LatticeMico32 Hardware
Developer User Guide

s=LATTICE

May 2014

Copyright

Copyright © 2014 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device,
DiePlus, EZCMOS, ECP5, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCE40, iCEB65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman,
iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD,
iISpGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MachX0O3, MACO, mobileFPGA,
ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager,
ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE,
sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysl/O, sysMEM, The Simple Machine for
Complex Design, TracelD, TransFR, UltraMOS, and specific product designations are
either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best
Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico32 Hardware Developer User Guide

Type Conventions Used in This Document

Convention

Bold

<Italic>
Ctrl+L

Courier

L1

@
{12}

Meaning or Use

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

LatticeMico32 Hardware Developer User Guide

LatticeMico32 Hardware Developer User Guide

= LATTICE

Contents

Chapter 1 LatticeMico System Overview 1

LatticeMico System Design Flow 1
Device Support 3
Design Flow Steps 3

Related Documentation 5

Chapter 2 Using the LatticeMico System Software 7

LatticeMico System Software Overview 7
About the LatticeMico System Tools 7
LatticeMico System Requirements 8
Running LatticeMico System 8
LatticeMico System Perspectives 9

Setting Up Diamond for a LatticeMico32 Platform 13
Creating a New Diamond Project 13
Recommended IP Design Flow 14

Creating the Microprocessor Platform in MSB 15
Starting MSB 15
Creating a Platform Description in MSB 17
Connecting Master and Slave Ports 21
Changing Master Port Arbitration Priorities 26
Assigning Component Addresses 27
Assigning Component Interrupt Priorities 30
Performing Design Rule Checks 30
Saving the Microprocessor Platform 30
Generating the Microprocessor Platform 30
Implementing Shared Bidirectional Bus to Board 33
Synthesizing the Platform to Create an EDIF File (Linux Only) 35
Design Guidance for Platform Performance 36
Generating the Microprocessor Bitstream 36
Downloading Hardware Bitstream to the FPGA 39

Performing HDL Functional Simulation of LatticeMico32 Platforms 40
Configuring the Platform with LatticeMico System Builder 41

LatticeMico32 Hardware Developer User Guide

CONTENTS

Preparing for HDL Functional Simulation 44

Performing HDL Functional Simulation with Aldec Active-HDL 48

Performing HDL Functional Simulation with Mentor Graphics
ModelSim 48

Using LatticeMico System as a Stand-Alone Tool 49

Chapter 3 Creating Custom Components in LatticeMico System 51
Opening the Import/Create Custom Component Dialog Box 52
Specifying Component Attributes 53

Component Location and Directory Structure 54
Component Properties 55
Specifying WISHBONE Interface Connections 56
Specifying Clock/Reset and External Ports 61
Specifying RTL Files 72
Specifying User-Configurable Parameters 74
RTL Parameters 75
RTL Parameter Value Types 75
Predefined RTL Parameters 76
Software Parameters 76
Predefined Software Parameters 77
GUI Presentation 77
Adding RTL Parameters 78
Adding Non-RTL Parameters 79
Specifying Software Elements 80
Adding Software Files to Custom Components 84
Applying Changes 87
Creating the Verilog Wrapper for VHDL Designs 87
Pointing to the Correct .ngo File 89
Making Custom Components Available in MSB 90
Integrating Custom Component’s RTL Design Files 90

Saving the Settings 90
Directory Structure 90

Custom Component Example 92
Sample Custom Component 92
Adding the Custom Component 100
Output 112

Glossary 117

Index 123

Vi LatticeMico32 Hardware Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

Chapterl

LatticeMico System Overview

This hardware developer guide describes the flow of tools involved in creating
and configuring a hardware platform for the LatticeMico32 embedded
microprocessor.

This guide is targeted to developers who are interested in learning the
fundamentals of configuring and programming the embedded soft-core
microprocessor. For a list of related documents on the LatticeMico32
microprocessor, refer to “Related Documentation” on page 5.

LatticeMico System Design Flow

This section lists the major steps involved in designing a LatticeMico32
embedded microprocessor. In addition to running the FPGA flow in Lattice
Diamond, you use the integrated System software to build both hardware and
software features of your embedded soft-core microprocessor.

The LatticeMico System is composed of three bundled applications:
Mico System Builder (MSB)
C/C++ Software Project Environment (C/C++ SPE)
Debugger

These applications work in the background through the user interface and can
be accessed through different “perspectives” in the LatticeMico System
software. Perspectives are a prearranged and predefined set of user
functions that can be accessed within the software user interface.
Perspectives are described in more detail in “LatticeMico System
Perspectives” on page 8.

MSB is used by hardware designers to create the microprocessor platform for
both hardware and software development. A platform generically refers to the
hardware microprocessor configuration, the CPU, its peripherals, and how
these components are interconnected. This functionality in the LatticeMico
System software can be accessed by using the MSB perspective in the
interface. The default MSB perspective is completely separate in terms of
function from the other two perspectives.

LatticeMico32 Hardware Developer User Guide 1

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

You can use the C/C++ Software Project Environment (SPE) to develop the
software application code that drives the platform. The Debugger is used to
analyze and correct your code. You can access these programs by enabling
the C/C++ and Debug perspectives, respectively. However, these two
perspectives overlap in terms of functionality. Many of the same functions and
views available in the C/C++ perspective are also available in the Debug
perspective because the functions are so intertwined.

Figure 1 shows the interaction of the three LatticeMico System applications
with Lattice Diamond in the microprocessor development design flow.

Figure 1: LatticeMico System Development Software Tool Flow

Diamond Software

Platform description Diamond
(.msbj file

Create Debug Create Deployment
Platform Platform

Deployment Images

ECP-DSP

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|| CIC++ SPE Debugger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The LatticeMico32 Tutorial gives step-by-step instructions on creating a
sample microprocessor platform, downloading hardware images to your
device, creating your application code, and deploying your application code to
on-chip or flash memory. It covers all relevant topics to enable you to run
through a complete LatticeMico32 design flow. It is highly recommended that
you start out with the tutorial.

2 LatticeMico32 Hardware Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

Device Support

The Lattice FPGA devices that are currently supported in this design flow are
the following:

ECP5
LatticeECP
LatticeEC
LatticeECP2
LatticeECP2M
LatticeECP3
LatticeXP
LatticeXP2
LatticeSC
LatticeSCM

Design Flow Steps

The major steps involved in designing a LatticeMico32 soft-core
microprocessor are the following:

1.

Create a project in the Lattice Diamond software that targets the desired
device family.

Use the Mico System Builder (MSB) in the LatticeMico System software to
create and develop a microprocessor platform. You access this in the
MSB perspective. Creating a platform involves generating an .msb file,
selecting component peripherals, and connecting them to the
LatticeMico32 platform.

In the MSB perspective, designate and develop drivers as necessary for
available peripherals and add them to the platform you created.

In the MSB perspective, generate a platform build, which automatically
creates a build structure with associated makefiles and an appropriate
linker script. This process involves the device drivers and any other
software components other than the user application.

In C/C++ SPE, use the C/C++ perspective to write the C/C++ user
application software and build your application.

Using the Debugger in the LatticeMico System software, test your code on
the target hardware, configure the target hardware, find issues with your
code, and correct them. You access the Debugger in either the

C/C++ perspective or the Debug perspective.

Using Diamond Programmer, download the executable code to on-board
flash memory. You can deploy the application providing a boot loader that
straps onto the application for loading the application from slow, non-
volatile storage (flash memory device) to fast volatile storage (on-chip or
off-chip RAM), without having to rebuild the application.

LatticeMico32 Hardware Developer User Guide 3

LATTICEMICO SYSTEM OVERVIEW

LatticeMico System Design Flow

Figure 2: LatticeMico System Design Flow

- Zm=7

T

]
]
1,

GcCcomo

P

—-Z2mEs<0rotmo

"

-
(]
(]
1,

8. Repeat steps 3 through 7 for any new application development or
modification to the platform in step 2.

Figure 2 shows the LatticeMico System design flow.

Create a platform with CPU
debug turned on in MSB.

A

Generate an FPGA bitstream
that contains the platform.

A

Download the bitstream to
target board.

A J

Create a C/C++ SPE
managed project

Platform
Description

A 4

From C/C++ SPE
Build the application

Debug/Run application
in tethered mode (JTAG)
from C/C++ SPE

A

Regenerate bitstream

If using on-chip memory for code/data

On-Chip
mermory
data/code

Y

Program bistream to
configuration PROM

v

Program to PROM
with C/C++ SPE Flash utility

If deploying to flash

For complete information about using the C/C++ SPE and Debugger
perspectives to build and test your software application, refer to the
LatticeMico32 Software Developer User Guide.

LatticeMico32 Hardware Developer User Guide

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

Related Documentation

You can access the LatticeMico System online Help and manuals by choosing
Help > Help Contents in the LatticeMico System interface. These manuals
include the following:

LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including

configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

LatticeMico32 Software Developer User Guide, which introduces you to
the run-time environment, the build management process, the directory
structure for the managed build, information on the device driver
framework, and the processes occurring in the background. It is intended
for a programmer.

LatticeMico32/DSP Development Board User Guide, which describes the
features and functionality of the LatticeMico32/DSP development board.
This board is designed as a hardware platform for design and
development with the LatticeMico32 microprocessor, as well as for the
LatticeMico8 microcontroller, and for various DSP functions.

Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench.

LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

LatticeMico Master Passthrough, which describes the features and
functionality of the LatticeMico master passthrough.

LatticeMico Slave Passthrough, which describes the features and
functionality of the LatticeMico slave passthrough

LatticeMico SDR SDRAM Controller, which describes the features and
functionality of the LatticeMico SDR SDRAM controller

LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico serial peripheral interface (SPI) flash memory controller

LatticeMico Timer, which describes the features and functionality of the
LatticeMico Timer

LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

LatticeMico32 Hardware Developer User Guide 5

LATTICEMICO SYSTEM OVERVIEW

Related Documentation

Diamond <release_number> Installation Notice, which explains how to
install the LatticeMico System software for the current release

LatticeECP/EC FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeEC and LatticeECP devices

LatticeECP/EC Family Data Sheet

LatticeECP2 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP2 devices

LatticeECP2 Family Data Sheet

LatticeECP2M Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP2M devices

LatticeECP2M Family Data Sheet

LatticeECP3 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP3 devices

LatticeECP3 Family Data Sheet

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

Chapter 2

Using the LatticeMico System
Software

This chapter introduces you to the LatticeMico System software, describes
portions of its software user interface, and provides in-depth procedures for
performing common and advanced user tasks. The instructions for performing
key operations are presented in the order that they occur in the design flow,
and the user interface is introduced appropriately. See the LatticeMico
System online Help for more details on the user interface.

This chapter assumes that you have read “LatticeMico System Overview” on
page 1 and are familiar with the general high-level steps in this product flow.
This chapter also assumes that you have not customized the user interface.

LatticeMico System Software Overview

This section provides a brief synopsis of the functional tools included in the
software and teaches you the basic concept of user “perspectives” in the
software that are designed to simplify access to command functionality.

About the LatticeMico System Tools

As noted in “LatticeMico System Overview” on page 1, the LatticeMico
System software is composed of the following bundled, functional software
tools:

Mico System Builder (MSB), which is used to create the microprocessor
platform

C/C++ Software Project Environment (C/C++ SPE), which is used to
create the software application code that drives the microprocessor
platform

Debugger, which enables you to analyze the software application code to
identify and correct errors

The LatticeMico32 tools share the same Eclipse workbench, which provides a
unified graphical user interface for the software and hardware development
flows. You use MSB to define the structure of your microprocessor or your

LatticeMico32 Hardware Developer User Guide 7

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

hardware platform. C/C++ SPE enables you to develop and compile your
code in a managed and well-structured build environment. The Debugger
includes tools that analyze your code for errors and simulates instruction calls
within the software environment or to an actual programmed device on a
circuit board.

You will learn more about how these functions are encountered in the
software throughout this chapter. This chapter assumes that you have
installed all of the necessary software and have not modified your default
perspectives in any way.

LatticeMico System Requirements

For information about LatticeMico System’s system requirements on the
Windows operating system, see the “Installing LatticeMico32 Development
Tools” chapter of the Diamond <release _number> Installation Notice for
Windows for the current release on the Lattice Semiconductor Web site.

For information about LatticeMico System’s system requirements on the Red
Hat Linux operating system, see the “Installing LatticeMico32 Development
Tools” chapter of the Diamond <release _number> Installation Notice for
Linux, available on the Lattice Semiconductor Web site and the LatticeMico32
online Help.

For information on installing Diamond, see the Diamond <release _number>
Installation Notice for Windows or the Diamond <release_number>
Installation Notice for Linux for the current release.

Running LatticeMico System

Now you will run the software so that you can take a quick survey of the user
interface to understand its basic structure.

To run the LatticeMico System from your PC desktop:

From the Windows desktop Start menu, choose Start > Programs >
Lattice Diamond > Accessories > LatticeMico System.

The LatticeMico System interface initially opens with the MSB perspective
active by default, as shown in Figure 5 on page 16. After that, the software
opens to the last opened perspective.

LatticeMico System Perspectives

Before you begin learning about the basic tasks that you can perform in the
LatticeMico System software, it is important to understand the concept of
“perspectives” in the software and how to access the three integrated

8 LatticeMico32 Hardware Developer User Guide

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

functional tools, MSB, C/C++ SPE, and the Debugger, within the user
interface. Do not confuse the underlying functional tools in the LatticeMico
System software with the various perspectives in the user interface.

There are three default perspectives in the LatticeMico System software:
MSB perspective
C/C++ SPE perspective

Debug perspective

Within the Eclipse framework, the three functional tools appear as different
user interfaces integrated into the same framework. A “perspective” in the
LatticeMico System software is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enables you to perform a set of particular, predefined tasks. For example, the
Debug perspective has views that enable you to debug the programs that you
developed using the C++ SPE tool. For an overview on Eclipse workbench
concept and terminologies, refer to the Eclipse Reference Manual.

When you first open LatticeMico System, the MSB perspective is the active
perspective by default. After working in the interface, the software defaults to
the last opened perspective. The Eclipse workbench that is integrated into the
LatticeMico System software has three activation buttons for quickly toggling
back and forth between the MSB, C/C++, and Debug perspectives. These
buttons are shown in Figure 3. They enable you to switch between
perspectives by clicking on them. The current active perspective is displayed
in the upper left of the window’s title bar.

Figure 3: Perspective Activation Buttons

£ MSA - platform] - Eclipse Platform

File Edit Mawigate Search Project Platform Tools Tools Run - Window Help

L=<jT uTul__I |€| %'Q‘ T <::"

T © mse g cic++ %% Debug

The three different perspectives—the MSB, the C++ SPE, and the Debug—

include overlapping tool functions that you access through various commands
and interactive views, as illustrated in Figure 4. You can find more information
on these commands and views later in this document and in the online Help.

In Figure 4, the C/C++ perspective and the Debug perspective arrows
indicate that they share many of the same or similar command functions, so
you can perform the same exact operation in either perspective. By default,
these two perspectives share many functions because these tasks are very
closely related to each other. If you perform some changes in a view such as
the Editor view in one perspective, it will affect what you see in another
perspective that contains the same view. Do not assume that a given

LatticeMico32 Hardware Developer User Guide 9

http://help.eclipse.org/help30/

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

Figure 4: Tool Functions Accessed in Perspectives

’ e T—
Mico System Builder gl IS HEE
L (MSB) . s MSB Perspective

CIC++ Software Project .
Environment (SPE) CIC##+ Perspective
- -
Debugger — Debug Perspective

command function in the LatticeMico System is only accessible or viewable
from one perspective.

Note

Particular views and options within the MSB perspective are described throughout this
chapter as they are encountered in the design flow. For descriptions of the C/C++ SPE
and Debugger perspectives, refer to the LatticeMico System Software Developer User
Guide. More information about the graphical user interface for each perspective is
described in more detail in the LatticeMico32 online Help.

The LatticeMico System software enables you to customize existing default
perspectives, create your own perspectives, and control what views are open
in a given perspective. The following procedures tell you how to customize,
define, and reset perspectives. These procedures assume that you have not
changed the default perspective settings.

Customizing Default Perspectives

It is possible to customize existing default perspectives in LatticeMico System
by changing the existing set of commands ascribed to each perspective.

To customize an existing perspective:

1. From within a given perspective, choose Window > Customize
Perspective.

2. Inthe Customize Perspective dialog box, select shortcut options in the
Shortcuts tab and command options in the Commands tab.

3. Click OK.

10

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overvi

ew

You should see the results of any changes in the interface.

Creating Custom Perspectives

In addition to the three existing default perspectives, you can also add your
own custom perspective with custom options to the user interface.

To create a new perspective:

1. From within a given perspective, choose Window > Save Perspective
As.

2. Inthe Save Perspective As dialog box, rename an existing default
perspective in the Name text box and click OK to save it.

3. Choose Window > Customize Perspective to customize the new
perspective that you created.

Deleting Custom Perspectives

You can delete perspectives that you defined yourself, but you cannot delete

the default perspectives that are delivered with the software workbench
environment.

To delete a custom perspective:
1. From within a given perspective, choose Window > Preferences.
The Preferences window opens.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

3. From the Available perspectives list, select the desired perspective and
click Delete.

4. Click OK.

Changing Default Perspectives

After you create a new perspective, you may want to make the new
perspective a default perspective that will automatically be available when
you return to the program.

To change the default perspective:
1. From within a given perspective, choose Window > Preferences.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

LatticeMico32 Hardware Developer User Guide

11

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

3. Select the perspective that you want to define as the default and click
Make Default.

The default indicator moves to the perspective that you selected.
4. Click OK.

Resetting Default Perspectives

After customizing default perspectives, you can revert back to the original set
of command options for a given perspective by resetting them in the software.

To reset your default perspectives:
1. From within a given perspective, choose Window > Reset Perspective.
2. Inthe Reset Perspective pop-up dialog box, click OK.

This action returns all default perspectives back to their original option
settings.

Closing and Opening Views in Perspectives

In each perspective, views are defined for each perspective that allow you to
interactively perform a task. These views are described later in this chapter
for each perspective.

At times, you may want to close views to make more space for working in a
desired view. For example, after you add all of the components that you need
in your platform, you may opt to close the Available Components view in the
MSB perspective.

To close aview in a given perspective:

In a given perspective, click on the Close icon that appears as an “X” at
the upper right corner of the view that you wish to close.

The view closes. In some cases where the two views did not overlap, an
adjacent view moves into the vacated area in the interface, making the
adjacent view larger.

To reopen a view that you previously closed:

In a given perspective, choose Window > Show View and select the view
that you wish to reopen from the submenu.

The view is reopened in its original area in the interface.

12

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico32 Platform

Setting Up Diamond for a LatticeMico32 Platform

Before you create your microprocessor project in LatticeMico System, set up
a project in the Lattice Diamond software that targets the device family that
will serve as the fabric in which to embed the microprocessor. You do not add
your source HDL at this point, because your Verilog or VHDL source will be
generated by the LatticeMico System software later in the flow.

Note

If you are going to use LatticeMico System on the Linux platform, you must install a
stand-alone synthesis tool, such as Synpli(:ity® Synplify Pro®, before you create an
Diamond project.

In addition, your Linux system must meet the minimum system requirements outlined
in the Diamond <release_number> Installation Guide for Linux.

Creating a New Diamond Project

After you create a new Diamond project, you can import a LatticeMico32
platform into the design. If your design includes a platform with IP cores, you
should also follow the guidelines in “Recommended IP Design Flow” on
page 14.

To create a new Diamond project for use with a LatticeMico32 project:
1. Start the Lattice Diamond software:

On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

On the Linux command line, run the following script:
<Diamond_install_path>/bin/ispgui.

Choose File > New > Project.

In the New Project wizard, click Next.

Type a name for the project in the Name box.

o M 0N

Click the Browse button and navigate to the directory where you would
like the project to be stored.

6. Under Implementation, the project name and location are automatically
filled in. If you prefer a different name for the design’s first implementation,
type a new name in the Implementation name box.

7. Click Next.

8. Click Next in the Add Source dialog box. You will be adding the source
files later.

9. Inthe Select Device dialog box, select the desired family, device, speed
grade, package type, operating conditions, and part name from the drop-
down menus. Leave the Show Obsolete Devices box unselected.

10. Click Next and review the project information. Use the Back button, if
needed, to make any modifications.

LatticeMico32 Hardware Developer User Guide 13

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico32 Platform

11. Click Finish.

The name of the new project appears in the File List pane. The initial
strategy and implementation for the project are displayed in bold type. For
more information about working with design implementations and
strategies, see the “Managing Projects” section of the Lattice Diamond
online Help.

Recommended IP Design Flow

The following design flow and guidelines will ensure that the proper data gets
passed between Diamond and LatticeMico32 for platforms that contain IP
cores. This procedure assumes that you are creating a new project and
platform and that you will be generating an IP core from the IPexpress
interface within LatticeMico System.

1.

From the Windows Start Menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

LatticeMico System opens with the Mico System Builder (MSB)
perspective. MSB displays the last platform that was opened. If you
closed the platform before exiting MSB in the previous session, it displays
no platform.

Choose File > New Platform.

The New Platform Wizard opens. In the Directory text box, it displays the
path and directory of your Diamond project.

Give the new platform a name and specify the settings, as described in
“Creating a Platform Description in MSB” on page 17. To keep the
platform within the Diamond project you just created, do not change the
directory location.

Add the LatticeMico32 Processor to the platform and any desired memory
and peripheral components, as described in “Adding Microprocessor and
Peripherals to Your Platform” on page 19.

From the Available Components window, double-click the desired IP core
component—for example, Tri-Speed Ethernet Mac—to open the
Add<IP_core> dialog box.

As in the New Platform Wizard, this dialog box remembers the path and
directory of your Diamond design project, and it displays this path and
directory in the “Diamond Project” text box in the “IPexpress Interface”
section.

When you generate the IP core, the software places a copy of the IP
core’s .ngo file—for example, ts_mac_core.ngo—inside the project
directory. If you click Browse and change the location, any future changes
that you make to the IP core will not be applied to the current project.

Specify the desired settings in the top part of the Add<IP_core> dialog
box. In the IPexpress Interface section, do not change to a different
Diamond project directory.

14

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

This is important for your current project. Maintaining the Diamond project
directory will ensure that future changes to the IP will be applied to the
current design project.

7. Inthe IPexpress Interface section, click Launch IPexpress.

8. Inthe Lattice IP Core interface, specify the desired parameters, and then
click Generate.

IPexpress generates the IP core. When the process has finished, it
displays a log, which shows the output directory and path and the files
generated.

9. Click Close to return to the Add<IP_core> dialog box.

The Generated NGO File text box is how populated with the location of
the .ngo file inside the Diamond project directory.

10. Click OK to add the newly generated IP core to your project’s platform.

11. Follow the remaining instructions in the section “Creating the
Microprocessor Platform in MSB” on page 15 to connect master and slave
ports, assign addresses and interrupt priorities, and generate the platform.

Creating the Microprocessor Platform in MSB

After you have created a new project in Diamond using your target FPGA
device, you must create a new microprocessor platform in Mico System
Builder (MSB). A platform generically refers to the hardware microprocessor
configuration, the CPU, its peripherals, and how these components are
interconnected.

Starting MSB

Note

If you are going to be using LatticeMico System on the Linux platform, set up
the environment to point to the location where the stand-alone synthesis tool
is installed before starting LatticeMico System, as in this example:

setenv IPEXPRESS_SYN_PATH /Zinstall/synplify/fpga 89/bin/
synplify_pro

To start MSB:

1. If you have not yet opened the software, as described in “Running
LatticeMico System” on page 8, choose Start > Programs > Lattice
Diamond > Accessories > LatticeMico System.

During its launch process, the LatticeMico System software creates an
Eclipse workspace file. This file is created in your home directory. On the
Windows operating systems, it is in the Documents and Settings directory.
On the Linux operating system, itis in ~.

LatticeMico32 Hardware Developer User Guide 15

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Eclipse uses the workspace file to store information about your Eclipse
environment and the projects that you have been working on. You can
switch workspaces by selecting the File > Switch Workspace command.

2. Inthe upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

The MSB perspective is active by default, as shown in Figure 5.

Figure 5: MSB Perspective

& MSB - platform - Eclipse Platform

File Edit Mavigate Search Project Platfarm Tools Tools Run - Window Help
il eI WA ETRER * MR S R O (=R
7 | @ mse |EE cfc++ 35 Debug
\@, Available Components B2 =g =8
O p 8 @ @ ::=:=> laz Mame Wishbone Connection Base End Size(Byres) Lock
= LM32 H
GPIO (3.1 ~
. * 8.1 Inskruction Port il EdItOI’
Available & OPENCORES I2C Master (3.1) Data port) view
ﬁ masker_passthru (3.0)
Debug Port -+ 000000000 SxI2555 T67849
Components H—— ﬁ slave_passthru (3.0) — srame L = % |
view f serian ASRAM Port 0x04000000 Ox040557F 1048576 [
$ Timer (3.0)) flash
R Tri-Speed Ethernet MAC (v2.7) Diata Part + Ox02000000 wd3EARATE 3AE54432
UART (3.2} - LED
* DMA (3.0) GP IjO Port b 0x30000080 CxEAARATE iZ8 O
$Ap PCI Target 33 (v6.1) o uart
=40k cruof) UART Port ; OxE0000100 ewsdcoer e izE [
& LatticeMico32 (3.3) 3
uart_core 3.2 £ >
. S =g =7
Console view \ J Console &5 UART Core - 4 Companent Attrbutes 3
(Shown) Info:DRC:Thu Dec 04 16:18:38PST 200 A | Type Component | Message - Attribute Value Software Constants #
Info:DRC:End DRC, Total errors 0 8
Info Autodddress Thu Dec 04 16:1 Mame UART
Info:autofddress: Thu Dec 04 16:19:13)
— foAroRTErEes End Address Generat Info AutoAddress End address Ger Wersion 3.z
RO | 1a Info IRQ Thu Dec 04 16:1 Instance Mame uart
C t Info:IRCuThu Dec 04 16:19:13 PST 200 —
omponen Infa:IRG:Finish IRQ Generation Info IRQ Finish IR Gener Ease fddress 0xB0000100, UART_BASE_ADDRE
. Info:Generator: Save Platform Info Generakor Save Platform Size 128 UART_SIZE
Hel p view Info:DRC:Thu Dec 04 16:19:13 PST 200 || Info DRC Thu Dec 04 16:1 » Lock Address false UART_ADDRESS_LO
< > < > < >
P 3 12Mof oM [

Component Attributes view

The MSB perspective consists of the following views:

Available Components view, which displays all the available components
that you can use to create the design:

List of hardware components: microprocessors, memories,
peripherals, and bus interfaces. Bus interfaces can be masters or
slaves. The component list shown in Figure 5 on page 16 is the
standard list that is given for each new platform.

You can double-click on a component to open a dialog box that allows
you to customize the component before it is added to the design. The
component is then shown in the Editor view.

Editor view, which is a table that displays the current platform definition
from the components that you have chosen in the Available Components
view. It includes the following columns:

16 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Name, which displays the names of the chosen component and their
ports

Connection, which displays the connectivity between master and
slave ports

Base, which displays the start addresses for components with slave
ports. This field is editable.

End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

Size, which displays the number of addresses available for
component access. This field is editable for the LatticeMico32 on-chip
memory controller and LatticeMico32 asynchronous SRAM controller
components only.

Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

IRQ, which displays the interrupt request priorities of all components
that have an interrupt line connected to the microprocessor. It is not
applicable to memories.

Disable, which excludes a component from a platform definition. It can
be toggled on and off.

Component Help view, which displays information about the component
that you selected in the Available Components view. This view is also
called “About <Component_name>,” for example, “About Timer” or “About
UART.”

Console view, which displays informational and error messages output by
MSB

Component Attributes view, which displays the features, parameters, and
values of the selected component. This view is read-only.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation of the available
views, refer to the LatticeMico32 online Help.

Creating a Platform Description in MSB

After you have created a new project in Lattice Diamond, you must create a
new microprocessor platform description in Mico System Builder (MSB). A
platform generically refers to the hardware microprocessor configuration that
includes the CPU component, its peripheral components, and the
interconnectivity between them.

You must perform two major steps in MSB to create a new platform: create an
.msb file and add your components to the file.

LatticeMico32 Hardware Developer User Guide 17

USING THE LATTICEMICO SYSTEM SOFTWARE

Creating the Microprocessor Platform in MSB

Creating a Platform Description File

The first step in creating a new platform is to use MSB to create an .msb file.
This file will eventually contain a complete definition of your microprocessor

platform.

To create a new microprocessor .msb file:

1. Inthe MSB perspective, choose File > New Platform.

The New Platform Wizard dialog box now appears, as shown in Figure 6.

Figure 6: New Platform Wizard Dialog Box

Platform name:

Directory:

Clone Platform

[] Clone Platform

VHDL Setting

[] Create VHDL Wrapper

Processor

: L. $ —-
New Platform Wizard

This wizard creates a new platform.

platforml Overwrite existing platform.

diamond\1$\examplesitutorial\lm32_tutor

Frequency Setting Arbitration Scheme

Processor: |LM32 - Board Frequency(MHz): 25.0 Scheme: |Shared Bus (Default) -

Browse...

Create VHDL NGO file.

Part Selection
Famnily: [LattlceECPZ '] Device: [LFEZ—SUE = | Perfermance: [AH '] Package: [AII 'l
Platform Templates
blank + | A platform containing -
Platforma [aLM32 - CPU N
PlatformB b) GPIO - configured for & bit output only (LED)
PlatformC |= c) TIMER E
PlatformD d) ASRAM - Asynchronous SRAM
m_ e) UART - serial port
PlatformF) On-Chip Memory
PlatformG g) Parallel Flash
PlatformH ™ .
@ Finish] l Cancel

In the New Platform Wizard dialog box, enter the name of the platform in

the Platform Name box.

In the Directory box, browse to the folder in which you want to store your

platform files and click OK.

If the design that will incorporate this platform is in pure Verilog code,

leave Create VHDL Wrapper unselected.

If the design that will incorporate this platform is in mixed Verilog/VHDL,

do the following.

a. Select Create VHDL Wrapper.

18

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

b. If you want to continue using the NGO flow, select Create VHDL NGO
File. Otherwise, leave this option cleared.

5. Inthe Board Frequency box, enter the board frequency.

6. In the Arbitration Scheme box, select the desired arbitration scheme from
the pull-down menu.

7. Inthe Device Family section, select a Lattice family and a device from the
pull-down menus.

8. If you want to duplicate the platform, select Clone Platform, and then
browse to the platform description (.msb file) that you want to duplicate.

The Clone Platform option is useful if your platform contains several
peripherals and you want to retain them but experiment by modifying their
settings. When you select this option, the Platform Templates and the
Description boxes are no longer available, but the Select Platform option
becomes available.

Warning!

If you are cloning a platform that contains IPs and you select a different device
family, you will need to rerun IPexpress for the IPs in the platform. If you do not
rerun IPexpress, you might encounter problems during synthesis.

9. If you have not selected Clone Platform, select the desired template from
the Platform Templates list; or select Blank for a new template.

10. Click Finish.

You now have created an .msb file. This file will hold the contents of your
platform: a CPU, its peripherals, and the interconnections between them.
Currently, the platform description contains no components. You will add
components in the following procedures.

Adding Microprocessor and Peripherals to Your

Platform

In the MSB perspective, you can add CPU and peripheral component
definitions to your hardware platform. These definitions are added to the .msb
file, which is currently empty if you did not select a template or duplicate a
platform. The microprocessor and its peripherals are called components
throughout this document.

Note

If you installed LatticeMico System without installing Diamond, you cannot include in
the platform any PLLs or any IPs, which are components that you download from
IPexpress. In addition, you cannot generate a VHDL wrapper for the platform. If you
want to perform these functions, you must install LatticeMico32 with the Diamond
software. See the references given in “LatticeMico System Requirements” on page 8
for information on installing Diamond and LatticeMico System.

LatticeMico32 Hardware Developer User Guide 19

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

For information on creating your own custom components to add to your
platform, see See “Creating Custom Components in LatticeMico System” on
page 51.

To add the LatticeMico32 microprocessor to the design:

1. Double-click on the LatticeMico32 component listed under CPU in the
Available Components view. If you want to see information about it before
you place it in the Editor view, click it once.

2. Set the options in the Add LatticeMico32 dialog box and click OK.

LatticeMico System provides several peripheral components, I/Os, and
memories that you can add to your microprocessor design structure. For
example, some available peripherals include UART, a timer, an asynchronous
SRAM controller, a GPIO, and a parallel flash component. In the MSB
perspective, you can view all of the component types that you can add in the
Available Components view. To aid in selection and option settings, you can
view a complete description of each available component type. See
“Accessing Component Help and Data Sheets” on page 20 for instructions.

To add a peripheral component to the design:

1. Double-click on the component in the Available Components view, set any
options in the dialog box that appears, and click OK.

2. After you have added the last peripheral, specify the connections between
the master and slave ports by clicking on the appropriate rounded
endpoints in the Connection column, as described in “Connecting Master
and Slave Ports” on page 21.

Accessing Component Help and Data Sheets

For each component that you can add to your platform, LatticeMico System
provides a short online Help topic that describes its user-configurable
parameters, as well as a complete data sheet that describes the detailed
features and operations of the component. The Show View command enables
you to view the appropriate Help topic in a separate view each time that you
select a component in the Available Components view.

To view the online Help for a particular component:

1. Inthe MSB perspective, choose Window > Show View > Component
Help.

The Component Help view opens in a separate window.
2. Inthe Available Components view, select the desired component.

The appropriate component topic appears in the Component Help view.

To view the data sheet for a component:

In the Component Help view, click on the document icon @ to view a
complete description of a given component.

20

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

To quickly maximize the Component Help view, press Ctrl+M. Press Ctrl+M
again to return to the previous size.

Connecting Master and Slave Ports

The LatticeMico32 CPU component acts as the master to the peripheral slave
components that are attached to the bus structure, allowing it to have
unidirectional control over those devices.

Only certain components, such as the LatticeMico32 processor and the
LatticeMico32 DMA controller, have master ports. A master port can initiate
read and write transactions. A slave port cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

A master port can be connected to one or more slave ports.

A component can have one or more master ports, one or more slave
ports, or both.

Attached to one or more slave ports, master port signals initiate read and
write transactions that are communicated to the targeted slave device, which
in turn responds appropriately. Generally, a component can have one or more
master ports, one or more slave ports, or both.

Arbitration Schemes

The connections that MSB makes depend on which arbitration scheme you
choose while creating the platform.

Shared-Bus Arbitration MSB automatically generates a central arbiter
when it generates the microprocessor platform to allow multiple master ports
access to multiple slave ports over a single shared bus.

Figure 7 shows the connections made by MSB when the shared-bus
arbitration scheme is chosen.

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the bus. Master ports
have default priorities assigned in their components' .xml files when you add
the components to the platform. The master ports of the LatticeMico32
processor have defaults of 0 and 1. The master ports of the DMA controller
have defaults of 2 and 3. However, you can change these priorities by
selecting Platform Tools > Edit Arbitration Priorities and changing the priorities
in the Edit Arbitration Priorities dialog box. When you perform a DRC check,
MSB checks the validity of the priorities that you have changed.

Slave-Side Arbitration Figure 8 shows the connections made by MSB
when the slave-side arbitration scheme is chosen.

Two types of slave-side arbitration are available: slave-side and round-robin.

LatticeMico32 Hardware Developer User Guide 21

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 7: Connections Made by MSB for Shared-Bus Arbitration

| pm! Peripheral 1

Instruction
port _
> ——»{ Peripheral 2
LM32 CPU (Master) Sha}red bus
Data port arbiter
—>
—p= Peripheral 3

+—p»| Peripheral 4

Figure 8: Connections Made by MSB for Slave-Side Arbitration

p| Peripheral 1

Instruction
port
g ® -
LM32 CPU (Master) | Data port Arbiter 1 ¢ Peripheral 2
- 0—P

® p Peripheral 3

Arbiter 2 -q—p| Peripheral 4

Slave-Side Fixed Arbitration The slave-side fixed arbitration scheme
enables multiple masters to access multiple slaves at the same time. In this
scheme, each multi-master slave has one arbiter. Arbitration between
different master ports occurs at the slave side. This scheme enables multiple
master ports to obtain access to multiple slave ports, as long as they do not
try to access the same slave at the same time.

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the slave. Master ports

22

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

have default priorities assigned in their components' .xml files when you add
the components to the platform. Since each multi-master slave has its own
arbiter in this scheme, arbitration priorities are assigned per slave. However,
you can change these priorities by selecting Platform Tools > Edit Arbitration
Priorities and changing the priorities in the Edit Arbitration Priorities dialog
box. When you perform a DRC check, MSB checks the validity of the priorities
that you have changed.

Slave-Side Round-Robin Arbitration The slave-side round robin
arbitration scheme is similar to the slave-side fixed arbitration scheme in that
each multi-master slave has one arbiter, but all masters have the same
priority. The arbiter grants access to all the masters that request a slave in a
round-robin, or circular, fashion. Once the requesting master is finished with
its transfer, the next master obtains access to the slave.

In the slave-side round-robin scheme, the Platform Tools > Edit Arbitration
Priorities command is not available.

Comparing the Arbitration Schemes

The difference between the slave-side fixed arbitration scheme and the slave-
side round-robin arbitration scheme is how the arbiter grants requesting
masters access to the bus. The slave-side fixed scheme always gives the
highest-priority master access to the bus if that master requests it. The slave-
side round-robin scheme grants masters access to the bus in a round-robin
fashion.

Both the slave-side fixed and the slave-side round-robin arbitration schemes
use separate arbiters for each multi-master slave, so the area of the platforms
generated with these schemes is slightly larger than that resulting from the
shared-bus arbitration scheme. For example, for a typical system consisting
of four multi-master slaves, the slave-side fixed and the slave-side round-
robin schemes require four arbiters, but the shared-bus scheme requires only
one arbiter. The area required by the system with the slave-side arbitration
schemes is approximately three times more than the area required by the
system with the shared-bus arbitration scheme.

The slave-side arbitration schemes offer better performance than the shared-
bus arbitration scheme. For example, the SoC used in this topic (a CPU with a
DMA controller) yields better performance with a slave-side arbitration
scheme than with a shared-bus arbitration scheme. When a slave-side
arbitration scheme is used in this SoC, the DMA controller's read and write
ports can work in parallel and transfer the data from the external SRAM
memory to on-chip memory. When a shared-bus arbitration scheme is used in
the SoC, data cannot be transferred in parallel because there is a single
arbiter for both memories.

Whether you select a slave-side fixed or slave-side round robin arbitration
scheme depends on the application. If the application requires each master to
have equal access to a slave, the slave-side round-robin scheme is a better
option. If the application requires a certain master to have access to a slave
as soon as the current master is finished with the data transfer, the slave-side
fixed scheme is the best option.

LatticeMico32 Hardware Developer User Guide 23

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Specifying Connections Between Master and Slave

Ports

You interactively make your master/slave connections between these ports in
the Editor view by clicking on those connection line endpoints and then by
saving your project. The .msb file is updated with this information. Figure 9 on
page 25 illustrates the basic structure of this connection between the master
and the slave.

To specify the connections between master and slave ports:

1. Ensure that you have first added your desired components and that they
appear in the Editor view in the MSB perspective.

2. If you want to select a different arbitration scheme, choose Platform
Tools > Properties, select the desired arbitration scheme from the pull-
down menu in the Arbitration Scheme box, and click OK.

3. Inthe Editor view’s Connection column, for each listed slave component,
click on the blue-outlined, rounded endpoint to complete the connection to
the CPU's master ports. The rounded endpoint now appears filled in; that
is, it turns solid blue, indicating that the slave is “connected” to the master
port.

Connection points occur at the intersection of the vertical lines down from
the master at the slave horizontal lines and coincide with a desired
connection to master instruction, data ports, or both. You may or may not
wish to connect to both master ports, depending on the necessary input
on a given slave component.

For example, suppose that a CPU's master ports are composed of an
instruction port and a data port. You want to connect the CPU's instruction
port, but not its data port, to a UART's slave port. You would go to the
Connection column in the UART row and click on the outline circle linked
to the instruction port to fill it in, but not on the outlined circle linked to the
data port.

4. Choose File > Save or click the Save toolbar button.

The connections that you made are saved in the .msb file.

Figure 9 shows an example of the connections that result in the Editor view
when the shared-bus arbitration scheme is used. All master signal connection
lines are represented in black, and all slave connection lines are represented
in blue.

Figure 10 shows an example of the connections that result in the Editor view
when the slave-side fixed and slave-side round-robin arbitration schemes are
used.

In the slave-side fixed arbitration scheme, you can change the priorities of the
master ports, so the Edit Arbitration Priorities command is available on the
Platform Tools menu, as shown in Figure 11. However, in the slave-side
round-robin arbitration scheme, you cannot change the priorities of the master
ports because the arbitration between the master ports occurs in a round-
robin fashion. The Edit Arbitration Priorities command on the Platform Tools

24

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 9: Connecting Master/Slave Ports in Editor View in Shared-Bus
Arbitration Scheme

=

Marne Wishbone Connection Base End SizelBykes)

= LM3z __———=Master ports

Instruction Port "

Daka port

Debug Part 000000000 xAAIFT foiBd
=] sram

ASRAM Part Qe=00000000 RIS 1045576
= dma

Read Master Part

‘Write Master Park

Contral Port 030000000 BT iz28

Slave ports
£ »

Figure 10: Connecting Master/Slave Ports in Editor View in Slave-Side
Fixed and Slave-Side Round-Robin Arbitration Schemes

=

Mame Wishbone Connection Base End Size(Bytes)

= LM32 | = Masterports

Instruction Port —

[raka pork

Debug Pork 000000000 TS fé384
=) sram

ASRAM Port 000000000 RNAEREE 1048576
= dma

Read Master Pork

‘Write Master Port
Cankral Pork _ 050000000 OxBORIIATE iz8

> Slave ports

menu is therefore disabled when you use the slave-side round-robin
arbitration scheme, as shown in Figure 12.

Figure 11 shows the Platform Tools menu with the Edit Arbitration Priorities
command enabled in the MSB perspective after all components have been
added in a slave-side fixed arbitration scheme.

Figure 12 shows the Platform Tools menu with the Edit Arbitration Priorities
command disabled in the MSB perspective after all components have been
added in a slave-side round-robin arbitration scheme.

LatticeMico32 Hardware Developer User Guide 25

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 11: MSB Perspective After Adding All Components in a Slave-Side Fixed Arbitration Scheme

& MSB - 00x - Fclipse Platform
File Edit Mavigate Project WEEREEMNEREN Window Help

£ - [@ | @ Generate Address [@ m @ @
B | Emss FRcice+ 35 [I] Generate IR
(@) Awallable Components & [Run DRC =g
B @ Run Generator |_ Mame Conneckion Base End | SizeBytes) | Lok | IRQ | Disable |
————— P32
=i ;?m::y:ctlfsgnm w10 Properties | Instruction Port
& Paral\e\ Flash (vl‘ . Edit Arbitration Priorities | Data port
v ™ Debug Port 0x00000000 CrORieaTE io389]
& SPIFlash ROM(1.0)
@ DORZ Contraler (v6.3) = sm U
! ASRAM Port 0x00000000 CridanTTE 1048576]
S COR Contraller (ve.3) - Flash 0O
R On-chin Memory (v1.0) Data Port 0%02000000 R 3543z [
& SORAM Cankraller [v1.0) SEERIE: 0O
7 E [0 (0/10) GF IjO Port 0x&0000000 CxBATRORTE 128]
& GPIO (v1.0)
£ GPICPrint (v1.0) S o
! UART Port 0x&0000000 CxBATRORTE 128]
ﬁ OPEMNCORES [2CM (rev 0,9)
f 2C0v1.0)
& SPI(v1.0)
& Timer (v1.0)
8 Tri Speed MAC (v2.4)
f DMA (v1.0) A
uart_rore wl.0 < >
Console @ UART Core &4 <4 X9~0 % Component Attributes £3 Console =8
Adrvess | C:yispTOOLS |micnsystemiromponentsiyart_roreidocumentioart . im Aittribute | Yalue A
MName Lattic
S Wersion w1.0
. . Inskance Mame LM32
LatticeMico32 UART E‘L Disable false
Enable Debug Interface true
The LatticeMico32 universal asynchronous receiver-transmitter {UART) contains a receiver and a transmitter, Enable PC Trace false
The receiver performs serial-ta-parallel conversion on the asynchronous data frame received from the serial Trace Depth 1024
data input SIN. The transmitter performs parallel-to-serial conversion on the 8-bit data received from the CPU. Base Address 000
Location of Exception Handlers 0021
Use EBRs for Register File False
Enable Multiplier true
o Enable Pipelined Multiplier (DSP Block if available) true .
Parameter Description T S O = o M A S SO A SR
M= ¥

Changing Master Port Arbitration
Priorities

When you first generate your platform, LatticeMico System automatically
assigns priorities through the shared-bus and slave-side fixed arbitration
schemes to the master ports to determine in which order they can access the
slave ports through the arbiter. You can change these priorities only for the

shared-bus and slave-side fixed arbitration schemes. This option is disabled
for the slave-side round-robin arbitration scheme, since it is not applicable.

To change master port arbitration priorities:

1. Inthe MSB perspective, click in the Editor view to make it active and
choose Platform Tools > Edit Arbitration Priorities from the menu, or
right-click in the Editor view and choose Edit Arbitration Priorities.

2. Inthe Edit Arbitration Priorities dialog box, click in the Priority column
next to the master port whose priority you wish to change.

3. Type in the new priority number.

4. Click OK and choose File > Save to save this in the .msb file.

26 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE Creating the Microprocessor Platform in MSB

Figure 12: MSB Perspective After Adding All Components in a Slave-Side Round-Robin Arbitration
Scheme

& MSB - 00 - Eclipse Platform

File Edit Mavigate Project BEEMENGREGN Window Help
L=<j T ES‘-] it |_J @
| Evs Eoc %D
b =0
Narne Conneckion Base End | Size(Bytes) | Lok | IRQ | Disable |
e a2 |
T E Memary (07) Instruction Pork
& Async SRAM (v1.0 Data port
Paralel Flash (v1.c, Debug Port 000000000 RO s O
$& SPIFlash ROM (1.0 - aram O
© DRz Controller (v6.3) ASRAM Port 0x00000000 OO 148576 [
@ DOR Contraller {v6.3) = flash O
$ On-Chip Memory (+1.0) Data Port 0x02000000 I 33554432 [
$ SDRAM Contraller (1.0 - IS 0O
=4k 10 (0/10) GP I/O Port 0x80000000 IXBOOOO0TF 128]
$ GPIO (v1.0) ~ = 0O
K cPIoprint (v1.0) LART Part 0%50000000 RO iz O
& OPEMCORES 12CM (rev 0.9)
& 12C(v1.0)
& SPI{v1.0)
& Timer (v1.0)
© Tri Speed MAC (v2.4)
& DMa 10
uart_core w10 < >
Console @UART Core 03 4 B XD O %Cnmpnnant Attributes 52 Console =0
Address | C:ispTOOLS (micosystemicomponentsiuart_coreldocumentiuart , hkm Attribute ‘ Value | Software Constants 4
Mame UART
Y ‘Wersion +1.0

LatticeMico32 UART @

The LatticeMica3? universal asynchranous receiver-transmitter {UART) contains a receiver and a transmitter.

Instance Marme uart

Base Address 080000000 UART_BASE_ADDRESS
Address Size 128 UART_SIZE

Lack Address false UART_ADDRESS_LOCK

The receiver performs serial-to-parallel conversion on the asynchronous data frame received from the serial Disable false UART_DISABLE
data input SIM. The transmitter performs parallel-to-serial conversion on the &-bit data received frorm the CPU, Modem false UART_MODEM
Baud Rate 115200 UART_BALD_RATE

Parameter

Description

R Buffer Size 4
Tx Buffer Size 4
Block on transmit true

UART_IB_SIZE
UART_OB_SIZE
UART BLOCK_WRITE

el {1

When you perform a DRC check, MSB checks the validity of the priorities that
you have changed.

When you assign arbitration priorities to the master port of a slave in the
slave-side fixed arbitration scheme, the number of priorities should not be
greater than the total number of master ports for that slave. For example, if a
slave has three master port values, the arbitration priorities would be 0, 1, and
2. If you defined more than three values for any master, an error message
would appear, as shown for the UART slave example in Figure 13.

Assigning Component Addresses

After you add your components to your microprocessor platform, you must
ensure that you assign unique address locations to each.

If you look in the Editor view in the Base column, you will notice that the
components, after initial setup, all are assigned to the same default address
location on creation, unless you actively assign a unique base address in a
component dialog box when you first add the component to the platform. Any

LatticeMico32 Hardware Developer User Guide 27

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 13: Edit Arbitration Priorities Error Message

s ||
Mame Priority | -~
=l LED
LM32-Drata pork 1
dma-Write Master Port]
= uart
LM32-Drata pork g

dma-Read Master Pork
dma-Write Master Port
=| sram
LM3z2-Instruction Port
LM32-Drata pork
dma-Read Master Pork
dma-Write Master Port
= LM32 debug
LM3z2-Instruction Port

=N

| M3 Fisbka mewk

o
| v
3 8
Ok | Cancel |

& Mico System Builder

Priority walue of "uart:LM32-Data port" cannot be greater or equal the
number of connections, Please assign a proper priority value For this port,

duplicate address locations of any component are, of course, not viable. This
section provides procedures for assigning these unique address locations.

MSB can automatically generate an address in hexadecimal notation for each
component with slave ports. Or, you can assign a component an individual
address. Components with master ports are not assigned addresses.

Before you generate addresses, you can lock the base addresses of
individual components so that MSB will not assign them new addresses. See
“Locking Component Addresses” on page 29 for details.

Note

Address and size values that appear in italic font in the Editor view cannot be changed.

Automatically Assigning Component Addresses

Initially, you may want the software to automatically generate assigned
address locations for the components in your platform and edit them as
necessary later.

To automatically assigh component addresses:

1. Inthe MSB perspective, choose Platform Tools > Generate Address or
click the Generate Address toolbar button |]]- You can also right-click in
the Editor view and choose Generate Address from the pop-up menu.

28 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Address locations for all of the existing components that you have created

in your MSB session are nhow automatically generated.
2. Choose File > Save.

The assigned component addresses are now saved in the .msb file.

Locking Component Addresses

Locking a component address prohibits the software from changing it after
you automatically assign component addresses.

To lock any addresses from being changed after automatic address
generation:

1. Inthe MSB perspective Editor view, select the box for the desired
component in the Lock column.

This step activates a lock during your session.
2. Choose File > Save.

The locked address is now saved in the .msb file.

Note

To assign an address for only one component, lock all other components.

Manually Editing Component Addresses

You can manually assign an address to an individual component after
automatically assigning an address to it, or you can assign locations as you
wish by manually editing the locations at any time after initial component
creation.

To individually change the addresses of components:

1. Inthe MSB perspective Editor view, click on the desired component’s
address in the Base column.

The address becomes editable.

Note

You can only edit the Base address. You cannot edit the End address. The value

of the end address is equivalent to the value of the base address plus the value of
the size.
2. Manually type in the desired address hexadecimal location.
3. Choose File > Save.
The edited addresses are now saved in the .msb file.
LatticeMico32 Hardware Developer User Guide 29

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Assigning Component Interrupt
Priorities

Assign an interrupt request priority (IRQ) to all components that feature a
dash in the IRQ column of the Editor view. You cannot assign interrupt

priorities to components lacking this dash in the IRQ column, such as
memories and CPUs.

To assign interrupt priorities for all components other than memories
and the CPU:

1. Inthe MSB perspective, choose Platform Tools > Generate IRQ or click
the Generate IRQ toolbar button |TJ|. You can also right-click in the Editor
view and choose Generate IRQ from the pop-up menu.

2. Choose File > Save.

The interrupt priorities are now saved in the .msb file.

Performing Design Rule Checks

You can ensure that your design conforms to the design rules for a given
device by performing a design rule check (DRC).

To perform a design rule check and verify the addressing:

In the MSB perspective, choose Platform Tools > Run DRC or click the
Run DRC toolbar button |[j|j. You can also right-click in the Editor view
and choose Run DRC from the pop-up menu.

Saving the Microprocessor Platform

After you do a number of tasks to set up your microprocessor platform, you
should save your changes.

To save your platform changes in MSB:
In the MSB perspective, choose File > Save.

This operation specifically saves any changes you made to the .msb file
and any option settings you may have applied.

Generating the Microprocessor
Platform

Generating the microprocessor platform saves and updates the platform
definition by updating the .msb file. It also does the following:

Assigns addresses to components without locked addresses

30 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Assigns interrupt priorities
Performs design rule checking (DRC)
Generates a platform Verilog structural implementation

Creates hardware and software implementation support files for the
components that are used in the platform

For the Verilog user, creates an instance template for the platform that can
be used to incorporate the platform within a larger design

For VHDL user (a user who has selected “Create VHDL Wrapper” in the
New Platform dialog box), creates a VHDL entity/architecture definition
that instantiates the platform as a black box

For the VHDL user who has selected the optional “Create VHDL NGO
File,” synthesizes the platform during the generation step and creates a
series of .ngo files that represent the post-synthesis netlist of the platform.
These files are included in the rest of your VHDL design after it has been
synthesized.

To generate your microprocessor platform in MSB:

In the MSB perspective with the Editor view activated, choose Platform
Tools > Run Generator or click the Run Generator toolbar button % To
activate the Editor view, click on the Editor view tab or anywhere inside
the view. You can also right-click and choose Run Generator from the
pop-up menu.

Note

If you did not set the IPEXPRESS_SYN_PATH environment variable before
starting Synplify Pro, as noted in “Starting MSB” on page 15, or if Synplify Pro
failed to complete the synthesis, MSB may issue the following error message:

ERROR: edif2ngd: Cannot open input file
"<platform_name>._edi".

If you receive this error message, verify that the IPEXPRESS_SYN_PATH is set
correctly, and check the synthesis output in the log file or .srr file in the soc/ngo/
rev_1 directory to see if the error is a synthesis syntax error.

If you edit the .msb file after it has been generated, save it by choosing
File > Save As. An asterisk (*) preceding <platform_name>.msb above
the Editor view indicates that the <platform_name>.msb file has been
edited.

During the generation process, MSB creates the following files in the
<Diamond_install_path>\<platform_name>\soc directory:

A <platform_name>.msb file, which describes the platform. It is in XML
format and contains the configurable parameters and bus interface
information for the components. It is passed to C/C++ SPE, which extracts
the platform information (for example, where components reside in the
memory map) required by the software that will run on the platform. It is
used by users of the Verilog flow and the VHDL flow.

A <platform_name>.v (Verilog) file, which is used by both Verilog and
VHDL users:

LatticeMico32 Hardware Developer User Guide 31

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Flow for Verilog users — The <platform_name>.v file is used in both
simulation and implementation. It instantiates all the selected
components and the interconnect described in the MSB graphical user
interface. This file is the top-level simulation and synthesis RTL file
passed to Diamond. It includes the .v files for each component in the
design, which are used to synthesize and generate a bitstream to be
downloaded to the FPGA. The .v files for each component reside
under the top-level <platform_name>.v file.

Flow for VHDL users — The <platform_name>.v file is used in
simulation and implementation. If “Create VHDL NGO File” has been
selected, the <platform_name>.v file is used for simulation only, and
the <platform_name>_vhd.vhd file is used for implementation. In the
NGO flow, the <platform_name> component is instantiated as a black
box, and this instantiation is then automatically combined with the
<platform_name>.ngo file after synthesis to complete the
implementation netlist.

A mixed-mode Verilog and VHDL simulator is needed for functional
simulation in the flow for VHDL users.

A <platform_name>_vhd.vhd (VHDL) file, if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
VHDL design. The <platform_name>_vhd.vhd file contains the top-level
design used for synthesis. This top-level design file instantiates the
<platform_name> component as a black box. If the optional “Create VHDL
NGO File” has been selected, the <platform_name>_vhd.vhd file is
combined with the <platform_name>.ngo file after synthesis to complete
the post-synthesis netlist. The common name <platform_name> is used to
make this association.

A <platform_name>.ngo file, which is a Diamond database file that is a
synthesized version of <platform_name>.v. This file is created if the
optional “Create VHDL NGO File” has been selected, along with “Create
VHDL Wrapper.” It contains the same design information as
<platform_name>.v. For more information on the .ngo file, see the
“Building Modular Projects Using NGO Flow” topic in the Diamond online
Help.

MSB generates a <platform_name>_inst.v file, which contains the Verilog
instantiation template to use in a design where the platform is not the top-level
module. For the VHDL user, no equivalent file is generated that contains the
component declaration and component instance/portmap template for the
platform wrapper <platform_name>_vhd.vhd. The generated
<platform_name>_vhd.vhd file can be used to create one, if required.

Figure 14 shows the instantiation template for the platform1 platform.

32

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 14: Verilog Instantiation Template

platforml platforml_u (

clk_i(clk_i),

.reset_n(reset_n)

, -Sramsram_csn(sramsram_csn) //

, -Sramsram_be(sramsram_be) // [3:0]

, -Flashsram_csn(flashsram_csn) //

, -Flashsram_be(flashsram_be) // [3:0]

, -Flashsram_byten(flashsram_byten) //

, -Flashsram_wpn(flashsram_wpn) //

, -Flashsram_rstn(flashsram_rstn) //

, -LEDPIO_OUT(LEDPIO_OUT) // [10-1:0]

, -uartSIN(uartSIN) //

, -uartSOUT(uartSouT) //

, -sramflashOEN(sramflashOEN)

, -sramflashWEN(sramflashWEN)

, -sramflashADDR(sramflashADDR)// [24:0]
, -sramflashDATA(sramflashDATA)// [31:0]

Implementing Shared Bidirectional Bus
to Board

Some components in the microprocessor platform—such as the ASRAM, the
flash controller, and the SDRAM controller—have bidirectional data buses.
Tristates in the platform are used extensively to implement them. This section
gives some guidelines on handling tristates.

Implementing a Shared Board Bus in MSB

When you use an evaluation board issued by a vendor other than Lattice
Semiconductor, you might need to use tristates to implement a bidirectional
data bus between the board and LatticeMico32 microprocessor platform. A
shared bidirectional data bus reduces pin count and board traces.

If you select “Share External Ports” for the ASRAM and flash components in
the generated <platform_name>.v file in the Verilog flow, the shared bus
connection will have a fixed pattern similar to the following:

assign sramflashDATA = Isramsram_wen ? sramsram_data_ out :
Iflashsram_wen ? flashsram data out :
32"bZ2727277777777777777777777777777777 ;

If you want to change that connection, you must manually modify the code in
the <platform_name>.v file in the ./<platform_name>/soc directory by adding
logic to the tristates so that multiple LatticeMico32 components can share this
bidirectional bus.

IF you want to modify the shared bidirectional data bus in certain platform
components in the VHDL, you must modify the verilog code to change the
tristate control. You can do this by either pulling the tristates outside of the
platform or making the changes within the platform. If you pull the tristates

LatticeMico32 Hardware Developer User Guide 33

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

from the platform and you are using the VHDL wrapper, then you must also
modify the <platform_name>_vhd.vhd file in the ./<platform_name>/soc
directory.

However, if you regenerate the platform in MSB after you add logic to the
tristates, these additions will be lost in the automatically generated
<platform_name>.v or <platform_name>_vhd.vhd file in the
J<platform_name>/soc directory. To avoid losing your work, copy the modified
<platform_name>.v or <platform_name>_vhd.vhd file to another location,
regenerate the platform, and then copy the modified <platform_name>.v or
<platform_name>_vhd.vhd file back to the ./<platform_name>/soc directory.

Connecting Bidirectional Ports of a Platform
Tristates can only be connected to external ports.

Avoiding Double-Buffered Bidirectional Ports in
VHDL NGO Flow

In the flow for VHDL users who have selected the optional “Create VHDL
NGO File,” the platform resides in an .ngo file, and the VHDL wrapper file is
used to connect to the other VHDL user logic. No I/O pad is inserted in the
.ngo file except these bidirectional signals. To avoid double-buffering these
bidirectional ports, you must declare them as black-box pads. This declaration
tells the synthesis tool that a black-box port has an I/O buffer already
implemented inside the black box and therefore the synthesis tool should not
put another I/O buffer for this port in the netlist that it is creating. Here is an
example:

component platform_xxx

port(

D: in std_logic;

E: in std_logic;

GINOUT : inout std_logic_vector(2 downto 0);

Q : out std_logic

)

end component;

attribute syn_black box : boolean;

attribute syn_black box of platform_xxx: component is true;
attribute black box_ pad_pin : string;

attribute black box _pad_pin of platform_xxx: component is
"GINOUT(2:0)";

When you declare the 1/O ports as black-box pads during VHDL synthesis, the
synthesis tools do not insert I/O pads for these signals and therefore avoid
double buffering.

Figure 15 further clarifies the connection. For all non-bidirectional I/Os, the 1/0
buffers (in green) are provided by the VHDL wrapper during VHDL synthesis.
The bidirectional I/O buffers (in red) are provided by the .ngo file itself.

34

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Figure 15: 1/0 Buffers in VHDL Wrapper and in .ngo File

Inputs or outputs | |

Platform .ngo file

Bidirectional I/Os l

VHDL wrapper

Synthesizing the Platform to Create an
EDIF File (Linux Only)

If you use Linux, you must now synthesize your platform to create an EDIF
file.

Using Synplicity Synplify Pro

To use Synplicity Synplify Pro as your synthesis tool:

Add the <platform_name>.v file into your Synplify Pro project.

Using Mentor Graphics Precision RTL Synthesis

To use Mentor Graphics Precision RTL Synthesis as your synthesis
tool:

1. Add the <platform_name>.v file into your Precision RTL project.

2. Add the following directory paths into your Precision RTL search path:
<platform_name>/soc
<platform_name>/components/Im32_top/rtl/verilog

<platform_name>/components/<uart_core>/rtl/verilog, where
<uart_core> is the name of the UART

<platform_name>/components/<wb_sdr_ctrl>/rtl/verilog, where
<wb_sdr_ctrl> is the name of the SDRAM controller

If your platform includes an OPENCORES I12CM component, you must add an
additional directory to the search path as follows:

LatticeMico32 Hardware Developer User Guide 35

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

<platform_name>/components/i2cm_opencores/rtl/verilog

See the Synthesis Data Flow Tutorial for step-by-step information about
synthesizing designs in Precision RTL Synthesis and Synplify Pro.

To create an EDIF file:

Start the synthesis tool.

Create a new project in the tool.

Add the Verilog HDL file output by MSB to the project.
Set the target device and the options.

Compile the project and specify the timing objectives.

o o M whpRE

Synthesize the design to generate an EDIF (.edn or .edf) file.

Design Guidance for Platform
Performance

Setting preferences and performing static timing analysis can help achieve
higher platform design performance or minimize area utilization. The following
documents give instructions and examples for setting design constraints:

Achieving Timing Closure in FPGA Designs — This tutorial provides
techniques for optimizing design performance and demonstrates the
influence of map and place-and-route preferences. It uses a system-on-
chip design that utilizes an OpenRISC 1200 processor and Wishbone on-
chip bus.

FPGA Design Guide — The chapter "Strategies for Timing Closure" gives
instructions for constraining your design, performing static timing analysis,
and floorplanning.

Additionally, see the following sections of the Diamond online Help

Constraints Reference Guide — This section provides syntax and
descriptions for all preferences

Applying Design Constraints — This section consists of guidelines for
setting preferences

Generating the Microprocessor
Bitstream

For Windows, you now return to Diamond to import the platform source files.
You import the Verilog file output by MSB; or for mixed Verilog/VHDL, you
import both the Verilog and VHDL files output by MSB. For Linux, you import
the EDIF file output by the synthesis tool. You also specify the connections
from the microprocessor to the chip pins by importing an .Ipf file. You can
optionally perform functional simulation and timing simulation. Primarily, you

36

LatticeMico32 Hardware Developer User Guide

http://www.latticesemi.com/documents/doc17356x21.pdf
http://www.latticesemi.com/lit/docs/manuals/fpga_design_guide.pdf

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

will build the database; map, place, and route the design; and generate the
bitstream in Diamond so that you can download that configuration bitstream to
the chip on a circuit board.

Configuring the Diamond Environment

1. In Diamond, choose Tools > Options.

2. Under “Environment” in the pane on the left, select General.

3. Ifthe "Copy file to Implementation's Source directory when adding existing
file" is selected, clear the selection and click OK.

Importing the Verilog or VHDL File on Windows

The process of importing the generated platform file into Diamond is the same
for Verilog and VHDL, except that you must take a few additional steps when
you import a VHDL file.

To import the Verilog (.v) and VHDL (.vhd) files output by MSB on the
Windows platform:

1. Choose File > Add > Existing File.

2. Inthe dialog box, browse to the <platform_name>\soc\ location and do
one of the following:

Select the <platform_name>.v file (Verilog) and click Add.

If your design is mixed Verilog/VHDL, select both the
<platform_name>.v file and the <platform_name>_vhd.vhd file and
click Add.

3. If your design is mixed Verilog/VHDL and you selected the Create VHDL
Wrapper option to generate <platform_name>_vhd.vhd without selecting
the Create VHDL NGO File option, perform these additional steps:

a.
b.

Choose Project > Property Pages.

In the dialog box, select the project name that appears in bold type
next to the implementation icon |E_E'

In the right pane, click inside the Value cell for “Top-Level Unit” and
select <platform_name>_vhd from the drop-down menu.

Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

In the dialog box, click the New Search Path button [{E, browse to the
<platform_name>\soc directory, and click OK.

Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

Click OK to return to the Diamond main window.

LatticeMico32 Hardware Developer User Guide 37

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Importing the EDIF File on Linux

For Linux, you import the EDIF file generated by the synthesis tool into
Diamond.

To import the EDIF (.edn or .edf) file output by MSB on Linux:
1. Choose File > Add Existing File.

2. Inthe dialog box, browse to the location of your .edn or .edf file, select the
file, and click Open.

Connecting the Microprocessor to FPGA Pins
You have two options for connecting the microprocessor to the FPGA pins:

Manually create the pin constraints and import them into Diamond.

Import a pre-created constraints file that is part of the platform templates
in the LatticeMico System software into Diamond.

For information about pin constraint assignments, see the “Applying Design
Constraints” and “Constraints Reference Guide” in the Lattice Diamond online
Help.

You can import the pin constraints specified for a template platform into
Diamond. When you use a platform template, MSB copies the logical
preference (.Ipf) file associated with it into the ..\soc directory path of your
LatticeMico32 project.

To import the .Ipf file:
1. In the Diamond, choose File > Add > Existing File.

2. Browse to the .Ipf file and click Open.

Generating the Bitstream

Now you will generate a bitstream file to download the microprocessor to the
FPGA. This process automatically synthesizes, translates, maps, places, and
routes the design before it generates the bitstream file.

To generate a bitstream file:
1. In Diamond, select the Process tab.
2. Inthe Process pane, under Export Files, double-click Bitstream File.

The Diamond software generates the programming file in your project
folder. It is now ready for downloading onto the device.

38 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

Downloading Hardware Bitstream to the
FPGA

After you generate the bitstream file, you can download it to program your
FPGA device on a circuit board. You can use Diamond Programmer to
accomplish this task.

To download the hardware bitstream using the Diamond Programmer:
1. In the Diamond, choose Tools > Programmer.

2. The Programmer opens, displaying the bitstream file you have generated
for the current design in the Data File box.

3. Inthe Programmer user interface, click Auto Detect.

The Programmer can recognize the USB download cables plugged into
your PC. If more than one USB cable is connected to your PC, the
Programmer detects all available cables, but selects the first cable that it
detects.

To select a different USB cable, select HW-USBN-2A (Lattice HW-USBN-
2A USB port programming cable) or HW-USBN-2B (FTDI) (Lattice HW-
USBN-2B (FTDI) USB programming cable) in the Cable Type box, and
change the connection port in the Port drop-down list.

4. Click Scan Device.

The Programmer scans the printed circuit board connected to your
computer with the specified cable and port, and it lists the devices in the
Device list.

5. Inthe Device list, select the device that matches the target device of the
current design.

6. Under XCF File, do either of the following:

If you want to use an existing chain file to program the device, select
Downloading with existing XCF file. Then click Browse to locate
the file.

If you have no existing chain file for programming, select Save to XCF
file to create a new XCF file. Then click Browse to specify the name
and location for the new file.

7. Click Download.

The Programmer downloads the data file to the target device. A Status
box indicates the progress of the operation, reports any errors, and shows
whether the operation was successful.

LatticeMico32 Hardware Developer User Guide 39

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Performing HDL Functional Simulation of
LatticeMico3e2 Platforms

In most cases, the platforms that are created using the LatticeMico System
Builder work correctly in hardware because the existing components have
been tested many times. New custom components, however, start as
untested elements and will probably need debugging through HDL functional
simulation.

This topic describes the process for using an HDL simulation tool such as
Mentor Graphics ModelSim™ or Aldec Active-HDL™. The method described
is applicable to designs written in VHDL, Verilog, or a combination of both.
The example LatticeMico32 platform in this topic uses the FPGA's on-chip
memory, Embedded Block Ram (EBR). The firmware (C/C++ code) is
compiled using the Lattice C/C++ SPE and Debug software, and a memory
initialization file is created that is loaded into the on-chip memory. It is possible
to locate the firmware in other off-chip memories as long as there exists a
behavioral model for the memory.

The example application used in this topic is the “Hello World” application,
which is available as a predefined C/C++ SPE project. See Chapter 2 and
Chapter 6 of the LatticeMico System Software Developer User Guide for more
information about creating the “Hello World” application, compiling it, and
deploying it to the EBR.

The platform in Figure 16 shows a Verilog design (platform) that is

instantiated from within a VHDL module.The platform is an instantiation of
Platform C with the following additional components:

Figure 16: Platform Setup

s

Marne Wishbone Connection Base End Size(Byt... Lock IRGQ Disable

= M2 0
Instruction Port i
Data port 1
Debug Port 000000000 xO005°F f6384

- ebr O
EER. Part 000100000 i 1EAAE 131072

= sram O
ASRAM Part 000200000 xESARREE 1048576

= LED O
&P I Part OxB00000350 BN 128

= timer O
S Park 50000100 BIOIIT A 128 1]

= uark O
UART Part 050000130 IxBACNITAE i28 1

= dma O
Fead Masker Port
Wirite Master Pork 3
Contral Paort OxG0000200 IxBONIZFE 128 2

EBR — At least one EBR is required to hold the software/firmware.
Figure 17 on page 41 shows the design’s EBR component setup, along

40 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

with the deployed software. The EBR memory size must be large enough
to hold your C/C++ application. In this example, the memory is 128KB,
which is more than enough for the “Hello World” application but too large
for most FPGAs to support.

Figure 17: EBR Setup

& Add On-Chip Memory

Instance Mame | ebr
Base Address | 0x00020000

Size of Memary (in Bytes) | 131072

IMemory File

Initialization File Mame | C:/Platform/simulation/hello_world.mem

File Format | hex v

a4][Cancel H Help

UART — The UART is an optional component that redirects stout and
sterr to the HDL simulator console.

Refer to the UART data sheet for more details on how to use the UART for
redirecting stout and stderr to the HDL simulator console.

Configuring the Platform with
LatticeMico System Builder

The LM32 processor instance in the platform, shown in Figure 16, must be
configured to permit functional simulation of software applications through any
HDL simulator. The following steps are required:

Ensure that the LM32 Exception Base Address (EBA) points to the base
address of the memory component that contains the deployed software/
firmware. This address must be aligned to a 256-byte boundary, since the
hardware ignores the least-significant byte. Unpredictable behavior occurs
when the exception base address and the exception vectors are not aligned
on a 256-byte boundary. In the platform shown in Figure 16 on page 40, the
software is deployed in EBR. Therefore, modify the “Location of Exception
Handlers” field in the LM32 processor dialog box to point to the base address
of EBR (0x00020000), as shown in Figure 18.

Directory Structure

When MSB is used to generate a platform, a set of directories is created in a
top-level platform directory. The top-level directory is automatically assigned
the same name as the MSB project name, which is Platform in this example.

<path_to_toplevel_directory>/Platform
components
soc

LatticeMico32 Hardware Developer User Guide 41

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Figure 18: LM32 Setup
ey

General | Inline Memory

i

Instance Name LM32
Debug Setting

/| Enable Debug Interface
9
Setti =
ngs # of H/W Watchpoint Registers 0

[] Use EBRs for Register File
[¥] Enable Divide

of H/W Breakpoint Registers | 0
[#] Enable Sign Extend p £

[Enable PC Trace

[] Enable Debugging Code in Flash or ROM

Lecation of Exception Handlers 0:00000000
Trace Depth 1024

[] Enable Dynamic Mapping of Exception Handlers to Debugger

Multiplier Settings

Shifter Settings
[¥] Enable Multiplier

i (@ Enable Pipelined Barrel Shifter
@ Enable Pipelined Multiplier (D5P Block if available)

) () Enable Multicycle Barrel Shifter (upto 32 cycles)
() Enable Multicylce (LUT Based, 32 cycles) Multiplier

Instruction Cache Data Cache
[]Instruction Cache Enabled Mumber of Sets [#] Data Cache Enabled Mumber of Sets
Set Associativity Set Associativity
Bytes/Cache Line Bytes/Cache Line
Memary Type @ Auto () Distributed RAM Memory Type @ Aute () Distributed RAM
() Dual-Port EBR (7) Pseudo Dual-Port EBR () Dual-Port EBR

[ok || cancel |[Help

The components directory contains RTL and software drivers that pertain to
each of the components instantiated within the design. Important files in the
soc directory include:

system_conf.v — This file contains the auto-generated macro definitions of
the various components in the design. As mentioned previously, this file
must be modified if the “Enable Debug Interface” option is selected in the
LM32 processor dialog box.

platform.v — This file contains the top-level module of the design, which is
Platform in this example.

pmi_def.v — This file contains module definitions of all the PMI modules
used in the design. For the purpose of functional simulation, the PMI
behavioral models must be provided. See “Replace PMI Black-box
Instantiations with Behavioral Models.” on page 46.

Creating an Optional VHDL Wrapper

For mixed-language designs, the VHDL Wrapper is required for simulation. To
demonstrate mixed-language functional simulation, a VHDL wrapper has
been created for the top-level module in the design example. The example

wrapper, platform_vhdl.vhd, is located in the soc directory and is shown in
Figure 19 on page 43.

42

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE

Performing HDL Functional Simulation of LatticeMico32 Platforms

Figure 19: VHDL Wrapper

library ieee;
use IEEE.std_logic_1164_all;
entity Platform_vhd is

port (
clk_i in std_logic;
reset_n in std_logic;
Sramsram_wen : out std_logic;
sramsram_data inout
sramsram_addr : out
Sramsram_csn : out std _logic;
sramsram_be : out
Ssramsram_oen : out std_logic;
LEDPIO_OUT : out
uartSIN > in std_logic;
uartSouT I out std_logic;

)

end Platform_vhd;

architecture structural of Platform_vhd is
component Platform

port (
chlk_i in std_logic;
reset_n in std_logic;
Sramsram_wen : out std_logic;
sramsram_data inout
sramsram_addr : out
sramsram_csn : out std_logic;
sramsram_be o out
Ssramsram_oen : out std_logic;
LEDPIO_OUT : out
uartSIN : in std_logic;
uartSouT I out std_logic;
);
end component;
begin
Platform_u : Platform
port map (

clk i => clk_i,

reset_n => reset_n,
Sramsram_wen => sramsram_wen,
sramsram_data => sramsram_data,
sramsram_addr => sramsram_addr,
sramsram_csn => sramsram_csn,
sramsram_be => sramsram be,
sramsram_oen => sramsram_oen,
LEDPIO_OUT => LEDPIO_OUT,
uartSIN => uartSIN,

uartSOUT => uartSOuT,

)

end structural;

std_logic_vector(31 downto 0);
std_logic_vector(22 downto 0);

std_logic_vector(3 downto 0);

std_logic_vector(7 downto 0);

std_logic_vector(31 downto 0);
std_logic_vector(22 downto 0);

std_logic_vector(3 downto 0);

std_logic_vector(7 downto 0);

LatticeMico32 Hardware Developer User Guide

43

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Preparing for HDL Functional
Simulation

The following sections describe the steps required to perform functional
simulation on a given platform.

1. Create the Simulation Directory.

Functional simulation is performed in a directory that is created under the
top-level directory, which is named Platform in this example.

<path_to_toplevel_directory>/Platform
components
soc
simulation

2. Create the Testbench.

A testbench is required to functionally verify a design. The example
testbench, shown in Figure 20 on page 44, instantiates Platform_vhdl, the
top-level module of the design.

Figure 20: Testbench File

“timescale 1 ns /7 1 ns
“include "Im32_include.v"

module testbench;
event done;
// Inputs
reg clk_i;
reg reset_n;

// Outputs
wire [7:0] LEDPIO_OUT;
wire sramsram_wen;

wire [31:0] sramsram_data;
wire [22:0] sramsram_addr;

wire sramsram_csn;
wire [3:0] sramsram_be;
wire sramsram_oen;
wire uartSIN;

wire uartSouT;

Platform_vhd Platform_u
(

.clk_i(clk_i),
-reset_n(reset_n),
-sramsram_wen(sramsram_wen),
-sramsram_data(sramsram_data),
-sramsram_addr(sramsram_addr),
-sramsram_csn(sramsram_csn),
.sramsram_be(sramsram_be),
.sramsram_oen(sramsram_oen),
-LEDP10_OUT(LEDPIO_OUT),
-uartSIN(uartSIN),

-uartSouUT (uartSouT),

);

44 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Figure 20: Testbench File (Continued)

initial begin
reset_n = 0;
#290; // delay 290 ns
reset_ n = 1;
end
initial begin
clk_i = 0;
#20; // delay 20 ns

forever #(20) clk_i = ~clk_i; // toggle the clk_i signal every 20ns
end

reg scall_m, scall_w;
always @(negedge clk_i)
begin
it (Platform_u.Platform_u.LM32_cpu.stall_m == 1"b0)
begin
scall_m <= Platform_u.Platform_u.LM32.cpu.scall_x &
Platform_u.Platform_u.LM32._cpu.valid_x;
scall_w <= scall_m & Platform_u.Platform_u.LM32_cpu.valid_m;
end
// System Call number is passed in r8, Exit System Call is call number 1
if (scall_w && (Platform_u.Platform_u.LM32.cpu.registers[8] == 1))
begin
$display("'Program exited with code %0d.\n",
Platform_u._Platform_u.LM32_cpu.registers[1]);
-> done;
end
end

always @(done)
$finish;

endmodule

LatticeMico32 Hardware Developer User Guide

45

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

3. Replace PMI Black-box Instantiations with Behavioral Models.

The black-box instantiation of each PMI module in the file pmi_def.v must
be replaced with its respective behavioral model. The PMI behavior
models are located in the simulation directory of the Diamond installation:

<diamond_install_path>/cae_library/simulation/verilog/pmi

Select the behavioral model of each PMI module from the simulation
directory in the Diamond installation. Figure 21 shows those selected
for the Platform example.

Figure 21: Selected PMI Behavior Models from CAE Library

Folders X prii_add. v prii_pll. v
=[5 cae_library Pl proi_addsub. v prmi_ram_dp.
2 ibis pri_comples:_mulk.v pri_ram_dp_true.y
[23) macrobhe pri_constant_rnult. v pri_ram_dg.w
= 1) simulation pi_counker.v prii_rarn. s
) blackbox E pri_distributed_dpram.v prii_sub.v

=) veriog proi_diskributed_ram.v
) ec prii_distributed_shift_reg.v
) ecp prii_distributed_spram.w
) ecpz pri_dsp_casmultaddsub. v
) ecp3 pri_dsp_mac.v
) machxo prii_dsp_mult. v
= pmi proi_dsp_rmultaddsub, v
& s pmi_dsp_multaddsubsum.v
) scm pmi_FiFe
3 =p pmi_fifo_dc.v
53 =pe Pri_mac. v

) vhdl pri_rnulk. v
) wp2 prii_rmultaddsub. v

) vhd 3 (] prmi_mulkaddsubsum.

Copy the selected models and paste them into the platform’s
simulation directory. Figure 22 shows the simulation directory of the
Platform example where PMI modules have been replaced by the
appropriate behavior models.

46 LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Figure 22: PMI Models in Platform Simulation Directory

Folders

I PlatFarm
+ [compaonents

|2 weark.
| soc
+ |) preferences_attributes
I references
1) reveal_tutor

oy

X [hsim_design
w Ik,

m library.cfg
& modelsim.ini
modelsim_script,do
m pri_addsub, v
m pri_distributed_dprann,y
m prii_Fifa.w

ﬂ proi_Fifo_dc.w

m pri_ram_dp.v

m prii_rarm_dp_krue.v

1) syn
|7 timing_closure_tukar %pm!_ram_dq.v
+ () werilog & scripk.do
+) vhdl sim_space. aws
+ 1) zip sim_wave.awf
+ () Tcl mtestjrogram.mem
[i4] testbench
|) temp test ench.v
() WINNT o [viog.opt
< 3> vsim.wIF

LatticeMico32 Hardware Developer User Guide

47

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

Performing HDL Functional Simulation
with Aldec Active-HDL

To perform HDL functional simulation with Aldec Active-HDL, first create a
script, “aldec_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

cd “<path_to_toplevel_directory>/Platform/simulation”
workspace create sim_space

design create sim_design .

design open sim_design

cd “<path_to_toplevel_directory>/Platform/simulation”
set sim_working_folder .

vlog pmi_addsub.v

vlog pmi_ram_dqg.v

vlog pmi_ram_dp.v

vlog pmi_ram_dp_true.v

vlog pmi_distributed_dpram.v

vlog pmi_fifo.v

vlog pmi_fifo_dc.v

add additional vlog commands for each PMI module in the
design. The list shown is not intended to be complete for all
possible LM32 designs.

vlog +define+SIMULATION ../soc/platform.v

acom ../soc/platform_vhd.vhd

vlog +incdir+../Components/Im32_top/rtl/verilog+../soc
testbench.v

the VSIM command uses the Aldec for Lattice pre-compiled FPGA
libraries. If the Aldec for Lattice simulator is not being

used, it will be necessary to compile the behavioral code for
the FPGA. For the ECP2, the behavioral code is located at:

<isptools>/cae_library/simulation/verilog/ecp2

vsim testbench —-L ovi_ecp2

Launch the Active-HDL software and execute the following command in the
console window:

cd <path_to_toplevel_directory>/Platform/simulation
verify that you are in the correct directory

pwd
do aldec_script.do

Performing HDL Functional Simulation
with Mentor Graphics ModelSim

To perform HDL functional simulation with ModelSim, first create a script,
“modelsim_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

48

LatticeMico32 Hardware Developer User Guide

USING THE LATTICEMICO SYSTEM SOFTWARE : Using LatticeMico System as a Stand-Alone Tool

vlib work
vdel —lib work -all
vlib work
vlog pmi_addsub.v
vlog pmi_ram_dqg.v
vlog pmi_ram_dq.v
vlog pmi_ram_dp.v
vlog pmi_ram_dp_true.v
vlog pmi_distributed_dpram.v
vlog pmi_fifo.v
vlog pmi_fifo_dc.v
vlog +define+SIMULATION \
+incdir+../soc+. ./components/gpio/rtl/verilog+../components/
Im32_top/rtl/verilog+. ./components/timer/rtl/verilog+../
components/wb_ebr_ctri/rtl/verilog+../components/asram_top/rtl/
verilog+../components/uart_core/rtl/verilog+../components/
wb_dma_ctri/rtl/verilog \
../soc/platform.v
vecom . ./soc/platform_vhdl .vhd
vlog +incdir+../components/Im32_top/rtl/verilog testbench.v

the VSIM command shown here uses pre-compiled FPGA libraries.
It may be necessary to compile the behavioral code for the
FPGA. In this example, the behavioral code was compiled to
the ecp2_vlg working directory.

For the ECP2, the behavioral code is located at :
<isptools>/cae_library/simulation/verilog/ecp2

HHHHHHR

vsim work.testbench -t 1lps —novopt —-L ecp2_vlig

Note

When doing mixed-language simulation, use the -t 1ps command-line option for the
“vsim” command

Using LatticeMico System as a Stand-Alone Tool

The software developer can use C/C++ SPE to develop software application
code without having to install Diamond, as long as the directory structure and
appropriate files have been provided by the hardware developer. The files that
the hardware designer provides to the software developers are the Mico
System Builder project file, the LM32 processor driver files and GNU files, the
component driver files, and the FPGA's configuration bitstream.

The hardware developer needs to have both Lattice Diamond and LatticeMico
System installed in order to generate the files and provide them to the
software developer.

The following scenario shows the tasks involved:

Hardware Developer The hardware developer performs the following
tasks:

1. Uses Diamond to create an FPGA development project.

LatticeMico32 Hardware Developer User Guide 49

USING THE LATTICEMICO SYSTEM SOFTWARE : Using LatticeMico System as a Stand-Alone Tool

The Diamond software is used to generate the FPGA bitstream containing
the LatticeMico32 processor and peripherals.

2. Generates the platform for the project using LatticeMico System Builder.

3. Imports the platform’s RTL source files into the project in Diamond and
generates the FPGA's configuration bitstream.

4. Sends all software developers the Mico System Builder project directory.
For example:

=) swkester
=l |) components
= [} asram_top
=) drivers
| dewice
| service
=l) Im32_top
=l) drivers
| device
I} service
I gru
= | whb_ddr_ctl_wes
|0 drivers
|2 soc
kester.msh

5. Sends the software developers the FPGA bitstream file (.bit) that was
generated using Diamond.
Software Developer The software developer performs the following tasks:
1. Uploads the files sent from the hardware developer:
a. Launches the LatticeMico32 Mico System Builder.

b. Loads the <platform_name>.msb file provided by the hardware
engineer.

2. Creates a new managed make or standard make project in C/C++ SPE.
3. Implements the LatticeMico32 firmware.

4. Compiles the LatticeMico32 firmware using the Project > Build all
command.

5. Runs and debugs the application.

50

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Chapter 3

Creating Custom Componentsin
LatticeMico System

This chapter shows you how to bring your WISHBONE interface component
into the Mico System Builder (MSB) so that it is listed as an available
component in MSB for use in platforms. It assumes that you already have the
Verilog or VHDL source code for the component that you wish to add. Refer to
the section “WISHBONE Interconnect Architecture” in the LatticeMico32
Processor Reference Manual.

Figure 23 shows an HDL diagrammatic representation of your custom
component.

Figure 23: Custom Component Representation

TOUR
CUSTOM
COMPOMNEMNT
(WERILOGASHDL)

mZzomITwm— =

MO =7mJOM—4q= —
TOqWwS o

MoEFToDm-d= —

interrupt, clock, res et

This chapter assumes that you have implemented your custom component
and that your custom component has a WISHBONE interface that contains
the signals required for connecting to the LatticeMico32's WISHBONE fabric.
Your custom component may have a custom I/O interface that may need to be
used as platform input and output pins. Finally, your custom component may
require a clock signal and a reset signal. It may provide an interrupt request to
the LatticeMico32 processor through an interrupt pin.

The Import/Create Custom component dialog box in MSB enables you to
specify the properties for your custom component and makes it available as a

LatticeMico32 Hardware Developer User Guide 51

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Opening the Import/Create Custom Component Dialog Box

component in MSB. Once imported, your custom component is available
every time that you start MSB. The dialog box also enables you to create a
component configuration dialog box that lists parameters that you can
configure for your custom component. If your custom component has
associated software drivers or routines, you can specify them in the dialog
box so that they can be used in managed-make projects or a platform-library
project for a platform that uses this custom component.

The following steps are required to import your custom component into MSB:
Open the Import/Create Custom Component dialog box.

Specify the component attributes.

Specify the WISHBONE interface connections.

Specify the clock/reset and optional external port connections.

Specify your custom component’s RTL design files.

o o M wbh P

Specify the user-configurable parameters that your RTL design, software,
or both may need, if applicable.

~

Optionally, specify software elements.

8. Specify the optional software files that your custom component may
provide for use in LatticeMico32 applications.

9. Apply the changes.

Note

The entire flow is based on the assumption that your custom component is written in
Verilog. If you have a custom component written in VHDL, you must perform a few
more steps before performing the steps just given. Refer to “Creating the Verilog
Wrapper for VHDL Designs” on page 87 for these steps.

The following sections introduce you to the Import/Create Custom Component
dialog box and explain the steps just given.

Once you have imported your custom component into MSB, you can use the
same Import/Create Custom Component dialog box to edit the provided
information.

Opening the Import/Create Custom Component

Dialog Box

The LatticeMico32 MSB perspective has an Import/Create Custom
Component dialog box that allows you to create or import custom components
for use in your MSB platform.

To import your WISHBONE-interface-compliant custom component, you must
have the following items:

RTL source files that implement your custom component

52

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Component Attributes

Optional software files that implement software functionality for your
custom component

To open the Import/Create Custom Component dialog box:

In the LatticeMico System MSB perspective, click the Import/Create
Custom Component button J in the MSB Available Components view,
as shown in Figure 24.

Note

A custom component is indicated in the MSB Available Components view with the
following icon: . You can remove a previously created custom component by
highlighting the component in the Available Components view and clicking the
Remove Custom Component button.

Figure 24: Import/Create Custom Component Button in Available
Components View

& SPIFlash (3.0
% DDRZ SDRAM Controller {v6.5)
Fhr DOR SDRAM Contraller (ve.5)

Import/Create $ on-Chip Dual-Part Memory (3.0) Remove Custom
Custom K onChip Memary (3.2) Component button
& sORAM Cantraller (3.3
Component button = 10 (010}
& crIo a1

% OPENCORES 12C Master (3.1)
ﬁ master_passthru (3,13
ﬁ slave_passthru (3.0)
& sz
& Timer (3.0
g Tri-speed Ethernet MAC (v2.7)
& UART (3.4
ome a1
FT PCI Target 33 (v6.1)
=t cpu (o71)
& LatticeMica3z (3.5)

asram_top 3.0

Specifying Component Attributes

The Component tab is the first tab in the Import/Create Custom Component
dialog box. It enables you to specify attributes for your custom component. It
also provides the location for creating the custom component and the MSB-
specific component properties.

Figure 25 shows the steps involved in specifying the component attributes.

LatticeMico32 Hardware Developer User Guide 53

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Component Attributes

Figure 25: Specifying the Component Attributes

& Import/Create Custom Component - New Component

Companent |Master!8lave Parts I External Portz I RTL Files I Parameters I Software I Software Files

{* Creste Mew Component

(" Open Component XML

Mewy Component Mame: I

Mewy Component Directory: I

Browse... I
r—

—Component Properties

Dizplay Mame: I “ersion: I <
Type: I j Access: I . j
4
HTML Help: I Elrowie... |
Save Cancel Reset | Help I

Sl | MyComponent

|2 document
=l) drivers
12 device
= 3 rd
12 verilog

Figure 26: Directory Structure Created

Step 1: Specify a component name
(not module name).

Step 2: Specify directory where you
want the component to be created.
Step 3: Specify name that you
want displayed in the Available
Components pane.

Step 4: Specify version, for
example, 1.0.

Step 5: Specify component type
(I/O or memory).

Step 6: Specify access type (for
memory components only).

Step 7: Specify HTML help file
(optional).

Component Location and Directory
Structure

The Import/Create Custom Component dialog box creates the necessary
directory structure according to the values that you provide in the New
Component Name and New Component Directory boxes. For example, if you
enter “MyComponent” in the New Component Name box, MSB creates the
directory structure shown in Figure 26. This directory structure is created in
the directory specified in the “New Component Directory box. This directory
structure is created only after all the information is provided.

54

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Component Attributes

The location of the new component is stored in a settings file that MSB uses

to identify the available components.

Note

Do not use the top-level module name of your custom component as the component
name in this tab. Also, do not specify a directory within the Diamond installation as the

location for the new component.

Component Properties

You must set the parameters shown in Table 1 for your new component in the

Component tab.

Table 1: Component Tab Options

Option
Create New Component

Open Component XML

New Component Name

New Component Directory/

Select Component XML

Display Name

Version

Type

Description
Creates a new component.

Opens an existing component description file (<component_name>.xml) to edit
the existing component.

Specifies the name of the component. The name you enter in this box will be used
to create a folder and a component description file (<component_name>.xml).

New Component Directory — Specifies the path of the component file. This option
is available if you are creating a new custom component and have selected the
Create New Component option. Type in the path to your component folder, or use
the Browse button to browse to your new component folder.

Note: Your new component folder should be outside of the .\micosystem folder.

Select Component XML — Specifies the path of the component description file.
This option is available if you are editing an existing component and have
selected the Open Component XML option. Use the Browse button to browse to
the component description file (<component_name>.xml) of the component that
you want to edit.

Specifies the name of your component that you want MSB to display when it
appears in the Available Components window. It is not used for a folder or a file
name, so any combination of ASCII characters is permitted.

Specifies the version number of the component that you want MSB to display next
to the display name in the MSB Available Components window.

Specifies the type of component: I/O or memory. MSB supports only these two
types of components. The type of component determines the address assignment
of the component in MSB. I/O components are located in the LatticeMico32
processor’s non-cacheable region, and memory components are located in
LatticeMico32 processor’s cacheable region.

Choose 10 or Memory from the drop-down menu. Memory components reside in
the lower 2G of the LatticeMico32 memory map and can be added to the
instruction and data ports. /0O components reside in the upper 2G. The I/O
component can only be connected to the data port.

LatticeMico32 Hardware Developer User Guide

55

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

Table 1: Component Tab Options (Continued)

Option

Access

HTML Help

DRC

Save

Cancel

Reset

Help

Description

The text entered in this field is not used by MSB for any other purpose
than to concatenate to the Display Name. For example, the SPI flash
component has read-only access, so the SPI flash can be used to store the
read-only or code sections of the .elf file, but it cannot be used for the
read-write section of the .elf file.

Read — Stores .elf file .rodata, .boot, and .text sections in memory.

Write — Stores .elf file .bss and .data sections in memory.

Read/Write — Stores any .elf section in memory.
Specifies the name of the help file, if your component has an HTML help file
associated with it. It enables you to enter a path to an existing HTML file
describing your new component. Once you close the dialog box, this file is copied
into the directory structure created by the dialog box, so the original file is no

longer referenced. The contents of this file are displayed in the MSB Component
Help view. This file is optional.

Performs a design-rule check of the new component.

Saves all the data currently entered for the component being defined. The Save
button performs a DRC to determine if the component is syntactically correct and
saves the data.

If the DRC fails, a message is displayed indicating that the component has errors
and cannot be used in a platform. The component icon displays a small red “X” in
the bottom left-hand corner.

If you are going to overwrite an existing component, another message appears
that asks permission to overwrite the previous design files.

Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Resets all values in all tabs in the dialog box.

Displays the help for the dialog box.

Specifying WISHBONE Interface Connections

Once you have specified the general properties for your custom component,
you must specify the WISHBONE interface connections to and from your
custom component. You specify the WISHBONE interface connections for
master ports and slave ports in the Master/Slave Ports tab of the Import/
Create Custom Component dialog box. Refer to the LatticeMico32 Processor
Reference Manual for information on WISHBONE port signals.

If your component has a master port—that is, if it can drive the WISHBONE
bus—you must specify master port connections. If your component has a
slave port—that is, it responds to bus master requests—you must specify the
slave port connections. If your component has both types of ports, you must
specify both port connections sequentially.

56

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

Figure 27 shows the basic steps required for specifying the connections to
your component’s master or slave port signals.

Figure 27: Specifying Connections to the Master or Slave Port Signals

& Import/Create Custom Component - New Component ﬂ
Component MasterfSlave Ports |E>derna| Ports I RTL Files I Parameters I Software I Software Files I
—MasterfSlave Ports

Type | Display Mame | Prefix | DR [pat [we [seL | s18 | cve [Lock [cni | Be | pat | ack | err [RTv |

Step 1: Specify port type (master
or slave).

Step 2: Specify port display

Delete . .
4| name as displayed in MSB.
—Port Attributes St 35 . . |
Type IMasterPort VI Dizplay Mame I Prefix I < ep) peCIfy Slgna -hame
prefix.
output[31:0] =Prefix=_ADR_O I output[31:0] =Prefix=_DAT_O I
output =Prefix=_WE_O I output[3:0] =Prefix=_SEL_O I
_ _ Step 4: Specify connections to
output =Prefix=_STH_O I output =Prefix=_CYC_0 I < ,)
Component S pOft S|gnals.
output =Prefix=_LOCK_O I output[2:0] =Prefix=_CT|_C I
output[1:0] =Prefix=_BTE_O I input[31:0] =Prefix=_DAT_| I
input =Prefix=_ACK_| I input =Prefix=_ERR_| I
input =Prefix=_RTY_| I
Updste Add 4 Reset | Step 5: Click Add button.

DRC | Save | Cancel | Reset | Help I

Not all port signals are mandatory. See Table 3 and Table 4 for a list of port
signals required for master and slave port connections.

All of the mandatory fields in the Port Attributes group box must be supplied
and the Add button clicked in order for entries to be visible in the Master/Slave
Ports group box. You can update an existing master or slave port connection
by clicking on the appropriate row in the spreadsheet view. Make any
changes to the port highlighted in the Master/Slave Ports group box by
modifying the appropriate element in the Port Attributes group box. When the
changes are complete, click the Update button to make the changes
permanent.

LatticeMico32 Hardware Developer User Guide 57

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

Table 2 lists the options available in the Master/Slave Ports tab of the Import/
Create Custom Component dialog box.

Table 2: Master/Slave Port Tab Options

Option

Master/Slave Ports

Delete

Type

Display Name

Prefix

Port Attributes

Update

Add

Reset

DRC

Description

Lists the master ports and the slave ports in your component.
You can create more than one master port.

You can create only one slave port.

To delete a master port or a slave port, highlight the port in the Master/Slave
Ports list and click Delete. The port is not permanently deleted until you
save the component by using the Save or OK button.

Note: You cannot “undo” a port deletion. Once you click Delete and then OK, the
port is permanently deleted.

Specifies the type of port. Choose either MasterPort or SlavePort in the drop-
down menu. Master ports can generate WISHBONE cycles to attached
WISHBONE slave components. Slave ports cannot initiate WISHBONE
bus cycles; they can only respond to a WISHBONE master.

Specifies the name of the master or slave port. The name is displayed indented
and below the instance name of a component that has been added to a
MSB platform. Any ASCII character is permitted in this field.

Specifies a prefix that is used for two purposes:

It creates a unigue name for the component ports connected to the
WISHBONE bus, for example, <prefix>_DAT_O.

It enables you to use the same instance name for different components and
avoid having name conflicts in the wires of the platform’s top level. When the
top-level interconnect is built, the wire connecting a slave component output
back to the master or masters is named
<instance_name><component_port_name>. Since <prefix> is used in
<component_port_name>, <prefix> appears in this wire name. For example,
if the prefix for a GPIO component is “GPIO,” the wire name will be
inst1GPIO_DAT_O.

The Port Attributes group box is used to perform a name translation
between the WISHBONE signal names in your custom component and
the WISHBONE signal names attached to the LatticeMico32 bus arbiter.
Refer to Table 3 on page 59 for a description of WISHBONE slave port signals.

Updates the options in the Master/Slave Ports tab. The Update button is only
available after a master or slave port entry in the Master/Slave Ports
group box has been highlighted. The Port Attributes group box displays
the values associated with the highlighted master or slave port element.
Use the Update button after modifying any of the Port Attribute fields.

Adds the master port or slave port to the Master/Slave Ports list at the top of the
dialog box.

Clears the port attributes.

Performs a design-rule check of the new component.

58

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

Table 2: Master/Slave Port Tab Options (Continued)

Option

Save

Cancel

Reset

Help

Description

Saves all the data currently entered for the component being defined. The Save
button performs a DRC to determine if the component is syntactically correct and
saves the data.

If the DRC fails, a message is displayed indicating that the component has errors
and cannot be used in a platform. The component icon displays a small red “x” in
the bottom left-hand corner.

If you are going to overwrite an existing component, another message appears
that asks permission to overwrite the previous design files.

Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Resets all values in all tabs in the dialog box.

Displays the help for the dialog box.

Table 3 lists the signals required to connect the master port to the
LatticeMico32 platform. Table 4 lists the signals required to connect the slave
port to the LatticeMico32 microprocessor. The ports that make up the
WISHBONE master or slave port must follow the specifications described in
the LatticeMico32 Processor Reference Manual table entitled “List of
Component Port and Signal Name Suffixes.”

Table 3: LatticeMico32 Master Component WISHBONE Ports

Component Port Names for
WISHBONE Slave Port

<Prefix> ADR_O
<Prefix>_DAT_O
<Prefix>_ WE_O
<Prefix> SEL_O
<Prefix>_STB_O
<Prefix>_CYC_O
<Prefix>_LOCK 0
<Prefix>_CTI_O
<Prefix>_BTE_O
<Prefix>_DAT |
<Prefix>_ ACK |
<Prefix>_ERR_|I
<Prefix>_RTY_|I

Direction Width Required
Output 32 Yes
Output 32 No
Output 1 Yes
Output 4 Yes
Output 1 Yes
Output 1 Yes
Output 1 No
Output 3 No
Output 2 No
Input 32 No
Input 1 Yes
Input 1 No
Input 1 No

LatticeMico32 Hardware Developer User Guide 59

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

Table 4: LatticeMico32 Slave Component WISHBONE Ports

Component Port Names for Direction Width Required
WISHBONE Slave Port

<Prefix>_ADR_| Input 32 Yes
<Prefix>_DAT | Input 32 No
<Prefix>_WE_| Input 1 Yes
<Prefix>_SEL | Input 4 Yes
<Prefix>_STB _| Input 1 Yes
<Prefix>_CYC_| Input 1 Yes
<Prefix>_LOCK | Input 1 No
<Prefix>_CTI_| Input 3 ‘No
<Prefix>_BTE_| Input 2 No
<Prefix>_DAT_O Output 32 No
<Prefix>_ ACK_O Output 1 Yes
<Prefix> ERR_O Output 1 No
<Prefix>_RTY_O Output 1 No

The example in Figure 28 shows the steps required for specifying a slave port
connection on the custom component. Consider the following module
definition for a custom component:

In this module definition, there are three sets of signals: slave WISHBONE
port signals, mandatory clock/reset signals, and external interface signals
specific to the component’s behavior. In the Master/Slave Ports tab, only the
slave WISHBONE port signals are added. The mandatory clock/reset and the
external interface signals are added in the next tab.

To specify the master and slave port connections:

1. From the drop-down menu in the Type box of the Master/Slave Ports tab,
select SlavePort, as shown in Figure 29.

2. Inthe Display Name box, type slave so that MSB will display this port’s
name as “slave” beneath the component’s instance name.

In the Prefix box, enter S. The prefix is only used internally within MSB.

4. Enter the component’s corresponding signal names, as shown in
Figure 30.

5. Click Add to add the port specification for the component.

60 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Figure 28: Specifying a Slave Port Connection

module MyVerilogComponent (

// wishbone interface
input [31:0] wb_slv_addr,
input [31:0] wb_slv_master_data,
input wb_slv_cyc,
input wb_slv_stb,
input [3:0] wb_slv_sel,
input wb_slv_we,
output [31:0] wb_slv_slave data,
output wb_slv_ack,
output wb_slv_err,
output wb_slv_rty,

// mandatory clock/reset signals
input wb_clk,
input wb_rst,

// external interface (optional)
output [15:0] external_out_bus,
input [8:0] external_in_bus,
input external_in_wire,
output external_out_wire,

// interrupt signal to the processor(s)
output interrupt_signal
)

endmodule

Specifying Clock/Reset and External Ports

Connecting the component to the WISHBONE bus enables the LatticeMico32
microprocessor to control and access the custom component. The custom
component has its own unique input and output control signals that must be
connected outside of the platform to the rest of the system. The External Ports
tab enables these control signals to be defined so that MSB can correctly
generate a top-level Verilog module. Figure 31 shows the External Ports tab
of the Import/Create Custom Components dialog box.

This tab continues the task of building a Verilog wrapper around the custom
component. You use this tab to define the CLK_I, RST_I, and optional
INTR_O control signals. The component port specifies the signal name
presented at the <platform>.v top-level module created by MSB when the
platform is generated.

LatticeMico32 Hardware Developer User Guide 61

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Figure 29: Selecting the Slave Port

€ Import/Create Custom Component - New Component ll

Component MasterfSlave Ports |E>derna| Ports I RTL Files I Parameters I Software I Software Files I

—MasterfSlave Ports

Type | Display Mame | Prefix | DR [pat [we [seL | s18 | cve [Lock [cni | Be | pat | ack | err [RTv |

Step 1: Select SlavePort.

Delete |

—Part Attributes name.

ISIavePort

Step 2: Specify display

Type

Displary Mame | slave Prefix | S < Step 3: Select prefix.
[inpun s DAt [
input S_WE_| [inpuz0s_SEL [
input S_STEL| [impuscveld [
input 5_LOCK_| [inpuzoys_cm [
input[1:0] 5_BTE_| [oupu3to]spaT O [
output S_ACK_O [ouptSERRO [
output S_RTY_O [

Updlate Al | Reset |

inputl31:0] 5 _ADI

DRC | Save | Cancel | Reset | Help I

62 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Figure 30: Entering the Signal Names

& Import/Create Custom Component - New Component ﬂ

Component MasterfSlave Ports |E>derna| Ports I RTL Files I Parameters I Software I Software Files I

—MasterfSlave Ports

Type | Display Mame | Prefix | aDR | pat | wE | sEL | =18 cve
SlavePort slave 5] weh_slv_addr b_slv_master_data whb_slv_we whb_slv_sel wh_slv_sth wh_s
l | i

Delete |
—Port Attributes
Type ISIavePort VI Dizplay Mame I slave Prefix I S
input[31:0] S_ADR_| I web_slv_acdr input[31:0] S_DAT | I b_slv_master_data
input S_WE_| I webi_slv_we input[3:0] S_SEL_| I weh_slv_sel
input S_STH_| I web_slv_sth input S_CYC_| I weh_slv_cyc)

Step 4: Specify
input 5_LOCK | | input[2:0] §_CT1| | component port signals.
input[1:0] S_BTE_| I output[31:0] S_DAT O I weh_slv_slave_data
output S5_ACK_O I web_slv_ack output S_ERR_C I weh_slv_err
output S_RTY _O I web_slv_rty

Update | Al <|' Reast II Step 5: Click Add button.
DRC Save Cancel Reset Help

LatticeMico32 Hardware Developer User Guide 63

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Clock/Reset and External Ports

Figure 31: External Ports Tab

& Import/Create Custom Component - New Component

Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files

—Parameters

Part Type | Component Port | Wyicith | Direction | Active | Connect To |

ClockPort | CLK_| 1 input
ResetPort | RST_ 1 input
Interrupt INTR_Cr 1 output

Delete |

—Port Attributes

Port Type: IExternaIPort

j Component Port: I

Wiclth: E

ﬂ Direction: Iinput j

Active: I

Updlate | Add

j Connect Ta: I

Reset |

DRC

| Save | Cancel | Reset

| Help I

The Connect To entry creates a connection from the signal name entered in
the Component Port box to a signal on the custom component.

Note

You cannot create dynamic-width input and output ports by using the Import/Create
Custom Component dialog box. You must directly edit the XML to create these ports.

Table 5 lists the options available in the External Ports tab of the Import/
Create Custom Component dialog box.

Table 5: External Ports Tab Options

Option Description

Parameters Lists the parameters of the external ports in your component.
Note: ClockPort and ResetPort are mandatory. Interrupt is optional.

Delete Deletes the selected external port from the Parameters list.
Note: You cannot “undo” a port deletion. If you click OK, the port will be
permanently deleted. You cannot delete the ClockPort, ResetPort, or Interrupt
entries.

64 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Table 5: External Ports Tab Options (Continued)

Option Description

Port Type Displays the port type of the port selected in the Parameters box (either
ClockPort, ResetPort, Interrupt, or ExternalPort). You cannot select or edit this
information.

Component Port Specifies the port name of the wrapper.

Width Specifies the port width. Enter a number from 1 to 32.

Direction Enables you to choose the port direction. Choose input, output, or inout from the

drop-down menu.

Active This option is only available if the Port Type is Interrupt. Choose <blank>, High,
or Low from the drop-down menu.

Connect To Specifies the name of the user-defined component port that will be connected to
the wrapper port named in the Component Port field.

Update Updates the port parameters list. Whenever a change is made to the Port
Attribute entries that you wish to make permanent, you must click the Update
button.

Add Inserts a new external port into the list of ports that the custom component

implements. Fill in each of the active Port Attribute fields and then click Add. If
there are no syntax errors, a new entry will be appended to the list of external
ports.

Reset Clears all entries in the Port Attributes group box and permits the entry of a new
external port. Use this button if the Add button is not available.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “X” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“X” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

In addition to the mandatory WISHBONE interface, the component being
imported or created must have a clock input port for the WISHBONE clock
signal and a reset input port for the WISHBONE reset signal. It may optionally
have its own set of input ports, output ports, or both, or an interrupt port for
connecting an interrupt line to the processor.

The External Ports tab enables you to specify connectivity of the following
sets of signals between your custom component’s top-level module and the
GUI-generated wrapper module:

LatticeMico32 Hardware Developer User Guide 65

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Clock port — The clock signal is provided by the WISHBONE interconnect
through the GUI-generated wrapper as an input to your component’s clock
port. All WISHBONE transactions are synchronized to this clock signal.
This port is required.

Reset port — The reset signal is provided by the WISHBONE interconnect
through the GUI-generated wrapper as an input to your component’s reset
port. This port is required.

Interrupt port — If your component needs to issue interrupts for the
processor to handle, you can specify this output port from your component
as an interrupt signal to the processor routed through the GUI-generated
wrapper. You cannot specify multiple interrupt ports; that is, your
component cannot have more than one interrupt signal to the processor.
This port is optional.

External input/output ports — If your component has input or output ports
that must be made available as platform input and output signals (usually
for connection to logic external to the platform or for board connection),
you can specify these ports in the External Ports tab. This port is optional.

As an example, consider the port definition of a custom component that must
be made available in MSB:

Figure 32: Port Definition of a Custom Component

module MyVerilogComponent (
// wishbone interface
input [31:0] wb_slv_addr,
input [31:0] wb_slv_master_data,
input wb_slv_cyc,
input wb_slv_stb,
input [3:0] wb_slv_sel,
input wb_slv_we,
output [31:0] wb_slv_slave_data,
output wb_slv_ack,
output wb_slv_err,
output wb_slv_rty,

// mandatory clock/reset signals
input wb_clk,
input wb_rst,

// external interface (optional)
output [15:0] external_out_bus,
input [8:0] external_in_bus,
input external_in_wire,
output external_out_wire,

// interrupt signal to the processor(s)
output interrupt_signal

)

In this example, the custom component has four external signals that must be
made available as platform inputs and outputs. It also requires an interrupt
line to be connected to the processor. The component’s mandatory clock
input port is named “wb_clk,” and the mandatory reset port is named “wb_rst.”

66

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Clock/Reset and External Ports

The following steps demonstrate how to connect the reset and clock ports of
the GUI-generated reset and clock ports of the custom component.

Specifying Clock/Reset and External Ports

To specify the clock/reset and external port connections:

1. Select the Clock Port line in the External Ports tab, as shown in

Figure 33.

Figure 33: Selecting the Clock Port in the External Ports Tab

& Import/Create Custom Component - New Component ﬂ
Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files
—Parameters
Component Port | Width | Direction | Active | Connect To
okl 1 et L
RST_|
INTR_C
Delete |
—Port Attributes
Port Type: ICIockPort j Component Port: ICLK_I
Width: [=] birection: [input |
Active: I j Connect Ta: I
Updlate | Aol Reset |
DRC | Save | Cancel | Reset | Help I

2. Enter wb_clk in the Connect To box, as shown in Figure 34.

3. Click the Update button to update the WISHBONE clock connection

specification.

4. Repeat steps 1 through 3, but select the Reset Port line in step 1 and
enter wb_rst in step 2 to specify the Reset port connection.

The GUI should now look like the figure shown in Figure 35.

LatticeMico32 Hardware Developer User Guide

67

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

Figure 34: Entering wb_clk in Connect To Box

& Import/Create Custom Component - New Component ﬂ

Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files

—Parameters

Part Type | Component Port | Wyicith | Direction | Active | Connect To |

ClockPort CLK_| 1 inpaut
ResetPort | RST_ 1 input
Interrupt INTR_Cr 1 output

Delete |

—Port Attributes

Port Type: ICIockPort j Component Port: ICLK_I
Width: [=] birection: [input |
Active: I j Connect Ta: Iwb_clk|

Updlate | Aol Reset |

DRC Save Cancel Reset | Help I

Specifying the Interrupt Port

To specify the interrupt port:
1. Select the Interrupt line in the Parameters window.

2. Select the Active drop-down menu and choose High or Low to specify
whether your component’s interrupt line is active high or active low.

Active high means that your component asserts an interrupt when the
selected interrupt port’s signal value is high.

Active low means that your component asserts an interrupt when the
selected interrupt port’s signal value is low.

The MSB platform generator inserts the appropriate logic when
connecting your component’s interrupt line to the processor according to
this specification and when generating a platform that contains your
custom component.

3. Enterinterrupt_signal in the Connect To box to specify the interrupt port
connection between your component and the GUI-generated wrapper, as
shown in Figure 36.

4. Click the Update button to apply this specification.

68

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Clock/Reset and External Ports

Figure 35: Selecting the Reset Port in the Parameters Window

& Import/Create Custom Component - New Component

Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files

—Parameters

Part Type | Component Port | Wyicith | Direction | Active | Connect To |

ClockPort | CLK_| 1 input web_clk
ResetPort RST_| 1 inpaut web_rst
Interrupt INTR_Cr 1 output

Delete |

—Port Attributes

Port Type: IResetPort j Component Port: IRST_I
Width: [=] birection: [input |
Active: I j Connect Ta: Iwb_rst
Updlate I Aol Reset |
DRC Save Cancel Reset Help

Connecting External Output Ports

To connect the external output ports:

1. Click the Reset button to specify a new connection.

2. Inthe Connect To box, enter external_out_bus to specify a connection
to the component’s external_out_bus port, as shown in Figure 37.

3. Since this is an output port from the component, select the Direction pull-

down menu and select output.

4. Since the external port is 16 bits wide, enter 16 in the Width box.

The MSB Run Generator function creates the LatticeMico32 top-level

Verilog file, which exposes the signals from your custom component. For
this example, you will make MSB expose the “external_out_bus” from the

component as “my_out_bus.”

LatticeMico32 Hardware Developer User Guide

69

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM Specifying Clock/Reset and External Ports

Figure 36: Specifying the Interrupt Port Connection

eate Custom Component - New Componenkt

& Import;
Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files I
—Parameters
Part Type | Component Port | Wyicith | Direction | Active | Connect To |
ClockPort | CLK_| 1 input web_clk
ResetPort | RST_ 1 input web_rst
Interrupt INTR_C 1 output

Delete |

—Port Attributes
Port Type: Ilnterrupt j Component Port: IINTR_O
Width: [=] birection: [outp |
Active: IHigh j Connect Ta: Iinterrupt_signaﬂ

Updlate | Aol Reset |

DRC Save Cancel Reset | Help I

LatticeMico32 Hardware Developer User Guide

70

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Clock/Reset and External Ports

Figure 37: Specifying a Connection to the External Out Bus Port

& Import/Create Custom Component - New Component ﬂ
Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files
—Parameters
Part Type | Component Port | Wyicith | Direction | Active | Connect To |
ClockPort | CLK_| 1 input web_clk
ResetPort | RST_ 1 input web_rst
Interrupt INTR_Cr 1 output High interrupt_sional
Delete |
—Port Attributes
Port Type: IExternaIPort j Component Port: I
Width: [[31 =] birection: [input =l
Active: I j Connect Ta: Iexternal_out_bus|
Updlate | Al Reset |
Save | Impart | Cancel | Reset | Help I

5. Enter my_out_bus in the Component Port box.

Note

MSB applies the platform port-naming convention when it generates the platform,

so the actual port name at the top level of the platform is

<instance_name>my_out_bus, where the <instance_name> is the name of the

component’s instance as entered in MSB.

6. To apply this port specification, select the Add button to update the GUI.

7. To add the other port specifications, you can do one of the following:

Click the Reset button and repeat the steps in this section for the

other port specifications.

Modify the editable boxes and select the Add button to add the other

port specifications.

Once you have done this, the External Ports tab should look like Figure 38,

completing the step of declaring the component’s external interface.

LatticeMico32 Hardware Developer User Guide

71

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying RTL Files

Figure 38: Specifying the External Interface Completed

& Import/Create Custom Component - New Component ﬂ
Component I MasteriSlave Ports External Ports |RTL Files I Parameters I Software I Software Files
—Parameters
Part Type | Component Port | Wyicith | Direction | Active | Connect To |
ClockPort CLK_| 1 input web_clk
ResetPort RST_| 1 input web_rst
Interrupt INTR_Cr 1 output High interrupt_sional
ExternalPort my_out_bus 16 output external_out_hus
ExternalPort my_in_Bus 9 input external_in_hus
ExternalPort my_in_wire 1 input external_in_wire
ExternalPort my_out_wire 1 output external_out_wvire
Delete |
—Port Attributes
Port Type: IExternaIPort j Component Port: Imy_out_wire
Width: [=] birection: [outpa =l
Active: I j Connect Ta: Iexternal_out_wire
Updlate | Al Reset |

DRC Save Cancel Reset Help

Specifying RTL Files

Once you have specified the general attributes for your custom component,
as well as the port connections to and from your custom component, you must
specify the HDL files that implement your custom component. The only
acceptable HDL type is Verilog, and the files must have a .v extension.

You specify the Verilog HDL files in the RTL Files tab of the Import/Create
Custom Component dialog box.

Figure 39 provides an overview of the steps required in this tab.

Currently the only HDL available in MSB is Verilog. Components written in
VHDL must have a Verilog black-box wrapper around them. The VHDL
component must be compiled to NGO format independently of MSB, using
Lattice Diamond, and placed in the working directory.

72 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying RTL Files

Figure 39: Specifying the RTL Files

& Import/Create Custom Component - New Component ﬂ

Component I MasteriSlave Ports I External Ports RTL Files |Parameters I Software I Software Files

Stepl: Specify top-level module
name of your custom component.

Step 2: Select RTL file.

A

top-level module name: I

—User RTL Files Source

RTL File: I Elrowse...‘l‘].

Import RTL Files |

Acd 4}—petete—1 Step 3: Click Add button.

—Component RTL Files
Directory: I

Current RTL Files |

Delete |

DRC | Save | Cancel | Reset | Help I

Table 6 lists the options available in the RTL Files tab of the Import/Create
Custom Component dialog box.

Table 6: RTL Files Tab Options
Option Description

Top-Level Module Name If the custom component is a Verilog component, this option specifies the top-
level module name of the custom component.

If the custom component is a VHDL component, you must create a Verilog black-
box definition of the VHDL custom component and specify the name of the
Verilog black-box module.

The GUI creates a wrapper that instantiates the top-level module of the Verilog
custom component or the Verilog black-box module for a VHDL custom
component according to the port specifications for the custom component
provided in the Master/Slave Ports and External Ports tabs and the parameters
specification provided in the Parameters tab.

For VHDL custom components, passing VHDL generics is not supported, since
the VHDL custom component flow relies on .ngo files. Refer to “Creating the
Verilog Wrapper for VHDL Designs” on page 87 for more information on
importing VHDL WISHBONE-compliant custom components.

RTL File This entry box enables you to enter a file name containing HDL code that is a
part of your component. Enter a path and module name directly or use the
Browse button to add HDL files interactively.

LatticeMico32 Hardware Developer User Guide 73

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

Table 6: RTL Files Tab Options (Continued)

Option
Add

Delete

Directory

Delete

DRC

Save

Cancel

Reset

Help

Description

Click the Add button to insert the file listed in the RTL File entry box to the list of
files displayed in the Import RTL Files table. Clicking Add does not update
the Component RTL Files group box. The Component RTL Files group
box is only populated when you edit an existing custom component, not
when you create a hew custom component.

Use this button to delete files from the Import RTL Files list. Highlight the file that
you wish to remove from the list and click Delete.

When a custom component is being edited, the Directory text box shows the path
to the .rtl files currently associated with the component. You cannot edit this field.

The Delete button in the Component RTL Files group box enables you to remove
files already associated with a custom component. Highlight the HDL file that you
want to remove and click Delete.

Performs a design-rule check of the new component.

Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“X” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Resets all values in all tabs in the dialog box.

Displays the help for the dialog box.

Specifying User-Configurable Parameters

One of the primary advantages in using an FPGA-based microprocessor and
custom components connected to that microprocessor is the ability to
reconfigure them. Synthesizable HDL code is invariably written so that it can
change its capabilities on the basis of a set of parameters assigned during
synthesis.

The custom component editor enables you to create a simple user interface
for assigning definitions and passed parameters to the component. You use
the Parameters tab to create this interface. The values entered into the user
interface enable you to:

Create Verilog definitions and parameters that control how the RTL is
synthesized.

Create C/C++ #define statements to provide information to the firmware
controlling the component.

74

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

RTL Parameters

You define the RTL parameters by selecting the parameter value in the Flags
drop-down box. The other controls in the Parameter Attributes group box
determine the properties of the parameter.

MSB uses the parameter in two ways:
It passes the parameter in the prolog to the Verilog module.

It stores the parameter as a “define in the soc/system_conf.v source file.

In the first method, the parameters are passed to a specific component
instance, so each instance can be configured independently.

In the second case, the “define is a global value, which is useful for
configuring every instance of a component, not just a single instance of a
component.

Writing code that uses the system_conf.v file to find parameters is not
recommended.

RTL Parameter Value Types

The parameters specified in the Parameters tab are made available to you for
configuration through a component configuration dialog box in MSB. You
enter or select the parameter’s value through this component configuration
dialog box. In this tab, you can also specify the display behavior for entering
the parameter’s value in the component configuration dialog box in MSB. You
declare these parameters for RTL usage by selecting the flag field as
“parameter.”

Table 7: RTL Parameter Value Types

Value Type Description Allowable Values RTL Translation Example
Define Conditional type def .PARAMETER(2)
undef .PARAMETER(0)

String Character string type Any printable characters .PARAMETER(“VALUE")
Integer Numeric type Any numeric value .PARAMETER(VALUE)
List Numeric type. Any numeric value .PARAMETER(VALUE)

The difference between Integer

and List is that List lets you

specify a predefined list of

values.
Frequency Platform frequency (passed by = MSB provides the platform .PARAMETER(FREQUENCY_I

MSB when generating a frequency value (for example, N_MHz)

platform) 25 MHz is passed as 25).

LatticeMico32 Hardware Developer User Guide 75

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

Predefined RTL Parameters

The following parameters are not passed to the custom component but are
required by MSB when generating the platform RTL:

Instance Name — Specifies the default instance name assigned by MSB.
You can only change the default instance name. You can change this
value when instantiating the component in a platform.

Base Address — Specifies the default base address assigned by MSB. Itis
overridden by MSB when the custom component is used in a platform if
this component is not locked by MSB. You can change this value when
you instantiate the component in a platform.

Size — Specifies the default address space that is assigned to the
component, in bytes. This parameter is used by MSB for address decode
generation when generating a platform. You can change this value when
you instantiate the component in a platform.

Address Lock — Specifies the default value for “lock,” as used in MSB. You
can change this value when you instantiate the component in a platform

Disable — Specifies the default value for the Disable check box in MSB.

Software Parameters

If your custom component has parameters meant for software use, you make
them available to the software by not declaring these parameters as
“parameter.” See Figure 41. Parameters used for RTL are also available for
software use.

For platform-specific managed-make projects, C/C++ SPE generates a
header file named system_conf.h, which enumerates the various parameters
and their value types. See Chapter 5 of the LatticeMico System Software
Developer User Guide for more information on the system_conf.h file.

Table 8 shows how the various value types are translated into this header file.

Table 8: Value Types for Added Parameters

Value Type Description Allowable Values RTL Translation Example
Define Conditional type def #define PARAMETER (1)
undef #define PARAMETER (0)
String Character string type Any printable characters #define PARAMETER “VALUE”
Integer Numeric type Any numeric value #define PARAMETER(VALUE)

76 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

Table 8: Value Types for Added Parameters

Value Type Description Allowable Values RTL Translation Example
List Numeric type. Any numeric value #define PARAMETER (VALUE)
The difference between integer
and List is that List lets you
specify a predefined list of
values.
Frequency Platform frequency (passed by MSB provides the platform #define CPU_FREQUENCY
MSB when generating a frequency value, and SPE (FREQUENCY_IN_HERTZ)
platform) translates it to

CPU_FREQUENCY macro (e.g.
25MHz is passed as 25000000)

Predefined Software Parameters

A single predefined software parameter, CharlODevice, enables C/C++ SPE
to determine if your component supports character file input and output
operations. The default value of this parameter is set to “undef.” If, however,
your component (for example, UART) supports character file input and output
operations, you can set the value of this parameter to “def.”

C/C++ SPE makes instances of this component available as standard input
and output device selections when creating a managed-make C/C++ project.

You cannot change this parameter’s value when instantiating the component
in a platform. It applies to all instances of the component in a platform. C/C++
SPE ignores this parameter and its value for components declared as
memory components. Refer to Chapter 3 and Chapter 4 of the LatticeMico
System Software Developer User Guide for more information on the file
support implementation for LatticeMico32.

GUI Presentation

The MSB perspective displays a configuration dialog box for your custom
component when you try to insert your component into a platform. This dialog
box enables you to modify the parameter values through a GUI interface. The
available GUI widgets for configuring parameters are:

Check — Enables you to select or deselect a parameter.
Radio — Enables you to select one of multiple parameters.
Text — Enables you to enter a value.

Combo — Enables you to select pre-determined values from a drop-down
menu.

Spinner — Enables you to select a value from a pre-determined range.

LatticeMico32 Hardware Developer User Guide 77

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

Table 9 shows the possible GUI widgets for the various value types.

Table 9: GUI Widgets

Value Type Allowable Widgets

Define Check, Radio

String Text

Integer Text, Spinner

List Combo

Frequency Although the Import/Create Custom

Component dialog box enables you to
specify a widget, MSB overrides and
automatically assigns a value to the
parameter declared as a Frequency type.

Adding RTL Parameters

Figure 40 shows the steps required for adding RTL parameters.

Figure 40: Steps Involved in Adding RTL Parameters

x
Componernt I MasteriSlave Ports I External Ports I RTL Files Parameters |Soﬂware I Software Files I
—Parameters
Mame | Text | Type | Default alue | Wiclget | Setting | Flag | Compiler Option | Standard 10
Instancehame Instance Mame String | instance_name | Text
BASE_ADDRESS Dase Address Integer 0x00000000 Text Step 1: Press Reset to reset all
SIZE Address Width | Integer | 32 Text — fle |dS
ADDRESS_LOCK Lock Address Define | undef b
DISABLE Dizable Define undef “ »
CharlODevice Define | undet input Step 2: Set Flags to parameter'
Step 3: Enter RTL parameter
name.
Step 4: Select parameter’s value
type.
Drelet .
(e | Step 5: Select GUI widget type.
—Parameter Attributes T StEp 6: Provide default value.
Parameter Mame: I Display Text: I < Step 7: Enter text to be dlsplayed
Walue Type: IDefine j Default Yalue: I | in Co_mponent Conflguratlon dlalog
box in MSB.
GLIWidget: | V=] | widaet Settings: | < Step 8: Provide widget settings,
Flage: | =] comer i | if widget is spinner or combo.
Standard 10 I j
Wplzte: | A Reset 4||
Step 9: Click Add button.
DRC Save Cancel Reset | Help I

78 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

Adding Non-RTL Parameters

Figure 41 shows the steps required for adding non-RTL parameters.

Figure 41: Steps Involved in Adding Non-RTL Parameters

x
Componernt I MasteriSlave Ports I External Ports I RTL Files Parameters |Soﬂware I Software Files I
—Parameters
Mame | Text | Type | Default alue | Wiclget | Setting | Flag | Compiler Option | Standard 10
Instancehame Instance Mame String | instance_name | Text
BASE_ADDRESS Base Address Integer 0x00000000 Text
SIE Adcress Width | Integer | 32 Text Step 1: Press Reset to reset all
ADDRESS_LOCK Lock Address Define | undef _f |d
DISABLE Dizable Define undef lelas.
CharlODevice Define | undef input
Step 2: Deselect Flags.
Step 3: Enter parameter name.
Step 4: Select parameter’s value
type.
Delete | Step 5: Select GUI widget type.
+ Step 6: Provide default value.
—Parameter Attributes .
Parameter Mame: I Dizplay Text: I < Step 72 Enter text t.O be dlsplayed
in component configuration dialog
“alue Type: IDefine j Default Walue: I < bOX in MSB
cUlwidget: | V=] widget ettings: | < Step 8: Provide widget settings,
g | =] comperoptons | if widget is spinner or combo.
Standard |0 I j
Update | Addl Reset ‘:II
Step 9: Click Add button.
DRC | Save | Cancel | Reset | Help I

Table 10 lists the options available in the Parameters tab of the Import/Create
Custom Component dialog box

Table 10: Parameters Tab Options
Option Description

Parameter Name Specifies the name of the parameter to be passed to the Verilog source code.
When using Define types, be sure to make the name globally unique.

Display Text Specifies the display text that will be placed adjacent to the specific control. Each
component, when added to the platform, brings up an individualized dialog box.
Each element in the dialog box has descriptive text placed adjacent to a control.

Value Type Specifies the value type. Choose Define, String, Integer, List, or Frequency from
the drop-down menu.

Default Value Specifies how each parameter or “define is initialized when a component is
added to the platform. This field is free-form, so you must be careful when
entering default values. Any type mismatch or incorrect data entered here will
impact the synthesis process later.

LatticeMico32 Hardware Developer User Guide 79

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

Table 10: Parameters Tab Options (Continued)

Option Description

GUI Widget Specifies the GUI widget.

If the value type is Define, choose <blank>, Radio, or Check from the drop-
down menu.

If the value type is String, choose <blank> or Text from the drop-down menu.
If the value type is Integer, choose Text or Spinner from the drop-down menu.
If the value type is List, choose <blank> or Combo from the drop-down menu.

If the value type is Frequency, choose <blank> or Text from the drop-down
menu.

Widget Setting Specifies the GUI widget setting. If the GUI widget is Combo, enter comma-
separated list values. If GUI widget is Spinner, enter minimum and maximum
values as a hyphen-separated pair.

Flags Choose <blank>, parameter, or compiler from the drop-down menu.
The parameter flag specifies that it is a Verilog parameter.

The compiler flag specifies that this is a compiler option to be used in C/C++

SPE.
Complier Options If compiler flag is selected, specify flag or option.
Standard 1/O This option is only available for CharlODevice. Choose <blank>, input, output, or

inout from the drop-down menu.

Update Updates changes.

Add Adds new parameter.

Reset Clears the Parameters tab options.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a

message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “X” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“X” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Specifying Software Elements

There are two main software elements that you can optionally specify for a
custom component:

80 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

Initialization function name

A component instance-specific information structure

You can specify these elements through the Software tab of the Import/Create
Custom Component dialog box.

Chapter 5 of the LatticeMico System Software Developer User Guide contains
information that you may find helpful before proceeding with this section.

C/C++ SPE uses the information provided through this tab for managed-make
projects or for platform library projects when generating code based on a
platform containing this component.

Your software may need to access instance-specific parameters that were
configured when you created the platform or instance-specific private data.
The C/C++ SPE managed-make process facilitates this process by creating a
DDStructs.c source file that contains instance-specific populated data
structures and generates the structure definition in the DDStructs.h file by
using the C structure definition presented in the Software tab.

The format of the C structure generated in DDStructs.h is shown in Figure 42:

Figure 42: Format of C Structure

typedef struct st_STRUCTURE_NAME {
DATA_TYPE ELEMENT_NAME;
}STRUCTURE_NAME;

You can additionally specify elements of the structure to be initialized with the
values configured for parameters when you generate the platform.

The initialization function is invoked by LatticeDDInit as part of the boot
process for managed-make projects before calling the “int main (void)” main
entry function. You must implement the initialization function. The
automatically generated code invokes the initialization function for each
instance of the component. The Software tab provides information on the
function name that is used when you generate the automatically generated
code.

The prototype of the function is as follows:

void FUNCTION_NAME(st_STRUCTURE_NAME *);
Figure 43 shows the steps required for specifying software elements.

The data type for structure members determines if they can be marked for
initialization by the C/C++ SPE managed-make build process. In Figure 43,
you select the initial value by selecting an appropriate parameter available in
the Value drop-down menu (step 3d). The parameter value types define which

LatticeMico32 Hardware Developer User Guide 81

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Specifying Software Elements

Figure 43: Specifying Software Elements

& Import/Create Custom Component - New Component ﬂ
Componernt I MasteriSlave Ports I External Ports I RTL Files I Parameters Software |Soﬂware File=
—DDStruct Seftings
Initialization Function kame: I <
Component Information Structure hame: I <
typedef Struct st _t{
Data Type | Member Mame | Walue | Iz Array |
Tt
Delete |
—DDStruct Atributes
Data Type I f-cict 4 Array K
Member Mame I 'alue Iunin'rtialized ;‘I"
Update | add < l Reset |

Save | Cancel | Reset | Help I

Step 1: Enter function name.

Step 2: Enter structure name.

Step 3: Add structure members.

a: Select a data type or enter a
data-type name.
b: Enter member name.

c: Select box if an array.

d: Select parameter for initial
value or leave it uninitialized.
Step 4: Click Add button.

parameters are listed in the Value drop-down menu on the basis of the
structure member’s data type.

Table 11 shows the data types that are available for elements of the structure
and the parameters available for initializing members of an element if you
choose to initialize the element during platform creation.

Table 11: Structure Element Data Types

Data Type Can Element Be Initialized Parameter Value Type Notes
During Platform
Creation?
void * No N/A
int * No N/A
const char * Yes String, List Values are enclosed in
quotation marks.
char * Yes String, List Values are enclosed in
quotation marks.
unsigned char * Yes String, List Values are enclosed in
quotation marks.
int Yes Integer, List, Define List must be a numeric list.
82 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

Table 11: Structure Element Data Types

Data Type Can Element Be Initialized Parameter Value Type Notes

During Platform

Creation?
unsigned int Yes Integer, List, Define List must be a numeric list.
char Yes Integer, List, Define Values are not enclosed in

quotation marks and must
be valid numeric values.

unsigned char Yes Integer, List, Define Values are not enclosed in
quotation marks and must
be valid numeric values.

User-defined Yes Any You are responsible for
choosing the right
parameter based on the
parameter’s value type.

Note

If you select the Array box for any member, you must select a “value” parameter. This
selected parameter’s value is used to determine the array size. C/C++ SPE cannot
initialize the array contents, but you can do so in your component’s initialization
function.

If your component needs to know the interrupt line it is connected to in a platform, you
can add an “int” or an “unsigned int” data member and declare its “value” as Interrupt.
C/C++ SPE automatically initializes this data member’s value to the interrupt line
assigned by MSB in the platform when performing a managed build.

Table 12 lists the options available in the Software tab of the Import/Create
Custom Component dialog box.

Table 12: Software Tab Options
Option Description
Initialization Function Name Specifies the user-defined initialization function name.

Component Information Structure Specifies the name of the DDStruct structure.

Name

Data Type Specifies the C data type of the DDStruct element being added. The drop-down
menu enables you to specify the following C data types: void *, unsigned int, int,
int *, const char, unsigned char, unsigned char *, char, or char *.

Member Name Specifies the name of the DDStruct element being added.

Value Available values in the drop-down menu depend on the chosen data type.

Is Array Checks to see if the member name is an array.

Delete Deletes the highlighted DDStruct setting from the list.

Update Allows an element already added to the DDStruct to be modified. Highlight the

element, make any desired changes to the element, and the click Update to
activate the changes.

LatticeMico32 Hardware Developer User Guide 83

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Adding Software Files to Custom Components

Table 12: Software Tab Options (Continued)

Option Description

Add Adds a new element to the DDStruct structure with the values active in the
DDStruct Attributes group box.

Reset Clears the DDStruct Attributes group box controls.
DRC Performs a design-rule check of the new component.
Save Adds the custom component to LatticeMico32. If the design-rule check fails, a

message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“X” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Adding Software Files to Custom Components

If your custom component provides software support, such as the component
initialization function noted in the previous section, you can optionally identify
these files in the Software Files tab of the Import/Create Custom Component
dialog box.

The Software Files tab enables you to import C software files that pertain to
your custom component. You can specify the file to be part of a managed
build.

Figure 44 shows the steps required for adding software support files.

84 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Adding Software Files to Custom Components

Figure 44: Adding Software Support Files

& Import/Create Custom Component - New Component

X
Component I MasteriSlave Ports I External Ports I RTL Files I Parameters I Software Software Files
—Uszer Software Files Source
Software Fils: | Elrowse.."j Step 1: Select file.
Impart Software Files | Software File Types
— Step 2: Highlight the file in the
Import Software Files list.
Al f—peete— Step 3:Select File Type and
click Update.
—Current Software Files
Directory: I
Currert Software Files | File Types
Delete |
—File Type
I Application :I.‘l' Hietet Il
DRC | Save | Cancel | Reset | Help I

The file types that you can select by using the Browse button and their
extensions are shown in Table 13.

Table 13: File Extensions and File Types of Imported C Software Files

File Extension
.c,.C

.cpp, .CPP
5,.S

.h, H

File Type

C language source file

C++ language source file
Assembly language source file

C/C++ language header file

For the managed build framework, the software files are classified as follows:

Application file type — These source files are compiled and linked as part
of the application build process instead of being compiled during the
platform library build process and becoming part of the platform library

archive.

Platform library file type — These source files are compiled during the
platform library build process and become part of the platform library
archive. The functions in these source-code files can be overridden by

LatticeMico32 Hardware Developer User Guide

85

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Adding Software Files to Custom Components

implementing them in source files that are compiled as part of the
application build step.

Structure header file type — These header files contain declarations that
your device driver structure may reference. These files are included as
preprocessor “include” statements in the automatically generated
DDsStructs.h header file. See Chapter 5 of the LatticeMico System
Software Developer User Guide for information on the DDStructs.h
header file.

Header file type — These files are header files that are needed by the
component source files but are not required by your device driver
structure.

The application file type and platform library file type govern the composition
of the component makefile.

See Chapter 5 of the LatticeMico System Software Developer User’s Guide
for more information on the managed-build process.

Imported files do not become part of the component until you click the OK
button and save the component without error. The Current Software Files
portion of the Software Files tab only displays software files if an existing
custom component is being edited.

Table 14 lists the options available in the Software Files tab of the Import/
Create Custom Component dialog box.

Table 14: Software Files Tab Options

Option Description

Software File Enables you to browse to the software driver files. Copies the selected file into
the component folder.

Add Adds the file currently listed in the Software File entry box to the table of
Imported Files.

Delete Deletes the highlighted entry in the Import Software Files table.

Directory Displays the folder where the source code files associated with the component
being edited reside.

Delete Deletes a source file already associated with the component being edited.

File Type Specifies the file type. Choose the following from the drop-down menu:
Application, Platform Library, Structure Header, Header.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “X” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“X” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

86 LatticeMico32 Hardware Developer User Guide

CREATING CuUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Applying Changes

Table 14: Software Files Tab Options (Continued)

Option

Cancel

Reset

Help

Description

Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Resets all values in all tabs in the dialog box.

Displays the help for the dialog box.

Note

Older versions of LatticeMico System Builder do not provide a member element of the
type DeviceReg_t in the DDStruct C structure by default. You can add it as an element
of user-defined data type. The DDStruct Attributes to be specified, as shown in

Figure 43, are as follows:

Data Type: DeviceReg_t
Member Name: lookupReg

Value: Uninitialized

Applying Changes

To apply the changes that you have made in the tabs of the Import/Create
Custom Component dialog box, select the OK button at the bottom of the
dialog box. LatticeMico System now performs design-rule checks. If it finds no
errors, the dialog box will close and the custom component will appear in the
MSB perspective.

If you need to re-edit the added custom component, select that component
and open the Import/Create Custom Component dialog box.

Creating the Verilog Wrapper for VHDL Designs

If you are creating custom components for VHDL designs, you must create a
Verilog wrapper before you proceed with creating a new custom component.

This section explains how to create and use new custom components in the
flow for VHDL users.

To create a Verilog wrapper:

1. Create a component definition in VHDL that is LatticeMico32-compliant,
for example, using WISHBONE. Refer to the section “WISHBONE
Interconnect Architecture” in the LatticeMico32 Processor Reference
Manual for information.

2. Create a completely new Diamond project that will be used just for
processing this component. This project is completely distinct from the
project that will eventually use this component.

LatticeMico32 Hardware Developer User Guide 87

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Creating the Verilog Wrapper for VHDL Designs

Import the VHDL source code into the project. During synthesis, turn off
I/0 insertion by following these steps:

a. Select the File List tab in Diamond and double-click the name of the
currently active strategy, which is displayed in bold type.

b. Inthe Strategies dialog box, expand the Synthesis folder and select
the synthesis tool you will be using.

c. Inthe synthesis pane on the right, set Disable IO Insertion to True and
click OK.

d. In Diamond, select the Process tab , and double-click Translate
Design.

Diamond now generates the <platform>.ngo file.

4. Create a black-box declaration of the component in Verilog.

This declaration represents this component in any platform generated by
MSB that uses this component. It is combined with the .ngo file previously
created (that holds the actual functionality of the component) after
synthesis in the Translate Design process. If there are any bidirectional I/
Os in the custom VHDL component, you must declare them as black-box
pads. Lattice Semiconductor FPGAs only have tristate buffers in their I/O
cells. In a single-language implementation, the synthesis tool can
reconcile multiple tristate 1/O requests to a single tristate buffer. In the
dual-language implementation, the Verilog wrapper has no visibility into
the VHDL .ngo black-box element, preventing any reconciliation of
multiple tristate buffers. The black-box pad declaration directs the
synthesis process not to create a second set of tristate buffers because
tristate buffers have already been created for these black-box ports.

Figure 45 is an example Verilog black-box definition of a VHDL custom
component illustrating the black_box_pad declaration in the Verilog black-
box definition for the VHDL custom component's inout port. This Verilog
black-box definition is the RTL input file for the custom component GUI.

Note

The Verilog module name must match the .ngo file name in order for Diamond to
correctly link the .ngo contents to the Verilog wrapper.

Perform the user-defined component flow explained at the beginning of
this chapter to bring a user-defined Verilog component into MSB. The
Verilog component RTL file entry is the Verilog black-box file that you
created in step 4.

If there are tristate (bidirectional) 1/Os in the custom VHDL component, you
must also add the black_box_pad_pin attribute of these ports to the VHDL
wrapper files’ component declaration section. The black_box_pad_pin
attribute is a synthesis directive that specifies pins on a user-defined black-
box component as I/O pads that are visible to the environment outside of the
black box. Because the 1/O primitives are added to the tristate (bidirectional)
I/Os in the .ngo file, adding the black_box_pad_pin attribute to these 1/Os
enables the top-level VHDL RTL code to recognize them.

88

LatticeMico32 Hardware Developer User Guide

CREATING CuSTOM COMPONENTS IN LATTICEMICO SYSTEM : Creating the Verilog Wrapper for VHDL Designs

Figure 45: Verilog Black-Box Definition of a VHDL Custom Component

module vhdl_custom (
// wishbone slave signals
input[31:0] ADR_I,
input[31:0] DAT_I,
input WE_I,
input[3:0] SEL_I,
input STB_I,
input CYC_I,
input LOCK_I,
input[2:0] CTI_I,
input[1:0] BTE_I,
output[31:0] DAT_O,
output ACK_O,

// external signals

output [30:0] custom_ext,

inout [30:0] custom_ext_io,

input CLK_I,

input RST_I,

output INTR_O)/*synthesis syn_black box
black _box_pad_pin = “custom_ext_io[30:0]" */;
endmodule

Pointing to the Correct .ngo File

You must enable the Translate Design step to use the correct .ngo file of the
VHDL-based component that was created in an earlier step.

To point to the correct .ngo file:

1. Copy the .ngo file to the \soc directory, located in the LatticeMico32
platform project directory.

2. In Diamond, choose Project > Property Pages.

3. Inthe Macro Path box of the Project Properties dialog box, provide the
path to the LatticeMico32 Platform project's \soc directory that contains
the .ngo file copied in step 1. You can provide an absolute or relative path.
For example, an absolute path might be

c:\ispTOOLS<version>\examples\VHDL_Test\LM32_Platform\soc.

A relative path would be a path relative to the Diamond project directory.
For example, if the LatticeMico32 platform project directory is contained in
the Diamond project, the relative path might be

ALM32_platform\soc

If the Diamond project is contained in the LatticeMico32 platform project
directory, the relative path would be simply

\soc

LatticeMico32 Hardware Developer User Guide 89

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Making Custom Components Available in MSB

If your directory structure is not one of these, use your best guess to
provide either the relative path or absolute path and see if Diamond issues
an error message saying that it cannot expand the .ngo definition.

Making Custom Components Available in MSB

LatticeMico System performs the following steps automatically through the
custom component dialog box to make your custom component available in
MSB. You do not have to take any action. This section is for information only.

Integrating Custom Component’s RTL
Design Files

The key step in connecting your custom component in a platform is to tie the
WISHBONE interface signals (master or slave) to the automatically generated
arbitration logic. The platform generator imposes internal naming
conventions, so a Verilog wrapper is created to implicitly enforce the internal
naming conventions without informing you. The automatically generated
Verilog wrapper instantiates your custom component, allowing MSB to
connect the custom component to the rest of the platform.

Saving the Settings

All the settings specified in the Import/Create Custom Component dialog box
are saved in a component description file in XML format. Also, the RTL and
the software files provided to the Import/Create Custom Component dialog
box are copied to the component creation directory.

Directory Structure

Figure 46 shows a typical directory and file structure that LatticeMico System
generates for a LatticeMico32 component.

The following is a brief description of the folders and files contained in a
typical custom component folder:

<component_name> folder — Contains the following files and directories:

<component_name>.xml — Contains the XML code required to attach
your component to the LatticeMico32 processor.

document folder — Contains documentation file or files. At a minimum,
this folder contains the <component_name>.htm file, which is an
HTML file that is displayed in the Component Help view in the MSB
main window.

drivers folder — Contains the peripheral.mk file, which is used to direct
C/C++ System Programming Environment (SPE) to the C/assembly

90

LatticeMico32 Hardware Developer User Guide

CREATING CusTOM COMPONENTS IN LATTICEMICO SYSTEM : Making Custom Components Available in MSB

Figure 46: Typical Component Folder and File Structure

4 <component_name> < Component folder
—D <component_name>.xml < Component description file
L[] document < “document” subfolder
LD <component_name>.htm < HTML file
— [drivers < “drivers” subfolder
D peripheral.mk < peripheral.mk file
] device “device” subfolder

- D <component_name>.c

<4——— Device driver files
- D <component_name>.h

— D <component_name>service.c
<+——— System service files

— D <component_name>service.h

L0 1 < “rtl” subfolder
L] verilog <« “verilog” subfolder
D <file>.v
< Verilog component RTL files
D <file>.v

driver files containing user-defined application programming interfaces
(APIs).

Also inside the drivers folder are two subdirectories:

Device driver files (<component_name>.c and
<component_name>.h). The device driver files define the API
function calls available to the C/C++ SPE developer. The functions
are user-defined according to the specific needs of the custom
component.

System service driver files (<component_name>Service.c and
<component_name>Service.h). The service files must be
implemented to support the LatticeMico32 initialization process.
Each component must define a basic set of service functions that
have been defined by the LatticeMico32 boot process.

rtl folder — Contains the verilog subfolder.

verilog folder — Contains the component Verilog RTL files.

LatticeMico32 Hardware Developer User Guide 91

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Custom Component Example

The example in this section shows you how to add a custom component to
the MSB graphical user interface so that it is available for use in other
platforms.

This example demonstrates how to:
Make the created component available in MSB.

Provide a component customization dialog box for configuring RTL
instantiation parameters.

Add software support files and generate instance-specific data structures.

Sample Custom Component

This example includes a custom component that uses a Verilog RTL
implementation file and software driver files as sources, typical sources for
importing a custom component.

Verilog RTL Implementation
The Verilog (.v) source file for this example is shown in Figure 47.

92 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 47: Verilog (.v) File

“timescale 1ns / 1ps
L1111 1777777777777777777777777/7777777/777777/77777//7/777////777////777///777

//

// A simple register device with three registers:

7

//

L1117 17777777777777777777777//777777//777777//77777///7777/7/7///777//////77/7//777
module wb_reg_dev

#(

~ v

parameter CLK MHZ = 25,
parameter reg_08 int_val = 32"h1234abcd

//
// WISHBONE clock/reset signals
//

wb_reset,//--——————————————— WISHBONE reset
wb clk,//--—————-—— WISHBONE clock

//

// WISHBONE interface signals below.

// - This component does not support burst transfers.

//
/)
wb_adr,//--—————-———————————— Address from master
wb_master_data,//---———--——- Data from master

wb_cyc,//-——————-—-— - WISHBONE cycle-valid qualifier
wb_stb,//--—————— - WISHBONE transfer qualifier
wb_sel,//-——--—-—-——-———————— Data byte-lane selection

wb we,//-——————————— Write-enable

wb_slave data,//---—--——-——-—- Data from slave
wb_ack,//-——---—--——————————— Data-valid qualifier from slave
wb_err,//-—————-———— Error qualifier from slave (hever asserted)
wb rty,//-—————— Retry qualifier from slave (hever asserted)
/)
//

// Interrupt line (active-high) that will be connected to the
// processor. Not used but for demonstrating custom component
// connectivity.

//

LatticeMico32 Hardware Developer User Guide 93

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 47: Verilog (.v) File (Continued)
//

//
// External pins exposed by this component
//

E

input wb_reset;

input wb_clk;

input [31:0] wb_adr;

input [31:0] wb_master_data;
input wb_cyc;

input wb_stb;

input [3:0] wb_sel;

input wb_we;

output [31:0] wb_slave data;
output wb_ack;

output wb_err;

output wb_rty;

output wb_intr;

output [7:0] out_pins;

//

// Registers

//

// reg_00 : read/write 32-bit register, general purpose

//

// reg_04 : read-only 32-bit register that contains the WISHBONE

// platform clock frequency (MHz)

//

// reg_08 : read-only register that contains a constant specified when
// instantiating this component in a platform

//
/)
reg [31:0] reg 00;//--——------——-———-————————— 32-bits, RW, offset O
reg [31:0] reg 04;//--——------""""""-"-——-————— 32-bits, RW, offset 4
//reg_08 constant —--—————————————————————— 32-bits, RO, offset 8
reg write ack;//--~—————-——— write-ack
/My
//

// Wires
//
/Yy
wire reg_00O_sel;//-————-—----"-"""""""""""""--—— reg_00 selected
wire reg_04_sel;//————-"—--""-"""""""""""""""-— reg_04 selected
wire reg 08 sel;//--——\--——-——————— reg_08 selected
wire read_ack;//----——————————————— - ——— read-ack
wire [31:0] read_data;//----—————--—————————-— reg data mux (reads)
//

// assign register-select signals:
// since there are only two registers, use bit-2 of the
// address bus since addressing is word addressing for LatticeMico32
//

94 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 47: Verilog (.v) File (Continued)

assign reg_00_sel = ((wb_stb == 1"bl) && (wb_cyc == 1"bl)
&& (wb_adr[3:2] == 2*b00)) ? 1"b1l : 17"bO;
assign reg_04_sel = ((wb_stb == 1"bl) && (wb_cyc == 1"bl)
&& (wb_adr[3:2] == 2"b01)) ? 1"b1l : 17"bO;
assign reg_08_sel = ((wb_stb == 1"b1l) && (wb_cyc == 1"b1)
&& (wb_adr[3:2] == 2"b10)) ? 1"bl : 1°bO;
//
// assign read ack: unregistered as data is presented
// immediately. Can make it registered to improve timing
//
assign read_ack = ((wb_stb == 1"b1) && (wb_cyc == 1"bl)
&& (wb_we == 1"b0)) ? 1"b1:1"bO;
//
// assign asynchronous data-output mux
//
assign read_data = (reg_00_sel == 1"b1)? reg_00 :
(reg_04_sel == 1"b1)? reg_04 :
(reg_08_sel == 1"b1)? reg_08_int_val

32"hdeadbeef;
//
// assign write-ack: registered
//

always @(posedge wb_clk or posedge wb_reset)
if (wb_reset) begin
write_ack <= 0;
end
else begin
if((wb_stb == 1"b1) && (wb_cyc == 1"bl) &&
(wb_we == 1"b1) && (write_ack == 1"b0)) begin
write_ack <= 1"b1;
end
else begin
write_ack <= 1"b0;

end
end
//
// register_00 write process: supports byte-writes
//

always @(posedge wb_clk or posedge wb_reset)
if (wb_reset) begin
reg_00 <= 32"b0;
end
else begin
if ((reg_00_sel == 1"b1) && (wb_we == 1%bl) &&
(write_ack == 1"b0)) begin
if(wb_sel[0] == 1"b1) begin
reg_00[7:0] <= wb_master_data[7:0];
end
if(wb_sel[1] == 1%b1) begin
reg_00[15:8] <= wb_master_data[15:8];
end
if(wb_sel[2] == 1"b1l) begin
reg_00[23:16] <= wb_master_data[23:16];
end

LatticeMico32 Hardware Developer User Guide 95

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 47: Verilog (.v) File (Continued)

if(wb_sel[3] == 1"b1) begin
reg_00[31:24] <= wb_master_data[31:24];
end
end
end
//
// register_04 write process: supports byte-writes
//
function integer i_clk mhz;
input integer clk _mhz;
begin
i_clk_mhz = clk_mhz;
end
endfunction // i_clk _mhz

parameter CLK_MHZ_ INT_VALUE = i_clk_mhz(CLK_MHZ);

always @(posedge wb_clk or posedge wb_reset)
if (wb_reset) begin
reg_04 <= CLK_MHZ_INT_VALUE;
end
else begin
if ((reg_04_sel == 1"bl) && (wb_we == 1"bl) &&
(write_ack == 1"b0)) begin
if(wb_sel[0] == 1%b1) begin
reg_04[7:0] <= wb_master_data[7:0];
end
if(wb_sel[1] == 1"b1l) begin
reg_04[15:8] <= wb_master_data[15:8];
end
if(wb_sel[2] == 1"b1) begin
reg_04[23:16] <= wb_master_data[23:16];
end
if(wb_sel[3] == 1"b1l) begin
reg_04[31:24] <= wb_master_data[31:24];

end
end
end

[/
//

// MODULE OUTPUTS

//

[———— e

// assign component ack

assign wb_ack = read_ack | write_ack;
// assign component data

assign wb_slave_data = read_data;

// unused rty/err

assign wb_rty = 1"b0;

assign wb_err = 1"b0;

// unused interrupt (active-high)
assign wb_intr = 17b0;

assign out_pins = reg_00[7:0];

endmodule

96 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Software Source Files

Reg_Comp.c File The Reg_Comp.c file, shown in Figure 48, implements
the software driver for the custom component.

Figure 48: Reg_Comp.c File
#include "Reg_Comp.h"

/* device initialization function */
void init_reg_device(struct st_reg_device * ctx)

{
/* simply copy initialization data for reg_08
* provided in the context structure to register-00 */
REG_DEV_REGISTER(ctx->b_addr,0) =
ctx->reg_08_value;

return;

Reg_Comp.h File The Reg_Comp.h file, shown in Figure 49, is the header
file for the software driver.

Figure 49: Reg_Comp.h File

#ifndef REG_COMP_HEADER FILE_
#define REG_COMP_HEADER FILE_

#include "DDStructs.h"

#ifdef _ cplusplus
extern "C"{
#endif /* _ _cplusplus */

/* device initialization function */
void init_reg_device(struct st_reg_device * ctx);

/* macro for reading/writing registers */
#define REG_DEV_REGISTER(BASE,OFFSET) \
*((volatile unsigned int *)(BASE + OFFSET))

#ifdef _ cplusplus

}
#endif /* _ _cplusplus */

#endif//_REG_COMP_HEADER_FILE_

LatticeMico32 Hardware Developer User Guide 97

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Custom Component Example

Functional Description

The sample custom component is a WISHBONE slave component containing
the three registers shown in Table 16 on page 99. These three registers are
general-purpose read/write registers. The lowest byte of register reg_00 is
made available as external pins of the component.

The port interface of the custom component in this example is shown
diagrammatically in Figure 50. The Verilog source code for this component is
shown in “Verilog RTL Implementation” on page 92.

Figure 50: Component's Port Diagram

wh_reset

wb_clk

wb_cyc

wb_stb

whb_we

whb_adr

wb_master_data

| wh_sel

whb_reset
wb_clk
wb_cyc
wb_stb

wb_we

wb_ack [wback >
wb_err [wber >
oty ETED
wb_intr EXED

wb_adr(31:0) wb_slave_data(31:0) El—{ whb_slave_data

wb_master_data(31:0)

wb_sel(3:0)

out_pins(7:0) out_pins b

Table 15 lists the input and output signals for the example component.

Table 15: Input/Output Signals in the Example Custom Component

Port Name Direction Width (in Bits) Description

wb_reset Input 1 WISHBONE reset signal

wb_clk Input 1 WISHBONE clock signal

wb_cyc Input 1 WISHBONE cycle qualifier signal
wb_stb Input 1 WISHBONE strobe signal
wb_we Input 1 WISHBONE write-enable signal
wb_adr Input 32 WISHBONE address
wb_master_data Input 32 WISHBONE data from master
wb_sel Input 4 WISHBONE byte-select signal
wb_ack Output 1 WISHBONE ack signal

wb_err Output 1 WISHBONE error signal

98 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Table 15: Input/Output Signals in the Example Custom Component

wb_rty Output 1
wb_intr Output 1
wb_slave_data Output 32
out_pins Output 8

WISHBONE retry signal
Interrupt line to the processor
WISHBONE data from slave

External pins; contains value of the lowest byte
of reg_00

The example custom component includes the three 32-bit registers shown in

Table 16.

Table 16: Registers in the Example Custom Component

Byte Offset Register Name Reset Value
0x00 reg_00 0x00000000
0x04 reg_04 CLK_MHZ
0x08 reg_08

Description
General read/write register

General read/write register; power-up value is set to
the clock frequency specified as an RTL parameter on
instantiation.

General read/write register; power-up value is set to
the constant specified as an RTL parameter on
instantiation.

LatticeMico32 Hardware Developer User Guide

99

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Software Support

For illustrative purposes, the example component’s initialization function must
set the reg_00 register to the value that was used to initialize the reg_08
register in the RTL. At run time, you can read this value from the reg_00
register and compare it to the RTL-initialized value in the reg_08 register.
Additionally, you can also read the platform frequency for which the platform
was configured in the reg_04 register.

The initialization function must be able to initialize all the instances in a
platform. This initialization routine, init_reg_device, is listed in the Reg_Dev.c
source file. It relies on the presence of the data structure shown in Figure 51.:

Figure 51: Data Structure for Initialization

typedef struct st_reg_device {
unsigned int reg_08 value;
unsigned int b_addr;

} reg_device;

This data structure must be initialized according to the instance’s
configuration in MSB. The data structure contains a member, b_addr, that
corresponds to the component’s base address, which is assigned by MSB. It
also contains a member, reg_08_ value, which must contain the 32-bit value
used for initializing the reg_08 register in the RTL in MSB. This example
illustrates how to specify this data structure so that the SPE managed-build
process initializes and instantiates the data structure according to the
instances in the platform.

While simple, the sample custom component contains enough useful features
to illustrate the key steps needed to import it into MSB:

WISHBONE slave interface

External pins

INterrupt signal

RTL parameter initialization

Software support

Adding the Custom Component

In this section, you will add the example custom component to the MSB
graphical user interface.

It is assumed that the sources are located in the C:\Demo\MyComponent\
folder, as shown in Figure 52.

The intended destination repository for the custom component is
C:\Demo\MSBComponents.

100

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 52: Source Directory

= = 2112 (C:)
= [5) Demo
hi'l MyCompanent
wh_req_dewv.v
ﬂ Reg_Comp.h
ﬂ Reg_Comp.c

To add a custom component to MSB:

1. Select the Import/Create Custom Component button, as shown in
Figure 53, to open the Import/Create Custom Component graphical user
interface.

Figure 53: Opening the Import/Create Custom Component Graphical User Interface

& MSB - Eclipse Platform
File Edit Mavigate Project Window Help

L=<j T T |_J |g

| Emse F@c/c++ ¥ Debug
@)Available Components &3 =0 =0
1 ®E 3%
=|-{nt Memory (0/8) [Import/Create custom component
& Async SRAM (3.0)
ﬁ Parallel Flash (3.0)
$ SPIFlash ROM (3.1)
S DDR2 Controller {(v6.4)
DDR SDRAM Controller (vé.4)
g DDR. SDRAM Controller (vé.5)
ﬁ On-Chip Memory (3.1)
& SDRAM Controller (3.1)
-1k 10 (0/8)
GPIO (3.0)
% OPENCORES 12C Master (3.0)
sPI(3)
ﬁ Timer (3.0)
g TriSpeed_MAC (v2.5)
UART (3.1)
oma (3.0)
§ PCI_Target_33 (v6.0)
=-{nt cPU (0/1)
LatticeMico32 (3.1)

wb_sdr_ctrl 3.1

SDRAM Caontraller 2 = O|(E console 52 ™ =0

A console is not available.

=
L

Type | Component | Message

o -

2. Enter the component information, as shown in Figure 54.

Warning

The display name should not be the same as that of any of the design RTL files. It
also cannot be the same as the name of the top module file.

LatticeMico32 Hardware Developer User Guide 101

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Custom Component Example

Figure 54: Specifying the Component’s General Information

& Import/Create Custom Component - Reg_Comp rz|
Component lMasber,.E\ave Ports] External Ports] RTL Files] Parameters] Software] Software Files]
¥ Create Mew Component % 1) Select "Create New Companent”
" Open Component XML
New Component Name: |REg_CUmp - 2} Enter component name "Reg_Comp”
| 3) Enter directory path for storing the compaonent
New Component Directory: |C:\,Dem0\,|‘~‘ISBCDmponenis -+ + that will be created by this GUI
4) Enter name that will be displayed within the MSB GUI
Component Properties
Display Mame: |Reg_C0mp Version: | 1.0 & 5) Enter version number
Type: |IO -+ _; ArcEss " _; - 6) Select component-type (/0 for this example)
HTML Help: | Browse...
C:\Demo\MSBComponents'\Reg_Comp
DRC | Save | Cancel | Reset | Help |
3. Specify the WISHBONE slave port signals for the component, as shown in
Figure 55.
4. Specify the component’s WISHBONE clock signal, as shown in Figure 56.
5. Specify the component’s WISHBONE reset signal, as shown in Figure 57.
6. Optionally, specify the component’s interrupt signal information, as shown
in Figure 58. If your component does not have an interrupt line, you do not
need to perform this step. Since the example component has an interrupt
line, you must specify its properties.
7. Specify the component’s external ports, as shown in Figure 59.
8. Specify the component’s RTL files, as shown in Figure 60.
9. Specify the component’s RTL parameters, as shown in Figure 61.

102

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Custom Component Example

Figure 55: Specifying the WISHBONE Slave Port Signals for the Component

Master [Slave Ports

mponent - Reg_Comp

Component Master/Slave Ports]Exhemal Ports] RTL Files] Parameters] Software] Software Files]

input[31:0] wb_ADR_I
input wb_WE_I

input wb_STB_I

input wb_LOCK_I

input[1:0] wb_BTE_I

[wpacr —
[wbowe
[wbsto
—
—

Type | Display Name [Prefix [AbR [DAT [we [se. [sm |oc [wock|[clr®
SlavePort port_a wh wb_adr wb_master_data wb_we wb_sel wb_stb wh_cyc
|
< I 3
Delete
Port Attributes = -
|

Type SlavePort ﬂ Display Mame |p0rt_a Prefix |wb - +

input[31:0] wb_DAT_I
input[3:0] wb_SEL_I
input wb_CYC_I
input[2:0] wb_CTI_I

output[31:0] wb_DAT_O

I wb_master_data
I wh_sel

I whb_cyc

I wh_slave_data

_.....3 4) Enter our component's

output wb_ACK_O wh_ack output wb_ERR_O wh
output wb_RTY_O wh_rty|
Update Add %‘ Reset— .
DRC Save Cancel Reset | Help |

1) Select Port Type (SlavePort for this example)

2) Enter a display name for this port

3) Enter a prefix (not used, so can be anything)

WISHBONE
signal nameas

5) Select Add

LatticeMico32 Hardware Developer User Guide

103

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 56: Specifying the WISHBONE Clock Signal for the Component

Reg_Comp.xml
Component] Master/Slave Ports External Ports IRTL Files] Parameters] Software | Software Files
Parameters
Port Type | Companent Port | Width | Direction | Active | ConnectTo |
ClockPort CLK_I 1 input <= = 1) Select "ClockPort” entry
ResetPort RST_I 1 input
Interrupt INTR_O 1 output
Port Attributes
Port Type: | J Component Port: |CLK_I
Width: | j Direction: | J
Active: [| connectTo: |wb_dk|| -+ - 2) Enter Component's WISHBOME clock port name
Update %J; - Reset | i 3) Select "Update”
DRC Save Cancel Reset | Help |

104 LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 57: Specifying the WISHBONE Reset Signal for the Component

& Import/Create Custom Component - Reg_Comp.xml

Component] Master/Slave Ports External Ports IRTL Files] Parameters] Software | Software Files

Parameters
Port Type | Component Port | Width | Direction | Active | Connect To |
ClockPort CLK_I 1 input whb_dk
ResetPort RST_I i input 4+ =
Interrupt INTR_O 1 output
Port Attributes
Port Type: | J Component Port: |RST_I
Width: | j Direction: | J
Active: | J Connect To: |wb_reset | .
Update {%Jr iniey 'I Reset
DRC Save Cancel Reset | Help

1) Select "ResetPort” entry

2) Enter component's WISHBONE reset port name

3) Select "Update”

LatticeMico32 Hardware Developer User Guide

105

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Custom Component Example

Figure 58: Specifying the Interrupt Signal for the Component

€

Import/Create Custom Component - Reg_Comp.xml

Component] Master /Slave Ports External Ports IRTL Files] Parameters] Software | Software Files

Parameters

Port Type | Component Port | Width | Direction | Active | Connect To |

r 1) Select "Interrupt” entry

T 2} Select active-lavel (high for the example)

3) Enter component's interrupt-signal name

r 4} Select "Update”

ClockPort CLE_I 1 input whb_dk

ResetPort RST_I 1 input whb_reset

Interrupt INTR_O i output 4+
Port Attributes
Port Type: | J Component Port: |INTR_O
Width: [j Direction: | J
Active: |High A j Connect To: |wb_inh' < r

Update 4 Beset [
| 1
DRC Save Cancel Reset | Help |

106

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 59: Specifying the External Port for the Component

€

Import/Create Custom Component - Reg_Comp.xml

Component] Master /Slave Ports External Ports IRTL Files] Parameters] Software | Software Files

Parameters

Port Type | Component Port | Width | Direction | Active | Connect To |

ClockPort CLK_I 1 input whb_dk
ResetPort RST_I 1 input whb_reset
Interrupt INTR_O 1 output High wb_intr

[|

1) Select "Reset”

Port Attributes -

Port Type: | J Comporjent Port:|| out_pins 'i - I 2) Enter port name

Width: E ~+| Directio: |oumut]-.,1 3) Select port direction (output for this example)
Active: | J Connecf To: | |0utjins id—

| Add Reset

4) Select "Add"

DRC Save Cancel Reset | Help |

LatticeMico32 Hardware Developer User Guide 107

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 60: Specifying the RTL Files for the Component

& Import/Create Custom Component - Reg_Comp.xml

Component] Master/Slave Ports] External Ports RTL Files | parameters] Software | Software Files

top-evel module name: | wb_reg_dev <= 1) Enter name of component’s top-level module
User RTL Files Source
RTL File: [Browse. ;‘ T 2) Browse to select design's RTL file

Import RTL Files
C:\Demo'MyComponentwb_reg_dev.v

o g_nm : | 3) Select "Add"

Component RTL Files
Directory: |

Current RTL Files |
wb_reg_dev.v

Delete

DRC | Save | Cancel | Reset | Help |

Figure 61 shows the steps required for adding a GUI widget for
configuring the reg_08 register’s value when you instantiate the custom
component in a platform.

Note

You might need to adjust the default size for your component.

108 LatticeMico32 Hardware Developer User Guide

CREATING CuSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 61: Adding a Configuration Widget for the reg_08 Register

& Import/Create Custom Component - Reg_Comp.xml

Componentl Master/Slave Ports I External Ports I RTL Files Parameters |Soﬂware I Software Files I

~Parameters

Mame | Text | Type | Default Value I Widgetl Setting I Flag I Compiler Option I Standard I

InstanceMame Instance Mame String instance_name Text
BASE_ADDRESS Base Address Integer O0x00000000 Text

SIZE Address Width Integer 32 Text

ADDRESS_LOCK Lock Address Define undef

DISABLE Disable Define undef

CharlODevice Define undef input

M T I P N] 1) Select “Reset”

2) Enter parameter name used in RTL

< = T 3) Enter parameter's desired GUI display name

)

4) Select parameter value-type

Delete | . . (Integer for this example)

—Parameter Attributes

Parameter Name: | reg_08_int_val Display Txt: | reg_08 value
Value Type: IInheger | Default Value: | 305441741 5) Enter parameter's default value
GUI Widget: Text x| widget Ftings: |
Fezs |parameter + —_— 6) Select "parameter” flag

to indicate an RTL parameter
Standard I0: I LI

¥
Update | Add [\!.I Reset | T} Select "Add"

DRC Save Cancel Reset | Help I

LatticeMico32 Hardware Developer User Guide 109

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 62 shows the steps required for adding the CLK_MHZ parameter
for the component that will receive the platform’s WISHBONE clock-
frequency from MSB when instantiated a platform. This parameter will not
be visible for configuration.

Figure 62: Specifying the Platform’s WISHBONE Clock Frequency RTL Parameter

& Import/Create Custom Component - Reg_Comp.xml rz|

Component] Master /Slave Ports] External Ports] RTLFiles Parameters lSof‘t\c\'are] Software Files]

Parameters

MName

| Text

|T¥De

| Default Value | Widget | Setting | Flag | Compiler Option | Standar

InstanceMame

SIZE

DISABLE
CharICDevice

3

BASE_ADDRESS

ADDRESS_LOCK

reg_08_int_val

CLK_MHZ

Instance Name

Base Address

Address Width

Lock Address

Disable

reg_08 value

Delete

Parameter Attributes

32 Text
undef
undef
undef input
305441741 Text parameter
| Frequency J100 | | [parameter | | |

instance_name Text
0x00000000 Text

1) Select "Reset”

i

2) Enter parameter name used in RTL

Parameter Name: |CLK_MHZ v

|— 3) Select value-type as "Frequency”

Display T i/l_"”/‘ -

Frequency ~| Default alue: [100 <= - 4) Enter default value

Value Type:
GUIidget: | | [
Flags: |parameter d————————vf"=ErET T 5) Select "parameter” flag
v
Update | Add [\L Reset | §) Selact "Add"

DRC | Save | Cancel | Reset | Help |

When importing a new component, you should always check the SIZE
parameter. The default value for the SIZE parameter determines the
default address-decode space for the component. Although you can
change it when you instantiate it in the platform, it is always a good idea to
make sure that the default value is sufficient to cover the entire
addressable space (for example, the space for registers, memory, or I/Os)
that is provided for the component being imported. The custom
component example has three registers—that is, a total decode space of
12 bytes—so the default value of 32 for the SIZE parameter is adequate.

The example custom component requires a data structure like that shown
in Figure 63.

Figure 63: Data Structure Required for Creating Custom Component

typedef struct st_reg_device {

unsigned int reg_08_value;
unsigned int b _addr;

} reg_device;

110

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

In addition, the members of this structure must be initialized to the
appropriate values, which are provided when you generate the platform.

10. Specify the component’s data structure and initialization function for
software support, as shown in Figure 64.

Figure 64: Specifying Data Structure and Initialization Function

& Import/Create Custom Component - Reg_Comp.xml rz|
Component] Master/Slave Ports] External Ports] RTL Files] Parameters Software lSof‘t\c\'are Files]

DDStruct Settings

Initialization Function Name: [init_reg_device + 1) Specify initialization function name

Component Information Structure Name: |reg_device -+ t 2) Specify structure name

typedef Struct st_reg_device {

Data Type | Member Ma. .. | Value | Is Array
unsigned int reg_08_value reg_08_int_val
} reg_device;
Delete
DDStruct Attributes i
— - — 3) Select structure member's
Data Type | unsigned int _HIsAray ’ T data-type (unsigned int for this example)
4) Enter structure member's name
Member Mame |reg_08_value <+ TaE ireg_DS_lnt_va] jﬁlﬁ
- I~ ~
™= 5) From the pull-down, select
Reset reg_08_int_val for this example
6) Select "Add"
DRC | Save | Cancel | Reset Help |

11. Repeat the steps shown in Figure 64 to do the following:

Add b_addr as an “unsigned int” member that should contain the
component’s base address parameter, BASE_ADDRESS, as shown

in Figure 65.

Add name as a "const char *" member that should contain the
component's name parameter, InstanceName. This member helps
while registering the custom component with system software.

12. Add the C source file that should be compiled as part of the platform

library, as shown in Figure 66.

13. Add the device driver’s header file (.h), which is a standard header file that
can be included in a user application, as shown in Figure 67.

14. Click DRC to check for any errors.

15. Click Save to save the custom component.

LatticeMico32 Hardware Developer User Guide

111

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 65: Specifying Second Data Structure

X

& Import/Create Custom Component - Reg_Comp.xml

Component] Master /Slave Ports] External Ports] RTL Files] Parameters Software lSof‘tware Files]
DDStruct Settings

Initialization Function Name: | init_reg_device

Component Information Structure Name: | reg_device

typedef Struct st_reg_device {

Data Type | Member Ma... | Value | Is Array
unsigned int reg_08_value reg_08_int_val

unsigned int b_addr BASE_ADDRESS

} reg_device;

Delete

DDStruct Attributes
Data Type |unsigned int j Is Array r

Member Name | b_addr Value |BASE_aDDRESS |

Reset

DRC Save Cancel Reset Help

Output

After you perform the steps in the “Adding the Custom Component” on
page 100, the component now appears in the MSB graphical user interface,
as shown in Figure 68.

When you double-click on this component, a configuration dialog box opens,
as shown in Figure 69, so that you can configure it when instantiating it in a
platform.

Figure 70 shows the directory structure and the contents of the directories
created by the MSB graphical user interface.

The directory structure shown in Figure 70 is created automatically by the

Import/Create Custom Component dialog box. The source files are copied
from the source folder into the directory structure. If you want to modify the
RTL once this component is created—for example, to fix a bug—you must
modify the copied files, not the original source files.

112

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 66: Adding the C Source File

& Import/Create Custom Component - Reg_Comp.xml

Component] Master /Slave Ports] External Ports] RTL Files] Parameters] Software Software Files

User Software Files Source

Software File: | Browse... 4= 1) Browse to select the C source file

Import Software Files Software File Types
C:\DemoMyComponent'\Reg_Comp.c Platform Library

add | Delete

Current Software Files
Directory: |

Current Software Files | File Types

Delete

File Type
| C:\DemoMyComponent'Reg_Comp.c Platform Library !'

L+ 2) Select file type as "Platform Library”

—t J) Select "Update”

DRC Save Cancel Reset Help

LatticeMico32 Hardware Developer User Guide 113

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM

Custom Component Example

Figure 67: Adding the Device Driver Header (.h) File

£

Import/Create Custom Component - Reg_Comp.xml

Componentl Master /Slave Ports I External Ports I RTL Files I Parameters I Software Software Files |

User Software Files Source

Software File: |

Browse... |LL—

1) Browse to select the header file
(Reg_Dev.h for this example)

rt Software Files | Software File Types |

C:\DemoMyComponent'\Reg_Comp.c Platform Library
C:\Demo'MyComponent'Reg_Comp.h Header

Add | Dekete

— Current Software Files

Directory:

Current Software Files I File Types |

Delete |

- 2) Select file type as "Header”

—File Type

| C:\Demo'MyComponent'Reg_Comp.h Header

3) Select "Update”

DRC | Save |

Cancel |

| |

Figure 68: Custom Component in MSB Available Components View

----- # 2C Master (3.0)

..... ﬁ[Tri-5peed_MAC (v2.5)
----- # UART (3.1
----- # oma (3.0)
{8 PCI_Target_33 (v6.0)
=-nF Memory (0/8)
----- % Async SRAM (3.0)
----- $ Parallel Flash (3.0)
----- $% SPIFlash ROM (3.1)
--{§) DDR2 Controller (v5.4)
DDR SDRAM Controller {vé.4)
g DDR. SDRAM Controller (vé.5)
----- # On-Chip Memory (3.1)
----- & SDRAM Controller (3.1)
=4 cru (/1)
% LatticeMico32 (3.1)

o

114

LatticeMico32 Hardware Developer User Guide

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

Figure 69: Add Reg_Comp Dialog Box

& Add Reg_Comp r5_<|

Instance Mame | instance_name
Base Address | 000000000

Address Width | 32

reg_08 value | 305441741
Ok | Cancel | Help |

Figure 70: Directories Created by the MSB Graphical User Interface

@ 2112 (C:)
I Demo

I3 MSBComponents
=l |[C3) Reg_Comp
— | = Reg_Comp. xml

L 7)) document
—= |5 drivers

—; peripheral.mk
L %) device

—il Reg_Comp.h
—ﬂ Reg_Comp.c
I3 rd
) verilog
wh_reg_dev.v

Reg_Comp.v

LatticeMico32 Hardware Developer User Guide 115

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

116 LatticeMico32 Hardware Developer User Guide

= LATTICE

Glossary

Following are the terms and concepts that you should understand to use this
guide effectively.

application build An application build is the files that the managed build
process outputs and places in the application build output folder, for example,
the application executable, application build makefiles, application object files,
and necessary platform library files.

application build makefiles Application build makefiles enable the building
of the application.

application executable The application executable is a result of linking the
application and the platform library object file. The file is an executable in ELF
format that can be downloaded or executed using the GNU GDB debugger.

application object files Application object files are user source object files
that have been compiled and assembled from their source C files.

breakpoints Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE C/C++SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The C/
C++ SPE uses the bundled GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) customized for the
LatticeMico32 process. It uses the same graphical user interface as MSB.

component information structure declaration A component information
structure declaration is specified as part of the .xml file and is copied into .msb
file by MSB. Each component in the platform is represented in the .msb file.

LatticeMico32 Hardware Developer User Guide 117

GLOSSARY

The component’s information in the .msb file includes the details about the
component’s source files that will need to be included in the build process.
The information is then extracted from the .msb file by the build process and
put into the DDStructs.h file. Each unique component must have its own
unique component information structure defined within its component
description file.

component instance declaration For those component instances that
have a corresponding information structure, this header file declares
presence of an instantiated structure. Originates in the Component
Description (.xml) file.

components Components are parts of the microprocessor system
architecture, for example, a CPU and peripherals are referred to generically
as components. Also see platform.

CSR CSRis an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

CDT CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

default linker script The default linker script, named linker.ld, is the default
linker script for the particular platform/project combination and can be used as
a starting point for creating a custom linker script file.

device driver files Device driver files are the source .c and .h C/C++ files
that contain driver code that will be compiled into object files during software
build.

debugging Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse Eclipse is an open-source community whose projects are focused
on providing an extensible development platform and application frameworks
for building software. The LatticeMico System interface is based on the
Eclipse environment.

.elf file An .elf file is a file in executable linked format that contains the
software application code written in C/C++SPE.

118

LatticeMico32 Hardware Developer User Guide

GLOSSARY

GDB GDB is an abbreviation for GNU GDB debugger, which is a source-
level debugger based on the GNU compiler. It is part of the C/C++SPE
debugger.

GNU Compiler Collection (GCC) The GNU Compiler Collection (GCC) is a
set of programming language compilers produced by the GNU Project. It is
free software distributed by the Free Software Foundation (FSF).

HAL HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module The hardware debugger module is a
component of C/C++SPE that is used to find problems in the software
application. Most times it is simply referred to as the debugger module.

hardware platform See “platform.”

IRQ IRQ is an abbreviation for interrupt request, which is the means by
which a hardware component requests computing time from the CPU. There
are 16 IRQ assignments (0-15), each representing a different physical (or
virtual) piece of hardware. For example, IRQO is reserved for the system
timer, while 1RQ1 is reserved for the keyboard. The lower the number, the
more critical the function.

JTAG ports JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

makefiles Makefiles contain scripts that define what files the make utility
must use to compile and link during the build process. There are many
makefiles employed in the LatticeMico System build process. The makefile
file is the application build makefile, calling all of the other makefiles that allow
the generation and build of the platform library and for eventually generating
the final executable image.

MSB MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing peripherals, such as
a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the processor and the chosen
peripherals. It uses the same graphical user interface as C/C++SPE.

.msb file The .msb file is the output XML file output by the MSB tool when
working in the MSB perspective. This .msb file is generated or updated when
you save your changes in the MSB perspective. This file defines your
platform, that is, the CPU and the peripherals in your design and also their
interconnectivity.

perspective A perspective is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enable you to perform a set of particular, predefined tasks. The LatticeMico
System contains three default perspectives: the MSB perspective, the C/C++
perspective, and the Debug perspective.

LatticeMico32 Hardware Developer User Guide 119

GLOSSARY

platform A platform (also called a hardware platform) is the embedded
microprocessor in an SoC (system on a chip) design. A platform comprises
the CPU and peripheral components and the interconnectivity that allows
these components to work together to successfully execute processor
instructions.

platform library The platform library is a set of files that contain subroutine
code that references the application files that are necessary for linking during
the build process.

platform library build The platform library build is an integral part of the
managed build process. Another is the application build. The platform library
files contain code that is necessary to the linking during the build process. The
platform library build also outputs a platform library archive (<platform>.a) file
that is referenced by the application build. It allows you to override any default
software implementation.

platform library archive (.a) file The platform library archive (<platform>.a)
file is automatically generated during a platform library build. It is used when
linking the application executable to resolve platform functions used by the
application and is derived from the platform library object files.

platform library object (.0) file The platform library object (.0) file is a
compiled output of the library source files and is input for creating platform
library archive files.

platform settings file The platform settings file is the user.pref file that is
generated during the build process contains platform information for the
platform used by the current project.

project A project is the software application code written in C++ SPE.
Projects are contained within your workspace.

project workspace See “workspace.”

resources or resource files Resources are the projects, folders, and files
that exist in the Workbench. The navigation views provide a hierarchical view
of resources and allows you to open them for editing. Other tools may display
and handle these resources differently.

running Running is the process of executing a software program.

software application The software application is the code that runs on the
32-bit Mico processor to control the peripherals, the bus, and the memories.
The application is written in a high-level language such as C++.

source files In this document, source files generically refer to source .c and
header .h files written in C/C++ programming language.

source folders Source folders are the folders you may have on your
system or in the project folder that contain input for a project. Input might
include source files and resource files to help enhance or to initially establish
a LatticeMico32 project.

120

LatticeMico32 Hardware Developer User Guide

GLOSSARY

UART UART is an acronym for universal asynchronous receiver/transmitter,
which is a computer component that handles asynchronous serial
communication. Every computer contains a UART to manage the serial ports,
and some internal modems have their own UART.

watchpoint A watchpoint is a special breakpoint that stops the execution of
an application whenever the value of a given expression changes, without
specifying where this may happen. A watchpoint halts program execution,
even if the new value being written is the same as the old value of the field.

workspace A workspace contains all of your LatticeMico System projects,
files, and folders and stores everything in a “workspace” folder. Basically a
workspace represents everything you do in the LatticeMico System software,
what is available, how you view it, and what options are available to you
through the different perspectives based on your settings. This is a basic
Eclipse-based software feature.

XML XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

xml file (1) The .xml file contains information about the parent project and
its settings, as well as information on the platform referenced by the parent
project. (2) The <comp_name>.xml files contain code declarations referred to
as component instance definitions that define the structure of each
component. These files reside in the <install_dir>/components folder. On build
generation, this information is copied into the .msb file by MSB.

LatticeMico32 Hardware Developer User Guide 121

GLOSSARY

122 LatticeMico32 Hardware Developer User Guide

= LATTICE

Index

Symbols
.ngo file 14
"Hello World" application 40

A
active perspective 9
Add LatticeMico32 dialog box 20
addresses
assigning component 27
automatically assigning 28
locking component 29
manually editing component 29
Aldec Active-HD 48
Aldec Active-HDL 48
application build 117
application build makefiles see makefiles
application executable 117
application object files 117
Arbitration Scheme parameter 19
arbitration schemes
comparing 23
determining connections made by MSB 21
selecting 19
see also shared-bus arbitration scheme
see also slave-side arbitration schemes
assigning component addresses 27
assigning interrupt request priorities 30
asynchronous SRAM controller see LatticeMico
asynchronous SRAM controller
Available Components view 16, 20

B

behavioral model 46
bidirectional data buses 33
bidirectional ports 34
bitstream

generating in Diamond 37, 38
black_box_pad_pin attribute 88
Board Frequency parameter 19
breakpoints

definition 117

watchpoints 121

C
C/C++ perspective 9
see also C/C++ SPE
C/C++ Software Project Environment see C/C++
SPE
C/C++ SPE
definition of 117
place in design flow 3
purpose 2,7
C/C++ SPE stand-alone 15
CDT 118
changing default perspectives 11
changing master port arbitration priorities 26
clock port 66
Clone Platform parameter 19
closing views in perspectives 12
Component Attributes view 17
component data sheets 5
Component Help view 17, 20
component information structure declaration 117
component instance declaration 118
Component tab 53, 101
connecting master and slave ports in MSB 21, 24
connecting microprocessor to FPGA pins 38
Console view 17
Create VHDL Wrapper parameter 18, 32, 37
creating custom perspectives 11
creating Diamond project 13
creating platform descriptions in MSB 17

LatticeMico32 Hardware Developer User Guide

123

INDEX

CSR 118
custom components
adding software files 84, 111
connecting external output ports 69
contents of custom component folder 90
creating Verilog wrapper for 61, 87
defining control signals 61, 102
directory structure created 54, 90
displaying software files 86
editing 52
example 92
making available in MSB 90, 100
specifying attributes 53, 101
specifying clock/reset and external ports 67,
102
specifying interrupt port 68, 102
specifying RTL files 72,75, 102
specifying RTL parameters 79, 102
specifying software elements 81
specifying WISHBONE interface
connections 56, 102
steps involved in creating 52, 101
WISHBONE interface in 51
Customize Perspective dialog box 10
customizing default perspectives 10

D
data sheets 5
DDStruct structure 83
DDsStructs.h header file 86
Debug perspective 9
see also Debugger
Debugger
place in design flow 3
purpose 2,7
deleting custom perspectives 11
Design Flow, IP 14
design rule checks see DRC
device driver files 118
devices suppported 3
Diamond
creating project 13
generating bitstream 37
generating FPGA bitstream 38
importing .Ipf file 38
importing EDIF file 38
importing Verilog file 36
importing VHDL file 36
installing 8
IP design flow 14
Diamond Installation Notice document 6
Directory parameter 18
DMA controller see LatticeMico DMA controller
document icon 20
double-buffered bidirectional ports 34
DRC 21, 27,30

E
Eclipse 118
Eclipse C/C++ Development Toolkit User Guide
document 5
Eclipse workbench 8,9
EDIF
creating file in Linux 35, 36
importing file into Diamond 36, 38
Edit Arbitration Priorities command 24, 25
Edit Arbitration Priorities dialog box 26
Editor view 16, 24, 27
.elf file
definition of 118
external input/output ports 66
External Ports tab 61, 102
connecting external output ports 68, 102
options available in 64
sets of signals connected in 65

F
Family parameter 19
fixed slave-side arbitration scheme 22, 23, 24, 26
Functional Simulation
Aldec Active-HDL 48
ModelSim 48
functional simulation 40

G
Generate Address command 28
Generate Address toolbar button 28
Generate IRQ command 30
Generate IRQ toolbar button 30
generating bitstream for FPGA 37, 38
generating platform 30
GNU Compiler Collection see GNU GCC compiler
GNU GCC compiler

definition 119
GNU GDB debugger

definition 119
GPIO see LatticeMico GPIO
GUI widgets 77,80

H
HAL 119
hardware platform see platform

I
Import/Create Custom Component button 53
Import/Create Custom Component dialog box
applying changes 87
Component tab 53, 101
External Ports tab 61, 102
Master/Slave Ports tab 56, 102
opening 52
Parameters tab 79, 102
purpose 52
RTL Files tab 72, 75,102
saving settings 90

124

LatticeMico32 Hardware Developer User Guide

INDEX

Software Files tab 84, 86, 111
Software tab 81
importing Verilog file into Diamond 36
importing VHDL file into Diamond 36
interrupt port 66
interrupt request priorities
assigning in MSB perspective 30
definition 119
IP cores 14
IP Design Flow 14
IPexpress 14,19
IRQ see interrupt request priorities

L
LatticeECP/EC Family Data Sheet document 6
LatticeECP/EC FPGA Family Handbook
document 6
LatticeMico as stand-alone tool 49
LatticeMico asynchronous SRAM controller 5,17,
20
LatticeMico Asynchronous SRAM Controller
document 5
LatticeMico data sheets 5
LatticeMico DMA controller 5
LatticeMico DMA Controller document 5
LatticeMico GPIO 5, 20
LatticeMico GPIO document 5
LatticeMico Master Passthrough document 5
LatticeMico on-chip memory controller
documentation 5
number of addresses available for access 17
LatticeMico On-Chip Memory Controller
document 5
LatticeMico parallel flash controller
available in MSB perspective 20
documentation 5
LatticeMico Parallel Flash Controller document 5
LatticeMico SDR SDRAM Controller document 5
LatticeMico SDRAM controller 35
LatticeMico Slave Passthrough document 5
LatticeMico SPI 5
LatticeMico SPI document 5
LatticeMico SPI Flash document 5
LatticeMico System
accessing online Help 5, 20
applicationsin 1,7
creating custom components 51
creating Diamond project 13
design flow 1,3
devices supported 3
installing 19
perspectives 9
running on Linux 13,15
running on Windows 8
system requirements on Linux 8
system requirements on Windows 8
using 7
LatticeMico timer

available in MSB perspective 20
LatticeMico Timer document 5
LatticeMico UART 35
available in MSB perspective 20
definition 121
documentation 5
LatticeMico UART document 5
LatticeMico32 Processor Reference Manual
document 5
LatticeMico32 Software Developer User Guide
document 5
LatticeMico32/DSP Development Board User’s
Guide document 5
linker script
created by platform build 3
default
definition 118
linker.ld file 118
Linux
creating Diamond project 13
importing EDIF file 36, 38
pointing to synthesis tool location 15
running LatticeMico System 13
synthesizing platform in MSB 35
Lock column 29
locking component addresses 29
logical preference file see .Ipf file
Ipf file 38

M
makefiles
definition 119
manually editing component addresses 29
master ports
changing arbitration priorities 26
connecting in MSB 21, 24
purpose 21
specifying WISHBONE interface connections
for 56, 59
Master/Slave Ports tab 56, 58, 102
Mentor Graphics Precision RTL Synthesis 35
Mico System Builder see MSB
mixed-language designs 42
ModelSim 48
MSB
adding peripherals to platform 19, 20
adding processor to platform 20
assigning component addresses 27
assigning interrupt request priorities 30
Available Components view 16, 20
changing master port arbitration priorities 26
Component Attributes view 17
Component Help view 17, 20
connecting master and slave ports 21, 24
Console view 17
creating new custom components 87
creating platform description 17
defining platform 15

LatticeMico32 Hardware Developer User Guide

125

INDEX

definition 119

Editor view 16, 24, 27

files created during platform generation 31

generating platform 30

implementing shared bidirectional bus to
board 33

locking component addresses 29

making custom components available 90, 100

manually editing component addresses 29

performing design rule checks 30

place in design flow 3

purpose 1,7

saving platform 30

starting 15

.msb file

created by platform generation 31

creating 18,19

definition of 119

MSB perspective 9, 16
see also MSB

N

New Platform Wizard dialog box 18
.ngo file 31,32, 34, 88

non-RTL parameters 79

@)

on-chip memory controller see LatticeMico on-chip
memory controller

online Help 20

OPENCORES I2CM component 35

opening views in perspectives 12

P
parallel flash controller see LatticeMico parallel
flash controller
Parameters tab 79, 102
performing design rule checks 30
perspectives
active 9
C/C++ 9
changing default 11
closing views in 12
creating custom 11
customizing default 10
Debug 9
definition of 119
deleting custom 11
description of 9
MSB 9, 16
opening and closing views in 12
reopening views 12
resetting default 12
switching to new 9
physical design rule checks see DRC
pin constraints 38
platform
adding peripherals to 19

adding processor to 19
assigning component addresses 27
assigning interrupt request priorities 30
changing master port arbitration priorities 26
connecting master and slave ports 21, 24
creating description in MSB 17
defining in MSB 15
definition 15, 120
generating in MSB 30
implementing shared bidirectional bus to
board 33

locking component addresses 29
manually editing component addresses 29
performance 36
performing design rule checks 30
saving in MSB 30

platform library 120

platform library archive (.a) file 120

platform library build 120

platform library object files 120

Platform Name parameter 18

platform settings file 120

PMI behavioral models 42

PMI Black-box Instantiations 46

PMI module 46

pmi_def.v 42,46

project 120

project workspace see workspace

R
reopening views in perspectives 12
Reset Perspective pop-up dialog box 12
reset port 66
resetting default perspectives 12
resource files 120
resources 120
round-robin slave-side arbitration scheme 23, 24,
26
RTL Files tab 72,73, 75, 102
RTL module parameters
non-RTL parameters 79
predefined 76
steps involved in adding 78
value types 75
Run DRC command 30
Run DRC toolbar button 30
Run Generator command 31
Run Generator toolbar button 31
running LatticeMico System
from GUI 8

S

Save Perspective As dialog box 11

saving platform in MSB 30

serial peripheral interface see LatticeMico SPI
flash controller

setting constraints 36

shared-bus arbitration scheme 21, 24, 26

126

LatticeMico32 Hardware Developer User Guide

INDEX

Simulation for mixed language 42
simulation tools 40
slave ports
connecting in MSB 21, 24
purpose 21
specifying WISHBONE interface connections
for 56, 59
slave-side arbitration schemes 21
fixed 22,23, 24,26
round-robin 23, 24, 26
Software Files tab 84, 86, 111
options available in 86
Software tab 81
options available in 83, 111
source files 120
source folders 120
SPI flash see LatticeMico SPI flash controller
SPI see LatticeMico SPI
stand-alone
hardware developer 49
software developer 50
stand-alone tool 15
Start menu 8
structure element data types 82
Synplicity Synplify Pro 35

T

testbench file 44

timer see LatticeMico timer

timing analysis 36

tristates
connecting to external ports 34
implementing bidirectional data buses 33
in custom VHDL components 88

u

UART see LatticeMico UART

universal asynchronous receiver-transmitter see
LatticeMico UART

Vv
.v files 31, 33
Verilog
.msb file used in flow 31
.V file used in flow 31
adding logic to enable bidirectional bus
sharing 33
creating platform in 31
creating top-level module 61
creating wrapper for custom components 87
files generated by platform creation 31
importing file into Diamond 36
importing file on Windows 37
instantiation template 32
shared bus connection pattern in .v file 33
specifying in MSB 18
wrapper around custom components 61
.vhd file 32,34

VHDL
.msb file used in flow 31
.v file used in flow 31
adding logic to enable bidirectional bus
sharing 34
avoiding double-buffered bidirectional ports 34
creating custom components 87
creating custom components for 52, 72
creating wrapper 18, 19
files generated by platform generation 32
generating platform 31
importing file into Diamond 36
importing file on Windows 37
synthesizing platform 31
wrapper 34
VHDL Wrapper 42
views
in MSB perspective 16

w
watchpoints 121
WISHBONE signals for connecting ports 56, 59
workspace
definition 121

X
XML 121
xml file

definition 121

LatticeMico32 Hardware Developer User Guide

127

	LatticeMico System Overview
	LatticeMico System Design Flow
	Device Support
	Design Flow Steps

	Related Documentation

	Using the LatticeMico System Software
	LatticeMico System Software Overview
	About the LatticeMico System Tools
	LatticeMico System Requirements
	Running LatticeMico System
	LatticeMico System Perspectives

	Setting Up Diamond for a LatticeMico32 Platform
	Creating a New Diamond Project
	Recommended IP Design Flow

	Creating the Microprocessor Platform in MSB
	Starting MSB
	Creating a Platform Description in MSB
	Connecting Master and Slave Ports
	Changing Master Port Arbitration Priorities
	Assigning Component Addresses
	Assigning Component Interrupt Priorities
	Performing Design Rule Checks
	Saving the Microprocessor Platform
	Generating the Microprocessor Platform
	Implementing Shared Bidirectional Bus to Board
	Synthesizing the Platform to Create an EDIF File (Linux Only)
	Design Guidance for Platform Performance
	Generating the Microprocessor Bitstream
	Downloading Hardware Bitstream to the FPGA

	Performing HDL Functional Simulation of LatticeMico32 Platforms
	Configuring the Platform with LatticeMico System Builder
	Preparing for HDL Functional Simulation
	Performing HDL Functional Simulation with Aldec Active-HDL
	Performing HDL Functional Simulation with Mentor Graphics ModelSim

	Using LatticeMico System as a Stand-Alone Tool

	Creating Custom Components in LatticeMico System
	Opening the Import/Create Custom Component Dialog Box
	Specifying Component Attributes
	Component Location and Directory Structure
	Component Properties

	Specifying WISHBONE Interface Connections
	Specifying Clock/Reset and External Ports
	Specifying RTL Files
	Specifying User-Configurable Parameters
	RTL Parameters
	RTL Parameter Value Types
	Predefined RTL Parameters
	Software Parameters
	Predefined Software Parameters
	GUI Presentation
	Adding RTL Parameters
	Adding Non-RTL Parameters

	Specifying Software Elements
	Adding Software Files to Custom Components
	Applying Changes
	Creating the Verilog Wrapper for VHDL Designs
	Pointing to the Correct .ngo File

	Making Custom Components Available in MSB
	Integrating Custom Component’s RTL Design Files
	Saving the Settings
	Directory Structure

	Custom Component Example
	Sample Custom Component
	Adding the Custom Component
	Output

	Glossary
	Index

