

Lattice sensAI Neural Network Compiler
Software

User Guide

FPGA-UG-02052-7.0

December 2024

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 3

Contents
Contents ... 3
Abbreviations in This Document... 9
1. Introduction .. 10

1.1. Prerequisites ... 10
1.2. Purpose ... 11
1.3. Limitations ... 11

2. Installing the Software .. 12
3. Getting Started ... 15

3.1. Creating a New Project.. 15
3.2. Opening an Existing Project .. 18
3.3. Saving a Project ... 19
3.4. Inputs .. 19
3.5. Help ... 20
3.6. Command Line Interface ... 20
3.7. Design Restrictions .. 23
3.8. Next Steps ... 27

4. Working with Projects .. 28
4.1. Implementations ... 28
4.2. Project Flow .. 29
4.3. Views ... 35
4.4. Example Projects ... 40

5. Advanced Topics ... 46
5.1. Project Implementation Settings .. 46
5.2. Quantization .. 63
5.3. Optimization Modes .. 73
5.4. SensAI Security Flow ... 73

6. Supported Frameworks .. 75
6.1. Caffe .. 75
6.2. TensorFlow .. 75
6.3. Keras .. 81

7. USB Debugging ... 86
7.1. Hardware Configuration .. 86
7.2. Debug Window Options .. 92
7.3. Driver Installation .. 93
7.4. USB Debugging API Interface .. 94
7.5. Board Detection Troubleshooting ... 96
7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug .. 97

8. Model Zoo ... 102
8.1. Model Zoo Window Options ... 102

9. AI System Generator ... 104
9.1. Key features .. 104
9.2. Launch AI System Generator ... 104
9.3. Create a New Project .. 105
9.4. Opening an Existing Project .. 108
9.5. Starting the System Generator.. 108
9.6. Advanced System Analysis .. 110
9.7. RISC-V Register Interface Generator ... 112

Appendix A. Supported and Added Caffe Layers .. 118
Appendix B. Supported Keras Layers .. 120
Appendix C. Supported Layer Configuration .. 122
Appendix D. Supported TensorFlow Operations .. 124

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 4

Appendix E. USB Debugging Register Map ... 127
Appendix F. Supported ONNX Layers ... 128
Appendix G. Network Topology and Device Table ... 129
Appendix H. Common CNN Blocks Used in Lattice NNC ... 130
References .. 143
Technical Support Assistance ... 144
Revision History .. 145

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 5

Figures
Figure 2.1. Installation Location Specification .. 12
Figure 2.2. Installation Component Specification ... 13
Figure 2.3. Installation Ready to Install Dialog Box .. 13
Figure 2.4. Lattice Neural Network Compiler Software for Windows Splash Screen ... 14
Figure 3.1. Project Settings Window .. 15
Figure 3.2. Example cmd for Post Processing ... 15
Figure 3.3. Proto File Selection Window... 16
Figure 3.4. Project Implementation Options Window .. 17
Figure 3.5 Project Implementation Window 2 (Only for Advanced IP) .. 17
Figure 3.6. Project Window .. 18
Figure 3.7. Load Project Window .. 18
Figure 3.8. Python Code for Raw Input ... 19
Figure 3.9. Multiple Input Selection Window ... 19
Figure 4.1. Project Implementation Options Window .. 28
Figure 4.2. Analyze Results ... 29
Figure 4.3. Compile Results .. 32
Figure 4.4. Simulate Results .. 33
Figure 4.5. Data Histogram for the Blob ... 34
Figure 4.6. Post Processing ... 35
Figure 4.7. Input Network – TensorFlow or Keras .. 36
Figure 4.8. Close Tensorboard Process ... 36
Figure 4.9. Input Network - Caffe ... 37
Figure 4.10. GUI Themes .. 38
Figure 4.11. HTML Log .. 39
Figure 4.12. Default View of HTML log ... 39
Figure 4.13. Search Functionality of Warning ... 39
Figure 4.14. Simulation Data Graph.. 40
Figure 5.1. Project Implementation Window – ECP5 ... 46
Figure 5.2. Project Implementation Window – UltraPlus (1) .. 47
Figure 5.3. Project Implementation Window – UltraPlus (2) .. 48
Figure 5.4. Project Implementation Window – CrossLink-NX-Optimized ... 49
Figure 5.5. Project Implementation Window – CrossLink-NX-Compact ... 50
Figure 5.6. Project Implementation Window – CertusPro-NX-Optimized .. 51
Figure 5.7. Project Implementation Window – CertusPro-NX-Compact .. 52
Figure 5.8. Project Implementation Window – CertusPro-NX-Extended ... 53
Figure 5.9 Project Implementation Window – CertusPro-NX Advanced IP Part 1.. 54
Figure 5.10 Project Implementation Window – CertusPro-NX Advanced IP Part 2 ... 54
Figure 5.11 Project Implementation Window – Avant Advanced IP Part 1 .. 55
Figure 5.12 Project Implementation Window – Avant Advanced IP Part 2 .. 55
Figure 5.13. On-the-Fly Post Processing Format .. 59
Figure 5.14. On-the-Fly Post Processing Data Flow .. 59
Figure 5.15. Create Quantized Version Flag ... 65
Figure 5.16. Tensor Graph Quantization Nodes ... 69
Figure 5.17. Activation Data Quantization Nodes .. 72
Figure 5.18. SensAI Security Flow: Encrypt Model ... 73
Figure 5.19. SensAI Security Flow: Encrypted Model Selection .. 74
Figure 5.20. SensAI Security Flow: Encrypt Model ... 74
Figure 6.1. Original TensorFlow Training Model ... 77
Figure 6.2. Simplified TensorFlow Inference Model ... 78
Figure 6.3. Tensorboard Visualization of Binarization .. 80
Figure 6.4. Binary Neural Network Modes in TensorFlow .. 81

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 6

Figure 7.1. Cypress Window ... 87
Figure 7.2. Radiant Programmer – Default Screen ... 88
Figure 7.3. Radiant Programmer Device Selection ... 88
Figure 7.4. Radiant Programmer – Device Operation ... 88
Figure 7.5. Selecting Device Properties for CrossLink-NX ... 89
Figure 7.6. Output Console after Successful Flashing ... 90
Figure 7.7 Avant Board with FX3 USB Board .. 91
Figure 7.8. USB Debug Window .. 92
Figure 7.9. USB3-GigE VIP Board Label ... 96
Figure 7.10. CNX-VnV Board Label .. 96
Figure 7.11. CPNX-VnV Board Label.. 96
Figure 7.12. USB Debug Window .. 97
Figure 7.13. USB Debug Firmware Generation ... 98
Figure 7.14. Upload FW, Input and Run USB-Debugging .. 98
Figure 7.15. Read USB Data with Blob Selected ... 99
Figure 7.16. Read USB Data without Blob Selected .. 99
Figure 7.17. Save USB Data ... 100
Figure 7.18. Expected Values for Corresponding Blob ... 100
Figure 7.19. Show Expected vs HW MAE .. 101
Figure 8.1. Model Zoo Window .. 102
Figure 9.1. Opening the AI System Generator .. 104
Figure 9.2. System Generator Window .. 105
Figure 9.3. Entering System Generator Project Name and Location .. 105
Figure 9.4. Specifying SensAI SDK and Model Locations .. 106
Figure 9.5. Pre-processing Page .. 106
Figure 9.6. System Generator Project Information .. 107
Figure 9.7. System Generator Project ... 107
Figure 9.8. Opening an Existing System Generator Project .. 108
Figure 9.9. Analyzing Model and Selecting ML IP ... 108
Figure 9.10. Preferred ML IP and Other Required IPs .. 109
Figure 9.11. Generating TCL, Bitstream, and Host or Application Code ... 109
Figure 9.12. System Analysis Window – Graph View ... 110
Figure 9.13. System Analysis Window – Absolute Value View ... 111
Figure 9.14. Opening the RISC-V System Generator ... 112
Figure 9.15. System Generator Home Window .. 113
Figure 9.16. System Generator Functions .. 113
Figure 9.17. System Generator Add New Register ... 114
Figure 9.18. System Generator Add and Remove Register Field .. 114
Figure 9.19. System Generator Register Bit Width Limitation .. 114
Figure 9.20. System Generator Example CSR Template ... 115
Figure 9.21. CSR Register Example ... 115
Figure 9.22. System Generator Save Project .. 116
Figure 9.23. System Generator Generate IPK File .. 116
Figure B.1. Sigmoid Function .. 120
Figure B.2. Strided Slice Example .. 121
Figure D.1. Batch Normalization ... 124
Figure D.2. Unpool Implementation ... 126
Figure H.1. Non-Quantized 3x3 CBSR or 3x3 Depthwise CBSR ... 130
Figure H.2. Quantized 3x3 CBSR or 3x3 Depthwise CBSR ... 131
Figure H.3. Non-Quantized 1x1 CBSR ... 131
Figure H.4. Quantized 1x1 CBSR ... 132
Figure H.5. Non-Quantized Add Block .. 132

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 7

Figure H.6. Quantized Add Block .. 133
Figure H.7. VGG toy model ... 133
Figure H.8. MobileNetV1 Block ... 134
Figure H.9. MobileNetV1 Toy Model .. 134
Figure H.10. MobileNetV2 Block 1 ... 135
Figure H.11. MobileNetV2 Block 2 .. 135
Figure H.12. ResNet Toy Model .. 136
Figure H.13. ResNet Block 2 Variation 1 ... 136
Figure H.14. ResNet Block 2 Variation 2 ... 137
Figure H.15. ResNet Block 2 Variation 3 ... 138
Figure H.16. GoogleNet Inception Block 1 .. 139
Figure H.17. GoogleNet Inception Block 2 .. 139
Figure H.18. Init Block ... 140
Figure H.19. DownSample Block ... 140
Figure H.20. Regular Block ... 141
Figure H.21. Upsample Block .. 141

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 8

Tables
Table 3.1. Arguments and Usage .. 20
Table 5.1. Learned Step Quantization Details with Device Type .. 65
Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization) ... 66
Table 5.3. Signed 8-Bit Quantization (Fixed Point Quantization) ... 66
Table 5.4. Fixed Point Quantization Details with Device Type ... 67
Table 5.5 Quantization Support in Layers ... 67
Table 5.6. SensAI Security Flow: File Extension Mapping ... 74
Table C.1. Supported Layer Configuration .. 122
Table E.1. USB Debugging Register Map .. 127
Table G.1. Network Topology and Device .. 129
Table H.1. Enet Example Architecture .. 142

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 9

Abbreviations in This Document
A list of abbreviations used in this document.

Abbreviation Definition

BNN Binarized Neural Networks

CLI Command Line Interface

CNN Convolutional Neural Network

CNX CrossLink-NX

CPNX Certus-Pro-NX

CSR Control and Status Register

DRAM Dynamic Random Access Memory

FC Fully Connected

FPQ Fixed Point Quantization

FPS Frames Per Second

GUI Graphic User Interface

HRAM Hyper Random-Access Memory

IP Intellectual Property

LRAM Large Random-Access Memory

LSQ Learned Step Quantization

LUT Lookup Table

ML Machine Learning

NCHW Number of Samples, Channels, Height, Width

NNC Lattice Neural Network Compiler tool

ONNX Open Neural Network Exchange

PTQ Post Training Quantization

RAM Random Access Memory

ReLU Rectified Linear Unit

RTL Register Transfer Level

TCL Tool Command Language

USB Universal Serial Bus

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 10

1. Introduction
This document describes the usage and troubleshooting of Lattice Neural Network Compiler software.

1.1. Prerequisites
The hardware, software, connection, and general requirements for this demonstration are provided in the following
sections.

1.1.1. Hardware Requirements

The software requires the following hardware components:

• PC with either Windows 10 x64 or newer; or PC with compatible Ubuntu x64 distribution for running software flow
only.

• Lattice Inference Machine-compatible FPGA.

1.1.2. Software Requirements

This software product requires the following software components:

• Lattice Neural Network Compiler Software for Windows or Linux.

• Diamond Programmer System software for downloading the FPGA bitstream.

• Lattice Diamond™ Design Software for modifying the platform and regenerating the bitstream.

• Radiant Programmer System software for downloading the FPGA bitstream.

• Lattice Radiant™ Design Software for modifying the platform and regenerating the bitstream.

1.1.3. Connection Requirements

Programming the device and running Lattice Neural Network Compiler Software directly from the GUI requires a
Windows installation and a Windows-compatible connection, such as the USB driver for Lattice FPGA development
boards.

1.1.4. General Requirements

This document requires some knowledge of the following:

• Familiarity with Caffe, TensorFlow, or Keras Machine Learning Frameworks.

• Familiarity with Lattice FPGA development, including basic concepts and troubleshooting skills, and experience
establishing basic connectivity between the device and computer, or else utilizing some other hardware (such as
an SD card) for transferring data onto the intended hardware.

1.1.5. IP Requirements
• Neural Network Compiler 7.0 supports the current IP cores for the ECP5, iCE40 UltraPlus, CrossLink-NX,

CertusPro-NX, and Avant device families.

• For ECP5, use CNN Accelerator IP Core v2.1.

• For iCE40 UltraPlus, use Compact CNN Accelerator IP Core v2.0.0.

• For CrossLink-NX, use the Crosslink-NX CNN Accelerator IP Core v3.0.

• For CertusPro-NX, use the CertusPro-NX CNN Accelerator IP Core v3.0.

• For Avant, use the Advanced CNN Accelerator IP Core v3.0.

• The IP cores from previous releases may not work correctly with this release. Ensure that you are using the
versions provided by Lattice for Neural Network Compiler 7.0.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 11

1.2. Purpose
This application shows the ability and features of Lattice Neural Network Compiler Software to:

• Analyze and compile a neural network for use with selected Lattice Semiconductor FPGA products.

• Simulate hardware to obtain expected fixed and floating-point output.

• Download and run neural networks directly on hardware via USB debugging.

• Manage multiple implementations per project to view the effects of different strategies.

1.3. Limitations
The following cautions apply to the software as a whole:

• Operations are conducted in fixed point notation on the hardware as a result of floating point values being
converted to and from fixed point representation.

• Specific neural network features, such as layers or functions, require certain configurations to function or may not
be supported.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 12

2. Installing the Software
The demonstration package of the Lattice Neural Network Compiler Software is available as an executable installer for
Windows and Linux systems. The software is installed on Windows by using the Machine Learning Software Setup
executable installer (.exe) or on Ubuntu Linux by using the run file (.run). Launch the installation process and customize
the options, as detailed in this section.

To install Lattice Neural Network Compiler Software:

1. Close all applications before starting the Lattice Neural Network Compiler Software installation.

2. Double-click on the Lattice Neural Network Compiler Software installer you downloaded.

3. The Welcome to the Lattice Machine Learning Software 7.0 Software Setup dialog box opens.

4. Click Next to select the Installation folder.

5. On Windows, the default destination folder is C:\lscc\ml\7.0. On Linux, the default installation directory is
~/lscc/ml/7.0. Click Browse to change the destination (Figure 2.1).

Figure 2.1. Installation Location Specification

6. Click Next to open the Product Options dialog box (Figure 2.2).

7. Select the Machine Learning Software components that you want to install by selecting or clearing each of the
listed options.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 13

Figure 2.2. Installation Component Specification

8. Click Next to open the License Agreement dialog box.

9. Read the license agreement. If you agree, click I accept the license to open the Start Menu shortcuts dialog box.

10. Click Next to open the Select Program Folder dialog box. The default name is Lattice Machine Learning Software
7.0 If you want to change the name, change it in the Program Folder text box.

11. Click Next to display the Ready to Install dialog box (Figure 2.3). Review the current settings, including the
destination folder and components selected. If everything is correct, select Install to start the installation.

Figure 2.3. Installation Ready to Install Dialog Box

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 14

12. In the Installation Wizard Complete dialog box, read the confirmation note and click Finish.

13. Run the executable, either by using the desktop or start menu shortcut if created, or by navigating to your
installation directory and running lsc_ml_compl.exe on Windows or lsc_ml_compl on Ubuntu Linux. You can then
see the main window, as shown in Figure 2.4.

Figure 2.4. Lattice Neural Network Compiler Software for Windows Splash Screen

The installed software is now ready for use.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 15

3. Getting Started
In this chapter, you can learn how to use Lattice Neural Network Compiler Software to create new projects and edit
existing projects.

3.1. Creating a New Project
A project is a collection of all the files necessary to create and download your design to the selected device. The New
Project window guides you through the steps of specifying a project name and adding existing sources to the new
project.

To create a new project:

1. From the main window, click File > New. The Project Settings window opens, as shown in Figure 3.1.

Figure 3.1. Project Settings Window

2. Enter a project name into the Project field at top-left.

3. Select a framework for your design. Currently, sensAI™ supports Caffe, TensorFlow, Keras, and ONNX
(experimental).

4. Select the device you intend to run this network on.

5. Enter an optional post processing command. Post Processing commands use the following format:

python test.py [<script-arg1> <script-arg2> …] <input-data-file> <simulation-npy-data-
file>

Figure 3.2. Example cmd for Post Processing

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 16

The input-data-file and simulation-npy-data-file arguments displayed in the angle brackets are added by the sensAI tool
in this command.

The script-arg parameters displayed in the brackets [] are script-dependent argument parameters.

1. Select a class for your network. SensAI supports Convolution Neural Network (CNN) and Binary Neural Network
(BNN).

2. Select the MOBILENET mode checkbox if you want to use a model with the Mobilenet IP for ECP5 devices using the
CNN class. See the Advanced Topics section for more information on Mobilenet mode. Similarly, select Compact
mode, Optimized mode, or Extended mode from the drop-down list if you want to use a model for the respective
IPs of the CrossLink-NX device and the CertusPro-NX device.

3. Click on Network File. The Proto File Selection window opens, as shown in Figure 3.3.

Figure 3.3. Proto File Selection Window

4. Navigate to your proto file and select it in the window.

5. Click Open to load the proto file into your project.

6. Click on Model File and follow a similar process to steps 3-5, selecting your model file this time.

7. Click Image/Video Data and follow a similar process to steps 3-5, this time selecting your image or video file. You
can check the Scan Data Layer to let the software attempt to locate your data file if it is defined in your network.

8. Click Next to open the Project Implementation Options Window, as shown in Figure 3.4.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 17

Figure 3.4. Project Implementation Options Window

Figure 3.5 Project Implementation Window 2 (Only for Advanced IP)

9. The Project Implementation Window is automatically filled with default settings for the Implementation Name, as
well as the parameters. You can change the name and parameters if desired. For more information on how each
parameter works and their limitations, read the Project Implementation Settings section.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 18

10. Click Ok to create your project. The Project Window opens, as shown in Figure 3.6.

Figure 3.6. Project Window

3.2. Opening an Existing Project
1. Use one of the following methods to open an existing Lattice Neural Network Compiler Software project:

• In the Main Window, click the Open Project button.

• From the File menu, choose Open.

The Open Project Window opens, as shown in Figure 3.7.

Figure 3.7. Load Project Window

2. Navigate to an existing LDNN type file and select it.

3. Click Open to open the project.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 19

3.3. Saving a Project
When working on a project you want to save, click on the floppy disk icon or navigate to File > Save in order to save
your project. This can save the files with the project name into the project directory, as specified in your project
settings.

3.4. Inputs
In addition to images, sensAI supports other types of input data as well.

3.4.1. Audio Input

The tool only accepts .wav files with a minimum length of 1 second. There is no preprocessing performed on audio
input as of version 7.0.

3.4.2. Raw Input

By enabling the Raw Input option when creating a new project, you can pass input data in the form of .npy array. The
array size should match exactly with the inputs in the network. This is because the array is directly fed to the network
without performing any preprocessing. For example, mean and scale are not used on raw input data. Preprocessing can
be performed in Python and then passed as a saved numpy array to sensAI.

To save an array, A, in a file, raw_input.npy, it only requires two lines of Python code, as shown in Figure 3.8.

Figure 3.8. Python Code for Raw Input

Note: For image input as raw input, the data must be in BGR format.

3.4.3. Multiple Input Selection

The tool automatically detects if the model has multiple inputs. Select the image or raw input according to the model
inputs. Model input names are displayed so you can select the input files accordingly. Figure 3.9 shows the input
selection window.

Figure 3.9. Multiple Input Selection Window

import numpy as np

np.save(“raw_input.npy”,A)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 20

3.5. Help
For more software help, the Help menu contains links to relevant help topics.

3.5.1. About

To find out more version and license information, navigate to Help > About to bring up the About window, which has
tabs for different software information sections. The About tab contains information about the software. Your current
version and build number are displayed here. The License tab provides a convenient way to view the license
agreement.

3.5.2. User Guide

This user guide is routinely updated and may not be the latest version. To quickly go to the Lattice Semiconductor web
page, which contains the latest version of the User Guide as well as supplemental material, navigate to Help > User
Guide, and you will be taken to the correct page.

3.6. Command Line Interface
The executable can be used from a command line interface if you prefer not to use the GUI. To execute a command,
launch the executable from the command line and pass it the arguments you wish to use.

For example, to bring up the help Windows CLI in Cygwin, the command is:

lsc_ml_compl.exe --help

While on Linux, execute it as:

./lsc_ml_compl --help

This brings up the help menu for the CLI. You can see the usage and arguments in the following sections of this chapter.

3.6.1. Arguments and Usage

Table 3.1. Arguments and Usage

Argument Description

--h, --help Show this help message and exit

--cryptography To run encryption/decryption flow

--input_file_path Input model path that user wants to Encrypt/Decrypt

--input_file_path Output model path to store encrypted/decrypted model

--password Password to perform encryption/decryption

--mode To select mode from encrypt/decrypt

--gui [GUI] Invoke GUI tool

--cmd [CMD] Valid commands are analyze, compile, simulate, download, run, and all

--framework
{TensorFlow,Keras,Caffe,ONNX}

Framework used to train the network. Currently, Caffe, TensorFlow, Keras, and
ONNX are supported.

--network_file NETWORK_FILE • Caffe .prototxt or .proto file

• TensorFlow .pb file

• Keras .h5 file

• ONNX .onnx file

--model_file MODEL_FILE .caffe model file

--image_files IMAGE_FILES .jpg Image file

--num_conv_eng NUM_CONV_ENG Number of convolution engines used. Only for CPNX and AVANT devices with
Advanced CNN IP 4*N number of output channels are getting generated in
parallel. N = 1 for CPNX and N = 1-4 for AVANT devices

--num_ebr NUM_EBR Number of embedded block ram.

--ebr_blk_size {16384,32768,65536} Size of each embedded block ram for UltraPlus.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 21

Argument Description

--crosslink_scratch_pad_blk_size
{1024,2048,4096,8192}

CrossLink-NX and CertusPro-NX scratch embedded block RAM size.

--crosslink_lram_size
{65536,131072,262144}

CrossLink-NX and CertusPro-NX On-chip large RAM size.

--cross_link_external_mem_size
CROSS_LINK_EXTERNAL_MEM_SIZE

CrossLink-NX and CertusPro-NX External memory (dram/hyper ram) interfaced
size.

--crosslink_code_base_addr
CROSSLINK_CODE_BASE_ADDR

CrossLink-NX and CertusPro-NX Code/Binary base address of external memory.

--crosslink_data_base_addr
CROSSLINK_DATA_BASE_ADDR

CrossLink-NX and CertusPro-NX data base address of external memory.

--hyper_ram {0,1} Use hyper RAM as external memory in CrossLink-NX or CertusPro-NX.

--extmem_start_addr
EXTMEM_START_ADDR

Starting address of external DRAM to store data.

--mean MEAN Mean value used to preprocess data during training.

--scale SCALE Scale value used to preprocess data during training.

--sample_rate SAMPLE_RATE Sample rate value used for sampling the audio file.

--down_sampling DOWN_SAMPLING Down sampling value used for down sampling the audio file.

--extmem_off {0,1} Turn off using external memory to store data. By default, external memory is
used to store input/output and scratch data.

--load_from_extmem {0,1} By default, data is loaded from external memory to internal memory. If this
option is '0', it makes sure data is directly loaded to EBR from sensor or host.

--store_to_extmem {0,1} By default, data is output to external memory. If this option is '0', it makes sure
to read data from internal memory.

--project_name PROJECT_NAME Sets the project name.

--project_dir PROJECT_DIR Project Directory.

--device {Ultra Plus, ECP5,
CrossLink-NX, CertusPro-NX, AVANT}

Sets the Device to ECP5, UltraPlus, CrossLink-NX, CertusPro-NX or Avant.

--mobilenet_mode {0, 1} Enable MOBILENET mode by setting value to 1. Default is 0.

--ip_mode {Optimized_CNN,
Compact_CNN, Extended_CNN,
Advanced_CNN}

Sets the machine learning (ML) intellectual property (IP).

--nnMode {0,1} Sets class CNN(0)/BNN(1).

--bnn_sign_mode {0,1} Quantization mode for BNN(0: “0/1” and 1: “+1/-1”)

--enable_hw_sim {0,1} Enable Hardware simulation. Default is 1.

--enable_fixed_sim {0,1} Enable Fixed-point simulation. Default is 1.

--enable_float_sim {0,1} Enable Floating-point simulation. Default is 1.

--collapse_layer {0,1} Collapse layers. Default is 0.

--enable_dualcore {0,1} Enable Dual core functionality. Default is 1.--enable_dualcore {0,1}

--enable_quadcore {0,1} Enable Quad core functionality for CertusPro-NX Optimized Only. Default is 0.

--enable_embedded_mode{0,1} Enable Embedded Mode. Default is 0.

--input_ebr INPUT_EBR Specify comma separated input EBR numbers.

--output_ebr OUTPUT_EBR Specify comma separated output EBR numbers.

--reg_out {0,1} Enable Register out functionality for CrossLink-NX, CPNX and Avant device.
Default: 0.

--required_output_depth_range
REQUIRED_OUTPUT_DEPTH_RANGE

Specify Required Output Depth Range. For example, “7-13” only processes the
7th to 13th filters of the output convolution layer.

--user_added_yml USER_ADDED_YML Specify User added yml file.

--conv1x1_mode {single,quad,dual} Specify conv1x1 mode like quad, dual or single. Default single for iCE40 UltraPlus,
CrossLink-NX and CertusPro-NX Compact.

--scratch_blk_size
{1024,2048,4096,8192}

Size of scratch embedded block RAM for UltaPlus. Default: 8192.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 22

Argument Description

--arg_max {4096, 8192} Size of memory block RAM for arg max operation. Functionality for Extended and
advanced CNN only. Default: 4096.

--otf_post_processing {0,1} Specify on the fly post processing for UltraPlus. Default: 0.

--number_of_det_class
NUM_OF_DET_CLASS

Size of scratch embedded block RAM for UltaPlus. Default: 4096.

--enable_debug_mode {0,1} Enable debug mode or not. Supported only in CNX, CPNX and Avant devices.
Default: 0.

--segment_number LRAM Segment numbers we want to use . lram size will be equal to (number of
segments x segment size) value ranges from 1 to 7 for CPNX Advanced CNN and 1
to 16 for Avant Advanced CNN IP. Default value : 16.

--segment_size Size of segment for advanced CNN IP. For CPNX and Avant device, advanced IP,
with 32 bit datapath size segment size has fixed value of 65536. For Avant device,
for 64 bit datapath size, segment size is 131072.

--ve_spd_number Number of the VE scratchpad in advanced CNN IP. Values ranges from 1 to 8.

--multi_port Multi-Port Parallel Values for advanced CNN IP. Values : {2,4}.

--kmax_pooling_kernel Kernel size of KMAX pooling for the advanced CNN IP.

--datapath_width {32, 64} Width of datapath for transferring of data within IP. More datapath width means
more bytes of data transferred in each transaction.

--lut_input_bits
{5,6,7,8,9,10,11,12}

Input bits for LUT for activation function. Only available in Advanced IP.

--lut_output_bits {8, 16} Output bits of data given by LUT of activation function.

--msb_clip_enable {0,1} Clip MSB of input data bit for LUT of activation function.

--create_quantized_version {0, 1} Create a quantized version of the selected input model. If the input model is not
quantized, enabling this creates a quantized version of the input model to be
used for further network compilation processing. Default: 0.

--validation_data_path {path of
directory}

Path of directory containing validation data. The compiler tool uses the
validation data contained in this directory when creating the quantized version
of a model.

--enable_fc_4_bit_weights {0, 1} Enable weights of Fully Connected (FC) engine to be converted into 4 bits.
Otherwise, used as 8 bits. Default: 0.

--number_of_ml_ips Number of ML IP used to run the network. Default: 1.

--external_memory_port Active only when LPDDR4 is selected. Based on the external memory port, logical
external memory addresses are derived when the compiler generates
instructions. This external memory port mapping must match with the hardware
address mapping used in the RTL design.

Commands for Multi-Input Network

--image_files
“input1_name:IMAGE1_PATH;
input2_name:IMAGE2_PATH”

Specify the input image names according to the input model. Separate input
image names with the semicolon (;).

--multi_input_scale
“input1_name:0.0078125;input2_name:
0.0078125”

Specify the different scale values for each input.

--multi_input_mean “input1_name:1;
input2_name: 1”

Specify the different mean values for each input.

--multi_input_sample_rate
“input1_name:
8000;input2_name:8000”

Specify the different sample rate values for each input.

--multi_input_down_sampling
“input1_name:0;input2_name:0”

Specify the different down sampling values for each input.

--multi_input_load_address
“input1_name:0;input2_name:1000”

Specify the address of the different locations to store each input.

--validation_data_path
“input1_name:DATASET1_DIRECTORY;
input2_name: DATASET2_DIRECTORY”

Path to directory for each input validation dataset. While creating the quantized
version, this validation directory is used. A validation directory must be provided
for each input in the model.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 23

3.7. Design Restrictions
There are a few constraints and restrictions that should be kept in mind when designing a neural network with sensAI.
The general hardware, software, and framework restrictions are listed below.

3.7.1. General Restrictions

The mean operation is not performed in the network itself. It must be implemented in your RTL. For more information,
see the Data Preprocessing section.

To support asymmetric padding on hardware, the Convolution layer should be followed by BatchNorm operation.

3.7.2. ECP5 Restrictions
• Mean is not supported in firmware.

• Binary Convolution and Convolution: The maximum kernel size for Convolution is 9x9, while Binary Convolution
has a maximum size of 3. The pad is recommended to be 1.

• If there is asymmetric padding in the convolution layer, then the convolution layer should be followed by Batch-
Normalization layer.

• Pooling

• Global Average Pooling

• The kernel must be symmetric.

• The stride must be 1. The pad must be 0.

• Max Pooling

• The kernel must be symmetric.

• The recommended size is 2 × 2.

• The pad must be symmetric. It is recommended to use a kernel size of 9 × 9 or smaller to reduce the
number of cycles used.

• For leaky_ReLU, the negative activation slope is fixed to 1/16 in hardware. Models must be trained with alpha =
0.0625 (1/16) in leaky_ReLU.

3.7.3. ECP5 - Mobilenet Mode Restrictions

In addition to the previously-stated ECP5 restrictions, Mobilenet mode has a few additional restrictions to consider.

• Depthwise Convolution only supports kernel sizes of 3 × 3, with stride restricted to 1 or 2, and pad values restricted
to 0 or 1.

• 1 × 1 convolution must have the pad set to 0.

• Mobilenet mode supports branching and merging using eltwise addition. Both inputs and outputs of eltwise
addition must be in the same format [either in 16b or in 8b].

• The Depth wise kernel input is restricted to 8,192. For given channels (C, H, W), this means that (W * H/2) must be
less than or equal to 8, 192.

• The number of engines cannot be changed. sensAI disables the ability to change this number to prevent generating

an invalid firmware file. The number of engines used is eight convolution engines, eight depthwise convolution
engines, and 64 1 × 1 convolution engines.

• Because the eight Convolution engines are in dual core configuration, there are only four dual core engines.
This is less than the limit of the normal ECP5 mode, meaning that the number of output EBRs is four when
using the dual core engines instead of eight.

• There are still eight output EBRs when using the eight depthwise convolution engines.

• ReLU6 is not supported in Neural Network Compiler 7.0. Ensure that the model does not contain this activation.

• Currently, if Mobilenet is trained with TensorFlow and the first convolution layer uses padding, the hardware
simulation results may be inexact when compared to the actual hardware output. Test the hardware in this
situation. The TensorFlow implementation of padding introduces differences from the present implementation
employed in hardware.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 24

3.7.4. UltraPlus Restrictions
• Binary Convolution and Convolution: When using a CNN design in UltraPlus, the Convolution Layer should have a

weight size of less than or equal to three and a stride (conv_stride) of 1. It is recommended to keep the pad size at
1, while larger pad sizes can be supported. There may be data lost due to the fixed-point width losing significant
figures as the padding size increases. When using a BNN design on UltraPlus, the BinaryConvolution Layer has the
same constraints as the standard Convolution Layer.

• Kernel sizes are restricted to 3 × 3 for BNN and 3 × 3 and 1 × 1 for CNN.

• Pooling: The Pooling layer must have a stride (pool_stride) and kernel (pool_ksize) size of two, and a pad
(pool_pad) of 0.

• Mean and Scale are not supported in firmware.

• All intermediate data in a model except the output is represented in unsigned 8-bit format in the hardware, using
the format 1.7 to represent the data. Because of this, you should use Mean = 0 and Scale = 0.0078125 in settings
for UltraPlus for any design you intend to run on the UltraPlus IP.

• Bias is not supported for the Convolution layer.

• BNN supports input dimensions of 32 × 32.

• CNN supports the 32 × 32, 64 × 64, 128 × 128, and 160 × 160 input dimensions. 160 × 160 support requires Quad
SPRAM.

• Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1 × 1
convolution, then the software will automatically generate firmware for handling Mobilenet.

• ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

3.7.5. CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions
• CrossLink-NX and CertusPro-NX devices only support CNN designs. At this time, there is no support for BNN-based

networks. Use ECP5 or UltraPlus if binary network support is required.

• Weights and activations must be quantized for CrossLink-NX and CertusPro-NX. Refer to the Fixed Point
Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant section for more details on how to
quantize your network correctly.

• 3 × 3 and 1 × 1 are the only supported convolution kernel sizes. The stride required to be 1 for both types. The pad
can be 0 or 1 for 3x3 kernels, and the pad is required to be 0 for 1 × 1 convolution.

• Depthwise Convolution only supports 3 × 3 kernel size, with the stride required to be 1, and the pad can be either
0 or 1.

• Bias is supported in any convolution layer.

• 4-bit weights quantization is only supported with the Learned Step Quantized model in the Optimized IP mode.

• 2 × 2 is the only supported pooling kernel size. The stride is required to be 2, and the pad is required to be 0. Odd
input to the pooling layer is not supported.

• ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The
QuantReLU must be present before each ReLU.

• QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.

• The fully connected layer is only supported at last (no intermediate fully connected is supported).

• The last layer must be fully connected, or CBSR. In CBSR, convolution types should be normal, depthwise, or 1 x 1
convolution.

• Mean and Scale are not supported in the firmware.

• Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1 × 1
convolution, then the software automatically generates firmware for handling Mobilenet.

• ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

• Branching or merging structures, such as Concat and ELTwise addition, are not supported in compact mode. Use
either the optimized mode or extended mode if you wish to use the ELTwise or Concat operations. Also, both
inputs and outputs of eltwise addition must be in 8b quantized format.

• CrossLink-NX and CertusPro-NX utilize external memory by allowing the base address for the data and code to be
specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 25

available for the data or the firmware. If the data base section address leaves insufficient room for the data, the
analysis stage produces an error indicating this. Likewise, if the code base address leaves insufficient room for the
code, the analysis stage produces an error stating as much. In either case, the address must be changed to allow
for sufficient space.

• Depths/Channels used in Crosslink-NX and CertusPro-NX are recommended to be multiples of 4 for depthwise and
1x1 convolution for better performance.

• CrossLink-NX with Quad LRAM (i.e., 262144 bytes) on-chip large memory size is available only for the CLNX-17k
device, and due to the limitation of EBR on the 17k device, it will be available with a 1k scratch pad size only. The
user must not use firmware compiled with a Quad LRAM size for the CLNX-40k device. For CertusPro-NX, all the
scratch pad sizes are supported with Quad LRAM.

• Large input resolutions like VGA and QVGA are only supported in CrossLink-NX optimized, CrossLink-NX extended
mode, CertusPro-NX optimized mode, and CertusPro-NX extended mode.

• Embedded mode is only supported for CrossLink-NX Optimized and CertusPro-NX Optimized devices.

• Embedded mode only allows dual or Quad LRAM (i.e., with Embedded Mode on, the user cannot use 64 KB of
LRAM).

• Embedded mode does not allow users to use external memory. If you observe the memory error, please reduce
the filter size or model dimension, or else the user can run the model with Embedded Mode off.

• Branching structure with Concat layer is not supported in the Embedded mode.

• Focus Layer is supported as the first layer only in the Optimized IP mode.

• 4-bit activation is only supported in the Optimized IP mode.

• 4-bit input data to Fully Connected layer is not supported.

3.7.6. CertusPro-NX and Avant Advanced CNN IP Restrictions

Currently, the CertusPro-NX and Avant devices advanced CNN only supports the following layers.

• Convolution (kernel size: 7x7, 5x5, 3x3, 1x1)

• Eltwise addition

• Concat

• Fully Connected

• Pooling (2x2 kernel, stride 2, pad 0)

• Pooling (K × K kernel, stride 1, pad K/2)

• Multiply, subtract, divide and reciprocate.

• The focus layer is currently implemented using RTL and has to be part of pre-processing. It is always supported
after the input layer.

• Resize operation

• CPNX and Avant devices only support CNN designs. At this time, there is no support for BNN-based networks. Use
ECP5 or UltraPlus if binary network support is required.

• Weights and activations must be quantized for CPNX and Avant devices. Refer to the Fixed Point Quantization for
iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant section for more details on how to quantize your network
correctly.

• 3 × 3, 1 × 1, 5 × 5, and 7x7 are the only supported convolution kernel sizes. The stride required to be 1 for a 5 × 5
type pad is 2. The 3 × 3, stride = 2, pad is supported asymmetrically in order to get the output dimension (H/2,
W/2). Currently, Pad 0 is not supported with the 3x3 kernel.

• Depthwise Convolution supports 5x5, 3×3 kernel size, with the stride required to be 1, and the pad 1.

• The 2 × 2 kernel is supported for pooling. The stride is required to be 2, and the pad is required to be 0. Odd input
to the pooling layer is not supported.

• For pooling with a K x K kernel, stride needs to be 1, and padding required should be half of K.

• ReLU and leaky ReLU are both supported. The negative slope for leaky ReLU must be 0.0625 (or 1/16). The
QuantReLU must be present before or after each ReLU.

• QuantReLU only supports numbits to be 8, minimum to be 0, and maximum to be 2.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 26

• The fully connected layer is supported as the last and intermediate layer. The intermediate fully connected layer
should be followed by the fully connected layer. The intermediate fully connected layer should be quantized.

• The last layer must be fully connected, CBSR, or resized bilinear. In CBSR, convolution types should be normal,
depthwise, or 1 x 1 convolution.

• Mean and Scale are not supported in the firmware.

• Unlike ECP5, there is no discrete Mobilenet mode. If a depthwise convolution is detected, followed by a 1 × 1
convolution, then the software automatically generates firmware for handling Mobilenet.

• ReLU6 is not supported. Please ensure that the Mobilenet model does not contain this activation.

• CPNX and Avant devices utilize external memory by allowing the base address for the data and code to be
specified. As a result, it is possible for you to accidentally set a start address that leaves insufficient memory
available for the data or the firmware. If the data base section address leaves insufficient room for the data, the
analysis stage produces an error. Likewise, if the code base address leaves insufficient room for the code, the
analysis stage produces a warning stating as such. In either case, the address must be changed to allow for
sufficient space for both data and code.

• Depths/Channels use in CPNX and Avant are recommended to be multiples of 4 for depthwise and 1 × 1
convolution for better performance.

• Currently, 2 and 4 multiport modes are supported. This takes more resources but speeds up the 1 × 1 conv layer
execution.

• The focus layer is supported as the first layer only.

• 4-bit activation is not supported in the Advanced IP.

3.7.7. Caffe Restrictions

SensAI supports reading the current Caffe protofile format. Older keywords, such as using layers instead of layer, are
not supported.

See the Supported and Added Caffe Layers section for more requirements for individual layers.

3.7.8. Keras Restrictions

See the Supported Keras Layers section for more requirements for individual layers.

3.7.9. TensorFlow Restrictions

Versions 1.14, 2.0, 2.3, 2.5, and 2.9 of TensorFlow are supported by sensAI. Networks designed for other versions may
not be compatible.

See the Supported TensorFlow Operations section for more requirements for individual operations.

3.7.10. AutoKeras Restrictions
• The model training was done considering a multiclass CLASSIFICATION task only.

• The model architectures were experimented with an input size of 32 × 32 × 1.

• The optimizer that AutoKeras chooses sometimes has a very small initial learning rate, and sometimes it is used
along with learning rate decay, which affects training accuracy and loss. Hence, a constant optimizer was used
(SGD with an initial LR=0.1 and a learning rate scheduler callback option).

• For now, the only hyperparameter that is varying is the number of channels (depth) in each layer. If the number of
layers is kept as a hyperparameter, then it tries to go for a very large depth near the FC layer, and this creates the
FC output value to explode. So the number of layers is now fixed.

• The max model size parameter is tested with a few experiments (with a given seed and resolution) to create a
model (.bin file size) smaller than the limit for certain devices like UltraPlus.

• For reproducibility, when the seed is provided, it searches through the same hyperparameter combinations every
time we run the script. However, the loss value that the AutoKeras get might differ slightly, and as a result, they
may not have the same architecture as earlier. But the accuracy remains approximately within the +/-3% range.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 27

• Note that if FC layer output crosses the range of [-32,+32], then we may experience a little higher MAE in the
Neural Network Compiler, which is expected.

Refer to AutoKeras Reference Design document to know about training a model in AutoKeras for NNC.

3.7.11. ONNX Restrictions

ONNX model support is experimental. Only float and PTQ models are supported. The input to the network should be in
the NCHW format. See the Supported ONNX Layers section for more requirements on individual operations.

3.8. Next Steps
Now that you have created or opened a project, you are ready to edit your project and run through the design flow, as
detailed in the next section.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 28

4. Working with Projects

4.1. Implementations
Implementations organize the structure of your design and allow you to try alternate structures and tool settings to
determine which one can give you the best results. To help determine which scenario best meets your project goals, try
using a different implementation of a design with different settings. Each implementation has associated active
settings. When you create a new implementation, you must select its active settings.

4.1.1. Creating a New Implementation

To try a new implementation with different strategies within an existing project, you must create a new
implementation.

1. Choose File > Add Impl to bring up the Implementation Options window.

2. The Implementation Options window has the same parameters as the one you encountered when creating your
project initially. You can change the implementation name to a unique string if desired. Within the project, each
implementation must have a unique name.

3. Change the implementation settings from the default settings, if desired.

4.1.2. Editing an Implementation

You can edit an existing implementation to change the specific input and output files, as well as the implementation
settings.

1. Choose File > Edit Impl to bring up the Project Settings window.

2. The Project Implementation Settings Window opens, as shown in Figure 4.1.

Figure 4.1. Project Implementation Options Window

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 29

3. Edit your existing settings and click OK to apply them to your Project Implementation. For more information on
parameters and their limitations, refer to the Project Implementation Settings section.

4.2. Project Flow

4.2.1. Analyze

You must first run the Analyze function on your project before you can progress to the Compile or Simulate stages. It
analyzes your code to verify compatibility with the Lattice CNN Compiler. You can run the Analyzer by selecting
Process > Analyze.

Figure 4.2. Analyze Results

After successfully analyzing a neural network file, the implementation window is updated with a set of columns listing
the properties of your neural network under the current settings.

• Blobs: Each blob that is detected and implemented by the software is listed in this column. Some blobs that are in
the network file are not implemented in the hardware, such as those used for external data processing, and are
not listed here.

• Data Format: This column lists the breakdown of the fixed-point representation of the blob. The number preceding
the period is the number of bits used to represent the integer component of the number, while the number
following it is the number of bits used in the fractional component. For signed data, the total number of bits is one
less than the total number of bits used, as one bit is always used for signage.

• For clarification, the following represents a 16-bit signed number, using 15 bits to represent the integer and
fraction:

• 3.12 represents a signed number with 3 integer bits and 12 fractional bits. The sum of the two values is
15. The software thus uses a 16-bit signed format.

• For a signed 8-bit number, the total would be 7, as shown:

• 5.2 represents a signed number with 5 integer bits and 2 fractional bits. The sum of the two values is 7.
The software thus uses an 8-bit signed format. Finally, unsigned numbers can be used in 8-bit format.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 30

• 5.3 represents an unsigned number. The sum of the two values is 8. The software thus uses an 8-bit
unsigned format. SensAI only supports unsigned 8-bit and signed 8- and 16-bit formats. Some settings,
such as layer collapse, force a certain combination of integer and fractional bits.

• Stored Data Format: This column is a user-editable list of the fixed-point representations of each blob. It is
populated with the default values that are automatically calculated by the software. Values are written in the same
format as the signed data format entry above. In order to edit the stored data format for a blob, double-click the
entry in that column for the blob in question.

You can allocate how many bits you want dedicated to the integer and fractional components for EBR storage for
the specified blob. You have to specify whether the EBR accepts 16-bit mode or 8-bit mode. To use 16-bit mode,
your two values need to add up to 15. To use 8-bit mode, your two values need to add up to 7.

• 12.3 represents EBR storage in 16-bit mode with 12 integer bits and 3 fraction bits.

• 6.1 represents EBR storage in 8-bit mode with 6 integer bits and 1 fraction bit.

• Required Memory Bytes: The memory required to implement each blob is listed in this column. See the Project
Implementation Settings section for more details on the effects your settings may have on this.

• UltraPlus: Lists the required SPRAM.

• CrossLink-NX, CertusPro-NX, and ECP5: Lists the required internal (LRAM/EBR), and external (HRAM/DRAM)
memory.

• Distribution of Input Data into Memory Blocks

During the analysis process, input data is divided into memory blocks based on the input layer dimension. The
following subsections explain the details of how this division is handled. This example uses a three-channel BGR
input, though your data input may use more or less than three channels.

• Fraction setting of the input layer: If the input values can fit in 8 bits, then the fraction settings to store input
data are in 8-bit (byte mode). Hence, 16384 (for ECP5) input values can fit in a single memory block; otherwise
8192 values can be stored in one memory block.

• Based on the values that can fit into a single memory block (16384 total values for byte mode on ECP5), there
could be four different conditions: cases where all the channels fit into a single memory block, cases where at
least one channel can fit into a single memory block, cases where a single channel cannot fit into a memory
block, and cases when memory blocks are not sufficient to fit input data.

• All the channels (BGR) can fit in a single memory block.
If the input dimensions are 3 × 32 × 32, then the total number of input values is 3,072, which is less than
16,384 values.
In this case, all the data values are stored in a single memory block in sequential order. In this example,
input data is stored in the first memory block, from address 0 to address 3071.

• At least one channel can fit in a single memory block:
There is also the case where all of the channels cannot fit into a single memory block, but it is still possible
to put one or more channels into one.
For cases where only a single channel can fit within a memory block, consider a case where the input
dimension is 3 × 128 × 128. This corresponds to 49,152 entries, which cannot fit into a single memory
block. However, a single channel has a size of 1 × 128 × 128. This is 16,384 values, which can fit within a
single memory block.
In this case, data is divided into 3 memory blocks, and each memory blocks can have a single channel of
data values.
Note: Even if there is some extra space remaining in the memory block, the next channel values are not
stored in that space unless a second channel could fit within, as explained in the next subsection.
In another example, consider an input dimension of 3 × 90 × 90. Once again, all three channels correspond
to a size (24,300), which cannot fit within a single memory block. Even though two channels would take
up 2 × 90 × 90, or 16,200 entries, which can fit in a single memory block, data is divided into memory
blocks equally.
In this case, the data is divided into three memory blocks. The first memory block has the data from the
first (B), the second memory block has the second (G) channel, and the third memory block has the data
from the third (R) channel.
In this case, the last 8,284 values of each memory block are not used.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 31

• A single channel cannot fit in a single memory block, but memory blocks are sufficient to fit input data.
Consider a larger network with input dimensions of 3 × 224 × 224. In this case, there are 150,528 input
values, which is far too large for a single memory block. Additionally, a single channel (1 × 224 × 224) has
50,176 values, which is still too large for a single memory block.
Because of this large size, the Analyze stage attempts to divide each single channel into smaller pieces
that can fit in each memory block using the following three steps:
1. Calculate the required memory per depth:

Number of memory blocks = Ceiling [(224x224)/16,384] = 4
In this case, the memory per depth is 4.

2. Calculate the height per memory block:
Height per memory block = Total height / memory per depth value
For a total height of 224 divided by a depth of 4, this results in a height per memory block of
224/4, which is 56 in one memory block.

3. Because there are 4 memory blocks per depth and 3 channels, a total of 12 memory blocks are used
to store the input data.

Because each memory block stores the values of 56 heights (56 x 224), it uses 12,544 entries per memory
block, and the remaining space in each memory block is unused. In this case, the data is divided as listed
below:

• 1st memory block: Channel 0 (B) 0 – 55 height values

• 2nd memory block: Channel 0 (B) 56 – 111 height values

• 3rd memory block: Channel 0 (B) 112 – 167 height values

• 4th memory block: Channel 0 (B) 168 – 223 height values

• 5th memory block: Channel 1 (G) 0 – 55 height values
.
.
.

• 11th memory block: Channel 2 (R) 112 – 167 height values

• 12th memory block: Channel 2 (R) 168 – 223 height values

• Memory blocks are not sufficient to fit input data.
Consider a larger network with input dimensions of 3 × 300 × 300. In this case, there are 270,000 input
values, which is too large for all memory blocks, where the total memory size of all blocks is 162,144
(16 × 16384). In cases where the total memory block size is not enough to store all input channels, DRAM
is required to store input data. For the input layer, you need to enable the Store Input option. For
intermediate layers, the DRAM address is auto assigned. During processing, data is copied from DRAM to
EBR. Because of this large size, the Analyze stage attempts to divide each single channel into smaller
pieces that can fit in one memory block, as above. Analyze flow assigns one or more memory blocks to
process data in the engine. As data is already in DRAM, the same memory block(s) can be reused for the
next piece. So even if data cannot fit into assigned memory blocks, it is not overwritten. In this case, the
data is divided as listed below:

• 1st memory block: Channel 0 (B) 0 – 50 height values

• 1st memory block: Channel 0 (B) 51 – 100 height values

• …

• 1st memory block: Channel 0 (B) 251 – 300 height values

• 2nd memory block: Channel 1 (G) 0 – 50 height values

• 2nd memory block: Channel 1 (G) 51 – 100 height values

• …

• 2nd memory block: Channel 1 (G) 251 – 300 height values

• 3rd memory block: Channel 2 (R) 0 – 50 height values

• 3rd memory block: Channel 2 (R) 51 – 100 height values

• …

• 3rd memory block: Channel 2 (R) 251 – 300 height values

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 32

4.2.2. Analyzer for USB Debugging

To debug ECP5 via the USB interface, this checkbox should be enabled. The analyzer adds the required external
memory address information to the output files.

For ECP5, layer outputs are read out after running. As a result, the outputs of layers that have their outputs overwritten
by subsequent layers cannot be read directly.

4.2.3. Compile

You can create a firmware file for your analyzed network by running the compilation flow. This generates an lscml-type
file, which can be used to download the network to your hardware by the software or by another tool. You can run the
compiler by selecting Process > Compile.

Figure 4.3. Compile Results

After your network has been successfully compiled, you are presented with performance information. ECP5 designs
also report details on channel/height storage and the start/end addresses for each input EBR. The cycles used by your
neural network given the specified settings are reported, with a breakdown of cycles spent on DRAM access,
convolution, pooling, fully connected, and scale.

• DRAM: These are the cycles that are spent accessing or storing data in the DRAM. Designs that use more of the
EBR for storage will have fewer cycles used in the DRAM stage, and this number will increase as your settings
offload more storage from the EBR to the DRAM.

• Conv: The cycles used in performing convolution are reported here. In a conventional neural network, this
represents the standard convolution cycle. In a binary neural network, it displays the cycles used during binary
convolution. In designs utilizing EBR, it typically represents the largest share of cycles in your design.

• Pool: These cycles are used to implement pooling in your neural network.

• FC: This entry corresponds to cycles used to implement fully connected (or inner product) vector operations.

• Scale: Scaling cycles are spent performing the scale operation.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 33

4.2.4. Simulate

It is recommended that you run the simulation to verify the results. This is not a required step to compile your project.
You can simulate your analyzed network using the Simulate feature. By selecting the green or red check boxes in the
process window of the left pane, the simulation type can be changed between the floating-point network, fixed-point
network, or inference engine model. By default, all types of simulation are selected. You can run the simulator by
selecting Process > Simulate.

Figure 4.4. Simulate Results

The inputs and outputs of the simulation are determined by your neural network and your source file. The total cycles
reported are identical to those found in the compilation stage.

Data Histogram Graph

After the analysis is complete, you can double-click on the blob name in the implementation window to view the data
histogram for the particular blob.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 34

Figure 4.5. Data Histogram for the Blob

A data histogram provides information on the minimum and maximum values and distribution of data. The histogram
also helps to derive the proper fraction for the blob. Clicking on Apply can select a frac value, so it can store the
maximum (on both positive and negative) possible values.

Note: The data histogram is only available for ECP5 and UltraPlus devices.

4.2.5. Post Processing

If the Post Processing command is configured in the project setting as shown in Figure 3.2, this operation runs the post
processing script on the input data (a selected image or .npy) with the simulation result .npy file. You can run post
processing by selecting Process > Post Processing as shown in Figure 4.6.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 35

Figure 4.6. Post Processing

4.2.6. Download

Lattice Neural Network Compiler Software is capable of directly downloading a project to a compatible board that is
connected to the computer. The test board must be connected via USB. You can run the download tool by selecting
Process > Download. See the USB Debugging section for more information on the USB debugger.

4.3. Views
The View menu in the software allows you to view the input network, analyzed network, log file, and simulation data
graph in different windows. Also, it allows users to select GUI themes.

4.3.1. Input Network

The Input Network view displays a visualization of your input network, consisting of the layers, blobs, and connections
in your network file.

TensorFlow-Keras Input Network

This option opens the TensorBoard graph in your default browser, as seen in Figure 4.7.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 36

Figure 4.7. Input Network – TensorFlow or Keras

Close Tensorboard

When you return to the sensAI tool, you are asked if you wish to close the Tensorboard process. If you choose not to
close, you can close it later from upper left corner tool bar as shown in Figure 4.8.

Figure 4.8. Close Tensorboard Process

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 37

Caffe Input Network

This option displays your input Caffe network, as seen in Figure 4.9.

Figure 4.9. Input Network - Caffe

4.3.2. Analyzed Network

The Analyzed Network View displays a visualization of your analyzed network. This is only available after the analyze
stage of the project flow. In addition to its entry in the view menu, you can also click the View Analyzed Network
button to the right of the Run button to bring up the display.

4.3.3. GUI Themes

The GUI Themes menu (Figure 4.10) allows you to update the look of sensAI. Simply click on one of the many options to
choose the theme that suits you.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 38

Figure 4.10. GUI Themes

4.3.4. Log File

The Log File view allows you to view the output log of your project. This is a history of operations you have initiated
and the output that was generated as a result. If you would prefer to use a text viewer of your choice, the contents of
your log file are stored in a .log file in your project directory.

4.3.5. HTML Log File

This HTML log file is simply a view of log files in HTML pages. You can open the HTML log in two ways. You can open an
HTML log webpage by clicking View > HTML log, as shown in Figure 4.11. When you open the same project multiple
times, new HTML pages are created. When you open the HTML log in your browser, there are four log sections: debug,
info, warning, and error. There are refutations of each section's arguments. The default view of this webpage is a
combination of four sections. Whenever you click on any section, they show the log of each section donly. There is a
search option available for each section. Figure 4.12 shows the default view of the HTML log. Figure 4.13 shows the
search option for the warning. The background colors for each portion are different.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 39

Figure 4.11. HTML Log

Figure 4.12. Default View of HTML log

Figure 4.13. Search Functionality of Warning

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 40

4.3.6. Simulation Data Graph

The simulation data graph (Figure 4.14) shows the comparison of the predicted values of the floating-point network,
fixed-point network, and hardware after running the simulation step. This view is accessible after completing a
software simulation. The graph can zoom in or out, and it allows you to configure subplots and export them as an
image or a PDF file.

Figure 4.14. Simulation Data Graph

4.4. Example Projects
This section provides project samples that you can work on to become more familiar with the software before starting
your own project.

The Neural Network Compiler includes several example projects as a reference for using the tool. The CatDog and
HumanPresence projects can be loaded from the sensAI user interface and run through the analysis, compilation, and
simulation stages. The post processing, meanwhile, contains a Yolo vehicle detection post processing operation script
for the given input image and last layer output data (.npy).

4.4.1. Catdog

This catdog example network can take an input image of size 32 × 32 × 3 and determine whether it is a picture of a cat
or a dog, with accuracy depending on the images it was trained with and the test image used.

To launch the catdog project:

1. Launch the sensAI Neural Network compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/catdog directory and select catdog.ldnn. Click Open. This loads the catdog project.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 41

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Choose Process > Analyze from the menu.

2. After the network is analyzed, compile the project. Click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.2. Humanpresence

The humanpresence example network can take an input image of size 64 × 64 × 3 and determine humans in it. The
accuracy depends on the images it was trained with and the test image used.

To launch the humanpresence project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/humanpresence directory and select humanpresence.ldnn. Click Open.

This loads the humanpresence project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to enable them. Click
Project > Simulate again. Your output now includes the results of all three models, rather than just the floating point
model.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 42

4.4.3. GoogleNet

This GoogleNet network example can take an input image of size 224 × 224 × 1 and determine the number of humans
in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this GoogleNet project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click File > Open. You can also click the Open File button.

Navigate to the examples/GoogleNet directory and select GoogleNet.ldnn. Click Open. This loads the GoogleNet
project.

Now that the project is loaded, you are able to use several of the features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. You can click Process > Compile from the menu.

Note: You can combine these steps by clicking the Analyze and Compile button in the GUI. The Lattice sensAI
Neural Network Compiler software analyzes and then compiles the network with a single click.

3. After the network is compiled and analyzed, run the simulation function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the GUI in order to enable and disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can view the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.4. SqueezeDet

This SqueezeDet example network can take an input image of size 224 × 224 × 1 and determine the number of humans
in the image. The accuracy depends on the images it was trained with and the test image used.

To launch this SqueezeDet project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

Navigate to the examples/SqueezeDet directory and select SqueezeDet.ldnn. Click Open. This loads the SqueezeDet
project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network with a single click.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 43

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them. The
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, any two, or all three simulation types
at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable them.
Click Project > Simulate again. Your output now includes the results of all three models, rather than just the floating
point model.

4.4.5. Handgesture

This Handgesture example network can take an input image of size 32 × 32 × 1 and determine hand gesture in the
image. The accuracy depends on the images it was trained with and the test image used. The Handgesture model is
non-quantized. Lattice has quantized it using the Post Training Quantization Flow of SensAI.

To launch this Handgesture project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

Navigate to the examples/Handgesture directory and select Handgesture.ldnn. Click Open. This loads the
Handgesture project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.6. MV1 (MobileNet V1)

This MV1 example network can take an input image of size 240 × 320 × 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used.

To launch this MV1 project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/MV1 directory and select MobileNet_v1.ldnn. Click Open.

This loads the MobileNet v1 project.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 44

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.7. MV2 (MobileNet V2)

This MV2 example network can take an input image of size 240 × 320 × 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used. This model is trained with the Learned
Step Quantization (LSQ) technique.

To launch this MV2 project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/MV2 directory and select MobileNet_V2.ldnn. Click Open.

This loads the MobileNet v2 project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 45

4.4.8. YoloV5

This YoloV5 example network can take an input image of size 160 × 160 × 1 and detect barcode in the image. The
accuracy depends on the images it was trained with and the test image used.

To launch this YoloV5 project:

1. Launch the Lattice sensAI Neural Network Compiler software.

2. Click on File > Open. You can also click the Open File button.

3. Navigate to the examples/YoloV5 directory and select YoloV5.ldnn. Click Open.

This loads the YoloV5 project.

Now that the project is loaded, you are able to use several features of the software.

To analyze, compile, and simulate the project:

1. Click Process > Analyze from the menu.

2. After the network is analyzed, compile the project. To do this, click Process > Compile from the dropdown menu.

Note: You can combine these steps by clicking the Analyze and Compile button. The Lattice sensAI Neural Network
Compiler software analyzes and then compiles the network in a single click.

3. After the network is compiled and analyzed, run the simulate function. Click on the checkmarks under the
Simulate (Optional) category on the left-hand side of the user interface to enable or disable different types of
simulation. Click on the checkmarks to the left of Fixed Point Model and Inference Model to disable them.
Floating Point Model is the only option with a green checkmark at this point.

4. Click Project > Simulate from the menu.

5. When the process is completed, you can see the floating point model output.

You can try running other simulation types. You can run one simulation at a time, or any two, or all three simulation
types at one time. For this example, click on the x marks to the left of Fixed Point and Inference Model to re-enable
them. Click Project > Simulate again. Your output now includes the results of all three models, rather than just the
floating point model.

4.4.9. Toy_mnist

This example network can take an input image of size 28 × 28 × 1 and recognize digit. The accuracy depends on the
data set it was trained with and the test image used. You can find the project file under the examples/toy_mnist
directory. The steps to load and run the model are the same as YoloV5. Refer to the YoloV5 example for more details.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 46

5. Advanced Topics

5.1. Project Implementation Settings
Each project has several main settings for customizing your neural network implementation. These settings are
accessed either during new project creation (see the Creating a New Project section) or by editing an existing
implementation (see the Editing an Implementation section). These settings are visible in the Project Implementation
Window, as shown in Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure
5.9, and Figure 5.11.

Figure 5.1. Project Implementation Window – ECP5

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 47

Figure 5.2. Project Implementation Window – UltraPlus (1)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 48

Figure 5.3. Project Implementation Window – UltraPlus (2)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 49

Figure 5.4. Project Implementation Window – CrossLink-NX-Optimized

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 50

Figure 5.5. Project Implementation Window – CrossLink-NX-Compact

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 51

Figure 5.6. Project Implementation Window – CertusPro-NX-Optimized

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 52

Figure 5.7. Project Implementation Window – CertusPro-NX-Compact

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 53

Figure 5.8. Project Implementation Window – CertusPro-NX-Extended

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 54

Figure 5.9 Project Implementation Window – CertusPro-NX Advanced IP Part 1

Figure 5.10 Project Implementation Window – CertusPro-NX Advanced IP Part 2

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 55

Figure 5.11 Project Implementation Window – Avant Advanced IP Part 1

Figure 5.12 Project Implementation Window – Avant Advanced IP Part 2

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 56

The settings that are visible and can be adjusted depend on the device, network type, and framework. For example,
UltraPlus has a single convolution engine with a fixed size (Figure 5.2), causing those options to be grayed out, while
the option for changing your quantization type is only available for BNN projects.

5.1.1. Number of Convolution Engines

You can change the number of convolution engines used by your design, whether they are standard convolution
engines or binary convolution engines, to be less than the maximum amount supported on your device. The ability to
use less than the maximum depends on the specific device. For example, certain LatticeECP5 products can support up
to eight CNN engines, allowing you to reduce your usage. For CertusPro-NX and Avant devices, with Advanced CNN IP
4*N, a number of output channels are generated in parallel. N = 1 for the CertusPro-NX device, and N = 1-4 for Avant
devices.

5.1.2. Enable Dual Core Mode

Selecting Enable Dual Core Mode enables dual core mode in ECP5, CrossLink-NX (Optimized, Extended), or
CertusPro-NX (Optimized, Extended) devices. When enabled, it uses two DSP blocks per convolution engine. This option
is checked and enabled by default. This feature is only supported in ECP5, CrossLink-NX (Optimized, Extended), and
CertusPro-NX (Optimized, Extended) devices.

5.1.3. Enable Quad Core Mode

Selecting Enable Quad Core Mode enables quad core mode in CertusPro-NX (optimized) devices. When enabled, it uses
four DSP blocks per convolution engine. This option is checked and enabled by default. This feature is only supported in
CertusPro-NX (optimized) devices.

5.1.4. On-Chip Memory Block Size

The On-Chip Memory Block size option is only visible for projects targeting iCE40 UltraPlus devices, allowing you to
select from three entries from the drop-down menu: 16,384, 32,768, and 65,536. These correspond to three possible
memory configurations.

• 16,384 - 16k, 16-bit (32 Kilobyte) Single SPRAM

• 32,768 - 32k, 16-bit (64 Kilobyte) Dual SPRAM

• 65,536 - 64k 16-bit (128 Kilobyte) Quad SPRAM

When using single SPRAM mode, the rest of the memory, over 128 kilobytes, can be used for storing firmware. When
using Quad SPRAM, provide external memory for storing firmware.

5.1.5. Number of On-Chip Memory Blocks

The Number of On-Chip Memory Blocks setting specifies the number of discrete blocks in the EBR that are utilized in
the DNN Inference Machine. On ECP5 devices, you are required to have a minimum of one plus an additional one for
each convolution engine used by your design. For designs using the iCE40 UltraPlus device, the number of blocks is
fixed.

5.1.6. Mobilenet Mode for iCE40 UltraPlus, CrossLink-NX Compact, and CertusPro-NX Compact

Mobilenet Mode allows you to select Conv1x1 mode for devices. Three modes, single, dual, and quad, are available to
perform 1 × 1 convolutions for iCE40 UltraPlus devices. Quad mode provides the best performance and highest
resource. consumption. The single mode is the slowest among the three but uses the least resources.

For CrossLink-NX Compact and CertusPro-NX Compact, only quad mode is available.

5.1.7. Argmax Memory Size

The Argmax Memory Size option allows you to select memory 4k/8k for Argmax pooling metadata, which can be
reused while unpooling. This option is available for Extended and Advanced CNN IPs only.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 57

5.1.8. Scratch Memory Size

The Scratch Memory Size option is only visible for projects targeting iCE40 UltraPlus, CrossLink-NX, and CertusPro-NX
devices, allowing you to select from two entries in the drop-down menu: 1,024, 2048, 4096, and 8192 based on
selected devices. These four options select whether the design uses 1K, 2K, 4K, or 8K of the scratch memory. For iCE40
UltraPlus, the default is 4K and is the recommended setting, though in some cases that require reduced resource
utilization, 1K can be selected. Whereas for CrossLink-NX and Certus-NX devices, 8192 is the default and recommended
setting. Some designs that utilize less resources may wish to select the other options.

Note: For iCE40 UltraPlus devices, with Quad mode as Conv1x1 mode, all other convolutions (except 1 × 1 convolution)
use 2× scratch size. For example, if you select a 2048-byte scratch size internally, 3 × 3 convolutions use 4096-byte
scratch memory, and 1 × 1 convolution uses two separate convolutions with a 2048-byte scratch size each.

5.1.9. Debug Mode Enable

This Debug Mode Enable option can be used to enable the write/debug signal on post processing RTL. If unchecked,
write mode is enabled; otherwise debug mode is enabled.

5.1.10. Embedded Mode for CrossLink-NX Optimized and CertusPro-NX Optimized

This option is only visible for projects targeting CrossLink-NX Optimized and CertusPro-NX Optimized devices. This
option allows you to run your model without using external memory when embedded mode is enabled. Embedded
mode also supports branching structures (only residual blocks, not concat structures) and multiple-output networks
like single-shot detector (SSD) architectures.

Note: If you observe a memory error, such as a particular layer requiring more memory than the current LRAM size,
you can try with a higher LRAM size (for example, QUAD LRAM if currently DUAL LRAM is being used). If it is not
possible, reduce the filter or dimension. To run the same model, turn off embedded mode so the tool can use external
memory.

5.1.11. Input Memory Assignment

This setting specifies which EBR memory blocks should be used to store input data in cases where specific memory
blocks should be used. The values must be comma-separated. For example, “1, 2” specifies that EBR 1 and 2 should be
used. If left blank, the software automatically assigns memory blocks.

5.1.12. Output Memory Assignment

Similar to input memory assignment, the output memory assignment setting identifies which EBR should be used when
specified and is automatically assigned when left blank.

5.1.13. Off-Chip Data Memory Start Address

This setting determines the memory address in DRAM where the convolution design starts storing and loading data.
The amount of DRAM required depends on your neural network and your EBR settings, with larger networks or
implementations with lower EBR usage requiring more DRAM. If you intend to read or write input or output to a
memory location, you must have storage enabled, while having it disabled requires you to provide input and output
from something external to the provided IP block.

Do Not Use (ECP5 Only)

The Do Not Use option disables all DRAM usage. In addition to not storing the input or output in DRAM, it also disables
the ability to store data from intermediate stages in the DRAM. This mode may not be compatible with all networks.

Store Input

Enabling Store Input indicates that external memory (HyperRAM/DRAM) is used for input rather than another source.
Disabling this setting prevents external memory from being used to store input. In this case, you need another way of
providing input into your design.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 58

Store Output

Similar to Store Input, the Store Output option indicates that external memory (HyperRAM/DRAM) is used for output
rather than another source.

5.1.14. Collapse Layer

The Collapse Layer option enables you to merge the layers Convolution, BatchNorm, and Scale during the Compile and
Simulation stages, implementing them as a single Convolution layer in hardware. This feature is applicable for networks
with convolution, batch norm, and scale layer architectures. Designs using this optimization should see a reduction in
scale cycles, and a possible reduction in memory access cycles.

5.1.15. Data Preprocessing

The supported preprocessing is shifting (mean), scaling (scale), and resizing. For demo designs, some preprocessing is
already applied to the hardware. Refer to the IP documentation to learn more about the preprocessing in a specific
design.

Scaling of the input data can be implemented using the firmware. The stored_frac bit is adjusted to perform scaling of
the input data. For more information, check the Lattice sensAI Human Counting AI Demo, where scaling of the input
image from 0-255 to 0-2 is performed on the firmware by setting the stored_frac bits to 1.7 in sensAI.

Note: The shifting (mean) preprocessing must be done using the preprocessing RTL, not sensAI firmware. It is included
in the user interface for testing purposes, but the final implementation of your network must have the mean
preprocessing performed in your RTL design and your mean set to 0 in sensAI. The iCE40 UltraPlus device does not
support scaling in sensAI. Scaling and resizing are supported in sensAI.

For example, an input image with a range of 0 to 255, a scale of 0.0078125, and a mean of 128. The input data range is
from -1 to 1. When the firmware is generated, only the scaling is performed using the stored_frac value in sensAI,
which results in a range of 0 to 1. This is because the signed format (0.7) in stored_frac is not being shifted. Perform the
shifting operation in the preprocessing RTL to implement the mean. To bypass Mean/Scale preprocessing, use the
default values of mean = 0 and scale = 1.0.

For designs with input image data, preprocessing can be managed in the source files used by sensAI. In Caffe, the
preprocessing is part of the protofile, while in TensorFlow and Keras, preprocessing can be added with extra node
operations.

For a given mean and scale, the final output feed to the network is:

Output Pixel = (Input Pixel – Mean) x Scale

Mean subtraction is always carried out before scaling. The mean value is an integer, and the scale value data is a float.

For a better understanding of how sensAI (not the firmware) calculates ranges, consider the following examples:

• Input image pixel range is 0 to 255, Mean is 128, and Scale is 1/256 (0.00390625):

• Output pixel range is: –0.5 to 0.5.

• Input image pixel range is 0 to 255, Mean is 0 (default value), and Scale is 1/256 (0.00390625):

• Output pixel range is: 0 to 1.

• Input image pixel range is 0 to 255, Mean is 128, and Scale is 1.0 (default value)

• Output pixel range is: –128 to 127.

• Input image pixel range is 0 to 255, Mean is 0 (default value), and Scale is 1/128 (0.0078125)

• Output pixel range is: 0 to 2

The final type of preprocessing is resizing. Resizing is required, and the input image is automatically resized into the
input data blob using the interpolation function. You cannot bypass it.

http://www.latticesemi.com/legal
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/demos/humancounting

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 59

Mean Value for Data Pre-Processing

The Mean Value is used for normalizing input data. You must specify a value or use the default. If you wish to use
something other than the default, it must be specified in this setting. It is not inferred from your neural network files.
The mean value is subtractive. For example, a mean value of 1 subtracts 1 from all of your results. The default is 0,
which does not manipulate the output. As mentioned in the previous section, the final implementation of your network
must have the mean preprocessing performed in your RTL design. Your mean is set to 0 in sensAI.

Scale Value for Data Pre-Processing

The Scale Value is used for scaling data values. You must specify a value or use the default. If a value other than the
default is used, it must be specified in this setting. It is not inferred from your neural network files. The scale value is
multiplicative. For example, a mean value of 0.5 multiplies all of your results by 0.5. The default is 1, which does not
scale the output. The maximum scale value supported by sensAI (without using additional RTL preprocessing) is 1.0. For
this reason, it is recommended to do your scaling in your preprocessing RTL in most cases.

When using a scale value with a mean value, note that the mean is subtracted first, and then the scale is applied to the
result.

Output Pixel = (Input Pixel - Mean) x Scale

Note: If your preprocessing RTL is handling scaling, it must be set to 1.0 in sensAI.

5.1.16. GPO ID

The GPIO ID option is available for communication from firmware to outside blocks. The total value of the GPO ID is 32
bits. The first 16 bits are fixed and indicate the sensAI tool version. You can configure the last 16 bits.

5.1.17. On the Fly Post Processing

The On-the-Fly-Post-Processing option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices
only. Readout single data at a time for on-the-fly post-processing of the result without storing complete output on the
post-processing side RTL. It is only applicable to detection-type of networks. It is useful for reducing on-chip memory
utilization in post-processing RTL. The expected output depths are shown below in order for the N class.

Conf [1depth/anchor] class prob[N depth/anchor] Bbox [4 depth x,y,w,h / anchor]

 Figure 5.13. On-the-Fly Post Processing Format

Select the on-the-fly post processing checkbox and provide the number of classes in the number of classes for
detection field. The number of anchors and grid dimension are calculated using the dimension of the output and the
number of classes provided by the user, as follows:

If output dimension is (D,H,W) and number of classes are N: then

Number of anchors = D//(conf + class probabilities + (x,y,h,w)) = D // (1 + N + 4)

And grid size = H x W

For example, if the number of classes for detection is 2, then the NNC compiler will postprocess thed data flow with a
single anchor and grid as per the below order and repeat it for all other results.

Confidence Class – 0 Class – 1 X – Offset Y – Offset W – Offset H - Offset

Figure 5.14. On-the-Fly Post Processing Data Flow

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 60

5.1.18. Required Output Depth Range

The option is available for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant devices only. If the last layer in a
network is a convolution layer, this option allows for only processing selected filters from that convolution layer. This
sets weight_slice, i_weight_slice, and output_data_length values in the .yml file at the time of analysis.

For example, if the required ‘output depth range’ value is ‘7-13’, then it processes only the 7th to 13th filters (including
the 13th) and stores the output at the output address.

5.1.19. Sample Rate for Data Pre-Processing

If the input data is audio data (.wav), this option is displayed in the implementation window. This feature reflects the
sample rate of audio data. The equation used for audio preprocessing is: window_duration =
(network_input_dimension/sample_rate) * down_sampling. The following example demonstrates this.

Sample Rate

5.1.20. Down Sampling for Data Pre-Processing

If the input data is audio data (.wav format), this option is displayed in the implementation window. This feature
samples the audio data.

5.1.21. On-Chip Large Memory Size

CrossLink-NX, CertusPro-NX, and Avant devices only. This option selects the size of the Large Random-Access Memory
(LRAM) block available. For Crosslink-NX and CertusPro-NX devices and IP other than Advanced IP, this option allows
you to select from three entries from the drop-down menu: 65,536, 131,072, and 262,144 (Quad LRAM). These
correspond to two possible IP-dependent memory configurations:

• 65,536 - 0.5 megabytes (16384 x 32)

• 131,072 - 1 megabyte (32768 x 32)

• 262144 - 2 megabyte (65536 x 32)

For Advanced IP, you can select the size of Large Random-Access Memory(LRAM) by giving the number of segments.
For Advanced IP with a 32-bit datapath, each segment size is 65,536 bytes, and with a 64-bit datapath, the segment
size is 131072 bytes.

For Certus-Pro devices with Advanced IP, the range of segments you can choose from is from 1 to 7. For Avant Device,
you can choose segment numbers from 1 to 16.

5.1.22. External Memory Interfaced (In Bytes)

CrossLink-NX, CertusPro-NX, and Avant devices only. This option specifies the size of the external memory in bytes.

HyperRAM

This option enables addressing for HyperRAM rather than DRAM for external memory. HyperRAM is enabled by
default, but designs for setups that do not utilize HyperRAM wish to disable this feature.

5.1.23. Code Section Base Address

CrossLink-NX, CertusPro-NX, and Avant devices only. This setting determines the memory address in external memory
where the firmware is stored.

Network_input_dimension = [1,1,8320,1], sample_rate = 8000 ,down_sampling = 1

 window_duration = (8320/8000)*1

 window_duration = 1.04

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 61

5.1.24. Register Out

CrossLink-NX devices only. This parameter in the GUI is equivalent to the LRAM_OREG configuration parameter in
Optimized CNN and Compact CNN IP [Crosslink-NX device].

For Crosslink-NX device,

• Register Out is Unchecked: Do not use the output register for LRAM. The firmware will be backward compatible,
and it can be utilized with older IPs.

• Register Out is Checked: If you use the output register option for LRAM, NNC will generate ML firmware to
compensate for the latency produced by registering the output of LRAM.

Using the output register option in CNN IP for LRAM will provide better timing with less than 1% cycle degradation.

For the CertusPro-NX device, the output register is always used for LRAM, and by default, NNC generates proper
firmware to compensate for the latency of that device.

5.1.25. Data Section Base Address

CrossLink-NX, ECP5, CertusPro-NX, and Avant devices only. This setting determines the memory address in external
memory where the convolution design is to be stored and loaded.

For example, below are the default memory sizes in ECP5 DRAM:

• code section size is 240MB – (0 to 251658240/0xF000000)

• data section size is 16MB – (251658240/0xF000000 to 268435456/0x10000000)

• data section base address – 251658240/0xF000000

By changing the data section base address to lower values, you can increase the memory allocated for data (the same
amount of memory allocated for code is decreased). To allocate 48MB to the data section, the data section base
address should be 218103808 (0xD000000).

• code section size 208MB (256-48) – (0 to 218103808/0xD000000)

• data section size 48MB - (218103808/0xD000000 to 268435456/0x10000000)

• data section base address - 218103808/0xD000000

5.1.26. Number of Segments

For CertusPro-NX and Avant devices, Advanced IP only. This setting determines the total lram size available. Valid
values range from 1 to 7 for CPNX Advanced and 1 to 16 for Avant Advanced. LRAM size will be equal to (number of
segments x segment size). The default value of the number of segments is 16 for advanced.

5.1.27. Segment Size

For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the segment size, which,
along with the number of segments, determines the LRAM size. For the CPNX device, the advanced IP segment size is
fixed to 65536 bytes. For the Avant device, if 64-bit datapath mode is selected, segment sides will be 131072 each.

5.1.28. Number of VE SPD

For CertusPro-NX and Avant devices, advanced CNN IP is only available. This setting determines the number of VE spd,
for 1x1 and Eltwise addition operations. The valid value ranges from 1 to 8. The default value is 8.

5.1.29. Multiport Parallel

For CertusPro-NX, advanced IP, and Avant devices only. This setting determines the input data bandwidth for 1x1
operations. A parallel port will speed up the execution of 1x1 operations, but at the cost of increased resource
utilization.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 62

5.1.30. Kmax Kernel Pooling

For CertusPro-NX and Avant devices, advanced CNN IP only. This setting determines the maximum pooling kernel size
(KxK) for pooling operations.

5.1.31. Datapath Width

This setting is only available for Avant devices and advanced IP. This setting determines the width of the datapath
inside the IP. As the datapath width increases, more bytes will be transferred in each memory transaction cycle.

5.1.32. LUT Input Bits

Setting for input bits for the LUT of the sigmoid or DivNoNan function. Input ranges from 5 to 12 bits.

5.1.33. LUT Output Bits

Output bits for the LUT of sigmoid or DivNoNan function.

5.1.34. LUT MSB Clip

Clip MSB from the number of LUT input bits. If function output saturates on both higher and lower values of input, we
can consider those saturating values as constant and clip the MSB if input bits for less resource utilization by LUT and
also better performance, and now LUT instead of k bits of input uses k-1 bits.

5.1.35. Create Quantized Version

If the input model is not quantized, enabling this option generates a quantized version of the input model. The
compiler tool includes the QuantReLU node after every ReLU node and generates the model, which will be used for
further network compilation processing. When generating the quantized version of the input model, validation data
can be provided by specifying the Validation Datapath so that the compiler uses validation data when creating the
quantized model. If the input model is already quantized, enabling this option has no impact. For a partially quantized
input model, the tool gives an error.

5.1.36. Validation Datapath

Specify the path to the validation data. Validation data is used when creating the quantized version of the input model.

5.1.37. Enable FC 4 Bit Weight

Enable FC weights in 4 bits data width while performing FC computations in engine. While training the model, use
learned step quantization and 4 bits for the Dense/Fully Connected layer. When providing the trained model as input to
the compiler, enable this flag to indicate to the compiler that this feature is active.

This feature is available only for the Optimized IP.

5.1.38. Number of ML IPs

Number of ML IPs used to run the network. Default is 1.

5.1.39. External Memory Port

From this given external memory port number, the logical address for the interfaced external LPDDR4 memory is
derived.

5.1.40. Initial LPDDR4 Address

This is used for USB debugging and to convert logical address into physical address.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 63

5.2. Quantization

5.2.1. Learned Step Quantization (LSQ)
This quantization methodology is based on the paper Learned Step Size Quantization. In this approach, the float step
size is learned during training to represent weights and activation data in low precision. The proposed methodology
performs computations such as Convolution and Fully Connected layers in low precision and then retrieves the high
precision output using the learned step sizes. In SensAI, LSQ is used to perform Convolution, Fully Connected, and
Elementwise (Eltwise) addition operations in integer format.

Training Learned Step Quantization Model Using Lscquant Package

Models can be trained using Learned Step Quantization with the Lscquant package provided at the Lattice website. You
can train models using 8-bit or 4-bit learned step quantization with the different schemes available in the package. For
more information, refer to the document provided with the Lscquant package. For the reference model trained using
LSQ, refer to the example in the MV2 (MobileNet V2) section. The current version of the compiler only supports the
following schemes from the Lscquant package:

• LSQ_CONV8_ACT8U_DENSE8_OUT16S

• LSQ_CONV8_ACT8U_DENSE4S_OUT16S

• LSQ_CONV8_ACT4U_DENSE8_OUT16S

• LSQ_CONV8_ACT4U_DENSE4S_OUT16S

To train the model using LSQ, use the custom layers discussed here and set quantization=“lsq” to create the neural
network. These custom layers are also compatible with keras base classes arguments. The following layers are defined
in the Lscquant package.

Lscquant.layers.QuantizeConv2D(do_quant_bias=False, quantization=“lsq”, bits=8, range_min=None,
range_max=None, **kwargs)

• 3 x 3 and 1 x 1 convolution layers.

• Always use per_channel_quant = False.

• Derived from tensorflow.keras.layers.Conv2D, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeDepthwise2D(do_quant_bias=False, quantization=“lsq”, bits=8, range_min=None,
range_max=None, **kwargs)

• 3 x 3 depth-wise convolution layer.

• Always use per_channel_quant = False.

• Derived from tensorflow.keras.layers.DepthwiseConv2D, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeDense(do_quant_bias=False, quantization=“lsq”, bits=8, range_min=None, range_max=None,
**kwargs)

• Dense/Inner product/Fully Connected layer.

• Always use per_channel_quant = False.

• Derived from tensorflow.keras.layers.Dense, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeAdd(quantization=“lsq”, bits=8, is_signed=False, range_min=None, range_max=None,
**kwargs)

• Eltwise addition layer.

• Derived from tensorflow.keras.layers.Add, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeActivation(activation=“relu”, quantization=“lsq”, bits=8, range_min=None, range_max=None,
**kwargs)

• Derived from tensorflow.keras.layers.Activation, kwargs are all arguments supported by the base class.

http://www.latticesemi.com/legal
https://arxiv.org/abs/1902.08153

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 64

Lscquant.layers.QuantizeConcat(axis=-1, quantization=“lsq”, **kwargs)

• Derived from tensorflow.keras.layers.Concatenate, kwargs are all arguments supported by the base class.

Lscquant.layers.QuantizeOutput(quantization=“lsq”, bits=16, is_signed=False, range_min=None, range_max=None,
step_size=1/1024, **kwargs)

• Derived from tensorflow.keras.layers.Layer, kwargs are all arguments supported by the base class.

• Fixed step size of 1/1024 results in a quantized output with the Q5.10 fixed point representation format.

Lscquant.layers.FocusLayer(focus_kernel_size=(2, 2) , **kwargs)

• Derived from tensorflow.keras.layers.Layer, kwargs are all arguments supported by the base class.

• focus_kernel_size is a 2-dimensional tuple specifying the vertical and horizontal strides.

Quantizing Keras Model Using Schemes

There are various schemes available in the Lscquant package to quantize a model. Shown here is a selected lsq-default
scheme which quantizes activation and weights in 8 bits.

After successfully creating the model using native keras functions such as Conv2d, Depthwise2d, Add, ReLU, Dense, and
Concat, call the build_quantization_model() function defined in the Lscquant package to quantize the model with an
available scheme in the Lscquant package. For more information, refer to the Lscquant package documentation.

Post Training Quantization with Learned Step Quantization

Post training quantization offers a conversion method capable of shrinking model size while simultaneously enhancing
hardware response times. This process involves quantizing a pre-trained float TensorFlow or keras model.

When you provide the float model as input in SensAI, you can enable the Create Quantized Version option from the
Project Window as shown in Figure 5.15 to use post training quantization. This generates the post training quantized
version of the input model. The step sizes of the PTQ model (generated quantized model) are dynamic similar to the
learned step quantization step sizes. However, these step sizes are calculated from the validation data manually given
through the location as specified by the validation data path option. If validation data is not provided, parameters are
derived from the single input image selected while creating the project.

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Lambda

from tensorflow.keras import Model, Input

from tensorflow.keras import backend as K

import lscquant

def create_model():

 ip = Input(shape=(64,64,3))

 x = Conv2D(filters=4, kernel_size=3, strides=1, padding="same")(ip)

 x = BatchNormalization()(x)

 out = ReLU()(x)

 model = Model(inputs=ip, outputs=out)

 return model

creating model without quantization

model = create_model()

selecting schemes from lscquant package

scheme = 'lsq-default'

generating quantized version of model

lsq_model = lscquant.model.build.build_quantization_model(model, scheme)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 65

Figure 5.15. Create Quantized Version Flag

The following table summarizes the Learned Step Quantization support provided by the SensAI stack across different
Lattice devices.

Table 5.1. Learned Step Quantization Details with Device Type

Quantization Type
Device

ECP5 iCE40 UltraPlus CrossLink-NX, CertusPro-NX, Avant

Activation 16b Not supported Not supported Not supported

8b Requires Quantization aware training

4b Only supported in Optimized IP and model
with Learned Step Quantization.

Weights 16b Not supported Not supported Not supported

8b Requires Quantization aware training

4b Only supported for Fully Connected layer in
CrossLink-NX device and Optimized IP and
model with Learned Step Quantization.

5.2.2. Fixed Point Quantization (FPQ)

The data in sensAI can be quantized using the QuantReLU layer in Caffe or the predefined quantization function in
TensorFlow to perform quantization on unsigned 8-bit activation data in the training phase. Neural Network Compiler
7.0 only supports using 8-bit data to represent quantized data.

SensAI automatically calculates the number of fraction bits and decimal bits needed to store the quantized data, which
can be found in the stored_frac section of the report panel in the main window. If you would like to quantize the
activation data yourself, for example, with min = 0.0 and max = 2.0, then use the 8-bit calculation to take place (after
the ReLU layer) as follows:

Neural Network Compiler dedicates 0 bits for signs (all positive values), 1 bit for decimal, and 7 bits for fractions,
resulting in the representation of data in hardware having a range of 0.0 to 1.9921875. You should use a maximum
range that is a power of 2 (5 or 7 values), as there is no dedicated hardware for quantization. The following tables show
the ranges that are powers of two and the respective fraction bits and decimal bits.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 66

Fixed Point Quantization Using Lscquant Package

Models can be trained using Fixed 8b Quantization with the Lscquant package provided at the Lattice website. You can
train models using the different schemes available in the package. For more information, refer to the document
provided with the Lscquant package and the example provided in the MV1 (MobileNet V1) section.

The following is a code snippet for training the fixed point quantized model using the Lscquant package.

The following tables show that increasing the quantization range results in the data representation becoming less
accurate. For this reason, the suggested range is 0 to 2.

 Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization)

Unsigned 8-Bit

Min (Protofile) Max (Protofile) Sign Bits Decimal Bits Fraction Bits Min (Hardware) Max (Hardware)

0 1 0 0 8 0 0.99609375

0 2 0 1 7 0 1.992188

0 4 0 2 6 0 3.984375

0 8 0 3 5 0 7.96875

0 16 0 4 4 0 15.9375

Table 5.3. Signed 8-Bit Quantization (Fixed Point Quantization)

Signed 8-Bit

Min (Protofile) Max (Protofile) Sign Bits Decimal Bits Fraction Bits Min (Hardware) Max (Hardware)

–2 2 1 1 6 –1.98438 1.984375

–4 4 1 2 5 –3.96875 3.96875

–8 8 1 3 4 –7.9375 7.9375

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Lambda

from tensorflow.keras import Model, Input

from tensorflow.keras import backend as K

import lscquant

def create_model():

 ip = Input(shape=(64,64,3))

 x = Conv2D(filters=4, kernel_size=3, strides=1, padding="same")(ip)

 x = BatchNormalization()(x)

 out = ReLU()(x)

 model = Model(inputs=ip, outputs=out)

 return model

creating model without quantization

model = create_model()

selecting schemes from lscquant package

scheme = 'fpq-default'

generating fixed point quantized version of model

fpq_model = lscquant.model.build.build_quantization_model(model, scheme)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 67

The following table summarizes the Fixed Point Quantization support provided by the SensAI stack across different
Lattice devices.

Table 5.4. Fixed Point Quantization Details with Device Type

Quantization Type*

Device

ECP5 iCE40 UltraPlus
CrossLink-NX, CertusPro-NX,
and Avant

Activation 16b Default- Post
processing
Quantization in tool

Default- Post processing
Quantization in tool

Not supported

8b Quantization-aware
training is required

Quantization-aware training is
required

Quantization-aware training is
required

4b Not supported Not supported Only supported in Optimized IP and
model with Learned Step
Quantization.

Weights 16b Default- Post
processing
Quantization in tool

Default- Post processing
Quantization in tool

Not supported

8b Not supported Quantization-aware training is
required

Quantization-aware training is
required

*Note: Except for the above-mentioned type, the Lattice sensAI stack does support 1b [BNN] and 4b quantization. Contact Lattice
representatives to get more information.

As seen in Table 5.4, the NNC compiler internally uses the default 16b for representing data if no supported 8b
quantization structure is used in the input network [except image input; the NN compiler always uses 8b for the input
image].

Note: The quantization techniques is one of the best optimization technique available in the market, and we always
recommend users use the provided quantization techniques and functions for better performance in terms of FPS and
power consumption.

Table 5.5 provides layer-wise support for quantization.

 Table 5.5 Quantization Support in Layers

Layer Type Quantization Support

Convolution layer

The user can train with the following:

• 8b Fixed Point Quantization

• 8b Learned Step Quantization

• 4b Learned Step Quantization

We generally support a –0.5 to +0.5 data range for convolution layer weight quantization, and
input to convolution can be 16b or 8b quantized. For 8b activation quantization, the generally
supported range is 0 to 2.

MaxPooling or AveragePooling
or ResizeBilinear

Input data type should be equal to output datatype.

Batch norm layer Do not use any type of quantization for a better learning of model.

Fully Connected layer
The user can train with 8b quantization. We generally support a –0.5 to +0.5 data range for
Fully Connected layer weight quantization, and input to Fully Connected layer can be 16b or 8b
quantized. 4-bit input is not supported for Fully Connected layer.

Eltwise Layer
Input data type should be equal to output data type, i.e., if output has been quantized to 8b,
then both inputs should be in 8b quantized format.

ReLU or LeakyReLU There is no dependency on the input type.

Note: If the model is trained with LSQ, provide the trained keras model .h5 as input to the SensAI Neural Network Compiler instead
of converting it to TensorFlow .pb or .onnx format.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 68

5.2.3. Fixed Point Quantization Training in Caffe

In Caffe, fixed point quantization can be implemented with the QuantReLU layer. The following example demonstrates
how the layer is used.

Caffe QuantReLU Layer

5.2.4. Fixed Point Quantization Training in TensorFlow

For TensorFlow, fixed point quantization can be implemented using the quantization function.

TensorFlow Quantization Function

layer {

 name: "fire1/div"

 type: "QuantReLU"

 bottom: "Scale1"

 top: "Scale1"

 quantize_param {

 num_bit: 8

 min: 0.0

 max: 2.0

 resolution: 256.0

 }

}

def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5):

 min_clip = tf.rint(min_rng*256/(max_rng-min_rng))

 max_clip = tf.rint(max_rng*256/(max_rng-min_rng))

 wq = 256.0 * w / (max_rng - min_rng) # to expand [min, max] to [-128,
128]

 wq = tf.rint(wq) # integer (quantization)

 wq = tf.clip_by_value(wq, min_clip, max_clip) # fit into 256 linear
quantization

 wq = wq / 256.0 * (max_rng - min_rng) # back to quantized real number,
not integer

 wclip = tf.clip_by_value(w, min_rng, max_rng) # linear value w/ clipping

 return wclip + tf.stop_gradient(wq – wclip)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 69

The corresponding Tensor graph resembles the figure below (Figure 5.16).

Figure 5.16. Tensor Graph Quantization Nodes

5.2.5. Fixed Point Quantization Training in Keras
8-bit activation quantization can be done by using a Lambda layer from tf.keras.layers, and weight quantization can be
done using kernel constraints. Both methods are explained in the snippet below.

Keras Fixed Point Quantization Function

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Lambda

from tensorflow.keras import Model, Input

from tensorflow.keras import backend as K

def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5): ## 8-bit activation quantization in Keras using Lambda
layer

 if min_rng==0.0 and max_rng==2.0:

 min_clip = 0

 max_clip = 255

 else:

 min_clip = -128

 max_clip = 127

 wq = 256.0 * w / (max_rng - min_rng) # to expand [min, max] to [-128, 128]

 wq = K.round(wq) # integer (quantization)

 wq = K.clip(wq, min_clip, max_clip) # fit into 256 linear quantization

 wq = wq / 256.0 * (max_rng - min_rng) # back to quantized real number, not integer

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 70

 wclip = K.clip(w, min_rng, max_rng) # linear value w/ clipping

 return wclip + K.stop_gradient(wq - wclip)

class MyConstraints(tf.keras.constraints.Constraint): ##Used for 8-bit weight quantization is Keras

 def __init__(self,name="", **kwargs):

 super(MyConstraints, self).__init__(**kwargs)

 self.name=name

 def __call__(self, w):

 with tf.compat.v1.variable_scope(self.name + "_CONSTRIANTS") as scope:

 return lin_8b_quant(w)

 def get_config(self):

 return {"name":self.name}

def act_quant_8b(x, a_bin=16, min_rng=0.0, max_rng=2.0): # For use in Lambda layer

 x_quant = lin_8b_quant(x, min_rng=min_rng, max_rng=max_rng)

 return x_quant

def create_model():

 ip = Input(shape=(64,64,3))

 x = Conv2D(filters=4, kernel_size=3, strides=1, padding="same", activation='linear',\

 kernel_constraint=MyConstraints("conv2d_1"),use_bias=False)(ip) ## Using Kernel
constraints here gets us 8b

 ## weight quantization

 x = BatchNormalization()(x)

 out = Lambda(act_quant_8b)(x) ##Activation Quantization

 model = Model(inputs=ip, outputs=out)

 return model

create_model()

5.2.6. Fixed Point Quantization Training in AutoKeras

8-bit activation and weight quantization are supported in AutoKeras customized layers (similar to the ones in Keras).
The user can enable the flags quantrelu (for activation) and kernel_quant (for weight) for quantization. AutoKeras
custom layers support both quantized and non-quantized models to support all the devices supported by NNC. Please
refer to the AutoKeras Reference Design script to use the AutoKeras quantization.

5.2.7. Fixed Point Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant

The Neural Network Compiler 7.0 UltraPlus IP, 4.0 CrossLink-NX IP, and 4.0 CertusPro-NX IP are created by considering
input/output data quantization with a range of [0, 2] (2 is non-inclusive, and it is represented in 1.7 fractional format)
and a weight quantization range of [-0.5, +0.5](+0.5 is non-inclusive). You must train your network using the
quantization function. After training your network in this way, you cannot manually adjust your fractions afterwards in
sensAI. The output of all CNN models for UltraPlus in Neural Network Compiler 7.0 is in signed 16-bit format,
represented in 5.10 fractional format.

Note that while training models, you must use quantization for all the activations simultaneously. A single data
activation is interpreted as all the activations being quantized. This also applies for weight quantization.

Weight quantization is supported in the Keras and TensorFlow platforms, and a script is provided for your use. This
script, shown below for convenience, can be used to perform the data and weight quantization.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 71

TensorFlow Data and Weight Quantization for iCE40 UltraPlus

#This code is taken directly from the TensorFlow script, w is a tensor here

def lin_8b_quant(w, min_rng=-0.5, max_rng=0.5,res=256 , offset=-1):

 with tf.Session() as sess:

 min_clip = tf.rint(min_rng*res/(max_rng-min_rng))

 max_clip = tf.rint(max_rng*res/(max_rng-min_rng)) + offset # 127, 255

 wq = (1.0*res) * w / (max_rng - min_rng) # to expand [min, max] to [-
128, 128]

 wq = tf.rint(wq) # integer (quantization)

 wq = tf.clip_by_value(wq, min_clip, max_clip) # fit into 256 linear
quantization

 wq = wq /(1.0* res) * (max_rng - min_rng) # back to quantized real
number, not integer

 wclip = tf.clip_by_value(w, min_rng, max_rng) # linear value w/ clipping

 qw=sess.run(wclip + tf.stop_gradient(wq - wclip))

 sess.close()

 #print(qw)

 return qw

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 72

The quantization of the activation data is represented in Figure 5.17.

Figure 5.17. Activation Data Quantization Nodes

5.2.8. Fixed Point Quantization Requirements and Suggestions

The following are further requirements and suggestions for fixed point quantization. Consult this list to troubleshoot
your designs.

• Always use the collapse layer option when using quantization for ECP5.

• When using Caffe, always use an in-place QuantReLU layer before ReLU activation and after a Batchnorm layer.

• The input Blob is always considered an 8-bit signed/unsigned type if the decimal range of the input data is less
than or equal to 256. You can force the use of the 16-bit signed type by overriding the value in stored_frac for the
input blob in your report window. Supported formats are 15.0 for 16-bit signed, 8.0 for 8-bit unsigned, and 7.0 for
8-bit signed.

Learned Step Quantization (LSQ) is supported only in Advanced IP.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 73

5.3. Optimization Modes

5.3.1. Mobilenet Mode for ECP5

When creating or modifying a project, ECP5-targeted designs can enable Mobilenet mode to target designs intended to
run on the Convolutional Neural Network (CNN) Mobilenet Accelerator IP that has been generated in Mobilenet mode.
Unlike the default configuration, the Mobilenet mode is optimized to run Mobilenet designs by implementing the
Depthwise and 1×1 Convolution engines in place of some of the standard Convolution engines. This mode is configured
to use eight convolution engines, eight Depthwise Convolution engines, and 64 1×1 Convolution engines. Additionally,
it always uses 16 EBRs in this mode.

Note: Mobilenet mode IP generation is required to run designs compiled to make use of Mobilenet mode. Check the
information and files available on the sensAI website to ensure that you have the files for Neural Network Compiler 7.0
and to ensure that you are aware of the performance and resource utilization.

When using Mobilenet mode, there are two additional recommendations for your design and setting. First, it is
recommended that the number of features (number of kernels) in both Depthwise and 1×1 Convolution is a multiple of
8. Secondly, it is recommended that you enable the collapse layer feature.

5.3.2. Compact Mode for CrossLink-NX and CertusPro-NX

When creating or modifying a project, CrossLink-NX-targeted designs and CertusPro-NX-targeted designs can enable
compact mode to use a reduced-resource version of the CrossLink-NX IP and CertusPro-NX IP.

Note: The performance of compact mode is usually lower than that of optimized mode. It is recommended to use
compact mode only to reduce hardware resource usage. Optimized mode generally performs better than compact
mode.

5.3.3. Embedded Mode

When creating or modifying a project, CrossLink-NX and CertusPro-NX targeted designs can enable embedded mode in
the Impl options window to restrict the use of external memory.

Note: One can use embedded mode only if the input and output of each layer can be stored inside internal memory
when the layer is being executed.

5.4. SensAI Security Flow
SensAI supports the encryption and decryption of models. One can encrypt a model through the sensAI compiler and

provide it for secure use. When an encrypted model is provided as input, sensAI will decrypt it internally, minimal

information is visible, and no weights or network information can be extracted while generating firmware through sensAI.

Model encryption and decryption flow are only available for the Caffe, Tensorflow, and Keras frameworks.

5.4.1. Model Encryption
Sample command to encrypt the model.

$./lsc_ml_compl --cryptography --input_file_path <input_model_path>.pb --output_file_path
<output_model_path>.elpb --password <Password> --mode encrypt

Figure 5.18. SensAI Security Flow: Encrypt Model

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 74

Table 5.6. SensAI Security Flow: File Extension Mapping

Frame Work Input Extension Encrypted Extension

Keras .h5 .elh5

Tensorflow .pb .elpb

Caffe .proto .elproto

.caffemodel .elcaffemodel

Note: The encrypted model can be directly used in the sensAI compiler. It will internally decrypt the model and will not expose any
weights or network details.

To use an encrypted model in the compiler, please select the encrypted model option in the files of types section of the
model selection window, as shown below.

Using an encrypted model does not change any other flow during the compilation.

Figure 5.19. SensAI Security Flow: Encrypted Model Selection

5.4.2. Model Decryption

To decrypt the model, the user needs to have the password used during encryption.

$./lsc_ml_compl --cryptography --input_file_path ~/model.elpb --output_file_path
~/model_decrypted.pb --password SomePassword123 -m decrypt

Figure 5.20. SensAI Security Flow: Encrypt Model

Note:

Without the correct password, the model cannot be decrypted.

The firmware generation from the sensAI compiler model doesn’t need to be decrypted. It is for utility purposes only.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 75

6. Supported Frameworks
Currently, the Lattice Neural Network Compiler Software supports the Caffe, TensorFlow, Keras, and ONNX
(experimental) machine learning frameworks. Caffe protofiles are natively supported, while TensorFlow requires
creating a frozen deployment model file.

Each supported framework is clearly defined in the appendix sections. These following sections explain how to
customize or alter the neural network.

6.1. Caffe
Lattice Neural Network Compiler Software supports Caffe. This is done by using the provided tool for analyzing and
converting Caffe neural networks into a compatible Onnx model internally. You can quickly import a Caffe neural
network if you have the required files. You are required to provide a protofile (.proto), a caffemodel file (.caffemodel),
and a reference data file (such as a .jpg image or .mp4 video file). For detailed information regarding the Caffe
Framework and in-depth explanations of features and limitations, see Appendix A. Supported and Added Caffe Layers.

You must follow these requirements when creating your protofile:

• Do not include blobs intended for training purposes only, such as accuracy or loss.

• An input layer with a clearly defined input size must be present in the network.

• ReLU must be an in-place layer. Its top and bottom blobs must be the same.

• Every BatchNorm layer must have a scale layer immediately following it.

In addition to the above requirements, you may find the following guidelines useful for protofile creation:

• The first blob should include the input layer to indicate to the tool that it is the desired first blob and potentially
improve runtime by reducing the number of cycles required for operations.

• Mean and Scale are not read from the protofile. They must be specified in the tool itself. Otherwise, the default
values are used. The default mean value is 128, and the default scale value is 255.

• Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation
constraints of hardware.

• It is recommended to use an input size that is a power of 2 for better computational speed and to minimize
memory alignment issues.

6.1.1. Binary Neural Networks

The software utilizes a custom implementation of Caffe for incorporating Binary Neural Networks. The Binarize,
BinaryInnerProduct, and BinaryConvolution layers are not supported in official Caffe releases and cannot be trained
using those distributions. You are required to use a version of Caffe that has been supplemented by these layers in
order to train binary neural networks.

6.2. TensorFlow
Lattice Neural Network Compiler Software is able to run designs made using the TensorFlow framework. This is done by
using the provided tool for analyzing and converting TensorFlow neural networks into a compatible Onnx model
internally. You are required to provide a TensorFlow inference frozen model file that contains both graph and
parameter values (.pb file), and this model file must already be optimized by removing all the nodes related to data
processing or training. All parameter variables needed for inference must be converted to constants.

The frozen .pb file requires both network topology and constant weights that are made for the purpose of inference.
Follow the instructions specified in the Training to Inference Conversion section to convert a training .pb model to an
inference frozen .pb model.

You must follow these requirements when creating your TensorFlow inference frozen model file:

• Data pre- or post-processing related subgraphs and operations are ignored. A separate script is required to
preprocess input data so that it is used directly as input when testing your TensorFlow model in Lattice Neural
Network Compiler Software.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 76

• Only one placeholder exists as data input, and the shape of the placeholder must be explicitly specified in the
TensorFlow standard 4-dimension image input format and dimension order.

• Using a frozen model from a training session or checkpoint folder is not supported and cannot be directly used to
create a compatible project. Training to inference optimization conversion must be done for any training model
you wish to use with sensAI.

• Data post-processing operations such as softmax is not supported. Supported output layers are Conv2D, Matmul
(for Inner Product and Full Connect), and Global Average.

The following guidelines are not required but strongly recommended:

• Call tf.reset_default_graph() immediately before initializing a new inference session. Within the inference session,
only do inference-related TensorFlow operations. Use tf.train.write_graph to save the session graph definition as a
.pb file, and then the file can be further optimized and frozen for inference applications.

• Any data pre- or post-process, for example, mean and scale, from the .pb is ignored. It must be specified in the tool
itself or in a separate Python script layer. It is recommended to process input data, and save the processed data as
a raw array (.npy) file, and use the raw input array as input.

• Use Scaling and BatchNorm layers every few layers to optimize performance due to the fixed point notation
constraints of the hardware.

• Use an input size that is a power of 2 for better computational speed and to minimize memory alignment issues.

6.2.1. Training to Inference Conversion

TensorFlow training models must be converted to inference models to be compatible with sensAI. There are three
main steps in the process for converting a TensorFlow training model (located in the checkpoint directory) into the
supported TensorFlow inference frozen model, which are detailed below:

1. Identify the input and output nodes needed for inference. The input node should be the node after all pre-
processes, and the output node should be the node right before the post-process, normally right after the conv2D
or matmul node.

2. While using TensorFlow 1.x, use tensorflow.python.tools.optimize_for_inference_lib.optimize_for_inference to
remove nodes that are not related to inference, and use tf.train.write_graph to save the output in the binary .pb
format.

3. Copy the output of step 2 (the simplified inference .pb) into the checkpoint folder and use
tensorflow.python.tools.freeze_graph to freeze the checkpoint weight as a TensorFlow inference frozen model file
(.pb).

An example graph (Cifar10 Binary NN model before and after inference optimization) is shown in Figure 6.1 and Figure
6.2.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 77

Figure 6.1. Original TensorFlow Training Model

Figure 6.1 displays an example training model. This one is not yet frozen for inference and has many extraneous nodes.
These nodes are not needed for inference. Nodes that are only related to preprocessing, training, or post-processing
can all be removed without affecting the precision of the inference.

After following those three steps, the same model in Figure 6.1 is optimized for Figure 6.2. It is in the form of a
supported binary inference frozen model, with only inference nodes in the graph.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 78

Figure 6.2. Simplified TensorFlow Inference Model

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 79

A complete standalone demo script is provided in your sensAI installation directory in
“\networks\TrainToInference\checkpoint\” to demonstrate the above method. If TensorFlow and Python are already
installed on your system, you can directly run trainckpt2inferencepb.py to output a frozen inference .pb file
(TrainToInference.ckpt_frozenforInference.pb) for the checkpoint inside the demo. This script also supports using
Docker to run on both Windows and Linux systems, allowing it to function even when Python and TensorFlow are not
installed. Refer to README.txt and RUNDOCKER.txt inside the demonstration directory for more details.

There are two methods you can use to provide the input and output node information that is required for this script to
run.

• Method 1: Directly provide the full name of the input and output nodes as the input parameters.

• Method 2: Use the pre-defined INPUTNODE_TAG and OUTPUTNODE_TAG as part of the node name.

• The demo script assumes that only one input node has the “INPUTNODE_TAG” string as part of its name and
that only one output node has the “OUTPUTNODE_TAG” string as part of its name. Exact input and output
node names are not required as input parameters, as long as you use the following two tags pre-defined in the
sensAI NN compiler:

• INPUTNODE_TAG='_SensAI_BeginNode'

• OUTPUTNODE_TAG='_SensAI_EndNode'

6.2.2. Binary Neural Networks (BNN)

TensorFlow does not provide an official implementation for binarization. Therefore, binarization support is
experimental and limited only to three operations:

1. Sign operation

2. Conv2D

3. Matmul

Binary models created by open-source packages, for example, TensorLayer, need to have a similar computation
topology to the BNN demo model. SensAI utilizes a custom implementation of Caffe for incorporating Binary Neural
Networks, meaning that binary TensorFlow models must match the customized Caffe implementation.

Use this Python code to implement binarization for conv2D in TensorFlow to match the customized Caffe
implementation:

Python Binarization Implementation

 tf.multiply(tf.sign(x),tf.reduce_sum(
tf.abs(x),[0,1,2])/ tf.to_float(tf.size(x)/x.get_shape().as_list()[3]))

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 80

Figure 6.3. Tensorboard Visualization of Binarization

The Python code and TensorBoard representations may be difficult to understand. The following C++ code (inside

customized Caffe) to implement the above computation topology is equivalent. It demonstrates how the binarization
algorithm works.

Implementation C++ Code

#define sign(x) ((x)>=0?1:-1)

 const int div = weights->count() / weights->num();

 for (int num = 0; num < weights->num(); num++) {

 if (normalized_weights) {

 A[num] = 0;

 for (int _c = 0; _c < weights->channels(); _c++)

 for (int _h = 0; _h < weights->height(); _h++)

 for (int _w = 0; _w < weights->width(); _w++)

 A[num] += std::abs(weights->data_at(num, _c, _h, _w)) / Dtype(div);

 }

 }

 for (int index = 0; index < weights->count(); index++) {

 const int num = index / div;

 wb->mutable_cpu_data()[index] = A[num] * sign(weights->cpu_data()[index]);

 }

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 81

In addition, due to the limitations of the hardware and precision of fixed point representation, you must follow these
requirements when creating a binary TensorFlow inference frozen model:

• When using signed operations in a binary TensorFlow model, bear in mind that the hardware only supports either
0/1 or -1/1 quantization modes. Additional preprocessing must be implemented so that the subgraph can generate
0/1 or -1/1 as the output and produce the expected results in hardware. The constant “y” is equal to 0.5.

Figure 6.4. Binary Neural Network Modes in TensorFlow

• A batch normalization operation is required right after conv2D operations (with binarized normalization).

• Currently, NNC does not support a mixed model. In binary TensorFlow models, all conv2D operations and all
Matmul (full connect layer) need to be binarized (sign operations similar to Keras Sample Code below need to be
part of weight loading). If a model is not a binary model, then the sign operation should not be present in the
graph at all.

6.3. Keras
NNC supports implementing Keras networks in the form of "tensorflow.keras” designs shipped with TensorFlow 1.14,
2.0, 2.3, 2.5, and 2.9. The Keras/Keras-Team release version of Keras is unsupported. The slight implementation
differences likely result in your design not being compatible with sensAI, if your model is created with the Keras team
release instead of the TensorFlow release.

NNC requires a single HDF5 file (.h5 with both weight and architecture) for Keras models. It is recommended to set
Keras to inference (tf.keras.backend.set_learning_phase(0)) before saving it as a .h5 file, as NNC only supports
inference model format. If the .h5 is saved as a training format file, NNC attempts to convert it to inference. But it is
not guaranteed that this converted Keras model can produce the same output as the original Keras model.

NNC uses the channel_first data format for intermediate graph representation. Simulation output as well as the engine
provided output in NNC will be in channel_first format only. For raw numpy sample input, the user needs to provide
channel_last formatted data for Tensorflow and Keras. In addition to these file requirements, Keras models are also
subject to the same hardware limitations and parameter constraints as supported TensorFlow layers.

 0/1 Mode (UltraPlus) –1/1 Mode (ECP5)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 82

6.3.1. Using Keras

As an example of how to use Keras, the humanGesture design can be implemented in Keras using the following code. In
some cases, it is required (for example, using the Lambda function for 8-bit quantization for Lattice NNC) that the user
convert the Keras model (.h5) to the Tensorflow model (.pb) to avoid any bad marshal data type errors. To help convert
the Keras model to TensorFlow format, please use the reference script at
networks\TrainToInference\keras2tf_conversion\keras2tf.py.

Keras Sample Code

def humanGesture(input_tensor, classNumer=4,epsilonBN=1e-3):

 a = Input(tensor=input_tensor)

 x=Conv2D(24, (3, 3) ,padding='same')(a)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x)

 x=MaxPooling2D(pool_size=(2, 2))(x)

 x=Conv2D(20, (3, 3) ,padding='same')(x)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x) #Fire 3

 x=Conv2D(20, (3, 3),padding='same')(x)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x)

 x=MaxPooling2D(pool_size=(2, 2))(x)

 x=Conv2D(22, (3, 3),padding='same')(x)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x) #Fire 5

 x=Conv2D(22, (3, 3),padding='same')(x)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x)

 x=MaxPooling2D(pool_size=(2, 2))(x)

 x=Conv2D(24, (3, 3),padding='same')(x)

 x=BatchNormalization(epsilon=epsilonBN)(x)

 x=Activation('relu')(x)

 x=MaxPooling2D(pool_size=(2, 2))(x)

 x=Flatten()(x)

 x=Dense(classNumer , kernel_initializer='uniform') (x)

 model = Model(inputs=a, outputs=x)

 return model

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 83

6.3.2. Using ONNX

NNC requires an ONNX file (.onnx) for ONNX models. The model can be a float or PTQ model. While loading the model,
the create_quantized_version option needs to be selected. This section shows how to convert the model trained in
PyTorch to ONNX which can then be loaded in the NNC. As support is experimental, you may find that some layers or
attributes are not supported by NNC for the converted ONNX model.

The following is the code to convert the pytorch mnist model to ONNX using the torch.onnx.export function.

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

from torch.onnx import register_custom_op_symbolic

from torch.autograd import Function

Define a transform to normalize the data

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

Load the training and test datasets

trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)

testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

Function to calculate the padding for "same" convolution

def calc_pad(kernel_size, stride, dilation=1):

 padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2

 return padding

class quant_node(nn.Module):

 def __init__(self, constant=0.2):

 super(quant_node, self).__init__()

 self.constant = constant

 def forward(self, x):

 return x * self.constant

Register the custom op for ONNX export

def multiply_by_constant_symbolic(g, x, constant):

 return g.op("quant", x, torch.tensor(constant, dtype=torch.float32))

Ensure that the custom op is registered with the appropriate name and version

register_custom_op_symbolic("::quant_node", multiply_by_constant_symbolic, 13)

class MyReLUFunction(Function):

 @staticmethod

 def symbolic(g, input):

 return g.op('custom', input)

 @staticmethod

 def forward(ctx, input):

 ctx.input = ctx

 return input.clamp(0)

 @staticmethod

 def backward(ctx, grad_output):

 grad_input = grad_output.clone()

 return grad_input

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 84

class MyReLU(nn.Module):

 def forward(self, input):

 return MyReLUFunction.apply(input)

Define the neural network model

class SimpleCNN(nn.Module):

 def __init__(self):

 super(SimpleCNN, self).__init__()

 self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

 self.relu = nn.ReLU()

 #cbsr1

 self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1, padding=calc_pad(3,1),bias=False)

 self.bn1 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

 #cbsr1

 self.conv2 = nn.Conv2d(16, 16, kernel_size=3,stride=1, padding=calc_pad(3,1),bias=False)

 self.bn2 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

 #dw

 self.dw_1 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=calc_pad(3,1), groups=16, bias=False)

 self.pt_1 = nn.Conv2d(16, 16, kernel_size=1,stride=1, bias=False)

 # self.bn2 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

 self.conv3 = nn.Conv2d(16, 16, kernel_size=3,stride=1, padding=calc_pad(3,1),bias=False)

 self.bn3 = nn.BatchNorm2d(16, momentum=0.9, eps=0.001)

 self.dp = nn.Dropout2d(p=0.2)

 self.nnfl1 = nn.Flatten()

 self.fc1 = nn.Linear(3136, 10)

 self.quant = quant_node(0.2)

 self.cus_relu = MyReLU()

 def forward(self, x):

 x = self.conv1(x)

 x = self.bn1(x)

 x = self.relu(x)

 x1 = self.pool(x)

 # # dw conv

 x = self.dw_1(x1)

 x = self.bn2(x)

 x = self.relu(x)

 x = self.pt_1(x)

 x = self.bn2(x)

 x2 = self.relu(x)

 x = torch.add(x1, x2)

 x = self.conv3(x)

 x = self.bn3(x)

 x = self.relu(x)

 x = nn.functional.dropout(x)

 x = x.view(-1, 3136)

 x = self.fc1(x)

 return x

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 85

Instantiate the model, define the loss function and the optimizer

model = SimpleCNN()

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

Training loop

num_epochs = 1

for epoch in range(num_epochs):

 running_loss = 0.0

 for i, data in enumerate(trainloader, 0):

 inputs, labels = data

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 if i % 100 == 99:

 print(f"[{epoch + 1}, {i + 1}] loss: {running_loss / 100:.3f}")

 running_loss = 0.0

print('Finished Training')

Save the trained model

torch.save(model.state_dict(), 'mnist_cnn.pth')

Export the model to ONNX

dummy_input = torch.randn(1, 1, 28, 28) # MNIST images are 1x28x28

torch.onnx.export(model, dummy_input, "toy_mnist_3.onnx", opset_version=13, input_names=['input'],
output_names=['output'],

 dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}

 , export_params=True, training=torch.onnx.TrainingMode.EVAL, do_constant_folding=False,)

print('Model has been exported to ONNX')

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 86

7. USB Debugging
The USB debugging feature in NNC allows you to debug iCE40, ECP5 (using the USB3-GbE VIP IO Board), CrossLink-NX,
and CertusPro-NX designs. The DRAM and registers of the ECP5 device can also be accessed using this option.

7.1. Hardware Configuration
The following steps are required to configure the hardware before using it for USB debugging in the sensAI tool.

7.1.1. ECP5

1. Refer to the USB3-Gigabit Ethernet Demo User Guide (FPGA-UG-02054).

2. Configure the FX3 USB controller.

• Follow Appendix B in the user guide document.

• Select the image file mentioned in step 5 from the following location:
utils\drivers\lattice-usb\cyfxuvc.img

3. Configure ECP5.

• Follow the ECP5 SPI Flash Programming section in the user guide document.

4. Select the debugging bit file.

• For all designs, select the bit file from the following location:
utils\drivers\lattice-usb\bitfiles.zip
Refer: utils\drivers\lattice-usb\README

Note that as there is no DRAM on UltraPlus, USB debugging must be done using ECP5/CNX/CPNX hardware,
and DRAM can be interfaced to see the input and output blob data only.

7.1.2. CNX VVML, CPNX

1. Flashing the FX3 USB .img file.

• Connect the jumper to port J13 of the Crosslink-NX or CPNX VVML Board (Rev B) and connect the board to the
PC using a USB3 cable.

• Connect the jumper to port J4 of the Avant board and connect the board to the PC using a USB B-mini cable.

• Open the USB control center application (the Cypress FX3 SDK needs to be installed for the same).

• Press the push-button switch SW2 on the board to reset the FX3 chip.

• You can see the bootloader device, as shown in Figure 7.1.

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52371

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 87

Figure 7.1. Cypress Window

• Select the Cypress USB Bootloader.

• Select Program > FX3 > I2C EEPROM from the menu bar.

• Browse and select the USB debug file LSCVVML.img from the path utils\drivers\lattice-usb.

• Wait until Programming of I2C EEPROM Succeeded appears in the taskbar at the bottom of the window.

• Remove the jumper from port J13.

• Power off and power on the board. FX3 should boot from the I2C E2PROM.

2. Erasing the CNX VVML and CPNX prior to reprogramming.

If the CrossLink-NX Voice and Advanced device is already programmed, either directly or loaded from SPI Flash,
follow the given procedure to first erase the CrossLink-NX Voice and Advanced SRAM memory before re-
programming the CrossLink-NX-Voice and Advanced SPI Flash. While doing this, keep the board powered ON when
re-programming the SPI Flash so that it does not reload on reboot.

Note: Before erasing, disconnect the J13 jumper.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 88

• Launch the Lattice Radiant Programmer. Create a new blank project.

Figure 7.2. Radiant Programmer – Default Screen

• Select LIFCL for Device Family and LIFCL-40 for Crosslink-NX. Then select LFCNX for the CertusPro-NX device,
as shown in Figure 7.3.

Figure 7.3. Radiant Programmer Device Selection

• Right-click and select Device Properties.

• Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation as shown
in Figure 7.4.

Figure 7.4. Radiant Programmer – Device Operation

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 89

• Click OK to close the Device Properties dialog box.

• Now press the SW5 push-button switch on the board before clicking the program button as given in the next
step, and keep it pressed till you see the Operation Successful message in the Lattice Radiant Programmer log
window.

• In the Lattice Radiant Programmer main interface, click the Program button to start the erase operation
while keeping SW5 pressed.

3. Programming Crosslink-NX VVML or CPNX board

All the bit files are included in the file at path utils\drivers\lattice-usb\bitfiles.zip. Unzip the file to select the bit
file, as given in step 4 below. Also, please refer to readme for reference while selecting the bitfile. Before SPI
flashing, disconnect the J13 jumper that you connected while flashing the .img file.

• Ensure that the CrossLink-NX Voice and Advanced Device SRAM is erased by performing the steps given in the
above section.

• In the Lattice Radiant Programmer main interface, right-click on Operation and select Device Properties to
open the Device Properties dialog boxes, as shown in Figure 7.5.

Figure 7.5. Selecting Device Properties for CrossLink-NX

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 90

• Select SPI Flash for Target Memory, JTAG2SPI for Port Interface, and Direct Programming for Access Mode.

• Select the bit file you want to flash by extracting the zip file given at the path: utils\drivers\lattice-
usb\bitfiles.zip and selecting the bit file from there.

• For SPI Flash Options, make the selections in Figure 7.5 given above and select Macronix 25L12833F as the
device.

• Click Load from File to update the data file size (bytes) value.

• Ensure that the following addresses are correct.

• Start Address (Hex): 0x00000000

• End Address (Hex): (Start Address + size of bit file)

• Click OK.

• On board, press the SW5 push button switch before clicking the program button in the step below and
keeping it pressed till the Operation Successful message is seen in the Lattice Radiant Programmer log
window as shown in Figure 7.6.

• From the Lattice Radiant Programmer main interface, click the Program button to start the programming
operation.

Figure 7.6. Output Console after Successful Flashing

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 91

7.1.3. Avant Device

For USB debugging on an Avant device, you will need a Cypress USB FX3 board. Connect the Avant board and USB FX3
board as shown in Figure 7.7.

Figure 7.7 Avant Board with FX3 USB Board

• Upload the LSCVVML.img file to the Cypress FX3 USB board, keeping the jumper configuration as:

• Jumper J4 being open.

• Jumper J3 shorted.

• Upload the bitfile of Advanced IP to the board using the Lattice Radiant Programmer.

• Using a USB port for the Avant board for uploading a bitfile to the FPGA.

• Use the FX3 port for reading HW values from the board.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 92

7.2. Debug Window Options
To launch the USB debugging window from the SensAI GUI, click on Tools > USB Debugging from the main window.
The USB debugging window (Figure 7.8) opens.

Figure 7.8. USB Debug Window

• Status: Indicates if the board is detected. Read and Write operation buttons are disabled until the board is
detected by the software.

• Detect Board: Click this to retry connecting to the board.

• Yml File: Provide a YML file to parse the blob layer name, Q-format, and starting address. After reading the YML
file, Select blob displays available blob names, Address shows the starting address of the selected blob, Length
shows the total size, and Bit width displays the bit width of data to read or write.

• Refresh Blob List: Refreshes the blob list. Use this if the YML is changed while the debugger is running.

• LSCML File: The .lscml file path generated by the tool needs to be uploaded on board as firmware. The file is
automatically detected if the current project already has an associated .lscml file.

• Upload Firmware: Upload the firmware file to the board. This functionality is disabled until the board is detected.

• Load Input Data: Image or raw input file to load at the input blob. Accepts .jpg, .png and .npy format.

• Upload Input: Based on the resolution selected in the drop-down menu, image data is pre-processed and
uploaded to the input blob address on board. Disable it until the board is detected. A valid YML file is required for
this operation.

• Reg List: Drop-down option for all the register lists. Below is the table for all the registers with their address
information.

• Registers Read/Write: Register read and write operations to and from addresses mentioned in the address box.
Disable it until the board is detected. Addr and Data box values are in hexadecimal for read and write operations.
More details on registers can be found in Appendix E. USB Debugging Register Map.

• Run: This operation runs the engine once. All the blobs are updated based on input image data.

• Post Processing: This option is enabled only when the USB debugging window is launched from an opened project.
If the post processing command is configured in the project settings as shown in Figure 3.2, then this operation
runs the post processing script on input data (a selected image or .npy) with the last blob .npy file.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 93

• Select Blob: Select a blob (by name) as the target of your read and write operations. Blob names are displayed
based on the YML file.

• Layer Info: This button is enabled only when the USB debugging window is launched from an opened project. After
selecting this button, a window with information about that blob is launched. This information includes the blob
dimension, memblks, height_per_mem/depth_per_mem, DRAM address, output EBR list, and a table that shows
the details on how values are divided into memblks/EBRs.

• Address: The starting address of DRAM. This is shown after selecting a blob name. The Blob address is based on a
YML file. This DRAM address can be changed.

• Length: Total size of data to read or write. This is shown once a blob name is selected. The total blob length is
based on the YML file. The length can be changed.

• Display Data In: Selects the format in which data should be read, either hexadecimal or floating point. Hex is the
default setting. Selecting Float converts received data into a floating point using the selected blob layer Q-format.

• Show Actual Values: This checkbox is enabled only when the USB debugging window is launched from an opened
project. Enabling this checkbox filters out extra values that are read from the memblks of external DRAM and
displays only the actual values of the blob.

• Upload Bit File: Writes data in hex into a DRAM address. This option is only necessary when you wish to perform a
write operation.

• Data: Displays the read operation data either in hex or float, and uploads bit file data in hex.

• Read: Performs a read operation.

• Write: Performs a write operation.

• Clear: Clears the data box.

• Save: Saves the displayed data in a file. Valid only for read operations.

• Save All: Saves all the blob data.

• Exit: Exits the debugging window.

7.3. Driver Installation
Due to requiring a USB driver to operate, your computer may not support USB debugging without first installing the
device driver. This section covers the process for installing the required device driver in order to enable USB debugging.

7.3.1. Windows Driver

The driver for Windows is installed by running the lscvip.inf provided in the driver/pre-build folder of your sensAI
installation. This can be done by right-clicking the file and selecting Install. To manually install the driver by selecting
your USB device in Device Manager and selecting Update Driver, you need to navigate to the driver/pre-build directory
and select the “lscvipdrv.dll” file.

Driver Signature Enforcement needs to be disabled to install this driver. If you encounter an error related to the driver
signature, the following steps guide you through the process of disabling this temporarily for installation.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 94

Driver Signature Enforcement Settings for Windows

1. Get to the advanced boot options menu. You can hold down the Shift key while you click the “Restart” option in
Windows 8 or 10. Your computer thus restarts into the advanced boot menu.

2. Select the Troubleshoot tile on the Choose an Option screen that appears.

3. Select Advanced Options.

4. Click on Startup Settings tile.

5. Click the Restart button to restart your PC on the Startup Settings screen.

6. Select the Disable driver signature enforcement option at the Startup Settings screen.

7. Your PC boots with driver signature enforcement disabled, and you can install unsigned drivers.

8. The next time you restart your computer, driver signature enforcement can be enabled again. You need to go
through this menu again to disable it if you wish to reinstall the driver for any reason.

7.3.2. Linux Driver

For Linux systems, the libusb package needs to be installed. Use the following command in your terminal to install the
libusb package on Ubuntu.

To avoid requiring super-user permission for USB debugging, each time you wish to run the software, the device entry
in your system udev rules needs to be added. Add the following line to your udev rule file, which is typically found at
/etc/udev/rules.d/<file-name>.rules. Restart your udev subsystem.

To restart your udev subsystem, use the following command in the terminal.

7.4. USB Debugging API Interface
SensAI allows you to perform USB debugging through an API interface in the command line, which supports the same
features as the GUI and requires the same driver as detailed in the previous section. An example Python file,
‘example_usb_debugging.py’, is provided in the sensAI installation directory to demonstrate the usage of the API
interface for USB debugging.

Note that for Linux systems, using the tools via the command line without super-user permission, your driver must be
installed along with making the udev changes detailed in the previous section.

7.4.1. Class Overview

To use the API interface, the usb_api class needs to be imported from usb.lib.usb_api using the command:

The following methods are provided by the usb_api class:

• load_dll()

• Loads platform specific USB library dll/so for interfacing with ECP5 device. This method needs to be called
before any further operations.

• Returns 1 on success and 0 on failure.

• usbInit()

• Detects the ECP5 device over USB interface and initializes if device is found.

• Returns 1 on success and 0 on failure.

sudo apt-get install libusb-1.0-0

SUBSYSTEM==”usb”, ATTRS{idVendor}==”1134”, ATTRS{idProduct}==”aa01”, MODE=”0666”

sudo /etc/init.d/udev restart

from usb.lib.usb_api import usb_api

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 95

• usbDeinit()

• Releases the USB device. Only applicable on Linux machines.

• writeDram(address, length, bit_width, rData)

• Writes data to the DRAM using the four required arguments.

• address

• Base address of the DRAM where the data is to be written.

• length

• The length of the rData specified in bytes.

• bit_width

• The bit width of the list elements of the rData. Data is written to the DRAM as per the bit width.

• rData

• The list of data to write.

• readDram(address, length, bit_width, sData)

• Reads data from the DRAM. Following is the argument description:

• address: Base address of the DRAM where the data is to be read.

• length: The length of the sData, which is specified in bytes.

• bit_width: The bit width of the list of elements of the sData. Data is read from the DRAM as per the bit
width.

• sData: The container for the data that is to be read.

• regRead(address)

• Reads the register value of the register specified by address and returns it. Prints an error message in case of a
failure.

• regWrite(address, data)

• Writes the data to register specified by address.

• upload_firmware(lscml_file)

• Reads a sensAI program (.lscml) file specified by lscml_file and uploads the firmware to the 0x0 address of the
DRAM.
The .lscml file is generated by sensAI during the compile stage. You must use the path to a valid .lscml file as
the argument.

• upload_input(yml_file, input_image)

• Reads the mean, scale, and fraction of the input layer from the yml file and performs preprocessing based on
it. Then it uploads preprocessed data to 0x0f000000 + <input-layer-extmem-address> in DRAM.

• The arguments, input_image and yml_file, must be paths to valid .yml and input image files, respectively. The
.yml file is generated in sensAI during the Analyze stage.

• run_engine()

• This method writes registers to trigger the CNN IP to run once. Upon completion of a single run, output is
generated at 0x0f000000 + <output-blob-extmem> in DRAM. Before running this step, the firmware and the
input image should be uploaded to DRAM.

• To save the output blob data from DRAM into a file on your computer, refer to the example steps provided in
the example_usb_debugging.py file in your sensAI installation directory.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 96

7.5. Board Detection Troubleshooting
If the board does not show up, try the following steps for troubleshooting your setup to attempt to resolve the issue:

1. Check the Board.

• If using ECP5 for debugging, check that USB3-GbE VIP IO Board is written on the bottom layer of the EVDK
(Figure 7.9).

Figure 7.9. USB3-GigE VIP Board Label

• If using Crosslink-NX Voice and Advanced Board, check that LIFCL-VVML-BRD is written on the board.

Figure 7.10. CNX-VnV Board Label

• If using Certus Pro-NX Voice and Advanced Board, check that LFCPNX-VVML-EVN is written on the board.

Figure 7.11. CPNX-VnV Board Label

2. Verify that you have installed the Cypress file into the Cypress chip and repositioned the jumper pins into the
correct configuration.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 97

3. For ECP5/CNX and CPNX devices, check that you have the correct bitstream programmed to the SPI Flash.

4. Ensure that the Micro USB 3.0 (not USB Mini) connector is connected from the bottom board and not the middle
board.

5. For ECP5, after connecting the USB from the EVDK to the computer, press the sys_rst button on the top board.

6. Under Device Manager, you should now be able to see the board.

If you still do not see the device and your computer is using Windows, you may need to disable the Windows driver
certification to make it show up.

7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug
To debug USB values layer by layer, you can see all the layers in the blob list in the USB debugging window, as shown in
Figure 7.12.

Figure 7.12. USB Debug Window

You can select one of the blobs to run USB debugging. Once you select any bob, sensAI generates USB debug firmware
for the selected layer.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 98

Figure 7.13. USB Debug Firmware Generation

The USB debug window sets the USB debug firmware, bit width, address, and data length based on the blob
configuration.

Figure 7.14. Upload FW, Input and Run USB-Debugging

Now you can:

• Upload Firmware

• Upload Input

• Run

• To read data in the desired data type, you can select the datatype in Float or Hex.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 99

Figure 7.15. Read USB Data with Blob Selected

Notes:

• To read data from a specific address, you must select None in the blob list, and pass the address along with the
length, and then read the data.

• On the new input data, you need to perform all the steps by first selecting the new input data and then performing
all the steps.

Figure 7.16. Read USB Data without Blob Selected

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 100

To save data, click Save. The save file dialog pops up. After saving the text file, sensAI Compiler finds the expected vs.
USB Debug values MAE and shows them in a popup.

Figure 7.17. Save USB Data

Expected values for a given USB debug input are stored in the expected folder of the sensAI project directory.

Figure 7.18. Expected Values for Corresponding Blob

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 101

Figure 7.19. Show Expected vs HW MAE

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 102

8. Model Zoo
Model Zoo is a platform that provides a way to clone Lattice-supported models and train them with your own dataset
and environment setup. It also provides a way to select the model based on different parameters. All the models are
hosted on the Lattice GitHub page. This feature provides an interface between sensAI and GitHub.

Visit the Lattice Semiconductor GitHub for the latest models.

8.1. Model Zoo Window Options
To launch the Model Zoo window from the sensAI GUI, click Tools > Model Zoo from the main window. The Model Zoo
window opens, as shown in Figure 8.1, and displays several options to select from either drop-down menus or boxes.

Figure 8.1. Model Zoo Window

• Open SensAI Project

• Opens existing sensAI project(.ldnn) from the selected repository in the workspace tab.

• Model Selection Parameters

• Different model selection parameters are provided as a way to select the model that best suits your needs.
These parameters are populated by cloning the Model Info repository from GitHub. This repository has a JSON
file (model_info.json), which contains information regarding the models and their git url. The table is
populated with models based on the selected parameters. The following are the selection parameters:

• Target Application – This specifies the model application, such as object or face detection.

• Target Class – The model class indicates whether it is a BNN or CNN.

• Input Dimension – The input size such as 64×64, 128×128, or 224×224.

• Target Network – This column displays the specific type of network being used, such as YOLO or
SqueezeDet.

http://www.latticesemi.com/legal
https://github.com/LatticeSemi

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 103

• Target Device – Lists whether the target device is ECP5 or UltraPlus.

• Target Framework – The framework is either TensorFlow or Keras.

• Model Zoo Tab

• This tab lists the models available on the Github page.

• Workspace Tab

• This tab lists the models available in the local workspace directory.

• Project Directory

• The location where the selected model is to be cloned.

• Clone Model

• Based on the model that is selected from the table, clicking this button fetches the Git URL. If this is the first
time the model is being used, the model repository is cloned. If the model already exists locally, it pulls the
latest updates into the project directory instead. All the logs are displayed in the log box below. This button is
only active in the Model Zoo tab.

• Update Model

• Similar to the Clone Model button, this button can update the models selected from the list and display the
logs in the log box. This button is only active in the workspace tab.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 104

9. AI System Generator
The System Generator is designed to eliminate the complexities involved in deploying machine learning (ML) models on
FPGA hardware. Traditionally, converting a trained ML model into a working hardware implementation for FPGAs
required both ML and hardware engineering expertise. The System Generator bridges this gap by automating the
entire process, enabling ML engineers to focus on designing and optimizing their models without worrying about
hardware-level details. The tool automates key hardware decisions, ensuring optimal execution of ML workloads on
FPGAs.

System Generator intelligently analyzes the ML model's architecture and features, determining the minimum hardware
resources necessary for efficient model execution. It takes care of the selection and configuration of IPs that are
needed to run the model, which includes pre-processing units, the ML engine, and communication interfaces. This
approach significantly reduces the time and effort required to design hardware systems tailored to specific ML models.

9.1. Key features
• System Generator performs a comprehensive analysis of the ML model to identify and select appropriate IP cores.

It evaluates factors such as data input type and performance targets, then automatically chooses the best-
performing ML engine and related IPs.

• The tool assesses various ML engines, including custom accelerators or general-purpose cores such as RISC-V to
find one that can best meet the model’s performance needs. Based on criteria such as frame rate (FPS) and
computational load, the optimal IP is selected.

• System Generator generates hardware configurations and produces a complete stack, including FPGA bit-stream
and software components, to ensure seamless integration and deployment.

• If you are working with Propel Builder, System Generator creates ready-to-use TCL templates that set up the FPGA
design environment and integrate the generated hardware IPs for bitstream generation.

9.2. Launch AI System Generator
To open the AI system generator interface, select Tools > AI System Generator. The System Generator window
appears, allowing you to create, save, and open system generator projects.

Figure 9.1. Opening the AI System Generator

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 105

9.3. Create a New Project
To create a new system generator project:

1. In the System Generator window, select File > New Project. The New Project window appears.

Figure 9.2. System Generator Window

2. In the New Project window, enter the project name and location, then click Next.

Figure 9.3. Entering System Generator Project Name and Location

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 106

3. Specify the location of lsc_ml_compl.exe and the model to be used for generating the FPGA bitstream.

Figure 9.4. Specifying SensAI SDK and Model Locations

4. Click Next. The System Generator loads the model and finds the input layers of the network for further processing.
The Pre-Processing page then appears.

Figure 9.5. Pre-processing Page

5. Choose the application input type (Image, Audio, or Other). In Neural Network Compiler 7.0, only Image and Other
related pre-processing can be done. System Generator auto detects the model resolution, layout, and number of
channels in the input to the model. Based on this information, the appropriate pre-processing code is generated.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 107

6. Click Next. The information gathered is displayed as shown in the following figure.

Figure 9.6. System Generator Project Information

7. Click Finish to generate the System Generator project (.syg) file.

Figure 9.7. System Generator Project

The Build folder contains all the intermediate files generated during model analysis and compilation. The Output folder
contains all the output files (TCL template, bitstream, host code etc.) as described in the Starting the System Generator
section.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 108

9.4. Opening an Existing Project
To open an existing system generator project, select File > Open Project followed by the system generator project file
(.syg file), then click Open.

Figure 9.8. Opening an Existing System Generator Project

9.5. Starting the System Generator
To analyze the model and find the best suitable ML IP for it:

1. Select Tools > System Generator.

Figure 9.9. Analyzing Model and Selecting ML IP

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 109

2. Click Start Analysis to allow System Generator to find the best suitable ML IP for the selected model. System
Generator uses the SensAI ML analyzer tool to find best suitable ML IP. Once processing is completed, the
preferred ML IP and other IPs required for the system are displayed as shown in the following figure.

Figure 9.10. Preferred ML IP and Other Required IPs

3. Click Select <ML IP Name> to choose the displayed ML IP for further processing. You can also view other ML IP
configurations considered by System Generator by clicking on the Preferred Config dropdown box.

4. Click Next to generate the bitstream and host or application code.

Figure 9.11. Generating TCL, Bitstream, and Host or Application Code

5. Click Start to start generating the following:

• Propel Builder TCL template.

• Command stream (ML firmware) for model using SensAI compiler. ML IP configuration values generated by
the compiler will be copied into the final FPGA bitstream.

• Python host code (if USB-based design is selected) or C source for application code running on RISC-V CPU. The
Python host code performs the following tasks:

• Interacts with device connected using USB.

• Pre-process input image.

• Load pre-processed input image in the external memory and start ML IP.

• Download output of ML IP on host.

• Post-process the output.

• Install all the required IPs on the system.

• Generate FPGA bitstream.

6. Flash the generated bitstream on the appropriate FPGA board and run the host code to execute the application.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 110

9.6. Advanced System Analysis
You can review the hardware configurations used to select the best performing ML IP. Select Tools > Advanced >
System Analysis to view the hardware configurations and performance details.

Figure 9.12. System Analysis Window – Graph View

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 111

Each configuration has unique hardware capabilities. Each configuration is evaluated based on cycles, external memory
cycles, and area of the ML IP. System Generator selects the best performing hardware configuration. However, you can
override the decision based on other parameters such as area of the ML IP. Absolute values for these parameters can
be viewed by unchecking Show As Graph.

Figure 9.13. System Analysis Window – Absolute Value View

You can select the ML IP configuration by selecting it from the dropdown list, then click Select.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 112

9.7. RISC-V Register Interface Generator
The RISC-V register interface facilitates creation of a register file which allows communication between RISC-V and
machine learning hardware. Using this interface, you can access the control and status interfaces of the ML IP.

The section provides a guide on using the RISC-V register interface generator.

9.7.1. Launch RISC-V System Generator Environment
To open the system generator interface, select Tools > RISC-V System Generator.

Figure 9.14. Opening the RISC-V System Generator

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 113

9.7.2. Generate CSR Register IP Cores
One of the core functionalities of the system generator is to generate RTL, C driver, and IPK files.

Figure 9.15. System Generator Home Window

Figure 9.16. System Generator Functions

• Register List: List of register names available. Hover over a register name in the list to visualize the bit fields to be
created in the register fields section.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 114

• Add New Register: Click Add Register. The Add Register window appears to prompt for the register name.

Figure 9.17. System Generator Add New Register

After entering a register name and clicking OK, register data and fields appear on the left. You can add more fields
by clicking on the + button.

Figure 9.18. System Generator Add and Remove Register Field

Note: The total combined bits of a register should not exceed 32. Otherwise, an error message appears as shown
in Figure 9.19.

Figure 9.19. System Generator Register Bit Width Limitation

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 115

You can load CSR data from a predefined template through the Load Template button. The following figures
shown an example template and the register data and fields after loading the template.

Figure 9.20. System Generator Example CSR Template

Figure 9.21. CSR Register Example

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 116

• Save Project: After all registers are defined, save the project file.

Figure 9.22. System Generator Save Project

• Generate IPK File: To generate the IPK file, click Generate IPx file. The resultant IPK file is saved under the project
directory.

• Encryption – Select to encrypt based on a known key from Propel so that Propel can decrypt automatically.

• License – Select to include license file in the generated IPK file.

Figure 9.23. System Generator Generate IPK File

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 117

Limitations:
• The system generator can be enabled for Advanced CNN IP on the Windows platform only.

• To use the RISC-V CSR Register IP generation feature, the system (host machine where the SensAI SDK is running)
must meet the requirements mentioned in Radiant Installation, Propel Installation.

• If a space exists in a username, RISC-V CSR Register IP generation will fail. If this occurs, move your build to a
location where the path does not contain the username, for example c:/lscc/sensai.

http://www.latticesemi.com/legal
https://www.latticesemi.com/LatticeRadiant?pr031521#windows
https://www.latticesemi.com/view_document?document_id=54233

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 118

Appendix A. Supported and Added Caffe Layers
This appendix is intended to provide information for all supported and added Caffe layers.

Accuracy

The accuracy layer is not internally supported by the software but can remain in your network file without causing an
issue.

BatchNorm

The BatchNorm Caffe layer is supported for implementing batch normalization operations. You are required to put a
scale layer in your network after each BatchNorm layer. See Scale below for more information.

Binarize

Binarize fulfills the same purpose in binary neural networks as the ReLU layer in standard neural networks. The Binarize
layer should be used in your binary neural networks instead of ReLU, because there is no need for that method of
rectification to be used. Binarize is only supported on the ECP5 device. For a related layer on UltraPlus, see QuantReLU
for more details.

BinaryInnerProduct

BinaryInnerProduct calculates the inner product for a binary network and should be used instead of the InnerProduct
layer when dealing with binary neural networks.

BinaryConvolution

The BinaryConvolution layer is an added layer that functions similarly to the Convolution layer in Caffe, using binary
weights and activations and employing the same parameters. Your design must implement the BNN Accelerator IP to
utilize this functionality, as the CNN Accelerator IP cannot perform binary convolution.

Concat

The Concat layer is a utility layer that concatenates its multiple input blobs into one single output blob. The number of
the memory blocks for this layer is the sum of memory blocks of the input blobs. The depth_per_mem for this blob
must be equal to its input blobs.

Convolution

Convolution is the layer type utilized by the CNN Accelerator IP for implementing convolution into your neural network,
and users who are already familiar with Caffe can use it as they normally without any major adjustments. Your design
must implement the CNN Accelerator IP to utilize this functionality, as the BNN Accelerator IP cannot perform non-
binary convolution. The group attribute is not fully supported, while the following parameters are supported by the
CNN Accelerator IP for the convolution layer:

• kernel_size

• num_output

• bias_term

• pad

• stride

Eltwise

The Eltwise layer currently supports only the SUM operation. Other operations, such as MULT, are not implemented. In
order to be implemented, Eltwise always requires DRAM. The number of EBRs being input into this layer must equal a
power of two.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 119

InnerProduct

The num_output parameter is supported for specifying the number of filters. The bias_term parameter is supported for
training purposes only. Inference uses the bias from training during compilation.

The fully connected layer does not work when the input blob to the fully connected layer has a different format from
the output of the fully connected layer. The input and output must have matching signage and be the same number of
bits (8 or 16).

Input

The input layer is supported, along with the shape parameter. Supported input types are images (.jpg or .png format),
video (.mp4 format), raw data NumPy arrays (.npy format), and audio files (.wav format). An input layer with a clearly
defined input size must be present in the network.

Pooling

Pooling layers are supported, while average and stochastic pooling are unable to be implemented. The pooling layer
supports the following Caffe parameters:

• MAX

• global_pooling

• kernel_size

• pad

• stride

Only square-shaped kernels are supported in the pooling layer. The parameters kernel_h, kernel_w, stride_h, stride_w,
pad_h, and pad_w are ignored. The kernel and stride must both be 2, and the pad must be 0.

Python

The Python layer is used to implement a set of custom layers in your network that perform functions that are not part
of their own discrete layer.

Transpose

This python layer implements the transpose operation.

QuantReLU

For BNN on ECP5, the threshold value for your QuantReLU layer determines the quantization mode. A threshold of 0
uses -1/+1 quantization. A threshold of 0.5 uses a quantization of 0/1. QuantReLU for BNN is only supported on ECP5.
For a related layer on UltraPlus, see Binarize.

ReLU

The ReLU layer is supported for rectifying values. It supports the negative_slope parameter, which is suggested to be
between 0 and 0.25. For leaky ReLU, the negative activation slope must be fixed to 1/16, corresponding to
negative_slope = 0.0625.

Scale

The scale layer in Caffe is supported. You are required to put a scale layer in your network after each BatchNorm layer.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 120

Appendix B. Supported Keras Layers
In general, the supported Keras layers need to be similar to the supported TensorFlow operations in compute topology,
as described in Appendix D. Supported TensorFlow Operations, and have the same hardware constraints and
parameter requirements.

This appendix currently only lists supported Keras layers without additional commentary. See the Keras demo designs
in the sensAI network directory, and refer to the chapters on TensorFlow and Caffe for more information on how to
utilize these layers in your own designs.

The layers supported for AutoKeras are same as Keras layers.

• AveragePooling2D

• BatchNormalization

• Conv2D

• To perform 8-bit weight quantization in Keras, refer to the Fixed Point Quantization Training in Keras section
for details on implementation.

• Dense

• MaxPooling2D

• DepthwiseConv2D

• Input

• Lambda (only for 8-bit activation quantization)

• We use the Lambda function for 8-bit quantization of activation in Keras. Refer to the Fixed Point Quantization
Training in Keras section for details on implementation. Please note that the Lambda function is dependent on
the version of Python, and you might face issues regarding Marshal Data if the training and inferencing
environments are different. Hence, it is advised that if the trained Keras model by the user has a Lambda
function for activation quantization, convert the Keras model to Tensorflow in the same training environment.
For this conversion, as a reference, you can refer to the ReferenceDesign/Training/keras-to-tf-converter
folder of this Reference Design.

• LeakyRelu

• ReLU

• Concatenate

• Add (for elementwise addition)

• Sigmoid

• Input quantization range varies from –4 to 4. Output can be 8 or 16 bits depending on device and quantization
support. Sigmoid is a LUT-based function. Higher input/output precision requires higher hardware resources.

Figure B.1. Sigmoid Function

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53397

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 121

Other than these layers, we use native TensorFlow operators in Keras to perform some of the operations in the Lattice
Neural Network Compiler only for post-processing purposes. Following is a list of those operations and what they are
used for:

• Tf.math.multiply : For scalar multiplication or eltwise multiplication with 1 constant tensor as a second operator

• Tf.math.subtract : For scalar subtraction or eltwise subtraction with 1 constant tensor as a second operator

• Tf.math.add: For scalar addition or eltwise addition with 1 constant tensor as a second operator

• Tf.math.reciprocal_no_nan : For reciprocal operation of the input tensor.

• Tf.math.power : For the power operation which currently supports the power of 2.

• Tf.strided_slice : This operation is used either alone for the strided_slice operation or along with Concat layer to
implement the focus layer. While implementing strided slice, except for begin indices, no other indices can have 0.
See the example below to see how to use strided slices and also implement the focus layer.

Figure B.2. Strided Slice Example

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 122

Appendix C. Supported Layer Configuration
This appendix is intended to provide information on the parameter configuration for each layer with each device type
or mode.

Table C.1. Supported Layer Configuration

Layer Name Parameter

Device Type, Mode, and IP

Optimized
CNN

Compact CNN
Extended
CNN

Advanced
CNN

iCE40
UltraPlus

ECP5 – Dual
ECP5 –
Mobilenet

Convolution

Kernel size 3 × 3 3 × 3 3 × 3 3 × 3 Up to 3 × 3 Up to 9 × 9 Up to 9 × 9

Pad 0 or 1 0 or 1 0 or 1 1 1 1 1

Stride 1 or 2 1 1 1 or 2 1 1 1

Kernel size
(5 × 5)

Not supported Not supported
Not
supported

5 × 5

Not supported Not supported Not supported Pad 2

Stride 1

Kernel size

(7 x 7)
Not supported Not supported

Not
Supported

7 x 7

Not supported Not supported Not supported
Pad 3

Stride 1

Depthwise

Convolution

Kernel size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

N/A

3 × 3

Pad 0 or 1 0 or 1 0 or 1 1 1 0 or 1

Stride 1 or 2 1 1 1 or 2 1 1 or 2

1×1

Convolution

Kernel size 1 × 1 1 × 1 1×1 1 × 1 1 × 1

N/A

1 × 1

Pad 0 0 0 0 0 0

Stride 1 1 1 1 1 1

Binary

Convolution

Kernel size

Not supported Not supported
Not
supported

Not
supported

3 × 3 3 × 3

Not supported Pad 1 1

Stride 1 1

Max

Pooling

Kernel 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Must
symmetric

Must symmetric

Stride 2 2 2 2 2 1 1

Pad 0 0 0 0 0 0 0

Max Pooling K × K

Kernel

Not supported Not supported
Not
supported

K × K

Not supported Not supported Not supported Stride 1

Pad K//2

Global Average

Pooling

Kernel

Not supported Not supported
Not
supported

Must
symmetric

Not supported

Must
symmetric

Not supported Stride 1 1

Pad 0 0

Argmax Pooling

Kernel

Not Supported Not Supported

2 × 2 2 × 2

Not
Supported

Not Supported Not Supported Stride 2 2

Pad 0 0

Leaky ReLU

Negative slope

Training

Param Alpha
0.0625 (1/16) 0.0625 (1/16) 0.0625 (1/16) 0.0625 (1/16) 0.0625 (1/16) 0.0625 (1/16) 0.0625 (1/16)

Sigmoid

Input bits 1 to 16

Not Supported
Not
Supported

1 to 16
Not
Supported

Not Supported Not Supported Output bits 8 or 16 8 or 16

MSB clib enable 0 or 1 0 or 1

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 123

Layer Name Parameter

Device Type, Mode, and IP

Optimized
CNN

Compact CNN
Extended
CNN

Advanced
CNN

iCE40
UltraPlus

ECP5 – Dual
ECP5 –
Mobilenet

Fully Connected layer Number of inputs

Any (Must be
last

layer)

Any (Must be
last

layer)

Any (Must be
last

layer)

Any (Must be
last

layer)

<=1024 Any Any

Elementwise Addition N/A Supported Supported Supported Supported
Not
Supported

Supported Supported

Elementwise
Subtraction

N/A Not Supported Not Supported
Not
Supported

Supported
Not
Supported

Not Supported Not Supported

Multiplication N/A Not Supported Not Supported
Not
Supported

Supported
Not
Supported

Not Supported Not Supported

Focus N/A Supported Not Supported
Not
Supported

Supported
Not
Supported

Not Supported Not Supported

Dilated Convolution
Dilation
Parameter

Not supported Not supported 2 or 4
Not
supported

Not supported Not supported Not supported

Resize Bilinear N/A Supported Not supported Supported Supported Not supported Not supported Not supported

Unpooling

Kernel

Not supported Not supported

2 × 2

Not
Supported

Not supported Not supported Not supported Stride 2

Pad 0

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 124

Appendix D. Supported TensorFlow Operations
This appendix is intended to provide information for TensorFlow operations currently supported. SensAI supports
TensorFlow versions 2.9, 2.5, 2.3, 2.0, and 1.14, which are the versions used to test Network Compiler.

Batch Normalization

Currently, Rsqrt is the operation tag used to locate and analyze the batch normalization subgraph (a group of
operations), based on the tf.nn.batch_normalization implementation. Therefore, the software does not support the
model where Rsqrt is used in the graph but not for batch normalization. If you do not use tf.nn.batch_normalization to
create a batch normalization subgraph, the batch normal subgraph should be in the same computation order and
structure, as shown in the following Figure D.1. If variance epsilon (y in Figure D.1) of batch normalization is not
provided, the default value 1e-3 should be used. If the offset (beta in Figure D.1) is not provided, the default value of
0.0 should be used.

Figure D.1. Batch Normalization

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 125

An optimized implementation such as fused batchnorm is also supported.

Conv2D

The software only supports regular Conv2D. The Conv2D node is required to be the bias node’s (BiasAdd) direct input
in order to apply the bias to the Conv2D layer. Other convolution operations, such as stride > 1, are not generally
supported.

DepthwiseConv2dNative, dilated convolution, and quantized convolution are supported in certain topology contexts.
For quantized convolution, refer to the Fixed Point Quantization Training in TensorFlow section. If you are creating a
Conv2D layer with stride 2, it is recommended not to use an explicit padding layer just before Conv2D. Instead, use the
padding option within the Conv2D layer such that the padding is asymmetric.

Channel Padding

Channel padding refers to the operation where the input tensor is padded with zeros on the channel dimension to
increase the number of channels. This is performed by using the tf.Pad operation.

Concat

This is performed by using the tf.concat operation.

Elementwise Add

Elementwise Add is only supported when being used in residual net, with two tensor objects as the only input where
the coefficients for each are 1. In general, low-level elementwise operations such as, mul, div, sub, max, etc. are not
supported.

Matmul

Matmul is only supported in regular, fully connected, or dense layers. Sparse, advanced transpose, and adjoint mode
are not supported. Unofficial operations, TF contributions, customized open source, such as
tf.contrib.layers.fully_connected, implementations are not supported.

Placeholder

Support is limited to inputs with a standard 4 or 3 dimension shape for images and 2 or 1 dimension for audio. Only
one placeholder can exist in the optimized frozen inference graph. Preprocess operations on input are not supported.
The expected input is a single image, gray or color, after preprocessing. Group image and video formats are not
supported.

Pooling

The software currently supports three types of Pooling:

• Maxpool: tf.nn.max_pool

• Global Average Pooling: tf.reduce_mean

• MaxPoolWithArgMax : tf.nn.maxpool_with_argmax

ResizeBilinear

We use the ResizeBilinear operation to perform upsampling, replacing the deconvolution operation in encoder-decoder
like network topologies by using tf.image.resize_bilinear. And this implementation uses half_pixel_centers as true. So
far, the operation is supported only during segmentation.

Unpool

Unpooling is the opposite operation of pooling. This operation uses one of the outputs of MaxPoolWithArgMax, max
indices, and performs unpooling with the help of multiple operations. The implementation example can be seen below.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 126

Figure D.2. Unpool Implementation

ReLU

The software currently only supports normal ReLU, which is implemented by tf.nn.relu (slope = 1 in the positive region
and slope = 0 in the negative region).

For leaky ReLU (non-zero alpha slope in the negative region), sensAI supports tf.nn.leaky_relu and customized
implementations based on tf.nn.relu. For example, tf.nn.relu(x) - alpha * tf.nn.relu(-x). The negative activation slope for
leaky_ReLU in a model must be fixed to 1/16, corresponding to alpha = 0.0625. Leaky ReLU is only supported on ECP5
devices.

def unpool(updates, mask, k_size=[1,2,2,1], output_shape=None, scope=""):

 with tf.variable_scope(scope):

 mask = tf.cast(mask,tf.int32)

 input_shape = tf.shape(updates, out_type=tf.int32)

 # Calculation enw shape

 if output_shape is None:

 output_shape = (input_shape[0], input_shape[1]*k_size[1],
input_shape[2]*k_size[2], input_shape[3])

 # Calculation indices for batch, height, width and feature maps

 one_like_mask = tf.ones_like(mask, dtype=tf.int32)

 batch_shape = tf.concat([[input_shape[0]],[1],[1],[1]],0)

 batch_range = tf.reshape(tf.range(output_shape[0],dtype=tf.int32),
shape=batch_shape)

 b = one_like_mask * batch_range

 y = mask//(output_shape[2]*output_shape[3])

 x = (mask//output_shape[3])%output_shape[2]

 feature_range = tf.range(output_shape[3],dtype=tf.int32)

 f = one_like_mask * feature_range

 # Transpose indics & reshape update values to one dimension

 updates_size = tf.size(updates)

 indices = tf.transpose(tf.reshape(tf.stack([b,y,x,f]),[4,updates_size]))

 values = tf.reshape(updates, [updates_size])

 ret = tf.scatter_nd(indices,values,output_shape)

 return ret

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 127

Appendix E. USB Debugging Register Map
The following are the registers which can be read or write using the sensAI USB debugging interface.

Table E.1. USB Debugging Register Map

Addres
s

Register
Name

RW
mode

Default
value

Description

0x0000 dev_type_ver RO 0x00010001 Indicates device type and version.

0x0010 gp_ctl00 RW 0x00000000
Bit[4]: continuous run.
Bit[0]: single run.

0x0011 gp_ctl01 RW 0x00000000
Bit[8]: vid_reset
Bit[0]: automatic gain control enable.

0x0012 gp_ctl02 RW 0x00000000 —

0x0013 gp_ctl03 RW 0x00000000 —

0x0014 gp_ctl04 RW 0x00000000 —

0x0020 gp_status00 RO 0x00000000
Bit[8]: single run request.
Bit[7:0] ml_status

0x0021 gp_status01 RO 0x00000000 Number of cycles.

0x0022 gp_status02 RO 0x00000000 Number of commands.

0x0023 gp_status03 RO 0x00000000 Number of cycle for DMA access.

0x0024 gp_status04 RO 0x00000000 Number of DMA commands.

0x0025 gp_status05 RO 0x00000000 Number of loss time due to fifo underrun.

0x0026 gp_status06 RO 0x00000000 Number of cycles for convolution and pooling.

0x0027 gp_status07 RO 0x00000000 Number of cycles for full connecting.

0x0028 gp_status08 RO 0x00000000 GPO value

0x0029 gp_status09 RO 0x00000000 cycle for LDMA access (Only for CPNX advanced IP and Avant device)

0x002a gp_status0a RO 0x00000000
cycle for Advanced Engine ALU operation

(Only for CPNX advanced IP and Avant device)

0x002b gp_status0b RO 0x00000000
cycle for scale operation (Only for CPNX advanced IP and Avant device
)

0x002c gp_status0c RO 0x00000000 cycles of waiting (Only for CPNX advanced IP and Avant device)

0x0030 ba_code RW 0x00000000 Base address for firmware.

0x0031 ba_input RW 0x0f000000 Base address for input data (iCE40 UltraPlus device only).

0x0032 ba_output RW 0x0f100000 Base address for output data (iCE40 UltraPlus device only).

0x0100 reg_waddr RW 0x00000000 AXI write address.

0x0101 reg_wconf RW 0x00000000 AXI write configure.

0x0110 reg_raddr RW 0x00000000 AXI read address.

0x0111 reg_rconf RW 0x00000000 AXI read configure.

0x0200 sw_i2c RW 0x00000003 Software controlled I2C interface.

0x0300 hw_i2c_conf RW 0x00000000 Hardware I2C master configure.

0x0301 hw_i2c_status RO 0x00000000 Hardware I2C master status.

0x0302 hw_i2c_pack RW 0x00000000
Bit[31:16]: I2C address.
Bit[15:0]: I2C write data.

0x0303 hw_i2c_rdata RO 0x00000000 Hardware I2C master data configure.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 128

Appendix F. Supported ONNX Layers
The ONNX layers need to be similar to the supported TensorFlow operations in the compute topology as described in
Appendix C. Supported Layer Configuration. Supported ONNX operations have the same hardware constraints and
parameter requirements. As support is experimental, some layers or attributes might not be supported.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 129

Appendix G. Network Topology and Device Table
The following table lists all known supported network topologies and which devices support them. For more details
about layer restrictions, device restrictions, and required or suggested network implementation options, consult the
Getting Started section and the Advanced Topics section.

Boxes that are green indicate a network/device combination that is available as part of Lattice’s Model Zoo, except for
GoogleNet and Squeezedet.

Table G.1. Network Topology and Device

Network ECP5 iCE40 UltraPlus CrossLink-NX and CertusPro-NX

MobilenetV1 Supported - Mobilenet Mode only Supported Optimized and Extended mode only.

MobilenetV2 Supported - Mobilenet Mode only Unsupported Optimized and Extended mode only.

ResNet Supported Unsupported Optimized and Extended mode only.

SSD Supported – Dual engine mode Unsupported Optimized and Extended mode only.

tinyVGG Supported Supported Supported

VGG Supported Supported Optimized and Extended mode only.

YOLOv1 Supported Unsupported Unsupported

TinySSD Supported Unsupported Unsupported

MobileNetv2-SSD Unsupported Unsupported Optimized and Extended mode only.

GoogleNet Unsupported Unsupported Optimized and Extended mode only.

SqueezeDet Unsupported Unsupported Optimized and Extended mode only.

Enet Unsupported Unsupported Extended mode only

Yolov5 Unsupported Unsupported Advanced and Optimized mode only

Note: Some modifications are required in models as per device or layer restrictions to support it in the NNC compiler.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 130

Appendix H. Common CNN Blocks Used in Lattice NNC
This section shows how common modules and blocks used in CNN architectures are customized for Lattice NNC. For
detailed information about each module parameter refer to the restriction sections of the particular device any model
is run on.

Generic Blocks

The following are some of the generic modules used in our compiler.

• Relu refers to Relu2 in all the blocks in this and the next sections.

• Bias in convolution is supported only for ECP5.

• In the majority of cases, the convolution block will be followed by BatchNorm (with scale), QuantRelu (device-
specific), and Relu. This structure, from here on, is referred to as CBSR.

• Generally, instead of using CBSR with Stride 2 (SAME padding), we use CBSR with Stride 1 (SAME padding),
followed by MaxPool2D with Kernel 2 and Stride 2.

• For all the next sections in x.x. , in all the diagrams, Q will be used for quantized and N will refer to Non-quantized.

Figure H.1. Non-Quantized 3x3 CBSR or 3x3 Depthwise CBSR

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 131

Figure H.2. Quantized 3x3 CBSR or 3x3 Depthwise CBSR

Figure H.3. Non-Quantized 1x1 CBSR

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 132

Figure H.4. Quantized 1x1 CBSR

Figure H.5. Non-Quantized Add Block

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 133

Figure H.6. Quantized Add Block

VGG

For some devices (for classification), only a single dense layer is supported at the end instead of multiple dense layers.

Figure H.7. VGG toy model

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 134

MobileNetV1

Figure H.8. MobileNetV1 Block

Figure H.9. MobileNetV1 Toy Model

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 135

MobileNetV2

Figure H.10. MobileNetV2 Block 1

Figure H.11. MobileNetV2 Block 2

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 136

ResNet

Figure H.12. ResNet Toy Model

Figure H.13. ResNet Block 2 Variation 1

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 137

Figure H.14. ResNet Block 2 Variation 2

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 138

Figure H.15. ResNet Block 2 Variation 3

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 139

GoogleNet

Figure H.16. GoogleNet Inception Block 1

Figure H.17. GoogleNet Inception Block 2

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 140

ENET

The following figures show the four basic blocks used in ENET.

BSR in the Upsample block refers to BatchNorm + Scale + QuantRelu + Relu.

Figure H.18. Init Block

Figure H.19. DownSample Block

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 141

Figure H.20. Regular Block

 Figure H.21. Upsample Block

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 142

Table H.1. Enet Example Architecture

Type Output Size

Input 1x160x160

Init Block 12x80x80

Downsample block 40x40x40

4xRegular Block 40x40x40

Downsample Block 80x20x20

Regular+Dilated (d=2) Blocks 80x20x20

2x(Regular+Dilated (d=4)) 80x20x20

Upsample Block 40x40x40

Regular 12x80x80

ResizeBilinear + BSR 12x160x160

3x3 Convolution output 2x160x160

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 143

References
• USB3-Gigabit Ethernet Demo User Guide (FPGA-UG-02054)

• Learned Step Size Quantization paper

• Lattice sensAI Human Counting AI Demo web page

• Lattice Semiconductor GitHub

• Lattice Diamond 3.13 User Guide

• Lattice Radiant Software 2023.2 User Guide

• Lattice Diamond FPGA design software

• Lattice Radiant FPGA design software

• Lattice Insights for Lattice Semiconductor training courses and learning plans

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52371
https://arxiv.org/abs/1902.08153
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/demos/humancounting
https://github.com/LatticeSemi
https://www.latticesemi.com/view_document?document_id=53945
https://www.latticesemi.com/view_document?document_id=54067
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 144

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/en/Support/AnswerDatabase.

http://www.latticesemi.com/legal
https://www.latticesemi.com/techsupport
http://www.latticesemi.com/en/Support/AnswerDatabase

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 145

Revision History

Revision 7.0, December 2024

Section Change Summary

All • Updated Neural Network Compiler and Machine Learning Software version to 7.0.

• Made minor editorial changes.

Abbreviations in This
Document

• Updated section title, description, and table header.

• Added CLI, CSR, FC, FPQ, IP, LSQ, ML, NCHW, ONNX, ReLU, TCL, and USB.

• Rearranged items in alphabetical order.

Installing the Software Updated Figure 2.1. Installation Location Specification, Figure 2.2. Installation Component
Specification, and Figure 2.3. Installation Ready to Install Dialog Box.

Getting Started • Added reference to ONNX (experimental) in relation to framework in the Creating a New
Project section.

• Added the Multiple Input Selection section under the Inputs section.

• In Table 3.1. Arguments and Usage:

• Updated column header from Programming Code to Argument.

• Added ONNX to framework and network file arguments.

• Added ip mode argument.

• Updated argument names to lut_input_bits {5,6,7,8,9,10,11,12} and lut_output_bits {8,
16}.

• Added arguments create_quantized_version {0, 1}, validation_data_path {path of
directory}, enable_fc_4_bit_weights {0, 1}, number_of_ml_ips, and
external_memory_port.

• Added arguments for Multi-input Network.

• In the CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions section:

• Added restrictions on 4-bit weights quantization, Focus Layer, and 4-bit activation in the
Optimized IP mode.

• Added restriction on 4-bit input data to Fully Connected layer.

• In the CertusPro-NX and Avant Advanced CNN IP Restrictions section:

• Added restriction on 4-bit activation in Advanced IP.

• Added the ONNX Restrictions section.

Working with Projects Added the Handgesture, MV1 (MobileNet V1), MV2 (MobileNet V2), YoloV5, and Toy_mnist
sections.

Advanced Topics • Updated Figure 5.11 Project Implementation Window – Avant Advanced IP Part 1.

• In the Project Implementation Settings section:

• Added the Create Quantized Version, Validation Datapath, Enable FC 4 Bit Weight,
Number of ML IPs, External Memory Port, and Initial LPDDR4 Address sections.

• In the Quantization section:

• Added the Learned Step Quantization (LSQ) section.

• Reorganized content into the Fixed Point Quantization (FPQ) section.

• In the Fixed Point Quantization (FPQ) section:

• Re-organized content into and added description and code for Fixed Point
Quantization Using Lscquant Package.

• Updated title for Table 5.2. Unsigned 8-Bit Quantization (Fixed Point Quantization)
and Table 5.3. Signed 8-Bit Quantization (Fixed Point Quantization).

• Added 4b type in Table 5.4. Fixed Point Quantization Details with Device Type.

• In Table 5.5 Quantization Support in Layers:

• Added ResizeBilinear.

• Updated quantization support description for Convolution layer, MaxPooling or
AveragePooling or ResizeBilinear, Batch norm layer, and Fully Connected layer.

• Added note on providing keras model .h5 as input if model is trained with LSQ.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 146

Section Change Summary

• Renamed sections starting from Fixed Point Quantization Training in Caffe through Fixed
Point Quantization Requirements and Suggestions and updated descriptions.

Supported Frameworks • Added reference to ONNX.

• Removed reference to sigmoid as an unsupported data post-processing operation in the
TensorFlow section.

• Added the

• Using ONNX section.

AI System Generator Added new section.

Appendix B. Supported Keras
Layers

• Added sigmoid to supported Keras layers.

• Added description for sigmoid and Figure B.1. Sigmoid Function.

Appendix C. Supported Layer
Configuration

In Table C.1. Supported Layer Configuration:

• Updated Optimized CNN and Advanced CNN values for the Stride parameter for the
Convolution and Depthwise Convolution layers.

• Added Advanced CNN value for the Kernel, Stride, and Pad parameters for the Global
Average Pooling layer.

• Added the sigmoid layer.

• Updated Optimized CNN to supported for the Focus and Resize Bilinear layers.

Appendix F. Supported ONNX
Layers

Added new section.

Appendix G. Network
Topology and Device Table

Updated CrossLink-NX and CertusPro-NX support for Yolov5 to Advanced and Optimized mode
only in Table G.1. Network Topology and Device.

References Added Learned Step Size Quantization paper, Lattice sensAI Human Counting AI Demo webpage,
USB3-Gigabit Ethernet Demo User Guide, and Lattice Semiconductor GitHub.

Revision 6.1, January 2024

Section Change Summary

All • Add support for YoloV5 models and layers like Conv 7x7, Mul, and Sub in Advanced IP.

• Add the support of the 7x7 and 5x5 convolution kernels.

• Add the support of the Global Average Pooling operation.

• Add support for 64-bit datawidth in the Avant device Advanced IP.

• Add the support of a strided slice and a focus layer.

• Add the new Tensorflow native operations (Mul, Sub, Add, reciprocal_no_nan, Pow,
Strided_Slice) as post-processing stand-alone nodes in Keras

Disclaimers Updated this section.

Getting Started Merged old subsection 3.6.1 Usage and subsection 3.6.2 Arguments into a new subsection 3.6.1
Arguments and Usage.

References Add this section.

Revision 6.0, February 2023

Section Change Summary

All Added advanced IP support in CertusPro-NX and Advant devices.

Introduction • Added Avant device support to the IP Requirements section.

• Updated the description of downloading and running networks onto Hardware in the
Purpose section.

Installing the Software • Updated the default installation directory in Step 5.

• Updated Figure 2 1. Installation Location Specification and Figure 2 3. Installation Ready to
Install Dialog Box.

Getting Started • Updated Arguments for new device family support in the Command Line Interface section.

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 147

Section Change Summary

• Updated restrictions for new device family support in the CertusPro-NX and Avant
Advanced CNN IP Restrictions section.

• Newly added supported TenorFlow Version 2.9 in the TensorFlow Restrictions section.

Working with Projects Newly added the HTML Log File section.

Advanced Topics • Updated all the figures in this section reflecting the new GPO ID.

• Newly added This option is available for Extended and Advanced CNN IP only to the

• Argmax Memory Size section.

• Added Avant device support to the following sections:

• On the Fly Post Processing

• Required Output Depth Range

• On the Fly Post Processing

• Required Output Depth Range

• On-Chip Large Memory Size

• External Memory Interfaced (In bytes)

• Code Section Base Address

• Data Section Base Address

• Newly added the following sections:

• Number of Segments

• Segment Size

• Number of VE SPD

• Multiport Parallel

• Kmax Kernel Pooling

• Added description about CertusPro-NX and Avant to the Number of Convolution Engines
section.

• Updated to it uses four DSP blocks per convolution engine in the Enable Quad Core Mode
section.

• Added This option is available for Extended and Advanced CNN IP only to the Argmax
Memory Size section.

• Added Avant device support to Table 5.3. Quantization Details with Device Type.

• Added Avant device support to the Quantization for iCE40 UltraPlus, CrossLink NX,
CertusPro NX, and Avant section.

• Updated to Neural Network Compiler 6.0 in the Note in the Mobilenet Mode for ECP5
section.

• Added except Advanced CNN IP for CertusPro-NX in the Embedded Mode section.

USB Debugging Added Avant device support to the CNX VVML, CPNX section.

Technical Support Assistance Added Lattice Answer Database URL.

Supported Keras Layers Updated description for Lamboda (only for 8-bit activation quantization) section.

Supported Layer
Configuration

Newly added the Advanced CNN column, Max Pooling K x K row, Argmax Pooling row of data to
the table.

USB Debugging Register Map Newly added the 0x0028, 0x0029, 0x002a, 0x002b, and 0x002c addresses.

Network Topology and
Device Table

Newly added Yolov5 network.

Common CNN Blocks Used in
Lattice NNC

Newly added Appendix.

Revision 5.0, June 2022

Section Change Summary

All Added Extended IP, Semantic Segmentation Support, Updated USB Debug with enhancements
semantics segmentasiton,)

http://www.latticesemi.com/legal

Lattice sensAI Neural Network Compiler Software
User Guide

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02052-7.0 148

Revision 4.1, November 2021

Section Change Summary

All Added support for CertusPro-NX device and upgraded TensorFlow version support to 2.5.0.

General editorial, style, and formatting update.

Revision 4.0, April 2021

Section Change Summary

All Added Concat and Large Input resolution support in CrossLink-NX device.

Revision 3.2, January 2020

Section Change Summary

All Added Quad LRAM support in CrossLink-NX device.

Revision 3.1, October 2020

Section Change Summary

All Added Mobilenet mode support for iCE40 UltraPlus device.

Revision 3.0, April 2020

Section Change Summary

All Added support for CrossLink-NX device.

Revision 2.1, September 2019

Section Change Summary

All Enhancements, bug fixes, and Mobilenet mode.

Revision 2.0, April 2019

Section Change Summary

All Added new features and optimizations.

Revision 1.1, September 2018

Section Change Summary

All Added support for iCE40 UltraPlus device.

Revision 1.0, May 2018

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Lattice sensAI Neural Network Compiler Software
	Disclaimers
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Prerequisites
	1.1.1. Hardware Requirements
	1.1.2. Software Requirements
	1.1.3. Connection Requirements
	1.1.4. General Requirements
	1.1.5. IP Requirements

	1.2. Purpose
	1.3. Limitations

	2. Installing the Software
	3. Getting Started
	3.1. Creating a New Project
	3.2. Opening an Existing Project
	3.3. Saving a Project
	3.4. Inputs
	3.4.1. Audio Input
	3.4.2. Raw Input
	3.4.3. Multiple Input Selection

	3.5. Help
	3.5.1. About
	3.5.2. User Guide

	3.6. Command Line Interface
	3.6.1. Arguments and Usage

	3.7. Design Restrictions
	3.7.1. General Restrictions
	3.7.2. ECP5 Restrictions
	3.7.3. ECP5 - Mobilenet Mode Restrictions
	3.7.4. UltraPlus Restrictions
	3.7.5. CrossLink-NX and CertusPro-NX Optimized and Extended Mode Restrictions
	3.7.6. CertusPro-NX and Avant Advanced CNN IP Restrictions
	3.7.7. Caffe Restrictions
	3.7.8. Keras Restrictions
	3.7.9. TensorFlow Restrictions
	3.7.10. AutoKeras Restrictions
	3.7.11. ONNX Restrictions

	3.8. Next Steps

	4. Working with Projects
	4.1. Implementations
	4.1.1. Creating a New Implementation
	4.1.2. Editing an Implementation

	4.2. Project Flow
	4.2.1. Analyze
	4.2.2. Analyzer for USB Debugging
	4.2.3. Compile
	4.2.4. Simulate
	4.2.5. Post Processing
	4.2.6. Download

	4.3. Views
	4.3.1. Input Network
	4.3.2. Analyzed Network
	4.3.3. GUI Themes
	4.3.4. Log File
	4.3.5. HTML Log File
	4.3.6. Simulation Data Graph

	4.4. Example Projects
	4.4.1. Catdog
	4.4.2. Humanpresence
	4.4.3. GoogleNet
	4.4.4. SqueezeDet
	4.4.5. Handgesture
	4.4.6. MV1 (MobileNet V1)
	4.4.7. MV2 (MobileNet V2)
	4.4.8. YoloV5
	4.4.9. Toy_mnist

	5. Advanced Topics
	5.1. Project Implementation Settings
	5.1.1. Number of Convolution Engines
	5.1.2. Enable Dual Core Mode
	5.1.3. Enable Quad Core Mode
	5.1.4. On-Chip Memory Block Size
	5.1.5. Number of On-Chip Memory Blocks
	5.1.6. Mobilenet Mode for iCE40 UltraPlus, CrossLink-NX Compact, and CertusPro-NX Compact
	5.1.7. Argmax Memory Size
	5.1.8. Scratch Memory Size
	5.1.9. Debug Mode Enable
	5.1.10. Embedded Mode for CrossLink-NX Optimized and CertusPro-NX Optimized
	5.1.11. Input Memory Assignment
	5.1.12. Output Memory Assignment
	5.1.13. Off-Chip Data Memory Start Address
	Do Not Use (ECP5 Only)
	Store Input
	Store Output

	5.1.14. Collapse Layer
	5.1.15. Data Preprocessing
	Mean Value for Data Pre-Processing
	Scale Value for Data Pre-Processing

	5.1.16. GPO ID
	5.1.17. On the Fly Post Processing
	5.1.18. Required Output Depth Range
	5.1.19. Sample Rate for Data Pre-Processing
	5.1.20. Down Sampling for Data Pre-Processing
	5.1.21. On-Chip Large Memory Size
	5.1.22. External Memory Interfaced (In Bytes)
	HyperRAM

	5.1.23. Code Section Base Address
	5.1.24. Register Out
	5.1.25. Data Section Base Address
	5.1.26. Number of Segments
	5.1.27. Segment Size
	5.1.28. Number of VE SPD
	5.1.29. Multiport Parallel
	5.1.30. Kmax Kernel Pooling
	5.1.31. Datapath Width
	5.1.32. LUT Input Bits
	5.1.33. LUT Output Bits
	5.1.34. LUT MSB Clip
	5.1.35. Create Quantized Version
	5.1.36. Validation Datapath
	5.1.37. Enable FC 4 Bit Weight
	5.1.38. Number of ML IPs
	5.1.39. External Memory Port
	5.1.40. Initial LPDDR4 Address

	5.2. Quantization
	5.2.1. Learned Step Quantization (LSQ)
	Training Learned Step Quantization Model Using Lscquant Package
	Quantizing Keras Model Using Schemes
	Post Training Quantization with Learned Step Quantization

	5.2.2. Fixed Point Quantization (FPQ)
	Fixed Point Quantization Using Lscquant Package

	5.2.3. Fixed Point Quantization Training in Caffe
	5.2.4. Fixed Point Quantization Training in TensorFlow
	5.2.5. Fixed Point Quantization Training in Keras
	5.2.6. Fixed Point Quantization Training in AutoKeras
	5.2.7. Fixed Point Quantization for iCE40 UltraPlus, CrossLink-NX, CertusPro-NX, and Avant
	5.2.8. Fixed Point Quantization Requirements and Suggestions

	5.3. Optimization Modes
	5.3.1. Mobilenet Mode for ECP5
	5.3.2. Compact Mode for CrossLink-NX and CertusPro-NX
	5.3.3. Embedded Mode

	5.4. SensAI Security Flow
	5.4.1. Model Encryption
	5.4.2. Model Decryption

	6. Supported Frameworks
	6.1. Caffe
	6.1.1. Binary Neural Networks

	6.2. TensorFlow
	6.2.1. Training to Inference Conversion
	6.2.2. Binary Neural Networks (BNN)

	6.3. Keras
	6.3.1. Using Keras
	6.3.2. Using ONNX

	7. USB Debugging
	7.1. Hardware Configuration
	7.1.1. ECP5
	7.1.2. CNX VVML, CPNX
	7.1.3. Avant Device

	7.2. Debug Window Options
	7.3. Driver Installation
	7.3.1. Windows Driver
	7.3.2. Linux Driver

	7.4. USB Debugging API Interface
	7.4.1. Class Overview

	7.5. Board Detection Troubleshooting
	7.6. CrossLink-NX, CertusPro-NX and Avant Layer by Layer USB Debug

	8. Model Zoo
	8.1. Model Zoo Window Options

	9. AI System Generator
	9.1. Key features
	9.2. Launch AI System Generator
	9.3. Create a New Project
	9.4. Opening an Existing Project
	9.5. Starting the System Generator
	9.6. Advanced System Analysis
	9.7. RISC-V Register Interface Generator
	9.7.1. Launch RISC-V System Generator Environment
	9.7.2. Generate CSR Register IP Cores

	Appendix A. Supported and Added Caffe Layers
	Accuracy
	BatchNorm
	Binarize
	BinaryInnerProduct
	BinaryConvolution
	Concat
	Convolution
	Eltwise
	InnerProduct
	Input
	Pooling
	Python
	Transpose
	QuantReLU
	ReLU
	Scale

	Appendix B. Supported Keras Layers
	Appendix C. Supported Layer Configuration
	Appendix D. Supported TensorFlow Operations
	Batch Normalization
	Conv2D
	Channel Padding
	Concat
	Elementwise Add
	Matmul
	Placeholder
	Pooling
	ResizeBilinear
	Unpool
	ReLU

	Appendix E. USB Debugging Register Map
	Appendix F. Supported ONNX Layers
	Appendix G. Network Topology and Device Table
	Appendix H. Common CNN Blocks Used in Lattice NNC
	Generic Blocks
	VGG
	MobileNetV1
	MobileNetV2
	ResNet
	GoogleNet
	ENET

	References
	Technical Support Assistance
	Revision History
	Revision 7.0, December 2024
	Revision 6.1, January 2024
	Revision 6.0, February 2023
	Revision 5.0, June 2022
	Revision 4.1, November 2021
	Revision 4.0, April 2021
	Revision 3.2, January 2020
	Revision 3.1, October 2020
	Revision 3.0, April 2020
	Revision 2.1, September 2019
	Revision 2.0, April 2019
	Revision 1.1, September 2018
	Revision 1.0, May 2018

