer

cr_opt_lsg_convbiasyml
crx_opt_lsg_convbias.lscrml

Remove
Qutput Files
Post Processing(Optional)

Cancel MEXT

Figure 5.15. Create Quantized Version Flag

The following table summarizes the Learned Step Quantization support provided by the SensAl stack across different
Lattice devices.

Table 5.1. Learned Step Quantization Details with Device Type

Device
Quantization | Type . i
ECP5 iCE40 UltraPlus CrossLink-NX, CertusPro-NX, Avant
Activation 16b Not supported Not supported Not supported
8b Requires Quantization aware training
4b Only supported in Optimized IP and model
with Learned Step Quantization.
Weights 16b Not supported Not supported Not supported
8b Requires Quantization aware training
4b Only supported for Fully Connected layer in
CrossLink-NX device and Optimized IP and
model with Learned Step Quantization.

5.2.2. Fixed Point Quantization (FPQ)

The data in sensAl can be quantized using the QuantReLU layer in Caffe or the predefined quantization function in
TensorFlow to perform quantization on unsigned 8-bit activation data in the training phase. Neural Network Compiler
7.0 only supports using 8-bit data to represent quantized data.

SensAl automatically calculates the number of fraction bits and decimal bits needed to store the quantized data, which
can be found in the stored_frac section of the report panel in the main window. If you would like to quantize the
activation data yourself, for example, with min = 0.0 and max = 2.0, then use the 8-bit calculation to take place (after
the RelLU layer) as follows:

Neural Network Compiler dedicates 0 bits for signs (all positive values), 1 bit for decimal, and 7 bits for fractions,
resulting in the representation of data in hardware having a range of 0.0 to 1.9921875. You should use a maximum
range that is a power of 2 (5 or 7 values), as there is no dedicated hardware for quantization. The following tables show
the ranges that are powers of two and the respective fraction bits and decimal bits.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Fixed Point Quantization Using Lscquant Package

Models can be trained using Fixed 8b Quantization with the Lscquant package provided at the Lattice website. You can
train models using the different schemes available in the package. For more information, refer to the document
provided with the Lscquant package and the example provided in the MV1 (MobileNet V1) section.

The following is a code snippet for training the fixed point quantized model using the Lscquant package.

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, RelLU, Lambda
from tensorflow.keras import Model, Input

from tensorflow.keras import backend as K

import lscquant

def create model():
ip = Input(shape=(64,64,3))
x = Conv2D(filters=4, kernel size=3, strides=1, padding="same")(ip)
x = BatchNormalization()(x)
out = ReLU()(x)
model = Model(inputs=ip, outputs=out)
return model

creating model without quantization
model = create_model()

selecting schemes from lscquant package
scheme = 'fpqg-default'

generating fixed point quantized version of model
fpg_model = lscquant.model.build.build quantization_model(model, scheme)

The following tables show that increasing the quantization range results in the data representation becoming less
accurate. For this reason, the suggested range is 0 to 2.

Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization)
Unsigned 8-Bit

Min (Protofile) Max (Protofile) Sign Bits Decimal Bits Fraction Bits Min (Hardware) Max (Hardware)
0 1 0 0 8 0 0.99609375
0 2 0 1 7 0 1.992188
0 4 0 2 6 0 3.984375
0 8 0 3 5 0 7.96875
0 16 0 4 4 0 15.9375

Table 5.3. Signed 8-Bit Quantization (Fixed Point Quantization)

Signed 8-Bit
Min (Protofile) Max (Protofile) Sign Bits Decimal Bits Fraction Bits Min (Hardware) Max (Hardware)
-2 2 1 1 6 —1.98438 1.984375
—4 4 1 2 5 -3.96875 3.96875
-8 8 1 3 4 -7.9375 7.9375

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The following table summarizes the Fixed Point Quantization support provided by the SensAl stack across different

Lattice devices.

Table 5.4. Fixed Point Quantization Details with Device Type

Device
Quantization | Type* Link-NX, Pro-NX,
e ECP5 iCE40 UltraPlus CrossLink-NX, CertusPro
and Avant
Activation 16b Default- Post Default- Post processing Not supported
processing Quantization in tool
Quantization in tool
8b Quantization-aware Quantization-aware training is Quantization-aware training is
training is required required required
4b Not supported Not supported Only supported in Optimized IP and
model with Learned Step
Quantization.
Weights 16b Default- Post Default- Post processing Not supported
processing Quantization in tool
Quantization in tool
8b Not supported Quantization-aware training is Quantization-aware training is
required required

*Note: Except for the above-mentioned type, the Lattice sensAl stack does support 1b [BNN] and 4b quantization. Contact Lattice
representatives to get more information.

As seen in Table 5.4, the NNC compiler internally uses the default 16b for representing data if no supported 8b
quantization structure is used in the input network [except image input; the NN compiler always uses 8b for the input

image].

Note: The quantization techniques is one of the best optimization technique available in the market, and we always
recommend users use the provided quantization techniques and functions for better performance in terms of FPS and

power consumption.

Table 5.5 provides layer-wise support for quantization.

Table 5.5 Quantization Support in Layers

Layer Type

Quantization Support

Convolution layer

The user can train with the following:

e 8b Fixed Point Quantization

e 8b Learned Step Quantization

e 4b Learned Step Quantization

We generally support a—0.5 to +0.5 data range for convolution layer weight quantization, and
input to convolution can be 16b or 8b quantized. For 8b activation quantization, the generally
supported range is 0 to 2.

MaxPooling or AveragePooling
or ResizeBilinear

Input data type should be equal to output datatype.

Batch norm layer

Do not use any type of quantization for a better learning of model.

Fully Connected layer

The user can train with 8b quantization. We generally support a —0.5 to +0.5 data range for
Fully Connected layer weight quantization, and input to Fully Connected layer can be 16b or 8b
quantized. 4-bit input is not supported for Fully Connected layer.

Eltwise Layer

Input data type should be equal to output data type, i.e., if output has been quantized to 8b,
then both inputs should be in 8b quantized format.

RelLU or LeakyRelLU

There is no dependency on the input type.

Note: If the model is trained with LSQ, provide the trained keras model .h5 as input to the SensAl Neural Network Compiler instead
of converting it to TensorFlow .pb or .onnx format.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5.2.3. Fixed Point Quantization Training in Caffe

= LATTICE

In Caffe, fixed point quantization can be implemented with the QuantRelLU layer. The following example demonstrates

how the layer is used.
Caffe QuantRelLU Layer

layer {
name: "firel/div"
type: "QuantReLU"
bottom: "Scalel”
top: "Scalel"
quantize_param {
num_bit: 8
min: 0.0
max: 2.0
resolution: 256.0

5.2.4. Fixed Point Quantization Training in TensorFlow

For TensorFlow, fixed point quantization can be implemented using the quantization function.

TensorFlow Quantization Function

def Lin_8b_quant(w, min_rng=-60.5, max_rng=0.5):
min_clip
max_clip

wq = 256.0 * w / (max_rng - min_rng)
128]
wg = tf.rint(wq)
wqg = tf.clip_by value(wq, min_clip, max_clip)
quantization
wqg = wqg / 256.0 * (max_rng - min_rng)
not integer
wclip = tf.clip by value(w, min_rng, max_rng)
return wclip + tf.stop gradient(wq - wclip)

tf.rint(min_rng*256/(max_rng-min_rng))
tf.rint(max_rng*256/(max_rng-min_rng))

to expand [min, max] to [-128,

integer (quantization)
fit into 256 Linear

back to quantized real number,

Linear value w/ clipping

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The corresponding Tensor graph resembles the figure below (Figure 5.16).

Rélu
add

StopGrad...

clip_by_value_1

clip_by_value

Rint "_Rint_1 Rint_2 !

Figure 5.16. Tensor Graph Quantization Nodes

5.2.5. Fixed Point Quantization Training in Keras
8-bit activation quantization can be done by using a Lambda layer from tf.keras.layers, and weight quantization can be
done using kernel constraints. Both methods are explained in the snippet below.

Keras Fixed Point Quantization Function

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, RelLU, Lambda
from tensorflow.keras import Model, Input
from tensorflow.keras import backend as K

def 1lin_8b_quant(w, min_rng=-0.5, max_rng=0.5): ## 8-bit activation quantization in Keras using Lambda

layer

if min_rng==0.0 and max_rng==2.0:

min_clip
max_clip

else:

wq
wq
wq
wq

min_clip
max_clip
256.0 *

W

/ (max_rng - min_rng)
K.round(wq)

to expand [min, max] to [-128, 128]
integer (quantization)

K.clip(wg, min_clip, max_clip) # fit into 256 linear quantization

wq / 256.0 * (max_rng - min_rng)

back to quantized real number, not integer

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

wclip = K.clip(w, min_rng, max_rng) # linear value w/ clipping
return wclip + K.stop_gradient(wq - wclip)

class MyConstraints(tf.keras.constraints.Constraint): ##Used for 8-bit weight quantization is Keras
def __init_ (self,name="", **kwargs):
super(MyConstraints, self)._init__ (**kwargs)
self.name=name
def _ call_ (self, w):
with tf.compat.vl.variable_scope(self.name + "_CONSTRIANTS") as scope:
return lin_8b_quant(w)

def get_config(self):
return {"name":self.name}

def act_quant_8b(x, a_bin=16, min_rng=0.0, max_rng=2.0): # For use in Lambda layer

x_quant = lin_8b_quant(x, min_rng=min_rng, max_rng=max_rng)
return x_quant

def create_model():

ip = Input(shape=(64,64,3))

x = Conv2D(filters=4, kernel_size=3, strides=1, padding="same", activation='linear',\

kernel_constraint=MyConstraints("conv2d_1"),use_bias=False)(ip) ## Using Kernel
constraints here gets us 8b
weight quantization

x = BatchNormalization()(x)

out = Lambda(act_quant_8b)(x) #i#Activation Quantization

model = Model(inputs=ip, outputs=out)

return model

create_model()

5.2.6. Fixed Point Quantization Training in AutoKeras

8-bit activation and weight quantization are supported in AutoKeras customized layers (similar to the ones in Keras).
The user can enable the flags quantrelu (for activation) and kernel_quant (for weight) for quantization. AutoKeras
custom layers support both quantized and non-quantized models to support all the devices supported by NNC. Please
refer to the AutoKeras Reference Design script to use the AutoKeras quantization.

5.2.7. Fixed Point Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant

The Neural Network Compiler 7.0 UltraPlus IP, 4.0 CrossLink-NX IP, and 4.0 CertusPro-NX IP are created by considering
input/output data quantization with a range of [0, 2] (2 is non-inclusive, and it is represented in 1.7 fractional format)
and a weight quantization range of [-0.5, +0.5](+0.5 is non-inclusive). You must train your network using the
guantization function. After training your network in this way, you cannot manually adjust your fractions afterwards in
sensAl. The output of all CNN models for UltraPlus in Neural Network Compiler 7.0 is in signed 16-bit format,
represented in 5.10 fractional format.

Note that while training models, you must use quantization for all the activations simultaneously. A single data
activation is interpreted as all the activations being quantized. This also applies for weight quantization.

Weight quantization is supported in the Keras and TensorFlow platforms, and a script is provided for your use. This
script, shown below for convenience, can be used to perform the data and weight quantization.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

TensorFlow Data and Weight Quantization for iCE40 UltraPlus

#This code is taken directly from the TensorFlow script, w is a tensor here
def 1lin_8b_quant(w, min_rng=-0.5, max_rng=0.5,res=256 , offset=-1):

with tf.Session() as sess:
min_clip = tf.rint(min_rng*res/(max_rng-min_rng))
max_clip = tf.rint(max_rng*res/(max_rng-min_rng)) + offset # 127, 255

wq = (1.0*res) * w / (max_rng - min_rng) # to expand [min, max] to [-
128, 128]

wg = tf.rint(wq) # integer (quantization)

wq = tf.clip_by value(wg, min_clip, max_clip) # fit into 256 linear
quantization

wg = wg /(1.0* res) * (max_rng - min_rng) # back to quantized real
number, not integer

wclip = tf.clip by value(w, min_rng, max_rng) # linear value w/ clipping

gw=sess.run(wclip + tf.stop gradient(wg - wclip))
sess.close()
#print(qw)

return qw

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The quantization of the activation data is represented in Figure 5.17.

pool
Rélu
afd
S:acsra&".
sab_
Smul_1
clip_by_value_1
di;J
clip_by_value
Rint M sub RiAt2 .
R |'i:'._' di
il
x
bn
canv3x3

Figure 5.17. Activation Data Quantization Nodes

5.2.8. Fixed Point Quantization Requirements and Suggestions

The following are further requirements and suggestions for fixed point quantization. Consult this list to troubleshoot

your designs.

e Always use the collapse layer option when using quantization for ECP5.

e When using Caffe, always use an in-place QuantReLU layer before ReLU activation and after a Batchnorm layer.

e The input Blob is always considered an 8-bit signed/unsigned type if the decimal range of the input data is less
than or equal to 256. You can force the use of the 16-bit signed type by overriding the value in stored_frac for the
input blob in your report window. Supported formats are 15.0 for 16-bit signed, 8.0 for 8-bit unsigned, and 7.0 for
8-bit signed.

Learned Step Quantization (LSQ) is supported only in Advanced IP.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

5.3. Optimization Modes

5.3.1. Mobilenet Mode for ECP5

When creating or modifying a project, ECP5-targeted designs can enable Mobilenet mode to target designs intended to
run on the Convolutional Neural Network (CNN) Mobilenet Accelerator IP that has been generated in Mobilenet mode.
Unlike the default configuration, the Mobilenet mode is optimized to run Mobilenet designs by implementing the
Depthwise and 1x1 Convolution engines in place of some of the standard Convolution engines. This mode is configured
to use eight convolution engines, eight Depthwise Convolution engines, and 64 1x1 Convolution engines. Additionally,
it always uses 16 EBRs in this mode.

Note: Mobilenet mode IP generation is required to run designs compiled to make use of Mobilenet mode. Check the
information and files available on the sensAl website to ensure that you have the files for Neural Network Compiler 7.0
and to ensure that you are aware of the performance and resource utilization.

When using Mobilenet mode, there are two additional recommendations for your design and setting. First, it is
recommended that the number of features (number of kernels) in both Depthwise and 1x1 Convolution is a multiple of
8. Secondly, it is recommended that you enable the collapse layer feature.

5.3.2. Compact Mode for CrossLink-NX and CertusPro-NX

When creating or modifying a project, CrossLink-NX-targeted designs and CertusPro-NX-targeted designs can enable
compact mode to use a reduced-resource version of the CrossLink-NX IP and CertusPro-NX IP.

Note: The performance of compact mode is usually lower than that of optimized mode. It is recommended to use
compact mode only to reduce hardware resource usage. Optimized mode generally performs better than compact
mode.

5.3.3. Embedded Mode

When creating or modifying a project, CrossLink-NX and CertusPro-NX targeted designs can enable embedded mode in
the Impl options window to restrict the use of external memory.

Note: One can use embedded mode only if the input and output of each layer can be stored inside internal memory
when the layer is being executed.

5.4. SensAl Security Flow

SensAl supports the encryption and decryption of models. One can encrypt a model through the sensAl compiler and
provide it for secure use. When an encrypted model is provided as input, sensAl will decrypt it internally, minimal
information is visible, and no weights or network information can be extracted while generating firmware through sensAl.
Model encryption and decryption flow are only available for the Caffe, Tensorflow, and Keras frameworks.

5.4.1. Model Encryption

Sample command to encrypt the model.
$./lsc_ml _compl --cryptography --input_file path <input_model path>.pb --output_file path
<output_model path>.elpb --password <Password> --mode encrypt

S .flsc_ml compl --cryptegraphy --input file path ~/model.pb
--output_file_path ~/model.elpb --password SomePassword123 -m encrypt

File encrypted successfully and saved at /home/fuser/model.elpb

Figure 5.18. SensAl Security Flow: Encrypt Model

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02052-7.0 73

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Table 5.6. SensAl Security Flow: File Extension Mapping

Frame Work Input Extension Encrypted Extension
Keras .h5 .elh5
Tensorflow .pb .elpb
Caffe .proto .elproto
.caffemodel .elcaffemodel

Note: The encrypted model can be directly used in the sensAl compiler. It will internally decrypt the model and will not expose any
weights or network details.

To use an encrypted model in the compiler, please select the encrypted model option in the files of types section of the
model selection window, as shown below.

Using an encrypted model does not change any other flow during the compilation.

(@]

[F] nadel.elpk

Directory:

1 [—— Y

File name: Open

Filez of type: |Encrypted Tenzorflow Metwork Files (=.elph)w H Cancel]

Figure 5.19. SensAl Security Flow: Encrypted Model Selection

5.4.2. Model Decryption

To decrypt the model, the user needs to have the password used during encryption.

$./lsc_ml_compl --cryptography --input_file path ~/model.elpb --output_file_ path
~/model_decrypted.pb --password SomePasswordl23 -m decrypt

S .flsc_ml_compl --cryptography --input_file_path ~/model.elpb \
--output file path ~/model decrypted.pb --password SomePassword123 -m decrypt

File decrypted Successfully and saved at fhome/user/model_decrypted.pb

Figure 5.20. SensAl Security Flow: Encrypt Model

Note:
Without the correct password, the model cannot be decrypted.

The firmware generation from the sensAl compiler model doesn’t need to be decrypted. It is for utility purposes only.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 74

http://www.latticesemi.com/legal

= LATTICE

6. Supported Frameworks

Currently, the Lattice Neural Network Compiler Software supports the Caffe, TensorFlow, Keras, and ONNX
(experimental) machine learning frameworks. Caffe protofiles are natively supported, while TensorFlow requires
creating a frozen deployment model file.

Each supported framework is clearly defined in the appendix sections. These following sections explain how to
customize or alter the neural network.

6.1. Caffe

Lattice Neural Network Compiler Software supports Caffe. This is done by using the provided tool for analyzing and
converting Caffe neural networks into a compatible Onnx model internally. You can quickly import a Caffe neural
network if you have the required files. You are required to provide a protofile (.proto), a caffemodel file (.caffemodel),
and a reference data file (such as a .jpg image or .mp4 video file). For detailed information regarding the Caffe
Framework and in-depth explanations of features and limitations, see Appendix A. Supported and Added Caffe Layers.
You must follow these requirements when creating your protofile:

e Do notinclude blobs intended for training purposes only, such as accuracy or loss.

e Aninput layer with a clearly defined input size must be present in the network.

e RelLU must be an in-place layer. Its top and bottom blobs must be the same.

e Every BatchNorm layer must have a scale layer immediately following it.

In addition to the above requirements, you may find the following guidelines useful for protofile creation:

e The first blob should include the input layer to indicate to the tool that it is the desired first blob and potentially
improve runtime by reducing the number of cycles required for operations.

e Mean and Scale are not read from the protofile. They must be specified in the tool itself. Otherwise, the default
values are used. The default mean value is 128, and the default scale value is 255.

e Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation
constraints of hardware.

e Itisrecommended to use an input size that is a power of 2 for better computational speed and to minimize
memory alignment issues.

6.1.1. Binary Neural Networks

The software utilizes a custom implementation of Caffe for incorporating Binary Neural Networks. The Binarize,
BinarylnnerProduct, and BinaryConvolution layers are not supported in official Caffe releases and cannot be trained
using those distributions. You are required to use a version of Caffe that has been supplemented by these layers in
order to train binary neural networks.

6.2. TensorFlow

Lattice Neural Network Compiler Software is able to run designs made using the TensorFlow framework. This is done by
using the provided tool for analyzing and converting TensorFlow neural networks into a compatible Onnx model
internally. You are required to provide a TensorFlow inference frozen model file that contains both graph and
parameter values (.pb file), and this model file must already be optimized by removing all the nodes related to data
processing or training. All parameter variables needed for inference must be converted to constants.

The frozen .pb file requires both network topology and constant weights that are made for the purpose of inference.

Follow the instructions specified in the Training to Inference Conversion section to convert a training .pb model to an

inference frozen .pb model.

You must follow these requirements when creating your TensorFlow inference frozen model file:

e Data pre- or post-processing related subgraphs and operations are ignored. A separate script is required to
preprocess input data so that it is used directly as input when testing your TensorFlow model in Lattice Neural
Network Compiler Software.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e Only one placeholder exists as data input, and the shape of the placeholder must be explicitly specified in the
TensorFlow standard 4-dimension image input format and dimension order.

e Using a frozen model from a training session or checkpoint folder is not supported and cannot be directly used to
create a compatible project. Training to inference optimization conversion must be done for any training model
you wish to use with sensAl.

e Data post-processing operations such as softmax is not supported. Supported output layers are Conv2D, Matmul
(for Inner Product and Full Connect), and Global Average.

The following guidelines are not required but strongly recommended:

e Call tf.reset_default_graph() immediately before initializing a new inference session. Within the inference session,
only do inference-related TensorFlow operations. Use tf.train.write_graph to save the session graph definition as a
.pb file, and then the file can be further optimized and frozen for inference applications.

e Any data pre- or post-process, for example, mean and scale, from the .pb is ignored. It must be specified in the tool
itself or in a separate Python script layer. It is recommended to process input data, and save the processed data as
a raw array (.npy) file, and use the raw input array as input.

e Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation
constraints of the hardware.

e Use an input size that is a power of 2 for better computational speed and to minimize memory alignment issues.

6.2.1. Training to Inference Conversion

TensorFlow training models must be converted to inference models to be compatible with sensAl. There are three
main steps in the process for converting a TensorFlow training model (located in the checkpoint directory) into the
supported TensorFlow inference frozen model, which are detailed below:

1. Identify the input and output nodes needed for inference. The input node should be the node after all pre-
processes, and the output node should be the node right before the post-process, normally right after the conv2D
or matmul node.

2. While using TensorFlow 1.x, use tensorflow.python.tools.optimize_for_inference_lib.optimize_for_inference to
remove nodes that are not related to inference, and use tf.train.write_graph to save the output in the binary .pb
format.

3. Copy the output of step 2 (the simplified inference .pb) into the checkpoint folder and use
tensorflow.python.tools.freeze_graph to freeze the checkpoint weight as a TensorFlow inference frozen model file
(.pb).

An example graph (Cifar10 Binary NN model before and after inference optimization) is shown in Figure 6.1 and Figure

6.2.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

import
Expandli.
dm i g oradients A model_1 save
5 per?
\ r N ; Y\
1] 4 7 \
i ! #
oy,
Reshzpe 1 M f— i —_— i
lam Hl h lam
fandam_c... LTI batch model Wt lbelal_puwerj Wt [betdl_poweb i
A" =
\ ,
4
Reshepe Deccdel. Cast § div 1
i shuffie_batch
"
LY
DecodsR.. —— Cast 2 dv Maxiu... Sub !
ParseSingleExam... conirl ..
\ J
e, .
- I \
Raaded F Madmum Sub Regrt 1 Sl
| ParsefingleEam... | vt o
- :
/ / \ ! H
i ¥ 1
mm m MM Ty TFRecat... Readerfl.. Rstrt St Lastd Relu 1
meut_uroducet. adjust_contrast oot
-
"y i ¥ : \ 1l i
A ! H \] i
s > TrRecgs... Cast 1 Relu T Prod 1 sub_{
adjust brightness \input_pmducer| ;1’;
__ -
Lot \
Pred sub Square 3 Mear_3
e P
randam_unifor... i .. cond =5 | Cone 5
) H
- . .
Loz Square den i Pa Square’t s Mz 1
¥ Coratd ol g el . contrl_de.. i =
fd e
Squr;- Mean sk (). Slice - . Reshape 1 Squesze

= Tamst.t e = .
random_ if.. conial o st] cantrol .. T oontrdl canirel_da.
R st =

Figure 6.1. Original TensorFlow Training Model

Figure 6.1 displays an example training model. This one is not yet frozen for inference and has many extraneous nodes.

These nodes are not needed for inference. Nodes that are only related to preprocessing, training, or post-processing
can all be removed without affecting the precision of the inference.

After following those three steps, the same model in Figure 6.1 is optimized for Figure 6.2. It is in the form of a
supported binary inference frozen model, with only inference nodes in the graph.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

77

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

LATTICE

SEMICONDUCTOR

model
[output |
dZrelu

I shuffle_batch]

Figure 6.2. Simplified TensorFlow Inference Model

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

78

http://www.latticesemi.com/legal

= LATTICE

A complete standalone demo script is provided in your sensAl installation directory in
“\networks\TrainTolnference\checkpoint\” to demonstrate the above method. If TensorFlow and Python are already
installed on your system, you can directly run trainckpt2inferencepb.py to output a frozen inference .pb file
(TrainTolnference.ckpt_frozenforinference.pb) for the checkpoint inside the demo. This script also supports using
Docker to run on both Windows and Linux systems, allowing it to function even when Python and TensorFlow are not
installed. Refer to README.txt and RUNDOCKER.txt inside the demonstration directory for more details.

There are two methods you can use to provide the input and output node information that is required for this script to
run.

e Method 1: Directly provide the full name of the input and output nodes as the input parameters.

e Method 2: Use the pre-defined INPUTNODE_TAG and OUTPUTNODE_TAG as part of the node name.

e The demo script assumes that only one input node has the “INPUTNODE_TAG” string as part of its name and
that only one output node has the “OUTPUTNODE_TAG” string as part of its name. Exact input and output
node names are not required as input parameters, as long as you use the following two tags pre-defined in the
sensAl NN compiler:

e INPUTNODE_TAG='_SensAl_BeginNode'
e OUTPUTNODE_TAG='_SensAl_EndNode'

6.2.2. Binary Neural Networks (BNN)

TensorFlow does not provide an official implementation for binarization. Therefore, binarization support is
experimental and limited only to three operations:

1. Sign operation
2. Conv2D
3. Matmul

Binary models created by open-source packages, for example, TensorLayer, need to have a similar computation
topology to the BNN demo model. SensAl utilizes a custom implementation of Caffe for incorporating Binary Neural
Networks, meaning that binary TensorFlow models must match the customized Caffe implementation.

Use this Python code to implement binarization for conv2D in TensorFlow to match the customized Caffe
implementation:

Python Binarization Implementation

tf.multiply(tf.sign(x),tf.reduce_sum(
tf.abs(x),[0,1,2])/ tf.to float(tf.size(x)/x.get _shape().as_list()[3]))

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

conv3
Conv2D
A
MUl
& e
e Sign div_T1
W_conv2d i
f
i g, x
Sum ToFloat
reduction_i...
= e
= i .
ABs . div
W_conv2d LeE

Figure 6.3. Tensorboard Visualization of Binarization

The Python code and TensorBoard representations may be difficult to understand. The following C++ code (inside

customized Caffe) to implement the above computation topology is equivalent. It demonstrates how the binarization

algorithm works.
Implementation C++ Code

#define sign(x) ((x)>=0?1:-1)
const int div = weights->count() / weights->num();
for (int num = @; num < weights->num(); num++) {
if (normalized weights) {

A[num] = ©;
for (int ¢ = @; _c < weights->channels(); _c++)
for (int _h = @; _h < weights->height(); _h++)

for (int _w = 0; _w < weights->width(); _w++)
A[num] += std::abs(weights->data_at(num, _c, _h, _w)) / Dtype(div);

}
}

for (int index = @; index < weights->count(); index++) {
const int num = index / div;
wb->mutable cpu_data()[index] = A[num] * sign(weights->cpu_data()[index]);

}

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

80

http://www.latticesemi.com/legal

= LATTICE

In addition, due to the limitations of the hardware and precision of fixed point representation, you must follow these

requirements when creating a binary TensorFlow inference frozen model:

e When using signed operations in a binary TensorFlow model, bear in mind that the hardware only supports either
0/1 or -1/1 quantization modes. Additional preprocessing must be implemented so that the subgraph can generate
0/1 or -1/1 as the output and produce the expected results in hardware. The constant “y” is equal to 0.5.

0/1 Mode (UltraPlus) -1/1 Mode (ECP5)

Sign

Sign

" add

-

Rl sign

Sign
Sub

v I

Figure 6.4. Binary Neural Network Modes in TensorFlow

e A batch normalization operation is required right after conv2D operations (with binarized normalization).
e Currently, NNC does not support a mixed model. In binary TensorFlow models, all conv2D operations and all
Matmul (full connect layer) need to be binarized (sign operations similar to Keras Sample Code below need to be

part of weight loading). If a model is not a binary model, then the sign operation should not be present in the
graph at all.

6.3. Keras

NNC supports implementing Keras networks in the form of "tensorflow.keras” designs shipped with TensorFlow 1.14,
2.0,2.3, 2.5, and 2.9. The Keras/Keras-Team release version of Keras is unsupported. The slight implementation

differences likely result in your design not being compatible with sensAl, if your model is created with the Keras team
release instead of the TensorFlow release.

NNC requires a single HDF5 file (.h5 with both weight and architecture) for Keras models. It is recommended to set
Keras to inference (tf.keras.backend.set_learning_phase(0)) before saving it as a .h5 file, as NNC only supports
inference model format. If the .h5 is saved as a training format file, NNC attempts to convert it to inference. But it is
not guaranteed that this converted Keras model can produce the same output as the original Keras model.

NNC uses the channel_first data format for intermediate graph representation. Simulation output as well as the engine
provided output in NNC will be in channel_first format only. For raw numpy sample input, the user needs to provide
channel_last formatted data for Tensorflow and Keras. In addition to these file requirements, Keras models are also
subject to the same hardware limitations and parameter constraints as supported TensorFlow layers.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.3.1. Using Keras

As an example of how to use Keras, the humanGesture design can be implemented in Keras using the following code. In
some cases, it is required (for example, using the Lambda function for 8-bit quantization for Lattice NNC) that the user
convert the Keras model (.h5) to the Tensorflow model (.pb) to avoid any bad marshal data type errors. To help convert
the Keras model to TensorFlow format, please use the reference script at
networks\TrainTolnference\keras2tf_conversion\keras2tf.py.

Keras Sample Code

def humanGesture(input_tensor, classNumer=4,epsilonBN=1e-3):
a = Input(tensor=input_tensor)
x=Conv2D(24, (3, 3) ,padding='same')(a)
x=BatchNormalization(epsilon=epsilonBN) (x)
x=Activation('relu')(x)
x=MaxPooling2D(pool size=(2, 2))(x)
x=Conv2D(20, (3, 3) ,padding="same')(x)
x=BatchNormalization(epsilon=epsilonBN) (x)
x=Activation('relu')(x) #Fire 3
x=Conv2D(20, (3, 3),padding='same’)(x)
x=BatchNormalization(epsilon=epsilonBN) (x)
x=Activation('relu')(x)
x=MaxPooling2D(pool size=(2, 2))(x)
x=Conv2D(22, (3, 3),padding="'same')(x)
x=BatchNormalization(epsilon=epsilonBN) (x)
x=Activation('relu')(x) #Fire 5
x=Conv2D(22, (3, 3),padding="'same")(x)
x=BatchNormalization(epsilon=epsilonBN) (x)
x=Activation('relu')(x)
x=MaxPooling2D(pool size=(2, 2))(x)
x=Conv2D(24, (3, 3),padding="same")(x)
x=BatchNormalization(epsilon=epsilonBN)(x)
x=Activation('relu')(x)
x=MaxPooling2D(pool size=(2, 2))(x)
x=Flatten()(x)
x=Dense(classNumer , kernel initializer='uniform') (x)
model = Model(inputs=a, outputs=x)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.3.2. Using ONNX

NNC requires an ONNX file (.onnx) for ONNX models. The model can be a float or PTQ model. While loading the model,
the create_quantized_version option needs to be selected. This section shows how to convert the model trained in
PyTorch to ONNX which can then be loaded in the NNC. As support is experimental, you may find that some layers or
attributes are not supported by NNC for the converted ONNX model.

The following is the code to convert the pytorch mnist model to ONNX using the torch.onnx.export function.

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

from torch.onnx import register_custom_op_symbolic
from torch.autograd import Function

Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

Load the training and test datasets
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DatalLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root="'./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DatalLoader(testset, batch_size=64, shuffle=False)

Function to calculate the padding for "same" convolution

def calc_pad(kernel_size, stride, dilation=1):
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding

class quant_node(nn.Module):
def __init_ (self, constant=0.2):
super(quant_node, self). init_ ()
self.constant = constant

def forward(self, x):
return x * self.constant
Register the custom op for ONNX export
def multiply by constant_symbolic(g, x, constant):
return g.op("quant", x, torch.tensor(constant, dtype=torch.float32))

Ensure that the custom op is registered with the appropriate name and version
register_custom_op_symbolic("::quant_node", multiply by_constant_symbolic, 13)

class MyReLUFunction(Function):

@staticmethod
def symbolic(g, input):
return g.op('custom', input)

@staticmethod

def forward(ctx, input):
ctx.input = ctx
return input.clamp(0)

@staticmethod

def backward(ctx, grad_output):
grad_input = grad_output.clone()
return grad_input

www.latticesemi.com/legal

http://www.latticesemi.com/legal

class MyReLU(nn.Module):

def forward(self, input):

return MyReLUFunction.apply(input)

Define the neural network model
class SimpleCNN(nn.Module):
def __init_ (self):

super(SimpleCNN, self).__init_ ()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

self.relu = nn.ReLU()

#cbsrl

self.convl = nn.Conv2d(1, 16, kernel_size=3,stride=1,
self.bnl = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

#cbsrl

self.conv2 = nn.Conv2d(16, 16, kernel_size=3,stride=1,
self.bn2 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

#dw
self.dw_1 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=calc_pad(3,1), groups=16, bias=False)

self.pt_1 = nn.Conv2d(16, 16, kernel_size=1,stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

self.
self.

self.dp = nn.Dropout2d(p=0.2)
self.nnfll = nn.Flatten()
self.fcl = nn.Linear(3136, 10)
self.quant = quant_node(0.2)
self.cus_relu = MyReLU()

def forward(self, x):
x = self.convl(x)
x = self.bnl(x)
x = self.relu(x)
x1 = self.pool(x)
dw conv
x = self.dw_1(x1)
x = self.bn2(x)
x = self.relu(x)
x = self.pt_1(x)
x = self.bn2(x)
X self.relu(x)
x = torch.add(x1, x2)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = nn.functional.dropout(x)
x = x.view(-1, 3136)
x = self.fcl(x)
return x

conv3 = nn.Conv2d(16, 16, kernel_size=3,stride=1,
bn3 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

= LATTICE

padding=calc_pad(3,1),bias=False)

padding=calc_pad(3,1),bias=False)

padding=calc_pad(3,1),bias=False)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Instantiate the model, define the loss function and the optimizer
model = SimpleCNN()

criterion = nn.CrossEntropylLoss()

optimizer = optim.SGD(model.parameters(), 1lr=0.01)

Training loop
num_epochs = 1
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 9):
inputs, labels = data

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

running_loss += loss.item()

if i % 100 == 99:
print(f"[{epoch + 1}, {i + 1}] loss: {running_loss / 100:.3f}")
running_loss = 0.0

print('Finished Training')

Save the trained model
torch.save(model.state_dict(), 'mnist_cnn.pth')

Export the model to ONNX
dummy_input = torch.randn(1, 1, 28, 28) # MNIST images are 1x28x28
torch.onnx.export(model, dummy_input, "toy_mnist_3.onnx", opset_version=13, input_names=['input'],
output_names=['output'],
dynamic_axes={"input': {@: 'batch_size'}, 'output': {@: 'batch_size'}}
, export_params=True, training=torch.onnx.TrainingMode.EVAL, do_constant_folding=False,)

print('Model has been exported to ONNX')

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7. USB Debugging

The USB debugging feature in NNC allows you to debug iCE40, ECP5 (using the USB3-GbE VIP 10 Board), CrossLink-NX,
and CertusPro-NX designs. The DRAM and registers of the ECP5 device can also be accessed using this option.

7.1. Hardware Configuration

The following steps are required to configure the hardware before using it for USB debugging in the sensAl tool.

7.1.1. ECP5

1.
2.

Refer to the USB3-Gigabit Ethernet Demo User Guide (FPGA-UG-02054).

Configure the FX3 USB controller.

e Follow Appendix B in the user guide document.

e Select the image file mentioned in step 5 from the following location:
utils\drivers\lattice-usb\cyfxuvc.img

Configure ECP5.

e Follow the ECP5 SPI Flash Programming section in the user guide document.

Select the debugging bit file.
e For all designs, select the bit file from the following location:
utils\drivers\lattice-usb\bitfiles.zip
Refer: utils\drivers\lattice-usb\README
Note that as there is no DRAM on UltraPlus, USB debugging must be done using ECP5/CNX/CPNX hardware,
and DRAM can be interfaced to see the input and output blob data only.

7.1.2. CNX VVML, CPNX

1.

Flashing the FX3 USB .img file.

e Connect the jumper to port J13 of the Crosslink-NX or CPNX VVML Board (Rev B) and connect the board to the
PC using a USB3 cable.

e Connect the jumper to port J4 of the Avant board and connect the board to the PC using a USB B-mini cable.

e Open the USB control center application (the Cypress FX3 SDK needs to be installed for the same).

e Press the push-button switch SW2 on the board to reset the FX3 chip.

e You can see the bootloader device, as shown in Figure 7.1.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52371

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

E'] USE Control Center

File | Program | Help
a | FX2 O

= | FX3 »| RAM

sriptor Info

| 12C EEPROM

URB Stat Abort Pipe ResetPipe X & @ £

Data Transfers Device Class Selection

O X

SPI FLASH

VICE:

FriendlyMame="Cypress FX3 USE BootLoader Device"
Manufacturer="Cypress”
Product="WestBridge "
SerialMumber="0000000004BE"
Corfigurations="1"
MaxPacket Size="64"
VendorlD="04 B4"
ProductID="00 F3"
Class="00h"
SubClass="00h"
Protocol="00h"
BedDevice="01 00"
BedUSB="02 00"
<CONFIGURATION:
Configuration="0"
ConfigurationValug="1"
AMtributes="80R"
Intefaces="1"
DescriptorType="2"
DescriptorLength="9"
TotalLength="18"
MaxPower="100"
<INTERFACE:=
Interface="0"
Interfface Number="0"
Alt Setting="0"
Class="FFh"
Subclass="00h"
Protocol="0"
Endpoints="0"
Descriptor Type="4"
DescriptorLength="9"
</INTERFACE:>
</CONFIGURATION

Figure 7.1. Cypress Window

Select the Cypress USB Bootloader.

Select Program > FX3 > 12C EEPROM from the menu bar.
Browse and select the USB debug file LSCVVML.img from the path utils\drivers\lattice-usb.
Wait until Programming of 12C EEPROM Succeeded appears in the taskbar at the bottom of the window.

Remove the jumper from port J13.

Power off and power on the board. FX3 should boot from the I12C E2PROM.
2. Erasing the CNX VVML and CPNX prior to reprogramming.

If the CrossLink-NX Voice and Advanced device is already programmed, either directly or loaded from SPI Flash,
follow the given procedure to first erase the CrossLink-NX Voice and Advanced SRAM memory before re-
programming the CrossLink-NX-Voice and Advanced SPI Flash. While doing this, keep the board powered ON when
re-programming the SPI Flash so that it does not reload on reboot.

Note: Before erasing, disconnect the J13 jumper.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

87

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

e Launch the Lattice Radiant Programmer. Create a new blank project.

B New Programmer Project [4 x

Project:

Name: |Untitled] |

Localion:| fit_files | Browse...
Select New Project Source:

@ Scan

Cable: |HW-USBN-28 (FTDI) ™ Port: FTUSB-0 - Detect Cable

() Blank Programmer Project
[]| coce

Figure 7.2. Radiant Programmer — Default Screen

e Select LIFCL for Device Family and LIFCL-40 for Crosslink-NX. Then select LFCNX for the CertusPro-NX device,
as shown in Figure 7.3.

Enable Status Device Family

1 [PASS |LIFCL -

Generic JTAG Device
LFD2MX

Py LIFCL_EMNG
ICEAD UltraPlus
5P| Serial Flash

Figure 7.3. Radiant Programmer Device Selection

e Right-click and select Device Properties.

e Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation as shown
in Figure 7.4.

u LIFCL - LIFCL-40 - Device Properties P &

General Device Information

Device Operation

Target Memory: [Siah'c Random Access Memory (SRAM) -]
Port Interface: lJTnG N]
Access Mode: ’Direct Programming =]
Operation; ’Erase Only -]

[”] Password Protection Options (Provide key file if password protection enabled)

[OK] [Cancel

Figure 7.4. Radiant Programmer — Device Operation

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 88

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

e Click OK to close the Device Properties dialog box.

o Now press the SW5 push-button switch on the board before clicking the program button as given in the next
step, and keep it pressed till you see the Operation Successful message in the Lattice Radiant Programmer log

window.

e Inthe Lattice Radiant Programmer main interface, click the Program button “ to start the erase operation

while keeping SW5 pressed.
3. Programming Crosslink-NX VVML or CPNX board

All the bit files are included in the file at path utils\drivers\lattice-usb\bitfiles.zip. Unzip the file to select the bit
file, as given in step 4 below. Also, please refer to readme for reference while selecting the bitfile. Before SPI
flashing, disconnect the J13 jumper that you connected while flashing the .img file.

e Ensure that the CrossLink-NX Voice and Advanced Device SRAM is erased by performing the steps given in the

above section.

e Inthe Lattice Radiant Programmer main interface, right-click on Operation and select Device Properties to
open the Device Properties dialog boxes, as shown in Figure 7.5.

General Device Information
Device Ciperation
Target Memory:
Port Interface:
Access Mode:

Operation:

Programming Options

Exfternal 571 Flash Memary (SP1 FLASH)
JTAGZSPT
Direct Programming

Erase Program, verify

Programming file: x112_Demojfpre-build jedi_face_id_wnv_INFTIME_OM.bit [... 0x5CES
SPI Aash Options

Famiby: SP1 Seria Flash

Vendor: Macronin

Devica: MX25) 12835F

Package: 16-pin S0P

SP1 Programming

<

Data file size (Bytes): 1114581 Load from File
Start address (Hex): 00000000 e
End address (Hex): Ono00 110000 ~
] Tumn off addresses auto updating
D Erase 5PI part on programming error
[secure 5P1 fiash golden pattern sectors
0K Cancel

Figure 7.5. Selecting Device Properties for CrossLink-NX

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

89

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

e Select SPI Flash for Target Memory, JTAG2SPI for Port Interface, and Direct Programming for Access Mode.

e Select the bit file you want to flash by extracting the zip file given at the path: utils\drivers\|attice-
usb\bitfiles.zip and selecting the bit file from there.

e For SPI Flash Options, make the selections in Figure 7.5 given above and select Macronix 25L12833F as the
device.

e Click Load from File to update the data file size (bytes) value.

e Ensure that the following addresses are correct.
e Start Address (Hex): 0x00000000
e End Address (Hex): (Start Address + size of bit file)

e Click OK.

e On board, press the SW5 push button switch before clicking the program button in the step below and
keeping it pressed till the Operation Successful message is seen in the Lattice Radiant Programmer log
window as shown in Figure 7.6.

e From the Lattice Radiant Programmer main interface, click the Program button “ to start the programming
operation.

Output 8 X
Disabling...

Enabling...

Programming...

Disabling...

Verifying...

INFO - Execution time: 00 min : 14 sac
INFO - Flapsed time: 00 min : 15 sec

INFO - Operation: successful.

Quiput Td Console

Figure 7.6. Output Console after Successful Flashing

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 90

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide ==LATTlCE

7.1.3. Avant Device

For USB debugging on an Avant device, you will need a Cypress USB FX3 board. Connect the Avant board and USB FX3
board as shown in Figure 7.7.

‘§i"§!"§ie'

i 5

oo o

el

O i K [

pipag |33uue

oy :::,:.m.n
RoHS "
)7

iy 2 TTICI
. opyright
Avant Eval FMC Hy

Figure 7.7 Avant Board with FX3 USB Board

e Upload the LSCVVML.img file to the Cypress FX3 USB board, keeping the jumper configuration as:
e Jumper J4 being open.
e Jumper J3 shorted.

e Upload the bitfile of Advanced IP to the board using the Lattice Radiant Programmer.
e Using a USB port for the Avant board for uploading a bitfile to the FPGA.

e Use the FX3 port for reading HW values from the board.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 91

http://www.latticesemi.com/legal

= LATTICE

7.2. Debug Window Options

To launch the USB debugging window from the SensAl GUI, click on Tools > USB Debugging from the main window.
The USB debugging window (Figure 7.8) opens.

USB Debugging - O
Registers
Status: Board detected Detect board
Reg list: Mone E]
ml file: Ahomed /latticestools/trunk/nl s v | Refresh blob list ‘ fclcr + G] Data: [0
LSTML Files Jhawe; /latticestoolsstruck/nlisr ... | Uplaad Firmuare | et | Hrits |
Load Input Data: |/homes Fhuman., jreg 000 1x240:320 (Bhl Upload Input | Run ‘ Fost Processing |
RERD WRITE

Select blob: Hore| E] Select blob: Mone E]
Bit widthy 32 —l| Layer Info Bit width: 32 —~ Layer Info
Address: Ox0 Address: 00
Length f{in bytesd: 0 Length fin bytes): 0O
Display Data in: Hex — V¥ Show actual values Urload kit file: EBrowse
Data: Data:

Read Save A1l Clear Hrite Clear

Exit |

Figure 7.8. USB Debug Window

e Status: Indicates if the board is detected. Read and Write operation buttons are disabled until the board is
detected by the software.

e Detect Board: Click this to retry connecting to the board.

e Yml File: Provide a YML file to parse the blob layer name, Q-format, and starting address. After reading the YML
file, Select blob displays available blob names, Address shows the starting address of the selected blob, Length
shows the total size, and Bit width displays the bit width of data to read or write.

e Refresh Blob List: Refreshes the blob list. Use this if the YML is changed while the debugger is running.

e LSCML File: The .Iscml file path generated by the tool needs to be uploaded on board as firmware. The file is
automatically detected if the current project already has an associated .Iscml file.

e Upload Firmware: Upload the firmware file to the board. This functionality is disabled until the board is detected.

e Load Input Data: Image or raw input file to load at the input blob. Accepts .jpg, .png and .npy format.

e Upload Input: Based on the resolution selected in the drop-down menu, image data is pre-processed and
uploaded to the input blob address on board. Disable it until the board is detected. A valid YML file is required for
this operation.

e Reg List: Drop-down option for all the register lists. Below is the table for all the registers with their address
information.

e Registers Read/Write: Register read and write operations to and from addresses mentioned in the address box.
Disable it until the board is detected. Addr and Data box values are in hexadecimal for read and write operations.
More details on registers can be found in Appendix E. USB Debugging Register Map.

e Run: This operation runs the engine once. All the blobs are updated based on input image data.

e Post Processing: This option is enabled only when the USB debugging window is launched from an opened project.
If the post processing command is configured in the project settings as shown in Figure 3.2, then this operation
runs the post processing script on input data (a selected image or .npy) with the last blob .npy file.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e Select Blob: Select a blob (by name) as the target of your read and write operations. Blob names are displayed
based on the YML file.

e Layer Info: This button is enabled only when the USB debugging window is launched from an opened project. After
selecting this button, a window with information about that blob is launched. This information includes the blob
dimension, memblks, height_per_mem/depth_per_mem, DRAM address, output EBR list, and a table that shows
the details on how values are divided into memblks/EBRs.

e Address: The starting address of DRAM. This is shown after selecting a blob name. The Blob address is based on a
YML file. This DRAM address can be changed.

e Length: Total size of data to read or write. This is shown once a blob name is selected. The total blob length is
based on the YML file. The length can be changed.

e Display Data In: Selects the format in which data should be read, either hexadecimal or floating point. Hex is the
default setting. Selecting Float converts received data into a floating point using the selected blob layer Q-format.

e Show Actual Values: This checkbox is enabled only when the USB debugging window is launched from an opened
project. Enabling this checkbox filters out extra values that are read from the memblks of external DRAM and
displays only the actual values of the blob.

e Upload Bit File: Writes data in hex into a DRAM address. This option is only necessary when you wish to perform a
write operation.

o Data: Displays the read operation data either in hex or float, and uploads bit file data in hex.
e Read: Performs a read operation.

e Write: Performs a write operation.

e Clear: Clears the data box.

e Save: Saves the displayed data in a file. Valid only for read operations.

e Save All: Saves all the blob data.

e Exit: Exits the debugging window.

7.3. Driver Installation

Due to requiring a USB driver to operate, your computer may not support USB debugging without first installing the
device driver. This section covers the process for installing the required device driver in order to enable USB debugging.

7.3.1. Windows Driver

The driver for Windows is installed by running the Iscvip.inf provided in the driver/pre-build folder of your sensAl
installation. This can be done by right-clicking the file and selecting Install. To manually install the driver by selecting
your USB device in Device Manager and selecting Update Driver, you need to navigate to the driver/pre-build directory
and select the “Iscvipdrv.dll” file.

Driver Signature Enforcement needs to be disabled to install this driver. If you encounter an error related to the driver
signature, the following steps guide you through the process of disabling this temporarily for installation.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Driver Signature Enforcement Settings for Windows

1. Getto the advanced boot options menu. You can hold down the Shift key while you click the “Restart” option in
Windows 8 or 10. Your computer thus restarts into the advanced boot menu.

Select the Troubleshoot tile on the Choose an Option screen that appears.

Select Advanced Options.

Click on Startup Settings tile.

Click the Restart button to restart your PC on the Startup Settings screen.

Select the Disable driver signature enforcement option at the Startup Settings screen.

Your PC boots with driver signature enforcement disabled, and you can install unsigned drivers.

©® N o vk wbN

The next time you restart your computer, driver signature enforcement can be enabled again. You need to go
through this menu again to disable it if you wish to reinstall the driver for any reason.

7.3.2. Linux Driver

For Linux systems, the libusb package needs to be installed. Use the following command in your terminal to install the
libusb package on Ubuntu.

sudo apt-get install libusb-1.0-0

To avoid requiring super-user permission for USB debugging, each time you wish to run the software, the device entry
in your system udev rules needs to be added. Add the following line to your udev rule file, which is typically found at
/etc/udev/rules.d/<file-name>.rules. Restart your udev subsystem.

SUBSYSTEM=="usb”, ATTRS{idVendor}==71134”, ATTRS{idProduct}=="2a@1”, MODE="0666"
To restart your udev subsystem, use the following command in the terminal.

sudo /etc/init.d/udev restart

7.4. USB Debugging API Interface

SensAl allows you to perform USB debugging through an APl interface in the command line, which supports the same
features as the GUI and requires the same driver as detailed in the previous section. An example Python file,
‘example_usb_debugging.py’, is provided in the sensAl installation directory to demonstrate the usage of the API
interface for USB debugging.

Note that for Linux systems, using the tools via the command line without super-user permission, your driver must be
installed along with making the udev changes detailed in the previous section.

7.4.1. Class Overview

To use the APl interface, the usb_api class needs to be imported from usb.lib.usb_api using the command:
from usb.lib.usb_api import usb_api

The following methods are provided by the usb_api class:
e Jload_dll()
e Loads platform specific USB library dll/so for interfacing with ECP5 device. This method needs to be called
before any further operations.
e Returns 1 on success and 0 on failure.
e usblnit()
e Detects the ECP5 device over USB interface and initializes if device is found.
e Returns 1 on success and 0 on failure.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

usbDeinit()
e Releases the USB device. Only applicable on Linux machines.
writeDram(address, length, bit_width, rData)
e Writes data to the DRAM using the four required arguments.
address
e Base address of the DRAM where the data is to be written.
length
e The length of the rData specified in bytes.
bit_width
e The bit width of the list elements of the rData. Data is written to the DRAM as per the bit width.
rData
e The list of data to write.
readDram(address, length, bit_width, sData)
o Reads data from the DRAM. Following is the argument description:
e address: Base address of the DRAM where the data is to be read.
e length: The length of the sData, which is specified in bytes.
e bit_width: The bit width of the list of elements of the sData. Data is read from the DRAM as per the bit
width.
e sData: The container for the data that is to be read.

regRead(address)
e Reads the register value of the register specified by address and returns it. Prints an error message in case of a
failure.

regWrite(address, data)

e Writes the data to register specified by address.

upload_firmware(lscml_file)

e Reads a sensAl program (.Iscml) file specified by Iscml_file and uploads the firmware to the 0x0 address of the
DRAM.

The .Iscml file is generated by sensAl during the compile stage. You must use the path to a valid .Iscml file as
the argument.

upload_input(yml_file, input_image)

e Reads the mean, scale, and fraction of the input layer from the yml file and performs preprocessing based on
it. Then it uploads preprocessed data to 0x0f000000 + <input-layer-extmem-address> in DRAM.

e The arguments, input_image and yml|_file, must be paths to valid .yml and input image files, respectively. The
.yml file is generated in sensAl during the Analyze stage.

run_engine()

e This method writes registers to trigger the CNN IP to run once. Upon completion of a single run, output is
generated at 0x0f000000 + <output-blob-extmem> in DRAM. Before running this step, the firmware and the
input image should be uploaded to DRAM.

e To save the output blob data from DRAM into a file on your computer, refer to the example steps provided in
the example_usb_debugging.py file in your sensAl installation directory.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .
User Guide L) LATT’CE

7.5. Board Detection Troubleshooting
If the board does not show up, try the following steps for troubleshooting your setup to attempt to resolve the issue:
1. Check the Board.

e If using ECP5 for debugging, check that USB3-GbE VIP 10 Board is written on the bottom layer of the EVDK
(Figure 7.9).

“Ras| _] -

USB3—-GbE VIP 10 Board
USB3—-VIP—-EWN

Rev B

(c) 2018 Lattice Semiconductor

Figure 7.9. USB3-GigE VIP Board Label

e If using Crosslink-NX Voice and Advanced Board, check that LIFCL-VVML-BRD is written on the board.

TN TR L=
Link-NX Voice and

s::rénauochme Learning

' LIFEL-vVML -8R0

' Designed in US

-Copyright € © 2020

Figure 7.10. CNX-VnV Board Label

e If using Certus Pro-NX Voice and Advanced Board, check that LFCPNX-VVML-EVN is written on the board.

CPNX Veice and Vision
Mochine Learning Board

RELoNX-VVML-EVN- . R
Designed in USA "R

1
C1
Copyright @2021. 3

Figure 7.11. CPNX-VnV Board Label

2. Verify that you have installed the Cypress file into the Cypress chip and repositioned the jumper pins into the
correct configuration.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 96

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

3. For ECP5/CNX and CPNX devices, check that you have the correct bitstream programmed to the SPI Flash.

Ensure that the Micro USB 3.0 (not USB Mini) connector is connected from the bottom board and not the middle
board.

For ECP5, after connecting the USB from the EVDK to the computer, press the sys_rst button on the top board.
Under Device Manager, you should now be able to see the board.

If you still do not see the device and your computer is using Windows, you may need to disable the Windows driver
certification to make it show up.

7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug

To debug USB values layer by layer, you can see all the layers in the blob list in the USB debugging window, as shown in
Figure 7.12.

USB Debugging = B
Status: Board dstected Detect. board (PSS
o e
nl File: howe/| /latticestools/trumk/wlisr ... Refresh blob list . o Data: [0
LSCML Filet /hows, “lattics/toolscbrunk/nl/sm L., Upload Firmuare | Gaz | Lirikio |

Load Input Data:

/hiome Ahuman., g

aes 1x240x320 (Bb)

Upload Tneut | Run

Post Processing ‘

Display Data in:

Datat

Read

du_1x1_fireb_firet

du_1x1_fire?_fire7
CBSR_conw12/Conv2Dl

s |

Save ALL

Clear

Upload bit file:

Datat

Write

READ HRITE
Select blobt data -] Select blob: == -]
Nane
Bit widths data Bit uidth: e Layer Info
du_Lal_firel_firel
cu_Lx1 Fire2 Fire2 ,
pddress: L s Fires Addresst 00
du_Ll_Fired_fired
Length (in butes): |4y fxl Fire5 Fires Length tin bytest: [0

Brouwse

Clear

Exit,

Figure 7.12. USB Debug Window

You can select one of the blobs to run USB debugging. Once you select any bob, sensAl generates USB debug firmware
for the selected layer.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 97

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

LATTICE

Generating Debug Firmware !

["ALL | DEBUG

Sunmary Log:

Length (in bytes}:
Hex —

¥ Shou actual walues

Length {in bytes}: ©

Upload bit fils:

—
Nl | |] Registers
b | ot i
Ij\‘lFl hones /lattice/toolsitrurk/nl/ Refresh kloh list
m. ile: [=IU= attice/tools/trunk/ml sr s =t rest O s . .
TElEe Acdr 1 o Data: [0
Compile
LSCHL File: honel /lattice/tals/trurk/nl/sr | ... Upload Firmre | Read | i ite |
<+ Sinulats0gt]
EaF loat.ind
Load Trput Datat |oms/. hunan, Jeg v | Dx2d0xE0 80) Upload Tnput | Run | Fost Prosessine |
P ixect P
EdTnferen
READ WRITE
Fost. Process|
Townlomd Salect blobi [[-] Select blobi [Mare [-]
Run
Bit uidth: = Layer Irfa Bit uidth: = Layer Infa
Fddress : Addresss 00

Browse

TNFD erd | Display Data in:
INFD en

INFD en

IHFD en . Data:

e nd | Data: ata

INFD ex

THFD la

HFD st

HFO bo

D bo

D i er

D i st

D i df

D i oou

INFO : ot Read Save ALl Clear Hrite Clsar
T 4 J 4 J 4
D i en

IFD i re

INFO_ : Resu B

HARNING & Buildurmerecworrmomer—s

[

Figure 7.13. USB Debug Firmware Generation

The USB debug window sets the USB debug firmware, bit width, address, and data length based on the blob

configuration.
USB Debugging O
Registers
Status: Board detected Detect board
e s | .
¥ml File: /home/ ‘lattice/toolsdtrunks/ml/sm ree | Refresh blob list ‘ Addrt 0 Data: 0
LSOM_ Files [/L-EVEA/ Tue 10/ 1-TWGA_uishoibue Jsenl] | ... || Upload Firmuare | [R5z | Hrite ‘
Load Tnput. Dakat |shonss human, jeg ver | 1x@d0i320 (30) Upload Trput. ||| Run || Post Processing |
RERD WRITE
Select blob: [ehv_tx1_Fire3_fire3 - Select blob: |ore -]
Bit width: Laysr Info Bit width: 32 Lager Tnfo
Address: Address: 00

Length {in bytes):
Hex —

Display Datas int [Show actual values

Datat

Read Save ALl

Length {in bytes); O

Upload hit file:

Datat

Clear Write

Brouse

Exit

Clear

Figure 7.14. Upload FW, Input and Run USB-Debugging

Now you can:

e Upload Firmware
e Upload Input

e Run

e Toread data in the desired data type, you can select the datatype in Float or Hex.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

98

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

= LATTICE

USB Debugging -

Length (in bytesd:
Float. —

Display Data ing [Show actual values

Tlat.a? 7P 1A00 0,000000 0,000
7P 1RO ¢ 0,000000 0,000
O 7P 1A0S L 0.000000 0.000
O LAOC Y 0.L000000 0,179
e FFA1A10 0, 000000 0,000
Ox7F1ALd s 0,000000 0,000
Ox7F1ALE: 0,000000 0,000
O 7F1ALC: 0.000000 0.000
O FFLA20 T 0000000 0,000

Read Save Save ALL
(PP ISP IIIFIIITIIIPIT I P I I I IS S

Clear

Length {in bytes}: ©

Ueload bit file:

Data:

Hrite

Exit

Status: Board detected Tletect. board Registers
¥ml file: Ahome. ‘lattice/tools trunk/mlism ‘ Refresh blob list ‘ A+ Dats: 0x1225
LECHL Files A-VEA/ Tnpl0/1-Q¥GA_ushoebug , Lseml .. ‘ Upload firmuars | Ire] ‘ Hiritee |
Load Input Data: |/home human, jeg coo 1x240x320 <Bh» Upload Input | Run | Post Processing |
RERD HRITE
Select blob: [dm,ixl,FirEE,F.Lre3 |'l Select blob: INDne |'l
Bit width: — Laver Info Bit width: 32 — Lauer Info
Address: Address: 0x0

Browse

Clear

Figure 7.15. Read USB Data with Blob Selected

Notes:

e Toread data from a specific address, you must select None in the blob list, and pass the address along with the

length, and then read the data.

e Onthe new input data, you need to perform all the steps by first selecting the new input data and then performing

all the steps.

USB Debugging -

R £
Status? Board detected Detect board SElsers
e o | N —"
¥ml files Ahome - ‘lattices/toals/trunk/ml/sm e ‘ Refresh bloh list ‘ fAddr: =] Data: |0x1225
LSCHML Files /1-O¥GA/ Tie L0/ 1-ANGA_usbdebug , lsenl ., ‘ Upload firmware | Ire] ‘ Lriie |

Length {(in bytes}: 3630

Float — |

Dizplay Data ing [Show actual values

Data:

Read Save Save ALl
(PP I PP I II I I T I I I I I IIIIIIF I

Clear

Length {in bytes: 0

Ueload bit File:

Data:

Hrite

Exit

Load Input Data: |‘homer ‘human, jeg coo 1x240:320 (Bhy Upload Input | Run | Post Processing |
READ HRITE
Select blob: |'l Select blob: INUne |']
Bit width: Laver Info Bit width: 32 — Laver Info
Address : 0x7f 1800 Address:)

Browss

Clear

Figure 7.16. Read USB Data without Blob Selected

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

99

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .
User Guide L) LATT’CE

To save data, click Save. The save file dialog pops up. After saving the text file, sensAl Compiler finds the expected vs.
USB Debug values MAE and shows them in a popup.

Status: Board detected Tletect. board Reglsters |
e s | ot et e[

Ynl File: shone/ jau/lattice /tonls/trurk/nl /s L. | Refresh blob list || pddr: = Data: [0w1205
LSCHL File: /104G Tnp 101 -IVGA_sbrlzhue Jsenl ... | Upload firmare | Geac | irdize |
Load Input Data: |hone/ jay/hunan. jee e | tezdoxEz0 (B0 Upload Tnput | Run ‘ = —— |

Save file

REAL}

Select blob: du_lx1_fire3_fire3
Directorys I/hnme/Jag/lat.t.ice/t.nnls/trunk/ml/sr‘c/wnrk!l—ﬂVER!ImplOV] [@]
L2 woeng R |] 1-avGAbin [] 1-0¥GA_ushdsbug bin [du_1x1_fired Firel_ Legar UAiE
[F] 1-0vGA. Loz [F] 1-avGA_usbdebug, 1seml [C] du_lxl_fire2_fire2,
Adchress
eSS [1-avGA, lecnl [CBSR_comw12_Corw2D,txt [cu_dxd_fire2 Fire2_
Lemgth (in butes)s [£] 1-0vGA. mes [*] CBSR_conwl12_Conw2D_2,kxt [du_1xl_fire3 Fire3.
[-] 1-avGA, rpt [] du_tx1_Firel_firel.txt. || du_lxl_fireS_fireS, |
Display Data in: Float — [E] 1-2vGA,ynl [du_ixi Firel firel_1,txt [C] du_lxl fire7_fire?, Browse
e] I
Data: Ox7F1A003 0. p—
0x7F 104 1 o File name: |2 || Save
0x7F 16093 0. L
giggizggi g: Files of tupe: [all files {*.,%) - H Cancel ‘
0x7F1A14 3 a, c
Ox7F1A193 0.000000 0.000 \
0x7F1A1CS 0,000000 0,000
0x7F1A203 0,000000 0,000
Read Save Save ALL Clear Hrite Clear
VIFIIFIIIIITIPIFIFIFITIIIII I Exit |

Figure 7.17. Save USB Data

Expected values for a given USB debug input are stored in the expected folder of the sensAl project directory.

1-QVGA

CBSR_conv12_Conv2D.txt
dw_1x1_fire1_fire1.kxt
dw_1x1_fire2_fire2.kxt
dw_1x1_fire3 fire3.kxt
dw_1x1_Ffire4 fired.kxt
dw_1x1_fire5_fire5.kxt

dw_1x1_fire6_fire6.kxt

dw_1x1_Ffire7 _Ffire7.kxt

Figure 7.18. Expected Values for Corresponding Blob

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 100

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

« LATTICE

Status: Board detected Detect. bosrd Registers]

fml File: |.f'h0me.a ‘lattice/tools/trunk/mlssr s | Refresh blob list ‘ Addr: |22 Datas ‘0x1225
LSCHL File: [/1-IVGA/ Tnp10/1-VGA_usbrebug lsonl ... | Upload firmuare | gea | Hirieo |
Load Tnput Data: |/hones /hunan, ez ver | 1x2a0mz20 @0 Upload Tneut | Run | Post Pracessirg |
READ WRTTE
Select bloh: [clu_1x1_Fire3_Fire3 -] Select bloh: |Home -]

Bit width; - | Layer Info Layer Info
MAE is Very Good
Address ¢

0x0
) MAE for layer dw_1lx1l fired_fired =
Length {in bytes): Q

0.028381
Display Data in: Float —l| ["Show actusl val Brouse

Datas e FFAA00 3 0, 000000 0,000 Datas
O 7F1A04 3 0,000000 0,000
Ox7F1A08: 0,000000 0,000
OxFF1AOC S 0.,000000 0,173
OxFF1A10: 0.,000000 0,000
Ox7F1AL4: 0,000000 0,000
Ox7F1A18: 0,000000 0,000
Ox7F1ALCS 0,0000000 2,000
D 7F1AZ20: 0.000007 0.000
Read Save Sawe ALL Clear Hrite Clear

Exit ‘

Figure 7.19. Show Expected vs HW MAE

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 101

http://www.latticesemi.com/legal

= LATTICE

8. Model Zoo

Model Zoo is a platform that provides a way to clone Lattice-supported models and train them with your own dataset
and environment setup. It also provides a way to select the model based on different parameters. All the models are
hosted on the Lattice GitHub page. This feature provides an interface between sensAl and GitHub.

Visit the Lattice Semiconductor GitHub for the latest models.

8.1. Model Zoo Window Options

To launch the Model Zoo window from the sensAl GUI, click Tools > Model Zoo from the main window. The Model Zoo
window opens, as shown in Figure 8.1, and displays several options to select from either drop-down menus or boxes.

B Lattice Model Zoo - Model Selection - m] X

Target Application Mone —4 Open Sensal Project
Ihput Dimension Mohe — Target Netwoark Mone —4
Target Device Mone — Target Framewoark Mone —4

Model Zoo | yiorkspace

Select Model from below options

Maodel Mame Anplication Input Dirmension Device Metivark Type Frarnesnaork TensorFlow Versian Other Pararneter
Potrait Segmentation Cros: Segmentation 160160 Crasslink-Mx EMET TensarFlow 115.0
Hurman Count Crosslink-M. Object Detection 2245224 Crosslink-MX GoogleMet + SqueezeDet TensorFlow 114.0
Hurnan Count Crasslink-M; Obiject Detection 224:224 Crosslink-Mx Mobilenet¥1 + SqueezeDe TensarFlow 1.14.0
Predictive Maintenance Ce Predictive Maintenance B4x64 Certus-Mx WGG + Classification TensorFlow 1150
Hurnan Presence Crosslink Obiject Detection 6464 CrosslinkNX-Yny Mobilenet¥1 + SqueezeDe TensarFlow 1.14.0

QVGEA Object Detection 3204240 Crosslink-MX Mobilenet W1 + SqueezeDe TensorFlow 1150 trained_in: Keras

WG4, Obiject Detection 640480 CrossLink-M3x Mobilenet¥1 + SqueezeDe TensarFlow 115.0 trained_in: Keras
Hurnan Count Object Detection 2245224 ECP3 Mobilenet W1 + SqueezeDe TensorFlown 114.0
Hurnan Count 2.1 Obiject Detection 224x224 ECP3 Mobilenet¥1 + SqueezeDe TensarFlow 1.14.0

Hurnan Presence Object Detection

B4x64
Project Directary Diprojectitool sitrunkiynlhexamplesis J Clane Model Exit
Log box

Ultra Plus Mobilenet'1 + SqueezeDe TensarFlow 1.14.0

Figure 8.1. Model Zoo Window

e Open SensAl Project
e Opens existing sensAl project(.Ildnn) from the selected repository in the workspace tab.
e Model Selection Parameters
e Different model selection parameters are provided as a way to select the model that best suits your needs.
These parameters are populated by cloning the Model Info repository from GitHub. This repository has a JSON
file (model_info.json), which contains information regarding the models and their git url. The table is
populated with models based on the selected parameters. The following are the selection parameters:
e Target Application — This specifies the model application, such as object or face detection.
e Target Class — The model class indicates whether it is a BNN or CNN.
e Input Dimension — The input size such as 64x64, 128x128, or 224x224.
e Target Network — This column displays the specific type of network being used, such as YOLO or
SqueezeDet.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://github.com/LatticeSemi

= LATTICE

e Target Device — Lists whether the target device is ECP5 or UltraPlus.
e Target Framework — The framework is either TensorFlow or Keras.

Model Zoo Tab

e This tab lists the models available on the Github page.

Workspace Tab

e This tab lists the models available in the local workspace directory.

Project Directory

e The location where the selected model is to be cloned.

Clone Model

e Based on the model that is selected from the table, clicking this button fetches the Git URL. If this is the first
time the model is being used, the model repository is cloned. If the model already exists locally, it pulls the
latest updates into the project directory instead. All the logs are displayed in the log box below. This button is
only active in the Model Zoo tab.

Update Model

e Similar to the Clone Model button, this button can update the models selected from the list and display the
logs in the log box. This button is only active in the workspace tab.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

9. Al System Generator

The System Generator is designed to eliminate the complexities involved in deploying machine learning (ML) models on
FPGA hardware. Traditionally, converting a trained ML model into a working hardware implementation for FPGAs
required both ML and hardware engineering expertise. The System Generator bridges this gap by automating the
entire process, enabling ML engineers to focus on designing and optimizing their models without worrying about
hardware-level details. The tool automates key hardware decisions, ensuring optimal execution of ML workloads on
FPGAs.

System Generator intelligently analyzes the ML model's architecture and features, determining the minimum hardware
resources necessary for efficient model execution. It takes care of the selection and configuration of IPs that are
needed to run the model, which includes pre-processing units, the ML engine, and communication interfaces. This
approach significantly reduces the time and effort required to design hardware systems tailored to specific ML models.

9.1. Key features

e System Generator performs a comprehensive analysis of the ML model to identify and select appropriate IP cores.
It evaluates factors such as data input type and performance targets, then automatically chooses the best-
performing ML engine and related IPs.

e The tool assesses various ML engines, including custom accelerators or general-purpose cores such as RISC-V to
find one that can best meet the model’s performance needs. Based on criteria such as frame rate (FPS) and
computational load, the optimal IP is selected.

e System Generator generates hardware configurations and produces a complete stack, including FPGA bit-stream
and software components, to ensure seamless integration and deployment.

e If you are working with Propel Builder, System Generator creates ready-to-use TCL templates that set up the FPGA
design environment and integrate the generated hardware IPs for bitstream generation.

9.2. Launch Al System Generator

To open the Al system generator interface, select Tools > Al System Generator. The System Generator window
appears, allowing you to create, save, and open system generator projects.

H Lattice SensAl Software — X
File Process View Tools Help
: Model Zoo

UsB

Al System Generator

RISC-V System Generator

i

Neural Network
Compiler Software

Figure 9.1. Opening the Al System Generator

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 104

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide ==LATTlCE

9.3. Create a New Project

To create a new system generator project:

1. Inthe System Generator window, select File > New Project. The New Project window appears.

System Generator
File | Tools Help
New Project... Ctri+N
Open Project... Ctrl+O
Close Project CtrlShift+X

Settings. Ctri+S

Exit Ctrl+Q

Figure 9.2. System Generator Window

2. Inthe New Project window, enter the project name and location, then click Next.

@‘ Mew Project

Project Information

Enter name of your project and a directory to store the project and intermediate files,

Project

MNarme: |test |

Location: | C:/SystemGenerator |

Create Project at: C:\SystemGeneratoritest

Folder available

< Back Mext = Cancel

Figure 9.3. Entering System Generator Project Name and Location

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 105

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

3. Specify the location of Isc_ml_compl.exe and the model to be used for generating the FPGA bitstream.
§ New Project - X
Model Information
Select 2 model and provide location of SensAl SDK's Isc_ml_compl executable.
SensAl SDK
Location: |C:\Iscc\ml\?.D\winﬁd\lsc_ml-compl.exe ‘ Browse...
Model
Location: |C:\SystemGenerator\Adv_soln_demo6.pb ‘ Browse...
Next > Cancel
Figure 9.4. Specifying SensAl SDK and Model Locations
4. Click Next. The System Generator loads the model and finds the input layers of the network for further processing.
The Pre-Processing page then appears.
i Settings — >
Pre-Processing
Select Pre-Processing required on the input.
Application Input Type
® Image (O Audio () Other |batch,‘fifo_queue V| [288, 480, 1]
Image Audio
Width Height Layout RGEB MHz
Camera Resolution: | 540| | 430| |NHWC v| Sample Rate: 0
Model Resolution: | 43EI| | ?_38| |NCHW V| | Down Sample Rate: 0
Desired FP5 performance:
RGB to Gray Scale conversion required
Layout conversion required
Commeon settings
Mean: Scale: | 0.0078125 Do pre-processing on host
<Bock | | Net> || Cance

Figure 9.5. Pre-processing Page

Choose the application input type (Image, Audio, or Other). In Neural Network Compiler 7.0, only Image and Other
related pre-processing can be done. System Generator auto detects the model resolution, layout, and number of
channels in the input to the model. Based on this information, the appropriate pre-processing code is generated.

5.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 106

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

6. Click Next. The information gathered is displayed as shown in the following figure.

§ settings - *
System Generator Project
System generator project .syg is generated using following information.
Key Value "
Inputs
Application Input Type Image
Camera resolution Height 430
Camera resolution Width 640
Camera - RGB True
Model - RGB False
Model resolution Height 288
Model resolution Width 430
Sample Rate 0
Down Sample Rate 0
Mean 0.0
Scale 0.0078125
Desired FP5 100
need_pre_processing True
need_external_mem False
selected_ml_ip ML_IP_4
tel_template tel_template_2.tcl
v
< Back Cancel
Figure 9.6. System Generator Project Information
7. Click Finish to generate the System Generator project (.syg) file.
§ System Generator - test - m} X

File Tools Help
= Project - test

Adv_soln_demob.pb
[# Build
Output

[12:03:48] Project open - test

Figure 9.7. System Generator Project

The Build folder contains all the intermediate files generated during model analysis and compilation. The Output folder
contains all the output files (TCL template, bitstream, host code etc.) as described in the Starting the System Generator
section.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 107

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software [/]
User Guide L LATT’CE

9.4. Opening an Existing Project

To open an existing system generator project, select File > Open Project followed by the system generator project file
(.syg file), then click Open.

f Open System Generator Project X
<« v » ThisPC » Local Disk (C}) » SystemGenerator » test v O

p
Organize v New folder =~ M @
[This PC ~ Name
J 3D Objects
I Desktop
%) Documents
¥ Downloads
D Music
&=/ Pictures
B videos
‘e Local Disk (C:)

Date modified Type

build 24-10-

024 12:03 PM File folder

|| testsyg 24-10-2024 12:03 PM SYG File

r Libraries v < >

File name: | test.syg ~| | System Generator (*.syg) v

Figure 9.8. Opening an Existing System Generator Project

9.5. Starting the System Generator

To analyze the model and find the best suitable ML IP for it:
1. Select Tools > System Generator.

Analyze and Generate — X

System Analysis

Analyze the given medel for various hardware configurations and select ML IP.

Model Information

Model: Adv_soln_demos.pb
Application Input: Camera 640x480 RGB
Pre-Processing: Resize image to 480x288

Layout conversion
RGB to Gray Scale conversion
Scale value 0.0078125

Model Analysis
Model has been already analyzed and ML_IP_4 is preferred. To reanalyze, click Start Analysis.
Start Analysis Stop Analysis .

Preferred ML IP Details

Preferred Config: ML_IP_4 ~ Reguired IPs:

Device: AVANT cpu
ML IP: Advanced_CNN sysmem0
adv_cnn
Approx FPS: 23 sk
ML IP Cycles: 5552540
ExtMem Cycles: [v]
MLIP Area: 220000
Select ML_IP_4 ML_IP_4 selected
< Back Next > Cancel

Figure 9.9. Analyzing Model and Selecting ML IP

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 108

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

2. Click Start Analysis to allow System Generator to find the best suitable ML IP for the selected model. System
Generator uses the SensAl ML analyzer tool to find best suitable ML IP. Once processing is completed, the
preferred ML IP and other IPs required for the system are displayed as shown in the following figure.

Preferred ML IP Details

Preferred Config: ML_IP_4 v Required IPs:
Device: AVANT cpu
ML IP: Advanced_CNN sysmem0

d
Approx FPS: 23 pev-enn

usb
ML IP Cycles: 5552540
ExtMem Cycles: o
ML IP Area: 220000
Select ML_IP_4
< Back Mext > Cancel

Figure 9.10. Preferred ML IP and Other Required IPs

3. Click Select <ML IP Name> to choose the displayed ML IP for further processing. You can also view other ML IP
configurations considered by System Generator by clicking on the Preferred Config dropdown box.

4. Click Next to generate the bitstream and host or application code.

i Analyze and Generate - X

System Generation
Generate TCL, bit-stream, host or application code for selected IPs.

Generate System

Start Stop . [] Regenerate all output files

TCL template

Command stream for ML IP
Host code

Install IPs

FPGA bit-stream

< Back

Cancel

Figure 9.11. Generating TCL, Bitstream, and Host or Application Code

5. Click Start to start generating the following:

e Propel Builder TCL template.

e Command stream (ML firmware) for model using SensAl compiler. ML IP configuration values generated by
the compiler will be copied into the final FPGA bitstream.

e Python host code (if USB-based design is selected) or C source for application code running on RISC-V CPU. The
Python host code performs the following tasks:
e Interacts with device connected using USB.
e Pre-process input image.
e Load pre-processed input image in the external memory and start ML IP.
e Download output of ML IP on host.
e Post-process the output.

e Install all the required IPs on the system.

e Generate FPGA bitstream.

6. Flash the generated bitstream on the appropriate FPGA board and run the host code to execute the application.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 109

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE
User Guide

9.6. Advanced System Analysis

You can review the hardware configurations used to select the best performing ML IP. Select Tools > Advanced >
System Analysis to view the hardware configurations and performance details.

§ System Analysis - X

System Analysis
Analyze the given model for various hardware configurations using SensAl SDK.

HW Configs
ML_IP_1 Key Value 2
ML_IP_2
MLIP 3 name ML_IP_1
ML_IP_4 device CrossLink-NX

ip_mode Optimized_CMNN

num_conv_eng 4

ehr_blk_size 1024

long_convolution]

crosslink_lram_size 65336

hyper_ram 1

v

Analysis

Analyze Start Analysis Stop Analysis .

Performance Parameters

250-- Show As Graph

200- -
Sort

150--

cycles
100- - 2
50 -

W Cycles
O -

ML_IP_1 ML_IP_2 ML_IP_3 ML_IP_4 [Ext Mem Cycles
< 3 [Area

HW Config Selection

Select HW configuration for integration [ML_IP_1 w Select

OK Cancel

Figure 9.12. System Analysis Window — Graph View

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 110

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

Each configuration has unique hardware capabilities. Each configuration is evaluated based on cycles, external memory
cycles, and area of the ML IP. System Generator selects the best performing hardware configuration. However, you can
override the decision based on other parameters such as area of the ML IP. Absolute values for these parameters can
be viewed by unchecking Show As Graph.

§ System Analysis - x

System Analysis

Analyze the given maodel for various hardware configurations using SensAl SDK,

HW Configs
ML_IP_1 Key Value 2]
ML_IP_2
ML IP_3 name ML_IP_4

device AVANT

ip_mode Advanced_CNN

num_conv_eng 4

ebr_blk_size 2192

scratch_blk_size 4096

arg_max 4096

ve_spd_number a8

v

Analysis
Analyze Start Analysis Stop Analysis .

Performance Parameters

Configuration Cycles Ext Mem Cycles Area [Show As Graph
ML_IP_4 5552340 0 220000
Sort
ML_IP_2 13203364 5529600 180000
ML_IP_3 13410620 3317760 200000
ML_IP_1 17479082 6295320 120000 M Cycles
[Ext Mem Cycles
H Area
HW Config Selection
Select HW configuration for integration |ML_IP_1 ~ Select
oK Cancel

Figure 9.13. System Analysis Window — Absolute Value View

You can select the ML IP configuration by selecting it from the dropdown list, then click Select.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 111

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

9.7. RISC-V Register Interface Generator

The RISC-V register interface facilitates creation of a register file which allows communication between RISC-V and
machine learning hardware. Using this interface, you can access the control and status interfaces of the ML IP.

The section provides a guide on using the RISC-V register interface generator.

9.7.1. Launch RISC-V System Generator Environment
To open the system generator interface, select Tools > RISC-V System Generator.

[Lattice SensAl Software - X

File Process View Tools Help
¢ Model Zoo
USB Debugging
Al System Generator
RISC-V System Generator

Q,

LATTICE

Neural Network
ompiler Softwa

Figure 9.14, Opening the RISC-V System Generator

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 112

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

9.7.2. Generate CSR Register IP Cores

One of the core functionalities of the system generator is to generate RTL, C driver, and IPK files.

& RISV-V System Generator = a X

I Project Name: II Load TEmpIatel IProject Path: |C:\Iscc\tools\trunk\mi\sri Select Directory Project Path
| I | %

Project Name Load CSR Template
Add Register
Save to File

IV Encryption

™ License

Generate IPx file

Figure 9.15. System Generator Home Window

| mi_ctrl v ‘ s Register List
Add Register I— Add New Register

I Save to File I— Save Project

¥ Enc ryption

Encryption / License

Generate IPK file

Figure 9.16. System Generator Functions

e Register List: List of register names available. Hover over a register name in the list to visualize the bit fields to be
created in the register fields section.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 113

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

e Add New Register: Click Add Register. The Add Register window appears to prompt for the register name.

Add Register = 0O X

Register Name: |m I_real:‘.‘

OK | Cancel |

Figure 9.17. System Generator Add New Register

After entering a register name and clicking OK, register data and fields appear on the left. You can add more fields
by clicking on the + button.

[RISV-V System Generator - o 4
Project Name: |SystemGeneratorTest Load Template | Project Path: |C:\Iscc\tools\trunkymi\sri Select Directory
1
Register Name —_l Register Name: mi_read I I Register Address: 0x0004 i = - Register Address
| Read Only or not
I_I'I Add Regist
Field Name Bit Width Default Value I~ Read Only. + - s e Add new field in register
. I

Field Data —ﬁieldiNameil | [o ™ Export = Saveto File

1. Field Name

2. Bit Width ¥ Encryption

3. Default Value Save | Remaove |

4, Export as pin ™ License

5. Button to Generate IPx file

remove field

Figure 9.18, System Generator Add and Remove Register Field

Note: The total combined bits of a register should not exceed 32. Otherwise, an error message appears as shown
in Figure 9.19.

B RISV System Generator - O ®
Project Name: Load Template | Project Path: |C\Iscc\tools\trunk\ml\sri Select Directory
Register Name: REG_1 Register Address: 0x0000 REG_1 b |

Add Registe
Field Name Bit Width Default Value [Read Only + &
|Field_Name_1 33 o ™ Export = Save to File

¥ Encryption

Save | Remove

™ License

& error X Generate IPx file
° Total bit-width should not exceed 32 1

Figure 9.19. System Generator Register Bit Width Limitation

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 114

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

= LATTICE

You can load CSR data from a predefined template through the Load Template button. The following figures

shown an example template and the register data and fields after loading the template.

Address Field Bitindex Access resetvalue Comments internal read internal write
0:0000 RISCV_INPUTS_1
riscv_general_sel [14:7] RO 0 0-off1=on RI
riscv_img_in_mode [6:6] RO 0 0-off1=on RI
riscv_cam_done [5:5] RO 0 0-off1=on RI
riscv_cap_done [4:4] RO 0 0-off 1=on RI
riscv_sc_done [3:3] RO 0 0-off1=on RI
riscv_ml_done [2:2] RO 0 0-off1=on RI
riscv_comp_start [1:1] RO 0 0-off1=on RI
riscv_cap_stable_img [0:0] RO 0 0-off 1=on RI
0x0004 RISCV_OUTPUTS 1
riscv_comp_done [4:4] RW 0 0-off1=on R
riscv_ml_start [3:3] RW 0 0-off1=on R
riscv_sc_start [2:2] RW 0 0-off1=on R
riscv_cap_start [1:1] RW 0 0-off1=on R
riscv_cam_start [0:0] RW 0 0-off1=on R
0x0008 RISCV_OUTPUTS_2
riscv_ml_base_addr [31:0] Rw 0 0-offl1=on R
0x000C RISCV_OUTPUTS 3
riscv_sc_ibosx_r [23:12] RW 0 0-offl1=on R
riscv_sc_ibosx_L [11:0] RW 0 0-off1=on R
00010 RISCV_QUTPUTS 4
riscv_sc_ibox_u [23:12] RW 0 0-offl1=on R
riscv sc ihox b [11:01 RW 00-offl1=on R
Figure 9.20. System Generator Example CSR Template
I_ﬂ_‘ RISV-V System Generator e m}
Project Name: |SystemGeneratorTest Load Template | Project Path: |C:\Iscc\tools\trunk\ml\sr Select Directory
Register Name: RISCV_INPUTS_1 Register Address: 0x0000 ‘ RISCV_INPUTS_1 b/ | |
Field Name Bit Width Default Value Read Only j _ ddregser |
riscv_general_sel 3 0] ™ Export J %
" P ¥ Encryption
riscv_img_in_mode 1 o [Export -
J [T License
riscy_cam_done 1 (1] ™ Export J P——
riscy_cap_done 1 o [Export J
riscy_sc_done 1 (1] ™ Export J
riscv_ml_done 1 o [~ Export J
riscy_comp_start 1 (1] ™ Export J
riscv_cap_stable_img 1 o ™ Export J
Save | Remove

Figure 9.21, CSR Register Example

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

115

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

= LATTICE

e Save Project: After all registers are defined, save the project file.

H ris) - O
Project Name: |SystemGeneratorTest Load Template | Project Path: |C\Iscc\tools\trunkyml\sr Select Directory
Register Name: ml_read Register Address: 0x0004 ‘ ml_ctrl b | |
- P Add Register
Field Name Bit Width Default Value [Read Only +
dummy_data 32 o ™ Export - Save to File
¥ Encryption
Save Remove
™ License
Generate 1Px file
Ed success X

o Project file created successfully!

Figure 9.22, System Generator Save Project

e Generate IPK File: To generate the IPK file, click Generate IPx file. The resultant IPK file is saved under the project

directory.

e Encryption — Select to encrypt based on a known key from Propel so that Propel can decrypt automatically.
e License — Select to include license file in the generated IPK file.

ﬁ RISY-¥ Sys _ O
Project Name: |SystemGeneratorTest Load Template | Project Path: |C\lscc\tools\trunk\ml\sr Select Directory
Register Name: ml_read Register Address: 00004 ‘ mi_ctrl b | |
. . o Add Register
Field Name Bit Width Default Value " Read Only + ;

dummy_data 32 o [Export - Save to File

W Encryption

Save Remove
™ License
H'l Grezma % Generate |Px file

Ipk generated at
Cilscotoolsitrunkimbsrowork\SystemGeneratorTest

Figure 9.23, System Generator Generate IPK File

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

116

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software [/]
User Guide L LATT’CE

Limitations:
e The system generator can be enabled for Advanced CNN IP on the Windows platform only.

e To use the RISC-V CSR Register IP generation feature, the system (host machine where the SensAl SDK is running)
must meet the requirements mentioned in Radiant Installation, Propel Installation.

e If a space exists in a username, RISC-V CSR Register IP generation will fail. If this occurs, move your build to a
location where the path does not contain the username, for example c:/Iscc/sensai.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 117

http://www.latticesemi.com/legal
https://www.latticesemi.com/LatticeRadiant?pr031521#windows
https://www.latticesemi.com/view_document?document_id=54233

= LATTICE

Appendix A. Supported and Added Caffe Layers

This appendix is intended to provide information for all supported and added Caffe layers.

Accuracy

The accuracy layer is not internally supported by the software but can remain in your network file without causing an
issue.

BatchNorm

The BatchNorm Caffe layer is supported for implementing batch normalization operations. You are required to put a
scale layer in your network after each BatchNorm layer. See Scale below for more information.

Binarize
Binarize fulfills the same purpose in binary neural networks as the ReLU layer in standard neural networks. The Binarize
layer should be used in your binary neural networks instead of ReLU, because there is no need for that method of

rectification to be used. Binarize is only supported on the ECP5 device. For a related layer on UltraPlus, see QuantRelLU
for more details.

BinarylnnerProduct

BinarylnnerProduct calculates the inner product for a binary network and should be used instead of the InnerProduct
layer when dealing with binary neural networks.

BinaryConvolution

The BinaryConvolution layer is an added layer that functions similarly to the Convolution layer in Caffe, using binary
weights and activations and employing the same parameters. Your design must implement the BNN Accelerator IP to
utilize this functionality, as the CNN Accelerator IP cannot perform binary convolution.

Concat

The Concat layer is a utility layer that concatenates its multiple input blobs into one single output blob. The number of
the memory blocks for this layer is the sum of memory blocks of the input blobs. The depth_per_mem for this blob
must be equal to its input blobs.

Convolution

Convolution is the layer type utilized by the CNN Accelerator IP for implementing convolution into your neural network,
and users who are already familiar with Caffe can use it as they normally without any major adjustments. Your design
must implement the CNN Accelerator IP to utilize this functionality, as the BNN Accelerator IP cannot perform non-
binary convolution. The group attribute is not fully supported, while the following parameters are supported by the
CNN Accelerator IP for the convolution layer:

e kernel_size

e num_output

e bias_term

e pad
e stride
Eltwise

The Eltwise layer currently supports only the SUM operation. Other operations, such as MULT, are not implemented. In
order to be implemented, Eltwise always requires DRAM. The number of EBRs being input into this layer must equal a
power of two.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

InnerProduct

The num_output parameter is supported for specifying the number of filters. The bias_term parameter is supported for
training purposes only. Inference uses the bias from training during compilation.

The fully connected layer does not work when the input blob to the fully connected layer has a different format from
the output of the fully connected layer. The input and output must have matching signage and be the same number of
bits (8 or 16).

Input

The input layer is supported, along with the shape parameter. Supported input types are images (.jpg or .png format),
video (.mp4 format), raw data NumPy arrays (.npy format), and audio files (.wav format). An input layer with a clearly
defined input size must be present in the network.

Pooling

Pooling layers are supported, while average and stochastic pooling are unable to be implemented. The pooling layer
supports the following Caffe parameters:

e MAX

e global_pooling

e kernel_size

e pad

e stride

Only square-shaped kernels are supported in the pooling layer. The parameters kernel_h, kernel_w, stride_h, stride_w,
pad_h, and pad_w are ignored. The kernel and stride must both be 2, and the pad must be 0.

Python

The Python layer is used to implement a set of custom layers in your network that perform functions that are not part
of their own discrete layer.

Transpose
This python layer implements the transpose operation.

QuantRelLU

For BNN on ECP5, the threshold value for your QuantRelLU layer determines the quantization mode. A threshold of 0
uses -1/+1 quantization. A threshold of 0.5 uses a quantization of 0/1. QuantReLU for BNN is only supported on ECP5.
For a related layer on UltraPlus, see Binarize.

RelU

The RelLU layer is supported for rectifying values. It supports the negative_slope parameter, which is suggested to be
between 0 and 0.25. For leaky RelLU, the negative activation slope must be fixed to 1/16, corresponding to
negative_slope = 0.0625.

Scale
The scale layer in Caffe is supported. You are required to put a scale layer in your network after each BatchNorm layer.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix B. Supported Keras Layers

In general, the supported Keras layers need to be similar to the supported TensorFlow operations in compute topology,
as described in Appendix D. Supported TensorFlow Operations, and have the same hardware constraints and
parameter requirements.

This appendix currently only lists supported Keras layers without additional commentary. See the Keras demo designs
in the sensAl network directory, and refer to the chapters on TensorFlow and Caffe for more information on how to
utilize these layers in your own designs.

The layers supported for AutoKeras are same as Keras layers.

e AveragePooling2D

e BatchNormalization

e Conv2D

e To perform 8-bit weight quantization in Keras, refer to the Fixed Point Quantization Training in Keras section

for details on implementation.
e Dense
e MaxPooling2D
e DepthwiseConv2D
e Input
e Lambda (only for 8-bit activation quantization)

e We use the Lambda function for 8-bit quantization of activation in Keras. Refer to the Fixed Point Quantization
Training in Keras section for details on implementation. Please note that the Lambda function is dependent on
the version of Python, and you might face issues regarding Marshal Data if the training and inferencing
environments are different. Hence, it is advised that if the trained Keras model by the user has a Lambda
function for activation quantization, convert the Keras model to Tensorflow in the same training environment.
For this conversion, as a reference, you can refer to the ReferenceDesign/Training/keras-to-tf-converter
folder of this Reference Design.

e LeakyRelu
e RelU
e Concatenate
e Add (for elementwise addition)
e Sigmoid
e Input quantization range varies from —4 to 4. Output can be 8 or 16 bits depending on device and quantization
support. Sigmoid is a LUT-based function. Higher input/output precision requires higher hardware resources.

Sigmoid

10

0.8

0.6

sigmuoid{x}

04

Y=

0.2

0.0

Figure B.1. Sigmoid Function

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53397

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Other than these layers, we use native TensorFlow operators in Keras to perform some of the operations in the Lattice
Neural Network Compiler only for post-processing purposes. Following is a list of those operations and what they are
used for:

e Tf.math.multiply : For scalar multiplication or eltwise multiplication with 1 constant tensor as a second operator

e Tf.math.subtract : For scalar subtraction or eltwise subtraction with 1 constant tensor as a second operator

e Tf.math.add: For scalar addition or eltwise addition with 1 constant tensor as a second operator

e Tf.math.reciprocal_no_nan : For reciprocal operation of the input tensor.

e Tf.math.power : For the power operation which currently supports the power of 2.

e Tf.strided_slice : This operation is used either alone for the strided_slice operation or along with Concat layer to
implement the focus layer. While implementing strided slice, except for begin indices, no other indices can have 0.
See the example below to see how to use strided slices and also implement the focus layer.

input_:
ppend (tf

Figure B.2, Strided Slice Example

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 121

http://www.latticesemi.com/legal

Appendix C. Supported Layer Configuration

This appendix is intended to provide information on the parameter configuration for each layer with each device type

or mode.

Table C.1. Supported Layer Configuration

= LATTICE

Layer Name

Parameter

Device Type, Mode, and IP

Optimized Extended Advanced iCE40 ECP5 —
CNN Compact CNN | o\ CNN Ultraplus [P 7P% vobitenet
Kernel size 3x3 3x3 3x3 3x3 Upto3x3 Upto9x9 Upto9x9
Pad Oorl Oorl Oorl 1 1 1 1
Stride lor2 1 1 lor2 1 1 1
Kernel size
(5x5) | 5x5
. ot
Convolution Pad Not supported |Not supported supported 2 Not supported [Not supported |Not supported
Stride 1
Kernel size
7x7
x7) d d Not d d d
pad Not supporte Not supporte Supported 3 Not supported [Not supporte Not supporte
Stride 1
Kernel size 3x3 3x3 3x3 3x3 3x3 3x3
Depthwise
i Pad Oor1l Oor1l Oor1l 1 1 N/A Oor1l
Convolution
Stride lor2 1 1 lor2 1 lor2
Kernel size 1x1 1x1 1x1 1x1 1x1 1x1
1x1
. Pad 0 0 0 0 0 N/A 0
Convolution
Stride 1 1 1 1 1 1
Kernel size 3x3 3x3
Binary Not Not
Pad Not supported |Not supported 1 1 Not supported
Convolution PP PP supported supported pp
Stride 1 1
Kernel 2x2 2x2 2x2 2x2 2x2 Must . Must symmetric
symmetric
Max
Pooling Stride 2 2 2 2 2 1 1
Pad 0 0 0 0 0 0 0
Kernel K x K
Max Pooling K x K Stride Not supported |Not supported L\‘uopfported 1 Not supported |Not supported |Not supported
Pad K//2
Must Must
Kernel . .
symmetric symmetric
Global Average Not supported |Not supported Not Not supported Not supported
Pooling Stride PP PP supported 1 PP 1 pp
Pad 0 0
Kernel 2x2 2x2
. i Not
Argmax Pooling Stride Not Supported |Not Supported |2 2 Supported Not Supported |Not Supported
Pad 0 0
Leaky ReLU Trainin
y. & 0.0625 (1/16) [0.0625 (1/16) |0.0625 (1/16)|0.0625 (1/16) |0.0625 (1/16) |0.0625 (1/16) [0.0625 (1/16)
Negative slope Param Alpha
Input bits 1to 16 1to 16
Sigmoid Output bits 8or16 Not Supported Not 8or16 Not Not Supported |Not Supported
J 4 PP Supported Supported PP PP
MSB clib enable [Oor1 Oorl

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Device Type, Mode, and IP

Layer Name Parameter . . _
Optimized Compact CNN Extended Advanced iCE40 ECPS — Dual ECPS.
CNN CNN CNN UltraPlus Mobilenet
Any (Mustbe |Any (Mustbe [Any (Must be [Any (Must be
Fully Connected layer |Number of inputs |last last last last <=1024 Any Any
layer) layer) layer) layer)
N
Elementwise Addition [N/A Supported Supported Supported Supported SL?;ported Supported Supported
Elementwise Not Not
N/A N N N N
Subtraction / ot Supported ot Supported Supported Supported Supported ot Supported [Not Supported
Multiplication N/A Not Supported |Not Supported Not Supported Not Not Supported [Not Supported
P PP PP Supported PP Supported PP pp
Focus N/A Supported Not Supported Not Supported Not Not Supported |Not Supported
PP PP Supported PP Supported PP PP
Dilated Convolution Dilation Not supported |Not supported |2 or4 Not Not supported |Not supported |Not supported
Parameter PP PP supported PP PP PP
Resize Bilinear N/A Supported Not supported |Supported Supported Not supported [Not supported |Not supported
Kernel 2x2
Not
Unpooling Stride Not supported |Not supported |2 Sl?pported Not supported [Not supported |Not supported
Pad 0

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 123

http://www.latticesemi.com/legal

= LATTICE

Appendix D. Supported TensorFlow Operations

This appendix is intended to provide information for TensorFlow operations currently supported. SensAl supports
TensorFlow versions 2.9, 2.5, 2.3, 2.0, and 1.14, which are the versions used to test Network Compiler.

Batch Normalization

Currently, Rsqrt is the operation tag used to locate and analyze the batch normalization subgraph (a group of
operations), based on the tf.nn.batch_normalization implementation. Therefore, the software does not support the
model where Rsqrt is used in the graph but not for batch normalization. If you do not use tf.nn.batch_normalization to
create a batch normalization subgraph, the batch normal subgraph should be in the same computation order and
structure, as shown in the following Figure D.1. If variance epsilon (y in Figure D.1) of batch normalization is not
provided, the default value 1e-3 should be used. If the offset (beta in Figure D.1) is not provided, the default value of
0.0 should be used.

batchnorm

meoving_me

gamma

conv3x3

Figure D.1. Batch Normalization

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

An optimized implementation such as fused batchnorm is also supported.

Conv2D

The software only supports regular Conv2D. The Conv2D node is required to be the bias node’s (BiasAdd) direct input
in order to apply the bias to the Conv2D layer. Other convolution operations, such as stride > 1, are not generally
supported.

DepthwiseConv2dNative, dilated convolution, and quantized convolution are supported in certain topology contexts.
For quantized convolution, refer to the Fixed Point Quantization Training in TensorFlow section. If you are creating a
Conv2D layer with stride 2, it is recommended not to use an explicit padding layer just before Conv2D. Instead, use the
padding option within the Conv2D layer such that the padding is asymmetric.

Channel Padding

Channel padding refers to the operation where the input tensor is padded with zeros on the channel dimension to
increase the number of channels. This is performed by using the tf.Pad operation.

Concat

This is performed by using the tf.concat operation.

Elementwise Add

Elementwise Add is only supported when being used in residual net, with two tensor objects as the only input where
the coefficients for each are 1. In general, low-level elementwise operations such as, mul, div, sub, max, etc. are not
supported.

Matmul

Matmul is only supported in regular, fully connected, or dense layers. Sparse, advanced transpose, and adjoint mode
are not supported. Unofficial operations, TF contributions, customized open source, such as
tf.contrib.layers.fully_connected, implementations are not supported.

Placeholder

Support is limited to inputs with a standard 4 or 3 dimension shape for images and 2 or 1 dimension for audio. Only
one placeholder can exist in the optimized frozen inference graph. Preprocess operations on input are not supported.
The expected input is a single image, gray or color, after preprocessing. Group image and video formats are not
supported.

Pooling

The software currently supports three types of Pooling:
e Maxpool: tf.nn.max_pool

e Global Average Pooling: tf.reduce_mean

o MaxPoolWithArgMax : tf.nn.maxpool_with_argmax

ResizeBilinear

We use the ResizeBilinear operation to perform upsampling, replacing the deconvolution operation in encoder-decoder
like network topologies by using tf.image.resize_bilinear. And this implementation uses half_pixel_centers as true. So
far, the operation is supported only during segmentation.

Unpool

Unpooling is the opposite operation of pooling. This operation uses one of the outputs of MaxPoolWithArgMax, max
indices, and performs unpooling with the help of multiple operations. The implementation example can be seen below.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

def unpool(updates, mask, k size=[1,2,2,1], output shape=None, scope=""):
with tf.variable_scope(scope):

mask = tf.cast(mask,tf.int32)

input_shape = tf.shape(updates, out_type=tf.int32)

Calculation enw shape

if output_shape is None:

output_shape = (input_shape[@], input_shape[1]*k_size[1],

input_shape[2]*k_size[2], input_shape[3])

Calculation indices for batch, height, width and feature maps

one_like_mask = tf.ones_like(mask, dtype=tf.int32)

batch_shape = tf.concat([[input_shape[0]],[1],[1],[1]],0)

batch_range = tf.reshape(tf.range(output_shape[0],dtype=tf.int32),
shape=batch_shape)

b = one_like_mask * batch_range
y = mask//(output_shape[2]*output_shape[3])
x = (mask//output_shape[3])%output_shape[2]

feature_range = tf.range(output_shape[3],dtype=tf.int32)
f = one_like_mask * feature_range

Transpose indics & reshape update values to one dimension

updates_size = tf.size(updates)

indices = tf.transpose(tf.reshape(tf.stack([b,y,x,f]),[4,updates size]))
values = tf.reshape(updates, [updates size])

ret = tf.scatter_nd(indices,values,output_shape)

return ret

Figure D.2. Unpool Implementation

RelLU

The software currently only supports normal ReLU, which is implemented by tf.nn.relu (slope = 1 in the positive region
and slope = 0 in the negative region).

For leaky ReLU (non-zero alpha slope in the negative region), sensAl supports tf.nn.leaky_relu and customized
implementations based on tf.nn.relu. For example, tf.nn.relu(x) - alpha * tf.nn.relu(-x). The negative activation slope for
leaky_ReLU in a model must be fixed to 1/16, corresponding to alpha = 0.0625. Leaky RelLU is only supported on ECP5
devices.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix E. USB Debugging Register Map

The following are the registers which can be read or write using the sensAl USB debugging interface.

Table E.1. USB Debugging Register Map

Addres | Register RW Default -
s Name mode value Description
0x0000 | dev_type_ver RO 0x00010001 Indicates device type and version.
0x0010 | gp_ctloo RW 0x00000000 E:t{g} ;‘; ”gtl';“r‘l?:s run-.
0x0011 | gp_ctio1 RW 0x00000000 S::{(g)} :Tt;)rni?c?c gain control enable.
0x0012 | gp_ctlo2 RW 0x00000000 -
0x0013 | gp_ctlo3 RW 0x00000000 -
0x0014 | gp_ctlo4 RW 0x00000000 —
0x0020 | gp_status00 | RO 0x00000000 E:ES{BT'&?E{:&Sreq”eSt'
0x0021 | gp_statusOl RO 0x00000000 Number of cycles.
0x0022 | gp_status02 RO 0x00000000 Number of commands.
0x0023 | gp_status03 RO 0x00000000 Number of cycle for DMA access.
0x0024 | gp_status04 RO 0x00000000 Number of DMA commands.
0x0025 | gp_status05 RO 0x00000000 Number of loss time due to fifo underrun.
0x0026 | gp_status06 RO 0x00000000 Number of cycles for convolution and pooling.
0x0027 | gp_status07 RO 0x00000000 Number of cycles for full connecting.
0x0028 gp_status08 RO 0x00000000 GPO value
0x0029 | gp_status09 RO 0x00000000 cycle for LDMA access (Only for CPNX advanced IP and Avant device)
0x002a | gp. status0a RO 0x00000000 cycle for Advanced Engine ALU operation .
- (Only for CPNX advanced IP and Avant device)
0x002b | gp_statusob RO 0x00000000)cycle for scale operation (Only for CPNX advanced IP and Avant device
0x002c | gp_statusOc RO 0x00000000 cycles of waiting (Only for CPNX advanced IP and Avant device)
0x0030 | ba_code RW 0x00000000 Base address for firmware.
0x0031 | ba_input RW 0x0f000000 Base address for input data (iCE40 UltraPlus device only).
0x0032 | ba_output RW 0x0f100000 Base address for output data (iCE40 UltraPlus device only).
0x0100 | reg_waddr RW 0x00000000 AXI write address.
0x0101 | reg_wconf RW 0x00000000 AXI write configure.
0x0110 | reg_raddr RW 0x00000000 | AXIread address.
0x0111 | reg_rconf RW 0x00000000 | AXI read configure.
0x0200 | sw_i2c RW 0x00000003 Software controlled 12C interface.
0x0300 | hw_i2c_conf RW 0x00000000 Hardware 12C master configure.
0x0301 | hw_i2c_status | RO 0x00000000 Hardware 12C master status.
0x0302 | hw_i2c_pack | RW 0x00000000 E::ﬁ;(l)]fi]lzléf/variirjia
0x0303 | hw_i2c_rdata RO 0x00000000 Hardware 12C master data configure.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

Appendix F. Supported ONNX Layers

The ONNX layers need to be similar to the supported TensorFlow operations in the compute topology as described in
Appendix C. Supported Layer Configuration. Supported ONNX operations have the same hardware constraints and
parameter requirements. As support is experimental, some layers or attributes might not be supported.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 128

http://www.latticesemi.com/legal

= LATTICE

Appendix G. Network Topology and Device Table

The following table lists all known supported network topologies and which devices support them. For more details
about layer restrictions, device restrictions, and required or suggested network implementation options, consult the
Getting Started section and the Advanced Topics section.

Boxes that are green indicate a network/device combination that is available as part of Lattice’s Model Zoo, except for
GoogleNet and Squeezedet.

Table G.1. Network Topology and Device

Network ECP5 iCE40 UltraPlus CrossLink-NX and CertusPro-NX
MobilenetV1 Supported - Mobilenet Mode only | Supported Optimized and Extended mode only.
MobilenetV2 Supported - Mobilenet Mode only | Unsupported Optimized and Extended mode only.
ResNet Supported Unsupported Optimized and Extended mode only.
SSD Supported — Dual engine mode Unsupported Optimized and Extended mode only.
tinyVGG Supported Supported Supported

VGG Supported Supported Optimized and Extended mode only.
YOLOv1 Supported Unsupported Unsupported

TinySSD Supported Unsupported Unsupported

MobileNetv2-SSD Unsupported Unsupported Optimized and Extended mode only.
GoogleNet Unsupported Unsupported Optimized and Extended mode only.
SqueezeDet Unsupported Unsupported Optimized and Extended mode only.
Enet Unsupported Unsupported Extended mode only

Yolov5 Unsupported Unsupported Advanced and Optimized mode only

Note: Some modifications are required in models as per device or layer restrictions to support it in the NNC compiler.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATTICE

User Guide

Appendix H. Common CNN Blocks Used in Lattice NNC

This section shows how common modules and blocks used in CNN architectures are customized for Lattice NNC. For
detailed information about each module parameter refer to the restriction sections of the particular device any model
is run on.

Generic Blocks

The following are some of the generic modules used in our compiler.

Relu refers to Relu2 in all the blocks in this and the next sections.

Bias in convolution is supported only for ECP5.

In the majority of cases, the convolution block will be followed by BatchNorm (with scale), QuantRelu (device-
specific), and Relu. This structure, from here on, is referred to as CBSR.

Generally, instead of using CBSR with Stride 2 (SAME padding), we use CBSR with Stride 1 (SAME padding),
followed by MaxPool2D with Kernel 2 and Stride 2.

For all the next sections in x.x. , in all the diagrams, Q will be used for quantized and N will refer to Non-quantized.

Previous
output

3x3
Convolution

BatchNorm
+

Scale

Figure H.1. Non-Quantized 3x3 CBSR or 3x3 Depthwise CBSR

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 130

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software N |
‘ELATTICE

User Guide

SEMICONDUCTOR

Previous
output

3x3
Convolution
(quantized
weights)

BatchNorm
+
Scale

QuantRelu

Figure H.2. Quantized 3x3 CBSR or 3x3 Depthwise CBSR

Previous
output

1x1
Convolution

BatchNorm
+
Scale

Figure H.3. Non-Quantized 1x1 CBSR

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

131

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software
User Guide

LATTICE

SEMICONDUCTOR

Figure H.4. Quantized 1x1 CBSR

Figure H.5. Non-Quantized Add Block

Previous
output

1x1
Convolution
(quantized
weights)

BatchNorm
+

Scale

OEIGE

Previous
output

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

132

http://www.latticesemi.com/legal

Lattice s.ensAI Neural Network Compiler Software :::LATTICE
User Guide NEN sEMICONDUCTOR

Previous
output

OUERGET

Figure H.6. Quantized Add Block

VGG
For some devices (for classification), only a single dense layer is supported at the end instead of multiple dense layers.

Q/N 3x3 CBSR

Maxpool
(k=2,5=2)

Q/N 3x3 CBSR

Flatten/Global
Average
pooling

Figure H.7. VGG toy model

2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 133

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

LATTICE

SEMICONDUCTOR

MobileNetV1

Previous
output

Q/N 3x3 DepthWise

CBSR

Q/N 1x1 CBSR

Figure H.8. MobileNetV1 Block

Q/N 3x3 CBSR

Maxpool
(k=2,5=2)

MobileNetV1
block

3x3
Convolution
(only weight
quantized)

Figure H.9. MobileNetV1 Toy Model

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

134

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

LATTICE

SEMICONDUCTOR

MobileNetV2

Previous
output

Q/N 1x1 CBSR

Q/N 3x3 DepthWise

CBSR

MaxPool
(k=2,5=2)

Q/N 1x1 CBSR

Figure H.10. MobileNetV2 Block 1

Previous
output

Q/N 1x1 CBSR

Q/N 3x3 DepthWise
CBSR

Q/N 1x1 CBSR

Q/N Add block

Figure H.11. MobileNetV2 Block 2

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

135

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

LATTICE

SEMICONDUCTOR

ResNet

Previous
output

Q/N 3x3 CBSR

Q/N 3x3 CBSR

Q/N Add block

Figure H.12. ResNet Toy Model

Previous
output
(c output
channels)

Q/N 3x3 CBSR

Q/N 3x3 CBSR

(output Q/N 3x3 CBSR
channels > c) (output

channels > c)

Q/N Add block

Figure H.13. ResNet Block 2 Variation 1

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

136

http://www.latticesemi.com/legal

Lattice s.ensAI Neural Network Compiler Software :::LATTICE
User Guide NEN sEMICONDUCTOR

Previous
output
(c output

channels)

Q/N 3x3 CBSR
(output channels > c)

MaxPool
(k=2,5=2)

Q/N 3x3 CBSR

Q/N 3x3 CBSR

Q/N Add block

Figure H.14. ResNet Block 2 Variation 2

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 137

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software l::LATTICE

. |
User Guide HNEN sEMICONDUCTOR

Q/N 3x3 CBSR

Maxpool
(k=2,5=2)

ResNet blockl

ResNet block2

ResNet blockl

3x3
Convolution
(Only weight quantized)

Figure H.15. ResNet Block 2 Variation 3

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 138

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software N |
‘ELATTICE

User Guide

SEMICONDUCTOR

GoogleNet

Previous
output

Q 1x1 CBSR Q 3x3 CBSR MaxPool

(k=2,5=2)

Concatenate

Figure H.16. GoogleNet Inception Block 1

Previous
output

Q 1x1 CBSR Q 3x3 CBSR

Concatenate

Figure H.17. GoogleNet Inception Block 2

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

139

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software N |
‘ELATTICE

User Guide SEMICONDUCTOR

ENET
The following figures show the four basic blocks used in ENET.
BSR in the Upsample block refers to BatchNorm + Scale + QuantRelu + Relu.

Q 3x3 CBSR

Q 3x3 CBSR MaxPool
2D

MaxPool 2D

Concat

Figure H.18. Init Block

Previous
Output

Q 3x3 CBSR
+
MaxPool

Channel
Padding

Q 3x3 CBSR

Q 1x1CBSR

Q Add block

Figure H.19. DownSample Block

2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 140

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software

User Guide

== LATTICE

W SEMICONDUCTOR

Previous
Output

Q/N 1x1 CBSR

Channel

e Q/N 3x3 CBSR

Q 1x1 CBSR

Q Add block

Figure H.20. Regular Block

Previous
output

Q 1x1 CBSR

ResizeBilenear
+

Q 1x1CBSR

Q Add block

Figure H.21. Upsample Block

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

141

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software .
User Guide L) LATT’CE

Table H.1. Enet Example Architecture

Type Output Size

Input 1x160x160
Init Block 12x80x80
Downsample block 40x40x40
4xRegular Block 40x40x40
Downsample Block 80x20x20
Regular+Dilated (d=2) Blocks 80x20x20
2x(Regular+Dilated (d=4)) 80x20x20
Upsample Block 40x40x40
Regular 12x80x80

ResizeBilinear + BSR 12x160x160
3x3 Convolution output 2x160x160

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 142

http://www.latticesemi.com/legal

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

References

e USB3-Gigabit Ethernet Demo User Guide (FPGA-UG-02054)

e Learned Step Size Quantization paper

e Lattice sensAl Human Counting Al Demo web page

e Lattice Semiconductor GitHub

e Lattice Diamond 3.13 User Guide

e Lattice Radiant Software 2023.2 User Guide

e Lattice Diamond FPGA design software

e Lattice Radiant FPGA design software

e Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 143

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52371
https://arxiv.org/abs/1902.08153
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/demos/humancounting
https://github.com/LatticeSemi
https://www.latticesemi.com/view_document?document_id=53945
https://www.latticesemi.com/view_document?document_id=54067
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/

Lattice sensAl Neural Network Compiler Software ::LATT’CE

User Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/en/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 144

http://www.latticesemi.com/legal
https://www.latticesemi.com/techsupport
http://www.latticesemi.com/en/Support/AnswerDatabase

Lattice sensAl Neural Network Compiler Software .I.ILATTlCE

User Guide

Revision History

Revision 7.0, December 2024

Section

Change Summary

All

Updated Neural Network Compiler and Machine Learning Software version to 7.0.
Made minor editorial changes.

Abbreviations in This
Document

Updated section title, description, and table header.
Added CLI, CSR, FC, FPQ, IP, LSQ, ML, NCHW, ONNX, ReLU, TCL, and USB.
Rearranged items in alphabetical order.

Installing the Software

Updated Figure 2.1. Installation Location Specification, Figure 2.2. Installation Component
Specification, and Figure 2.3. Installation Ready to Install Dialog Box.

Getting Started

Added reference to ONNX (experimental) in relation to framework in the Creating a New

Project section.

Added the Multiple Input Selection section under the Inputs section.

In Table 3.1. Arguments and Usage:

e Updated column header from Programming Code to Argument.

e Added ONNX to framework and network file arguments.

e Added ip mode argument.

o Updated argument names to lut_input_bits {5,6,7,8,9,10,11,12} and lut_output_bits {8,
16}.

e Added arguments create_quantized_version {0, 1}, validation_data_path {path of
directory}, enable_fc_4_bit_weights {0, 1}, number_of ml_ips, and
external_memory_port.

e Added arguments for Multi-input Network.

In the CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions section:

e Added restrictions on 4-bit weights quantization, Focus Layer, and 4-bit activation in the
Optimized IP mode.

e Added restriction on 4-bit input data to Fully Connected layer.

In the CertusPro-NX and Avant Advanced CNN IP Restrictions section:
e Added restriction on 4-bit activation in Advanced IP.

Added the ONNX Restrictions section.

Working with Projects

Added the Handgesture, MV1 (MobileNet V1), MV2 (MobileNet V2), YoloV5, and Toy_mnist
sections.

Advanced Topics

Updated Figure 5.11 Project Implementation Window — Avant Advanced IP Part 1.
In the Project Implementation Settings section:

e Added the Create Quantized Version, Validation Datapath, Enable FC 4 Bit Weight,
Number of ML IPs, External Memory Port, and Initial LPDDR4 Address sections.

In the Quantization section:

e Added the Learned Step Quantization (LSQ) section.

e Reorganized content into the Fixed Point Quantization (FPQ) section.
e In the Fixed Point Quantization (FPQ) section:

e Re-organized content into and added description and code for Fixed Point
Quantization Using Lscquant Package.

e Updated title for Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization)
and Table 5.3. Signed 8-Bit Quantization (Fixed Point Quantization).
e Added 4b type in Table 5.4. Fixed Point Quantization Details with Device Type.
e InTable 5.5 Quantization Support in Layers:
e Added ResizeBilinear.
e Updated quantization support description for Convolution layer, MaxPooling or
AveragePooling or ResizeBilinear, Batch norm layer, and Fully Connected layer.
e Added note on providing keras model .h5 as input if model is trained with LSQ.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0

145

http://www.latticesemi.com/legal

= LATTICE

Section

Change Summary

e Renamed sections starting from Fixed Point Quantization Training in Caffe through Fixed
Point Quantization Requirements and Suggestions and updated descriptions.

Supported Frameworks

e Added reference to ONNX.

e Removed reference to sigmoid as an unsupported data post-processing operation in the
TensorFlow section.

e Added the
e Using ONNX section.

Al System Generator

Added new section.

Appendix B. Supported Keras
Layers

e Added sigmoid to supported Keras layers.
e Added description for sigmoid and Figure B.1. Sigmoid Function.

Appendix C. Supported Layer
Configuration

In Table C.1. Supported Layer Configuration:

e Updated Optimized CNN and Advanced CNN values for the Stride parameter for the
Convolution and Depthwise Convolution layers.

e Added Advanced CNN value for the Kernel, Stride, and Pad parameters for the Global
Average Pooling layer.

e Added the sigmoid layer.

e Updated Optimized CNN to supported for the Focus and Resize Bilinear layers.

Appendix F. Supported ONNX
Layers

Added new section.

Appendix G. Network
Topology and Device Table

Updated CrossLink-NX and CertusPro-NX support for Yolov5 to Advanced and Optimized mode
only in Table G.1. Network Topology and Device.

References

Added Learned Step Size Quantization paper, Lattice sensAl Human Counting Al Demo webpage,
USB3-Gigabit Ethernet Demo User Guide, and Lattice Semiconductor GitHub.

Revision 6.1, January 2024

Section

Change Summary

All e Add support for YoloV5 models and layers like Conv 7x7, Mul, and Sub in Advanced IP.
e Add the support of the 7x7 and 5x5 convolution kernels.
e Add the support of the Global Average Pooling operation.
e Add support for 64-bit datawidth in the Avant device Advanced IP.
e Add the support of a strided slice and a focus layer.
e Add the new Tensorflow native operations (Mul, Sub, Add, reciprocal_no_nan, Pow,
Strided_Slice) as post-processing stand-alone nodes in Keras
Disclaimers Updated this section.

Getting Started

Merged old subsection 3.6.1 Usage and subsection 3.6.2 Arguments into a new subsection 3.6.1
Arguments and Usage.

References

Add this section.

Revision 6.0, February 2023

Section

Change Summary

All

Added advanced IP support in CertusPro-NX and Advant devices.

Introduction

e Added Avant device support to the IP Requirements section.
e Updated the description of downloading and running networks onto Hardware in the
Purpose section.

Installing the Software

e Updated the default installation directory in Step 5.
e Updated Figure 2 1. Installation Location Specification and Figure 2 3. Installation Ready to
Install Dialog Box.

Getting Started

o Updated Arguments for new device family support in the Command Line Interface section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Section

Change Summary

Updated restrictions for new device family support in the CertusPro-NX and Avant
Advanced CNN IP Restrictions section.

Newly added supported TenorFlow Version 2.9 in the TensorFlow Restrictions section.

Working with Projects

Newly added the HTML Log File section.

Advanced Topics

Updated all the figures in this section reflecting the new GPO ID.
Newly added This option is available for Extended and Advanced CNN IP only to the
Argmax Memory Size section.

Added Avant device support to the following sections:

e Onthe Fly Post Processing

e Required Output Depth Range

e Onthe Fly Post Processing

e Required Output Depth Range

e On-Chip Large Memory Size

e External Memory Interfaced (In bytes)

e Code Section Base Address

e Data Section Base Address

Newly added the following sections:

e Number of Segments

e Segment Size

e Number of VE SPD

e Multiport Parallel

e Kmax Kernel Pooling

Added description about CertusPro-NX and Avant to the Number of Convolution Engines
section.

Updated to it uses four DSP blocks per convolution engine in the Enable Quad Core Mode
section.

Added This option is available for Extended and Advanced CNN IP only to the Argmax
Memory Size section.

Added Avant device support to Table 5.3. Quantization Details with Device Type.

Added Avant device support to the Quantization for iCE40 UltraPlus, CrossLink NX,
CertusPro NX, and Avant section.

Updated to Neural Network Compiler 6.0 in the Note in the Mobilenet Mode for ECP5
section.

Added except Advanced CNN IP for CertusPro-NX in the Embedded Mode section.

USB Debugging

Added Avant device support to the CNX VVML, CPNX section.

Technical Support Assistance

Added Lattice Answer Database URL.

Supported Keras Layers

Updated description for Lamboda (only for 8-bit activation quantization) section.

Supported Layer
Configuration

Newly added the Advanced CNN column, Max Pooling K x K row, Argmax Pooling row of data to
the table.

USB Debugging Register Map

Newly added the 0x0028, 0x0029, 0x002a, 0x002b, and 0x002c addresses.

Network Topology and
Device Table

Newly added Yolov5 network.

Common CNN Blocks Used in
Lattice NNC

Newly added Appendix.

Revision 5.0, June 2022

Section

Change Summary

All

Added Extended IP, Semantic Segmentation Support, Updated USB Debug with enhancements

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Revision 4.1, November 2021
Section Change Summary

All Added support for CertusPro-NX device and upgraded TensorFlow version support to 2.5.0.

General editorial, style, and formatting update.

Revision 4.0, April 2021
Section Change Summary

All Added Concat and Large Input resolution support in CrossLink-NX device.

Revision 3.2, January 2020
Section Change Summary
All Added Quad LRAM support in CrossLink-NX device.

Revision 3.1, October 2020
Section Change Summary
All Added Mobilenet mode support for iCE40 UltraPlus device.

Revision 3.0, April 2020
Section Change Summary
All Added support for CrossLink-NX device.

Revision 2.1, September 2019
Section Change Summary

All Enhancements, bug fixes, and Mobilenet mode.

Revision 2.0, April 2019
Section Change Summary

All Added new features and optimizations.

Revision 1.1, September 2018
Section Change Summary

All Added support for iCE40 UltraPlus device.

Revision 1.0, May 2018
Section Change Summary

All Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

www.latticesemi.com

http://www.latticesemi.com/

	Lattice sensAI Neural Network Compiler Software
	Disclaimers
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Prerequisites
	1.1.1. Hardware Requirements
	1.1.2. Software Requirements
	1.1.3. Connection Requirements
	1.1.4. General Requirements
	1.1.5. IP Requirements

	1.2. Purpose
	1.3. Limitations

	2. Installing the Software
	3. Getting Started
	3.1. Creating a New Project
	3.2. Opening an Existing Project
	3.3. Saving a Project
	3.4. Inputs
	3.4.1. Audio Input
	3.4.2. Raw Input
	3.4.3. Multiple Input Selection

	3.5. Help
	3.5.1. About
	3.5.2. User Guide

	3.6. Command Line Interface
	3.6.1. Arguments and Usage

	3.7. Design Restrictions
	3.7.1. General Restrictions
	3.7.2. ECP5 Restrictions
	3.7.3. ECP5 - Mobilenet Mode Restrictions
	3.7.4. UltraPlus Restrictions
	3.7.5. CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions
	3.7.6. CertusPro-NX and Avant Advanced CNN IP Restrictions
	3.7.7. Caffe Restrictions
	3.7.8. Keras Restrictions
	3.7.9. TensorFlow Restrictions
	3.7.10. AutoKeras Restrictions
	3.7.11. ONNX Restrictions

	3.8. Next Steps

	4. Working with Projects
	4.1. Implementations
	4.1.1. Creating a New Implementation
	4.1.2. Editing an Implementation

	4.2. Project Flow
	4.2.1. Analyze
	4.2.2. Analyzer for USB Debugging
	4.2.3. Compile
	4.2.4. Simulate
	4.2.5. Post Processing
	4.2.6. Download

	4.3. Views
	4.3.1. Input Network
	4.3.2. Analyzed Network
	4.3.3. GUI Themes
	4.3.4. Log File
	4.3.5. HTML Log File
	4.3.6. Simulation Data Graph

	4.4. Example Projects
	4.4.1. Catdog
	4.4.2. Humanpresence
	4.4.3. GoogleNet
	4.4.4. SqueezeDet
	4.4.5. Handgesture
	4.4.6. MV1 (MobileNet V1)
	4.4.7. MV2 (MobileNet V2)
	4.4.8. YoloV5
	4.4.9. Toy_mnist

	5. Advanced Topics
	5.1. Project Implementation Settings
	5.1.1. Number of Convolution Engines
	5.1.2. Enable Dual Core Mode
	5.1.3. Enable Quad Core Mode
	5.1.4. On-Chip Memory Block Size
	5.1.5. Number of On-Chip Memory Blocks
	5.1.6. Mobilenet Mode for iCE40 UltraPlus, CrossLink-NX Compact, and CertusPro-NX Compact
	5.1.7. Argmax Memory Size
	5.1.8. Scratch Memory Size
	5.1.9. Debug Mode Enable
	5.1.10. Embedded Mode for CrossLink-NX Optimized and CertusPro-NX Optimized
	5.1.11. Input Memory Assignment
	5.1.12. Output Memory Assignment
	5.1.13. Off-Chip Data Memory Start Address
	Do Not Use (ECP5 Only)
	Store Input
	Store Output

	5.1.14. Collapse Layer
	5.1.15. Data Preprocessing
	Mean Value for Data Pre-Processing
	Scale Value for Data Pre-Processing

	5.1.16. GPO ID
	5.1.17. On the Fly Post Processing
	5.1.18. Required Output Depth Range
	5.1.19. Sample Rate for Data Pre-Processing
	5.1.20. Down Sampling for Data Pre-Processing
	5.1.21. On-Chip Large Memory Size
	5.1.22. External Memory Interfaced (In Bytes)
	HyperRAM

	5.1.23. Code Section Base Address
	5.1.24. Register Out
	5.1.25. Data Section Base Address
	5.1.26. Number of Segments
	5.1.27. Segment Size
	5.1.28. Number of VE SPD
	5.1.29. Multiport Parallel
	5.1.30. Kmax Kernel Pooling
	5.1.31. Datapath Width
	5.1.32. LUT Input Bits
	5.1.33. LUT Output Bits
	5.1.34. LUT MSB Clip
	5.1.35. Create Quantized Version
	5.1.36. Validation Datapath
	5.1.37. Enable FC 4 Bit Weight
	5.1.38. Number of ML IPs
	5.1.39. External Memory Port
	5.1.40. Initial LPDDR4 Address

	5.2. Quantization
	5.2.1. Learned Step Quantization (LSQ)
	Training Learned Step Quantization Model Using Lscquant Package
	Quantizing Keras Model Using Schemes
	Post Training Quantization with Learned Step Quantization

	5.2.2. Fixed Point Quantization (FPQ)
	Fixed Point Quantization Using Lscquant Package

	5.2.3. Fixed Point Quantization Training in Caffe
	5.2.4. Fixed Point Quantization Training in TensorFlow
	5.2.5. Fixed Point Quantization Training in Keras
	5.2.6. Fixed Point Quantization Training in AutoKeras
	5.2.7. Fixed Point Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant
	5.2.8. Fixed Point Quantization Requirements and Suggestions

	5.3. Optimization Modes
	5.3.1. Mobilenet Mode for ECP5
	5.3.2. Compact Mode for CrossLink-NX and CertusPro-NX
	5.3.3. Embedded Mode

	5.4. SensAI Security Flow
	5.4.1. Model Encryption
	5.4.2. Model Decryption

	6. Supported Frameworks
	6.1. Caffe
	6.1.1. Binary Neural Networks

	6.2. TensorFlow
	6.2.1. Training to Inference Conversion
	6.2.2. Binary Neural Networks (BNN)

	6.3. Keras
	6.3.1. Using Keras
	6.3.2. Using ONNX

	7. USB Debugging
	7.1. Hardware Configuration
	7.1.1. ECP5
	7.1.2. CNX VVML, CPNX
	7.1.3. Avant Device

	7.2. Debug Window Options
	7.3. Driver Installation
	7.3.1. Windows Driver
	7.3.2. Linux Driver

	7.4. USB Debugging API Interface
	7.4.1. Class Overview

	7.5. Board Detection Troubleshooting
	7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug

	8. Model Zoo
	8.1. Model Zoo Window Options

	9. AI System Generator
	9.1. Key features
	9.2. Launch AI System Generator
	9.3. Create a New Project
	9.4. Opening an Existing Project
	9.5. Starting the System Generator
	9.6. Advanced System Analysis
	9.7. RISC-V Register Interface Generator
	9.7.1. Launch RISC-V System Generator Environment
	9.7.2. Generate CSR Register IP Cores

	Appendix A. Supported and Added Caffe Layers
	Accuracy
	BatchNorm
	Binarize
	BinaryInnerProduct
	BinaryConvolution
	Concat
	Convolution
	Eltwise
	InnerProduct
	Input
	Pooling
	Python
	Transpose
	QuantReLU
	ReLU
	Scale

	Appendix B. Supported Keras Layers
	Appendix C. Supported Layer Configuration
	Appendix D. Supported TensorFlow Operations
	Batch Normalization
	Conv2D
	Channel Padding
	Concat
	Elementwise Add
	Matmul
	Placeholder
	Pooling
	ResizeBilinear
	Unpool
	ReLU

	Appendix E. USB Debugging Register Map
	Appendix F. Supported ONNX Layers
	Appendix G. Network Topology and Device Table
	Appendix H. Common CNN Blocks Used in Lattice NNC
	Generic Blocks
	VGG
	MobileNetV1
	MobileNetV2
	ResNet
	GoogleNet
	ENET

	References
	Technical Support Assistance
	Revision History
	Revision 7.0, December 2024
	Revision 6.1, January 2024
	Revision 6.0, February 2023
	Revision 5.0, June 2022
	Revision 4.1, November 2021
	Revision 4.0, April 2021
	Revision 3.2, January 2020
	Revision 3.1, October 2020
	Revision 3.0, April 2020
	Revision 2.1, September 2019
	Revision 2.0, April 2019
	Revision 1.1, September 2018
	Revision 1.0, May 2018

