

Lattice Memory Mapped Interface and
Lattice Interrupt Interface

User Guide

FPGA-UG-02039-1.2

January 2020

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-UG-02039-1.2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 3

Contents
1. Introduction .. 5
2. Lattice Memory Mapped Interface (LMMI) .. 5

2.1. Signal Definitions ... 5
2.2. Reset .. 5
2.2. Transaction Descriptions ... 6

2.2.1. Write Transactions ... 6
2.2.2. Read Transactions .. 10
2.2.3. Back-to-Back Transactions ... 13
2.2.4. Pipelined Transactions ... 17
2.2.5. State/Flow Diagrams .. 17

3. Lattice Interrupt Interface (LINTR) .. 18
3.1. Signal Definitions ... 19
3.2. Interrupt Registers .. 19

3.2.1. Interrupt Status Register .. 19
3.2.2. Interrupt Enable Register ... 20
3.2.3. Interrupt Set Register ... 21
3.2.4. Interrupt Signal Generation ... 22

3.3. Interrupt Handling ... 22
Technical Support Assistance ... 23
Revision History .. 24

Figures
Figure 2.1. Single Write with No Wait States ... 6
Figure 2.2. Single Write with Wait States ... 7
Figure 2.3. Burst Write with No Wait States ... 8
Figure 2.4. Burst Write with Wait States .. 9
Figure 2.5. Single Read with No Wait States... 10
Figure 2.6. Single Read with Wait States .. 11
Figure 2.7. Burst Read with No Wait States .. 12
Figure 2.8. Burst Read with Wait States ... 13
Figure 2.9. Back-to-Back Read and Write with No Wait States .. 14
Figure 2.10. Back-to-Back Read and Write with Wait States .. 15
Figure 2.11. Back-to-Back Write and Read with No Wait States .. 16
Figure 2.12. Back-to-Back Write and Read with Wait States .. 17
Figure 2.13. Simple Master Example .. 18
Figure 3.1. Interrupt Handling Sequence .. 22

Tables
Table 2.1. LMMI Signal Definitions ... 5
Table 3.1. LINTR Signal Definitions ... 19
Table 3.2. int_status Register Definition .. 19
Table 3.3. int_status Register Bitfield Definition .. 20
Table 3.4. int_enable Register Definition ... 20
Table 3.5. int_enable Register Bitfield Definition ... 21
Table 3.6. int_set Register Definition ... 21

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-UG-02039-1.2

Table 3.7. int_set Register Bitfield Definition ... 21

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 5

1. Introduction
This document provides a description of the Lattice Memory Mapped Interface (LMMI) and Lattice Interrupt Interface
(LINTR). Many FPGA IP blocks provide a set of dynamically programmable configuration, control, and status bits or
provide interfaces for transactional data transfer. LMMI is a common interface which supports these operations in a
consistent and well-defined manner. Some FPGA IP blocks also provide asynchronous status information or service
requests through interrupts. LINTR defines a set of functional standards and naming conventions for IP blocks which
generate interrupts.

This document covers the top-level definitions of LMMI and LINTR which apply to all Lattice FPGA IP blocks. For more
detailed interface or register information for a given FPGA IP block, please refer to the User’s Guide for that block.

2. Lattice Memory Mapped Interface (LMMI)
LMMI is a simple memory-mapped address/data interface. It defines a standard set of interface signals for
register/memory access and supports both single and burst transactions with a maximum throughput of one
transaction per clock cycle. LMMI supports optional wait states for slave interfaces that need more than one clock cycle
to complete a transaction, and supports multiple outstanding transactions (also known as pipelined transactions). Bus
transactions are completed in order; LMMI does not support out of order transactions.

Although the LMMI protocol is capable of supporting all of the listed features, a given implementation may choose to
support all, some, or none of these features. For example, a simple LMMI master may choose to implement only single
transactions and not support burst transactions or pipelined transactions. To see which features a given FPGA IP block
supports (e.g., wait states, pipelined transactions), please refer to the User’s Guide for that block.

2.1. Signal Definitions
Table 2.1 below defines the LMMI signals. FPGA IP blocks may have additional ports, as appropriate to their
functionality, but all register/memory access is handled through the LMM interface.

Table 2.1. LMMI Signal Definitions

Signal Slave Direction Description

lmmi_clk In Clock

lmmi_resetn In Reset (active low)

Resets the LMM interface and sets registers to their default values. Does
not reset the internal (i.e., non-user-accessible) registers of the IP block.

lmmi_request In Start transaction

lmmi_wr_rdn In Write = HIGH, Read = LOW

lmmi_offset[n:0] In Offset (0-32 bits) – register offset within the slave, starting at offset 0. Bit
width is IP dependent.

lmmi_wdata[n:0] In Write data (0-32 bits)

Bit width is IP dependent.

lmmi_rdata[n:0] Out Read data (0-32 bits)

Bit width is IP dependent.

lmmi_rdata_valid Out Read transaction is complete and lmmi_rdata[] contains valid data.

lmmi_ready Out Slave is ready to start a new transaction. Slave can insert wait states by
holding this signal low.

2.2. Reset
The lmmi_resetn signal can be asserted asynchronously, but deassertion must be synchronous after the rising edge of
lmmi_clk. The minimum duration for reset assertion is one full clock cycle.

Reset is asynchronous. When lmmi_resetn is asserted, all output ports on the slave drive their reset value (0)
immediately.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-UG-02039-1.2

2.2. Transaction Descriptions
All LMMI signals are sampled on the rising edge of lmmi_clk. The timing of signal transitions shown in the waveforms in
this document are intended as examples only. The only constraints on the timing of signal transitions are the setup and
hold requirements around rising clock edges.

2.2.1. Write Transactions

Figure 2.1. Single Write with No Wait States

Protocol Description (Figure 2.1)

T0: Master decides to start a write transaction, asserts lmmi_request and lmmi_wr_rdn, and drives lmmi_offset[] and
lmmi_wdata[] with values for the new transaction. Slave is ready to start a new a transaction in the next clock cycle and
asserts lmmi_ready.

T1: Master sees lmmi_ready high which signals that the slave has accepted the write transaction. After the appropriate
hold time, Master deasserts lmmi_request and may change lmmi_wr_rdn, lmmi_offset[] and lmmi_wdata[].

T2: Slave signals that it is ready to start a new transaction by asserting lmmi_ready.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 7

Figure 2.2. Single Write with Wait States

Protocol Description (Figure 2.2)

T0, T1: Same as single write with no wait states.

T2: Slave deasserts lmmi_ready to insert one or more wait states.

Tn: Slave signals that it is ready to start a new transaction by asserting lmmi_ready.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-UG-02039-1.2

Figure 2.3. Burst Write with No Wait States

Protocol Description (Figure 2.3)

T0: Same as single write with no wait states.

T1, T2: Master sees lmmi_ready high which signals that Slave has accepted the write transaction. After the appropriate
hold time, Master changes lmmi_offset[] and lmmi_wdata[] to new values for the next transaction.

T3: Master sees lmmi_ready high which signals that Slave has accepted the write transaction. After the appropriate
hold time, Master deasserts lmmi_request and may change lmmi_wr_rdn, lmmi_offset[] and lmmi_wdata[].

T4: Slave signals that it is ready to start a new transaction by asserting lmmi_ready.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 9

Figure 2.4. Burst Write with Wait States

Protocol Description (Figure 2.4)

T0, T1: Same as burst write with no wait states.

T2: Slave deasserts lmmi_ready to insert a wait state.

T3: Slave signals that it is ready to start a new transaction by asserting lmmi_ready. Master sees lmmi_ready high which
signals that Slave has accepted the write transaction. After the appropriate hold time, Master deasserts lmmi_request
and may change lmmi_wr_rdn, lmmi_offset[] and lmmi_wdata[].

T4: Slave deasserts lmmi_ready to insert a wait state.

T5: Slave signals that it is ready to start a new transaction by asserting lmmi_ready.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-UG-02039-1.2

2.2.2. Read Transactions

Figure 2.5. Single Read with No Wait States

Protocol Description (Figure 2.5)

T0: Master decides to start a read transaction, asserts lmmi_request, deasserts lmmi_wr_rdn, and drives lmmi_offset[]
with a value for the new transaction. Slave is ready to start a new a transaction in the next clock cycle and asserts
lmmi_ready.

T1: Master sees lmmi_ready high which signals that Slave has accepted the read transaction. After the appropriate hold
time, Master deasserts lmmi_request and may change lmmi_wr_rdn and lmmi_offset[].

T2: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 11

Figure 2.6. Single Read with Wait States

Protocol Description (Figure 2.6)

T0, T1: Same as single read with no wait states.

T2: Slave deasserts lmmi_ready to insert one or more wait states.

Tn: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-UG-02039-1.2

Figure 2.7. Burst Read with No Wait States

Protocol Description (Figure 2.7)

T0: Same as single read with no wait states.

T1: Master sees lmmi_ready high which signals that Slave has accepted the read transaction. After the appropriate hold
time, Master changes lmmi_offset[] to a new value for the next read transaction.

T2: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction. Master latches
lmmi_rdata[]. After the appropriate hold time, Master deasserts lmmi_request and may change lmmi_wr_rdn and
lmmi_offset[].

T3: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 13

Figure 2.8. Burst Read with Wait States

Protocol Description (Figure 2.8)

T0, T1: Same as burst read with no wait states.

T2: Slave deasserts lmmi_ready to insert a wait state.

T3: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction. Master latches
lmmi_rdata[]. After the appropriate hold time, Master deasserts lmmi_request and may change lmmi_wr_rdn and
lmmi_offset[].

T4: Slave deasserts lmmi_ready to insert a wait state.

T3: Slave drives lmmi_rdata[] with the result of the read transaction, asserts lmmi_rdata_valid to signal that
lmmi_rdata[] is valid, and asserts lmmi_ready to signal that Slave is ready to start a new transaction.

2.2.3. Back-to-Back Transactions

This section shows examples of back-to-back read and write transactions. These examples are purely informative; there
are no special protocol rules for back-to-back transactions.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-UG-02039-1.2

Figure 2.9. Back-to-Back Read and Write with No Wait States

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 15

Figure 2.10. Back-to-Back Read and Write with Wait States

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-UG-02039-1.2

Figure 2.11. Back-to-Back Write and Read with No Wait States

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 17

Figure 2.12. Back-to-Back Write and Read with Wait States

2.2.4. Pipelined Transactions

The LMMI protocol supports multiple outstanding transactions with in-order completion (also known as pipelined
transactions). This feature is optional in both LMMI Masters and Slaves and is implementation dependent. Pipelined
transactions can only occur when both the Master and Slave support this feature. If either side does not support
pipelined transactions, then only one transaction at a time is supported. Currently there are no FPGA IP blocks which
support pipelined transactions.

2.2.5. State/Flow Diagrams

2.2.5.1. Simple Master

The following state/flow diagram illustrates the behavior of a simple master which does not support pipelined
transactions or burst transactions. The simple master always waits for one transaction to complete before starting the
next transaction. This is only one example; many other possible implementations exist.

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-UG-02039-1.2

Figure 2.13. Simple Master Example

3. Lattice Interrupt Interface (LINTR)
The Lattice Interrupt Interface consists of an interrupt signal and a set of interrupt registers which are accessed through
LMMI. These interrupt registers follow a standard functional definition, allowing users to implement common
hardware/software to handle interrupts from a variety of IP blocks.

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 19

3.1. Signal Definitions

Table 3.1. LINTR Signal Definitions

Signal IP Direction Mandatory/Optional Description

int Out M Interrupt

IP block has an interrupt which needs to be
serviced.

Active high, level sensitive. Stays high as long as
any enabled interrupt is pending.

3.2. Interrupt Registers
IP blocks which support LINTR implement the following set of interrupt registers:

 Interrupt Status

 Interrupt Enable

 Interrupt Set

Each interrupt register has one or more bits which represent the interrupt sources in the IP block. The bit position of
each interrupt source is the same in every interrupt register. For example, if int_src1 is assigned to bit 0 in the interrupt
status register, it is assigned to bit 0 in the interrupt enable and set registers as well.

The number of interrupt source bits supported by a given IP block is dependent on the functionality of that block, but
the minimum is 1 interrupt source bit. In other words, even if a block only supports one interrupt source, it implements
interrupt status, enable, and set registers at least 1 bit wide.

3.2.1. Interrupt Status Register

The interrupt status register is named int_status and provides two functions.

Reading this register returns a set of bits representing all interrupts currently pending in the IP Block. The status bits
are independent of the enable bits; in other words, status bits may indicate pending interrupts even though those
interrupts are disabled in the int_enable register. In order to determine which interrupt source(s) generated an
interrupt signal, the entity which services interrupts must mask int_status with int_enable (see the Interrupt Handling
section for the recommended interrupt handling sequence).

Writing this register clears pending interrupts for each bit set to ‘1’. This is generally known as “write 1 to clear.”

An example interrupt status register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _int.

Table 3.2. int_status Register Definition

7 6 5 4 3 2 1 0

RSVD RSVD RSVD RSVD src4_int src3_int src2_int src1_int

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-UG-02039-1.2

Table 3.3. int_status Register Bitfield Definition

Bit Field Description

7:4 RSVD Reserved

Reads return 0

Writes are ignored

3 src3_int SRC3 Interrupt Status – add interrupt name/description here

Read Value:

 no interrupt

 interrupt pending

 Write 1 to clear

2 src2_int SRC2 Interrupt Status – add interrupt name/description here

Read Value:

 no interrupt

 interrupt pending Write 1 to clear

1 src1_int SRC1 Interrupt Status – add interrupt name/description here

Read Value:

 no interrupt

 interrupt pending Write 1 to clear

0 src0_int SRC0 Interrupt Status – add interrupt name/description here

Read Value:

 no interrupt

 interrupt pending Write 1 to clear

3.2.2. Interrupt Enable Register

The interrupt enable register is named int_enable and it controls whether interrupts in the int_status register assert
the int signal or not. It does not affect the contents of the int_status register. If one of the interrupt sources in the IP
Block generates an interrupt, it sets the corresponding bit in the int_status register regardless of whether the interrupt
is enabled or disabled in the int_enable register. See the Interrupt Signal Generation section for interrupt signal
generation details.

An example interrupt enable register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _en.

Table 3.4. int_enable Register Definition

7 6 5 4 3 2 1 0

RSVD RSVD RSVD RSVD src4_en src3_en src2_en src1_en

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 21

Table 3.5. int_enable Register Bitfield Definition

Bit Field Description

7:4 RSVD Reserved

Reads return 0

Writes are ignored

3 src3_en SRC3 Interrupt Enable – add interrupt name/description here 0 –
interrupt disabled

1 – interrupt enabled

2 src2_en SRC2 Interrupt Enable – add interrupt name/description here 0 –
interrupt disabled

1 – interrupt enabled

1 src1_en SRC1 Interrupt Enable – add interrupt name/description here 0 –
interrupt disabled

1 – interrupt enabled

0 src0_en SRC0 Interrupt Enable – add interrupt name/description here 0 –
interrupt disabled

1 – interrupt enabled

3.2.3. Interrupt Set Register

The interrupt set register is named int_set and it allows the user to set bits in the int_status register. Writing this
register sets pending interrupts for each bit set to ‘1’.

It is not used in most applications, but is provided to give applications the ability to force individual interrupts.

An example interrupt set register definition is shown below. Each IP Block defines its own interrupt bits and names
them appropriately. For consistency among IP blocks, the bitfield names all end in _set.

Table 3.6. int_set Register Definition

7 6 5 4 3 2 1 0

RSVD RSVD RSVD RSVD src4_set src3_set src2_set src1_set

Table 3.7. int_set Register Bitfield Definition

Bit Field Description

7:4 RSVD Reserved

Reads return 0

Writes are ignored

3 src3_set SRC3 Interrupt Set – add interrupt name/description here 0 – do
nothing

1 – set src3_int in int_status

2 src2_set SRC2 Interrupt Set – add interrupt name/description here 0 – do
nothing

1 – set src2_int in int_status

1 src1_set SRC1 Interrupt Set – add interrupt name/description here 0 – do
nothing

1 – set src1_int in int_status

0 src0_set SRC0 Interrupt Set – add interrupt name/description here 0 – do
nothing

1 – set src0_int in int_status

http://www.latticesemi.com/legal

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-UG-02039-1.2

3.2.4. Interrupt Signal Generation

The int signal is asserted whenever an interrupt status bit is set and the corresponding interrupt enable bit is also set.
The signal is generated by a bitwise AND operation on int_status and int_enable and then a reduction OR of the result.
The Verilog code is shown below.
int := | (int_status & int_enable);

3.3. Interrupt Handling
When interrupts occur, the IP Block sets the appropriate bit(s) in the int_status register, and the int signal is asserted if
one or more of those interrupts is enabled. When int is asserted, the interrupt handler (either firmware running on a
soft processor, or a state machine in logic) reads the int_status register, processes the interrupt (which may involve
reading/writing various registers), and then writes to the int_status register to clear the interrupt.

Figure 3.1. Interrupt Handling Sequence

http://www.latticesemi.com/legal

 Lattice Memory Mapped Interface and Lattice Interrupt Interface
 User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02039-1.2 23

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Lattice Memory Mapped Interface and Lattice Interrupt Interface
User Guide

© 2018-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-UG-02039-1.2

Revision History
Revision 1.2, January 2020

Section Change Summary

All Updated document template.

Disclaimers Added this section.

Revision History Updated format.

Revision 1.1, February 2018

Section Change Summary

Lattice Memory Mapped
Interface (LMMI)

 Revised lmmi_ready description in Table 2.1.

 Revised Reset section.

 Revised Simple Master section. Added “burst transactions” to initial statement.

Interrupt Registers In Interrupt Registers section, changed statements to:

 For example, if int_src1 is assigned to bit 0 in the interrupt status register, it is assigned
to bit 0 in the interrupt enable and set registers as well.

 In other words, even if a block only supports one interrupt source, it implements
interrupt status, enable, and set registers at least 1 bit wide.

In Interrupt Status Register section, changed statement to:

 For consistency among IP blocks, the bitfield names all end in _int.

In Interrupt Enable Register section, changed statement to:

 For consistency among IP blocks, the bitfield names all end in _en.

In Interrupt Set Register section, changed statements to:

 It is not used in most applications, but is provided to give applications the ability to
force individual interrupts.

 For consistency among IP blocks, the bitfield names all end in _set.

Revision 1.0, February 2018

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Lattice Memory Mapped Interface and Lattice Interrupt Interface
	1. Introduction
	2. Lattice Memory Mapped Interface (LMMI)
	2.1. Signal Definitions
	2.2. Reset
	2.2. Transaction Descriptions
	2.2.1. Write Transactions
	Protocol Description (Figure 2.1)

	2.2.2. Read Transactions
	2.2.3. Back-to-Back Transactions
	2.2.4. Pipelined Transactions
	2.2.5. State/Flow Diagrams
	2.2.5.1. Simple Master

	3. Lattice Interrupt Interface (LINTR)
	3.1. Signal Definitions
	3.2. Interrupt Registers
	3.2.1. Interrupt Status Register
	3.2.2. Interrupt Enable Register
	3.2.3. Interrupt Set Register
	3.2.4. Interrupt Signal Generation

	3.3. Interrupt Handling

	Technical Support Assistance
	Revision History

