s LATTICE

Byte-to-Pixel Converter IP

User Guide

FPGA-IPUG-02027-1.4

September 2021

Byte-to-Pixel Converter IP :..LATT’CE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal

=LATTICE

Contents
O [0 o o [0 4 T o OO P PR PPOTRTOPROP 6
1.1. (O LU o] =T 3PP 6
1.2. < | LU TP PP PP T UUPPPPPTRON 7
0 B U o T To T £ Te TP TP T TP T TP TP PSP PR PTOPRPOTI 7
1.3. (6] 9171 o1 [o P TP PP PUPPPPURPIOt 7
0 10 O [o 1= T Vo o1 U =T TSP U PRSP 7
1.3.2. Data Ordering and Data TYPESuiiccieeeeiieeeeeiiee ettt e e eretee e eetre e e st e e e eate e e sensaeeesasaeeessteeessnsaeessssaeasansseeesnnsnes 7
I . TR = o = N F= Y2 =SS 7
2 SV | Vot d o T o F= I D =Y ol 4T 4 oY o USSR 8
2.1. Interface and TiMING DiagIamccccciiieccieeeeiiieeeeeiee e eete e e st e e e s aee e e ssaeeeeessteeeeaseeeesseeaeessteeesasteessssnasessseeesnnns 10
B 0 S 1 oY UL T 4 1o ¥ OO PP PP PP 11
0 A @ 10 4 o UL A 12 01 = PSP P PR PRPPRN 11
2.2. Pixel and Byte COUNE RESTIICTION ..ecc.viiiiciiee e ciiee et ettt e et e e et e e e eete e e e ste e e eetbeeestbeeeesataeeeessseeesssaeesasreeenanses 12
2.3. W] o] o Jo g t=To I @o]] il={U =) 4 o] o -3 SR 13
2.3.1. Supported Configurations fOr DSccccuiiiiiiee et e e e e e st e e e e bt e e e snaaeeesstaeeeeanreeesnnraeas 13
2.3.2. Supported Configurations fOr CSI-2.......cuiiiiiiieeccieee et eete e et e e e st e e e s rte e e saaeeeessbeeeseneeeesnneens 14
2.4, (1@ I Ve Y o1 =T 0 1Yo - [0 o I PSRNt 14
2.5. Clock, Reset and INItIaliZationoooiiiiiei et e e e e e st e e e e e e e s abaaeeeeeeesensaseeeeeeeeennnnees 20
2.5.1. Reset and INIAliZatioN ...cc.ueeiiiiiieeeieeeeee et e s e e et e e st e e sata e e s baeeenareeesanaeas 20
N R O [Tol o o o F= 11 OO PRRUPRPRRRPROt 20
3. CONTIGUIAtION SETLINGSutiiieeiiee ettt e et e e e et e e e et e e e e teeeeebaeeeesabeeesaasaeeeaabssaeasbseseansssseaasssaeestasesanssaeeasseens 21
4. 1P Generation and EVAIUGTIONeiiieiiiecie ettt ettt s a e e sae e e sh b e e bt e e ate e be e e bt e e ba e e nabeeaes 22

4.1. Licensing the IP
4.2. Getting Started

4.3. Generating IP in Clarity DESIZNENcoiiuiiiiieiiee ettt ettt ettt e b e bbb e s b e e be e e b e e sbaeebeeennnesanees 23
4.4, Generated IP Directory Structure and FIlEScooiiiiiiiiiieiii et 25
45. RUNNING FUNCEIONAI SIMUIATION ..eeiiiiiiiccieee ettt e et e e et e e e e ett e e e e st e e e eeaabeeeeasaeeesareeeeannes 26
4.6. SIMUIATION STFATERGIES ...nviiie ettt e ettt e e e et e e e ettt e e e e abeeeeebbeeeetaeeeeaabaseeansbeeeessaeeeastasesansseeesasneens 27
4.7. SIMUIGEION ENVIFONMENT....eiiiiiiiieiit ettt et e st e s bt e e sbe e e sbbeebee s beeebaesnbaeenbeesnbaesnseesnssesnsens 27
4.8. [a I = L A= o = V=T 1 PSSRSOt 28
4.9. Synthesizing and IMplemMeENnting the [Pevi i e e e st e e s e e e e st e e eenraeesnneens 28
0 (O B & P10 N [Y [T d o o DRSPS 29
4.10.1. Enabling Hardware Evaluation in DIamond..........cccueoiiieriiiniienieeieeeiee sttt st st 29
4.11. Updating/RegENEratiNg the IPooviieiiieie ettt ettt ettt e bt eere e s beeebeesebeeeabeesabeeeaseesabessseesatessreesnns 29
4.11.1. Regenerating an [P in Clarity DESIGNEIoiciciiee et et ettt ettt e e ettt e e e et e e e s etae e e e abeeeeessaeaesssseaessraeesannes 29

(0] £=T 4= g 1o T O PSPPSRSO 30
TeChNICAl SUPPOIT ASSISTANCEuviiieciiieecciiee ettt et e e et e e etae e e e s teeeeesteeesaasaeeestaeeaanssasesssssseastasesassseeesssneesssseeenanses 30
Appendix A. RESOUICE ULIHIZATIONeeiiiiieie ettt e e e s e e e et e e sneee e e s abeeeeensteeesanseaeesnseeeeannreeesnnnens 31
Appendix B. What is NOt SUPPOTTEA........uiieieiie ettt cetee st e e e e e e ee e e e st eeeste e e ssnsaaeesnseeeessseeessnseaeessseeeeannreeesnnnnens 32
AV T o I o TES) o T PSP UPPP PPN 33

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

[Fq U R N Yo B LYY I =] Fo ol QB == - ISP 8
Figure 2.2. Interface Timing Diagram between Inputs and OUtPUts fOr DSI.........coovuiiriiirieeniiienieeree e 10
Figure 2.3. Interface Timing Diagram between Inputs and Outputs for CSI-2.........cccoiiiiiiirieciiiie e e e 10
Figure 2.4. Input Interface TiMING DIiagrameiiuiiiiiiieeiite ettt ettt ettt et e sa e st e st e e et e e sab e e sabeesabeesabeesabeesnneesares 11
Figure 2.5. Output Timing Diagram from @ DSIINPULoiiiiiie ettt ee e e etre e e et e e e ett e e e s ab e e e esabaeeeensaeeeenneeas 11
Figure 2.6. Output Timing Diagram from @ CSI=2 INPULcuiiiieiiie ettt ee e e ette e e et e e e eab e e e sabaeaesabaeeeensaeeeenneeas 11
Figure 2.7. FIFO Write Data and Cycle Pattern for 1 Lane CSI-2 10-bit Data TYPeS.....ccccccveeeeiiieeeeiieesree et 15
Figure 2.8. FIFO Write Data and Cycle Pattern for 1 Lane CSI-2 RAW 12coooiiiiiciiie e svee et e e e e e e 15
Figure 2.9. FIFO Write Data and Cycle Pattern for 1 Lane DSI RGBB66cccccuvieeeueieeiiuieeeeiiieeeeeeeeesnveeeesnveeeesneesesneens 15
Figure 2.10. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 10-bit Data TYPeS.....ccccvuererrirrereiieresreeeerieeeeeeeeeeeneeas 16
Figure 2.11. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 RAWI12coiiiiiiiiiiieiieentieeeeee ettt 16
Figure 2.12. FIFO Write Data and Cycle Pattern for 2 Lane DSI RGBBB6cccc.ueeeeeiiiieiiiieeeiiieeeeiteeeecireeeesreeeeesreeeeneeas 16
Figure 2.13. FIFO Write Data and Cycle Pattern for 2 Lane DSI RGB666 Loosely packed...........cccoecuvviiviiieeeiiieececiee e, 17
Figure 2.14. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 RGB888ceeveiiiiiiiiieeeiiiee e siree e estee e e naee e s 17
Figure 2.15. FIFO Write Data and Cycle Pattern for 4 Lane CSI2Z RAWIL2cooouiiiieciee et eeree st e e stee e et e e e 17
Figure 2.16. FIFO Write Data and Cycle Pattern for 4 Lane CSI-2 RAWIL0cooeiuiiiieeiieeeciee e eeree e stee et e e e e e e 18
Figure 2.17. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGBB66ccccuueeeeeeeieeiieiieeeiiieeeseteeeseeeeesveeeesveeeesneeas 18
Figure 2.18. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 Loosely packed.........ccccccoviiiiiiiniiiiininniiceieenne 18
Figure 2.19. FIFO Write Data and Cycle Pattern for 4 Lane CSI-2 RGB888coivuiiiiiiniiieniieeiee sttt 18
Figure 2.20. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB888ccc.uvieeeiiiiiiiiieeeciiee et eitee et e e vae e e 19
Figure 2.21. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 W/ GEAI1Eccceeeveeereeereeeireeereeereeereeevee e 19
Figure 2.22. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 Loosely packed w/ Gearl6..........ccccceevcvveereennne. 19
Figure 2.23. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB888 W/ GEAI16cceeeveerereeireeireeireereereeseeereeereens 19
Figure 2.24. Clock Domain Crossing BlOCK Diagrami........uuiiiiuieeieiiiieceieee e ctee s et ee e eette e e svae e e et eessaseee s snaeeeesnteeeennnneeesnnnes 20
FIGUIE 4. 1. Clarity DESIGNEI VIBWccuuiiiiiiiiiieeiiteeite ettt ettt ettt ettt e at e st e st e st e e sa b e e sab e e sabeeeabeesab e e eabeesabeesabeesabeesnneesars 22
Figure 4.2. Starting Clarity Designer from Diamond Design ENVIronNmMeNtcccoeciiiiiiiiiiiniiieniienieceee e 23
Figure 4.3. Configuring Byte-to-Pixel Converter IP in Clarity DESISNEr.......c.ueeieiiiiieeiiie et e et etree e et e e et e e eaneas 24
Figure 4.4. Configuration Tab in [P USer INTEITACE.ccuiii ittt ettt ee e et e e et e e e et e e e e ar e e e e sataeeeesteeeennreas 24
oAU T | D 1T =T o] V) o U ot (U= N 25
Figure 4.6. Simulation Environment BIOCK DI@grameeiiuiieiiiiii i ceiies et esee s e tte e st e e et e e e easa e e e saraeeesstaeeeensaeeesnnens 27
Figure 4.7. CSI-2 Simulation Waveform

Figure 4.8. DSI SIMUIAtion WavefOormcoui ittt st e st st e s b e st e e saree st e e saneesars
Figure 4.9. Regenerating IP in Clarity DESIBNEI.......uiiiuiiieieiiieeteeietee ettt ettt ettt e st e st e st e e st e e saneesabeesaseesabeesaneesares 29

www.latticesemi.com/legal

http://www.latticesemi.com/legal

I.I.LATTICE Byte-to-Pixel Converter IP

User Guide

Tables

Table 1.1.
Table 2.1.
Table 2.2.
Table 2.3.
Table 2.4.
Table 2.5.
Table 3.1.
Table 4.1.
Table 4.2.
Table 4.3.

Table A.1.

Byte-to-Pixel Converter IP QUICK FACLSc.uiiiiiiiiiiiieeiie ettt ettt et et e e sateesaae e sateenaneens 6
Byte-to-Pixel Converter IP Pin FUNCtION DESCIiPLION ..coc.eiiiiiiiiiieiieeiie ettt ettt 8
Pixel and Byte CoUNT RESTIICHION . .cccii ittt et e e e e e et e e e e e e e e s et baeeeeesesasbbaaeeaeeesensnnnes 12
Supported CoNFIGUIAtIONS FOI DSI.....ccuiiiiiieiieieeie ettt ettt ettt ettt ettt esat e s bt e bt et e eabeeatesaaesaeesaes 13
Supported Configurations for CSI-2 .14
ClOCK DOMAIN CrOSSING ..cuutieeiiiieeeeiiteeeeitteeesteeeeetaeeeseuteeeestbeeeeassaeeeaasssaaaastaseaassaseesasasaeassaseeassaessastasasasssseanssnens 20
Byte-to-Pixel Converter IP User Interface Parameter SEttINGSccccvvviiieciee it e 21
Files Generated by Clarity DeSigner.......ccccccveeeecveeeeccevee s,

Testbench Directives Common for DSI and CSI-2

Testbench DIireCtives fOr DSI RX Ty P, .. uiiiciieeeiiieeeeiiee e ettt e e sitteeeeseteeessreeeesbaeeeessteeesessaeeesnsaeeesssneesasseeeessenanans
RESOUICE ULIIIZAtION ...eeiiiiiieieiiie e et e e sttt e s e bt e e e s aba e e s rabaeessabaeeesaeaaesnabaeesssseesssnnens

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

The Lattice Semiconductor Byte-to-Pixel Converter IP converts parallel data, such as output of D-PHY receiver module,
to pixel format. Other than video packet conversion, this module also generates camera/video control signals in the
pixel domain, based on CSI-2 or DSI synchronization packets.

Bridging applications are very popular in the market today due to the increasing demand for better displays. One
common application interface is the Mobile Industry Processor Interface (MIPI®) D-PHY. It was developed primarily to
support camera and display interconnections in mobile devices, and has today become the industry primary high-speed
PHY solution for these applications in smartphones. It is typically used in conjunction with MIPI Camera Serial
Interface—2 (CSI-2) and MIPI Display Interface (DSI) protocol Specifications. It meets the requirements of low-power,
low noise generation, and high noise immunity that mobile phone designs demand.

This document is for Byte-to-Pixel Converter IP design version 1.3.

1.1. Quick Facts

Table 1.1 provides quick facts about the Byte-to-Pixel Converter IP for CrossLink™ and CrossLinkPlus™ devices.

Table 1.1. Byte-to-Pixel Converter IP Quick Facts

Byte-to-Pixel Converter IP Configuration

Gear 16, 4-Lane,
RGB888,
2-Pixel Output

Gear 8, 4-Lane,
RGB888,
2-Pixel Output

Gear 16, 2-Lane,
RGB888,
1-Pixel Output

Gear 8, 2-Lane,
RGB888,
1-Pixel Output

IP Requirements FPGA Families CrossLink/CrossLinkPlus
Supported
Targeted Device LIF-MD6000-6MG811
Resource LUTs 511 289 259 238
Utilization sysMEM™ EBRs 6 3 3 2
Registers 548 333 305 264
lattice Lattice Diamond® 3.11 SP1
Implementation
Design Tool . Lattice Synthesis Engine
Support Synthesis - ®
Synplify Pro® N-2018.03L-SP1-1
Simulation Aldec® Active HDL™ 10.5 Lattice Edition

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

1.2. Features

1.2.1. Supported
The key features of the Byte-to-Pixel Converter IP include:
e Supports the ff. MIPI DSI compatible video formats
e RGB888
e RGB666 packed
e RGB666 loosely packed
e Supports the ff. MIPI CSI-2 compatible video formats

e RGB888
e RAWI10
e RAWI12
e RAWS

e YUV420 8-bit
e YUV422 8-bit
e Legacy YUV420 8-bit
e YUV420 8-bit CSPS
e YUV420 10-bit
e YUV420 10-bit CSPS
e YUV422 10-bit
e Supports 1-, 2-, or 4-lane inputs
e Supports 8-bit (gear 8) or 16-bit (gear 16) inputs per lane
e Supports one, two or four output pixels per pixel clock cycle
e Supports DSI Non-Burst Mode with Sync Events, Non-Burst Mode with Sync Pulses, and Burst Mode

1.3. Conventions

1.3.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL. This includes radix indications and logical operators.

1.3.2. Data Ordering and Data Types
The most significant bit within the pixel data is the highest index.

1.3.3. Signal Names

Signal names that end with:

e _nare active low

e _jareinputsignals

e o are output signals

e _joare bidirectional input/output signals

www.latticesemi.com/legal

http://www.latticesemi.com/legal

2. Functional Description

The Byte-to-Pixel Converter IP converts DSI or CSI-2 video payload packets to standard pixel data format.

= LATTICE

The input interface contains the control information extracted from the D-PHY packet header fields. For 4-lane, gear 16
configuration, it is possible that two header packets are received in a single byte clock cycle. Thus, a second set of input
control signals are provided.

Valid only for
4-lane gear 16
configuration

Byte Domain

Pixel Domain

clk_byte_i
reset_byte_i

sp_en_i
Ip_av_en_i
dt_i[5:0]
wc_i[15:0]

payload_en_i
payload_i

sp2_en_i
Ip2_av_en_i
dt2_i[5:0]
wc2_i[15:0]

T
Byte-tp-Pixel

Conv:erter

clk_pixel_i

reset_pixel_n_i

Vsyc_o
hsync_o
de_o

Iv_o

fv_o
pd_o[m-1:0]
p_odd_o[1:0]

write_cycle_o
mem_we_o
mem_re_o
read_cycle_o
mem_radr_o
fifo_empty_o
fifo_full_o

—

Debug Signals
— (when Debug
Interface is enabled)

Figure 2.1. Top-level Block Diagram

Table 2.1. Byte-to-Pixel Converter IP Pin Function Description

Port Name

Direction

Function Description

Clocks and Reset

clk_byte_i

Clock for the Rx byte clock domain logic (input).

reset_byte_n_i

Active low signal to reset the logic in the clk_byte_i domain.

clk_pixel_i

Clock for the pixel domain logic (output).

reset_pixel_n_i

Active low signal to reset the logic in the clk_pixel_i domain.

Byte Domain Inputs

sp_en_i | Active high pulse to indicate a valid short packet in the Rx side.
Ip_av_en_| | Active high pulse to.indicate an'active video long packet in the Rx side. The byte2pixel module
- - - prepares for the arrival of the video stream.
dt_i[5:0] | Data type field of the D-PHY Rx header packet.
wc_i[15:0] | Word Count field of the D-PHY Rx header packet.
. This is the active video data stream. The width of the data bus depends on the gearing and
payload_i ! number of D-PHY Rx lanes.
payload_en_i | Active high payload valid indicator.
sp2_en_i | This is valid only for gear 16, 4-lane configuration. Active high pulse to indicate a reception of a

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

Port Name Direction | Function Description
second valid short packet in the same byte clock cycle.
. This is valid only for gear 16, 4-lane configuration. Active high pulse to indicate a second valid
Ip2_av_en_i | : . .
active video long packet in the same byte clock cycle.
. This is valid only for gear 16, 4-lane configuration. Data type field of the second D-PHY RX
dt2_i[5:0] |
header packet.
. | This is valid only for gear 16, 4-lane configuration. Word Count field of the second D-PHY RX
wc2_i[15:0]
header packet.
Pixel Domain Outputs
vsync_o 0 VSYNC signal for DSI. Active high if CTRL_POL parameter is POSITIVE. Otherwise, this is active
low.
hsync_o 0 HSYNC signal for DSI. Active high if CTRL_POL parameter is POSITIVE. Otherwise, this is active
low.
o 0 Frame Valid signal for CSI-2. Active high if CTRL_POL parameter is POSITIVE. Otherwise, this is
- active low.
N o 0 Line Valid signal for CSI-2. Active high if CTRL_POL parameter is POSITIVE. Otherwise, this is
- active low.
de o 0 Data Enable signal for DSI. Active high if CTRL_POL parameter is POSITIVE. Otherwise, this is
- active low.
Pixel data output. The pixel_width may be 8, 10, 12, 18, 24, 36, 48, 72, or 96 bits.
8 (8-bit pixel)
10 (10-bit pixel)
12 (12-bit pixel)
16 (8-bit pixel x2)
18 (18-bit pixel)
pd_o 0 20 (10-bit pixel x2)
[pixel_width-1:0] 24 (24-bit pixel or 12-bit pixel x2)
36 (18-bit pixel x2)
48 (24-bit pixel x2)
72 (18-bit pixel x4)
96 (24-bit pixel x4)
In case of multiple output pixels per pixel clock cycle, the first received pixel is placed in the
lower bits (LSB) of the data bus.
Module 4 of the current pixel count. This may be used to indicate the valid pixels for the last
valid pixel data cycle in case of multiple pixel outputs per pixel clock cycle.
. 00 — All pixels are valid.
p_odd_o[1:0] 0 01 — Only the first pixel (LSB) is valid.
10 — Only the lower two pixels in the lower bits are valid.
11 —The last pixel (MSB) is not valid.
Miscellaneous
write_cycle_o[3:0] 0] Payload data write cycle (debug only).
mem_we_o 0 Payload data Write Enable, active high (debug only).
mem_re_o 0 Payload data Read Enable, active high (debug only).
read_cycle_o[1:0] 0] Pixel data read cycle (debug only).
mem_radr_o[2:0] 0] Pixel data read address (debug only).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

o= LATTICE

2.1. Interface and Timing Diagram
Figure 2.2 shows the timing between input and output for DSI.

alk by | mmmwmm

weni_ [N_{ S f 11 f

pvend vsync_end g hsync éngg ’—‘ g g hsync_start g

acnsol - [0] [T | 71‘%]) S)

§g\\ 1§ N J L f

payload[data_width-1:0] % \\ ‘I % X X\\\ I % X 1 I 1 l % %
(‘ \

LI
G | ;ﬁ §§ gg §< ﬁ
¢ § 1

pd_o [pixel_width-1:0] (§ % M X W X g

Figure 2.2. Interface Timing Diagram between Inputs and Outputs for DSI

Reception of a VSYNC start packet triggers the assertion of both hsync_o and vsync_o signals. On the other hand,
VSYNC end packets trigger the deassertion of the vsync_o signal and the assertion of hsync_o signal. In both cases, an
HSYNC end packets is expected next. This is in exception with Non-Burst Mode with Sync Events because VSYNC/HSYNC
end packet doesn't exist in this condition.

Figure 2.3 shows the timing between input and output for CSI-2.

aenes [UMM rrUn

et [N_§ i f § I §
s\ B S T —
sso)| [] i])
i] NE LS §
payload|data_width-1:0] %\)] X L T)

el pixl mwmwmm
)

f
gg gg \ — §§

pd_o [pixel_width-1:0] 9 « SS_X X SS‘X)§ g

Figure 2.3. Interface Timing Diagram between Inputs and Outputs for CSI-2

The behavior of the output synchronization signals (frame and line valid for CSI-2, and VSYNC and HSYNC for DSI)
depend on the reception of the corresponding short packets. Due to the crossing of clock domains, pulse width and
intervals between pulses may vary.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

2.1.1. Input Timing

Figure 2.4 shows the timing diagram of the interface at the receiver side. The assertion of the payload_en_i with
respect to the Ip_av_en_i may vary depending on the gearing and number of lanes. The signals dt_i, vc_i, and wc_i
must be valid with the assertion of the Ip_av_en_i.

[e Y e T e T T s O s O
{

payload_en_i

lp_av_en_i j
)
0

payload[data_width-1:0] >< >< ><

= == =><]

)
dt_i[15:0] X Dot type \
\

we_i[15:0] >< Word Count S

Figure 2.4. Input Interface Timing Diagram

2.1.2. Output Timing
The output timing from a DSl input is shown in Figure 2.5, while the timing from a CSI-2 input is shown in Figure 2.6.

oo NN N N n . n . n n n .7

de_o

Y \ocaaonany V0V \Noacmoaiy
pd o) OO KRR VI
- XA /ORI /UK JRRCRXCORER

Figure 2.5. Output Timing Diagram from a DSI Input

fv_o
Iv_o |_|_|_|_|_|_|_|

Vi Vg Vi O
pd_o A, O AN, O
_ AR RSO0 AR RSO0

Figure 2.6. Output Timing Diagram from a CSI-2 Input

www.latticesemi.com/legal

http://www.latticesemi.com/legal

2.2. Pixel and Byte Count Restriction

The D-PHY Specification handles its data in byte as a minimum unit. Some data types therefore have restrictions on the

number of pixels per line.

Table 2.2. Pixel and Byte Count Restriction

= LATTICE

Data Type Pixel Count Restriction Byte Count Restriction
RGB666 multiple of 4 multiple of 9
RGB666, Loosely packed multiple of 1 multiple of 3
RGB888 multiple of 1 multiple of 3
RAWS multiple of 1 multiple of 1
Legacy YUV420 8-bit multiple of 2 multiple of 3
YUV420 8-bit (odd line) multiple of 2 multiple of 2
YUV420 8-bit (even line) multiple of 2 multiple of 4
YUV422 8-bit multiple of 2 multiple of 4
RAW10 multiple of 4 multiple of 5
YUV420 10-bit (odd line) multiple of 4 multiple of 5
YUV420 10-bit (even line) multiple of 4 multiple of 10
YUV422 10-bit multiple of 2 multiple of 5
RAW12 multiple of 2 multiple of 3

In most cases, the received data are stuffed from LSB to MSB according to the output data width.
In the case of RAW10 and RAW12, MSB 8 bits and remaining LSB 2 or 4 bits are packed separately so that special data

handlings are required. This also applies to YUV420 10 bit and YUV422 10 bit.

Note that RGB data order is different between DSI and CSI-2 (RGB-RGB in DSI, while it is BGR-BGR in CSI-2).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

2.3. Supported Configurations

The following tables list the supported configurations of the Byte-to-Pixel Converter.

2.3.1. Supported Configurations for DSI

Table 2.3. Supported Configurations for DSI

Number of Output Pixels D-PHY Lanes

RX Gearing

Data Type

1lane

RGB666,
RGB666 loosely packed,
RGB888

16

RGB666,
RGB666 loosely packed,
RGB888

1 output pixel

2 lanes

RGB666,
RGB666 loosely packed,
RGB888

16

RGB666,
RGB666 loosely packed,
RGB888

4 lanes

RGB666,
RGB666 loosely packed,
RGB888

2 lanes

16

RGB666,
RGB666 loosely packed,
RGB888

2 output pixels

4 lanes

RGB666,
RGB666 loosely packed,
RGB888

16

RGB666,
RGB666 loosely packed,
RGB888

4 output pixels 4 lanes

16

RGB666,
RGB666 loosely packed,
RGB888

www.latticesemi.com/legal

http://www.latticesemi.com/legal

2.3.2. Supported Configurations for CSI-2

Table 2.4. Supported Configurations for CSI-2

= LATTICE

Number of Output Pixels

D-PHY Lanes

RX Gearing

Data Type

1 output pixel

1lane

8-bit”,
10-bit",
RAW12,
RGB888

16

10-bit,
RAW12,
RGB8SS

2 lanes

8-bit,
10-bit,
RAW12,
RGB8SS

16

RGB888

4 lanes

8-bit,
10-bit,
RAW12,
RGB888

2 output pixels

1lane

16

8-bit

2 lanes

8-bit,
10-bit

16

8-bit,
10-bit,
RAW12,
RGB888

4 lanes

8-bit,
10-bit,
RAW12,
RGB888

16

RGB888

*Note: Supported 8-bit CSI-2 data types are RAWS, YUV420 8-bit, Legacy YUV420 8-bit, YUV420 8-bit CSPS and YUVA422 8-bit.
Supported 10-bit CSI-2 data types are RAW10, YUV420 10-bit, YUV420 10-bit CSPS and YUV422 10-bit.

2.4. FIFO Implementation

A FIFO is used to synchronize the incoming D-PHY data bytes to the pixel clock domain. The FIFO depth is already
computed based on the design configuration. The width of the FIFO is the lowest multiple of the output pixel data
width that is greater than or equal to the input bus width. This determines how many pixels are grouped together and
written to the same FIFO address. For burst mode, the FIFO depth is fixed to 1024 to accommodate the entire video

line.

Figure 2.7 through Figure 2.23 show FIFO write cycle and write data arrangement in each write cycle for various cases.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

I.I.LATTICE Byte-to-Pixel Converter IP

User Guide

time payload_i[0:7] : 10-bit FIFO Write

cycle #0 {payload_4d_r[7:0], payload_1d_r[3:2]} (No Write in the very 1% cycle)

cycle #1

{payload_4d_r[7:0], payload_2d_r[5:4]} (No Write in the very 1" cycle)

cycle #3 No Write

cycle #2 {payload_4d_r[7:0], payload_3d_r[7:6]} (No Write in the very 1% cycle)

b0 bl
cycle #4 m {payload_4d_r[7:0], payload_i[1:0]}

[payload_1d_r, payload_2d_r are registers to latch payload_i]

Back to cycle #0 and continues...

Figure 2.7. FIFO Write Data and Cycle Pattern for 1 Lane CSI-2 10-bit Data Types

time payload_i[0:7] 12-bit FIFO Write
b4 b1l
cycle #0 {payload_2d_r[7:0], payload_1d_r[7:4]} (No Write in the very first cycle)
cycle #1 No write
b0 b3 b0 b3
cycle #2 {payload_2d_r[7:0], payload_i[3:0]}
v
Back to cycle #0 and continues... [payload_1d_r, payload_2d_r are registers to latch payload_i]

Figure 2.8. FIFO Write Data and Cycle Pattern for 1 Lane CSI-2 RAW12

time payload_i[0:7] 18-bit FIFO Write
LSB MsB
cycle #0 “ No write
cycle #1 “ No write
cycle #2 {payload_2d_r[5:0], payload_1d_r[3:0], payload_2d_r[7:6], payload_i[1:0], payload_1d_r[7:4]}
cycle #3 No write
cycle #4 “ {payload_2d_r[7:2], payload_1d_r[5:0], payload_i[3:0], payload_1d_r[7:6]}
cycle #5 No write
cycle #6 {payload_1d_r[1:0], payload_2d_r[7:4], payload_1d_r[7:2], payload_i[5:0]}
cycle #7 No write
cycle #8 {payload_1d_r[3:0], payload_2d_r[7:6], payload_i[1:0], payload_1d_r[7:4], payload_i[7:2]}
v Back to cycle #0 and continues. [payload_1d_r and payload_2d_r are registers to latch payload_i]

Figure 2.9. FIFO Write Data and Cycle Pattern for 1 Lane DSI RGB666

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02027-1.4 15

http://www.latticesemi.com/legal

= LATTICE

time payload_i[0:7] payload_i[8:15] 20-bit FIFO Write
b2 bo: b2 b9

cycle #0 ‘ Po | P1

‘ {payload_1d_r[7:0], payload_1d_r[15:14], payload_2d_r[15:8], payload_1d_r[13:12]}
(No Write in the very 1 cycle)

cycle #1 ‘ P2] Ps ‘ No Write

bObl bObl bObl bObl:

cycle #2 ‘ Po| P1| P2 ‘ Ps Pa ‘ {payload_2d_r[15:8], payload_i[3:2], payload_2d_r[7:0], payload_i[1:0]}

cycle #3 ‘ Ps l Ps ‘ {payload_2d_r[15:8], payload_1d_r[7:6], payload_2d_r[7:0], payload_1d_r[5:4]}
ng bl bObl bObl bObl

cycle #4 ‘ P7 | P2 | Ps | Ps ‘ P7 {payload_1d_r[7:0], payload_i[11:10], payload_2d_r[15:8], payload_i[9:8]}

Back to cycle #0 and continues... [payload_1d_r, payload_2d_r are registers to latch payload_i]

Figure 2.10. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 10-bit Data Types

time payload_i[0:7] payload_i[8:15] 24-bit FIFO Write
ba bllé b4 b1l
cycle #0 ‘ Po 1 P1 ‘ No write
b0 b3 b0 b3’ b4 b1
cycle #1 ‘ Po ‘ P1 | P2 ‘ {payload_r[15:8], payload_i[7:4], payload_r[7:0], payload_i[3:0]}
b4 b11§ bo b3 b0 b3
cycle #2 ‘ Ps ‘ P2 ‘ Ps ‘ {payload_i[7:0], payload_i[15:12], payload_r[15:8], payload_i[11:8]}
v
Back to cycle #0 and continues... [payload_r is a register to latch payload_i]

Figure 2.11. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 RAW12

time payload_i[0:7] payload_i[8:15] 18-bit FIFO Write
LsB MSB :
cycle #0 ‘ Ro ‘ Go ‘ Bo l No write
cycle #1 ‘ Bo R1 I G1 ‘ B1 ' {payload_1d_r[5:0], payload_1d_r[11:6], payload_i[1:0], payload_1d_r[15:12]}
cycle #2 ‘ B: ‘ R2 ‘ G2 1 {payload_1d_r([7:2], payload_1d_r[13:8], payload_i[3:0], payload_1d_r[15:14]}
cycle #3 ‘ B2 ‘ Rs ‘ Gs] {payload_1d_r[9:4], payload_1d_r[15:10], payload_i[5:0]}
cycle #4 ‘ Gs Bs 1 Ra ‘ Ga : {payload_1d_r[11:6], payload_i[1:0], payload_1d_r[15:12], payload_i[7:2]}
cycle #5 ‘ Ga ‘ Ba ‘ Rs | {payload_1d_r[13:8], payload_i[3:0], payload_1d_r[15:14], payload_i[9:4]}
cycle #6 ‘ Gs ‘ Bs ‘ Re l {payload_1d_r[15:10], payload_i[5:0], payload_i[11:6]}
cycle #7 ‘ Re Gs] Be ‘ R7 | {payload_i[1:0], payload_1d_r[15:12], payload_i[7:2], payload_i[13:8]}
cycle #8 ‘ R7 ‘ G7 ‘ B7 [{payload_i[3:0], payload_1d_r[15:14], payload_i[9:4], payload_i[15:10]}
vBack to cycle #0 and continues... [payload_1d_r is a register to latch payload_i]

Figure 2.12. FIFO Write Data and Cycle Pattern for 2 Lane DSI RGB666

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

time payload_i[0:7] payload_i[8:15]
LSB MSB! :
cycle #0 ‘ ‘ Ro l ‘ Go l
cycle #1 ‘ ‘ Bo ‘ ‘ R1 E
cycle #2 ‘ ‘ G ‘ ‘ B1 [

Back to cycle #0 and continues...

18-bit FIFO Write

No write

{payload_r[7:2], payload_r[15:10], payload_i[7:2]}

{payload_r[15:10], payload_i[7:2], payload_i[15:10]}

[payload_r is a register to latch payload_i]

Figure 2.13. FIFO Write Data and Cycle Pattern for 2 Lane DSI RGB666 Loosely packed

24-bit FIFO Write

1 No write

E {payload_i[7:0], payload_r[15:0]}

time payload_i[0:7] @ payload_i[8:15] :
LSB MSE, :
cycle #0 ‘ Bo Go
cycle #1 ‘ Ro | B:1
cycle #2 ‘ G1 1 R1

[{payload_i[15:0], payload_r[15:8]}

Back to cycle #0 and continues...

[payload_r is a register to latch payload_i]

Figure 2.14. FIFO Write Data and Cycle Pattern for 2 Lane CSI-2 RGB888

time payload_i[0:7] : payload_i[8:15] : payload_i[16:23] | payload_i[24:31]
ba b1l ba b11§ bo b3 b0 b3§ ba b1l
cycle #0 ‘ Po I P1 I Po ‘ P1 l P2 ‘
1b0 b3 b0 b3
cycle #1 ‘ Ps] P2 ‘ Ps 1 Pa 1 Ps ‘
b0 b3 b0 b3 b0 b3 b0 b3
cycle #2 ‘ Pa ‘ Ps l Ps l Pz | Ps ‘ P7 ‘
ba b1l b4 bllé bo b3 b0 b3§ ba b1l
cycle #3 ‘ Ps ‘ Ps ‘ Ps ‘ Ps ‘ P10 ‘
:bo b3 b0 b3t
cycle #4 ‘ P11 ‘ P10 ‘ P11 ‘ P12 ‘ P13 ‘
b0 b3 b0 b3} : b0 b3 b0 b3
cycle #5 ‘ P12 ‘ P13 ‘ P1a ‘ P1s ‘ P1s ‘ P1s ‘
b4 b1l b4 bllg b0 b3 b0 b3§ b4 b1l
cycle #6 ‘ P16 ‘ P17 ‘ P16 ‘ P17 ‘ P ‘
: b0 b3 b0 b3
cycle #7 ‘ P19 ‘ P1s ‘ P19y ‘ P20 ‘ P21 ‘
b0 b3 b0 b3 b0 b3 b0 b3
cycle #8 ‘ P20 P21 ‘ P22 ‘ P23 ‘ P22 ‘ P23 ‘
v

Back to cycle #0 and continues...

36-bit FIFO Write

{payload_1d_r[23:16], payload_1d_r[31:28], payload_1d_r[15:8], payload_1d_r[27:24],
payload_2d_r[31:24], payload_1d_r[7:4]} (No Write in the very 17 cycle)

{payload_1d_r[31:24], payload_i[11:8], payload_1d_r[15:8], payload_1d_r[23:20],
payload_1d_r[7:0], payload_1d_r[19:16]}

{payload_1d_r[31:24], payload_i[7:4], payload_1d_r[23:16], payload_i[3:0],
payload_1d_r[7:0], payload_1d_r[15:12]}

{payload_i[7:0], payload_i[19:16], payload_1d_r[23:16], payload_1d_r[31:28],
payload_1d_r[15:8], payload_1d_r[27:24]}

{payload_i[7:0], payload_i[15:12], payload_1d_r[31:24], payload_i[11:8],
payload_1d_r[15:8], payload_1d_r[23:20]}

{payload_i[15:8], payload_i[27:24], payload_1d_r[31:24], payload_i[7:4],
payload_1d_r[23:16], payload_i[3:0]}

{payload_i[15:8], payload_i[23:20], payload_i[7:0], payload_i[19:16],
payload_1d_r[23:16], payload_1d_r[31:28]}

No write
{payload_1d_r[23:16], payload_i[3:0], payload_1d_r[7:0], payload_1d_r[15:12],

payload_2d_r[31:24], payload_1d_r[11:8]}

[payload_1d_r, payload_2d_r are registers to latch payload_i]

Figure 2.15. FIFO Write Data and Cycle Pattern for 4 Lane CSI2 RAW12

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

time payload_i[0:7] payload_i[8:15] payload_i[16:23] payload_i[24:31] 40-bit FIFO Write
b2 b9} b2 b9 b2 b9 b2 b9

cycle #0 ‘ Po | P1 | P2] Ps ‘ No write

bObl bObl bObL bOb1:

cycle #1 ‘ Po ‘ P1 ‘ P2 | P3 l Pa l Ps] Ps

{payload_r[31:24], payload_i[7:6], payload_r[23:16], payload_i[5:4],
payload_r[15:8], payload_i[3:2], payload_r[7:0], payload_i[1:0]}

1b0bl bObl bObL bOb1:

Ps ‘ Ps {payload_i[7:0], payload_i[15:14], payload_r[31:24], payload_i[13:12],

cycle #2 ‘ P7 ‘P“ Ps | Ps | P7 ‘ payload_r[23:16], payload_i[11:10], payload_r[15:8], payload_i[9:8]}
b0bl bObl bOb1 bObL
adess | po [e [m[eleolea] pe | e ot payoed. 316) peviost 1 161
bObl bObl bObl bObl
e R RN TN L 0 v ety i et
v

Back to cycle #0 and continues [payload_r is a register to latch payload_i]

Figure 2.16. FIFO Write Data and Cycle Pattern for 4 Lane CSI-2 RAW10

time payload_i[0:7] payload_i[8:15] payload_i[16:23] payload_i[24:31] 36-bit FIFO Write
LsB MsB : :
cycle #0 ‘ Ro ‘ Go ‘ Bo ‘ R1] G1 ‘ B1 No write
i {payload_r[23:18], payload_r[29:24], payload_i[3:0], payload_r[31:30],
cycle #1 ‘ B1 ‘ R2: ‘ G 1 B: ‘ i Rs ‘ G ‘ payload_r[5:0], payload_r[11:6], payload_r[17:12]}
{payload_r[27:22], payload_i[1:0], payload_r[31:28], payload_i[7:2],
cycle #2 ‘ [€E Bs 1 Ra ‘ H Ga ‘ B4 ‘ Rs ‘ payload_r([9:4], payload_r[15:10], payload_r[21:16]}
{payload_r[31:26], payload_i[5:0], payload_i[11:6],
cycle #3 ‘ Gs ‘ Bs ‘ Re ‘ Ge 1 Bs ‘ R/ payload_r[13:8], payload_r[19:14], payload_r[25:20]}
i {payload_i[3:0], payload_r[31:30], payload_i[9:4], payload_i[15:11],
cycle 4 ‘ R/ ‘ & ‘ B I Rs ‘ Ge ‘ Bs ‘ payload_r[17:12], payload_r[23:18], payload_r[29:24]}
{payload_i[7:2], payload_i[13:8], payload_i[19:14],
cycle #5 ‘ Bs Rs 1 G ‘ B ‘ Rio ‘ Guo ‘ payload_r[21:16], payload_r[27:22], payload_i[1:0], payload_r[31:28]}
: {payload_i[11:6], payload_i[17:12], payload_i[23:18],
cycle #6 ‘ Buo ‘ Ru ‘ Gu ‘ Bu 1 Riz ‘ G2 payload_r[25:20], payload_r[31:26], payload_i[5:0]}
T {payload_i[15:10], payload_i[21:16], payload_i[27:22],
cycle #7 ‘ G ‘ Buz: ‘ Ris [G ‘ ;B ‘ Rus ‘ payload_r[29:24], payload_i[3:0], payload_r[31:30], payload_i[9:4]}
i {payload_i[19:14], payload_i[25:20], payload_i[31:26],
cycle #8 ‘ Rus Gua I Bus ‘ : Ris ‘ G15: ‘ Bis ‘ payload_i[1:0], payload_r[31:28], payload_i[7:2], payload_i[13:8]}
Y [payload_r is a register to latch payload_i]

'Back to cycle #0 and continues...

Figure 2.17. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666

time payload_i[0:7] payload_i[8:15] payload_i[16:23] payload_i[24:31] 36-bit FIFO Write
LsB MsE : :
cycle #0 ‘ ‘ Ro ‘ Go ‘ ‘ Bo ‘ ‘ R1 ‘ No write
cycle #1 ‘ ‘ G l ‘ B: ‘ ‘ R l ‘ G ‘ {payload_r[31:26], payload_i[7:2], payload_i[15:10],

payload_r[7:2], payload_r[15:10], payload_r[23:18]}

cycle #2 ‘ ‘ B, | ‘ Rs ‘ ‘ Gs | ‘ Bs ‘ {payload_i[15:10], payload_i[23:18], payload_i[31:26],

payload_r[23:18], payload_r[31:26], payload_i[7:2]}

Back to cycle #0 and continues... [payload_r is a register to latch payload_i]

Figure 2.18. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 Loosely packed

time payload_i[0:7] : payload_i[8:15] : payload_i[16:23] | payload_i[24:31] 48-bit FIFO Write
LsB MSE : :
cycle #0 ‘ Bo 1 Go 1 Ro 1 B:1 ‘ No write
cycle #1 ‘ G1 ‘ R1 t B2 t G2 ‘ {payload_i[15:0], payload_r[31:0]}
cycle #2 ‘ R2 I Bs I Gs I Rs ‘ {payload_i[31:0], payload_r[31:16]}
Back to cycle #0 and continues... [payload_r is a register to latch payload_i]

Figure 2.19. FIFO Write Data and Cycle Pattern for 4 Lane CSI-2 RGB888

www.latticesemi.com/legal

http://www.latticesemi.com/legal

I.I.LATTICE Byte-to-Pixel Converter IP

User Guide

time payload_i[0:7] payload_i[8:15] payload_i[16:23] payload_i[24:31] 48-bit FIFO Write
LsB MSE : :
cycle #0 ‘ Ro 1 Go] Bo] R1 ‘ No write

{payload_r[31:24], payload_i[7:0], payload_i[15:8],

cycle #1 ‘ G 1 B l R: l G ‘ payload_r[7:0], payload_r[15:8], payload_r[23:16]}

T i i {payload_i[15:8], payload_i[23:16], payload_i[31:24],
cycle #2 ‘ B2 I Rs I Gs I Bs ‘ payload_r[23:16], payload_r[31:24], payload_i[7:0]}
Back to cycle #0 and continues... [payload_r is a register to latch payload_i]

Figure 2.20. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB888

time payload_i[0:15] : payload_i[16:31] : payload_i[32:47] | payload_i[48:63] 72-bit FIFO Write
cycle #0 | Ri | G1 | EBI | Rz | G2 ! B2 | Rs ‘ Gs No write
{payload_r[59:54], payload_i[1:0], payload_r(63:60], payload_r[53:48], payload_r[41:36], payload_r[47:42], payload_r[53:48],
CYdE#l Gs| B3 | Ra ‘ Ga | B4 | Rs [Gs | Bs | Rs | Gs | Bs |R7) payload_r[23:18], payload_r[29:24], payload_r[35:30], payload_r[5:0], payload_r[11:6], payload_r[17:12]}
{payload_i[3:0], payload_r[63:62], payload_i[9:4], payload_i[15:10], payload_r[49:44], payload_r[55:50], payload_r[61:56],
cycle #2 ‘ Rr | G | B | Re | Gs | Be: | Rs | Gs | Bo ‘ Rio | Guo ‘ payload_r[31:26), payload_r{37:32], payload_r[43:38], payload_r(13:8], payload_r[19:14], payload_r[25:20]}
B [{payload_i[11:6], payload_i[17:12], payload_i[23:18], payload_r[57:52], payload_r[63:58], payload_i[5:0],
cycle#3 ‘ Bio ‘ Ru Gui Bu | Rz | Gu B Ri3 l Gu Bi ‘ Ris payload_r[39:34], payload_r[45:40], payload_r[51:46), payload_r[21:16], payload_r[27:22], payload_r[33:28]}
: : {payload_i[19:14], payload_i[25:20], payload_i[31:26], payload_i[1:0], payload_r(63:60], payload_i[7:2], payload_i[13:8],
cycle#4 M Gi | Bu ‘ Ris | G | B [Ris | Go | B | Ry | Gu B‘% payload_r[47:42], payload_r{53:48], payload_r(59:54], payload_r[29:24], payload_r([35:30], payload_r{41:36]}
: : {payload_i[27:22], payload_i[33:28], payload_i[39:34], payload_i[9:4], payload_i[15:10], payload_i[21:16],
cycle #5 ‘B” Ri | G B Ris | Gig | B Ro | G ‘ Bo Ra ‘ payload_r[55:50], payload_r(61:56], payload_i[3:0], payload_r(63:62], payload_r[37:32], payload_r[43:38], payload_r{49:44]}
: : i {payload_i[35:30], payload_i[41:36], payload_i[47:42], payload_i[17:12], payload_i[23:18], payload_i[29:24],
CVdE#e ‘ Gz ‘ Bz Rzz: Gz B2 :Rzz Gz Bz l Ras G ‘ B2 payload_r[63:58], payload_i[5:0], payload_i[11:6), payload_r[45:40], payload_r[51:46], payload_r[57:52]}
. {payload_i[43:38), payload_i[49:44], payload_i[55:50], payload_i[25:20], payload_i[31:26], payload_i[37:32],
cycle #7 F“‘ Ras | Gas ‘ Bs | Rs | Gx l Bs | Rw | Ga | Bz | Ram |“Z4 payload_i[7:2], payload_i[13:8], payload_i[19:14], payload_r[53:48], payload_r[59:54], payload_i[1:0], payload_r[63:60]}
: : {payload_i[51:46], payload_i[57:52], payload_i[63:58], payload_i[33:28], payload_i[39:34], payload_i[45:40],
vcyde"g ‘ Gs| Bs | Re 1 Go | Bx | Ru | Go | B | Ra ‘ Gu | Ba ‘ payload_i[15:10], payload_i[21:16), payload_i[27:22], payload_r(61:56], payload_i[3:0), payload_r[63:62], payload_i[9:4]}
Back to cycle #0 and continues... [payload_r is a register to latch payload_i]
Figure 2.21. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 w/ Gearl6
time payload_i[0:15] : payload_i[16:31] | payload_i[32:47] | payload_i[48:63] 96-bit FIFO Write
158 s : :
voero [[[T [To [[w [Ta o =] owe
cycle #1 ‘ ‘ B | ‘ Rs ! ‘ & | ‘ B | ‘ Re ‘ ‘ G ‘ ‘ B ‘ ‘ R ‘ {payload_i[15:10], payload_i[23:18], payload_i[31:26], payload_r[55:50], payload_r[63:58], payload_i[7:2],
payload_r[31:26], payload_r[39:34], payload_r[47:42], payload_r[7:2], payload_r[15:10], payload_r[23:18]}
{payload_i[47:42], payload_i[55:50], payload_i[63:58], payload_i[23:18], payload_i[31:26], payload_i[39:34],
cycle #2 ‘ ‘ Gs ‘ ‘ Bs ‘ ‘ Rs ‘ ‘ Gs 1 ‘ Bs ‘ ‘ R7 1 ‘ G7 ‘ ‘ B7 ‘ payload_r[63:58], payload_i[7:2], payload_i[15:10], payload_r[39:34], payload_r[47:42], payload_r[55:50]}

Back to cycle #0 and continues [payload_r is a register to latch payload_i]

Figure 2.22. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB666 Loosely packed w/ Gear16

time payload_i[0:15] : payload_i[16:31] : payload_i[32:47] | payload_i[48:63] 96-bit FIFO Write
LSB MSBE : :
cycle #0 ‘ Ro ‘ Go ‘ Bo ‘ Ri ‘ [‘ B1 ‘ R2 ‘ G2 ‘ No write
i[15: i[23:1 I i[31:2: I B I B I i[7:
cycle #1 ‘ B ‘ Rs ‘ G ‘ B l Re ‘ G l B ‘ R ‘ {payload_i[15:8], payload_i[23:16], payload_i[31:24], payload_r[55:48], payload_r[63:56], payload_i[7:0],

payload_r[31:24], payload_r([39:32], payload_r[47:40], payload_r[7:0], payload_r[15:8], payload_r[23:16]}
{payload_i[47:40], payload_i[55:48], payload_i[63:56], payload_i[23:16], payload_i[31:24], payload_i[39:32],
payload_r[63:56], payload_i[7:0], payload_i[15:8], payload_r[39:32], payload_r[47:40], payload_r[55:48]}

cycle#Z‘ Gs ‘ Bs ‘ Re ‘ Gs l Bs ‘ Ry l G7 ‘ B7

Back to cycle #0 and continues... [payload_r is a register to latch payload_i]

Figure 2.23. FIFO Write Data and Cycle Pattern for 4 Lane DSI RGB888 w/ Gear16

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02027-1.4 19

http://www.latticesemi.com/legal

= LATTICE

2.5. Clock, Reset and Initialization

2.5.1. Reset and Initialization

Active low reset is used in the design with synchronous release. This is the system reset input connected to the Byte-to-
Pixel module.

Follow this initialization and reset sequence:
1. Assert active low system reset for at least three clock cycles of the slower clock (pixel clock or byte clock).

2. IPisready to process data after reset.
2.5.2. Clock Domains

clk_byte_fr_i : clk_pixel_i

byte2|Pier.v

Figure 2.24. Clock Domain Crossing Block Diagram

Table 2.5. Clock Domain Crossing

Clock Domain Crossing Handling Approach

Byte Clock to Pixel Clock Parameterized Module Interfacing FIFO IP

For CSI-2 and DSI Non-Burst Mode, the relationship between the two clocks is given by the equation below:

byte clock frequency __ (bits per pixelxnumber of output pixels) _ (pd bus width *number of tx channels)

pixel clock frequency - (number of D—PHY lanes*RX gearing) (number of D—PHY lanes*RX gearing)

where RX gearing is 8 or 16, and the number of output pixels can be 1, 2 or 4.
For RGB666 Loosely Packed, 24 bits per pixel should be used when computing for the required clock frequencies.

Due to the fixed FIFO depth and width of the design as described in FIFO Implementation section, the relationship
between the pixel and the byte clock must meet the requirement described by the equation above.

For DSI Burst Mode, the pixel clock is expected to be slower than the byte clock. A FIFO with a fixed depth of 1024 is
used to be able to accommodate the entire video line.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

3. Configuration Settings

Table 3.1 lists the parameters used to generate the Byte-to-Pixel Converter IP. All parameters are either set
automatically or input in the user interface during the Byte-to-Pixel Converter IP generation.

Table 3.1. Byte-to-Pixel Converter IP User Interface Parameter Settings

Parameters Attribute Options Description

RX Interface User-Input DSl or CSI-2 Selects between MIPI display or camera
interface.

DSI Mode User-Input Non-Burst Mode with Sync | This option is valid only when the RX Interface

Events is DSI. This specifies which Video Mode will be
Non-Burst Mode with Sync | used.

Pulses

Burst Mode

Number of Rx Lanes User-Input 1,2o0r4 Sets the number of MIPI D-PHY Rx Lanes.

Rx Gear User-Input 8or16 Sets number of bits per input lane. This
parameter, together with the number of Rx
lanes, determines the data width of the input
data in the byte clock domain.

Number of Pixels Per User-Input 1,20r4 Specifies the number of output pixels per pixel

Clock clock.

Data type User-Input DSI data types: Specifies the data type to be converted.

RGB666
RGB666_LOOSE
RGB888

CSI-2 data types:
RGB888

RAW10

RAW12

RAWS8

YUv420_8
YUV422_8
LEGACY_YUV420_8
YUV420_8 CSPS
YUV420_10
YUV420_10_CSPS
YUV422_10

Number of Hsync User-Input (3-1023) This option is valid only for DSI Non-Burst

Pulses Mode with Sync Events. This specifies the
number of HSYNC pulses within the active
VSYNC region.

Number of Pix Clock User-Input (3-1023) This option is valid only for DSI Non-Burst

Cycles HSYNC is Active Mode with Sync Events. This determines the
duration of each hsync_o pulses.

Camera/Display Control | User-Input Positive — active high Sets the polarity of the camera or display sync

Polarity Negative — active low and control signals (frame valid, line valid,
vsync, hsync, data enable).

Enable Debug Signals User-Input Check or Unchecked If checked, this shows some of the internal

signals used to control the FIFO.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Byte-to-Pixel Converter IPLATT’CE

User Guide

4. IP Generation and Evaluation

This section provides information on how to generate Lattice Byte-to-Pixel Converter IP using the Diamond Clarity
Designer, and how to run simulation, synthesis, and hardware evaluation.

4.1. Licensing theIP

The Byte-to-Pixel Converter IP is available free of charge but an IP-specific license is required to enable full,
unrestricted use of the Byte-to-Pixel Converter IP in a complete, top-level design.

Request your license by going to the link http://www.latticesemi.com/en/Support/Licensing and request the free
Lattice Diamond license. In this form, select the desired CrossLink/CrossLinkPlus IP for your design.

You may download or generate the Byte-to-Pixel Converter IP and fully evaluate it through functional simulation and
implementation (synthesis, map) without the IP license. The Byte-to-Pixel Converter IP also supports Lattice IP
hardware evaluation capability, see the Hardware Evaluation section for further details.

HOWEVER, THE IP LICENSE IS REQUIRED TO ENABLE TIMING SIMULATION, TO OPEN THE DESIGN IN DIAMOND EPIC
TOOL, OR TO GENERATE BITSTREAMS THAT DO NOT INCLUDE THE HARDWARE EVALUATION TIMEOUT LIMITATION.

4.2. Getting Started

The Byte-to-Pixel Converter IP is available for download from the Lattice IP Server using the Clarity Designer tool. The IP
is available in the Clarity Designer user interface, as shown in Figure 4.1.

T et S e

Fle ¢ View Projct Deign Process [Took| Window Melp

& -~ @) CERAQAQE BE
ZERR 6% ®E “PoB@B” BEEEH @
IFie st 8 X | () startPage | [E Reporss &H Clarity Designer £ e
+ [y us B Generste 7Y Refresh
8 UF-MDs000-6MGa1!
Suategies Goeq | e
B Aves Nome Vesson . .
[10 Assitant & counte 15 Byte to Pixel Converter
& que B ok s
Timing & 37 G
_ 2 Strategyt - g 5 Device Support: LIFMD, LIFMDF
S W:':M Fies - o Overview: MIPI D-PHY was developed primarily to support camera and display

interconnections in mobile devices, and it has become the industry’s primary high- |

i IPUG02027_SBX/IPUG02027_SBX.sbx
speed PHY solution for these applications in smartphones today. It is typically

Synthesis Constraint Files

LPF Constraint Files 35 used in conjunction with MIPI Camera Serial Interface-2 (CSI-2) and MIPI Display
" 1PUGHpt o @ Memory Modules Interface (DSI) protocol specifications. The Lattice Byte to Pixel Coverter
Debug Files 4 3 Distibuted RAM translates the payload packets of a MIPI D-PHY receiver and arranges the bits in
Script Files & datributed_dpram 39 pixel data format
es & datributed_rom 28
F dutributed_spram 39 Features:
4 23 EBR Components
8 am_dp 65 * Supports common MIPI DSI compatible video formats
i ram_dp_true 75 = RGB888
@ ram_dq 75 = RGB666
& rom A4 = RGB666 loosely packed
g fifo 51 « Supports common MIPI CSI-2 compatible video formats (RGB888, RAW,
fifo_dc 58 b YUV
i $ ram_based_shift_regiter 52 -) RGB88S
. = RAW1
+ 0 Auie,Video s e rocesing Sl

= Legacy YUV420 8-bit
= YUV420 8.bit CSPS
= YUVA420 10-bit
= YUVA420 10-bit CSPS
= YUVA422 10-bit

[tstsce | @ Lotee PServer | Irport® | Dimond E¥ oot
Fie st | Proess | Herarchy Buser 5 I &
5x
from f1le ‘amSWEO00.nER' in emviromment: Ci/lsce/dismend/3.11_xés/imptegs.
vt | TaCarue | Grar | Wamng | oot | FrdReadt |
Ready Mem Usage: 246,844 K

Figure 4.1. Clarity Designer View

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal
http://www.latticesemi.com/en/Support/Licensing

I.ILATTICE Byte-to-Pixel Converter IP

User Guide

4.3. Generating IP in Clarity Designer

Clarity Designer is a tool used to customize modules and IPs and place them into the device architecture. The
procedure for generating Byte-to-Pixel Converter IP in Clarity Designer is described below. Clarity Designer is started
from Lattice Diamond design environment.

To start Clarity Designer:

1.

2.

3.

4.

Create a new Diamond project for CrossLink or CrossLinkPlus family devices.

From the Diamond main window, choose Tools > Clarity Designer, or click ﬂ in Diamond toolbox. The Clarity

Designer project dialog box is displayed.

Select and fill out the following items as shown in Figure 4.2:

e Create new Clarity design — Click this to create a new Clarity Design project directory in which the Byte-to-Pixel
Converter IP is generated.

e Design Location — Clarity Design project directory path.

e Design Name — Clarity Design project name.

e HDL Output — Hardware Description Language Output Format (Verilog).

The Clarity Designer project dialog box also allows you to open an existing Clarity Designer project by selecting the
following:

e Open Clarity design — Open an existing Clarity Design project.

e Design File — Name of existing Clarity Design project file with .sbx extension.

Click the Create button. A new Clarity Designer project is created.

+ Latice Diamond - Reports Ry

Ble Eo Yiew Projct Degn Process [Jook] Window Help

®B-Haa } Spreadsheet View BaE

StartPage

T Clary Designer

V) Greste new Claity deagn

Desin Locaton: CiProects FPGA-PUG-02027
Synthesis:

Desion Name:
e utput:

Strategy Name:

Qpen Claity cesign

Powes Calculator

Start Clarity Designer ta generate 3 shje Component S8

Programme

Synplify Pro for Lattice

Oismond Project o

Damond Desgn tlame: PG

Damond Desgn Path: C:JProjects FPGAIPUG 02027
Part Name: LIF-MDS000 6MGE 11
Syrhess: Symoifyero

greate ancel tiep

Feus: | Process | Herardy

Ouput | TaComok | Erer | Wemng | o~ | FrdRests

[Reasy Mem Usage: 25340 K

Figure 4.2. Starting Clarity Designer from Diamond Design Environment

To configure the Byte-to-Pixel Converter IP in Clarity Designer:

1.

Double-click byte to pixel converter in the IP list of the Catalog view. The byte to pixel converter dialog box is
displayed as shown in Figure 4.3.

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02027-1.4 23

http://www.latticesemi.com/legal

Byte-to-Pixel Converter IP
User Guide

= LATTICE

2.
3.

<

.m

.

+Thpws

LIF-MDE000-6MGBLL
Strategies

res
@ VO Assistant

impil
L Tnput Files

i IPUG02027_SBX/IPUG02027_SBX.sbx
Synthesis Constraint Files

Ui LPF Constraint Files

B

Debug Files

Script Fles

Analysis Files

Progrmming Files

ERA|AS BE 3
=RoB@R>” BHEAEE 6

4 startpage () | [T Reports £ | GH Clority Desigmer £
@ Gerwae 7 Reresn
Catalog | Buider
Name Version d
& counter 4%
& fit_buttedly 15
£2 37
£ mult_add_sub 23
B (e
& mutiply_sccumulste
BB sin-cos tuble o
2 subtractor Tetance Path: C:/Projects FPGA-IPUG-02027/IPUGI2027_SBX.

4 3 Memory_Motues
4 &3 Distiibuted RAM
£ disributed_dpram
& distributed_rom
& dsributed,spram
4 3 EBR_Components
B omdp
B ram_dp trve
& mdq
om

& fito
&2 fito_de
B ram _based_shit_registes
«ar
+ @ Audio, Video and Imege Process{

Byte to Pixel Converter
Device Support: LIFMD, LIFMDF

Overview: MIPI D-PHY was developed primanly to support camera and display | _

Irstance Name: st
byte to pinel comverter 1.2
MoqoType: POG
MacoName: byie to poxel comerter

Modue Output: [Jeriog

Dewce Famiy: UFWD
LIF-MD6000-6MGS 11
Synthess: syrfy

Parttame:

(osomae] [conel]

(2} byte to pacel conventes
@

G cs-2dsi d-phy ansmites
G fpd-ink receives

G fpd-bnk transmitter

G pineito byte converte

G subivs image sensor rceiver

Feust |

Done: e

TR

Butcer [&

13
12
12
12

12
12

ot [oommd”

es, and it has become the industry's pimary high- |~
speed PHY soktion for these appiications in smartphones today. Itis typically

used in conjunction with MIP| Camera Serial Interface-2 (CSI-2) and MIP! Display
Interface (DSI) protocol specifications. The Lattice Byte to Pixel Coverter

translates the payload packets of a MIPI D-PHY receiver and arranges the bits in
pixel data format. E

Features:

« Supports common MIP! DSI compatible video formats
= RGBB88
= RGBB66
» RGBB66 loosely packed
« Supports common MIPI CSI-2 compatible video formats (RGB888, RAW,
yw)
= RGBB88
RAW12
RAW10
RAWS
Legacy YUV420 8.bit
YUV420 8-bit CSPS
YUV420 10-bit
YUV420 10-bit CSPS
YUV422 10-bit -

7

Starcing: "sbp_design open -dagn “C:

Loading logical design information

Tinish loading logical design information

Ready
.

Loading device for application GENERIC from file *

1P0R02027,¢

_SBX. 2bx™"

zo3ects/FPGA-1P0G-02027/180602027_SBK/18UG02027_SBX.v(11,1-57,10) (VERI-9000) elaborating module '1PUG02027_SBX'
rojects/FPGA-1P0-02027/180G02027_SBK/Snat/1n8t.v (8, 1-119,10) (VERI-S000) elaborating module *inst_uniq1®
g0 1oad finished with (0) errors, and (0) varaings

3.11_x64/13ptp08.

Output | T Cornoe | Error | Waming | Info* | FrdResults

Mom Ussge: 26344 K

Figure 4.3. Configuring Byte-to-Pixel Converter IP in Clarity Designer

Enter the Instance Name.

Click the Customize button. An IP configuration user interface is displayed as shown in Figure 4.4. From this dialog
box, you can select the IP parameter options specific to your application.

I:E Lattice IP Core -- Byte to Pixel Converter v1.3

Configuration | Generate Log]

Byte to Pixel Converter

Configuration \

[Receiver
R Interface ~l
D5l Mode NOMBURST_PULSES ﬁ

by bbby

reset_byte n_i
reset_pixel_n_i
clk_byte_i

olk_piel_i

sp_en_i

pd_of23:0]
p_odd_o[1:0]|
Fe_ol|

b _o|

lp_aw_en_i

wec_i[15:0]

dt_i[5:0]

papload |

pavload_t

e

Mumber of RX Lanes

~

i FiX Gear (G| 16
o

[Transmitter
4’ Murnber of Pizel Per Clock. ﬁ
-

Data Tyupe ﬁ
Mumber of Hzpne Pulses Inside WSYNC Active Region NqS [3-1023]
Murmber of Pix Clack Cycles HSYNC iz Active [HSA] 2 [3-1023]

Camera/Display Contiol Polarity Negative & Fositive

Miscellaneou:
[Enable Debug signals

Configure Close

Help

Figure 4.4. Configuration Tab in IP User Interface

24

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal

=LATTICE

Click the Configure button after the required parameters are selected.

5. Click Close.

6. Click GeGenerate . .\ olbox. Clarity Designer generates all the IPs and modules, and creates a top module to
wrap them.

For detailed instructions on how to use the Clarity Designer, refer to the Lattice Diamond software user guide.

4.4. Generated IP Directory Structure and Files

Figure 4.5 shows the directory structure of the generated IP files.

4 inst
4 byteZpixel_eval
4 inst
4 impl
4 lifmd
Ise
4 sim
aldec
4 | srC
beh_rtl
4 models
lifmd
testbench

Figure 4.5. IP Directory Structure

The design flow for the IP created with Clarity Designer uses post-synthesized modules (NGO) of the IP core modules
for synthesis. Protected models are used for simulation. The post-synthesized modules are customized when you
configure the IP and are created automatically when the IP is generated. The protected models are common to all
configurations.

Table 4.1 provides a list of key files and directories created by Clarity Designer with details on how they are used.

Table 4.1. Files Generated by Clarity Designer

File Description

<instance_name>.v Verilog top-level module of Byte-to-Pixel Converter IP used for both synthesis and
simulation.

<instance_name>_*.v Verilog submodules for simulation. Files that do not have equivalent black box modules are
also used for synthesis.

<instance_name>_* beh.v Protected Verilog models for simulation.

<instance_name>_*_bb.v Verilog black box modules for synthesis.

<instance_name>_*.ngo User interface configured and synthesized modules for synthesis.

<instance_name>_params.v Verilog parameters file which contains required compiler directives to successfully configure

IP during synthesis and simulation.

<instance_name>.lpc Lattice Parameters Configuration file. This file records all the IP configuration options set
through Clarity Designer. It is used by the IP generation script to generate configuration-
specific IP. It is also used to reload parameter settings in the IP user interface in Clarity
Designer when it is being reconfigured.

<instance_name>_inst.v/vhd Instance template if you want to instantiate the generated soft IP top-level in their own
top-level module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

All IP files are generated inside \<project_dir> directory (inst folder in Figure 4.5). The \<project_dir> is
<design_location>\design_name>\<instance_name>, see the Generating IP in Clarity Designer section. A separate
\<project_dir> is created each time Byte-to-Pixel Converter IP is created with a different IP instance name.

The \byte2pixel_eval and subdirectories provide files supporting push-button IP evaluation through functional
simulations, design implementation (synthesis, map, place and route) and hardware evaluation. Inside the
\byte2pixel_eval is the \<instance_name> folder (inst folder in Figure 4.5) which contains protected behavioral files in
\<instance_name>\src\beh_rtl and a pre-built Diamond project in
\<instance_name>\impl\<device_family>\<synthesis_tool>\, where <device _family> can either be lifmd for CrossLink or
lifmdf for CrossLinkPlus devices.

The <instance_name> is the IP instance name that you specified in Clarity Designer. The simulation part of user
evaluation provides testbench and test cases supporting RTL simulation for Active-HDL simulator under \testbench
folder. Separate directories located at \<project_dir>\byte2pixel_eval\<instance_name>\sim\aldec are provided and
contain specific pre-built simulation script files. See the Running Functional Simulation section for more details.

The pll_wrapper model in \<project_dir>\models\ is used for both simulation and implementation.

4.5. Running Functional Simulation

The generated IP package includes the behavioral models (<instance_name>_*_beh.v) provided in
\<project_dir>\byte2pixel_eval\<instance_name>\src\beh_rtl for functional simulation. The testbench files can be
found in \<project_dir>\byte2pixel_eval\testbench.

To run the evaluation simulation on Active-HDL (Windows only):
1. Create new project using Lattice Diamond for Windows.
2. Open Active-HDL Lattice Edition user interface tool.

3. To customize the testbench parameters, edit the file tb_params.v inside the
<project_dir>\<instance_name>\byte2pixel_eval\testbench folder. See Table 4.2 for the list of valid testbench
compiler directives.

Click Tools, then click Execute macro.

Select the <instance_name>_run.do file inside the
<project_dir>\<instance_name>\byte2pixel_eval\<instance_name>\sim\aldec folder.

Wait for the simulation to finish.

Input and output log files are saved in the sim directory.

Testbench parameters and directives can be modified by setting the define in the vlog command in the *.do file.
Table 4.2 lists testbench directives common for DSI and CSI-2 Rx type.

Table 4.2. Testbench Directives Common for DSI and CSI-2

File Description

SIP_BCLK Used to set the period of the input byte clock (in ps).

SIP PCLK Used to override the pixel clock (in ps). By default, the testbench automatically
- calculates the pixel clock based from the byte clock and other design settings.

NUM_FRAMES Used to set the number of video frames in a test.

NUM_LINES Used to set the number of lines per frame.

NUM_OF_BYTES Number of bytes in each line.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

Table 4.3 is a list of additional testbench directives for DSI Rx type.
Table 4.3. Testbench Directives for DSI Rx Type

File Description

Used to set horizontal front porch (number of byte clock cycles from payload_en_i negation

HFP_PAYLOAD to HSYNC start).

HSA_PAYLOAD Used to set HSYNC width (number of byte clock cycles from HSYNC Start to HSYNC End).

Used to set Horizontal back porch (number of byte clock cycles from HSYNC end to

HBP_PAYLOAD .
- payload_en_i rise).

VFP_LINES Used to set vertical front porch (number of HSYNC pulses before VSYNC for next frame).
VSA_LINES Used to set VSYNC width (number of HSYNC pulses within VSYNC).
VBP_LINES Used to set vertical back porch (number of HSYNC pulses after VSYNC).

4.6. Simulation Strategies

This section describes the simulation environment which demonstrates basic Byte-to-Pixel Converter IP functionality.
Figure 4.6 shows the block diagram of simulation environment.

byte2pixel_tb

dt, sp, Ip, wc, fv, Iv, data in CSI mode/
payload_en hsync, vsync, de,
payload data in DSI mode
BYTE DRIVER » BYTE2PIXEL_WRAPPER(DUT) > PIXEL MONITOR
A A
A

byte_clk, byte_reset

pixel_clk, pixel_reset TB parameters
byte_clk, byte_reset_n pixel_clk, pixel_reset_n

Clk_reset

Figure 4.6. Simulation Environment Block Diagram

4.7. Simulation Environment

The simulation environment is made up of a byte clock domain input driver instance connected to the input of
BYTE2PIXEL IP instance in the testbench. The byte clock domain input driver is configured based on BYTE2PIXEL
configurations and testbench parameters. After reset, the testbench drives data packets and byte data in either DSI or
CSI-2 mode based on configuration. For details on how to set the testbench parameters, refer to the testbench
tb_params.v file available in the <project_dir>\<instance_name>\byte2pixel_eval\testbench. Input byte data and
output pixel data are logged into input_data.log and output_data.log files, respectively. Compare these files to check if
data is being transmitted properly.

Figure 4.7 shows an example simulation of CSI-2 configuration.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

20,000,000p: J¢0.000,000p 50,000,000ps 80,000,000p5 100,000, 000p5 [140.000.0000 60,000,000p: 180,000,000ps

Figure 4.7. CSI-2 Simulation Waveform

Figure 4.8 shows an example simulation of DSI configuration.

Cursor ~

Figure 4.8. DSI Simulation Waveform

4.8. Instantiating the IP

The core modules of Byte-to-Pixel Converter IP are synthesized and provided in NGO format with black box Verilog
source files for synthesis. A Verilog-HDL source file named <instance_name>_byte2pixel.v instantiates the black box of
core modules. The top-level file <instance_name>.v instantiates <instance_name>_byte2pixel.v.

You do not need to instantiate the IP instances one by one manually. The top-level file along with other Verilog source
files are provided in \<project_dir>. These files are refreshed each time the IP is regenerated.

A Verilog instance template <instance_name>_inst.v or VHDL instance template <instance_name>_inst.vhd is also
provided as a guide on how to instantiate the generated soft IP in their own top-level module.

4.9. Synthesizing and Implementing the IP

In Clarity Designer, the Clarity Designer project file (.sbx) is added to Lattice Diamond as a source file after IP is
generated. All required Verilog source files for implementation are invoked automatically. The IP can be directly
synthesized, mapped and placed/routed in the Diamond design environment after the IP is generated. Note that
default Diamond strategy (.sty) and default Diamond preference file (.Ipf) are used. When using the .sbx approach,
import the recommended strategy and preferences from
\<project_dir>\byte2pixel_eval\<instance_name>\impl\<device_family>\Ise or
\<project_dir>\byte2pixel_eval\<instance_name>\impl\<device_family>\synplify directories and set them as active
strategy and active preference file.

Push-button implementation of this IP with either Lattice Synthesis Engine (LSE) or Synopsys Synplify Pro RTL synthesis
is supported via the pre-built Diamond project file <instance_name>_top.Ildf located in
\<project_dir>\byte2pixel_eval\<instance_name>\impl\<device_family>\Ise or
\<project_dir>\byte2pixel_eval\<instance_name>\impl\<device_family>\synplify directories.

To use the pre-built Diamond project file:

1. Choose File > Open > Project.

2. Inthe Open Project dialog box, browse to
\<project_dir>\byte2pixel_eval\<instance_name>\impl\<device_family>\<synthesis_tool>.

3. Select and open <instance_name>_top.ldf. At this point, all of the files needed to support top-level synthesis and
implementation are imported to the project.

Select the Process tab in the left-hand user interface window.

Implement the complete design via the standard Diamond user interface flow.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

I.I.LATTICE Byte-to-Pixel Converter IP

User Guide

4.10. Hardware Evaluation

The Byte-to-Pixel Converter IP supports Lattice IP hardware evaluation capability. You can create versions of the IP that
operate in hardware for a limited period of time without requiring the request of an IP license. It may also be used to
evaluate the IP in hardware in user-defined designs.

4.10.1. Enabling Hardware Evaluation in Diamond

Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be enabled or
disabled in the Strategy dialog box. It is enabled by default.

4.11. Updating/Regenerating the IP

Clarity Designer allows you to update the local IPs from the Lattice IP server. The updated IP can be used to regenerate
the IP instance in the design. To change the parameters of the IP used in the design, the IP must also be regenerated.

4.11.1. Regenerating an IP in Clarity Designer
To regenerate IP in Clarity Designer:

1. Inthe Builder tab, right-click the IP instance to be regenerated and select Config from the menu as shown in
Figure 4.9.

Lattice Diamond - Clarity Designer (C:/Projects/FPGA-IPUG-02027/IPUG02027_SBX/IPUG02027_SBX.sbx)
File Edit View Project Design Process Tools Window Help

PrE-d@giradih @ERAQAQQEEIEEED
YESHELCHGOCEEGA=U=DR8> FERNEHE @

File List g X | i[5 StartPage | = Reports | 5H Clarity Designer* [
“ IE IPUG %Generah&

i LIF-MD6E000-6MGE1T
4 | Strategies
E)’:” Area
FZ’ /O Assistant
E¥ qQuick
[% Timing
Strategyl
4 [FH impi1
4 | Input Files
{@t IPUG02027_SBX/IPUG02027_SBX.sbx
| Synthesis Constraint Files
4 || LPF Constraint Files
[1PUGIpF
. Debug Files
. Script Files
. Analysis Files

Connection Type Export

I

J Programming Files

Figure 4.9. Regenerating IP in Clarity Designer

2. The IP Configuration user interface is displayed. Change the parameters as required and click the Configure button.

3. Click L@Senerate | ;116 toolbox. Clarity Designer regenerates all the instances which are reconfigured.

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02027-1.4 29

http://www.latticesemi.com/legal

Byte-to-Pixel Converter IP :..LATT’CE

User Guide

References

For more information about CrossLink and CrossLinkPlus devices, refer to CrossLink Family Data Sheet (FPGA-DS-02007)
and CrossLinkPlus Family Data Sheet (FPGA-DS-02054).

Software documentation:

e Clarity Designer User Manual

e Lattice Diamond User Guide

For further information on interface standards, refer to:

e MIPI Alliance Specification for D-PHY, version 1.1, November 7, 2011, www.mipi.org
e MIPI Alliance Specification for Display Serial Interface, version 1.1, November 22, 2011, www.mipi.org
e MIPI Alliance Specification for Camera Serial Interface 2 (CSI-2), version 1.1, July 18, 2012, www.mipi.org

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=51662
http://www.latticesemi.com/view_document?document_id=52705
http://www.latticesemi.com/view_document?document_id=52649
http://www.latticesemi.com/view_document?document_id=52655
http://www.mipi.org/
http://www.mipi.org/
http://www.mipi.org/
http://www.latticesemi.com/techsupport

=LATTICE

Appendix A. Resource Utilization

Table A.1 lists resource utilization for Lattice CrossLink FPGAs using the Byte-to-Pixel Converter. The values shown
below are based on map reports. The performance and utilization data target an LIF-MD6000-6MG81I device with —6
speed grade using Lattice Diamond 3.9 and Lattice Synthesis Engine. Performance may vary when using a different
software version or targeting a different device density or speed grade within the CrossLink/CrossLinkPlus family.

The Target fuax is 150 MHz, which is the maximum supported frequency of the FPGA fabric in CrossLink devices. Actual
fmax varies depending on the complete top level design.

Table A.1. Resource Utilization

IP User-Configurable Parameters

Slices

LUTs

Registers

sysMEM EBRs

Programmable I/0

RGB888,
Gear 16,
4-lane,

2 pixel output

463

548

RGB888,
Gear 8,
4-lane,

2 pixel output

267

289

333

RGB888,
Gear 16,
2-lane,

1 pixel output

249

259

305

RGB888,
Gear 8,
2-lane,

1 pixel output

215

238

264

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Byte-to-Pixel Converter IP :..LATT’CE

User Guide

Appendix B. What is Not Supported

e The signal p_odd_o, used to indicate valid pixels in multiple simultaneous pixel outputs, is not verified. The pixel
count in all scenarios where the design is used is always in multiple of the number of pixel outputs.

e See Table 2.2 for the list of supported number of pixels and bytes.
e See Table 2.3 and Table 2.4 for the list of valid configurations.

© 2017-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-IPUG-02027-1.4

http://www.latticesemi.com/legal

=LATTICE

Revision History

Revision 1.4, IP Version 1.3, September 2021

Section

Change Summary

Introduction

In the Supported section, modified item to Supports DSI Non-Burst Mode with Sync Events,
Non-Burst Mode with Sync Pulses and Burst Mode.

Functional Description

e Added information regarding FIFO depth for burst mode In the FIFO Implementation
section.

e Indicated clock domain behavior in CSI-2 and DSI Non-Burst Mode as compared to DSI
Burst Mode in the Clock Domains section.

Configuration Settings

General update to Table 3.1. Byte-to-Pixel Converter IP User Interface Parameter Settings.

IP Generation and Evaluation

Updated Figure 4.4.

Appendix B. What is Not
Supported

Removed item on non-support of Burst Mode and Non-Burst Mode with Sync Events DSI
Video Modes.

Revision 1.3, IP Version 1.3, March 2020

Section

Change Summary

Introduction

e Moved contents of Features section to a new subsection Supported.
e Updated Signal Names section.

Functional Description

e Updated Figure 2.1 and Figure 2.4.
e Updated Table 2.3 and Table 2.4.

Configuration Settings

e Changed section name from Compiler Directives and Parameter Settings to
Configuration Settings.
e Removed RTL Compiler Directives and Parameter Settings section.

IP Generation and Evaluation

Updated Figure 4.4.

Revision 1.2, IP Version 1.3, October 2019

Section Change Summary

Disclaimer Newly added section.

All Added CrossLinkPlus devices support.
Minor adjustments in style and formatting.

References Updated.

Revision 1.1, IP Version 1.0, April 2019

Section

Change Summary

Introduction

Specified that this user guide can be used for IP design versions 1.x.

IP Generation and Evaluation

In Licensing the IP, modified the instructions for requesting free license.

Appendix B. What is Not
Supported

Removed lead-in sentence.

Revision History

Updated revision history table to new template.

All

Minor adjustments in style and formatting.

Revision 1.0, IP Version 1.0, July 2017

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Byte-to-Pixel Converter IP
	1. Introduction
	1.1. Quick Facts
	1.2. Features
	1.2.1. Supported

	1.3. Conventions
	1.3.1. Nomenclature
	1.3.2. Data Ordering and Data Types
	1.3.3. Signal Names

	2. Functional Description
	2.1. Interface and Timing Diagram
	2.1.1. Input Timing
	2.1.2. Output Timing

	2.2. Pixel and Byte Count Restriction
	2.3. Supported Configurations
	2.3.1. Supported Configurations for DSI
	2.3.2. Supported Configurations for CSI-2

	2.4. FIFO Implementation
	2.5. Clock, Reset and Initialization
	2.5.1. Reset and Initialization
	2.5.2. Clock Domains

	3. Configuration Settings
	4. IP Generation and Evaluation
	4.1. Licensing the IP
	4.2. Getting Started
	4.3. Generating IP in Clarity Designer
	4.4. Generated IP Directory Structure and Files
	4.5. Running Functional Simulation
	4.6. Simulation Strategies
	4.7. Simulation Environment
	4.8. Instantiating the IP
	4.9. Synthesizing and Implementing the IP
	4.10. Hardware Evaluation
	4.10.1. Enabling Hardware Evaluation in Diamond

	4.11. Updating/Regenerating the IP
	4.11.1. Regenerating an IP in Clarity Designer

	References
	Technical Support Assistance
	Appendix A. Resource Utilization
	Appendix B. What is Not Supported
	Revision History
	Revision 1.4, IP Version 1.3, September 2021
	Revision 1.3, IP Version 1.3, March 2020
	Revision 1.2, IP Version 1.3, October 2019
	Revision 1.1, IP Version 1.0, April 2019
	Revision 1.0, IP Version 1.0, July 2017

