
LatticeMico32 Hardware
Developer User Guide

May 2014

ii LatticeMico32 Hardware Developer User Guide

Copyright
Copyright © 2014 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior written consent from Lattice Semiconductor Corporation.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L
(stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device,
DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH,
flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer,
iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman,
iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD,
ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL
MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE,
LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA,
ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager,
ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE,
sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for
Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are
either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best
Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR
CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN
THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. LSC makes no commitment to
update this documentation. LSC reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. LSC
recommends its customers obtain the latest version of the relevant information to
establish, before ordering, that the information being relied upon is current.

LatticeMico32 Hardware Developer User Guide iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv LatticeMico32 Hardware Developer User Guide

LatticeMico32 Hardware Developer User Guide v

Contents

Chapter 1 LatticeMico System Overview 1

LatticeMico System Design Flow 1
Device Support 3
Design Flow Steps 3

Related Documentation 5

Chapter 2 Using the LatticeMico System Software 7

LatticeMico System Software Overview 7
About the LatticeMico System Tools 7
LatticeMico System Requirements 8
Running LatticeMico System 8
LatticeMico System Perspectives 9

Setting Up Diamond for a LatticeMico32 Platform 13
Creating a New Diamond Project 13
Recommended IP Design Flow 14

Creating the Microprocessor Platform in MSB 15
Starting MSB 15
Creating a Platform Description in MSB 17
Connecting Master and Slave Ports 21
Changing Master Port Arbitration Priorities 26
Assigning Component Addresses 27
Assigning Component Interrupt Priorities 30
Performing Design Rule Checks 30
Saving the Microprocessor Platform 30
Generating the Microprocessor Platform 30
Implementing Shared Bidirectional Bus to Board 33
Synthesizing the Platform to Create an EDIF File (Linux Only) 35
Design Guidance for Platform Performance 36
Generating the Microprocessor Bitstream 36
Downloading Hardware Bitstream to the FPGA 39

Performing HDL Functional Simulation of LatticeMico32 Platforms 40
Configuring the Platform with LatticeMico System Builder 41

CONTENTS

vi LatticeMico32 Hardware Developer User Guide

Preparing for HDL Functional Simulation 44
Performing HDL Functional Simulation with Aldec Active-HDL 48
Performing HDL Functional Simulation with Mentor Graphics

ModelSim 48

Using LatticeMico System as a Stand-Alone Tool 49

Chapter 3 Creating Custom Components in LatticeMico System 51

Opening the Import/Create Custom Component Dialog Box 52

Specifying Component Attributes 53
Component Location and Directory Structure 54
Component Properties 55

Specifying WISHBONE Interface Connections 56

Specifying Clock/Reset and External Ports 61

Specifying RTL Files 72

Specifying User-Configurable Parameters 74
RTL Parameters 75
RTL Parameter Value Types 75
Predefined RTL Parameters 76
Software Parameters 76
Predefined Software Parameters 77
GUI Presentation 77
Adding RTL Parameters 78
Adding Non-RTL Parameters 79

Specifying Software Elements 80

Adding Software Files to Custom Components 84

Applying Changes 87

Creating the Verilog Wrapper for VHDL Designs 87
Pointing to the Correct .ngo File 89

Making Custom Components Available in MSB 90
Integrating Custom Component’s RTL Design Files 90
Saving the Settings 90
Directory Structure 90

Custom Component Example 92
Sample Custom Component 92
Adding the Custom Component 100
Output 112

Glossary 117

Index 123

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

LatticeMico32 Hardware Developer User Guide 1

Chapter 1

LatticeMico System Overview

This hardware developer guide describes the flow of tools involved in creating
and configuring a hardware platform for the LatticeMico32 embedded
microprocessor.

This guide is targeted to developers who are interested in learning the
fundamentals of configuring and programming the embedded soft-core
microprocessor. For a list of related documents on the LatticeMico32
microprocessor, refer to “Related Documentation” on page 5.

LatticeMico System Design Flow
This section lists the major steps involved in designing a LatticeMico32
embedded microprocessor. In addition to running the FPGA flow in Lattice
Diamond, you use the integrated System software to build both hardware and
software features of your embedded soft-core microprocessor.

The LatticeMico System is composed of three bundled applications:

 Mico System Builder (MSB)

 C/C++ Software Project Environment (C/C++ SPE)

 Debugger

These applications work in the background through the user interface and can
be accessed through different “perspectives” in the LatticeMico System
software. Perspectives are a prearranged and predefined set of user
functions that can be accessed within the software user interface.
Perspectives are described in more detail in “LatticeMico System
Perspectives” on page 8.

MSB is used by hardware designers to create the microprocessor platform for
both hardware and software development. A platform generically refers to the
hardware microprocessor configuration, the CPU, its peripherals, and how
these components are interconnected. This functionality in the LatticeMico
System software can be accessed by using the MSB perspective in the
interface. The default MSB perspective is completely separate in terms of
function from the other two perspectives.

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

2 LatticeMico32 Hardware Developer User Guide

You can use the C/C++ Software Project Environment (SPE) to develop the
software application code that drives the platform. The Debugger is used to
analyze and correct your code. You can access these programs by enabling
the C/C++ and Debug perspectives, respectively. However, these two
perspectives overlap in terms of functionality. Many of the same functions and
views available in the C/C++ perspective are also available in the Debug
perspective because the functions are so intertwined.

Figure 1 shows the interaction of the three LatticeMico System applications
with Lattice Diamond in the microprocessor development design flow.

The LatticeMico32 Tutorial gives step-by-step instructions on creating a
sample microprocessor platform, downloading hardware images to your
device, creating your application code, and deploying your application code to
on-chip or flash memory. It covers all relevant topics to enable you to run
through a complete LatticeMico32 design flow. It is highly recommended that
you start out with the tutorial.

Figure 1: LatticeMico System Development Software Tool Flow

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

LatticeMico32 Hardware Developer User Guide 3

Device Support
The Lattice FPGA devices that are currently supported in this design flow are
the following:

 ECP5

 LatticeECP

 LatticeEC

 LatticeECP2

 LatticeECP2M

 LatticeECP3

 LatticeXP

 LatticeXP2

 LatticeSC

 LatticeSCM

Design Flow Steps
The major steps involved in designing a LatticeMico32 soft-core
microprocessor are the following:

1. Create a project in the Lattice Diamond software that targets the desired
device family.

2. Use the Mico System Builder (MSB) in the LatticeMico System software to
create and develop a microprocessor platform. You access this in the
MSB perspective. Creating a platform involves generating an .msb file,
selecting component peripherals, and connecting them to the
LatticeMico32 platform.

3. In the MSB perspective, designate and develop drivers as necessary for
available peripherals and add them to the platform you created.

4. In the MSB perspective, generate a platform build, which automatically
creates a build structure with associated makefiles and an appropriate
linker script. This process involves the device drivers and any other
software components other than the user application.

5. In C/C++ SPE, use the C/C++ perspective to write the C/C++ user
application software and build your application.

6. Using the Debugger in the LatticeMico System software, test your code on
the target hardware, configure the target hardware, find issues with your
code, and correct them. You access the Debugger in either the
C/C++ perspective or the Debug perspective.

7. Using Diamond Programmer, download the executable code to on-board
flash memory. You can deploy the application providing a boot loader that
straps onto the application for loading the application from slow, non-
volatile storage (flash memory device) to fast volatile storage (on-chip or
off-chip RAM), without having to rebuild the application.

LATTICEMICO SYSTEM OVERVIEW : LatticeMico System Design Flow

4 LatticeMico32 Hardware Developer User Guide

8. Repeat steps 3 through 7 for any new application development or
modification to the platform in step 2.

Figure 2 shows the LatticeMico System design flow.

For complete information about using the C/C++ SPE and Debugger
perspectives to build and test your software application, refer to the
LatticeMico32 Software Developer User Guide.

Figure 2: LatticeMico System Design Flow

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

LatticeMico32 Hardware Developer User Guide 5

Related Documentation
You can access the LatticeMico System online Help and manuals by choosing
Help > Help Contents in the LatticeMico System interface. These manuals
include the following:

 LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including
configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

 LatticeMico32 Software Developer User Guide, which introduces you to
the run-time environment, the build management process, the directory
structure for the managed build, information on the device driver
framework, and the processes occurring in the background. It is intended
for a programmer.

 LatticeMico32/DSP Development Board User Guide, which describes the
features and functionality of the LatticeMico32/DSP development board.
This board is designed as a hardware platform for design and
development with the LatticeMico32 microprocessor, as well as for the
LatticeMico8 microcontroller, and for various DSP functions.

 Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench.

 LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

 LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

 LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

 LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

 LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

 LatticeMico Master Passthrough, which describes the features and
functionality of the LatticeMico master passthrough.

 LatticeMico Slave Passthrough, which describes the features and
functionality of the LatticeMico slave passthrough

 LatticeMico SDR SDRAM Controller, which describes the features and
functionality of the LatticeMico SDR SDRAM controller

 LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

 LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico serial peripheral interface (SPI) flash memory controller

 LatticeMico Timer, which describes the features and functionality of the
LatticeMico Timer

 LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

LATTICEMICO SYSTEM OVERVIEW : Related Documentation

6 LatticeMico32 Hardware Developer User Guide

 Diamond <release_number> Installation Notice, which explains how to
install the LatticeMico System software for the current release

 LatticeECP/EC FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeEC and LatticeECP devices

 LatticeECP/EC Family Data Sheet

 LatticeECP2 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP2 devices

 LatticeECP2 Family Data Sheet

 LatticeECP2M Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP2M devices

 LatticeECP2M Family Data Sheet

 LatticeECP3 FPGA Family Handbook, which is a collection of the data
sheets and application notes on LatticeECP3 devices

 LatticeECP3 Family Data Sheet

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

LatticeMico32 Hardware Developer User Guide 7

Chapter 2

Using the LatticeMico System
Software

This chapter introduces you to the LatticeMico System software, describes
portions of its software user interface, and provides in-depth procedures for
performing common and advanced user tasks. The instructions for performing
key operations are presented in the order that they occur in the design flow,
and the user interface is introduced appropriately. See the LatticeMico
System online Help for more details on the user interface.

This chapter assumes that you have read “LatticeMico System Overview” on
page 1 and are familiar with the general high-level steps in this product flow.
This chapter also assumes that you have not customized the user interface.

LatticeMico System Software Overview
This section provides a brief synopsis of the functional tools included in the
software and teaches you the basic concept of user “perspectives” in the
software that are designed to simplify access to command functionality.

About the LatticeMico System Tools
As noted in “LatticeMico System Overview” on page 1, the LatticeMico
System software is composed of the following bundled, functional software
tools:

 Mico System Builder (MSB), which is used to create the microprocessor
platform

 C/C++ Software Project Environment (C/C++ SPE), which is used to
create the software application code that drives the microprocessor
platform

 Debugger, which enables you to analyze the software application code to
identify and correct errors

The LatticeMico32 tools share the same Eclipse workbench, which provides a
unified graphical user interface for the software and hardware development
flows. You use MSB to define the structure of your microprocessor or your

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

8 LatticeMico32 Hardware Developer User Guide

hardware platform. C/C++ SPE enables you to develop and compile your
code in a managed and well-structured build environment. The Debugger
includes tools that analyze your code for errors and simulates instruction calls
within the software environment or to an actual programmed device on a
circuit board.

You will learn more about how these functions are encountered in the
software throughout this chapter. This chapter assumes that you have
installed all of the necessary software and have not modified your default
perspectives in any way.

LatticeMico System Requirements
For information about LatticeMico System’s system requirements on the
Windows operating system, see the “Installing LatticeMico32 Development
Tools” chapter of the Diamond <release_number> Installation Notice for
Windows for the current release on the Lattice Semiconductor Web site.

For information about LatticeMico System’s system requirements on the Red
Hat Linux operating system, see the “Installing LatticeMico32 Development
Tools” chapter of the Diamond <release_number> Installation Notice for
Linux, available on the Lattice Semiconductor Web site and the LatticeMico32
online Help.

For information on installing Diamond, see the Diamond <release_number>
Installation Notice for Windows or the Diamond <release_number>
Installation Notice for Linux for the current release.

Running LatticeMico System
Now you will run the software so that you can take a quick survey of the user
interface to understand its basic structure.

To run the LatticeMico System from your PC desktop:

 From the Windows desktop Start menu, choose Start > Programs >
Lattice Diamond > Accessories > LatticeMico System.

The LatticeMico System interface initially opens with the MSB perspective
active by default, as shown in Figure 5 on page 16. After that, the software
opens to the last opened perspective.

LatticeMico System Perspectives
Before you begin learning about the basic tasks that you can perform in the
LatticeMico System software, it is important to understand the concept of
“perspectives” in the software and how to access the three integrated

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=71&sloc=01-01-07-01-2

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

LatticeMico32 Hardware Developer User Guide 9

functional tools, MSB, C/C++ SPE, and the Debugger, within the user
interface. Do not confuse the underlying functional tools in the LatticeMico
System software with the various perspectives in the user interface.

There are three default perspectives in the LatticeMico System software:

 MSB perspective

 C/C++ SPE perspective

 Debug perspective

Within the Eclipse framework, the three functional tools appear as different
user interfaces integrated into the same framework. A “perspective” in the
LatticeMico System software is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enables you to perform a set of particular, predefined tasks. For example, the
Debug perspective has views that enable you to debug the programs that you
developed using the C++ SPE tool. For an overview on Eclipse workbench
concept and terminologies, refer to the Eclipse Reference Manual.

When you first open LatticeMico System, the MSB perspective is the active
perspective by default. After working in the interface, the software defaults to
the last opened perspective. The Eclipse workbench that is integrated into the
LatticeMico System software has three activation buttons for quickly toggling
back and forth between the MSB, C/C++, and Debug perspectives. These
buttons are shown in Figure 3. They enable you to switch between
perspectives by clicking on them. The current active perspective is displayed
in the upper left of the window’s title bar.

The three different perspectives—the MSB, the C++ SPE, and the Debug—
include overlapping tool functions that you access through various commands
and interactive views, as illustrated in Figure 4. You can find more information
on these commands and views later in this document and in the online Help.

In Figure 4, the C/C++ perspective and the Debug perspective arrows
indicate that they share many of the same or similar command functions, so
you can perform the same exact operation in either perspective. By default,
these two perspectives share many functions because these tasks are very
closely related to each other. If you perform some changes in a view such as
the Editor view in one perspective, it will affect what you see in another
perspective that contains the same view. Do not assume that a given

Figure 3: Perspective Activation Buttons

http://help.eclipse.org/help30/

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

10 LatticeMico32 Hardware Developer User Guide

command function in the LatticeMico System is only accessible or viewable
from one perspective.

The LatticeMico System software enables you to customize existing default
perspectives, create your own perspectives, and control what views are open
in a given perspective. The following procedures tell you how to customize,
define, and reset perspectives. These procedures assume that you have not
changed the default perspective settings.

Customizing Default Perspectives
It is possible to customize existing default perspectives in LatticeMico System
by changing the existing set of commands ascribed to each perspective.

To customize an existing perspective:

1. From within a given perspective, choose Window > Customize
Perspective.

2. In the Customize Perspective dialog box, select shortcut options in the
Shortcuts tab and command options in the Commands tab.

3. Click OK.

Figure 4: Tool Functions Accessed in Perspectives

Note

Particular views and options within the MSB perspective are described throughout this
chapter as they are encountered in the design flow. For descriptions of the C/C++ SPE
and Debugger perspectives, refer to the LatticeMico System Software Developer User
Guide. More information about the graphical user interface for each perspective is
described in more detail in the LatticeMico32 online Help.

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

LatticeMico32 Hardware Developer User Guide 11

You should see the results of any changes in the interface.

Creating Custom Perspectives
In addition to the three existing default perspectives, you can also add your
own custom perspective with custom options to the user interface.

To create a new perspective:

1. From within a given perspective, choose Window > Save Perspective
As.

2. In the Save Perspective As dialog box, rename an existing default
perspective in the Name text box and click OK to save it.

3. Choose Window > Customize Perspective to customize the new
perspective that you created.

Deleting Custom Perspectives
You can delete perspectives that you defined yourself, but you cannot delete
the default perspectives that are delivered with the software workbench
environment.

To delete a custom perspective:

1. From within a given perspective, choose Window > Preferences.

The Preferences window opens.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

3. From the Available perspectives list, select the desired perspective and
click Delete.

4. Click OK.

Changing Default Perspectives
After you create a new perspective, you may want to make the new
perspective a default perspective that will automatically be available when
you return to the program.

To change the default perspective:

1. From within a given perspective, choose Window > Preferences.

2. From the Preferences window, expand the General category on the left
and select Perspectives.

The Perspectives preferences page opens.

USING THE LATTICEMICO SYSTEM SOFTWARE : LatticeMico System Software Overview

12 LatticeMico32 Hardware Developer User Guide

3. Select the perspective that you want to define as the default and click
Make Default.

The default indicator moves to the perspective that you selected.

4. Click OK.

Resetting Default Perspectives
After customizing default perspectives, you can revert back to the original set
of command options for a given perspective by resetting them in the software.

To reset your default perspectives:

1. From within a given perspective, choose Window > Reset Perspective.

2. In the Reset Perspective pop-up dialog box, click OK.

This action returns all default perspectives back to their original option
settings.

Closing and Opening Views in Perspectives
In each perspective, views are defined for each perspective that allow you to
interactively perform a task. These views are described later in this chapter
for each perspective.

At times, you may want to close views to make more space for working in a
desired view. For example, after you add all of the components that you need
in your platform, you may opt to close the Available Components view in the
MSB perspective.

To close a view in a given perspective:

 In a given perspective, click on the Close icon that appears as an “X” at
the upper right corner of the view that you wish to close.

The view closes. In some cases where the two views did not overlap, an
adjacent view moves into the vacated area in the interface, making the
adjacent view larger.

To reopen a view that you previously closed:

 In a given perspective, choose Window > Show View and select the view
that you wish to reopen from the submenu.

The view is reopened in its original area in the interface.

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico32 Platform

LatticeMico32 Hardware Developer User Guide 13

Setting Up Diamond for a LatticeMico32 Platform
Before you create your microprocessor project in LatticeMico System, set up
a project in the Lattice Diamond software that targets the device family that
will serve as the fabric in which to embed the microprocessor. You do not add
your source HDL at this point, because your Verilog or VHDL source will be
generated by the LatticeMico System software later in the flow.

Creating a New Diamond Project
After you create a new Diamond project, you can import a LatticeMico32
platform into the design. If your design includes a platform with IP cores, you
should also follow the guidelines in “Recommended IP Design Flow” on
page 14.

To create a new Diamond project for use with a LatticeMico32 project:

1. Start the Lattice Diamond software:

 On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

 On the Linux command line, run the following script:

<Diamond_install_path>/bin/ispgui.

2. Choose File > New > Project.

3. In the New Project wizard, click Next.

4. Type a name for the project in the Name box.

5. Click the Browse button and navigate to the directory where you would
like the project to be stored.

6. Under Implementation, the project name and location are automatically
filled in. If you prefer a different name for the design’s first implementation,
type a new name in the Implementation name box.

7. Click Next.

8. Click Next in the Add Source dialog box. You will be adding the source
files later.

9. In the Select Device dialog box, select the desired family, device, speed
grade, package type, operating conditions, and part name from the drop-
down menus. Leave the Show Obsolete Devices box unselected.

10. Click Next and review the project information. Use the Back button, if
needed, to make any modifications.

Note

If you are going to use LatticeMico System on the Linux platform, you must install a
stand-alone synthesis tool, such as Synplicity® Synplify Pro®, before you create an
Diamond project.

In addition, your Linux system must meet the minimum system requirements outlined
in the Diamond <release_number> Installation Guide for Linux.

USING THE LATTICEMICO SYSTEM SOFTWARE : Setting Up Diamond for a LatticeMico32 Platform

14 LatticeMico32 Hardware Developer User Guide

11. Click Finish.

The name of the new project appears in the File List pane. The initial
strategy and implementation for the project are displayed in bold type. For
more information about working with design implementations and
strategies, see the “Managing Projects” section of the Lattice Diamond
online Help.

Recommended IP Design Flow
The following design flow and guidelines will ensure that the proper data gets
passed between Diamond and LatticeMico32 for platforms that contain IP
cores. This procedure assumes that you are creating a new project and
platform and that you will be generating an IP core from the IPexpress
interface within LatticeMico System.

1. From the Windows Start Menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

LatticeMico System opens with the Mico System Builder (MSB)
perspective. MSB displays the last platform that was opened. If you
closed the platform before exiting MSB in the previous session, it displays
no platform.

2. Choose File > New Platform.

The New Platform Wizard opens. In the Directory text box, it displays the
path and directory of your Diamond project.

3. Give the new platform a name and specify the settings, as described in
“Creating a Platform Description in MSB” on page 17. To keep the
platform within the Diamond project you just created, do not change the
directory location.

4. Add the LatticeMico32 Processor to the platform and any desired memory
and peripheral components, as described in “Adding Microprocessor and
Peripherals to Your Platform” on page 19.

5. From the Available Components window, double-click the desired IP core
component—for example, Tri-Speed Ethernet Mac—to open the
Add<IP_core> dialog box.

As in the New Platform Wizard, this dialog box remembers the path and
directory of your Diamond design project, and it displays this path and
directory in the “Diamond Project” text box in the “IPexpress Interface”
section.

When you generate the IP core, the software places a copy of the IP
core’s .ngo file—for example, ts_mac_core.ngo—inside the project
directory. If you click Browse and change the location, any future changes
that you make to the IP core will not be applied to the current project.

6. Specify the desired settings in the top part of the Add<IP_core> dialog
box. In the IPexpress Interface section, do not change to a different
Diamond project directory.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 15

This is important for your current project. Maintaining the Diamond project
directory will ensure that future changes to the IP will be applied to the
current design project.

7. In the IPexpress Interface section, click Launch IPexpress.

8. In the Lattice IP Core interface, specify the desired parameters, and then
click Generate.

IPexpress generates the IP core. When the process has finished, it
displays a log, which shows the output directory and path and the files
generated.

9. Click Close to return to the Add<IP_core> dialog box.

The Generated NGO File text box is now populated with the location of
the .ngo file inside the Diamond project directory.

10. Click OK to add the newly generated IP core to your project’s platform.

11. Follow the remaining instructions in the section “Creating the
Microprocessor Platform in MSB” on page 15 to connect master and slave
ports, assign addresses and interrupt priorities, and generate the platform.

Creating the Microprocessor Platform in MSB
After you have created a new project in Diamond using your target FPGA
device, you must create a new microprocessor platform in Mico System
Builder (MSB). A platform generically refers to the hardware microprocessor
configuration, the CPU, its peripherals, and how these components are
interconnected.

Starting MSB

To start MSB:

1. If you have not yet opened the software, as described in “Running
LatticeMico System” on page 8, choose Start > Programs > Lattice
Diamond > Accessories > LatticeMico System.

During its launch process, the LatticeMico System software creates an
Eclipse workspace file. This file is created in your home directory. On the
Windows operating systems, it is in the Documents and Settings directory.
On the Linux operating system, it is in ~.

Note

If you are going to be using LatticeMico System on the Linux platform, set up
the environment to point to the location where the stand-alone synthesis tool
is installed before starting LatticeMico System, as in this example:

setenv IPEXPRESS_SYN_PATH /install/synplify/fpga_89/bin/
synplify_pro

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

16 LatticeMico32 Hardware Developer User Guide

Eclipse uses the workspace file to store information about your Eclipse
environment and the projects that you have been working on. You can
switch workspaces by selecting the File > Switch Workspace command.

2. In the upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

The MSB perspective is active by default, as shown in Figure 5.

The MSB perspective consists of the following views:

 Available Components view, which displays all the available components
that you can use to create the design:

 List of hardware components: microprocessors, memories,
peripherals, and bus interfaces. Bus interfaces can be masters or
slaves. The component list shown in Figure 5 on page 16 is the
standard list that is given for each new platform.

You can double-click on a component to open a dialog box that allows
you to customize the component before it is added to the design. The
component is then shown in the Editor view.

 Editor view, which is a table that displays the current platform definition
from the components that you have chosen in the Available Components
view. It includes the following columns:

Figure 5: MSB Perspective

Available
Components
view

Console view
(shown)

Component
Help view

Component Attributes view

Editor
view

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 17

 Name, which displays the names of the chosen component and their
ports

 Connection, which displays the connectivity between master and
slave ports

 Base, which displays the start addresses for components with slave
ports. This field is editable.

 End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

 Size, which displays the number of addresses available for
component access. This field is editable for the LatticeMico32 on-chip
memory controller and LatticeMico32 asynchronous SRAM controller
components only.

 Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

 IRQ, which displays the interrupt request priorities of all components
that have an interrupt line connected to the microprocessor. It is not
applicable to memories.

 Disable, which excludes a component from a platform definition. It can
be toggled on and off.

 Component Help view, which displays information about the component
that you selected in the Available Components view. This view is also
called “About <Component_name>,” for example, “About Timer” or “About
UART.”

 Console view, which displays informational and error messages output by
MSB

 Component Attributes view, which displays the features, parameters, and
values of the selected component. This view is read-only.

Clicking the “X” icon next to the View title closes the selected view. To reopen
a view that you previously closed, choose Window > Show View and the
desired view submenu option. For a detailed explanation of the available
views, refer to the LatticeMico32 online Help.

Creating a Platform Description in MSB
After you have created a new project in Lattice Diamond, you must create a
new microprocessor platform description in Mico System Builder (MSB). A
platform generically refers to the hardware microprocessor configuration that
includes the CPU component, its peripheral components, and the
interconnectivity between them.

You must perform two major steps in MSB to create a new platform: create an
.msb file and add your components to the file.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

18 LatticeMico32 Hardware Developer User Guide

Creating a Platform Description File
The first step in creating a new platform is to use MSB to create an .msb file.
This file will eventually contain a complete definition of your microprocessor
platform.

To create a new microprocessor .msb file:

1. In the MSB perspective, choose File > New Platform.

The New Platform Wizard dialog box now appears, as shown in Figure 6.

2. In the New Platform Wizard dialog box, enter the name of the platform in
the Platform Name box.

3. In the Directory box, browse to the folder in which you want to store your
platform files and click OK.

4. If the design that will incorporate this platform is in pure Verilog code,
leave Create VHDL Wrapper unselected.

If the design that will incorporate this platform is in mixed Verilog/VHDL,
do the following.

a. Select Create VHDL Wrapper.

Figure 6: New Platform Wizard Dialog Box

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 19

b. If you want to continue using the NGO flow, select Create VHDL NGO
File. Otherwise, leave this option cleared.

5. In the Board Frequency box, enter the board frequency.

6. In the Arbitration Scheme box, select the desired arbitration scheme from
the pull-down menu.

7. In the Device Family section, select a Lattice family and a device from the
pull-down menus.

8. If you want to duplicate the platform, select Clone Platform, and then
browse to the platform description (.msb file) that you want to duplicate.

The Clone Platform option is useful if your platform contains several
peripherals and you want to retain them but experiment by modifying their
settings. When you select this option, the Platform Templates and the
Description boxes are no longer available, but the Select Platform option
becomes available.

9. If you have not selected Clone Platform, select the desired template from
the Platform Templates list; or select Blank for a new template.

10. Click Finish.

You now have created an .msb file. This file will hold the contents of your
platform: a CPU, its peripherals, and the interconnections between them.
Currently, the platform description contains no components. You will add
components in the following procedures.

Adding Microprocessor and Peripherals to Your
Platform
In the MSB perspective, you can add CPU and peripheral component
definitions to your hardware platform. These definitions are added to the .msb
file, which is currently empty if you did not select a template or duplicate a
platform. The microprocessor and its peripherals are called components
throughout this document.

Warning!

If you are cloning a platform that contains IPs and you select a different device
family, you will need to rerun IPexpress for the IPs in the platform. If you do not
rerun IPexpress, you might encounter problems during synthesis.

Note

If you installed LatticeMico System without installing Diamond, you cannot include in
the platform any PLLs or any IPs, which are components that you download from
IPexpress. In addition, you cannot generate a VHDL wrapper for the platform. If you
want to perform these functions, you must install LatticeMico32 with the Diamond
software. See the references given in “LatticeMico System Requirements” on page 8
for information on installing Diamond and LatticeMico System.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

20 LatticeMico32 Hardware Developer User Guide

For information on creating your own custom components to add to your
platform, see See “Creating Custom Components in LatticeMico System” on
page 51.

To add the LatticeMico32 microprocessor to the design:

1. Double-click on the LatticeMico32 component listed under CPU in the
Available Components view. If you want to see information about it before
you place it in the Editor view, click it once.

2. Set the options in the Add LatticeMico32 dialog box and click OK.

LatticeMico System provides several peripheral components, I/Os, and
memories that you can add to your microprocessor design structure. For
example, some available peripherals include UART, a timer, an asynchronous
SRAM controller, a GPIO, and a parallel flash component. In the MSB
perspective, you can view all of the component types that you can add in the
Available Components view. To aid in selection and option settings, you can
view a complete description of each available component type. See
“Accessing Component Help and Data Sheets” on page 20 for instructions.

To add a peripheral component to the design:

1. Double-click on the component in the Available Components view, set any
options in the dialog box that appears, and click OK.

2. After you have added the last peripheral, specify the connections between
the master and slave ports by clicking on the appropriate rounded
endpoints in the Connection column, as described in “Connecting Master
and Slave Ports” on page 21.

Accessing Component Help and Data Sheets
For each component that you can add to your platform, LatticeMico System
provides a short online Help topic that describes its user-configurable
parameters, as well as a complete data sheet that describes the detailed
features and operations of the component. The Show View command enables
you to view the appropriate Help topic in a separate view each time that you
select a component in the Available Components view.

To view the online Help for a particular component:

1. In the MSB perspective, choose Window > Show View > Component
Help.

The Component Help view opens in a separate window.

2. In the Available Components view, select the desired component.

The appropriate component topic appears in the Component Help view.

To view the data sheet for a component:

 In the Component Help view, click on the document icon to view a
complete description of a given component.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 21

To quickly maximize the Component Help view, press Ctrl+M. Press Ctrl+M
again to return to the previous size.

Connecting Master and Slave Ports
The LatticeMico32 CPU component acts as the master to the peripheral slave
components that are attached to the bus structure, allowing it to have
unidirectional control over those devices.

Only certain components, such as the LatticeMico32 processor and the
LatticeMico32 DMA controller, have master ports. A master port can initiate
read and write transactions. A slave port cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

 A master port can be connected to one or more slave ports.

 A component can have one or more master ports, one or more slave
ports, or both.

Attached to one or more slave ports, master port signals initiate read and
write transactions that are communicated to the targeted slave device, which
in turn responds appropriately. Generally, a component can have one or more
master ports, one or more slave ports, or both.

Arbitration Schemes
The connections that MSB makes depend on which arbitration scheme you
choose while creating the platform.

Shared-Bus Arbitration MSB automatically generates a central arbiter
when it generates the microprocessor platform to allow multiple master ports
access to multiple slave ports over a single shared bus.

Figure 7 shows the connections made by MSB when the shared-bus
arbitration scheme is chosen.

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the bus. Master ports
have default priorities assigned in their components' .xml files when you add
the components to the platform. The master ports of the LatticeMico32
processor have defaults of 0 and 1. The master ports of the DMA controller
have defaults of 2 and 3. However, you can change these priorities by
selecting Platform Tools > Edit Arbitration Priorities and changing the priorities
in the Edit Arbitration Priorities dialog box. When you perform a DRC check,
MSB checks the validity of the priorities that you have changed.

Slave-Side Arbitration Figure 8 shows the connections made by MSB
when the slave-side arbitration scheme is chosen.

Two types of slave-side arbitration are available: slave-side and round-robin.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

22 LatticeMico32 Hardware Developer User Guide

Slave-Side Fixed Arbitration The slave-side fixed arbitration scheme
enables multiple masters to access multiple slaves at the same time. In this
scheme, each multi-master slave has one arbiter. Arbitration between
different master ports occurs at the slave side. This scheme enables multiple
master ports to obtain access to multiple slave ports, as long as they do not
try to access the same slave at the same time.

Each master port connected to the arbiter has priority of access to the slave
ports. In the case of simultaneous access requests by multiple master ports,
the highest-priority master port is granted access to the slave. Master ports

Figure 7: Connections Made by MSB for Shared-Bus Arbitration

LM32 CPU (Master)

Instruction
port

Data port
Shared bus
arbiter

Peripheral 4

Peripheral 2

Peripheral 3

Peripheral 1

Figure 8: Connections Made by MSB for Slave-Side Arbitration

LM32 CPU (Master)

Instruction
port

Data port

Peripheral 4

Peripheral 2

Peripheral 3

Peripheral 1

Arbiter 2

Arbiter 1

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 23

have default priorities assigned in their components' .xml files when you add
the components to the platform. Since each multi-master slave has its own
arbiter in this scheme, arbitration priorities are assigned per slave. However,
you can change these priorities by selecting Platform Tools > Edit Arbitration
Priorities and changing the priorities in the Edit Arbitration Priorities dialog
box. When you perform a DRC check, MSB checks the validity of the priorities
that you have changed.

Slave-Side Round-Robin Arbitration The slave-side round robin
arbitration scheme is similar to the slave-side fixed arbitration scheme in that
each multi-master slave has one arbiter, but all masters have the same
priority. The arbiter grants access to all the masters that request a slave in a
round-robin, or circular, fashion. Once the requesting master is finished with
its transfer, the next master obtains access to the slave.

In the slave-side round-robin scheme, the Platform Tools > Edit Arbitration
Priorities command is not available.

Comparing the Arbitration Schemes
The difference between the slave-side fixed arbitration scheme and the slave-
side round-robin arbitration scheme is how the arbiter grants requesting
masters access to the bus. The slave-side fixed scheme always gives the
highest-priority master access to the bus if that master requests it. The slave-
side round-robin scheme grants masters access to the bus in a round-robin
fashion.

Both the slave-side fixed and the slave-side round-robin arbitration schemes
use separate arbiters for each multi-master slave, so the area of the platforms
generated with these schemes is slightly larger than that resulting from the
shared-bus arbitration scheme. For example, for a typical system consisting
of four multi-master slaves, the slave-side fixed and the slave-side round-
robin schemes require four arbiters, but the shared-bus scheme requires only
one arbiter. The area required by the system with the slave-side arbitration
schemes is approximately three times more than the area required by the
system with the shared-bus arbitration scheme.

The slave-side arbitration schemes offer better performance than the shared-
bus arbitration scheme. For example, the SoC used in this topic (a CPU with a
DMA controller) yields better performance with a slave-side arbitration
scheme than with a shared-bus arbitration scheme. When a slave-side
arbitration scheme is used in this SoC, the DMA controller's read and write
ports can work in parallel and transfer the data from the external SRAM
memory to on-chip memory. When a shared-bus arbitration scheme is used in
the SoC, data cannot be transferred in parallel because there is a single
arbiter for both memories.

Whether you select a slave-side fixed or slave-side round robin arbitration
scheme depends on the application. If the application requires each master to
have equal access to a slave, the slave-side round-robin scheme is a better
option. If the application requires a certain master to have access to a slave
as soon as the current master is finished with the data transfer, the slave-side
fixed scheme is the best option.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

24 LatticeMico32 Hardware Developer User Guide

Specifying Connections Between Master and Slave
Ports
You interactively make your master/slave connections between these ports in
the Editor view by clicking on those connection line endpoints and then by
saving your project. The .msb file is updated with this information. Figure 9 on
page 25 illustrates the basic structure of this connection between the master
and the slave.

To specify the connections between master and slave ports:

1. Ensure that you have first added your desired components and that they
appear in the Editor view in the MSB perspective.

2. If you want to select a different arbitration scheme, choose Platform
Tools > Properties, select the desired arbitration scheme from the pull-
down menu in the Arbitration Scheme box, and click OK.

3. In the Editor view’s Connection column, for each listed slave component,
click on the blue-outlined, rounded endpoint to complete the connection to
the CPU's master ports. The rounded endpoint now appears filled in; that
is, it turns solid blue, indicating that the slave is “connected” to the master
port.

Connection points occur at the intersection of the vertical lines down from
the master at the slave horizontal lines and coincide with a desired
connection to master instruction, data ports, or both. You may or may not
wish to connect to both master ports, depending on the necessary input
on a given slave component.

For example, suppose that a CPU's master ports are composed of an
instruction port and a data port. You want to connect the CPU's instruction
port, but not its data port, to a UART's slave port. You would go to the
Connection column in the UART row and click on the outline circle linked
to the instruction port to fill it in, but not on the outlined circle linked to the
data port.

4. Choose File > Save or click the Save toolbar button.

The connections that you made are saved in the .msb file.

Figure 9 shows an example of the connections that result in the Editor view
when the shared-bus arbitration scheme is used. All master signal connection
lines are represented in black, and all slave connection lines are represented
in blue.

Figure 10 shows an example of the connections that result in the Editor view
when the slave-side fixed and slave-side round-robin arbitration schemes are
used.

In the slave-side fixed arbitration scheme, you can change the priorities of the
master ports, so the Edit Arbitration Priorities command is available on the
Platform Tools menu, as shown in Figure 11. However, in the slave-side
round-robin arbitration scheme, you cannot change the priorities of the master
ports because the arbitration between the master ports occurs in a round-
robin fashion. The Edit Arbitration Priorities command on the Platform Tools

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 25

menu is therefore disabled when you use the slave-side round-robin
arbitration scheme, as shown in Figure 12.

Figure 11 shows the Platform Tools menu with the Edit Arbitration Priorities
command enabled in the MSB perspective after all components have been
added in a slave-side fixed arbitration scheme.

Figure 12 shows the Platform Tools menu with the Edit Arbitration Priorities
command disabled in the MSB perspective after all components have been
added in a slave-side round-robin arbitration scheme.

Figure 9: Connecting Master/Slave Ports in Editor View in Shared-Bus

Arbitration Scheme

Figure 10: Connecting Master/Slave Ports in Editor View in Slave-Side

Fixed and Slave-Side Round-Robin Arbitration Schemes

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

26 LatticeMico32 Hardware Developer User Guide

Changing Master Port Arbitration
Priorities
When you first generate your platform, LatticeMico System automatically
assigns priorities through the shared-bus and slave-side fixed arbitration
schemes to the master ports to determine in which order they can access the
slave ports through the arbiter. You can change these priorities only for the
shared-bus and slave-side fixed arbitration schemes. This option is disabled
for the slave-side round-robin arbitration scheme, since it is not applicable.

To change master port arbitration priorities:

1. In the MSB perspective, click in the Editor view to make it active and
choose Platform Tools > Edit Arbitration Priorities from the menu, or
right-click in the Editor view and choose Edit Arbitration Priorities.

2. In the Edit Arbitration Priorities dialog box, click in the Priority column
next to the master port whose priority you wish to change.

3. Type in the new priority number.

4. Click OK and choose File > Save to save this in the .msb file.

Figure 11: MSB Perspective After Adding All Components in a Slave-Side Fixed Arbitration Scheme

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 27

When you perform a DRC check, MSB checks the validity of the priorities that
you have changed.

When you assign arbitration priorities to the master port of a slave in the
slave-side fixed arbitration scheme, the number of priorities should not be
greater than the total number of master ports for that slave. For example, if a
slave has three master port values, the arbitration priorities would be 0, 1, and
2. If you defined more than three values for any master, an error message
would appear, as shown for the UART slave example in Figure 13.

Assigning Component Addresses
After you add your components to your microprocessor platform, you must
ensure that you assign unique address locations to each.

If you look in the Editor view in the Base column, you will notice that the
components, after initial setup, all are assigned to the same default address
location on creation, unless you actively assign a unique base address in a
component dialog box when you first add the component to the platform. Any

Figure 12: MSB Perspective After Adding All Components in a Slave-Side Round-Robin Arbitration

Scheme

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

28 LatticeMico32 Hardware Developer User Guide

duplicate address locations of any component are, of course, not viable. This
section provides procedures for assigning these unique address locations.

MSB can automatically generate an address in hexadecimal notation for each
component with slave ports. Or, you can assign a component an individual
address. Components with master ports are not assigned addresses.

Before you generate addresses, you can lock the base addresses of
individual components so that MSB will not assign them new addresses. See
“Locking Component Addresses” on page 29 for details.

Automatically Assigning Component Addresses
Initially, you may want the software to automatically generate assigned
address locations for the components in your platform and edit them as
necessary later.

To automatically assign component addresses:

1. In the MSB perspective, choose Platform Tools > Generate Address or
click the Generate Address toolbar button . You can also right-click in
the Editor view and choose Generate Address from the pop-up menu.

Figure 13: Edit Arbitration Priorities Error Message

Note

Address and size values that appear in italic font in the Editor view cannot be changed.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 29

Address locations for all of the existing components that you have created
in your MSB session are now automatically generated.

2. Choose File > Save.

The assigned component addresses are now saved in the .msb file.

Locking Component Addresses
Locking a component address prohibits the software from changing it after
you automatically assign component addresses.

To lock any addresses from being changed after automatic address
generation:

1. In the MSB perspective Editor view, select the box for the desired
component in the Lock column.

This step activates a lock during your session.

2. Choose File > Save.

The locked address is now saved in the .msb file.

Manually Editing Component Addresses
You can manually assign an address to an individual component after
automatically assigning an address to it, or you can assign locations as you
wish by manually editing the locations at any time after initial component
creation.

To individually change the addresses of components:

1. In the MSB perspective Editor view, click on the desired component’s
address in the Base column.

The address becomes editable.

2. Manually type in the desired address hexadecimal location.

3. Choose File > Save.

The edited addresses are now saved in the .msb file.

Note

To assign an address for only one component, lock all other components.

Note

You can only edit the Base address. You cannot edit the End address. The value
of the end address is equivalent to the value of the base address plus the value of
the size.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

30 LatticeMico32 Hardware Developer User Guide

Assigning Component Interrupt
Priorities
Assign an interrupt request priority (IRQ) to all components that feature a
dash in the IRQ column of the Editor view. You cannot assign interrupt
priorities to components lacking this dash in the IRQ column, such as
memories and CPUs.

To assign interrupt priorities for all components other than memories
and the CPU:

1. In the MSB perspective, choose Platform Tools > Generate IRQ or click
the Generate IRQ toolbar button . You can also right-click in the Editor
view and choose Generate IRQ from the pop-up menu.

2. Choose File > Save.

The interrupt priorities are now saved in the .msb file.

Performing Design Rule Checks
You can ensure that your design conforms to the design rules for a given
device by performing a design rule check (DRC).

To perform a design rule check and verify the addressing:

 In the MSB perspective, choose Platform Tools > Run DRC or click the
Run DRC toolbar button . You can also right-click in the Editor view
and choose Run DRC from the pop-up menu.

Saving the Microprocessor Platform
After you do a number of tasks to set up your microprocessor platform, you
should save your changes.

To save your platform changes in MSB:

 In the MSB perspective, choose File > Save.

This operation specifically saves any changes you made to the .msb file
and any option settings you may have applied.

Generating the Microprocessor
Platform
Generating the microprocessor platform saves and updates the platform
definition by updating the .msb file. It also does the following:

 Assigns addresses to components without locked addresses

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 31

 Assigns interrupt priorities

 Performs design rule checking (DRC)

 Generates a platform Verilog structural implementation

 Creates hardware and software implementation support files for the
components that are used in the platform

 For the Verilog user, creates an instance template for the platform that can
be used to incorporate the platform within a larger design

 For VHDL user (a user who has selected “Create VHDL Wrapper” in the
New Platform dialog box), creates a VHDL entity/architecture definition
that instantiates the platform as a black box

 For the VHDL user who has selected the optional “Create VHDL NGO
File,” synthesizes the platform during the generation step and creates a
series of .ngo files that represent the post-synthesis netlist of the platform.
These files are included in the rest of your VHDL design after it has been
synthesized.

To generate your microprocessor platform in MSB:

 In the MSB perspective with the Editor view activated, choose Platform
Tools > Run Generator or click the Run Generator toolbar button . To
activate the Editor view, click on the Editor view tab or anywhere inside
the view. You can also right-click and choose Run Generator from the
pop-up menu.

If you edit the .msb file after it has been generated, save it by choosing
File > Save As. An asterisk (*) preceding <platform_name>.msb above
the Editor view indicates that the <platform_name>.msb file has been
edited.

During the generation process, MSB creates the following files in the
<Diamond_install_path>\<platform_name>\soc directory:

 A <platform_name>.msb file, which describes the platform. It is in XML
format and contains the configurable parameters and bus interface
information for the components. It is passed to C/C++ SPE, which extracts
the platform information (for example, where components reside in the
memory map) required by the software that will run on the platform. It is
used by users of the Verilog flow and the VHDL flow.

 A <platform_name>.v (Verilog) file, which is used by both Verilog and
VHDL users:

Note

If you did not set the IPEXPRESS_SYN_PATH environment variable before
starting Synplify Pro, as noted in “Starting MSB” on page 15, or if Synplify Pro
failed to complete the synthesis, MSB may issue the following error message:

ERROR: edif2ngd: Cannot open input file
"<platform_name>.edi".

If you receive this error message, verify that the IPEXPRESS_SYN_PATH is set
correctly, and check the synthesis output in the log file or .srr file in the soc/ngo/
rev_1 directory to see if the error is a synthesis syntax error.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

32 LatticeMico32 Hardware Developer User Guide

 Flow for Verilog users – The <platform_name>.v file is used in both
simulation and implementation. It instantiates all the selected
components and the interconnect described in the MSB graphical user
interface. This file is the top-level simulation and synthesis RTL file
passed to Diamond. It includes the .v files for each component in the
design, which are used to synthesize and generate a bitstream to be
downloaded to the FPGA. The .v files for each component reside
under the top-level <platform_name>.v file.

 Flow for VHDL users – The <platform_name>.v file is used in
simulation and implementation. If “Create VHDL NGO File” has been
selected, the <platform_name>.v file is used for simulation only, and
the <platform_name>_vhd.vhd file is used for implementation. In the
NGO flow, the <platform_name> component is instantiated as a black
box, and this instantiation is then automatically combined with the
<platform_name>.ngo file after synthesis to complete the
implementation netlist.

A mixed-mode Verilog and VHDL simulator is needed for functional
simulation in the flow for VHDL users.

 A <platform_name>_vhd.vhd (VHDL) file, if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
VHDL design. The <platform_name>_vhd.vhd file contains the top-level
design used for synthesis. This top-level design file instantiates the
<platform_name> component as a black box. If the optional “Create VHDL
NGO File” has been selected, the <platform_name>_vhd.vhd file is
combined with the <platform_name>.ngo file after synthesis to complete
the post-synthesis netlist. The common name <platform_name> is used to
make this association.

 A <platform_name>.ngo file, which is a Diamond database file that is a
synthesized version of <platform_name>.v. This file is created if the
optional “Create VHDL NGO File” has been selected, along with “Create
VHDL Wrapper.” It contains the same design information as
<platform_name>.v. For more information on the .ngo file, see the
“Building Modular Projects Using NGO Flow” topic in the Diamond online
Help.

MSB generates a <platform_name>_inst.v file, which contains the Verilog
instantiation template to use in a design where the platform is not the top-level
module. For the VHDL user, no equivalent file is generated that contains the
component declaration and component instance/portmap template for the
platform wrapper <platform_name>_vhd.vhd. The generated
<platform_name>_vhd.vhd file can be used to create one, if required.
Figure 14 shows the instantiation template for the platform1 platform.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 33

Implementing Shared Bidirectional Bus
to Board
Some components in the microprocessor platform—such as the ASRAM, the
flash controller, and the SDRAM controller—have bidirectional data buses.
Tristates in the platform are used extensively to implement them. This section
gives some guidelines on handling tristates.

Implementing a Shared Board Bus in MSB
When you use an evaluation board issued by a vendor other than Lattice
Semiconductor, you might need to use tristates to implement a bidirectional
data bus between the board and LatticeMico32 microprocessor platform. A
shared bidirectional data bus reduces pin count and board traces.

If you select “Share External Ports” for the ASRAM and flash components in
the generated <platform_name>.v file in the Verilog flow, the shared bus
connection will have a fixed pattern similar to the following:

assign sramflashDATA = !sramsram_wen ? sramsram_data_out :
!flashsram_wen ? flashsram_data_out :
32'bZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ;

If you want to change that connection, you must manually modify the code in
the <platform_name>.v file in the ./<platform_name>/soc directory by adding
logic to the tristates so that multiple LatticeMico32 components can share this
bidirectional bus.

IF you want to modify the shared bidirectional data bus in certain platform
components in the VHDL, you must modify the verilog code to change the
tristate control. You can do this by either pulling the tristates outside of the
platform or making the changes within the platform. If you pull the tristates

Figure 14: Verilog Instantiation Template

platform1 platform1_u (
.clk_i(clk_i),
.reset_n(reset_n)
, .sramsram_csn(sramsram_csn) //
, .sramsram_be(sramsram_be) // [3:0]
, .flashsram_csn(flashsram_csn) //
, .flashsram_be(flashsram_be) // [3:0]
, .flashsram_byten(flashsram_byten) //
, .flashsram_wpn(flashsram_wpn) //
, .flashsram_rstn(flashsram_rstn) //
, .LEDPIO_OUT(LEDPIO_OUT) // [10-1:0]
, .uartSIN(uartSIN) //
, .uartSOUT(uartSOUT) //
, .sramflashOEN(sramflashOEN)
, .sramflashWEN(sramflashWEN)
, .sramflashADDR(sramflashADDR)// [24:0]
, .sramflashDATA(sramflashDATA)// [31:0]
);

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

34 LatticeMico32 Hardware Developer User Guide

from the platform and you are using the VHDL wrapper, then you must also
modify the <platform_name>_vhd.vhd file in the ./<platform_name>/soc
directory.

However, if you regenerate the platform in MSB after you add logic to the
tristates, these additions will be lost in the automatically generated
<platform_name>.v or <platform_name>_vhd.vhd file in the
./<platform_name>/soc directory. To avoid losing your work, copy the modified
<platform_name>.v or <platform_name>_vhd.vhd file to another location,
regenerate the platform, and then copy the modified <platform_name>.v or
<platform_name>_vhd.vhd file back to the ./<platform_name>/soc directory.

Connecting Bidirectional Ports of a Platform
Tristates can only be connected to external ports.

Avoiding Double-Buffered Bidirectional Ports in
VHDL NGO Flow
In the flow for VHDL users who have selected the optional “Create VHDL
NGO File,” the platform resides in an .ngo file, and the VHDL wrapper file is
used to connect to the other VHDL user logic. No I/O pad is inserted in the
.ngo file except these bidirectional signals. To avoid double-buffering these
bidirectional ports, you must declare them as black-box pads. This declaration
tells the synthesis tool that a black-box port has an I/O buffer already
implemented inside the black box and therefore the synthesis tool should not
put another I/O buffer for this port in the netlist that it is creating. Here is an
example:

component platform_xxx
port(
D: in std_logic;
E: in std_logic;
GINOUT : inout std_logic_vector(2 downto 0);
Q : out std_logic
);
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of platform_xxx: component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of platform_xxx: component is
"GINOUT(2:0)";

When you declare the I/O ports as black-box pads during VHDL synthesis, the
synthesis tools do not insert I/O pads for these signals and therefore avoid
double buffering.

Figure 15 further clarifies the connection. For all non-bidirectional I/Os, the I/O
buffers (in green) are provided by the VHDL wrapper during VHDL synthesis.
The bidirectional I/O buffers (in red) are provided by the .ngo file itself.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 35

Synthesizing the Platform to Create an
EDIF File (Linux Only)
If you use Linux, you must now synthesize your platform to create an EDIF
file.

Using Synplicity Synplify Pro

To use Synplicity Synplify Pro as your synthesis tool:

 Add the <platform_name>.v file into your Synplify Pro project.

Using Mentor Graphics Precision RTL Synthesis

To use Mentor Graphics Precision RTL Synthesis as your synthesis
tool:

1. Add the <platform_name>.v file into your Precision RTL project.

2. Add the following directory paths into your Precision RTL search path:

 <platform_name>/soc

 <platform_name>/components/lm32_top/rtl/verilog

 <platform_name>/components/<uart_core>/rtl/verilog, where
<uart_core> is the name of the UART

 <platform_name>/components/<wb_sdr_ctrl>/rtl/verilog, where
<wb_sdr_ctrl> is the name of the SDRAM controller

If your platform includes an OPENCORES I2CM component, you must add an
additional directory to the search path as follows:

Figure 15: I/O Buffers in VHDL Wrapper and in .ngo File

VHDL wrapper

Bidirectional I/Os

Inputs or outputs

Platform .ngo file

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

36 LatticeMico32 Hardware Developer User Guide

<platform_name>/components/i2cm_opencores/rtl/verilog

See the Synthesis Data Flow Tutorial for step-by-step information about
synthesizing designs in Precision RTL Synthesis and Synplify Pro.

To create an EDIF file:

1. Start the synthesis tool.

2. Create a new project in the tool.

3. Add the Verilog HDL file output by MSB to the project.

4. Set the target device and the options.

5. Compile the project and specify the timing objectives.

6. Synthesize the design to generate an EDIF (.edn or .edf) file.

Design Guidance for Platform
Performance
Setting preferences and performing static timing analysis can help achieve
higher platform design performance or minimize area utilization. The following
documents give instructions and examples for setting design constraints:

 Achieving Timing Closure in FPGA Designs – This tutorial provides
techniques for optimizing design performance and demonstrates the
influence of map and place-and-route preferences. It uses a system-on-
chip design that utilizes an OpenRISC 1200 processor and Wishbone on-
chip bus.

 FPGA Design Guide – The chapter "Strategies for Timing Closure" gives
instructions for constraining your design, performing static timing analysis,
and floorplanning.

Additionally, see the following sections of the Diamond online Help

 Constraints Reference Guide – This section provides syntax and
descriptions for all preferences

 Applying Design Constraints – This section consists of guidelines for
setting preferences

Generating the Microprocessor
Bitstream
For Windows, you now return to Diamond to import the platform source files.
You import the Verilog file output by MSB; or for mixed Verilog/VHDL, you
import both the Verilog and VHDL files output by MSB. For Linux, you import
the EDIF file output by the synthesis tool. You also specify the connections
from the microprocessor to the chip pins by importing an .lpf file. You can
optionally perform functional simulation and timing simulation. Primarily, you

http://www.latticesemi.com/documents/doc17356x21.pdf
http://www.latticesemi.com/lit/docs/manuals/fpga_design_guide.pdf

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 37

will build the database; map, place, and route the design; and generate the
bitstream in Diamond so that you can download that configuration bitstream to
the chip on a circuit board.

Configuring the Diamond Environment

1. In Diamond, choose Tools > Options.

2. Under “Environment” in the pane on the left, select General.

3. If the "Copy file to Implementation's Source directory when adding existing
file" is selected, clear the selection and click OK.

Importing the Verilog or VHDL File on Windows
The process of importing the generated platform file into Diamond is the same
for Verilog and VHDL, except that you must take a few additional steps when
you import a VHDL file.

To import the Verilog (.v) and VHDL (.vhd) files output by MSB on the
Windows platform:

1. Choose File > Add > Existing File.

2. In the dialog box, browse to the <platform_name>\soc\ location and do
one of the following:

 Select the <platform_name>.v file (Verilog) and click Add.

 If your design is mixed Verilog/VHDL, select both the
<platform_name>.v file and the <platform_name>_vhd.vhd file and
click Add.

3. If your design is mixed Verilog/VHDL and you selected the Create VHDL
Wrapper option to generate <platform_name>_vhd.vhd without selecting
the Create VHDL NGO File option, perform these additional steps:

a. Choose Project > Property Pages.

b. In the dialog box, select the project name that appears in bold type
next to the implementation icon .

c. In the right pane, click inside the Value cell for “Top-Level Unit” and
select <platform_name>_vhd from the drop-down menu.

d. Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

e. In the dialog box, click the New Search Path button , browse to the
<platform_name>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

g. Click OK to return to the Diamond main window.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

38 LatticeMico32 Hardware Developer User Guide

Importing the EDIF File on Linux
For Linux, you import the EDIF file generated by the synthesis tool into
Diamond.

To import the EDIF (.edn or .edf) file output by MSB on Linux:

1. Choose File > Add Existing File.

2. In the dialog box, browse to the location of your .edn or .edf file, select the
file, and click Open.

Connecting the Microprocessor to FPGA Pins
You have two options for connecting the microprocessor to the FPGA pins:

 Manually create the pin constraints and import them into Diamond.

 Import a pre-created constraints file that is part of the platform templates
in the LatticeMico System software into Diamond.

For information about pin constraint assignments, see the “Applying Design
Constraints” and “Constraints Reference Guide” in the Lattice Diamond online
Help.

You can import the pin constraints specified for a template platform into
Diamond. When you use a platform template, MSB copies the logical
preference (.lpf) file associated with it into the ..\soc directory path of your
LatticeMico32 project.

To import the .lpf file:

1. In the Diamond, choose File > Add > Existing File.

2. Browse to the .lpf file and click Open.

Generating the Bitstream
Now you will generate a bitstream file to download the microprocessor to the
FPGA. This process automatically synthesizes, translates, maps, places, and
routes the design before it generates the bitstream file.

To generate a bitstream file:

1. In Diamond, select the Process tab.

2. In the Process pane, under Export Files, double-click Bitstream File.

The Diamond software generates the programming file in your project
folder. It is now ready for downloading onto the device.

USING THE LATTICEMICO SYSTEM SOFTWARE : Creating the Microprocessor Platform in MSB

LatticeMico32 Hardware Developer User Guide 39

Downloading Hardware Bitstream to the
FPGA
After you generate the bitstream file, you can download it to program your
FPGA device on a circuit board. You can use Diamond Programmer to
accomplish this task.

To download the hardware bitstream using the Diamond Programmer:

1. In the Diamond, choose Tools > Programmer.

2. The Programmer opens, displaying the bitstream file you have generated
for the current design in the Data File box.

3. In the Programmer user interface, click Auto Detect.

The Programmer can recognize the USB download cables plugged into
your PC. If more than one USB cable is connected to your PC, the
Programmer detects all available cables, but selects the first cable that it
detects.

To select a different USB cable, select HW-USBN-2A (Lattice HW-USBN-
2A USB port programming cable) or HW-USBN-2B (FTDI) (Lattice HW-
USBN-2B (FTDI) USB programming cable) in the Cable Type box, and
change the connection port in the Port drop-down list.

4. Click Scan Device.

The Programmer scans the printed circuit board connected to your
computer with the specified cable and port, and it lists the devices in the
Device list.

5. In the Device list, select the device that matches the target device of the
current design.

6. Under XCF File, do either of the following:

 If you want to use an existing chain file to program the device, select
Downloading with existing XCF file. Then click Browse to locate
the file.

 If you have no existing chain file for programming, select Save to XCF
file to create a new XCF file. Then click Browse to specify the name
and location for the new file.

7. Click Download.

The Programmer downloads the data file to the target device. A Status
box indicates the progress of the operation, reports any errors, and shows
whether the operation was successful.

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

40 LatticeMico32 Hardware Developer User Guide

Performing HDL Functional Simulation of
LatticeMico32 Platforms

In most cases, the platforms that are created using the LatticeMico System
Builder work correctly in hardware because the existing components have
been tested many times. New custom components, however, start as
untested elements and will probably need debugging through HDL functional
simulation.

This topic describes the process for using an HDL simulation tool such as
Mentor Graphics ModelSim™ or Aldec Active-HDL™. The method described
is applicable to designs written in VHDL, Verilog, or a combination of both.
The example LatticeMico32 platform in this topic uses the FPGA's on-chip
memory, Embedded Block Ram (EBR). The firmware (C/C++ code) is
compiled using the Lattice C/C++ SPE and Debug software, and a memory
initialization file is created that is loaded into the on-chip memory. It is possible
to locate the firmware in other off-chip memories as long as there exists a
behavioral model for the memory.

The example application used in this topic is the “Hello World” application,
which is available as a predefined C/C++ SPE project. See Chapter 2 and
Chapter 6 of the LatticeMico System Software Developer User Guide for more
information about creating the “Hello World” application, compiling it, and
deploying it to the EBR.

The platform in Figure 16 shows a Verilog design (platform) that is
instantiated from within a VHDL module.The platform is an instantiation of
Platform C with the following additional components:

 EBR – At least one EBR is required to hold the software/firmware.
Figure 17 on page 41 shows the design’s EBR component setup, along

Figure 16: Platform Setup

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

LatticeMico32 Hardware Developer User Guide 41

with the deployed software. The EBR memory size must be large enough
to hold your C/C++ application. In this example, the memory is 128KB,
which is more than enough for the “Hello World” application but too large
for most FPGAs to support.

 UART – The UART is an optional component that redirects stout and
sterr to the HDL simulator console.

Refer to the UART data sheet for more details on how to use the UART for
redirecting stout and stderr to the HDL simulator console.

Configuring the Platform with
LatticeMico System Builder
The LM32 processor instance in the platform, shown in Figure 16, must be
configured to permit functional simulation of software applications through any
HDL simulator. The following steps are required:

Ensure that the LM32 Exception Base Address (EBA) points to the base
address of the memory component that contains the deployed software/
firmware. This address must be aligned to a 256-byte boundary, since the
hardware ignores the least-significant byte. Unpredictable behavior occurs
when the exception base address and the exception vectors are not aligned
on a 256-byte boundary. In the platform shown in Figure 16 on page 40, the
software is deployed in EBR. Therefore, modify the “Location of Exception
Handlers” field in the LM32 processor dialog box to point to the base address
of EBR (0x00020000), as shown in Figure 18.

Directory Structure
When MSB is used to generate a platform, a set of directories is created in a
top-level platform directory. The top-level directory is automatically assigned
the same name as the MSB project name, which is Platform in this example.

<path_to_toplevel_directory>/Platform
components
soc

Figure 17: EBR Setup

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

42 LatticeMico32 Hardware Developer User Guide

The components directory contains RTL and software drivers that pertain to
each of the components instantiated within the design. Important files in the
soc directory include:

 system_conf.v – This file contains the auto-generated macro definitions of
the various components in the design. As mentioned previously, this file
must be modified if the “Enable Debug Interface” option is selected in the
LM32 processor dialog box.

 platform.v – This file contains the top-level module of the design, which is
Platform in this example.

 pmi_def.v – This file contains module definitions of all the PMI modules
used in the design. For the purpose of functional simulation, the PMI
behavioral models must be provided. See “Replace PMI Black-box
Instantiations with Behavioral Models.” on page 46.

Creating an Optional VHDL Wrapper
For mixed-language designs, the VHDL Wrapper is required for simulation. To
demonstrate mixed-language functional simulation, a VHDL wrapper has
been created for the top-level module in the design example. The example
wrapper, platform_vhdl.vhd, is located in the soc directory and is shown in
Figure 19 on page 43.

Figure 18: LM32 Setup

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

LatticeMico32 Hardware Developer User Guide 43

Figure 19: VHDL Wrapper

library ieee;
use IEEE.std_logic_1164.all;
entity Platform_vhd is
 port (
 clk_i : in std_logic;
 reset_n : in std_logic;
 sramsram_wen : out std_logic;
 sramsram_data : inout std_logic_vector(31 downto 0);
 sramsram_addr : out std_logic_vector(22 downto 0);
 sramsram_csn : out std_logic;
 sramsram_be : out std_logic_vector(3 downto 0);
 sramsram_oen : out std_logic;
 LEDPIO_OUT : out std_logic_vector(7 downto 0);
 uartSIN : in std_logic;
 uartSOUT : out std_logic;
);
end Platform_vhd;

architecture structural of Platform_vhd is
component Platform
 port (

 clk_i : in std_logic;
 reset_n : in std_logic;
 sramsram_wen : out std_logic;
 sramsram_data : inout std_logic_vector(31 downto 0);
 sramsram_addr : out std_logic_vector(22 downto 0);
 sramsram_csn : out std_logic;
 sramsram_be : out std_logic_vector(3 downto 0);
 sramsram_oen : out std_logic;
 LEDPIO_OUT : out std_logic_vector(7 downto 0);
 uartSIN : in std_logic;
 uartSOUT : out std_logic;
);

end component;
begin

Platform_u : Platform
 port map (

clk_i => clk_i,
reset_n => reset_n,
sramsram_wen => sramsram_wen,
sramsram_data => sramsram_data,
sramsram_addr => sramsram_addr,
sramsram_csn => sramsram_csn,
sramsram_be => sramsram_be,
sramsram_oen => sramsram_oen,
LEDPIO_OUT => LEDPIO_OUT,
uartSIN => uartSIN,
uartSOUT => uartSOUT,

);
end structural;

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

44 LatticeMico32 Hardware Developer User Guide

Preparing for HDL Functional
Simulation
The following sections describe the steps required to perform functional
simulation on a given platform.

1. Create the Simulation Directory.

Functional simulation is performed in a directory that is created under the
top-level directory, which is named Platform in this example.

<path_to_toplevel_directory>/Platform
components
soc
simulation

2. Create the Testbench.

A testbench is required to functionally verify a design. The example
testbench, shown in Figure 20 on page 44, instantiates Platform_vhdl, the
top-level module of the design.

Figure 20: Testbench File

`timescale 1 ns / 1 ns
`include "lm32_include.v"

module testbench;
 event done;
 // Inputs
 reg clk_i;
 reg reset_n;
 // Outputs
 wire [7:0] LEDPIO_OUT;
 wire sramsram_wen;
 wire [31:0] sramsram_data;
 wire [22:0] sramsram_addr;
 wire sramsram_csn;
 wire [3:0] sramsram_be;
 wire sramsram_oen;
 wire uartSIN;
 wire uartSOUT;

 Platform_vhd Platform_u
 (
 .clk_i(clk_i),
 .reset_n(reset_n),

 .sramsram_wen(sramsram_wen),
 .sramsram_data(sramsram_data),
 .sramsram_addr(sramsram_addr),
 .sramsram_csn(sramsram_csn),
 .sramsram_be(sramsram_be),
 .sramsram_oen(sramsram_oen),

 .LEDPIO_OUT(LEDPIO_OUT),
 .uartSIN(uartSIN),
 .uartSOUT(uartSOUT),

);

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

LatticeMico32 Hardware Developer User Guide 45

 /*--
 Clock & Reset
 --*/
 initial begin
 reset_n = 0;
 #290; // delay 290 ns
 reset_n = 1;
 end
 initial begin
 clk_i = 0;
 #20; // delay 20 ns
 forever #(20) clk_i = ~clk_i; // toggle the clk_i signal every 20ns
 end

/*--
 Trap "Exit" System Call to terminate simulation

--*/
reg scall_m, scall_w;
always @(negedge clk_i)

 begin
if (Platform_u.Platform_u.LM32.cpu.stall_m == 1'b0)
 begin
 scall_m <= Platform_u.Platform_u.LM32.cpu.scall_x &

Platform_u.Platform_u.LM32.cpu.valid_x;
 scall_w <= scall_m & Platform_u.Platform_u.LM32.cpu.valid_m;
 end

// System Call number is passed in r8, Exit System Call is call number 1
if (scall_w && (Platform_u.Platform_u.LM32.cpu.registers[8] == 1))
 begin
 $display("Program exited with code %0d.\n",

Platform_u.Platform_u.LM32.cpu.registers[1]);
 -> done;
 end

 end

/*--
 Tasks to perform when simulation terminates

--*/
 always @(done)

$finish;

endmodule

Figure 20: Testbench File (Continued)

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

46 LatticeMico32 Hardware Developer User Guide

3. Replace PMI Black-box Instantiations with Behavioral Models.

The black-box instantiation of each PMI module in the file pmi_def.v must
be replaced with its respective behavioral model. The PMI behavior
models are located in the simulation directory of the Diamond installation:

<diamond_install_path>/cae_library/simulation/verilog/pmi

 Select the behavioral model of each PMI module from the simulation
directory in the Diamond installation. Figure 21 shows those selected
for the Platform example.

 Copy the selected models and paste them into the platform’s
simulation directory. Figure 22 shows the simulation directory of the
Platform example where PMI modules have been replaced by the
appropriate behavior models.

Figure 21: Selected PMI Behavior Models from CAE Library

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

LatticeMico32 Hardware Developer User Guide 47

Figure 22: PMI Models in Platform Simulation Directory

USING THE LATTICEMICO SYSTEM SOFTWARE : Performing HDL Functional Simulation of LatticeMico32 Platforms

48 LatticeMico32 Hardware Developer User Guide

Performing HDL Functional Simulation
with Aldec Active-HDL
To perform HDL functional simulation with Aldec Active-HDL, first create a
script, “aldec_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

cd “<path_to_toplevel_directory>/Platform/simulation”
workspace create sim_space
design create sim_design .
design open sim_design
cd “<path_to_toplevel_directory>/Platform/simulation”
set sim_working_folder .
vlog pmi_addsub.v
vlog pmi_ram_dq.v
vlog pmi_ram_dp.v
vlog pmi_ram_dp_true.v
vlog pmi_distributed_dpram.v
vlog pmi_fifo.v
vlog pmi_fifo_dc.v

add additional vlog commands for each PMI module in the
design. The list shown is not intended to be complete for all
possible LM32 designs.

vlog +define+SIMULATION ../soc/platform.v
acom ../soc/platform_vhd.vhd
vlog +incdir+../Components/lm32_top/rtl/verilog+../soc
testbench.v

the VSIM command uses the Aldec for Lattice pre-compiled FPGA
libraries. If the Aldec for Lattice simulator is not being
used, it will be necessary to compile the behavioral code for
the FPGA. For the ECP2, the behavioral code is located at:
<isptools>/cae_library/simulation/verilog/ecp2

vsim testbench –L ovi_ecp2

Launch the Active-HDL software and execute the following command in the
console window:

cd <path_to_toplevel_directory>/Platform/simulation

verify that you are in the correct directory

pwd
do aldec_script.do

Performing HDL Functional Simulation
with Mentor Graphics ModelSim
To perform HDL functional simulation with ModelSim, first create a script,
“modelsim_script.do,” and place it in the simulation directory. Copy the
following commands into the script:

USING THE LATTICEMICO SYSTEM SOFTWARE : Using LatticeMico System as a Stand-Alone Tool

LatticeMico32 Hardware Developer User Guide 49

vlib work
vdel –lib work –all
vlib work
vlog pmi_addsub.v
vlog pmi_ram_dq.v
vlog pmi_ram_dq.v
vlog pmi_ram_dp.v
vlog pmi_ram_dp_true.v
vlog pmi_distributed_dpram.v
vlog pmi_fifo.v
vlog pmi_fifo_dc.v
vlog +define+SIMULATION \
+incdir+../soc+../components/gpio/rtl/verilog+../components/
lm32_top/rtl/verilog+../components/timer/rtl/verilog+../
components/wb_ebr_ctrl/rtl/verilog+../components/asram_top/rtl/
verilog+../components/uart_core/rtl/verilog+../components/
wb_dma_ctrl/rtl/verilog \
 ../soc/platform.v
vcom ../soc/platform_vhdl.vhd
vlog +incdir+../components/lm32_top/rtl/verilog testbench.v

the VSIM command shown here uses pre-compiled FPGA libraries.
It may be necessary to compile the behavioral code for the
FPGA. In this example, the behavioral code was compiled to
the ecp2_vlg working directory.
For the ECP2, the behavioral code is located at :
<isptools>/cae_library/simulation/verilog/ecp2

vsim work.testbench -t 1ps –novopt –L ecp2_vlg

Using LatticeMico System as a Stand-Alone Tool
The software developer can use C/C++ SPE to develop software application
code without having to install Diamond, as long as the directory structure and
appropriate files have been provided by the hardware developer. The files that
the hardware designer provides to the software developers are the Mico
System Builder project file, the LM32 processor driver files and GNU files, the
component driver files, and the FPGA's configuration bitstream.

The hardware developer needs to have both Lattice Diamond and LatticeMico
System installed in order to generate the files and provide them to the
software developer.

The following scenario shows the tasks involved:

Hardware Developer The hardware developer performs the following
tasks:

1. Uses Diamond to create an FPGA development project.

Note

When doing mixed-language simulation, use the -t 1ps command-line option for the
“vsim” command.

USING THE LATTICEMICO SYSTEM SOFTWARE : Using LatticeMico System as a Stand-Alone Tool

50 LatticeMico32 Hardware Developer User Guide

The Diamond software is used to generate the FPGA bitstream containing
the LatticeMico32 processor and peripherals.

2. Generates the platform for the project using LatticeMico System Builder.

3. Imports the platform’s RTL source files into the project in Diamond and
generates the FPGA's configuration bitstream.

4. Sends all software developers the Mico System Builder project directory.

For example:

5. Sends the software developers the FPGA bitstream file (.bit) that was
generated using Diamond.

Software Developer The software developer performs the following tasks:

1. Uploads the files sent from the hardware developer:

a. Launches the LatticeMico32 Mico System Builder.

b. Loads the <platform_name>.msb file provided by the hardware
engineer.

2. Creates a new managed make or standard make project in C/C++ SPE.

3. Implements the LatticeMico32 firmware.

4. Compiles the LatticeMico32 firmware using the Project > Build all
command.

5. Runs and debugs the application.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM :

LatticeMico32 Hardware Developer User Guide 51

Chapter 3

Creating Custom Components in
LatticeMico System

This chapter shows you how to bring your WISHBONE interface component
into the Mico System Builder (MSB) so that it is listed as an available
component in MSB for use in platforms. It assumes that you already have the
Verilog or VHDL source code for the component that you wish to add. Refer to
the section “WISHBONE Interconnect Architecture” in the LatticeMico32
Processor Reference Manual.

Figure 23 shows an HDL diagrammatic representation of your custom
component.

This chapter assumes that you have implemented your custom component
and that your custom component has a WISHBONE interface that contains
the signals required for connecting to the LatticeMico32’s WISHBONE fabric.
Your custom component may have a custom I/O interface that may need to be
used as platform input and output pins. Finally, your custom component may
require a clock signal and a reset signal. It may provide an interrupt request to
the LatticeMico32 processor through an interrupt pin.

The Import/Create Custom component dialog box in MSB enables you to
specify the properties for your custom component and makes it available as a

Figure 23: Custom Component Representation

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Opening the Import/Create Custom Component Dialog Box

52 LatticeMico32 Hardware Developer User Guide

component in MSB. Once imported, your custom component is available
every time that you start MSB. The dialog box also enables you to create a
component configuration dialog box that lists parameters that you can
configure for your custom component. If your custom component has
associated software drivers or routines, you can specify them in the dialog
box so that they can be used in managed-make projects or a platform-library
project for a platform that uses this custom component.

The following steps are required to import your custom component into MSB:

1. Open the Import/Create Custom Component dialog box.

2. Specify the component attributes.

3. Specify the WISHBONE interface connections.

4. Specify the clock/reset and optional external port connections.

5. Specify your custom component’s RTL design files.

6. Specify the user-configurable parameters that your RTL design, software,
or both may need, if applicable.

7. Optionally, specify software elements.

8. Specify the optional software files that your custom component may
provide for use in LatticeMico32 applications.

9. Apply the changes.

The following sections introduce you to the Import/Create Custom Component
dialog box and explain the steps just given.

Once you have imported your custom component into MSB, you can use the
same Import/Create Custom Component dialog box to edit the provided
information.

Opening the Import/Create Custom Component
Dialog Box

The LatticeMico32 MSB perspective has an Import/Create Custom
Component dialog box that allows you to create or import custom components
for use in your MSB platform.

To import your WISHBONE-interface-compliant custom component, you must
have the following items:

 RTL source files that implement your custom component

Note

The entire flow is based on the assumption that your custom component is written in
Verilog. If you have a custom component written in VHDL, you must perform a few
more steps before performing the steps just given. Refer to “Creating the Verilog
Wrapper for VHDL Designs” on page 87 for these steps.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Component Attributes

LatticeMico32 Hardware Developer User Guide 53

 Optional software files that implement software functionality for your
custom component

To open the Import/Create Custom Component dialog box:

 In the LatticeMico System MSB perspective, click the Import/Create
Custom Component button in the MSB Available Components view,
as shown in Figure 24.

Specifying Component Attributes
The Component tab is the first tab in the Import/Create Custom Component
dialog box. It enables you to specify attributes for your custom component. It
also provides the location for creating the custom component and the MSB-
specific component properties.

Figure 25 shows the steps involved in specifying the component attributes.

Note

A custom component is indicated in the MSB Available Components view with the
following icon: . You can remove a previously created custom component by
highlighting the component in the Available Components view and clicking the
Remove Custom Component button.

Figure 24: Import/Create Custom Component Button in Available

Components View

Remove Custom
Component button

Import/Create
Custom
Component button

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Component Attributes

54 LatticeMico32 Hardware Developer User Guide

Component Location and Directory
Structure
The Import/Create Custom Component dialog box creates the necessary
directory structure according to the values that you provide in the New
Component Name and New Component Directory boxes. For example, if you
enter “MyComponent” in the New Component Name box, MSB creates the
directory structure shown in Figure 26. This directory structure is created in
the directory specified in the “New Component Directory box. This directory
structure is created only after all the information is provided.

Figure 25: Specifying the Component Attributes

Step 1: Specify a component name
(not module name).

Step 2: Specify directory where you
want the component to be created.

Step 3: Specify name that you

want displayed in the Available
Components pane.
Step 4: Specify version, for
example, 1.0.

Step 5: Specify component type
(I/O or memory).

Step 6: Specify access type (for
memory components only).

Step 7: Specify HTML help file
(optional).

Figure 26: Directory Structure Created

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Component Attributes

LatticeMico32 Hardware Developer User Guide 55

The location of the new component is stored in a settings file that MSB uses
to identify the available components.

Component Properties
You must set the parameters shown in Table 1 for your new component in the
Component tab.

Note

Do not use the top-level module name of your custom component as the component
name in this tab. Also, do not specify a directory within the Diamond installation as the
location for the new component.

Table 1: Component Tab Options

Option Description

Create New Component Creates a new component.

Open Component XML Opens an existing component description file (<component_name>.xml) to edit
the existing component.

New Component Name Specifies the name of the component. The name you enter in this box will be used
to create a folder and a component description file (<component_name>.xml).

New Component Directory/

Select Component XML

New Component Directory – Specifies the path of the component file. This option
is available if you are creating a new custom component and have selected the
Create New Component option. Type in the path to your component folder, or use
the Browse button to browse to your new component folder.

Note: Your new component folder should be outside of the .\micosystem folder.

Select Component XML – Specifies the path of the component description file.
This option is available if you are editing an existing component and have
selected the Open Component XML option. Use the Browse button to browse to
the component description file (<component_name>.xml) of the component that
you want to edit.

Display Name Specifies the name of your component that you want MSB to display when it
appears in the Available Components window. It is not used for a folder or a file
name, so any combination of ASCII characters is permitted.

Version Specifies the version number of the component that you want MSB to display next
to the display name in the MSB Available Components window.

Type Specifies the type of component: I/O or memory. MSB supports only these two
types of components. The type of component determines the address assignment
of the component in MSB. I/O components are located in the LatticeMico32
processor’s non-cacheable region, and memory components are located in
LatticeMico32 processor’s cacheable region.

Choose IO or Memory from the drop-down menu. Memory components reside in
the lower 2G of the LatticeMico32 memory map and can be added to the
instruction and data ports. I/O components reside in the upper 2G. The I/O
component can only be connected to the data port.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

56 LatticeMico32 Hardware Developer User Guide

Specifying WISHBONE Interface Connections
Once you have specified the general properties for your custom component,
you must specify the WISHBONE interface connections to and from your
custom component. You specify the WISHBONE interface connections for
master ports and slave ports in the Master/Slave Ports tab of the Import/
Create Custom Component dialog box. Refer to the LatticeMico32 Processor
Reference Manual for information on WISHBONE port signals.

If your component has a master port—that is, if it can drive the WISHBONE
bus—you must specify master port connections. If your component has a
slave port—that is, it responds to bus master requests—you must specify the
slave port connections. If your component has both types of ports, you must
specify both port connections sequentially.

Access The text entered in this field is not used by MSB for any other purpose
than to concatenate to the Display Name. For example, the SPI flash
component has read-only access, so the SPI flash can be used to store the
read-only or code sections of the .elf file, but it cannot be used for the
read-write section of the .elf file.

 Read – Stores .elf file .rodata, .boot, and .text sections in memory.

 Write – Stores .elf file .bss and .data sections in memory.

 Read/Write – Stores any .elf section in memory.

HTML Help Specifies the name of the help file, if your component has an HTML help file
associated with it. It enables you to enter a path to an existing HTML file
describing your new component. Once you close the dialog box, this file is copied
into the directory structure created by the dialog box, so the original file is no
longer referenced. The contents of this file are displayed in the MSB Component
Help view. This file is optional.

DRC Performs a design-rule check of the new component.

Save Saves all the data currently entered for the component being defined. The Save
button performs a DRC to determine if the component is syntactically correct and
saves the data.

If the DRC fails, a message is displayed indicating that the component has errors
and cannot be used in a platform. The component icon displays a small red “x” in
the bottom left-hand corner.

If you are going to overwrite an existing component, another message appears
that asks permission to overwrite the previous design files.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 1: Component Tab Options (Continued)

Option Description

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

LatticeMico32 Hardware Developer User Guide 57

Figure 27 shows the basic steps required for specifying the connections to
your component’s master or slave port signals.

Not all port signals are mandatory. See Table 3 and Table 4 for a list of port
signals required for master and slave port connections.

All of the mandatory fields in the Port Attributes group box must be supplied
and the Add button clicked in order for entries to be visible in the Master/Slave
Ports group box. You can update an existing master or slave port connection
by clicking on the appropriate row in the spreadsheet view. Make any
changes to the port highlighted in the Master/Slave Ports group box by
modifying the appropriate element in the Port Attributes group box. When the
changes are complete, click the Update button to make the changes
permanent.

Figure 27: Specifying Connections to the Master or Slave Port Signals

Step 1: Specify port type (master
or slave).

Step 2: Specify port display
name as displayed in MSB.

Step 3: Specify signal-name
prefix.

Step 4: Specify connections to
component’s port signals.

Step 5: Click Add button.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

58 LatticeMico32 Hardware Developer User Guide

Table 2 lists the options available in the Master/Slave Ports tab of the Import/
Create Custom Component dialog box.

Table 2: Master/Slave Port Tab Options

Option Description

Master/Slave Ports Lists the master ports and the slave ports in your component.

 You can create more than one master port.

 You can create only one slave port.

Delete To delete a master port or a slave port, highlight the port in the Master/Slave
Ports list and click Delete. The port is not permanently deleted until you
save the component by using the Save or OK button.

Note: You cannot “undo” a port deletion. Once you click Delete and then OK, the
port is permanently deleted.

Type Specifies the type of port. Choose either MasterPort or SlavePort in the drop-
down menu. Master ports can generate WISHBONE cycles to attached
WISHBONE slave components. Slave ports cannot initiate WISHBONE
bus cycles; they can only respond to a WISHBONE master.

Display Name Specifies the name of the master or slave port. The name is displayed indented
and below the instance name of a component that has been added to a
MSB platform. Any ASCII character is permitted in this field.

Prefix Specifies a prefix that is used for two purposes:

 It creates a unique name for the component ports connected to the
WISHBONE bus, for example, <prefix>_DAT_O.

 It enables you to use the same instance name for different components and
avoid having name conflicts in the wires of the platform’s top level. When the
top-level interconnect is built, the wire connecting a slave component output
back to the master or masters is named
<instance_name><component_port_name>. Since <prefix> is used in
<component_port_name>, <prefix> appears in this wire name. For example,
if the prefix for a GPIO component is “GPIO,” the wire name will be
inst1GPIO_DAT_O.

Port Attributes The Port Attributes group box is used to perform a name translation
between the WISHBONE signal names in your custom component and
the WISHBONE signal names attached to the LatticeMico32 bus arbiter.
Refer to Table 3 on page 59 for a description of WISHBONE slave port signals.

Update Updates the options in the Master/Slave Ports tab. The Update button is only
available after a master or slave port entry in the Master/Slave Ports
group box has been highlighted. The Port Attributes group box displays
the values associated with the highlighted master or slave port element.
Use the Update button after modifying any of the Port Attribute fields.

Add Adds the master port or slave port to the Master/Slave Ports list at the top of the
dialog box.

Reset Clears the port attributes.

DRC Performs a design-rule check of the new component.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

LatticeMico32 Hardware Developer User Guide 59

Table 3 lists the signals required to connect the master port to the
LatticeMico32 platform. Table 4 lists the signals required to connect the slave
port to the LatticeMico32 microprocessor. The ports that make up the
WISHBONE master or slave port must follow the specifications described in
the LatticeMico32 Processor Reference Manual table entitled “List of
Component Port and Signal Name Suffixes.”

Save Saves all the data currently entered for the component being defined. The Save
button performs a DRC to determine if the component is syntactically correct and
saves the data.

If the DRC fails, a message is displayed indicating that the component has errors
and cannot be used in a platform. The component icon displays a small red “x” in
the bottom left-hand corner.

If you are going to overwrite an existing component, another message appears
that asks permission to overwrite the previous design files.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 2: Master/Slave Port Tab Options (Continued)

Option Description

Table 3: LatticeMico32 Master Component WISHBONE Ports

Component Port Names for
WISHBONE Slave Port

Direction Width Required

<Prefix>_ADR_O Output 32 Yes

<Prefix>_DAT_O Output 32 No

<Prefix>_WE_O Output 1 Yes

<Prefix>_SEL_O Output 4 Yes

<Prefix>_STB_O Output 1 Yes

<Prefix>_CYC_O Output 1 Yes

<Prefix>_LOCK_0 Output 1 No

<Prefix>_CTI_O Output 3 No

<Prefix>_BTE_O Output 2 No

<Prefix>_DAT_I Input 32 No

<Prefix>_ACK_I Input 1 Yes

<Prefix>_ERR_I Input 1 No

<Prefix>_RTY_I Input 1 No

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying WISHBONE Interface Connections

60 LatticeMico32 Hardware Developer User Guide

The example in Figure 28 shows the steps required for specifying a slave port
connection on the custom component. Consider the following module
definition for a custom component:

In this module definition, there are three sets of signals: slave WISHBONE
port signals, mandatory clock/reset signals, and external interface signals
specific to the component’s behavior. In the Master/Slave Ports tab, only the
slave WISHBONE port signals are added. The mandatory clock/reset and the
external interface signals are added in the next tab.

To specify the master and slave port connections:

1. From the drop-down menu in the Type box of the Master/Slave Ports tab,
select SlavePort, as shown in Figure 29.

2. In the Display Name box, type slave so that MSB will display this port’s
name as “slave” beneath the component’s instance name.

3. In the Prefix box, enter S. The prefix is only used internally within MSB.

4. Enter the component’s corresponding signal names, as shown in
Figure 30.

5. Click Add to add the port specification for the component.

Table 4: LatticeMico32 Slave Component WISHBONE Ports

Component Port Names for
WISHBONE Slave Port

Direction Width Required

<Prefix>_ADR_I Input 32 Yes

<Prefix>_DAT_I Input 32 No

<Prefix>_WE_I Input 1 Yes

<Prefix>_SEL_I Input 4 Yes

<Prefix>_STB_I Input 1 Yes

<Prefix>_CYC_I Input 1 Yes

<Prefix>_LOCK_I Input 1 No

<Prefix>_CTI_I Input 3 ‘No

<Prefix>_BTE_I Input 2 No

<Prefix>_DAT_O Output 32 No

<Prefix>_ACK_O Output 1 Yes

<Prefix>_ERR_O Output 1 No

<Prefix>_RTY_O Output 1 No

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 61

Specifying Clock/Reset and External Ports
Connecting the component to the WISHBONE bus enables the LatticeMico32
microprocessor to control and access the custom component. The custom
component has its own unique input and output control signals that must be
connected outside of the platform to the rest of the system. The External Ports
tab enables these control signals to be defined so that MSB can correctly
generate a top-level Verilog module. Figure 31 shows the External Ports tab
of the Import/Create Custom Components dialog box.

This tab continues the task of building a Verilog wrapper around the custom
component. You use this tab to define the CLK_I, RST_I, and optional
INTR_O control signals. The component port specifies the signal name
presented at the <platform>.v top-level module created by MSB when the
platform is generated.

Figure 28: Specifying a Slave Port Connection

module MyVerilogComponent (
 // wishbone interface
 input [31:0] wb_slv_addr,
 input [31:0] wb_slv_master_data,
 input wb_slv_cyc,
 input wb_slv_stb,
 input [3:0] wb_slv_sel,
 input wb_slv_we,
 output [31:0] wb_slv_slave_data,
 output wb_slv_ack,
 output wb_slv_err,
 output wb_slv_rty,

 // mandatory clock/reset signals
 input wb_clk,
 input wb_rst,

 // external interface (optional)
 output [15:0] external_out_bus,
 input [8:0] external_in_bus,
 input external_in_wire,
 output external_out_wire,

 // interrupt signal to the processor(s)
 output interrupt_signal
);
endmodule

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

62 LatticeMico32 Hardware Developer User Guide

Figure 29: Selecting the Slave Port

Step 1: Select SlavePort.

Step 2: Specify display
name.

Step 3: Select prefix.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 63

Figure 30: Entering the Signal Names

Step 4: Specify
component port signals.

Step 5: Click Add button.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

64 LatticeMico32 Hardware Developer User Guide

The Connect To entry creates a connection from the signal name entered in
the Component Port box to a signal on the custom component.

Table 5 lists the options available in the External Ports tab of the Import/
Create Custom Component dialog box.

Figure 31: External Ports Tab

Note

You cannot create dynamic-width input and output ports by using the Import/Create
Custom Component dialog box. You must directly edit the XML to create these ports.

Table 5: External Ports Tab Options

Option Description

Parameters Lists the parameters of the external ports in your component.

Note: ClockPort and ResetPort are mandatory. Interrupt is optional.

Delete Deletes the selected external port from the Parameters list.

Note: You cannot “undo” a port deletion. If you click OK, the port will be
permanently deleted. You cannot delete the ClockPort, ResetPort, or Interrupt
entries.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 65

In addition to the mandatory WISHBONE interface, the component being
imported or created must have a clock input port for the WISHBONE clock
signal and a reset input port for the WISHBONE reset signal. It may optionally
have its own set of input ports, output ports, or both, or an interrupt port for
connecting an interrupt line to the processor.

The External Ports tab enables you to specify connectivity of the following
sets of signals between your custom component’s top-level module and the
GUI-generated wrapper module:

Port Type Displays the port type of the port selected in the Parameters box (either
ClockPort, ResetPort, Interrupt, or ExternalPort). You cannot select or edit this
information.

Component Port Specifies the port name of the wrapper.

Width Specifies the port width. Enter a number from 1 to 32.

Direction Enables you to choose the port direction. Choose input, output, or inout from the
drop-down menu.

Active This option is only available if the Port Type is Interrupt. Choose <blank>, High,
or Low from the drop-down menu.

Connect To Specifies the name of the user-defined component port that will be connected to
the wrapper port named in the Component Port field.

Update Updates the port parameters list. Whenever a change is made to the Port
Attribute entries that you wish to make permanent, you must click the Update
button.

Add Inserts a new external port into the list of ports that the custom component
implements. Fill in each of the active Port Attribute fields and then click Add. If
there are no syntax errors, a new entry will be appended to the list of external
ports.

Reset Clears all entries in the Port Attributes group box and permits the entry of a new
external port. Use this button if the Add button is not available.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“x” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 5: External Ports Tab Options (Continued)

Option Description

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

66 LatticeMico32 Hardware Developer User Guide

 Clock port – The clock signal is provided by the WISHBONE interconnect
through the GUI-generated wrapper as an input to your component’s clock
port. All WISHBONE transactions are synchronized to this clock signal.
This port is required.

 Reset port – The reset signal is provided by the WISHBONE interconnect
through the GUI-generated wrapper as an input to your component’s reset
port. This port is required.

 Interrupt port – If your component needs to issue interrupts for the
processor to handle, you can specify this output port from your component
as an interrupt signal to the processor routed through the GUI-generated
wrapper. You cannot specify multiple interrupt ports; that is, your
component cannot have more than one interrupt signal to the processor.
This port is optional.

 External input/output ports – If your component has input or output ports
that must be made available as platform input and output signals (usually
for connection to logic external to the platform or for board connection),
you can specify these ports in the External Ports tab. This port is optional.

As an example, consider the port definition of a custom component that must
be made available in MSB:

In this example, the custom component has four external signals that must be
made available as platform inputs and outputs. It also requires an interrupt
line to be connected to the processor. The component’s mandatory clock
input port is named “wb_clk,” and the mandatory reset port is named “wb_rst.”

Figure 32: Port Definition of a Custom Component

module MyVerilogComponent (
// wishbone interface
 input [31:0] wb_slv_addr,
 input [31:0] wb_slv_master_data,
 input wb_slv_cyc,
 input wb_slv_stb,
 input [3:0] wb_slv_sel,
 input wb_slv_we,
 output [31:0] wb_slv_slave_data,
 output wb_slv_ack,
 output wb_slv_err,
 output wb_slv_rty,

// mandatory clock/reset signals
 input wb_clk,
 input wb_rst,

// external interface (optional)
 output [15:0] external_out_bus,
 input [8:0] external_in_bus,
 input external_in_wire,
 output external_out_wire,

// interrupt signal to the processor(s)
 output interrupt_signal
)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 67

The following steps demonstrate how to connect the reset and clock ports of
the GUI-generated reset and clock ports of the custom component.

Specifying Clock/Reset and External Ports

To specify the clock/reset and external port connections:

1. Select the Clock Port line in the External Ports tab, as shown in
Figure 33.

2. Enter wb_clk in the Connect To box, as shown in Figure 34.

3. Click the Update button to update the WISHBONE clock connection
specification.

4. Repeat steps 1 through 3, but select the Reset Port line in step 1 and
enter wb_rst in step 2 to specify the Reset port connection.

The GUI should now look like the figure shown in Figure 35.

Figure 33: Selecting the Clock Port in the External Ports Tab

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

68 LatticeMico32 Hardware Developer User Guide

Specifying the Interrupt Port

To specify the interrupt port:

1. Select the Interrupt line in the Parameters window.

2. Select the Active drop-down menu and choose High or Low to specify
whether your component’s interrupt line is active high or active low.

 Active high means that your component asserts an interrupt when the
selected interrupt port’s signal value is high.

 Active low means that your component asserts an interrupt when the
selected interrupt port’s signal value is low.

The MSB platform generator inserts the appropriate logic when
connecting your component’s interrupt line to the processor according to
this specification and when generating a platform that contains your
custom component.

3. Enter interrupt_signal in the Connect To box to specify the interrupt port
connection between your component and the GUI-generated wrapper, as
shown in Figure 36.

4. Click the Update button to apply this specification.

Figure 34: Entering wb_clk in Connect To Box

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 69

Connecting External Output Ports

To connect the external output ports:

1. Click the Reset button to specify a new connection.

2. In the Connect To box, enter external_out_bus to specify a connection
to the component’s external_out_bus port, as shown in Figure 37.

3. Since this is an output port from the component, select the Direction pull-
down menu and select output.

4. Since the external port is 16 bits wide, enter 16 in the Width box.

The MSB Run Generator function creates the LatticeMico32 top-level
Verilog file, which exposes the signals from your custom component. For
this example, you will make MSB expose the “external_out_bus” from the
component as “my_out_bus.”

Figure 35: Selecting the Reset Port in the Parameters Window

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

70 LatticeMico32 Hardware Developer User Guide

Figure 36: Specifying the Interrupt Port Connection

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Clock/Reset and External Ports

LatticeMico32 Hardware Developer User Guide 71

5. Enter my_out_bus in the Component Port box.

6. To apply this port specification, select the Add button to update the GUI.

7. To add the other port specifications, you can do one of the following:

 Click the Reset button and repeat the steps in this section for the
other port specifications.

 Modify the editable boxes and select the Add button to add the other
port specifications.

Once you have done this, the External Ports tab should look like Figure 38,
completing the step of declaring the component’s external interface.

Figure 37: Specifying a Connection to the External Out Bus Port

Note

MSB applies the platform port-naming convention when it generates the platform,
so the actual port name at the top level of the platform is
<instance_name>my_out_bus, where the <instance_name> is the name of the
component’s instance as entered in MSB.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying RTL Files

72 LatticeMico32 Hardware Developer User Guide

Specifying RTL Files
Once you have specified the general attributes for your custom component,
as well as the port connections to and from your custom component, you must
specify the HDL files that implement your custom component. The only
acceptable HDL type is Verilog, and the files must have a .v extension.

You specify the Verilog HDL files in the RTL Files tab of the Import/Create
Custom Component dialog box.

Figure 39 provides an overview of the steps required in this tab.

Currently the only HDL available in MSB is Verilog. Components written in
VHDL must have a Verilog black-box wrapper around them. The VHDL
component must be compiled to NGO format independently of MSB, using
Lattice Diamond, and placed in the working directory.

Figure 38: Specifying the External Interface Completed

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying RTL Files

LatticeMico32 Hardware Developer User Guide 73

Table 6 lists the options available in the RTL Files tab of the Import/Create
Custom Component dialog box.

Figure 39: Specifying the RTL Files

Step1: Specify top-level module
name of your custom component.

Step 2: Select RTL file.

Step 3: Click Add button.

Table 6: RTL Files Tab Options

Option Description

Top-Level Module Name If the custom component is a Verilog component, this option specifies the top-
level module name of the custom component.

If the custom component is a VHDL component, you must create a Verilog black-
box definition of the VHDL custom component and specify the name of the
Verilog black-box module.

The GUI creates a wrapper that instantiates the top-level module of the Verilog
custom component or the Verilog black-box module for a VHDL custom
component according to the port specifications for the custom component
provided in the Master/Slave Ports and External Ports tabs and the parameters
specification provided in the Parameters tab.

For VHDL custom components, passing VHDL generics is not supported, since
the VHDL custom component flow relies on .ngo files. Refer to “Creating the
Verilog Wrapper for VHDL Designs” on page 87 for more information on
importing VHDL WISHBONE-compliant custom components.

RTL File This entry box enables you to enter a file name containing HDL code that is a
part of your component. Enter a path and module name directly or use the
Browse button to add HDL files interactively.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

74 LatticeMico32 Hardware Developer User Guide

Specifying User-Configurable Parameters
One of the primary advantages in using an FPGA-based microprocessor and
custom components connected to that microprocessor is the ability to
reconfigure them. Synthesizable HDL code is invariably written so that it can
change its capabilities on the basis of a set of parameters assigned during
synthesis.

The custom component editor enables you to create a simple user interface
for assigning definitions and passed parameters to the component. You use
the Parameters tab to create this interface. The values entered into the user
interface enable you to:

 Create Verilog definitions and parameters that control how the RTL is
synthesized.

 Create C/C++ #define statements to provide information to the firmware
controlling the component.

Add Click the Add button to insert the file listed in the RTL File entry box to the list of
files displayed in the Import RTL Files table. Clicking Add does not update
the Component RTL Files group box. The Component RTL Files group
box is only populated when you edit an existing custom component, not
when you create a new custom component.

Delete Use this button to delete files from the Import RTL Files list. Highlight the file that
you wish to remove from the list and click Delete.

Directory When a custom component is being edited, the Directory text box shows the path
to the .rtl files currently associated with the component. You cannot edit this field.

Delete The Delete button in the Component RTL Files group box enables you to remove
files already associated with a custom component. Highlight the HDL file that you
want to remove and click Delete.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“x” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 6: RTL Files Tab Options (Continued)

Option Description

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

LatticeMico32 Hardware Developer User Guide 75

RTL Parameters
You define the RTL parameters by selecting the parameter value in the Flags
drop-down box. The other controls in the Parameter Attributes group box
determine the properties of the parameter.

MSB uses the parameter in two ways:

 It passes the parameter in the prolog to the Verilog module.

 It stores the parameter as a `define in the soc/system_conf.v source file.

In the first method, the parameters are passed to a specific component
instance, so each instance can be configured independently.

In the second case, the `define is a global value, which is useful for
configuring every instance of a component, not just a single instance of a
component.

Writing code that uses the system_conf.v file to find parameters is not
recommended.

RTL Parameter Value Types
The parameters specified in the Parameters tab are made available to you for
configuration through a component configuration dialog box in MSB. You
enter or select the parameter’s value through this component configuration
dialog box. In this tab, you can also specify the display behavior for entering
the parameter’s value in the component configuration dialog box in MSB. You
declare these parameters for RTL usage by selecting the flag field as
“parameter.”

Table 7: RTL Parameter Value Types

Value Type Description Allowable Values RTL Translation Example

Define Conditional type def

undef

.PARAMETER(1)

.PARAMETER(0)

String Character string type Any printable characters .PARAMETER(“VALUE”)

Integer Numeric type Any numeric value .PARAMETER(VALUE)

List Numeric type.

The difference between Integer
and List is that List lets you
specify a predefined list of
values.

Any numeric value .PARAMETER(VALUE)

Frequency Platform frequency (passed by
MSB when generating a
platform)

MSB provides the platform
frequency value (for example,
25 MHz is passed as 25).

.PARAMETER(FREQUENCY_I
N_MHz)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

76 LatticeMico32 Hardware Developer User Guide

Predefined RTL Parameters
The following parameters are not passed to the custom component but are
required by MSB when generating the platform RTL:

 Instance Name – Specifies the default instance name assigned by MSB.
You can only change the default instance name. You can change this
value when instantiating the component in a platform.

 Base Address – Specifies the default base address assigned by MSB. It is
overridden by MSB when the custom component is used in a platform if
this component is not locked by MSB. You can change this value when
you instantiate the component in a platform.

 Size – Specifies the default address space that is assigned to the
component, in bytes. This parameter is used by MSB for address decode
generation when generating a platform. You can change this value when
you instantiate the component in a platform.

 Address Lock – Specifies the default value for “lock,” as used in MSB. You
can change this value when you instantiate the component in a platform

 Disable – Specifies the default value for the Disable check box in MSB.

Software Parameters
If your custom component has parameters meant for software use, you make
them available to the software by not declaring these parameters as
“parameter.” See Figure 41. Parameters used for RTL are also available for
software use.

For platform-specific managed-make projects, C/C++ SPE generates a
header file named system_conf.h, which enumerates the various parameters
and their value types. See Chapter 5 of the LatticeMico System Software
Developer User Guide for more information on the system_conf.h file.

Table 8 shows how the various value types are translated into this header file.

Table 8: Value Types for Added Parameters

Value Type Description Allowable Values RTL Translation Example

Define Conditional type def

undef

#define PARAMETER (1)

#define PARAMETER (0)

String Character string type Any printable characters #define PARAMETER “VALUE”

Integer Numeric type Any numeric value #define PARAMETER(VALUE)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

LatticeMico32 Hardware Developer User Guide 77

Predefined Software Parameters
A single predefined software parameter, CharIODevice, enables C/C++ SPE
to determine if your component supports character file input and output
operations. The default value of this parameter is set to “undef.” If, however,
your component (for example, UART) supports character file input and output
operations, you can set the value of this parameter to “def.”
C/C++ SPE makes instances of this component available as standard input
and output device selections when creating a managed-make C/C++ project.

You cannot change this parameter’s value when instantiating the component
in a platform. It applies to all instances of the component in a platform. C/C++
SPE ignores this parameter and its value for components declared as
memory components. Refer to Chapter 3 and Chapter 4 of the LatticeMico
System Software Developer User Guide for more information on the file
support implementation for LatticeMico32.

GUI Presentation
The MSB perspective displays a configuration dialog box for your custom
component when you try to insert your component into a platform. This dialog
box enables you to modify the parameter values through a GUI interface. The
available GUI widgets for configuring parameters are:

 Check – Enables you to select or deselect a parameter.

 Radio – Enables you to select one of multiple parameters.

 Text – Enables you to enter a value.

 Combo – Enables you to select pre-determined values from a drop-down
menu.

 Spinner – Enables you to select a value from a pre-determined range.

List Numeric type.

The difference between integer
and List is that List lets you
specify a predefined list of
values.

Any numeric value #define PARAMETER (VALUE)

Frequency Platform frequency (passed by
MSB when generating a
platform)

MSB provides the platform
frequency value, and SPE
translates it to
CPU_FREQUENCY macro (e.g.
25MHz is passed as 25000000)

#define CPU_FREQUENCY
(FREQUENCY_IN_HERTZ)

Table 8: Value Types for Added Parameters

Value Type Description Allowable Values RTL Translation Example

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

78 LatticeMico32 Hardware Developer User Guide

Table 9 shows the possible GUI widgets for the various value types.

Adding RTL Parameters
Figure 40 shows the steps required for adding RTL parameters.

Table 9: GUI Widgets

Value Type Allowable Widgets

Define Check, Radio

String Text

Integer Text, Spinner

List Combo

Frequency Although the Import/Create Custom
Component dialog box enables you to
specify a widget, MSB overrides and
automatically assigns a value to the
parameter declared as a Frequency type.

Figure 40: Steps Involved in Adding RTL Parameters

Step 1: Press Reset to reset all
fields.

Step 2: Set Flags to “parameter.”

Step 3: Enter RTL parameter
name.
Step 4: Select parameter’s value
type.
Step 5: Select GUI widget type.
Step 6: Provide default value.
Step 7: Enter text to be displayed
in component configuration dialog
box in MSB.
Step 8: Provide widget settings,
if widget is spinner or combo.

Step 9: Click Add button.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying User-Configurable Parameters

LatticeMico32 Hardware Developer User Guide 79

Adding Non-RTL Parameters
Figure 41 shows the steps required for adding non-RTL parameters.

Table 10 lists the options available in the Parameters tab of the Import/Create
Custom Component dialog box

Figure 41: Steps Involved in Adding Non-RTL Parameters

Step 1: Press Reset to reset all
fields.

Step 2: Deselect Flags.

Step 3: Enter parameter name.
Step 4: Select parameter’s value
type.
Step 5: Select GUI widget type.
Step 6: Provide default value.
Step 7: Enter text to be displayed
in component configuration dialog
box in MSB.

Step 8: Provide widget settings,
if widget is spinner or combo.

Step 9: Click Add button.

Table 10: Parameters Tab Options

Option Description

Parameter Name Specifies the name of the parameter to be passed to the Verilog source code.
When using Define types, be sure to make the name globally unique.

Display Text Specifies the display text that will be placed adjacent to the specific control. Each
component, when added to the platform, brings up an individualized dialog box.
Each element in the dialog box has descriptive text placed adjacent to a control.

Value Type Specifies the value type. Choose Define, String, Integer, List, or Frequency from
the drop-down menu.

Default Value Specifies how each parameter or `define is initialized when a component is
added to the platform. This field is free-form, so you must be careful when
entering default values. Any type mismatch or incorrect data entered here will
impact the synthesis process later.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

80 LatticeMico32 Hardware Developer User Guide

Specifying Software Elements
There are two main software elements that you can optionally specify for a
custom component:

GUI Widget Specifies the GUI widget.

 If the value type is Define, choose <blank>, Radio, or Check from the drop-
down menu.

 If the value type is String, choose <blank> or Text from the drop-down menu.

 If the value type is Integer, choose Text or Spinner from the drop-down menu.

 If the value type is List, choose <blank> or Combo from the drop-down menu.

 If the value type is Frequency, choose <blank> or Text from the drop-down
menu.

WIdget Setting Specifies the GUI widget setting. If the GUI widget is Combo, enter comma-
separated list values. If GUI widget is Spinner, enter minimum and maximum
values as a hyphen-separated pair.

Flags Choose <blank>, parameter, or compiler from the drop-down menu.

 The parameter flag specifies that it is a Verilog parameter.

 The compiler flag specifies that this is a compiler option to be used in C/C++
SPE.

Complier Options If compiler flag is selected, specify flag or option.

Standard I/O This option is only available for CharIODevice. Choose <blank>, input, output, or
inout from the drop-down menu.

Update Updates changes.

Add Adds new parameter.

Reset Clears the Parameters tab options.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“x” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 10: Parameters Tab Options (Continued)

Option Description

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

LatticeMico32 Hardware Developer User Guide 81

 Initialization function name

 A component instance-specific information structure

You can specify these elements through the Software tab of the Import/Create
Custom Component dialog box.

Chapter 5 of the LatticeMico System Software Developer User Guide contains
information that you may find helpful before proceeding with this section.

C/C++ SPE uses the information provided through this tab for managed-make
projects or for platform library projects when generating code based on a
platform containing this component.

Your software may need to access instance-specific parameters that were
configured when you created the platform or instance-specific private data.
The C/C++ SPE managed-make process facilitates this process by creating a
DDStructs.c source file that contains instance-specific populated data
structures and generates the structure definition in the DDStructs.h file by
using the C structure definition presented in the Software tab.

The format of the C structure generated in DDStructs.h is shown in Figure 42:

You can additionally specify elements of the structure to be initialized with the
values configured for parameters when you generate the platform.

The initialization function is invoked by LatticeDDInit as part of the boot
process for managed-make projects before calling the “int main (void)” main
entry function. You must implement the initialization function. The
automatically generated code invokes the initialization function for each
instance of the component. The Software tab provides information on the
function name that is used when you generate the automatically generated
code.

The prototype of the function is as follows:

void FUNCTION_NAME(st_STRUCTURE_NAME *);

Figure 43 shows the steps required for specifying software elements.

The data type for structure members determines if they can be marked for
initialization by the C/C++ SPE managed-make build process. In Figure 43,
you select the initial value by selecting an appropriate parameter available in
the Value drop-down menu (step 3d). The parameter value types define which

Figure 42: Format of C Structure

typedef struct st_STRUCTURE_NAME {
DATA_TYPE ELEMENT_NAME;

}STRUCTURE_NAME;

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

82 LatticeMico32 Hardware Developer User Guide

parameters are listed in the Value drop-down menu on the basis of the
structure member’s data type.

Table 11 shows the data types that are available for elements of the structure
and the parameters available for initializing members of an element if you
choose to initialize the element during platform creation.

Figure 43: Specifying Software Elements

Step 1: Enter function name.

Step 2: Enter structure name.

Step 3: Add structure members.

a: Select a data type or enter a
data-type name.

c: Select box if an array.

b: Enter member name.

d: Select parameter for initial
value or leave it uninitialized.

Step 4: Click Add button.

Table 11: Structure Element Data Types

Data Type Can Element Be Initialized
During Platform
Creation?

Parameter Value Type Notes

void * No N/A

int * No N/A

const char * Yes String, List Values are enclosed in
quotation marks.

char * Yes String, List Values are enclosed in
quotation marks.

unsigned char * Yes String, List Values are enclosed in
quotation marks.

int Yes Integer, List, Define List must be a numeric list.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Specifying Software Elements

LatticeMico32 Hardware Developer User Guide 83

Table 12 lists the options available in the Software tab of the Import/Create
Custom Component dialog box.

unsigned int Yes Integer, List, Define List must be a numeric list.

char Yes Integer, List, Define Values are not enclosed in
quotation marks and must
be valid numeric values.

unsigned char Yes Integer, List, Define Values are not enclosed in
quotation marks and must
be valid numeric values.

User-defined Yes Any You are responsible for
choosing the right
parameter based on the
parameter’s value type.

Table 11: Structure Element Data Types

Data Type Can Element Be Initialized
During Platform
Creation?

Parameter Value Type Notes

Note

If you select the Array box for any member, you must select a “value” parameter. This
selected parameter’s value is used to determine the array size. C/C++ SPE cannot
initialize the array contents, but you can do so in your component’s initialization
function.

If your component needs to know the interrupt line it is connected to in a platform, you
can add an “int” or an “unsigned int” data member and declare its “value” as Interrupt.
C/C++ SPE automatically initializes this data member’s value to the interrupt line
assigned by MSB in the platform when performing a managed build.

Table 12: Software Tab Options

Option Description

Initialization Function Name Specifies the user-defined initialization function name.

Component Information Structure
Name

Specifies the name of the DDStruct structure.

Data Type Specifies the C data type of the DDStruct element being added. The drop-down
menu enables you to specify the following C data types: void *, unsigned int, int,
int *, const char, unsigned char, unsigned char *, char, or char *.

Member Name Specifies the name of the DDStruct element being added.

Value Available values in the drop-down menu depend on the chosen data type.

Is Array Checks to see if the member name is an array.

Delete Deletes the highlighted DDStruct setting from the list.

Update Allows an element already added to the DDStruct to be modified. Highlight the
element, make any desired changes to the element, and the click Update to
activate the changes.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Adding Software Files to Custom Components

84 LatticeMico32 Hardware Developer User Guide

Adding Software Files to Custom Components
If your custom component provides software support, such as the component
initialization function noted in the previous section, you can optionally identify
these files in the Software Files tab of the Import/Create Custom Component
dialog box.

The Software Files tab enables you to import C software files that pertain to
your custom component. You can specify the file to be part of a managed
build.

Figure 44 shows the steps required for adding software support files.

Add Adds a new element to the DDStruct structure with the values active in the
DDStruct Attributes group box.

Reset Clears the DDStruct Attributes group box controls.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“x” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 12: Software Tab Options (Continued)

Option Description

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Adding Software Files to Custom Components

LatticeMico32 Hardware Developer User Guide 85

The file types that you can select by using the Browse button and their
extensions are shown in Table 13.

For the managed build framework, the software files are classified as follows:

 Application file type – These source files are compiled and linked as part
of the application build process instead of being compiled during the
platform library build process and becoming part of the platform library
archive.

 Platform library file type – These source files are compiled during the
platform library build process and become part of the platform library
archive. The functions in these source-code files can be overridden by

Figure 44: Adding Software Support Files

Step 1: Select file.

Step 2: Highlight the file in the
Import Software Files list.

Step 3:Select File Type and
click Update.

Table 13: File Extensions and File Types of Imported C Software Files

File Extension File Type

.c, .C C language source file

.cpp, .CPP C++ language source file

.s, .S Assembly language source file

.h, .H C/C++ language header file

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Adding Software Files to Custom Components

86 LatticeMico32 Hardware Developer User Guide

implementing them in source files that are compiled as part of the
application build step.

 Structure header file type – These header files contain declarations that
your device driver structure may reference. These files are included as
preprocessor “include” statements in the automatically generated
DDStructs.h header file. See Chapter 5 of the LatticeMico System
Software Developer User Guide for information on the DDStructs.h
header file.

 Header file type – These files are header files that are needed by the
component source files but are not required by your device driver
structure.

The application file type and platform library file type govern the composition
of the component makefile.

See Chapter 5 of the LatticeMico System Software Developer User’s Guide
for more information on the managed-build process.

Imported files do not become part of the component until you click the OK
button and save the component without error. The Current Software Files
portion of the Software Files tab only displays software files if an existing
custom component is being edited.

Table 14 lists the options available in the Software Files tab of the Import/
Create Custom Component dialog box.

Table 14: Software Files Tab Options

Option Description

Software File Enables you to browse to the software driver files. Copies the selected file into
the component folder.

Add Adds the file currently listed in the Software File entry box to the table of
Imported Files.

Delete Deletes the highlighted entry in the Import Software Files table.

Directory Displays the folder where the source code files associated with the component
being edited reside.

Delete Deletes a source file already associated with the component being edited.

File Type Specifies the file type. Choose the following from the drop-down menu:
Application, Platform Library, Structure Header, Header.

DRC Performs a design-rule check of the new component.

Save Adds the custom component to LatticeMico32. If the design-rule check fails, a
message appears that warns you that the data to be saved contains errors and
cannot be used in a platform. The component icon displays a small red “x” in the
bottom left-hand corner.

If the custom component passes the design-rule check, no message box or red
“x” appears, and the data is saved.

If you are going to override an existing file, another message comes up to ask
you for override permission.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Applying Changes

LatticeMico32 Hardware Developer User Guide 87

Applying Changes
To apply the changes that you have made in the tabs of the Import/Create
Custom Component dialog box, select the OK button at the bottom of the
dialog box. LatticeMico System now performs design-rule checks. If it finds no
errors, the dialog box will close and the custom component will appear in the
MSB perspective.

If you need to re-edit the added custom component, select that component
and open the Import/Create Custom Component dialog box.

Creating the Verilog Wrapper for VHDL Designs
If you are creating custom components for VHDL designs, you must create a
Verilog wrapper before you proceed with creating a new custom component.

This section explains how to create and use new custom components in the
flow for VHDL users.

To create a Verilog wrapper:

1. Create a component definition in VHDL that is LatticeMico32-compliant,
for example, using WISHBONE. Refer to the section “WISHBONE
Interconnect Architecture” in the LatticeMico32 Processor Reference
Manual for information.

2. Create a completely new Diamond project that will be used just for
processing this component. This project is completely distinct from the
project that will eventually use this component.

Cancel Cancels the actions and closes the dialog box. If you did not save your changes,
a message box comes up to warn you that the changed data will be lost.

Reset Resets all values in all tabs in the dialog box.

Help Displays the help for the dialog box.

Table 14: Software Files Tab Options (Continued)

Option Description

Note

Older versions of LatticeMico System Builder do not provide a member element of the
type DeviceReg_t in the DDStruct C structure by default. You can add it as an element
of user-defined data type. The DDStruct Attributes to be specified, as shown in
Figure 43, are as follows:

Data Type: DeviceReg_t

Member Name: lookupReg

Value: Uninitialized

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Creating the Verilog Wrapper for VHDL Designs

88 LatticeMico32 Hardware Developer User Guide

3. Import the VHDL source code into the project. During synthesis, turn off
I/O insertion by following these steps:

a. Select the File List tab in Diamond and double-click the name of the
currently active strategy, which is displayed in bold type.

b. In the Strategies dialog box, expand the Synthesis folder and select
the synthesis tool you will be using.

c. In the synthesis pane on the right, set Disable IO Insertion to True and
click OK.

d. In Diamond, select the Process tab , and double-click Translate
Design.

Diamond now generates the <platform>.ngo file.

4. Create a black-box declaration of the component in Verilog.

This declaration represents this component in any platform generated by
MSB that uses this component. It is combined with the .ngo file previously
created (that holds the actual functionality of the component) after
synthesis in the Translate Design process. If there are any bidirectional I/
Os in the custom VHDL component, you must declare them as black-box
pads. Lattice Semiconductor FPGAs only have tristate buffers in their I/O
cells. In a single-language implementation, the synthesis tool can
reconcile multiple tristate I/O requests to a single tristate buffer. In the
dual-language implementation, the Verilog wrapper has no visibility into
the VHDL .ngo black-box element, preventing any reconciliation of
multiple tristate buffers. The black-box pad declaration directs the
synthesis process not to create a second set of tristate buffers because
tristate buffers have already been created for these black-box ports.

Figure 45 is an example Verilog black-box definition of a VHDL custom
component illustrating the black_box_pad declaration in the Verilog black-
box definition for the VHDL custom component's inout port. This Verilog
black-box definition is the RTL input file for the custom component GUI.

5. Perform the user-defined component flow explained at the beginning of
this chapter to bring a user-defined Verilog component into MSB. The
Verilog component RTL file entry is the Verilog black-box file that you
created in step 4.

If there are tristate (bidirectional) I/Os in the custom VHDL component, you
must also add the black_box_pad_pin attribute of these ports to the VHDL
wrapper files’ component declaration section. The black_box_pad_pin
attribute is a synthesis directive that specifies pins on a user-defined black-
box component as I/O pads that are visible to the environment outside of the
black box. Because the I/O primitives are added to the tristate (bidirectional)
I/Os in the .ngo file, adding the black_box_pad_pin attribute to these I/Os
enables the top-level VHDL RTL code to recognize them.

Note

The Verilog module name must match the .ngo file name in order for Diamond to
correctly link the .ngo contents to the Verilog wrapper.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Creating the Verilog Wrapper for VHDL Designs

LatticeMico32 Hardware Developer User Guide 89

Pointing to the Correct .ngo File
You must enable the Translate Design step to use the correct .ngo file of the
VHDL-based component that was created in an earlier step.

To point to the correct .ngo file:

1. Copy the .ngo file to the \soc directory, located in the LatticeMico32
platform project directory.

2. In Diamond, choose Project > Property Pages.

3. In the Macro Path box of the Project Properties dialog box, provide the
path to the LatticeMico32 Platform project's \soc directory that contains
the .ngo file copied in step 1. You can provide an absolute or relative path.

For example, an absolute path might be

c:\ispTOOLS<version>\examples\VHDL_Test\LM32_Platform\soc.

A relative path would be a path relative to the Diamond project directory.
For example, if the LatticeMico32 platform project directory is contained in
the Diamond project, the relative path might be

.\LM32_platform\soc

If the Diamond project is contained in the LatticeMico32 platform project
directory, the relative path would be simply

.\soc

Figure 45: Verilog Black-Box Definition of a VHDL Custom Component

module vhdl_custom (
 // wishbone slave signals
 input[31:0] ADR_I,
 input[31:0] DAT_I,
 input WE_I,
 input[3:0] SEL_I,
 input STB_I,
 input CYC_I,
 input LOCK_I,
 input[2:0] CTI_I,
 input[1:0] BTE_I,
 output[31:0] DAT_O,
 output ACK_O,

 // external signals
 output [30:0] custom_ext,
 inout [30:0] custom_ext_io,
 input CLK_I,
 input RST_I,
 output INTR_O)/*synthesis syn_black_box
black_box_pad_pin = “custom_ext_io[30:0]” */;
endmodule

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Making Custom Components Available in MSB

90 LatticeMico32 Hardware Developer User Guide

If your directory structure is not one of these, use your best guess to
provide either the relative path or absolute path and see if Diamond issues
an error message saying that it cannot expand the .ngo definition.

Making Custom Components Available in MSB
LatticeMico System performs the following steps automatically through the
custom component dialog box to make your custom component available in
MSB. You do not have to take any action. This section is for information only.

Integrating Custom Component’s RTL
Design Files
The key step in connecting your custom component in a platform is to tie the
WISHBONE interface signals (master or slave) to the automatically generated
arbitration logic. The platform generator imposes internal naming
conventions, so a Verilog wrapper is created to implicitly enforce the internal
naming conventions without informing you. The automatically generated
Verilog wrapper instantiates your custom component, allowing MSB to
connect the custom component to the rest of the platform.

Saving the Settings
All the settings specified in the Import/Create Custom Component dialog box
are saved in a component description file in XML format. Also, the RTL and
the software files provided to the Import/Create Custom Component dialog
box are copied to the component creation directory.

Directory Structure
Figure 46 shows a typical directory and file structure that LatticeMico System
generates for a LatticeMico32 component.

The following is a brief description of the folders and files contained in a
typical custom component folder:

 <component_name> folder – Contains the following files and directories:

 <component_name>.xml – Contains the XML code required to attach
your component to the LatticeMico32 processor.

 document folder – Contains documentation file or files. At a minimum,
this folder contains the <component_name>.htm file, which is an
HTML file that is displayed in the Component Help view in the MSB
main window.

 drivers folder – Contains the peripheral.mk file, which is used to direct
C/C++ System Programming Environment (SPE) to the C/assembly

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Making Custom Components Available in MSB

LatticeMico32 Hardware Developer User Guide 91

driver files containing user-defined application programming interfaces
(APIs).

Also inside the drivers folder are two subdirectories:

 Device driver files (<component_name>.c and
<component_name>.h). The device driver files define the API
function calls available to the C/C++ SPE developer. The functions
are user-defined according to the specific needs of the custom
component.

 System service driver files (<component_name>Service.c and
<component_name>Service.h). The service files must be
implemented to support the LatticeMico32 initialization process.
Each component must define a basic set of service functions that
have been defined by the LatticeMico32 boot process.

 rtl folder – Contains the verilog subfolder.

 verilog folder – Contains the component Verilog RTL files.

Figure 46: Typical Component Folder and File Structure

<component_name>

<component_name>.xml

document

Component folder

Component description file

“document” subfolder

<component_name>.htm

drivers

peripheral.mk

device

<component_name>.c

<component_name>.h

<component_name>service.c

<component_name>service.h

rtl

verilog

<file>.v

<file>.v

HTML file

“drivers” subfolder

peripheral.mk file

“device” subfolder

Device driver files

System service files

“rtl” subfolder

“verilog” subfolder

Verilog component RTL files

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

92 LatticeMico32 Hardware Developer User Guide

Custom Component Example
The example in this section shows you how to add a custom component to
the MSB graphical user interface so that it is available for use in other
platforms.

This example demonstrates how to:

 Make the created component available in MSB.

 Provide a component customization dialog box for configuring RTL
instantiation parameters.

 Add software support files and generate instance-specific data structures.

Sample Custom Component
This example includes a custom component that uses a Verilog RTL
implementation file and software driver files as sources, typical sources for
importing a custom component.

Verilog RTL Implementation
The Verilog (.v) source file for this example is shown in Figure 47.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 93

Figure 47: Verilog (.v) File

`timescale 1ns / 1ps
//
//
// A simple register device with three registers:
// --
//
//
module wb_reg_dev
 #(
 parameter CLK_MHZ = 25,
 parameter reg_08_int_val = 32'h1234abcd
)
 (
 //---
 //
 // WISHBONE clock/reset signals
 //
 //---
 wb_reset,//-----------------WISHBONE reset
 wb_clk,//-------------------WISHBONE clock
 //---
 //
// WISHBONE interface signals below.
 // - This component does not support burst transfers.
 //
 //---
 wb_adr,//-------------------Address from master
 wb_master_data,//-----------Data from master
 wb_cyc,//-------------------WISHBONE cycle-valid qualifier
 wb_stb,//-------------------WISHBONE transfer qualifier
 wb_sel,//-------------------Data byte-lane selection
 wb_we,//--------------------Write-enable
 wb_slave_data,//------------Data from slave
 wb_ack,//-------------------Data-valid qualifier from slave
 wb_err,//-------------------Error qualifier from slave (never asserted)
 wb_rty,//-------------------Retry qualifier from slave (never asserted)
 //---
 //
 // Interrupt line (active-high) that will be connected to the
 // processor. Not used but for demonstrating custom component
 // connectivity.

 //

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

94 LatticeMico32 Hardware Developer User Guide

 //
 //---
 wb_intr,//------------------Interrupt request from slave
 //---
 //
 // External pins exposed by this component
 //
 //---
 out_pins//------------------Output pins
);
 input wb_reset;
 input wb_clk;
 input [31:0] wb_adr;
 input [31:0] wb_master_data;

input wb_cyc;
 input wb_stb;
 input [3:0] wb_sel;
 input wb_we;
 output [31:0] wb_slave_data;
 output wb_ack;
 output wb_err;
 output wb_rty;
 output wb_intr;
 output [7:0] out_pins;
 //--
 //
 // Registers
 //
 // reg_00 : read/write 32-bit register, general purpose
 //
 // reg_04 : read-only 32-bit register that contains the WISHBONE
 // platform clock frequency (MHz)
 //
 // reg_08 : read-only register that contains a constant specified when
 // instantiating this component in a platform
 //
 //--
 reg [31:0] reg_00;//------------------------32-bits, RW, offset 0
 reg [31:0] reg_04;//------------------------32-bits, RW, offset 4
 //reg_08 constant ------------------------32-bits, RO, offset 8
 reg write_ack;//-----------------------------write-ack
 //--
 //
// Wires
 //
 //--
 wire reg_00_sel;//---------------------------reg_00 selected
 wire reg_04_sel;//---------------------------reg_04 selected
 wire reg_08_sel;//---------------------------reg_08 selected
 wire read_ack;//-----------------------------read-ack
 wire [31:0] read_data;//---------------------reg data mux (reads)
 //
// assign register-select signals:
 // since there are only two registers, use bit-2 of the
 // address bus since addressing is word addressing for LatticeMico32
 //

Figure 47: Verilog (.v) File (Continued)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 95

 assign reg_00_sel = ((wb_stb == 1'b1) && (wb_cyc == 1'b1)
 && (wb_adr[3:2] == 2'b00)) ? 1'b1 : 1'b0;
 assign reg_04_sel = ((wb_stb == 1'b1) && (wb_cyc == 1'b1)
 && (wb_adr[3:2] == 2'b01)) ? 1'b1 : 1'b0;
 assign reg_08_sel = ((wb_stb == 1'b1) && (wb_cyc == 1'b1)
 && (wb_adr[3:2] == 2'b10)) ? 1'b1 : 1'b0;

//
 // assign read ack: unregistered as data is presented
 // immediately. Can make it registered to improve timing
 //
 assign read_ack = ((wb_stb == 1'b1) && (wb_cyc == 1'b1)
 && (wb_we == 1'b0)) ? 1'b1:1'b0;
 //
 // assign asynchronous data-output mux
 //
 assign read_data = (reg_00_sel == 1'b1)? reg_00 :
 (reg_04_sel == 1'b1)? reg_04 :
 (reg_08_sel == 1'b1)? reg_08_int_val :
 32'hdeadbeef;
 //
 // assign write-ack: registered
 //
 always @(posedge wb_clk or posedge wb_reset)
 if (wb_reset) begin
 write_ack <= 0;
 end
 else begin
 if((wb_stb == 1'b1) && (wb_cyc == 1'b1) &&
 (wb_we == 1'b1) && (write_ack == 1'b0)) begin
 write_ack <= 1'b1;
 end
 else begin
 write_ack <= 1'b0;
 end
 end
 //
// register_00 write process: supports byte-writes
 //
 always @(posedge wb_clk or posedge wb_reset)
 if (wb_reset) begin
 reg_00 <= 32'b0;
 end
 else begin
 if ((reg_00_sel == 1'b1) && (wb_we == 1'b1) &&
 (write_ack == 1'b0)) begin
 if(wb_sel[0] == 1'b1) begin
 reg_00[7:0] <= wb_master_data[7:0];
 end
 if(wb_sel[1] == 1'b1) begin
 reg_00[15:8] <= wb_master_data[15:8];
 end
 if(wb_sel[2] == 1'b1) begin
 reg_00[23:16] <= wb_master_data[23:16];
 end

Figure 47: Verilog (.v) File (Continued)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

96 LatticeMico32 Hardware Developer User Guide

 if(wb_sel[3] == 1'b1) begin
 reg_00[31:24] <= wb_master_data[31:24];
 end
 end
 end

//
 // register_04 write process: supports byte-writes
 //
 function integer i_clk_mhz;
 input integer clk_mhz;
 begin
 i_clk_mhz = clk_mhz;
 end
 endfunction // i_clk_mhz

 parameter CLK_MHZ_INT_VALUE = i_clk_mhz(CLK_MHZ);

 always @(posedge wb_clk or posedge wb_reset)
 if (wb_reset) begin
 reg_04 <= CLK_MHZ_INT_VALUE;
 end
 else begin
 if ((reg_04_sel == 1'b1) && (wb_we == 1'b1) &&
 (write_ack == 1'b0)) begin
 if(wb_sel[0] == 1'b1) begin
 reg_04[7:0] <= wb_master_data[7:0];
 end
 if(wb_sel[1] == 1'b1) begin
 reg_04[15:8] <= wb_master_data[15:8];
 end
 if(wb_sel[2] == 1'b1) begin
 reg_04[23:16] <= wb_master_data[23:16];
 end
 if(wb_sel[3] == 1'b1) begin
 reg_04[31:24] <= wb_master_data[31:24];
 end
 end
 end
 //--
 //
 // MODULE OUTPUTS
 //
 //--
 // assign component ack
 assign wb_ack = read_ack | write_ack;
 // assign component data
 assign wb_slave_data = read_data;
 // unused rty/err
 assign wb_rty = 1'b0;
 assign wb_err = 1'b0;
 // unused interrupt (active-high)
 assign wb_intr = 1'b0;
 assign out_pins = reg_00[7:0];

endmodule

Figure 47: Verilog (.v) File (Continued)

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 97

Software Source Files

Reg_Comp.c File The Reg_Comp.c file, shown in Figure 48, implements
the software driver for the custom component.

Reg_Comp.h File The Reg_Comp.h file, shown in Figure 49, is the header
file for the software driver.

Figure 48: Reg_Comp.c File

#include "Reg_Comp.h"

/* device initialization function */
void init_reg_device(struct st_reg_device * ctx)
{
 /* simply copy initialization data for reg_08
 * provided in the context structure to register-00 */
 REG_DEV_REGISTER(ctx->b_addr,0) =
 ctx->reg_08_value;

 return;
}

Figure 49: Reg_Comp.h File

#ifndef _REG_COMP_HEADER_FILE_
#define _REG_COMP_HEADER_FILE_

#include "DDStructs.h"

#ifdef __cplusplus
extern "C"{
#endif /* __cplusplus */

/* device initialization function */
void init_reg_device(struct st_reg_device * ctx);

/* macro for reading/writing registers */
#define REG_DEV_REGISTER(BASE,OFFSET) \
 *((volatile unsigned int *)(BASE + OFFSET))

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif//_REG_COMP_HEADER_FILE_

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

98 LatticeMico32 Hardware Developer User Guide

Functional Description
The sample custom component is a WISHBONE slave component containing
the three registers shown in Table 16 on page 99. These three registers are
general-purpose read/write registers. The lowest byte of register reg_00 is
made available as external pins of the component.

The port interface of the custom component in this example is shown
diagrammatically in Figure 50. The Verilog source code for this component is
shown in “Verilog RTL Implementation” on page 92.

Table 15 lists the input and output signals for the example component.

Figure 50: Component's Port Diagram

Table 15: Input/Output Signals in the Example Custom Component

Port Name Direction Width (in Bits) Description

wb_reset Input 1 WISHBONE reset signal

wb_clk Input 1 WISHBONE clock signal

wb_cyc Input 1 WISHBONE cycle qualifier signal

wb_stb Input 1 WISHBONE strobe signal

wb_we Input 1 WISHBONE write-enable signal

wb_adr Input 32 WISHBONE address

wb_master_data Input 32 WISHBONE data from master

wb_sel Input 4 WISHBONE byte-select signal

wb_ack Output 1 WISHBONE ack signal

wb_err Output 1 WISHBONE error signal

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 99

The example custom component includes the three 32-bit registers shown in
Table 16.

wb_rty Output 1 WISHBONE retry signal

wb_intr Output 1 Interrupt line to the processor

wb_slave_data Output 32 WISHBONE data from slave

out_pins Output 8 External pins; contains value of the lowest byte
of reg_00

Table 15: Input/Output Signals in the Example Custom Component

Table 16: Registers in the Example Custom Component

Byte Offset Register Name Reset Value Description

0x00 reg_00 0x00000000 General read/write register

0x04 reg_04 CLK_MHZ General read/write register; power-up value is set to
the clock frequency specified as an RTL parameter on
instantiation.

0x08 reg_08 General read/write register; power-up value is set to
the constant specified as an RTL parameter on
instantiation.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

100 LatticeMico32 Hardware Developer User Guide

Software Support
For illustrative purposes, the example component’s initialization function must
set the reg_00 register to the value that was used to initialize the reg_08
register in the RTL. At run time, you can read this value from the reg_00
register and compare it to the RTL-initialized value in the reg_08 register.
Additionally, you can also read the platform frequency for which the platform
was configured in the reg_04 register.

The initialization function must be able to initialize all the instances in a
platform. This initialization routine, init_reg_device, is listed in the Reg_Dev.c
source file. It relies on the presence of the data structure shown in Figure 51:

This data structure must be initialized according to the instance’s
configuration in MSB. The data structure contains a member, b_addr, that
corresponds to the component’s base address, which is assigned by MSB. It
also contains a member, reg_08_value, which must contain the 32-bit value
used for initializing the reg_08 register in the RTL in MSB. This example
illustrates how to specify this data structure so that the SPE managed-build
process initializes and instantiates the data structure according to the
instances in the platform.

While simple, the sample custom component contains enough useful features
to illustrate the key steps needed to import it into MSB:

 WISHBONE slave interface

 External pins

 INterrupt signal

 RTL parameter initialization

 Software support

Adding the Custom Component
In this section, you will add the example custom component to the MSB
graphical user interface.

It is assumed that the sources are located in the C:\Demo\MyComponent\
folder, as shown in Figure 52.

The intended destination repository for the custom component is
C:\Demo\MSBComponents.

Figure 51: Data Structure for Initialization

typedef struct st_reg_device {
 unsigned int reg_08_value;
 unsigned int b_addr;
} reg_device;

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 101

To add a custom component to MSB:

1. Select the Import/Create Custom Component button, as shown in
Figure 53, to open the Import/Create Custom Component graphical user
interface.

2. Enter the component information, as shown in Figure 54.

Figure 52: Source Directory

Figure 53: Opening the Import/Create Custom Component Graphical User Interface

Warning

The display name should not be the same as that of any of the design RTL files. It
also cannot be the same as the name of the top module file.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

102 LatticeMico32 Hardware Developer User Guide

3. Specify the WISHBONE slave port signals for the component, as shown in
Figure 55.

4. Specify the component’s WISHBONE clock signal, as shown in Figure 56.

5. Specify the component’s WISHBONE reset signal, as shown in Figure 57.

6. Optionally, specify the component’s interrupt signal information, as shown
in Figure 58. If your component does not have an interrupt line, you do not
need to perform this step. Since the example component has an interrupt
line, you must specify its properties.

7. Specify the component’s external ports, as shown in Figure 59.

8. Specify the component’s RTL files, as shown in Figure 60.

9. Specify the component’s RTL parameters, as shown in Figure 61.

Figure 54: Specifying the Component’s General Information

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 103

Figure 55: Specifying the WISHBONE Slave Port Signals for the Component

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

104 LatticeMico32 Hardware Developer User Guide

Figure 56: Specifying the WISHBONE Clock Signal for the Component

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 105

Figure 57: Specifying the WISHBONE Reset Signal for the Component

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

106 LatticeMico32 Hardware Developer User Guide

Figure 58: Specifying the Interrupt Signal for the Component

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 107

Figure 59: Specifying the External Port for the Component

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

108 LatticeMico32 Hardware Developer User Guide

Figure 61 shows the steps required for adding a GUI widget for
configuring the reg_08 register’s value when you instantiate the custom
component in a platform.

Figure 60: Specifying the RTL Files for the Component

Note

You might need to adjust the default size for your component.

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 109

Figure 61: Adding a Configuration Widget for the reg_08 Register

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

110 LatticeMico32 Hardware Developer User Guide

Figure 62 shows the steps required for adding the CLK_MHZ parameter
for the component that will receive the platform’s WISHBONE clock-
frequency from MSB when instantiated a platform. This parameter will not
be visible for configuration.

When importing a new component, you should always check the SIZE
parameter. The default value for the SIZE parameter determines the
default address-decode space for the component. Although you can
change it when you instantiate it in the platform, it is always a good idea to
make sure that the default value is sufficient to cover the entire
addressable space (for example, the space for registers, memory, or I/Os)
that is provided for the component being imported. The custom
component example has three registers—that is, a total decode space of
12 bytes—so the default value of 32 for the SIZE parameter is adequate.

The example custom component requires a data structure like that shown
in Figure 63.

Figure 62: Specifying the Platform’s WISHBONE Clock Frequency RTL Parameter

Figure 63: Data Structure Required for Creating Custom Component

typedef struct st_reg_device {
 unsigned int reg_08_value;
 unsigned int b_addr;
} reg_device;

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 111

In addition, the members of this structure must be initialized to the
appropriate values, which are provided when you generate the platform.

10. Specify the component’s data structure and initialization function for
software support, as shown in Figure 64.

11. Repeat the steps shown in Figure 64 to do the following:

 Add b_addr as an “unsigned int” member that should contain the
component’s base address parameter, BASE_ADDRESS, as shown
in Figure 65.

 Add name as a "const char *" member that should contain the
component's name parameter, InstanceName. This member helps
while registering the custom component with system software.

12. Add the C source file that should be compiled as part of the platform
library, as shown in Figure 66.

13. Add the device driver’s header file (.h), which is a standard header file that
can be included in a user application, as shown in Figure 67.

14. Click DRC to check for any errors.

15. Click Save to save the custom component.

Figure 64: Specifying Data Structure and Initialization Function

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

112 LatticeMico32 Hardware Developer User Guide

Output
After you perform the steps in the “Adding the Custom Component” on
page 100, the component now appears in the MSB graphical user interface,
as shown in Figure 68.

When you double-click on this component, a configuration dialog box opens,
as shown in Figure 69, so that you can configure it when instantiating it in a
platform.

Figure 70 shows the directory structure and the contents of the directories
created by the MSB graphical user interface.

The directory structure shown in Figure 70 is created automatically by the
Import/Create Custom Component dialog box. The source files are copied
from the source folder into the directory structure. If you want to modify the
RTL once this component is created—for example, to fix a bug—you must
modify the copied files, not the original source files.

Figure 65: Specifying Second Data Structure

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 113

Figure 66: Adding the C Source File

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

114 LatticeMico32 Hardware Developer User Guide

Figure 67: Adding the Device Driver Header (.h) File

Figure 68: Custom Component in MSB Available Components View

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

LatticeMico32 Hardware Developer User Guide 115

Figure 69: Add Reg_Comp Dialog Box

Figure 70: Directories Created by the MSB Graphical User Interface

CREATING CUSTOM COMPONENTS IN LATTICEMICO SYSTEM : Custom Component Example

116 LatticeMico32 Hardware Developer User Guide

LatticeMico32 Hardware Developer User Guide 117

Glossary

Following are the terms and concepts that you should understand to use this
guide effectively.

application build An application build is the files that the managed build
process outputs and places in the application build output folder, for example,
the application executable, application build makefiles, application object files,
and necessary platform library files.

application build makefiles Application build makefiles enable the building
of the application.

application executable The application executable is a result of linking the
application and the platform library object file. The file is an executable in ELF
format that can be downloaded or executed using the GNU GDB debugger.

application object files Application object files are user source object files
that have been compiled and assembled from their source C files.

breakpoints Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE C/C++SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The C/
C++ SPE uses the bundled GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) customized for the
LatticeMico32 process. It uses the same graphical user interface as MSB.

component information structure declaration A component information
structure declaration is specified as part of the .xml file and is copied into .msb
file by MSB. Each component in the platform is represented in the .msb file.

GLOSSARY

118 LatticeMico32 Hardware Developer User Guide

The component’s information in the .msb file includes the details about the
component’s source files that will need to be included in the build process.
The information is then extracted from the .msb file by the build process and
put into the DDStructs.h file. Each unique component must have its own
unique component information structure defined within its component
description file.

component instance declaration For those component instances that
have a corresponding information structure, this header file declares
presence of an instantiated structure. Originates in the Component
Description (.xml) file.

components Components are parts of the microprocessor system
architecture, for example, a CPU and peripherals are referred to generically
as components. Also see platform.

CSR CSR is an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

CDT CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

default linker script The default linker script, named linker.ld, is the default
linker script for the particular platform/project combination and can be used as
a starting point for creating a custom linker script file.

device driver files Device driver files are the source .c and .h C/C++ files
that contain driver code that will be compiled into object files during software
build.

debugging Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse Eclipse is an open-source community whose projects are focused
on providing an extensible development platform and application frameworks
for building software. The LatticeMico System interface is based on the
Eclipse environment.

.elf file An .elf file is a file in executable linked format that contains the
software application code written in C/C++SPE.

GLOSSARY

LatticeMico32 Hardware Developer User Guide 119

GDB GDB is an abbreviation for GNU GDB debugger, which is a source-
level debugger based on the GNU compiler. It is part of the C/C++SPE
debugger.

GNU Compiler Collection (GCC) The GNU Compiler Collection (GCC) is a
set of programming language compilers produced by the GNU Project. It is
free software distributed by the Free Software Foundation (FSF).

HAL HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module The hardware debugger module is a
component of C/C++SPE that is used to find problems in the software
application. Most times it is simply referred to as the debugger module.

hardware platform See “platform.”

IRQ IRQ is an abbreviation for interrupt request, which is the means by
which a hardware component requests computing time from the CPU. There
are 16 IRQ assignments (0-15), each representing a different physical (or
virtual) piece of hardware. For example, IRQ0 is reserved for the system
timer, while IRQ1 is reserved for the keyboard. The lower the number, the
more critical the function.

JTAG ports JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

makefiles Makefiles contain scripts that define what files the make utility
must use to compile and link during the build process. There are many
makefiles employed in the LatticeMico System build process. The makefile
file is the application build makefile, calling all of the other makefiles that allow
the generation and build of the platform library and for eventually generating
the final executable image.

MSB MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing peripherals, such as
a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the processor and the chosen
peripherals. It uses the same graphical user interface as C/C++SPE.

.msb file The .msb file is the output XML file output by the MSB tool when
working in the MSB perspective. This .msb file is generated or updated when
you save your changes in the MSB perspective. This file defines your
platform, that is, the CPU and the peripherals in your design and also their
interconnectivity.

perspective A perspective is a separate combination of views, menus,
commands, and toolbars in a given graphical user interface window that
enable you to perform a set of particular, predefined tasks. The LatticeMico
System contains three default perspectives: the MSB perspective, the C/C++
perspective, and the Debug perspective.

GLOSSARY

120 LatticeMico32 Hardware Developer User Guide

platform A platform (also called a hardware platform) is the embedded
microprocessor in an SoC (system on a chip) design. A platform comprises
the CPU and peripheral components and the interconnectivity that allows
these components to work together to successfully execute processor
instructions.

platform library The platform library is a set of files that contain subroutine
code that references the application files that are necessary for linking during
the build process.

platform library build The platform library build is an integral part of the
managed build process. Another is the application build. The platform library
files contain code that is necessary to the linking during the build process. The
platform library build also outputs a platform library archive (<platform>.a) file
that is referenced by the application build. It allows you to override any default
software implementation.

platform library archive (.a) file The platform library archive (<platform>.a)
file is automatically generated during a platform library build. It is used when
linking the application executable to resolve platform functions used by the
application and is derived from the platform library object files.

platform library object (.o) file The platform library object (.o) file is a
compiled output of the library source files and is input for creating platform
library archive files.

platform settings file The platform settings file is the user.pref file that is
generated during the build process contains platform information for the
platform used by the current project.

project A project is the software application code written in C++ SPE.
Projects are contained within your workspace.

project workspace See “workspace.”

resources or resource files Resources are the projects, folders, and files
that exist in the Workbench. The navigation views provide a hierarchical view
of resources and allows you to open them for editing. Other tools may display
and handle these resources differently.

running Running is the process of executing a software program.

software application The software application is the code that runs on the
32-bit Mico processor to control the peripherals, the bus, and the memories.
The application is written in a high-level language such as C++.

source files In this document, source files generically refer to source .c and
header .h files written in C/C++ programming language.

source folders Source folders are the folders you may have on your
system or in the project folder that contain input for a project. Input might
include source files and resource files to help enhance or to initially establish
a LatticeMico32 project.

GLOSSARY

LatticeMico32 Hardware Developer User Guide 121

UART UART is an acronym for universal asynchronous receiver/transmitter,
which is a computer component that handles asynchronous serial
communication. Every computer contains a UART to manage the serial ports,
and some internal modems have their own UART.

watchpoint A watchpoint is a special breakpoint that stops the execution of
an application whenever the value of a given expression changes, without
specifying where this may happen. A watchpoint halts program execution,
even if the new value being written is the same as the old value of the field.

workspace A workspace contains all of your LatticeMico System projects,
files, and folders and stores everything in a “workspace” folder. Basically a
workspace represents everything you do in the LatticeMico System software,
what is available, how you view it, and what options are available to you
through the different perspectives based on your settings. This is a basic
Eclipse-based software feature.

XML XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

.xml file (1) The .xml file contains information about the parent project and
its settings, as well as information on the platform referenced by the parent
project. (2) The <comp_name>.xml files contain code declarations referred to
as component instance definitions that define the structure of each
component. These files reside in the <install_dir>/components folder. On build
generation, this information is copied into the .msb file by MSB.

GLOSSARY

122 LatticeMico32 Hardware Developer User Guide

LatticeMico32 Hardware Developer User Guide 123

Index

Symbols
.ngo file 14
"Hello World" application 40

A
active perspective 9
Add LatticeMico32 dialog box 20
addresses

assigning component 27
automatically assigning 28
locking component 29
manually editing component 29

Aldec Active-HD 48
Aldec Active-HDL 48
application build 117
application build makefiles see makefiles
application executable 117
application object files 117
Arbitration Scheme parameter 19
arbitration schemes

comparing 23
determining connections made by MSB 21
selecting 19
see also shared-bus arbitration scheme
see also slave-side arbitration schemes

assigning component addresses 27
assigning interrupt request priorities 30
asynchronous SRAM controller see LatticeMico

asynchronous SRAM controller
Available Components view 16, 20

B
behavioral model 46
bidirectional data buses 33
bidirectional ports 34
bitstream

generating in Diamond 37, 38
black_box_pad_pin attribute 88
Board Frequency parameter 19
breakpoints

definition 117
watchpoints 121

C
C/C++ perspective 9

see also C/C++ SPE
C/C++ Software Project Environment see C/C++

SPE
C/C++ SPE

definition of 117
place in design flow 3
purpose 2, 7

C/C++ SPE stand-alone 15
CDT 118
changing default perspectives 11
changing master port arbitration priorities 26
clock port 66
Clone Platform parameter 19
closing views in perspectives 12
Component Attributes view 17
component data sheets 5
Component Help view 17, 20
component information structure declaration 117
component instance declaration 118
Component tab 53, 101
connecting master and slave ports in MSB 21, 24
connecting microprocessor to FPGA pins 38
Console view 17
Create VHDL Wrapper parameter 18, 32, 37
creating custom perspectives 11
creating Diamond project 13
creating platform descriptions in MSB 17

INDEX

124 LatticeMico32 Hardware Developer User Guide

CSR 118
custom components

adding software files 84, 111
connecting external output ports 69
contents of custom component folder 90
creating Verilog wrapper for 61, 87
defining control signals 61, 102
directory structure created 54, 90
displaying software files 86
editing 52
example 92
making available in MSB 90, 100
specifying attributes 53, 101
specifying clock/reset and external ports 67,

102
specifying interrupt port 68, 102
specifying RTL files 72, 75, 102
specifying RTL parameters 79, 102
specifying software elements 81
specifying WISHBONE interface

connections 56, 102
steps involved in creating 52, 101
WISHBONE interface in 51

Customize Perspective dialog box 10
customizing default perspectives 10

D
data sheets 5
DDStruct structure 83
DDStructs.h header file 86
Debug perspective 9

see also Debugger
Debugger

place in design flow 3
purpose 2, 7

deleting custom perspectives 11
Design Flow, IP 14
design rule checks see DRC
device driver files 118
devices suppported 3
Diamond

creating project 13
generating bitstream 37
generating FPGA bitstream 38
importing .lpf file 38
importing EDIF file 38
importing Verilog file 36
importing VHDL file 36
installing 8
IP design flow 14

Diamond Installation Notice document 6
Directory parameter 18
DMA controller see LatticeMico DMA controller
document icon 20
double-buffered bidirectional ports 34
DRC 21, 27, 30

E
Eclipse 118
Eclipse C/C++ Development Toolkit User Guide

document 5
Eclipse workbench 8, 9
EDIF

creating file in Linux 35, 36
importing file into Diamond 36, 38

Edit Arbitration Priorities command 24, 25
Edit Arbitration Priorities dialog box 26
Editor view 16, 24, 27
.elf file

definition of 118
external input/output ports 66
External Ports tab 61, 102

connecting external output ports 68, 102
options available in 64
sets of signals connected in 65

F
Family parameter 19
fixed slave-side arbitration scheme 22, 23, 24, 26
Functional Simulation

Aldec Active-HDL 48
ModelSim 48

functional simulation 40

G
Generate Address command 28
Generate Address toolbar button 28
Generate IRQ command 30
Generate IRQ toolbar button 30
generating bitstream for FPGA 37, 38
generating platform 30
GNU Compiler Collection see GNU GCC compiler
GNU GCC compiler

definition 119
GNU GDB debugger

definition 119
GPIO see LatticeMico GPIO
GUI widgets 77, 80

H
HAL 119
hardware platform see platform

I
Import/Create Custom Component button 53
Import/Create Custom Component dialog box

applying changes 87
Component tab 53, 101
External Ports tab 61, 102
Master/Slave Ports tab 56, 102
opening 52
Parameters tab 79, 102
purpose 52
RTL Files tab 72, 75, 102
saving settings 90

INDEX

LatticeMico32 Hardware Developer User Guide 125

Software Files tab 84, 86, 111
Software tab 81

importing Verilog file into Diamond 36
importing VHDL file into Diamond 36
interrupt port 66
interrupt request priorities

assigning in MSB perspective 30
definition 119

IP cores 14
IP Design Flow 14
IPexpress 14, 19
IRQ see interrupt request priorities

L
LatticeECP/EC Family Data Sheet document 6
LatticeECP/EC FPGA Family Handbook

document 6
LatticeMico as stand-alone tool 49
LatticeMico asynchronous SRAM controller 5, 17,

20
LatticeMico Asynchronous SRAM Controller

document 5
LatticeMico data sheets 5
LatticeMico DMA controller 5
LatticeMico DMA Controller document 5
LatticeMico GPIO 5, 20
LatticeMico GPIO document 5
LatticeMico Master Passthrough document 5
LatticeMico on-chip memory controller

documentation 5
number of addresses available for access 17

LatticeMico On-Chip Memory Controller
document 5

LatticeMico parallel flash controller
available in MSB perspective 20
documentation 5

LatticeMico Parallel Flash Controller document 5
LatticeMico SDR SDRAM Controller document 5
LatticeMico SDRAM controller 35
LatticeMico Slave Passthrough document 5
LatticeMico SPI 5
LatticeMico SPI document 5
LatticeMico SPI Flash document 5
LatticeMico System

accessing online Help 5, 20
applications in 1, 7
creating custom components 51
creating Diamond project 13
design flow 1, 3
devices supported 3
installing 19
perspectives 9
running on Linux 13, 15
running on Windows 8
system requirements on Linux 8
system requirements on Windows 8
using 7

LatticeMico timer

available in MSB perspective 20
LatticeMico Timer document 5
LatticeMico UART 35

available in MSB perspective 20
definition 121
documentation 5

LatticeMico UART document 5
LatticeMico32 Processor Reference Manual

document 5
LatticeMico32 Software Developer User Guide

document 5
LatticeMico32/DSP Development Board User’s

Guide document 5
linker script

created by platform build 3
default

definition 118
linker.ld file 118
Linux

creating Diamond project 13
importing EDIF file 36, 38
pointing to synthesis tool location 15
running LatticeMico System 13
synthesizing platform in MSB 35

Lock column 29
locking component addresses 29
logical preference file see .lpf file
.lpf file 38

M
makefiles

definition 119
manually editing component addresses 29
master ports

changing arbitration priorities 26
connecting in MSB 21, 24
purpose 21
specifying WISHBONE interface connections

for 56, 59
Master/Slave Ports tab 56, 58, 102
Mentor Graphics Precision RTL Synthesis 35
Mico System Builder see MSB
mixed-language designs 42
ModelSim 48
MSB

adding peripherals to platform 19, 20
adding processor to platform 20
assigning component addresses 27
assigning interrupt request priorities 30
Available Components view 16, 20
changing master port arbitration priorities 26
Component Attributes view 17
Component Help view 17, 20
connecting master and slave ports 21, 24
Console view 17
creating new custom components 87
creating platform description 17
defining platform 15

INDEX

126 LatticeMico32 Hardware Developer User Guide

definition 119
Editor view 16, 24, 27
files created during platform generation 31
generating platform 30
implementing shared bidirectional bus to

board 33
locking component addresses 29
making custom components available 90, 100
manually editing component addresses 29
performing design rule checks 30
place in design flow 3
purpose 1, 7
saving platform 30
starting 15

.msb file
created by platform generation 31
creating 18, 19
definition of 119

MSB perspective 9, 16
see also MSB

N
New Platform Wizard dialog box 18
.ngo file 31, 32, 34, 88
non-RTL parameters 79

O
on-chip memory controller see LatticeMico on-chip

memory controller
online Help 20
OPENCORES I2CM component 35
opening views in perspectives 12

P
parallel flash controller see LatticeMico parallel

flash controller
Parameters tab 79, 102
performing design rule checks 30
perspectives

active 9
C/C++ 9
changing default 11
closing views in 12
creating custom 11
customizing default 10
Debug 9
definition of 119
deleting custom 11
description of 9
MSB 9, 16
opening and closing views in 12
reopening views 12
resetting default 12
switching to new 9

physical design rule checks see DRC
pin constraints 38
platform

adding peripherals to 19

adding processor to 19
assigning component addresses 27
assigning interrupt request priorities 30
changing master port arbitration priorities 26
connecting master and slave ports 21, 24
creating description in MSB 17
defining in MSB 15
definition 15, 120
generating in MSB 30
implementing shared bidirectional bus to

board 33
locking component addresses 29
manually editing component addresses 29
performance 36
performing design rule checks 30
saving in MSB 30

platform library 120
platform library archive (.a) file 120
platform library build 120
platform library object files 120
Platform Name parameter 18
platform settings file 120
PMI behavioral models 42
PMI Black-box Instantiations 46
PMI module 46
pmi_def.v 42, 46
project 120
project workspace see workspace

R
reopening views in perspectives 12
Reset Perspective pop-up dialog box 12
reset port 66
resetting default perspectives 12
resource files 120
resources 120
round-robin slave-side arbitration scheme 23, 24,

26
RTL Files tab 72, 73, 75, 102
RTL module parameters

non-RTL parameters 79
predefined 76
steps involved in adding 78
value types 75

Run DRC command 30
Run DRC toolbar button 30
Run Generator command 31
Run Generator toolbar button 31
running LatticeMico System

from GUI 8

S
Save Perspective As dialog box 11
saving platform in MSB 30
serial peripheral interface see LatticeMico SPI

flash controller
setting constraints 36
shared-bus arbitration scheme 21, 24, 26

INDEX

LatticeMico32 Hardware Developer User Guide 127

Simulation for mixed language 42
simulation tools 40
slave ports

connecting in MSB 21, 24
purpose 21
specifying WISHBONE interface connections

for 56, 59
slave-side arbitration schemes 21

fixed 22, 23, 24, 26
round-robin 23, 24, 26

Software Files tab 84, 86, 111
options available in 86

Software tab 81
options available in 83, 111

source files 120
source folders 120
SPI flash see LatticeMico SPI flash controller
SPI see LatticeMico SPI
stand-alone

hardware developer 49
software developer 50

stand-alone tool 15
Start menu 8
structure element data types 82
Synplicity Synplify Pro 35

T
testbench file 44
timer see LatticeMico timer
timing analysis 36
tristates

connecting to external ports 34
implementing bidirectional data buses 33
in custom VHDL components 88

U
UART see LatticeMico UART
universal asynchronous receiver-transmitter see

LatticeMico UART

V
.v files 31, 33
Verilog

.msb file used in flow 31

.v file used in flow 31
adding logic to enable bidirectional bus

sharing 33
creating platform in 31
creating top-level module 61
creating wrapper for custom components 87
files generated by platform creation 31
importing file into Diamond 36
importing file on Windows 37
instantiation template 32
shared bus connection pattern in .v file 33
specifying in MSB 18
wrapper around custom components 61

.vhd file 32, 34

VHDL
.msb file used in flow 31
.v file used in flow 31
adding logic to enable bidirectional bus

sharing 34
avoiding double-buffered bidirectional ports 34
creating custom components 87
creating custom components for 52, 72
creating wrapper 18, 19
files generated by platform generation 32
generating platform 31
importing file into Diamond 36
importing file on Windows 37
synthesizing platform 31
wrapper 34

VHDL Wrapper 42
views

in MSB perspective 16

W
watchpoints 121
WISHBONE signals for connecting ports 56, 59
workspace

definition 121

X
XML 121
.xml file

definition 121

	LatticeMico System Overview
	LatticeMico System Design Flow
	Device Support
	Design Flow Steps

	Related Documentation

	Using the LatticeMico System Software
	LatticeMico System Software Overview
	About the LatticeMico System Tools
	LatticeMico System Requirements
	Running LatticeMico System
	LatticeMico System Perspectives

	Setting Up Diamond for a LatticeMico32 Platform
	Creating a New Diamond Project
	Recommended IP Design Flow

	Creating the Microprocessor Platform in MSB
	Starting MSB
	Creating a Platform Description in MSB
	Connecting Master and Slave Ports
	Changing Master Port Arbitration Priorities
	Assigning Component Addresses
	Assigning Component Interrupt Priorities
	Performing Design Rule Checks
	Saving the Microprocessor Platform
	Generating the Microprocessor Platform
	Implementing Shared Bidirectional Bus to Board
	Synthesizing the Platform to Create an EDIF File (Linux Only)
	Design Guidance for Platform Performance
	Generating the Microprocessor Bitstream
	Downloading Hardware Bitstream to the FPGA

	Performing HDL Functional Simulation of LatticeMico32 Platforms
	Configuring the Platform with LatticeMico System Builder
	Preparing for HDL Functional Simulation
	Performing HDL Functional Simulation with Aldec Active-HDL
	Performing HDL Functional Simulation with Mentor Graphics ModelSim

	Using LatticeMico System as a Stand-Alone Tool

	Creating Custom Components in LatticeMico System
	Opening the Import/Create Custom Component Dialog Box
	Specifying Component Attributes
	Component Location and Directory Structure
	Component Properties

	Specifying WISHBONE Interface Connections
	Specifying Clock/Reset and External Ports
	Specifying RTL Files
	Specifying User-Configurable Parameters
	RTL Parameters
	RTL Parameter Value Types
	Predefined RTL Parameters
	Software Parameters
	Predefined Software Parameters
	GUI Presentation
	Adding RTL Parameters
	Adding Non-RTL Parameters

	Specifying Software Elements
	Adding Software Files to Custom Components
	Applying Changes
	Creating the Verilog Wrapper for VHDL Designs
	Pointing to the Correct .ngo File

	Making Custom Components Available in MSB
	Integrating Custom Component’s RTL Design Files
	Saving the Settings
	Directory Structure

	Custom Component Example
	Sample Custom Component
	Adding the Custom Component
	Output

	Glossary
	Index

