s LATTICE

Lattice Memory Mapped Interface and
Lattice Interrupt Interface

User Guide

FPGA-UG-02039-1.2

January 2020

IL.Jatticg Mdemory Mapped Interface and Lattice Interrupt InterfaceLATTICE
ser Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

Contents
O [0 o o [0 4 T o OO P PR PPOTRTOPROP 5
2. Lattice Memory Mapped INTErface (LIMIMI)c.couiiriiiie ettt sttt ettt st st ess e sbeenbe e teentesntesaeesaeenees 5
2.1. SIENAI DEFINITIONS. ... eeieeeiiiee ettt e e et e e ettt e e ettt e e e tbeeeeetaeeeebaeeeesbesesaasaeeessseeeensseeesansaeaestanaans 5
B A (1= OO PP PP PUPPPPTTPTIN 5
2.2. RE LA ET Totd[o] ol DI=E ol f o) A o] o K- PO PPRPRPRN 6
W TV o) (N I T R ot o ST P PP UUPPP S PPPPPPP 6
2.2.2. REAA TraNSACHIONS .eouviiiiieeiieeitie ettt ettt et e et et e et esbe e s ba e s be e s baesabeesabeesabeesbaesabeesabaesabeesnbaesabeesabaesabeesnseenane 10
2.2.3. Back-t0-Back TranSACIONScc.ueiiuiiiiiieeiii ettt ettt ettt e st s sba e st e e sbeesabe e sbeesabeesbaesabeesaeenane 13
A S M o 1Y [T o T=Yo B I T T [t f [o TP 17
2.2.5. SEATE/FIOW DIBGIAMS ..cveeteeieereiteeiteeiteeeteeiteeteeteeeteeete e beeabeetaesaeesteesseensesasesasasssesbeenteenbesabesssesseesseeseeseennens 17
3. Lattice INterrupt INTErface (LINTR)....cccueiiiieeieeiieeeiteestee et e st e e tee s teessteessbeeeteeesbeeebeeenseeesaeenseseseesnsesessesnseeensaesnsens 18
3.1. SIBNAI DEFINITIONS. ... tiieeeieee ettt ee e e ettt e e e et e e e e tbee e e s abeeeeeabbeeeesaasaaastaseeansseeeasbeaeeastesesanstaeesnssnans 19
3.2. LN =Y U oLl 2 U =T =T SRS 19
0 P 1) f=T g g U o Y = LR 20 < = PRSP PP P PO PRORPRPRPRPRPRPORN 19
I B 1Y < o] oLl Y =] o Lol =T =) o S 20
3.2.3. INTEITUPE SET ROEISTON .nueiiiiiiiei ittt ettt e e e e s st e e e e e s s s bt e e e e eessassbbeeaeeessasassranaeeessasnssaneeaeens 21
I S | oY =T o U] o A F={ g - W =T o T=T - 1 [o PR 22
3.3. INEEITUPT HaNAIING. ettt et e bb e e bt e e sb b e e bt e e s bt e e sbee e ssbeeeneeesmbeenneeens 22
TeChNiCal SUPPOIT ASSISTANCE . .eeiiutiiiiieeiee ettt ettt s bt e et e sttt s bt e s bt e s bt e st e e e bt e sabeeeabeesabeesabeesareesneenane 23
REVISION HiSTOIY 1ot eaeeeaaaaaaaans 24
Figures
Figure 2.1. Single Write With NO Wit STATESc.eeiiiiiiiieie ettt st e bt e st e s b e sabeesneenane 6
Figure 2.2. SiNgle WIite WIth Wit STateScciiiiii ettt e et e e ettt e e e stte e e eeabeeeetaeeaesbeeaeensasaesnsseaasasteeenannns 7
Figure 2.3. BUrSt Write With NO Wait STateS.....ccuiii ettt ettt e e st e e et e e e e tte e e staeeeestaeeeeasaeeesnsaeeaessaeennnens 8
Figure 2.4. BUrSt Write WIith Wit STAteSuiiiiiiee ettt e e tr e e st e e e e tt e e e e s tae e e sataeeeastaeesansaaeesnsaeaaensraeennnnns 9
Figure 2.5. Single Read With NO Wait STates......ccuii ittt e e e s ee e e st e e e e satae e e sataeeeenneeeesnsneeesnneneanns 10
Figure 2.6. Single Read WIth Wait STatesiii ittt e s e e s e e e et e e e seaaeeeesataeeeanneeeesnsneeesnneeeaans 11
Figure 2.7. Burst Read With NO Wait STates......ccouuiiiiiiieeie ettt sttt et e s e sareesaee e 12
Figure 2.8. Burst Read With Wait SEatescocueiiiiiiii ettt et et sar e e sareesaee e 13
Figure 2.9. Back-to-Back Read and Write With NO Walit STAteSccueeiiiiuiieieiie ettt et e e vae e 14
Figure 2.10. Back-to-Back Read and Write With Wait STates.........ccciiiiiiiiiiieeiiie ettt ste e e e eir e e e rae e e s aaeaens 15
Figure 2.11. Back-to-Back Write and Read With NO Wait STatesccceiiiiiiieiiii ettt e et erae e e srae e 16
Figure 2.12. Back-to-Back Write and Read With Wait STates........cccciueieiiiiii ettt eeee e e saae e 17
Figure 2.13. SIMPle Master EXAMPIEceiiiiiiecciie et e et e et see e e e sttt e e e e tte e e snteeeesataeeeansteeesnseeeesnsaeeeansseeesnnnneessnseneaans 18
Figure 3.1. Interrupt HandliNg SEOUENCE.cc.ui ittt ettt ettt e sa e st s at e e s at e e shb e e st e e sabeesnneesaneenneeens 22
Tables
Table 2.1. LMMI Signal DEfiNItIONSveii ettt e e et e e et e e st e e e e s te e e s aeee e s ansaeeeensteeesnseeeesnseeeeansseeesnnnnens 5
Table 3.1, LINTR SigNal DEfINITIONSueeeieiiiieiiie ettt et sb e s bt e st e s bt e st e s b e s beesseesabeesbeesabeesneesane 19
Table 3.2. int_status Register DefiNitioNcocei ittt s ree st e b e sbeesneenane 19
Table 3.3. int_status Register Bitfield Definitioncciiiieiciiriiieccies et e st e s saee st esaeesbeeeaeeenns 20
Table 3.4. int_enable Register DEfiNItIONcucccii it e et e rae e st e e rtee s beeesaeeesbeeeseesnseseneennns 20
Table 3.5. int_enable Register Bitfield Definitionocuiiiiciie et e et e e tre e e e aaee e e sate e e ennes 21
Table 3.6. int_set ReIStEr DEfiNItIONcc.vii i ree e et e e e et e e e s nte e e essteeeeensaaeesananeeennteeeennnns 21

www.latticesemi.com/legal

http://www.latticesemi.com/legal

IL.jatticg I\./‘IjemorV Mapped Interface and Lattice Interrupt Interface ;..LATTICE
ser Guide

Table 3.7. int_set Register Bitfield Definitioncocciii it e e eeaaee e e srae e e e nte e e eneaeeesnnaeeean 21

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

This document provides a description of the Lattice Memory Mapped Interface (LMMI) and Lattice Interrupt Interface
(LINTR). Many FPGA IP blocks provide a set of dynamically programmable configuration, control, and status bits or
provide interfaces for transactional data transfer. LMMI is a common interface which supports these operations in a
consistent and well-defined manner. Some FPGA IP blocks also provide asynchronous status information or service
requests through interrupts. LINTR defines a set of functional standards and naming conventions for IP blocks which
generate interrupts.

This document covers the top-level definitions of LMMI and LINTR which apply to all Lattice FPGA IP blocks. For more
detailed interface or register information for a given FPGA IP block, please refer to the User’s Guide for that block.

2. Lattice Memory Mapped Interface (LMMI)

LMMI is a simple memory-mapped address/data interface. It defines a standard set of interface signals for
register/memory access and supports both single and burst transactions with a maximum throughput of one
transaction per clock cycle. LMMI supports optional wait states for slave interfaces that need more than one clock cycle
to complete a transaction, and supports multiple outstanding transactions (also known as pipelined transactions). Bus
transactions are completed in order; LMMI does not support out of order transactions.

Although the LMMI protocol is capable of supporting all of the listed features, a given implementation may choose to
support all, some, or none of these features. For example, a simple LMMI master may choose to implement only single
transactions and not support burst transactions or pipelined transactions. To see which features a given FPGA IP block
supports (e.g., wait states, pipelined transactions), please refer to the User’s Guide for that block.

2.1. Signal Definitions

Table 2.1 below defines the LMMI signals. FPGA IP blocks may have additional ports, as appropriate to their
functionality, but all register/memory access is handled through the LMM interface.

Table 2.1. LMMI Signal Definitions

Signal Slave Direction Description
Immi_clk In Clock
Immi_resetn In Reset (active low)
Resets the LMM interface and sets registers to their default values. Does
not reset the internal (i.e., non-user-accessible) registers of the IP block.
Immi_request In Start transaction
Immi_wr_rdn In Write = HIGH, Read = LOW
Immi_offset[n:0] In Offset (0-32 bits) — register offset within the slave, starting at offset 0. Bit
width is IP dependent.
Immi_wdata[n:0] In Write data (0-32 bits)
Bit width is IP dependent.
Immi_rdata[n:0] Out Read data (0-32 bits)
Bit width is IP dependent.
Immi_rdata_valid Out Read transaction is complete and Immi_rdata[] contains valid data.
Immi_ready Out Slave is ready to start a new transaction. Slave can insert wait states by
holding this signal low.

2.2. Reset

The Immi_resetn signal can be asserted asynchronously, but deassertion must be synchronous after the rising edge of
Immi_clk. The minimum duration for reset assertion is one full clock cycle.

Reset is asynchronous. When Immi_resetn is asserted, all output ports on the slave drive their reset value (0)
immediately.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Il.Jatticg Mdemory Mapped Interface and Lattice Interrupt Interface :..LATTICE
ser Guide

2.2. Transaction Descriptions

All LMMI signals are sampled on the rising edge of Immi_clk. The timing of signal transitions shown in the waveforms in
this document are intended as examples only. The only constraints on the timing of signal transitions are the setup and
hold requirements around rising clock edges.

2.2.1. Write Transactions

TO T T2 T3

Immi_clk \ / \ / \ / \ i
Immi_request / \

Immi_wr_rdn / \

Immi_offset[n:0] >@FFSET1X

Immi_wdata[n:0] >< DATAT X
Immi_ready /

Immi_rdata_valid

Immi_rdata[n:0]

Figure 2.1. Single Write with No Wait States

Protocol Description (Figure 2.1)

TO: Master decides to start a write transaction, asserts Immi_request and Immi_wr_rdn, and drives Immi_offset[] and
Immi_wdata[] with values for the new transaction. Slave is ready to start a new a transaction in the next clock cycle and
asserts Immi_ready.

T1: Master sees Immi_ready high which signals that the slave has accepted the write transaction. After the appropriate
hold time, Master deasserts Immi_request and may change Immi_wr_rdn, Immi_offset[] and Immi_wdata(].

T2: Slave signals that it is ready to start a new transaction by asserting Immi_ready.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

Lattice Memory Mapped Interface and Lattice Interrupt Interface

User Guide

TO i T2 Tn

Immi_request

Immi_wr_rdn

Immi_offset[n:0]

Immi_wdata[n:0]

Immi_ready

Immi_rdata_valid

Immi_rdata[n:0]

Protocol Description (Figure 2.2)

[\

(7N
~~

e
Nl

kFFSEﬁX

X DATA1 X

===
N

/ \ \ wait states [|
((
)7

[S°N
~

~N —L
N

Figure 2.2. Single Write with Wait States

TO, T1: Same as single write with no wait states.

T2: Slave deasserts Immi_ready to insert one or more wait states.

Tn: Slave signals that it is ready to start a new transaction by asserting Immi_ready.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt InterfaceLATTICE
User Guide

TO T T2 T3 T4

Immi_request / \
Immi_wr_rdn / \

Immi_offset[n:0] ﬁFFS ET. 1X OFFSET2 X OFFSET3 X
Immi_wdata[n:0] X DATA1 X DATA2 X DATA3 X
Immi_ready /

Immi_rdata_valid

Immi_rdata[n:0]

Figure 2.3. Burst Write with No Wait States

Protocol Description (Figure 2.3)
TO: Same as single write with no wait states.

T1, T2: Master sees Immi_ready high which signals that Slave has accepted the write transaction. After the appropriate
hold time, Master changes Immi_offset[] and Immi_wdata[] to new values for the next transaction.

T3: Master sees Immi_ready high which signals that Slave has accepted the write transaction. After the appropriate
hold time, Master deasserts Immi_request and may change Immi_wr_rdn, Immi_offset[] and Immi_wdatal].

T4: Slave signals that it is ready to start a new transaction by asserting Immi_ready.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

8 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

T0 Tl T2 1E] T4 5

e U U 2 W e U A W A W

Immi_request / \

s] \ |

Immi_offset[n:0] < X)FFSETl X OFFSET2 X |
Immi_wdata[n:0] < X DATA1 X DATA2 X |
wait state wait state

—_— S o e WA v W

Immi_rdata_valid

Immi_rdata[n:0] <

Figure 2.4. Burst Write with Wait States

Protocol Description (Figure 2.4)
TO, T1: Same as burst write with no wait states.
T2: Slave deasserts Immi_ready to insert a wait state.

T3: Slave signals that it is ready to start a new transaction by asserting Immi_ready. Master sees Immi_ready high which
signals that Slave has accepted the write transaction. After the appropriate hold time, Master deasserts Immi_request
and may change Immi_wr_rdn, Immi_offset[] and Immi_wdatal].

T4: Slave deasserts Immi_ready to insert a wait state.

T5: Slave signals that it is ready to start a new transaction by asserting Immi_ready.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

IL.Jatticg Mdemory Mapped Interface and Lattice Interrupt Interface :..LATTICE
ser Guide

2.2.2. Read Transactions

TO i T2 T3

Immi_clk —_/—_ \ / \ /
Immi_request / \

Immi_wr_rdn \ /

Immi_offset[n:0] X)FFSEHX

Immi_wdata[n:0]

Immi_ready /

Immi_rdata_valid / \

Immi_rdata[n:0] >< DATA1 X

Figure 2.5. Single Read with No Wait States

Protocol Description (Figure 2.5)

TO: Master decides to start a read transaction, asserts Immi_request, deasserts Immi_wr_rdn, and drives Immi_offset(]
with a value for the new transaction. Slave is ready to start a new a transaction in the next clock cycle and asserts
Immi_ready.

T1: Master sees Immi_ready high which signals that Slave has accepted the read transaction. After the appropriate hold
time, Master deasserts Immi_request and may change Immi_wr_rdn and Immi_offset([].

T2: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

10 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

- . .
HH LATTICE Lattice Memory Mapped Interface and Lattice Interruplj InteGrfa.\;e
ser Guide

TO i T2 Tn

T T
W —

(7N
~~

N

Immi_offset[n:0] X)FFSEHX

e
Nl

Immi_wdata[n:0]

===
N

" wait states
Immi_ready / \ \ / /
{ C
)7

Immi_rdata_valid

[S°N
~

X DATA1 X:

Immi_rdata[n:0]

~ L
N

Figure 2.6. Single Read with Wait States

Protocol Description (Figure 2.6)
TO, T1: Same as single read with no wait states.
T2: Slave deasserts Immi_ready to insert one or more wait states.

Tn: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 11

http://www.latticesemi.com/legal

IL.Jatticg Mdemory Mapped Interface and Lattice Interrupt Interface :..LATTICE
ser Guide

TO i1 T2 T3
Immi_clk —_/—_ \ / \ /
Immi_request / \
Immi_wr_rdn \ /
Immi_offset[n:0] X)FFSEHX OFFSET2 X
Immi_wdata[n:0]
Immi_ready /
Immi_rdata_valid / \\

Immi_rdata[n:0] X DATA1 >< DATA2 x

Figure 2.7. Burst Read with No Wait States

Protocol Description (Figure 2.7)

TO0: Same as single read with no wait states.

T1: Master sees Immi_ready high which signals that Slave has accepted the read transaction. After the appropriate hold
time, Master changes Immi_offset[] to a new value for the next read transaction.

T2: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction. Master latches
Immi_rdata[]. After the appropriate hold time, Master deasserts Immi_request and may change Immi_wr_rdn and
Immi_offset[].

T3: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

12 FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

T0 Tl T2 1E] T4 5

SP e W S W e W S N e W A U O

Immi_request / \

——— \ [|

Immi_offset[n:0] < X)FFSETl X OFFSET2 X |

Immi_wdata[n:0] < |

wait state wait state I
Immi_ready < / \ \ ’ \ \ ’
Immi_rdata_valid ’ \ /

~

m

Immi_rdata[n:0] < XDArAl X XDArAz

Figure 2.8. Burst Read with Wait States

Protocol Description (Figure 2.8)
TO, T1: Same as burst read with no wait states.
T2: Slave deasserts Immi_ready to insert a wait state.

T3: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction. Master latches
Immi_rdata[]. After the appropriate hold time, Master deasserts Immi_request and may change Immi_wr_rdn and
Immi_offset[].

T4: Slave deasserts Immi_ready to insert a wait state.

T3: Slave drives Immi_rdata[] with the result of the read transaction, asserts Immi_rdata_valid to signal that
Immi_rdata[] is valid, and asserts Immi_ready to signal that Slave is ready to start a new transaction.

2.2.3. Back-to-Back Transactions

This section shows examples of back-to-back read and write transactions. These examples are purely informative; there
are no special protocol rules for back-to-back transactions.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

= LATTICE

TO

Immi_clk —_/—_

i T2

T3

A T

Immi_request / \
Immi_wr_rdn \ / \
Immi_offset[n:0] ﬁFF SET1>< OFFSET2 X

Immi_wdata[n:0]

X DATA2 X

Immi_ready /

Immi_rdata_valid

[\

Immi_rdata[n:0]

X DATA1 X

Figure 2.9. Back-to-Back Read and Write with No Wait States

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14

FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

T0 Tl T2 T3 T4

ST U e U W A W A W

Immi_request / \

—— \ \

Immi_offset[n:0] < XJFFSEH X OFFSET2 X

Immi_wdata[n:0] < X DATA2 X

wait state (read) wait state (write)
Immi_ready < / \ \ , \ \ ,
Immi_rdata_valid ’ \

Immi_rdata[n:0] < XDArAl X

Figure 2.10. Back-to-Back Read and Write with Wait States

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface .I.ILATTICE

User Guide

TO i T2 T3

Immi_request

Immi_wr_rdn

Immi_offset[n:0]

Immi_wdata[n:0]

Immi_ready

Immi_rdata_valid

Immi_rdata[n:0]

X)FFSET1X OFFSET2 X

X DATA1 X

-

X DATA2

=

Figure 2.11. Back-to-Back Write and Read with No Wait States

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16

FPGA-UG-02039-1.2

http://www.latticesemi.com/legal

= LATTICE

Y Tl T2 T3 T4 1]

o [\ \ U U e U

Immi_request / \

—— I\ [|

Immi_offset[n:0] < X)FFSETl X OFFSET2 X |

Immi_wdata[n:0] < XDArAl X |

ait state (write) wait state (read) —
Immi_ready < / ’ \ \ ,
Immi_rdata_valid , \
Immi_rdata[n:0] < X DATA2 X:I

— 1
—
ES

Figure 2.12. Back-to-Back Write and Read with Wait States

2.2.4. Pipelined Transactions

The LMMI protocol supports multiple outstanding transactions with in-order completion (also known as pipelined
transactions). This feature is optional in both LMMI Masters and Slaves and is implementation dependent. Pipelined
transactions can only occur when both the Master and Slave support this feature. If either side does not support
pipelined transactions, then only one transaction at a time is supported. Currently there are no FPGA IP blocks which
support pipelined transactions.

2.2.5. State/Flow Diagrams

2.2.5.1. Simple Master

The following state/flow diagram illustrates the behavior of a simple master which does not support pipelined
transactions or burst transactions. The simple master always waits for one transaction to complete before starting the
next transaction. This is only one example; many other possible implementations exist.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

IDLE

request=0

new transaction

REQUEST

request=1
offset=<new>
wr_rdn=<new>

[wdata=<new>]

latch rdata
wr_rdn
| - |
0 (read) 1 (write)
rdata_valid=1 ready=1

READ WRITE
WAIT WAIT

request=0 request=0

rdata_valid=0 ready=0

Figure 2.13. Simple Master Example

3. Lattice Interrupt Interface (LINTR)

The Lattice Interrupt Interface consists of an interrupt signal and a set of interrupt registers which are accessed through
LMMI. These interrupt registers follow a standard functional definition, allowing users to implement common
hardware/software to handle interrupts from a variety of IP blocks.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.1. Signal Definitions

Table 3.1. LINTR Signal Definitions

Signal IP Direction Mandatory/Optional | Description

int Out M Interrupt
IP block has an interrupt which needs to be
serviced.

Active high, level sensitive. Stays high as long as
any enabled interrupt is pending.

3.2. Interrupt Registers

IP blocks which support LINTR implement the following set of interrupt registers:

e Interrupt Status

e Interrupt Enable

e Interrupt Set

Each interrupt register has one or more bits which represent the interrupt sources in the IP block. The bit position of
each interrupt source is the same in every interrupt register. For example, if int_srcl is assigned to bit 0 in the interrupt
status register, it is assigned to bit 0 in the interrupt enable and set registers as well.

The number of interrupt source bits supported by a given IP block is dependent on the functionality of that block, but
the minimum is 1 interrupt source bit. In other words, even if a block only supports one interrupt source, it implements
interrupt status, enable, and set registers at least 1 bit wide.

3.2.1. Interrupt Status Register
The interrupt status register is named int_status and provides two functions.

Reading this register returns a set of bits representing all interrupts currently pending in the IP Block. The status bits
are independent of the enable bits; in other words, status bits may indicate pending interrupts even though those
interrupts are disabled in the int_enable register. In order to determine which interrupt source(s) generated an
interrupt signal, the entity which services interrupts must mask int_status with int_enable (see the Interrupt Handling
section for the recommended interrupt handling sequence).

Writing this register clears pending interrupts for each bit set to ‘1’. This is generally known as “write 1 to clear.”
An example interrupt status register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _int.

Table 3.2. int_status Register Definition

7

6

5

3

2

1

0

RSVD

RSVD

RSVD

RSVD

srcd_int

src3_int

src2_int

srcl_int

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 3.3. int_status Register Bitfield Definition

Bit Field Description

7:4 RSVD Reserved
Reads return 0
Writes are ignored

3 src3_int SRC3 Interrupt Status — add interrupt name/description here
Read Value:

. no interrupt

e interrupt pending

e Write 1toclear

2 src2_int SRC2 Interrupt Status — add interrupt name/description here
Read Value:

. no interrupt

e interrupt pending Write 1 to clear

1 srcl_int SRC1 Interrupt Status — add interrupt name/description here
Read Value:

. no interrupt

e interrupt pending Write 1 to clear

0 srcO_int SRCO Interrupt Status — add interrupt name/description here
Read Value:

. no interrupt

e interrupt pending Write 1 to clear

3.2.2. Interrupt Enable Register

The interrupt enable register is named int_enable and it controls whether interrupts in the int_status register assert
the int signal or not. It does not affect the contents of the int_status register. If one of the interrupt sources in the IP
Block generates an interrupt, it sets the corresponding bit in the int_status register regardless of whether the interrupt
is enabled or disabled in the int_enable register. See the Interrupt Signal Generation section for interrupt signal
generation details.

An example interrupt enable register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _en.

Table 3.4. int_enable Register Definition

7 6 5 4 3 2 1 0

RSVD RSVD RSVD RSVD src4_en src3_en src2_en srcl_en

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 3.5. int_enable Register Bitfield Definition

Bit

Field

Description

7:4

RSVD

Reserved
Reads return 0
Writes are ignored

src3_en

SRC3 Interrupt Enable — add interrupt name/description here 0 —
interrupt disabled
1 —interrupt enabled

src2_en

SRC2 Interrupt Enable — add interrupt name/description here 0 —
interrupt disabled
1 —interrupt enabled

srcl_en

SRC1 Interrupt Enable — add interrupt name/description here 0 —
interrupt disabled
1 —interrupt enabled

srcO_en

SRCO Interrupt Enable — add interrupt name/description here 0 —
interrupt disabled
1 —interrupt enabled

3.2.3. Interrupt Set Register

The interrupt set register is named int_set and it allows the user to set bits in the int_status register. Writing this
register sets pending interrupts for each bit set to ‘1’.

It is not used in most applications, but is provided to give applications the ability to force individual interrupts.

An example interrupt set register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _set.

Table 3.6. int_set Register Definition

7 6 5 4 3 2 1 0
RSVD RSVD RSVD RSVD src4_set src3_set src2_set srcl_set
Table 3.7. int_set Register Bitfield Definition

Bit Field Description

7:4 RSVD Reserved
Reads return 0
Writes are ignored

3 src3_set SRC3 Interrupt Set — add interrupt name/description here 0 — do
nothing
1—-setsrc3_intin int_status

2 src2_set SRC2 Interrupt Set — add interrupt name/description here 0 — do
nothing
1-—setsrc2_intin int_status

1 srcl_set SRC1 Interrupt Set — add interrupt name/description here 0 — do
nothing
1-—setsrcl_intinint_status

0 src0_set SRCO Interrupt Set — add interrupt name/description here 0 — do
nothing
1-—set srcO_int in int_status

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.2.4. Interrupt Signal Generation

The int signal is asserted whenever an interrupt status bit is set and the corresponding interrupt enable bit is also set.
The signal is generated by a bitwise AND operation on int_status and int_enable and then a reduction OR of the result.
The Verilog code is shown below.

int := | (int status & int enable);

3.3. Interrupt Handling

When interrupts occur, the IP Block sets the appropriate bit(s) in the int_status register, and the int signal is asserted if
one or more of those interrupts is enabled. When int is asserted, the interrupt handler (either firmware running on a
soft processor, or a state machine in logic) reads the int_status register, processes the interrupt (which may involve
reading/writing various registers), and then writes to the int_status register to clear the interrupt.

Interrupt
Generated

~———assert int sighak———
Read int_status——»

<+——int_status——

—————— Read int_en——— —»| opioml.
Not necessary if Interrupt Handler
- — — — — — |nt en——————; keepsa local copy of int_en.
Handle
Enabled & Register reads/writes—»
Interrupts

Write int_status
to clear interrupts

Figure 3.1. Interrupt Handling Sequence

www.latticesemi.com/legal

http://www.latticesemi.com/legal

- . .
HH LATTICE Lattice Memory Mapped Interface and Lattice Interruplj InteGrfzf\;e
ser Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 23

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Revision History
Revision 1.2, January 2020

= LATTICE

Section

Change Summary

All

Updated document template.

Disclaimers

Added this section.

Revision History

Updated format.

Revision 1.1, February 2018

Section

Change Summary

Lattice Memory Mapped
Interface (LMMI)

e Revised Immi_ready description in Table 2.1.
e Revised Reset section.
e Revised Simple Master section. Added “burst transactions” to initial statement.

Interrupt Registers

In Interrupt Registers section, changed statements to:

e For example, if int_srcl is assigned to bit 0 in the interrupt status register, it is assigned
to bit 0 in the interrupt enable and set registers as well.

e Inother words, even if a block only supports one interrupt source, it implements
interrupt status, enable, and set registers at least 1 bit wide.

In Interrupt Status Register section, changed statement to:

e For consistency among IP blocks, the bitfield names all end in _int.

In Interrupt Enable Register section, changed statement to:

e For consistency among IP blocks, the bitfield names all end in _en.

In Interrupt Set Register section, changed statements to:

e Itis not used in most applications, but is provided to give applications the ability to
force individual interrupts.

e For consistency among IP blocks, the bitfield names all end in _set.

Revision 1.0, February 2018

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Lattice Memory Mapped Interface and Lattice Interrupt Interface
	1. Introduction
	2. Lattice Memory Mapped Interface (LMMI)
	2.1. Signal Definitions
	2.2. Reset
	2.2. Transaction Descriptions
	2.2.1. Write Transactions
	Protocol Description (Figure 2.1)

	2.2.2. Read Transactions
	2.2.3. Back-to-Back Transactions
	2.2.4. Pipelined Transactions
	2.2.5. State/Flow Diagrams
	2.2.5.1. Simple Master

	3. Lattice Interrupt Interface (LINTR)
	3.1. Signal Definitions
	3.2. Interrupt Registers
	3.2.1. Interrupt Status Register
	3.2.2. Interrupt Enable Register
	3.2.3. Interrupt Set Register
	3.2.4. Interrupt Signal Generation

	3.3. Interrupt Handling

	Technical Support Assistance
	Revision History

