
LatticeMico32 Tutorial

June 2015

ii LatticeMico32 Tutorial

Copyright
Copyright © 2015 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

LatticeMico32 Tutorial iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv LatticeMico32 Tutorial

LatticeMico32 Tutorial v

Contents

LatticeMico32 Tutorial 1

Introduction 1
Learning Objectives 2
Time to Complete This Tutorial 2
System Requirements 2
Accessing Online Help 3
About the Tutorial Design 3
Tutorial Data Flow 5

LatticeECP3 Versa Evaluation Board 8

Task 1: Create a New Lattice Diamond Project 8

Task 2: Create the Development Microprocessor Platform 11
Create a New MSB Platform 11
Add the Microprocessor Core 16
Add On-Chip and Off-Chip Memory 20
Add the Peripheral Components 23
Specify the Connections Between Master and Slave Ports 26
Assign Component Addresses 29
Assign Interrupt Request Priorities 31
Perform a Design Rule Check 31
Generate the Microprocessor Platform 31
Create a User Top-Level Module 34

Task 3: Create the Software Application Code 37
Create a New C/C++ SPE Project 38
Linker Configuration 40
Build the Project 43

Task 4: Generate the Microprocessor Bitstream 45
Import the MSB Output File 46

Connect the Microprocessor to the FPGA Pins 47
Perform Functional Simulation 49
Perform Timing Simulation 49
Generate the Bitstream 49

CONTENTS

vi LatticeMico32 Tutorial

Task 5: Download the Hardware Bitstream to the FPGA 50

Task 6: Debug and Execute the Software Application Code on the
Development Board 52
Software Application Code Execution Flow 52
Debug the Software Application Code on the Board 54
Insert Breakpoints 59
Execute the Software Application Code 60
Modify and Re-execute the Software Application Code 62

Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash
Memory 64
Selecting the Appropriate LatticeMico EBA Value 64
Generating LatticeMico32 Bootable Application Binary 67
Generating Production Microprocessor Bitstream 72

Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor
Bitstream and Application Software) to SPI Flash Memory 76

Summary 81

Glossary 82

Recommended References 84

LatticeMico32 Tutorial 1

LatticeMico32 Tutorial

Introduction
This tutorial steps you through the basic process involved in using the
LatticeMico System software to implement a LatticeMico32 32-bit soft
microprocessor and attached components in a Lattice Semiconductor device
for the LatticeECP3 Versa Evaluation Board. LatticeMico System
encompasses three tools: the Mico System Builder (MSB), the C/C++
Software Project Environment (C/C++ SPE), and the Debugger. Together,
they enable you to build an embedded microprocessor system on a single
FPGA device and to write and debug the software that drives it. Such a
microprocessor lowers cost by saving board space and increases
performance by reducing the number of external wires.

The LatticeMico System interface is based on the Eclipse environment, which
is an open-source development and application framework for building
software.

Although you can install LatticeMico System as a stand-alone tool, this tutorial
assumes that you have installed Lattice Diamond before installing LatticeMico
System. After you have created a project in Lattice Diamond, the tutorial
shows you how to use MSB to choose a Lattice Semiconductor 32-bit
microprocessor, attach components to it, and generate a top-level design,
including the microprocessor and the chosen components. Next you will use
Lattice Diamond to synthesize, map, place, and route the design and
generate a bitstream for it. You will then download this bitstream to the FPGA
on the board. The tutorial then changes to the Lattice Software Project
Environment (C/C++ SPE) and shows how to use C/C++ SPE to write and
compile the software application code that exercises the microprocessor and
components. Finally, it shows how to download and debug the code on the
board and deploy it in the SPI Flash chips on to the LatticeECP3 Versa
Evaluation Board.

This tutorial is intended for a new or infrequent user of the LatticeMico System
software and covers only the basic aspects of it. The tutorial assumes that

LATTICEMICO32 TUTORIAL : Introduction

2 LatticeMico32 Tutorial

you have reviewed the LatticeECP3 Versa Evaluation Board User's Guide to
familiarize yourself with the product and to set up your board correctly.

For more detailed information on the LatticeMico System software, see the
sources listed in “Recommended References” on page 84.

Learning Objectives
When you have completed this tutorial, you should be able to do the following:

 Use MSB to configure a Lattice Semiconductor 32-bit microprocessor for
your design, select the desired components, and connect the selected
components to the microprocessor with a shared-bus arbitration scheme,
which is the default.

 Use The Lattice Software Project Environment to create the C/C++
software application code that drives the microprocessor and
components.

 Import the Verilog files, Verilog/VHDL files, or an EDIF file generated by a
synthesis tool.

 Import an .lpf file containing the pinout.

 Synthesize, map, place, and route the design.

 Generate a bitstream of the microprocessor and download it to an FPGA
on the board.

 Compile, download, and debug the software application code on the
LatticeECP3 Versa Evaluation Board.

 Debug the hardware and software on the board.

Time to Complete This Tutorial
The time to complete this tutorial is about two hours.

System Requirements
You can run this tutorial on Windows or Linux.

Windows
If you will be running this tutorial on Windows on a PC, your system must
meet the following minimum system requirements:

 Pentium II PC running at 400 MHz or faster

 Microsoft Windows 2000®, Windows XP® Professional, Windows 7, or
Windows Vista®

 USB port for use with the LatticeECP3 Versa Evaluation Board

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=40889

LATTICEMICO32 TUTORIAL : Introduction

LatticeMico32 Tutorial 3

The following software is required to complete the tutorial:

 Lattice Diamond 1.3 software or later with device support for the device
used with your build of the LatticeECP3 Versa Evaluation Board

 LatticeMico System version 1.3 or later

See the Lattice Diamond Installation Notice for the current release for
information on installing software on the Windows platform.

Linux
If you will be running this tutorial on Linux on a PC, your system must meet
the following minimum system requirements:

 Red Hat Enterprise Linux operating system Version 4.0, 5.0, or 6.0

 Lattice Diamond version 1.0

 For mixed Verilog/VHDL support: Synopsys® Synplify Pro® 8.9 or Synplify
Pro 8.9.1 for Linux

 Linux system with USB port

See the Lattice Diamond Installation Notice for the current release for
information on installing software on the Linux platform.

Hardware
This tutorial requires the following hardware:

 A LatticeECP3 Versa Development Kit

 USB cable

 AC adapter cord

Accessing Online Help
You can access the online Help for MSB, C/C++ SPE, the Debugger, or
Eclipse Workbench by choosing Help > Help Contents in the LatticeMico
System graphical user interface.

About the Tutorial Design
This tutorial uses a LatticeECP3 device, and all references are based on the
LatticeECP3 device. The tutorial design consists of the LatticeMico32
embedded microprocessor, an Embedded Block RAM (EBR), GPIOs, a SPI

Note

If you want to perform functional simulation for the mixed Verilog/VHDL flow, you must
have access to a simulator that supports mixed-mode Verilog and VHDL simulation.

LATTICEMICO32 TUTORIAL : Introduction

4 LatticeMico32 Tutorial

flash memory, and a timer. After you add these components, you will specify
the connections between the master and slave ports on these components,
as shown in Figure 1.

In this design, the instruction port and the data port of the CPU are the master
ports. All other ports are slave ports. The instruction port will access the
LatticeMico EBR and the LatticeMico SPI flash memory. The data port will
access the LatticeMico EBR, the LatticeMico GPIOs, the LatticeMico SPI
flash memory, the LatticeMico TImer, and the LatticeMico UART.

Figure 1: Desired Connections Between Master and Slave Ports

LATTICEMICO32 TUTORIAL : Introduction

LatticeMico32 Tutorial 5

Tutorial Data Flow
You will perform the following major steps to create an embedded
microprocessor system:

1. Create a new project in Lattice Diamond.

2. Create a microprocessor platform for the LatticeMico32 microprocessor in
MSB with a shared-bus arbitration scheme, which is the default.

3. Write the software application code for the microprocessor platform in
C/C++ SPE.

4. Synthesize the platform in a synthesis tool, such as Synopsys® Synplify
Pro® or Mentor Graphics® Precision RTL Synthesis, to generate an EDIF
file.

5. Generate a bitstream of the microprocessor platform in Diamond.

6. Download the hardware bitstream to the FPGA using Diamond
Programmer.

7. Debug and execute the software application code on the board.

8. Deploy the software application code into the SPI flash memory.

9. Deploy the microprocessor bitstream.

This tutorial supports both Verilog and mixed Verilog/VHDL design flows in
Diamond for Windows and Linux users. The Windows Verilog design flow for
using LatticeMico System to create an embedded microprocessor and the
software code for it is shown in Figure 2 on page 6. The Windows mixed
Verilog/VHDL design flow is shown in Figure 3 on page 7. The difference
between the two methods is that mixed verilog/VHDL designs have a VHDL
wrapper as an output from MSB. The VHDL wrapper is an input to Synthesis
and Functional Simulation in the Diamond flow.

Note

This tutorial does not show you how to debug your software application code on the
instruction set simulator, but it does show you how to debug the design by
downloading the bitstream and the application code to the board.

LATTICEMICO32 TUTORIAL : Introduction

6 LatticeMico32 Tutorial

Figure 2: Design Flow for Windows Verilog Users

LATTICEMICO32 TUTORIAL : Introduction

LatticeMico32 Tutorial 7

Figure 3: Design Flow for Windows VHDL Users, Using Mixed Verilog/VHDL Design Entry

LATTICEMICO32 TUTORIAL : LatticeECP3 Versa Evaluation Board

8 LatticeMico32 Tutorial

LatticeECP3 Versa Evaluation Board
Figure 4 shows where some of the components mentioned in this tutorial
reside on the LatticeECP3 Versa Evaluation Board.

Task 1: Create a New Lattice Diamond Project
As a first step, you will create a new project in Diamond.

To create a new Lattice Diamond project:

1. Create a folder called lm32_tutor in the following directory:

 For Windows: <Diamond_install_path>\examples

 For Linux: ~/LatticeMico32

2. Start Lattice Diamond:

 On the Windows desktop, choose Start > Programs > Lattice
Diamond > Lattice Diamond.

Figure 4: LatticeECP3 Versa Evaluation Board

Note

In this tutorial, the directory paths follow the Windows nomenclature. For Linux,
replace the “\” character with the “/” character.

LATTICEMICO32 TUTORIAL : Task 1: Create a New Lattice Diamond Project

LatticeMico32 Tutorial 9

 On the Linux command line, run the following script:

<Diamond_install_path>/bin/lin/diamond

3. Choose File > New > Project, and then click Next in the New Project
wizard.

4. In the New Project wizard dialog box, shown in Figure 5 on page 9, select
or specify the following:

a. In the Project Name box, enter platform1.

b. In the Location box, enter the path for the lm32_tutor directory:

 For Windows: <Diamond_install_path>\examples\lm32_tutor

 For Linux: ~/LatticeMico32/lm32_tutor

By default, Diamond uses the Project name and location for the
implementation and fills in this information. Although you can change
to a different name and directory for the first implementation, you will
use the default settings for this tutorial.

5. Click Next to proceed to the Add Source dialog box, and then click Next.
You will add the source later.

6. In Select Device dialog box, shown in Figure 6 on page 10, make the
following selections:

a. In the Family box, select LatticeECP3.

b. In the Device box, select LFE3-35EA.

c. In the Speed grade box, select 8.

d. In the Package Type box, select FPBGA484.

e. In the Operating Conditions box, select Commercial.

Figure 5: New Project Wizard

LATTICEMICO32 TUTORIAL : Task 1: Create a New Lattice Diamond Project

10 LatticeMico32 Tutorial

The dialog box should now resemble the illustration in Figure 6

7. Click Next, and then click Finish.

In the File List, shown in Figure 7, the project name is shown at the top.
The implementation name, which has the same name as the project
name, is displayed in bold type, with the implementation icon . The

project is assigned a default strategy, Strategy1, which is also displayed in
bold type with the strategy icon . A strategy is a collection of settings

for logic synthesis, place, and route. You can view these settings by

Figure 6: New Project Wizard – Select a Device Dialog Box

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 11

double-clicking the strategy name. The platform1 project is also assigned
a logical preference file, platform1.lpf.

Task 2: Create the Development Microprocessor
Platform

In Task 1, you created a blank Diamond project. The Diamond project is a
placeholder for the LatticeMico32 microprocessor platform. You use
LatticeMico System Builder (MSB) to create the microprocessor platform.
MSB allows you to select components to attach to the microprocessor.
Additionally, MSB allows you to customize each of the attached components.
After all components are attached to the microprocessor, you use MSB to
generate Verilog or VHDL source code that describes a microprocessor-
based System-on-a-Chip (SOC). You then enter the HDL source code into the
Diamond project in order to create the bitstream used to configure the FPGA.

The steps in this section describe how to build a LatticeMico32
microprocessor SOC that is intended for developing and debugging
LatticeMico based systems. During system development, the FPGA
resources and the firmware are in a state of flux, undergoing many changes.
When you deploy a LatticeMico32 microprocessor, as described here, you
reduce the impact the of on-going changes in the development environment.

Create a New MSB Platform
Now you will create a new platform in MSB.

Figure 7: Diamond File List

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

12 LatticeMico32 Tutorial

To create a new platform:

1. From the Start menu, choose Programs > Lattice Diamond >
Accessories > LatticeMico System.

The Workspace Launcher dialog box, shown in Figure 8, displays a
default workspace location for the platform.

2. Accept the default location, or click the Browse button to select a different
location. To keep the same workspace for future sessions, select the “Use
this as the default and do not ask again” option.

3. Click OK.

Figure 8: Workspace Launcher Dialog Box

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 13

The LatticeMico System interface now appears, as shown in Figure 9.

4. In the upper left-hand corner of the graphical user interface, select MSB, if
it is not already selected, to open the MSB perspective.

5. Choose File > New Platform.

6. In the New Platform Wizard dialog box, make the following selections:

a. In the Platform Name box, enter platform1.

b. In the Directory box, browse to the lm32_tutor directory and click OK:

 For Windows: <Diamond_install_path>\examples\lm32_tutor

 For Linux: ~/LatticeMico32/lm32_tutor

c. Do one of the following:

 If you are generating a platform in Verilog, leave the Create VHDL
Wrapper unselected.

 If you are generating a platform in mixed Verilog/VHDL, select only
Create VHDL Wrapper.

d. In the Arbitration scheme box, select Shared Bus (Default) from the
drop-down menu, if it is not already selected.

Figure 9: LatticeMico System Interface

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

14 LatticeMico32 Tutorial

e. In the Device Family section, select LatticeECP3 from the Family
menu and LFE3-35EA from the Device menu.

f. In the Board Frequency (MHz) box, change frequency to 26.0

g. In the Platform Templates box, select blank.

Templates are pre-created platforms that facilitate rapid development.
They target the LatticeECP3 Versa Evaluation Board for LatticeECP3.
Each platform also has an associated constraint file that you can
import into Diamond to avoid the effort of creating a constraints file.
MSB gives you the flexibility of creating and adding your own custom
templates and associated constraints files for the LatticeECP3 Versa
Evaluation Board or a custom board, in addition to using the templates
provided as part of the installation package.

The New Platform Wizard dialog box should look like the illustration in
.Figure 10

7. Click Finish.

Figure 10: New Platform Wizard Dialog Box

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 15

The MSB perspective now appears, as shown in Figure 11.

The MSB perspective consists of the following views:

 Available Components view, which displays all the available components
that you can use to create the design:

 A list of hardware components: microprocessor, memories,
components, and bus interfaces. Bus interfaces can be masters or
slaves (see “Specify the Connections Between Master and Slave
Ports” on page 26 for more information on masters and slaves). The
component list shown in Figure 11 is the standard list that is given for
each new platform.

 A list of preconfigured systems: demonstrations and pre-verified
configurations for a given development board or a configuration that
you previously built

You can double-click on a component to open a dialog box that enables
you to customize the component before it is added to the design. The
component is then shown in the Editor view.

 Editor view, which is a table that displays the components that you have
chosen in the Available Components view. It includes the following
columns:

 Name, which displays the names of the chosen components and their
ports

 Wishbone Connection, which displays the connectivity between
master and slave ports

 Base, which displays the start addresses for components with slave
ports. This field is editable.

Figure 11: MSB Perspective

Available
Components
view

Editor
view

Component
Attributes
view

Console view
or Component
Help view

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

16 LatticeMico32 Tutorial

 End, which displays the end addresses for components with slave
ports. This field is not editable. The value of the end address is
equivalent to the value of the base address plus the value of the size.

 Size (Bytes), which displays the number of addresses available for
component access. This field is editable for the LatticeMico EBR and
the LatticeMico asynchronous SRAM controller components only.

 Lock, which indicates whether addresses are locked from any
assignments. If you lock a component, its address will not change
when you select Platform Tools > Generate Address.

 IRQ, which displays the interrupt priorities of all components that have
interrupt lines connected to the LatticeMico32 microprocessor. The
LatticeMico32 microprocessor can accept up to 32 external interrupt
lines.

 Disable, which indicates whether components are temporarily
excluded from the design

 Component Help view, which displays information about the component
that you selected in the Available Components view. The Help page
displays the name of the component—for example, “LatticeMico Timer” or
“LatticeMico UART—and gives a brief description of the function of the
component. It also provides a list and explanation of the parameters that
appear in the dialog box when you double-click the component. If you
click the icon next to the component name, you can view a complete
description of the component in a PDF file.

 Console view, which displays informational and error messages output by
MSB

 Component Attributes view, which displays the name, parameters, and
values of the component selected in the Available Components view or
the Editor view. This view is read-only.

Add the Microprocessor Core
The first step in building the platform is to add the microprocessor core. In this
release, only the LatticeMico32 microprocessor is available.

You will be using the default cache setting for this task. Refer to the
LatticeMico32 Processor Reference Manual for more information on caches.

To add the microprocessor core:

1. Under CPU in the Available Components view, click LatticeMico32 to
view the information available about the LatticeMico32 microprocessor.

Information about the LatticeMico32 microprocessor, including the
parameters that you can set for it, now appears in the Component Help
view and in the Component Attributes view in the lower third of the screen.

If you click the icon in the Component Help view, you can view the
LatticeMico32 Processor Reference Manual, which provides a complete
description of the microprocessor.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 17

Similarly, if you click this icon for a memory or a peripheral component,
you can view the data sheet about that component.

2. Double-click LatticeMico32 to open the Add LatticeMico32 dialog box.
Alternatively, you can select LatticeMico32, and then click the Add
Component button ().

The parameters in the dialog box, shown in Figure 12 on page 18,
correspond to those in the table in the Component Help view.

You are defining a development LatticeMico32 microprocessor. The
LatticeMico32 microprocessor component, when the Enable Debug
Interface option is selected, has an internal Embedded Block RAM
memory attached to the Wishbone bus. This memory is automatically
initialized with LatticeMico opcodes. This means that when the
LatticeMico32 microprocessor comes out of reset, it has a valid set of
opcodes to execute. The LatticeMico32 microprocessor needs only a few
key elements to operate correctly: a good input clock, a reset strobe
assertion and de-assertion, and a set of known good opcodes. During the
development process, the Debug Monitor memory attached to the
LatticeMico32 Wishbone bus is the only guaranteed source of known
good opcodes. It is of vital importance for the Reset Exception Address to
point to this memory. By default, the Debug Port Base Address is
assigned to 0x00000000. This address can be changed, but it is important
that the Reset Exception Address be updated to match the Debug Port
Base Address.

This tutorial will leave the Debug Port Base Address set to 0x00000000.

3. In the Add LatticeMico32 dialog box, do the following:

a. Select the General tab. If it is not already set as default, type
0x00000000 in the “Location of Exception Handlers” box to set the
LatticeMico32 reset vector, as shown in Figure 12 on page 18. This
step sets the reset exception address, which is the address from
where the microprocessor will begin fetching instructions at power-up.
This address must be aligned to a 256-byte boundary.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

18 LatticeMico32 Tutorial

b. Under the section Instruction Cache, select Instruction Cache
Enabled.

c. Select the Inline Memory tab. Under the section Data Inline Memory,
select Enabled. If it is not already set as default, type 0x10000000 in
the Base Address text box, as shown in Figure 13 on page 19.

d. Click OK to accept the default settings for the rest of the options.
Information about the microprocessor now appears in the Name,
Wishbone Connection, Base, End, and Size columns of the table in
the Editor view.

Figure 12: Add LatticeMico32 Dialog Box – General Tab

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 19

Figure 13: Add LatticeMico32 Dialog Box – Inline Memory Tab

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

20 LatticeMico32 Tutorial

The MSB perspective now shows the LatticeMico32 microprocessor in the
Editor View, as shown in Figure 14.

The Wishbone Connection column graphically displays the types of ports and
connections. Black horizontal lines with outbound arrows indicate master
ports, whereas blue horizontal lines with inbound arrows indicate slave ports.
The vertical lines are associated with master ports, and the filled circles
indicate connections between master and slave ports. The illustration shows
that the microprocessor’s slave Debug Port is connected to the master
Instruction Port and Data Port.

Add On-Chip and Off-Chip Memory
Next you will add the LatticeMico FPGA Embedded Block RAM (EBR) and
SPI Flash memory.

Add EBR

The LatticeMico on-chip memory controller is required to download and
execute the software application code.

Figure 14: MSB Perspective with Microprocessor

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 21

To add the EBR to the platform:

1. Under Memory in the Available Components view, double-click On-Chip-
Memory to open the dialog box. Alternatively, you can select On-Chip-
Memory and then click the Add Component button ().

2. In the Add On-Chip-Memory dialog box, change the size to 0x00008000,
as shown in Figure 15, and click OK to accept the default settings for the
rest of the options.

3. Accept the default settings in the dialog box, and click OK.

Add SPI Flash Memory

Next you will add the SPI Flash memory. The LatticeECP3 Versa Evaluation
Board has a serial SPI (16-pin TSSOP, 64M) Flash memory device for non-
volatile configuration memory storage. This flash will be used for software
deployment.

To add the SPI flash component to the platform:

1. Under Memory in the Available Components view, double-click SPI Flash
to open the dialog box. Alternatively, you can select SPI Flash then click
the Add Component button ().

Figure 15: Add On-Chip-Memory Dialog Box

Note

You can delete a component from the Editor view by right-clicking the component in
the Editor view and selecting Remove Component from the pop-up menu. If you
cannot remove a component, this command will be unavailable on the menu.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

22 LatticeMico32 Tutorial

2. In the Add SPI Flash dialog box, shown in Figure 15 on page 21, do the
following:

a. In the Memory Base Address box, change the address to
0x04000000.

b. In the Size box, change the size to 0x04000000. The parallel Flash
memory is placed at address 0x04000000 because of the address
decode scheme used by the LatticeMico system. All components in a
LatticeMico32 platform must be aligned to an address that
corresponds to the largest size (bytes) entry. The LatticeMico32
address space is divided into two 2 GByte ranges. Addresses below
the 2 GB boundary are memory components. Addresses above the 2
GB boundary are I/O components. The alignment of components is
based on the memory range in which they reside. In this tutorial, the
largest memory block is the 32 MByte parallel Flash component. This
means that all memory components must be 32 MB-aligned.

Figure 16: Add SPI Flash Dialog Box

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 23

Therefore, valid base addresses for memory components are
0x00000000, 0x4000000, 0x8000000, and so forth.

c. Select the control port option and in the Control Base Address box,
change the address to 0x80000000.

Control port, enables WISHBONE slave port that can perform all SPI
flash commands such as chip/sector erase, write enable/disable, read/
write status register, power up/down and the minimum boundary
alignment is 0x800.

d. Click OK to accept the default settings for the rest of the options.

Add the Peripheral Components

Now you will add the peripheral components to the platform.

Add GPIO

The first peripheral component that you will add is the LatticeMico GPIO
component, which provides a memory-mapped interface between a
WISHBONE port and general-purpose I/O ports. The I/O ports connect either
to on-chip user logic or to I/O pins that connect to devices external to the
FPGA

For this tutorial, two GPIO block are used: one for controlling the LEDs and
the other for controlling the 14-segment display on the LatticeECP3 Versa
Evaluation Board.

To add the GPIO to the platform:

1. Under IO in the Available Components view, double-click GPIO.
Alternatively, you can select GPIO, then click the Add Component button
().

2. In the Add GPIO dialog box, shown in Figure 17 on page 24, do the
following:

a. In the Instance Name box, change the name of the GPIO to LED.

For this tutorial, the GPIO block must be named LED. Failure to name
the GPIO block LED will cause mismatches in the FPGA I/O pin
names. The example C source code uses this instance name to
access the GPIO registers.

b. Change the setting of the Data Width option to 8.

3. Click OK to accept the default settings for the rest of the options.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

24 LatticeMico32 Tutorial

To add the second instance of GPIO component to control the 14-
segment display:

1. Under IO in the Available Components view, double-click GPIO.
Alternatively, you can select GPIO, then click the Add Component button
().

2. In the Add GPIO dialog box, shown in Figure 18 on page 25, do the
following:

a. In the Instance Name box, change the name of the GPIO to
gpio_7Segs.

b. Change the setting of the Data Width option to 8.

3. Click OK to accept the default settings for the rest of the options.

Add the Timer

The final component that you will add is a LatticeMico timer. This component
is a highly configurable countdown timer with a WISHBONE-compliant slave
interface compatible with the LatticeMico32 microprocessor.

In this tutorial, the timer is used to generate an interrupt for every 100
milliseconds. Depending on this interrupt, the 14-segment count value is
controlled.

Figure 17: Add GPIO Dialog Box - First Instance

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 25

To add the Timer component to the platform:

1. Under IO in the Available Components view, double-click Timer.
Alternatively, you can select Timer, then click the Add Component button
().

2. Click OK to accept the default settings.

Figure 18: Add GPIO Dialog Box - Second Instance

Figure 19: Add Timer Dialog Box

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

26 LatticeMico32 Tutorial

The MSB perspective now resembles the illustration in Figure 20.

Specify the Connections Between
Master and Slave Ports
The connections that you will make between the master and slave ports in the
Editor view will reflect the access scheme shown in Figure 1 on page 4.

The following information applies to master and slave ports in the Editor view:

 There are two types of ports: master ports and slave ports.

 A master port can initiate read and write transactions.

 A slave port cannot initiate transactions but can respond to
transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

 A master port can be connected to one or more slave ports.

 A component can have one or more master ports, one or more slave
ports, or both.

 Horizontal lines with outbound arrows sourced from a component port
indicate a master port.

 Horizontal lines with inbound arrows targeting a component port indicate a
slave port.

 The vertical lines are associated with horizontal lines with outbound
arrows (that is, master ports) to facilitate "connectivity" from a master port

Figure 20: MSB Perspective After Addition of All Components in a Shared-Bus Arbitration Scheme

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 27

to a slave port. A circle represents the intersection of the vertical line and
a horizontal line associated with a slave port.

 A filled circle indicates a connection between the master port represented
by the vertical line and the slave port represented by the horizontal line
associated with the filled circle.

 A hollow circle indicates an absence of connection between the master
port represented by the vertical line and the slave port represented by the
horizontal line associated with the hollow circle. This can be seen in
Figure 20 on page 26, where only the LatticeMico32 microprocessor
Wishbone ports are connected.

 The numbers next to the lines representing the master ports are the
priorities in which the master ports can access the slave ports. You can
change the priority of these connections by following the instructions in
the online Help for LatticeMico System.

To specify the connections between master and slave ports:

1. Connect the instruction and data ports to the LatticeMico EBR slave port
by clicking both circles in the Wishbone Connection column of the ASRAM
Port row.

2. Connect the instruction and data ports to the LatticeMico SPI Flash slave
port by clicking both circles in the Wishbone Connection column of the
Data Port row.

3. Connect the data port to the LatticeMico GPIO slave port by clicking the
circle in the Wishbone Connection column of the GP I/O Port row.

4. Connect the data port to the LatticeMico Timer slave port by clicking the
circle in the Wishbone Connection column of the timer port row.

Figure 21 on page 28 shows the resulting connections in the Editor view.

This tutorial example uses the shared-bus arbitration scheme. For information
about bus arbitration schemes, refer to the LatticeMico32 Software
Developer's User Guide. The master ports are represented by black lines, and
the slave ports are represented by blue lines. Both the instruction and data
ports connect to the LatticeMico EBR and the SPI Flash Controller Data port,

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

28 LatticeMico32 Tutorial

but only the data port connects to the LatticeMico SPI Flash Controller, the
LatticeMico GPIO, and the LatticeMico UART.

Figure 22 shows the connections generated by MSB. MSB automatically
generates the arbiter, depending on which arbitration scheme is selected. In
the case of the shared-bus arbitration scheme, it generates the
microprocessor platform to allow multiple master ports access to multiple
slave ports over a single shared bus. In the diagram, the instruction port
accesses the LatticeMico On-Chip Memory Controller, the LatticeMico GPIO,
and the SPI flash controller. The data port accesses the LatticeMico On-Chip

Figure 21: Connections for Shared Bus Arbitration

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 29

Memory controller, the LatticeMico GPIO, the LatticeMico TImer, and the
LatticeMico SPI Flash Controller Data and control port.

Assign Component Addresses
The next step is for MSB to generate an address for each component with
slave ports. Addresses are specified in hexadecimal notation. Components
with master ports are not assigned addresses.

You will not assign individual addresses. There are only two addresses that
need to be manually assigned: the Debug Memory and the SPI Flash
Memory.

During the creation of the SPI Flash component, you explicitly assigned an
address (0x04000000) to the SPI flash component data and control port, and
the Inline Data memory. You must lock the parallel flash address so that MSB
will not automatically assign it a new address. You do not want the flash

Figure 22: Connections Generated by MSB

Note

You can only edit the addresses in the Base column in the Editor View. You cannot edit
the addresses in the End column. The value of the end address is equivalent to the
value of the base address plus the value of the size.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

30 LatticeMico32 Tutorial

address to change for this example, because that is where the final software
application code will reside.

To lock the address:

1. In the Lock column, select the box for the SPI flash data and control port
(SPIFlash).

2. In the Lock column, select the box for the Debug Port.

To automatically assign component addresses:

 Choose Platform Tools > Generate Address, or click the Generate
Base Address button (), or right-click in the Editor view and choose
Generate Address from the pop-up menu.

The addresses now appear in the Base and End columns in the Editor
view, in hexadecimal notation. Slave components that are not memories
are assigned addresses within the 0x80000000-0xFFFFFFFF memory
range. The Generate Address command sets A31 of each of the I/O
components to ‘1’.

Your MSB perspective should now resemble the example shown in
Figure 23. The base addresses that you see in your Editor view might be
different from those shown.

Note

Address and size values that appear in italic font in the Editor view cannot be
changed.

Figure 23: MSB Perspective After Assignment of Addresses in a Shared-Bus Arbitration Scheme

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 31

Assign Interrupt Request Priorities
The interrupt request priority is the order in which hardware components
request computing time from the CPU. Now you will assign an interrupt
request priority (IRQ) to all components that feature a dash in the IRQ column
of the Editor view. You cannot assign interrupt priorities to components lacking
this dash in the IRQ column, such as memories and CPUs.

To assign interrupt priorities for all components providing interrupt
functionality:

 Choose Platform Tools > Generate IRQ, or click the Generate IRQ
button (), or right-click in the Editor view and choose Generate IRQ
from the pop-up menu.

If you accidentally assign duplicate priorities, MSB will issue an error
message in the Console view when you select Platform Tools > Generate
IRQ.

Perform a Design Rule Check
You will want to perform a design rule check to verify that components in the
platform have valid base addresses, interrupt request values, and other
fundamental properties.

To perform a design rule check:

 Choose Platform Tools > Run DRC, or click the Run DRC button (),
or right-click in the Editor view and choose Run DRC from the pop-up
menu.

In the Console view, MSB shows that there are no errors in the platform.

Generate the Microprocessor Platform
You are now ready to generate the microprocessor platform. During the
generation process, MSB creates the following files in the
..\Tutorial\lm32_tutor\platform1\soc directory:

 A platform1.msb file, which describes the platform. It is in XML format and
contains the configurable parameters and bus interface information for the
components.

Note

To reassign an interrupt priority for a specific component, go to the IRQ column in the
row for the component, click on the current interrupt priority number, and choose the
new priority number from the drop-down menu. Explicitly assigned interrupt priorities
will not be overridden by the interrupt generator tool. The Lock control does not affect
IRQ assignment; it only prevents auto-assignment of the Base Address.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

32 LatticeMico32 Tutorial

 A platform1.v (Verilog) file, which is used by both Verilog and mixed
Verilog/VHDL users:

 For Verilog users, the platform1.v file is used in both simulation and
implementation. It instantiates all the selected components and the
interconnect described in the MSB graphical user interface. This file is
the top-level simulation and synthesis RTL file passed to Diamond. It
includes the .v files for each component in the design. These .v files
are used to synthesize and generate a bitstream to be downloaded to
the FPGA. The first time Generate is run, the Verilog source for each
component in the platform, which is located in
<Diamond_install_path>/micosystem/components/<component>, is
copied into a subdirectory called “components.” The components
subdirectory is a sibling to the soc subdirectory.

 For mixed Verilog/VHDL users, the platform1.v file is used in
simulation only.

A mixed-mode Verilog and VHDL simulator, such as Aldec® Active-
HDL™, is needed for functional simulation.

 A platform1_vhd.vhd (VHDL) file is created if you selected the “Create
VHDL Wrapper” option in the New Platform Wizard dialog box. It is
intended to be used only to incorporate the Verilog-based platform into a
mixed Verilog/VHDL design. The platform1_vhd.vhd contains the top-level
design used for synthesis. This top-level design file instantiates the
platform1 component.

The contents of the platform1.msb file are used by the C/C++ development
tools. The C/C++ source code build process extracts the base address
information and the size of each component and uses the information to build
GNU LD linker files. Each time the Generate function is run, it causes the C/
C++ compiler to consider the C/C++ source code to be out of date. This
means that the source code will be rebuilt from scratch after each Generate
process.

To generate the microprocessor platform:

 Click anywhere in the Editor view and choose Platform Tools > Run
Generator, or click the Run Generator button (), or right-click and
choose Run Generator from the pop-up menu.

The Console view displays the output as MSB processes the design.

If you are using Verilog, you will see Finish Generator in the Console
view when the generator is finished. If the project was created with the
“Create VHDL Wrapper” option selected, the project is a mixed Verilog/
VHDL flow and the generator silently launches Synplify synthesis and
Diamond to create the wrapper. If you are using mixed Verilog/VHDL, you
must wait for the Finish VHDL Wrapper message to appear in the
Console view.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 33

The MSB perspective now looks like the illustration in Figure 24. The
assigned addresses for the components other than the parallel flash might
differ.

As shown in Figure 25, MSB generates a platform1_inst.v file, which contains
the Verilog instantiation template for use in a design where the platform is not
the top-level module. For a mixed Verilog/VHDL project, no equivalent file is
generated.

Figure 26 on page 35 shows the structure of the directory that MSB
generates. The directory structure is created the first time the Generate
process is run. The contents of the components subdirectory is only written
the very first time the Generate function is run. After the first run it remains
static. There is an exception: when a MSB project is opened after installing a

Figure 24: MSB Perspective After Building the Microprocessor Platform in a Shared-Bus

Arbitration Scheme

Figure 25: Verilog Instantiation Template

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

34 LatticeMico32 Tutorial

new version of the LatticeMico System Builder, a new component version
might exist. You are given an opportunity to update to the new component.
Accepting the update will modify the components subdirectory.

Create a User Top-Level Module
As mentioned in the previous section, the platform that is generated by MSB
may not be the top-level module. In this scenario, you can use the contents of
platform1_inst.v, as shown in Figure 25 on page 33, within your top-level
module. This instantiates the platform generated by MSB within your top-level
module.

You must now create a top level file name platform1_top.v to instantiate the
MSB-generated platform. Create the file as follows:

1. Copy and paste the contents of Figure 27 on page 36 into a text editor.

2. Name the file platform1_top.v, and save the file in the following directory:

 For Windows:
< Diamond_install_path>\examples\lm32_tutor\platform1\soc

 For Linux: ~/LatticeMico32/platform1/soc

You will import this file into your Diamond project, in the section “Importing the
Source Files” on page 46.

Note

Figure 26 shows an example platform. The figure does not show the entire directory
and file structure.

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

LatticeMico32 Tutorial 35

Figure 26: MSB Directory Structure

<install_path>

examples

lm32_tutor

platform1

components

soc

lm32_top

rtl

Verilog

lm32_top.v top-level processor file

platform1.msb

platform1.v

spi_flash

timer

drivers

device

peripheral.mk file

*.c, *.h files

Platform project directory

Components repository

Hardware implementation

Software implementation

Platform definition/implementation directory

Platform definition (also for software flow)

Verilog platform implementation (for Diamond)

LatticeMico-specific make files for
managed-make software builds

gnu

platform1_inst.v Verilog instantiation template (for Diamond)

gpio

platform1_vhd.vhd VHDL wrapper (if mixed Verilog/VHDL design)

lm32_debug.v and other debug module *.v files

LATTICEMICO32 TUTORIAL : Task 2: Create the Development Microprocessor Platform

36 LatticeMico32 Tutorial

Figure 27: User Top Level File
`include "platform1.v"

module platform1_top
 (input reset_n,
 output SPIFlashCEJ,
 output SPIFlashSCK,
 output SPIFlashSI,
 input SPIFlashSO,
 output SPIFlashWPJ,
 output [7:0] LEDPIO_OUT,
 output [7:0] gpio_7SegsPIO_OUT
);

// LatticeECP3 internal oscillator generates platform clock
wire clk_i;
OSCF OSCinst0 (.OSC(clk_i));
defparam OSCinst0.NOM_FREQ = "26" ;

platform1 platform1_u
 (.clk_i (clk_i),
 .reset_n (reset_n),
 .SPIFlashCEJ (SPIFlashCEJ) ,
 .SPIFlashSCK (SPIFlashSCK) ,
 .SPIFlashSI (SPIFlashSI) ,
 .SPIFlashSO (SPIFlashSO) ,
 .SPIFlashWPJ (SPIFlashWPJ) ,
 .LEDPIO_OUT (LEDPIO_OUT) ,
 .gpio_7SegsPIO_OUT (gpio_7SegsPIO_OUT)
);
endmodule

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

LatticeMico32 Tutorial 37

Task 3: Create the Software Application Code
In this task, you create the software application by using C/C++ in the
LatticeMico System Software Project Environment (C/C++ SPE). The
software application is the code that runs on the LatticeMico32
microprocessor to control the components, the bus, and the memories. The
application is written in C/C++.

C/C++ SPE is based on the Eclipse environment and provides an integrated
development environment for developing, debugging, and deploying C/C++
applications. C/C++ SPE uses the GNU C/C++ tool chain (compiler,
assembler, linker, debugger, and other necessary utilities) that has been
customized for the LatticeMico32 microprocessor.

C/C++ SPE uses the same LatticeMico System interface as MSB, but it uses
a different perspective called the C/C++ perspective.

To activate the C/C++ perspective:

In the upper left-hand corner of MSB graphical user interface, select
C/C++.

The C/C++ perspective is shown in Figure 28.

Figure 28: C/C++ Perspective

C/C++
Projects
view or
Navigator
view

Problems view, Console view, Properties view, Debug view, Tasks view, or Search view

Editor
view

Outline

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

38 LatticeMico32 Tutorial

The C/C++ perspective consists of the following views:

 C/C++ Projects view, which lists C/C++ SPE projects that have been
created

 Navigator view, which shows all of the file system's files under the
workspace directory

 Editor view, which is similar to the Editor view in the MSB perspective

 Outline view, which displays the structure of the file currently open in the
Editor view

 Problems view, which displays any error, warning, or informational
messages output by C/C++ SPE

 Console view, which displays informational messages output by the
C/C++ SPE build process

 Properties view, which displays the attributes of the item currently
selected in the C/C++ Projects view. This view is read-only.

 Search view, which displays the results of a search when you choose
Search > File.

 Tasks view, which shows the tasks running concurrently in the background

 Make Targets view, which is not used in LatticeMico C/C++ projects

Create a New C/C++ SPE Project
You will create a new project in C/C++ SPE, import the platform1.msb file into
the project, select the application code template to use so that you do not
have to write the code yourself, and compile the code.

To create a new C/C++ SPE project:

1. In the C/C++ perspective, choose File > New > Mico Managed Make C
Project.

2. In the New Project dialog box, make the following selections:

a. In the Project Name box, enter LED_Versa.

b. In the Location box, browse to the following directory:

 For Windows: <Diamond_install_path>\examples\lm32_tutor

 For Linux: ~/LatticeMico32/lm32_tutor/platform1

c. In the MSB System box, browse to the following location, select the
platform1.msb file in the dialog box, and click Open.

 For Windows:
<Diamond_install_path>\examples\lm32_tutor\platform1\soc\
platform1.msb

 For Linux:
~/LatticeMico32/lm32_tutor/platform1/soc/platform1.msb

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

LatticeMico32 Tutorial 39

d. In the Select Project Templates box, select LM32Tutorial as the
template for the application code.)

The New Project dialog box should resemble the figure shown in
Figure 29.

3. Click Finish.

Note

Project templates are packaged software application files that are copied to the
new project and provide a starting point for building an application. Some
templates have specific requirements, as described in the description pane. If
these hardware and software requirements are not met, the application built may
not function correctly and may require you to debug the application by using the C/
C++ SPE debug interface. C/C++ SPE enables you to create templates in addition
to those included with the installation.

Figure 29: New Project Dialog Box

Note

The directory shown in the Location box in the Project Contents field is where the
software project directory will be created. Your user files will be placed in this
directory.

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

40 LatticeMico32 Tutorial

Now you see the source code in the middle pane of the C/C++ perspective, as
shown in Figure 30.

Linker Configuration
A new C project is almost ready to be compiled and linked. Before you
compile the source code, it is necessary to configure the linker. Every C/C++/
assembly file has, at a minimum, three fundamental sections that need to be
placed.

The compiler splits the source code into an instruction section, a read-only
data section, and a read-write section by default. The first two sections can
be placed in either read-only or read-write memories, while the final section
must be placed in a read-write memory. The C/C++ SPE provides you with an
easy-to-use feature for selecting memories for each region.

Your platform contains three memory components: a data inline memory, a
parallel flash memory, and an asynchronous SRAM memory. You will build the
LED_Versa application to run from the asynchronous SRAM memory and
data inline memory.

Figure 30: Source Code in C/C++ Perspective

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

LatticeMico32 Tutorial 41

The Properties dialog box enables you to select and change where the linker
places each of the sections.

To modify how the linker assigns each section:

1. Make sure that the LED_Versa is selected in the C/C++ Projects view.

2. Choose Project > Properties.

The Properties for LED_Versa dialog box now appears, as shown in
Figure 31.

You can select from the list on the left side of the Properties window to
open one of the following panes:

 Info – provides basic project location information.

 Builders – provides information on the builder system used for this
managed build project. It is preconfigured to use the LatticeMico
builder system.

 C/C++ Build – enables you to select and manage the compiler,
assembler, and linker settings.

 C/C++ Indexer – enables you to specify the indexing method for
searches: fast, full, or no indexer.

 Platform – provides information on the platform used by this project, in
addition to other information such as the linker section setting.

 Project References – enables you to manage other projects
referenced by the current project. Project References cannot be used
for the LatticeMico C/C++ SPE managed build environment.

Figure 31: Properties for LED_Versa Dialog Box

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

42 LatticeMico32 Tutorial

3. Select the Platform pane.

The Target Hardware Platform text box shows the current MSB platform.
You can change the hardware platform used by the software application,
but you must rebuild the software application.

The options in the Linker Script section enable you to select your own
linker script. However, for this tutorial you will use the auto-generated
(default) linker script. For the auto-generated linker script, you can specify
the memories that will be used for the linker sections. The C/C++ SPE
managed build process inspects the specified MSB platform to determine
the available memory regions. As a default, the C/C++ SPE managed
build process selects the largest read/write memory available to contain
all the sections. For this tutorial, you will select the SRAM for program and
read/write data memory sections, and it will select Data Inline Memory for
read-only data memory sections.

4. In the Linker Script section, make the following selections from the drop-
down menus, as shown in Figure 32:

 For Program memory, select ebr.

 For Read-only data memory, select Data_IM.

 For Read/write data memory, select ebr.

5. Click OK to return to the C/C++ perspective.

Figure 32: Platform Pane of the Properties for LED_Versa Dialog Box

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

LatticeMico32 Tutorial 43

Build the Project
The next step is to build the project, in which C/C++ SPE compiles,
assembles, and links your application code, as well as the system library code
provided by C/C++ SPE.

To compile the project:

 In the C/C++ Projects view (left-hand pane), select LED_Versa and
choose Project > Build Project. Do not click on any of the buttons in the
Build Project dialog box.

The compilation process generates the following files, among others, in the
LED_Versa\platform1 directory:

 A C header file, DDStructs.h, that describes the device-driver structures
for the applicable devices, in addition to the relevant platform settings,
such as the microprocessor clock frequency

 A C source file, DDStructs.c, that describes the component instance
parameters required by the device drivers in appropriate structures

 A C source file, DDInit.c, that invokes specified device initialization
routines for putting the relevant instantiated components in a known state

 A linker script, linker.ld (in LED_Versa\platform1\Debug), that contains the
location and size of the memory components and the rules for generating
an executable file image, as required by the GNU linker. C/C++ SPE uses
this information to ensure that the program code and data are located at
the correct addresses. Although it is not covered in this tutorial, the
LatticeMico C/C++ SPE enables you to easily specify a custom linker
script to be used in lieu of the generated script for the managed build.

 A LatticeMico software executable linked formal file (.elf). The .elf file
contains the Mico instructions, debug information, and information about
the pre-initialized data. This tutorial generates a file called platform1.elf.

These files are included in the directory that C/C++ SPE generates in the
background. The structure of this directory is shown in Figure 33 on page 44.

LATTICEMICO32 TUTORIAL : Task 3: Create the Software Application Code

44 LatticeMico32 Tutorial

The contents of this directory are dynamically generated, and any changes to
them are overwritten from build to build.

The platform1 library directory shown in Figure 33 contains platform-specific
information for the building of an application.

Note

Only the most important files are shown in Figure 33.

Figure 33: C/C++ SPE Directory Structure

LED_Versa

debug

*.elf

*.o

makefile

drivers.mk

debug

*.o

platform1

Project directory

Build configuration project output directory

Application executable

User-source object files

Application makefile

Makefile defining peripheral
include/source paths for application

Output directory for platform sources
compiled by application makefile

Library source object files compiled by
application makefile

Platform library directory

libplatform1.a
Platform library file containing platform-
specific drivers

LATTICEMICO32 TUTORIAL : Task 4: Generate the Microprocessor Bitstream

LatticeMico32 Tutorial 45

Figure 34 shows the automatically generated files in this directory that are
required to build an application. The contents of this directory are generated
dynamically, and any changes to them are not preserved from build to build.

Task 4: Generate the Microprocessor Bitstream
The next step in the flow is to generate the microprocessor bitstream file. This
bitstream file is then downloaded to the FPGA on the circuit board. To
generate the bitstream file, return to Diamond.

Note

Only the most important files are shown in Figure 34.

Figure 34: LED_Versa\Platform1 Library Directory Structure

platform1

Debug

drivers.mk

inherited_settings. mk

linker.ld

linker_settings.mk

makefile

platform_rules.mk

settings.xml

.c/.s

*.h

DDInit.c

DDStructs.c

DDStructs.

crt0ram.s

Platform library directory

Build-configuration platform library output
directory

Makefile that identifies peripheral
makefiles for library build

Build settings inherited from application
build settings

Makefile identifying linker script to use

Makefile for building platform library

Platform build variables inherited from
application settings

Default linker script for this platform

Platform library build-settings file

Platform-specific driver sources

Platform-specific driver header files

Driver initialization source file

Peripheral instance-specific data
structures

Peripheral-specific data structures

LatticeMico boot/startup assembly source
file

system_conf.h System configuration manifest header file

LATTICEMICO32 TUTORIAL : Task 4: Generate the Microprocessor Bitstream

46 LatticeMico32 Tutorial

Import the MSB Output File
First, you must import the Verilog file output by MSB, the Verilog and VHDL
files for mixed Verilog/VHDL, or the EDIF file created by the synthesis tool into
Diamond.

The process of importing the generated platform file into Diamond is the same
for Verilog and mixed Verilog/VHDL, except that you must import the VHDL
wrapper file in addition to the Verilog file for mixed Verilog/VHDL.

Configure the Lattice Diamond Environment
The Diamond build process has the ability to operate in two different modes.
One is to copy all HDL source files into the Diamond project directory, and the
other is to reference them in their current directory structure. The LatticeMico
build requires that the source files remain in the directory structure created by
MSB. The default Diamond behavior is to leave the files where they are, but it
is advisable to verify that Diamond is configured correctly.

1. In Diamond, choose Tools > Options.

2. Under Environment, in the left pane of the Options dialog box, select
General.

3. If the option "Copy file to Implementation's Source directory when adding
existing file" is selected, clear this option and click OK.

Importing the Source Files
You can import the HDL source files generated by MSB into Diamond. If your
design is in Verilog only, you will import the platform1.v file. If your design is a
mixed Verilog/VHDL design, you will import both the platform1_vhd.vhd file
and the platform.v file.

To import the Verilog or Verilog/VHDL files for the tutorial example:

1. In Diamond, choose File > Add > Existing File.

2. In the dialog box, browse to the ..\platform1\soc directory:

3. Select the platform1_top.v file (Verilog), and click Add.

4. If your design is mixed Verilog/VHDL, select both the platform1_top.v file
and the platform1_vhd.vhd file and click Add.

5. If your design is mixed Verilog/VHDL, perform the following additional
steps:

a. Choose Project > Property Pages.

b. In the dialog box, select the project name that appears in bold type
next to the implementation icon .

c. In the right pane, click inside the Value cell for “Top-Level Unit” and
select <platform1>_vhd from the drop-down menu.

LATTICEMICO32 TUTORIAL : Connect the Microprocessor to the FPGA Pins

LatticeMico32 Tutorial 47

d. Click inside the Value cell for “Verilog Include Search Path,” and then
click the browse button to open the “Verilog Include Search Path”
dialog box.

e. In the dialog box, click the New Search Path button , browse to the
<platform1>\soc directory, and click OK.

f. Click OK to add the path to the Project Properties and close the
“Verilog Include Search Path” dialog box.

g. Click OK to return to the Diamond main window.

Connect the Microprocessor to the FPGA Pins

You have two options for connecting the Microprocessor to the FPGA pins:

 Manually create the pin constraints and import them into Diamond.

 Import a preconfigured preference file into Diamond.

For this tutorial, you will import a preconfigured pin preference file into
Diamond. Create a preconfigured pin preference file named “untitled.lpf” as
follows:

1. Copy and paste the contents of Figure 35 on page 48 into a text editor.

2. Name the file untitled.lpf, and save the file in the following directory:

 For Windows: <Diamond_install_path>\examples\lm32_tutor

 For Linux: ~/LatticeMico/lm32_tutor

To import this preconfigured pin preference file:

1. In Diamond, select the File List tab and double-click Strategy1.

2. In the Strategies dialog box, select Translate Design in the left pane.

3. In the right pane, double-click the cell in the Value column for Consistent
Bus Name Conversion.

4. Choose Lattice from the drop-down menu, and click OK.

5. In Diamond, choose File > Add > Existing File.

6. In the Add Existing File dialog box, select Constraint Files (*.lpf) from the
Files of type menu.

7. Right click on untitled.lpf and select “Set as Active Preference File”.

LATTICEMICO32 TUTORIAL : Connect the Microprocessor to the FPGA Pins

48 LatticeMico32 Tutorial

Figure 35: Preconfigured Pin Preference File
BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
SYSCONFIG MCCLK_FREQ=26 WAKE_UP=21 CONFIG_SECURE=OFF STRTUP=CCLK
WAKE_ON_LOCK=OFF ;

LOCATE COMP "reset_n" SITE "J1" ;
#---

SPI Flash assumes the memory component instance name is SPIFlash
#---

LOCATE COMP "SPIFlashSCK" SITE "B22" ;
LOCATE COMP "SPIFlashCEJ" SITE "D21" ;
LOCATE COMP "SPIFlashSI" SITE "H20" ;
LOCATE COMP "SPIFlashSO" SITE "H19" ;
LOCATE COMP "SPIFlashWPJ" SITE "G17" ;

#---

LEDs assumes the component instance name is LED & has
a width of 8
#---

LOCATE COMP "LEDPIO_OUT[0]" SITE "U19" ;
LOCATE COMP "LEDPIO_OUT[1]" SITE "U18" ;
LOCATE COMP "LEDPIO_OUT[2]" SITE "AA21" ;
LOCATE COMP "LEDPIO_OUT[3]" SITE "Y20" ;
LOCATE COMP "LEDPIO_OUT[4]" SITE "W19" ;
LOCATE COMP "LEDPIO_OUT[5]" SITE "V19" ;
LOCATE COMP "LEDPIO_OUT[6]" SITE "AA20" ;
LOCATE COMP "LEDPIO_OUT[7]" SITE "AB20" ;
#---

7 segments assumes the component instance name is gpio_7Segs & has
a width of 8
#---

LOCATE COMP "gpio_7SegsPIO_OUT[0]" SITE "V6" ;
LOCATE COMP "gpio_7SegsPIO_OUT[1]" SITE "U7" ;
LOCATE COMP "gpio_7SegsPIO_OUT[2]" SITE "Y6" ;
LOCATE COMP "gpio_7SegsPIO_OUT[3]" SITE "AA6" ;
LOCATE COMP "gpio_7SegsPIO_OUT[4]" SITE "U8" ;
LOCATE COMP "gpio_7SegsPIO_OUT[5]" SITE "T8" ;
LOCATE COMP "gpio_7SegsPIO_OUT[6]" SITE "AA5" ;
LOCATE COMP "gpio_7SegsPIO_OUT[7]" SITE "AB4" ;

LATTICEMICO32 TUTORIAL : Connect the Microprocessor to the FPGA Pins

LatticeMico32 Tutorial 49

Perform Functional Simulation
You can optionally simulate the functionality of the output top-level platform1.v
or platform1_vhd.vhd module by using a simulator such as Active-HDL in
Diamond. See the Active-HDL online Help in Diamond for more information
on this procedure.

 For Verilog simulation, you use platform1.v and all the Verilog files for
each attached component.

 For mixed Verilog/VHDL simulation, you use platform1_vhd.vhd,
platform1.v, and all the Verilog files for each attached component. You
must use a mixed-language simulator such as ModelSim® SE or Aldec
Active-HDL.

See Also “Performing HDL Functional Simulation of LatticeMico Platforms”
in the LatticeMico32 Software Developer User Guide.

Perform Timing Simulation
You can optionally validate the timing of your design by performing timing
simulation. Because timing simulation is a complex topic, it is not addressed
in this tutorial. For information on timing simulation, see the Achieving Timing
Closure in FPGA Designs Tutorial, the “Design Verification” topic in the
Diamond online Help, or the “Strategies for Timing Closure” chapter of the
FPGA Design Guide.

The timing simulation process automatically builds a database and maps,
places, and routes the design.

Generate the Bitstream
Now you will generate a bitstream to download the microprocessor platform to
the FPGA. If you did not perform timing simulation, the bitstream generation
process will automatically synthesize, map, place, and route the design
before it generates the bitstream.

To generate a bitstream (.bit) file:

1. In Diamond, select the Process tab.

2. In the Export Files section, double-click Bitstream File.

Diamond now generates a bitstream data file, platform1.bit, that is ready to be
downloaded into the device. This process takes several minutes.

LATTICEMICO32 TUTORIAL : Task 5: Download the Hardware Bitstream to the FPGA

50 LatticeMico32 Tutorial

Task 5: Download the Hardware Bitstream to the
FPGA

The bitstream file generated in the previous section contains all the
information required to program the LatticeECP3 FPGA. Lattice
Semiconductor provides the Diamond Programmer tool that sends the
programming bitstream to the FPGA over a parallel port or USB port
communications link. Now you will use Programmer to download the
hardware bitstream that you generated in the previous section to the
FPGA on the board. For instructions on connecting the USB cable to the
board, refer to the LatticeECP3 Versa Evaluation Board User’s Guide.

To download the bitstream to the FPGA on the board:

1. Remove any Lattice USB Programming cables from your system.

2. Connect the power supply to the development board.

3. Connect a USB cable from your computer to the LatticeECP3 Versa
Evaluation Board. The USB cable must be connected to the USB target
connector adjacent to the keypad. Give the computer a few seconds to
detect the USB device on the LatticeECP3 Versa Evaluation Board before
moving to step 4.

4. In Diamond, choose Tools > Programmer.

5. In the Getting Started dialog box, choose Create a new Blank Project.
and click OK. Leave the Import File to Current Implementation box
checked. Programmer scans the device database, and then the
Programmer view displays in Diamond.

6. In the Cable Settings dialog box on the right side of the Programmer
window, do the following:

a. In the Cable box, select HW-USBN-2B (FTDI).

b. In the Port box, choose the only setting available in the drop-down
menu, FTUSB-0.

7. Double-click the Operation column to display the Device Properties dialog
box, as shown in Figure 36, and choose the following settings:

 For Access Mode, choose JTAG 1532 Mode from the pull-down
menu.

 For Operation, choose Fast Program from the pull-down menu,

Note

A USB cable is included with the board.

Note

If the Programmer output window displays “Cannot identify detected device on row 1.
Please manually select correct device,” choose LFE3-35EA from the Device column
drop down menu.

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=40889

LATTICEMICO32 TUTORIAL : Task 5: Download the Hardware Bitstream to the FPGA

LatticeMico32 Tutorial 51

8. Double-click the File Name column. Click to display the Open File
dialog box, and browse to the platform1_platform1.bit file in the following
directory:

 For Windows,
<Diamond_install_path>\examples\lm32_tutor\platform1_platform
1.bit

 For Linux, ~/LatticeMico/lm32_tutor/platform1_platform1.bit

9. Click Open.

Figure 36: Device Properties Dialog Box.

10. Click OK.

11. The Programmer view should look as shown in Figure 37.

Figure 37: Diamond Programmer

12. Click the Program button on the Programmer toolbar to initiate the
download.

13. Check the Programmer output console to see if the download passed, as
shown in Figure 38. If the programming process succeeded, you will see a
green-shaded PASS in the Programmer Status column.

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

52 LatticeMico32 Tutorial

Figure 38: Programmer Output Console

14. At the end of this process, the FPGA is loaded with the Microprocessor
hardware configuration.

15. In Diamond, choose File > Save platform1.xcf.

16. Exit Diamond by choosing File > Exit.

Task 6: Debug and Execute the Software Application
Code on the Development Board

In this task, you will use the debugger to download the executable file
containing the software application code to the LatticeECP3 Versa Evaluation
Board. This enables the LatticeMico32 microprocessor, which is part of the
FPGA bitstream you downloaded in Task 5, to execute the application code.

This task assumes that you have successfully downloaded the platform FPGA
bitstream to the development board in “Task 5: Download the Hardware
Bitstream to the FPGA” on page 50.

If you encounter any problems with the debug session, refer to "Debug
Session Troubleshooting" in the Lattice Software Project Environment online
Help. This troubleshooting topic describes the most common problems
encountered in launching a debug session and the reasons the debugger
sometimes fails to operate.

Software Application Code Execution
Flow
The FPGA is now configured with the LatticeMico32 Development
microprocessor platform. The order in which the LatticeMico32
microprocessor executes the software application code images is as follows:

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 53

1. The LatticeMico32 microprocessor starts execution at the address
contained in its exceptions base address (EBA).

This is the address you specified when you added the LatticeMico32
microprocessor core in Task 2.

2. When you start the LatticeMico System debugger, it communicates with
the microprocessor over the microprocessor's debug module.

The debug module is a collection of files inside the lm32_top\rtl\verilog
directory, as shown in Figure 26 on page 35. The debug module, in turn,
generates a debug exception that causes the microprocessor to execute
the debug monitor code. The LatticeMico32 microprocessor, in order to
respond to the debug exception, must be running valid opcodes and must
not be stuck waiting for a bus cycle to complete. Upon successful
execution of the debug exception, the debug monitor code then
communicates with the LatticeMico System debugger running on the host
computer.

3. At this point, the debugger has control over the microprocessor and can
access the platform's memory through the debug module or
microprocessor to download the application to the selected memories.

4. After it has downloaded the application to be debugged to the target
memory or memories, the debugger sets the microprocessor's program
counter to start executing the downloaded code.

Figure 39: Software Application Code Execution Flow

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

54 LatticeMico32 Tutorial

Debug the Software Application Code
on the Board
Now that you have a LatticeMico32 platform loaded into the LatticeECP3
Versa Evaluation Board and a compiled and linked C program, you can begin
working with the LatticeMico source code debugger.

The source code debugger allows you to download the fully resolved ELF file
created by the linker into the memories specified by the auto-generated linker
script. The debugger enables you to set breakpoints, control the program flow,
and inspect variables, registers, and memory. It enables you to validate that
your program is functioning correctly, and it enables you to find any problems
that exist in the applications source code.

To debug the software application code on the board:

1. In the C/C++ SPE perspective, click LED_Versa in the C/C++ Projects
view (left-hand pane).

2. Right click the project and choose Debug As-> Debug Configurations.

The Debug dialog box opens, as shown in Figure 40.

3. Select mico32hardware, and then click the New launch configuration
button on the toolbar.

If you are connecting to the evaluation board for the first time, the
Progress Information message box appears.

The appearance of the Debug dialog box changes again, as shown in
Figure 41.

Figure 40: Debug Dialog Box

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 55

Figure 41: Debug Dialog Box with Tabs

In this dialog box, you specify the project or executable to debug. Since
you selected the project before selecting Run > Debug Configurations,
the boxes are filled in by Eclipse. If these boxes are not populated, follow
these instructions to configure the items in this dialog box:

a. Use the Browse button to select the Eclipse project.

Clicking Browse activates a dialog box that lists the available projects
created or imported in Eclipse.

b. Select LED_Versa.

c. Click the Search Project button to select the executable (.elf) file that
you want to debug.

A project may have multiple executables. Clicking the Search Project
button activates a dialog box that lists the executables built for the project.
If you want to use an executable not built within C/C++ SPE, click the
Browse button to activate a file selection dialog box in which to select the
appropriate .elf-format executable file.

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

56 LatticeMico32 Tutorial

4. Click the Debugger tab of the Debug dialog box, as shown in Figure 42.

The Debugger tab features the following Debugger settings:

 The Start Up Option section enables you to choose where you want
your initial breakpoint. For a debug launch, the Debugger downloads
the code and sets an initial breakpoint to enable debugging. You can
place your breakpoint either at the start of your main program or at the
start of the Device Driver initialization routine generated by the C/C++
SPE managed build process. The default behavior is to set the initial
breakpoint at the first executable source line inside the main()
function.

 Remote target option, which provides the address for the LatticeMico
debug proxy program that will be launched on your computer. This
proxy program allows C/C++ SPE to debug the program by using the
GNU GDB program and provides a communication channel to the
microprocessor over a JTAG connection. Refer to the LatticeMico32
Software Developer User Guide for more details on the debugging
setup.

If you attempt to change settings, the Apply button might become
available. In this case, click the Apply button to save your settings.

5. Click the Debug button located on the lower right side of the dialog box.

Figure 42: Debugger Tab of the Debug Dialog Box

Note

If you encounter any problems with the debug session, refer to "Debug Session
Troubleshooting" in the Lattice Software Project Environment online Help. This
troubleshooting topic describes the most common problems encountered in
launching a debug session and the reasons the debugger sometimes fails to
operate.

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 57

When you click the Debug button, the dialog box closes, and C/C++ SPE
attempts to interface to the debug monitor in the LatticeMico32 platform.
Once it has established a connection to the debug monitor it downloads
the LatticeMico executable code to the memories specified by the linker
script. After it has successfully done this, the Confirm Perspective Switch
prompt box containing the following message appears:

This kind of launch is configured to open the Debug
perspective when it suspends. Do you want to open this
perspective now?

6. Select the Remember my decision box, and click the Yes button. Click
Yes in the prompt box.

Note

If you did not previously download the bitstream, a message box with the following
error message may appear:

Check that the target FPGA contains an LM32 CPU with
DEBUG_ENABLED equal to TRUE and that the FPGA has configured
successfully.

Return to “Task 5: Download the Hardware Bitstream to the FPGA” on page 50,
and download the bitstream before proceeding.

Note

Selecting Run > Debug Configurations on a computer running the Windows
operating system might activate the Windows firewall. The Windows Security Alert
dialog box shown in Figure 43 might appear.

Figure 43: Windows Security Alert Dialog Box

Click unblock to continue debugging.

TCP2JTAGVC is the application that provides the communication channel
between the LatticeMico32 microprocessor debug module and lm32-elf-gdb (GDB
modified for the LatticeMico32 microprocessor).

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

58 LatticeMico32 Tutorial

C/C++ SPE now switches to the Debug perspective, shown in Figure 44.

The Debug perspective consists of many views, some of which may not
be visible:

 Debug view, which displays the function calls made so far. It also
contains application and process information.

 Variables view, which displays the variables that are used in the
source code functions

 Breakpoints view, which appears when you insert a breakpoint

 Source view, which displays the source code when you click on a
thread in the Debug view

 Outline view, which displays the functions in the source code

 Console view, which displays the output of the debugging session

 Tasks view, which is not used

 Modules view, which displays the modules of the executable loaded. If
you click on a module, C/C++ SPE displays all the functions that
compose that module.

 Registers view, which displays the registers in the CPU. It also shows
the values on the registers at the breakpoints. Values that have

Figure 44: Debug Perspective

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 59

changed are highlighted in the Registers view when your program
stops.

 Signals view, which enables you to view the signals defined on the
selected debug target and how the Debugger handled each one

 Memory view, which enables you to inspect and change multiple
sections of your process memory

 Expressions view, which is activated if you right-click in the Source
view, choose Add Watch Expression, and enter a variable in the Add
Expression dialog box

 Disassembly, which shows the source code in assembly language
with offsets. It shows the instructions that reside at each address.

To select views that are not visible for this perspective, click Window >
Show View and choose the appropriate view.

7. If it is not already displayed, expand the LED_Versa in the top left of
Debug view. It should resemble the illustration in Figure 45.

This shows the processes that are running on the host PC.

Insert Breakpoints
The information in the expanded Debug view under
com.lattice.mdk.debug.mico32debugger contains information about the
executable downloaded to the FPGA and executed by LatticeMico. It shows
that the execution is suspended because of a breakpoint at a line within the
LED7SegsTest.c source file.

1. In the Debug view, click on the statement containing the line main().

This step activates the file in the Source view, located below the Debug
view. A line with green highlighting shows the line at which the
LatticeMico32 microprocessor has been suspended because of a
breakpoint. The breakpoint is at the beginning of your main program, as
configured for this debug launch.

You will now insert a breakpoint to check the software and platform
functionality.

Figure 45: Expanded Debug View

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

60 LatticeMico32 Tutorial

2. In the LED7SegsTest.c file displayed in the Source view, click on the line
beginning with “MicoGPIOCtx_t,” as indicated in Figure 46.

3. Insert a breakpoint by double-clicking in the left margin, aligned to the line
shown in Figure 46. Alternatively, you can select Run > Toggle Line
Breakpoint.

As shown in Figure 47, LED7SegsTest.c should now appear in the Source
view with a blue bubble and a check mark in the margin aligned to the line
of interest. If the Breakpoint view is open, it be should updated to show
this breakpoint.

Execute the Software Application Code
Now you can resume executing the software application code on the board.

1. In the Debug view, click the green arrow to the right of the “Debug” tab
title. Alternatively, you can choose Run > Resume.

The Debugger now issues a “continue” command to the LatticeMico32
microprocessor, which executes the code until it reaches the breakpoint
that you inserted previously.

2. Step over the C source line by clicking the icon in the same line as the
Debug tab title. Alternatively, you can choose Run > Step Over or press
the F6 key.

Figure 46: Breakpoint Line

Figure 47: Inserted Breakpoint

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 61

The Debugger causes the microprocessor to execute the source line at
which the breakpoint was inserted.

At this point, the Variables view is updated, as shown in Figure 48.

The value of the “leds” variable might be different from that shown in
Figure 48. However, if the value of the “leds” variable shown in Figure 48
is 0x00000000 (or 0) for your view, the platform most likely does not have
a GPIO named LED in the platform. Repeat the tutorial, following the
procedures exactly.

3. In the Debug view, click the green arrow next to the tab title, or choose
Run > Resume.

The Debugger issues a “continue” command to the LatticeMico32
microprocessor, which causes the microprocessor to continue execution
of the downloaded code.

The Console view in the bottom of the C/C++ SPE window should display
the text line shown in Figure 49 on page 61. This text is output by the
LED_Versa application running on LatticeMico, which uses the JTAG
connection to the Debugger for standard input/output communication to
the C/C++ SPE console.

Note

If the Variables view is not visible, choose Window > Show View > Variables to
make it visible. If the Variables view is inactive—that is, the tab is shown in gray
tones—click on the Variables tab to make it active.

Figure 48: Updated Variables View

Figure 49: Console Output

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

62 LatticeMico32 Tutorial

4. Observe the LEDs on the LatticeMico32 development board to confirm a
back-and-forth scrolling LED pattern, which is controlled by the code
executed by LatticeMico.

5. Expand the Debug view to show the active processes, shown in
Figure 50.

6. Click the line containing the text Thread[0] (Running) to activate the
following two buttons:

 A button with two orange bars, , located towards the center of the
debug view title bar, which pauses execution. It inserts an
asynchronous breakpoint similar to a pre-set line breakpoint.

 A button with a red square, , which terminates the running
application on LatticeMico. The Debugger no longer provides access
to the code being debugged. Use Run > Debug Configurations to
restart the debugging session.

7. Click the red-square button to terminate execution of the LED_Versa
application on LatticeMico.

8. Click the button on the top left of the Debug perspective
window to return to the C/C++ perspective. Alternatively, you can select
Windows > Open Perspective > C/C++ to return to the C/C++
perspective.

Modify and Re-execute the Software
Application Code
The LED_Versa.c application contained some printf statements for test
purposes. The platform is configured so that these printf statements
communicate through the microprocessor’s debug module to the debugger
running on the host machine for outputting information to the
C/C++ SPE console. If the debugger is absent, the printf statements cause
the debug module to wait indefinitely for a client to communicate with.
Therefore, now that the code is validated and needs to be deployed, it must
be devoid of printf statements.

Figure 50: Running Processes

LATTICEMICO32 TUTORIAL : Task 6: Debug and Execute the Software Application Code on the Development Board

LatticeMico32 Tutorial 63

1. Delete the four printf statements from the code to make it similar to the
example shown in Figure 51.

2. Choose File > Save to save the modified file.

Before you rebuild the project, it is important that you terminate any prior
debug session. If the Debugger is still paused or running, the Build Project
command will fail when the linker tries to overwrite the platform1.elf file.

3. To rebuild the modified code, select LED_Versa and choose Project >
Build Project.

4. Return to the Debug perspective.

5. To download, debug, and execute the modified code, do the following:

a. Click Run > Debug Configurations, and then click Debug in the
Debug window.

b. Click the green arrow next to the tab title.

c. Step over the C source line by clicking the icon in the Debug view
or choose Run > Step Over or press the F6 key.

d. Click the green arrow again.

This code is now ready for stand-alone deployment in the parallel flash
memory.

You have now completed the task of downloading and executing the
software application code on the LatticeECP3 Versa Evaluation Board.

Figure 51: Modified LED_Versa Code

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

64 LatticeMico32 Tutorial

6. Verify that the LED_Versa program is functioning by noting the sweeping
LED pattern and counting from 0-9 on the 14-segment display.

7. Click the Terminate () button to stop the demonstration program and
unload the debug session. Failing to unload the debug session interferes
with programming the parallel flash memory, a process that is described in
the next session.

Task 7: Setting up the Options to Deploy the
Software Code to the SPI Flash Memory

As part of Task 6, you debugged and executed the LEDTest software
application code from Lattice Software Project Environment. That is, you used
the Lattice Software Project Environment to load the LEDTest software code
onto volatile memory on the development board and then debug/execute it.

In this task, you will prepare the LED_Versa software for deployment to SPI
flash memory and merge the production microprocessor bitstream and
LED_Versa software into one SPI Flash Image, which will be loaded into non-
volatile memory (i.e. SPI Flash memory).

Refer to the LatticeMico32 Software Developer User Guide for details on
deployment strategies and user flow.

The SPI flash ROM component included in LatticeMico MSB interfaces with
an external SPI flash module. It translates WISHBONE read requests to the
appropriate SPI commands to read data from the external SPI flash module
and presents the read data to the WISHBONE data bus. This process allows
the LatticeMico32 microprocessor and other masters to treat the external SPI
flash module as a plain read-only memory.

The main advantage of SPI flash deployment is that it allows the FPGA
bitstream (or portions of it) and the microprocessor bitstream to co-exist in a
single SPI flash device. However, this is possible only if the FPGA user logic
can access the very same SPI flash device that was used for the FPGA
configuration. SPI flash deployment may impose FPGA requirements, board
layout requirements, or both, which must be considered before you design the
hardware. The LatticeECP3 Versa board can be used for SPI Flash
deployment, since its user logic can also access the configuration SPI flash in
addition to the configuration logic.

Selecting the Appropriate LatticeMico
EBA Value

Figure 52 shows a sample layout in the SPI flash memory.

In Figure 52, the first data portion is the FPGA bitstream that is used for
configuring the FPGA. The second data portion is the LatticeMico application

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 65

that is accessed by the LatticeMico32 microprocessor (part of the user logic)
on removal of reset, once the FPGA is configured.

Reset Vector Address (EBA Value) This value is the address from where
the microprocessor starts fetching instructions on removal of reset. It is the
sum of the LatticeMico SPI flash ROM base address assigned in the MSB
perspective and the offset in the SPI flash where the LatticeMico32 boot
application will reside. The offset depends on the FPGA bitstream size.

Offset Alignment in the SPI Flasht The offset in the SPI flash must be
aligned on a word boundary. It should be a multiple of 4 so that the lower two
bits of the resulting EBA value are zero. The LatticeMico SPI flash and the
LatticeMico32 microprocessor do not support aligned accesses, and all
LatticeMico32 instructions are 32 bits, or 4 bytes.

Prepare the LatticeMico32 to Execute from the SPI
Flash on Removal of Reset

1. Return to the MSB Perspective.

2. Modify the LatticeMico32 Exception Vector base address to point to the
SPI flash memories base address plus the offset where the software code
resides in the SPI Flash (0x04120000).

This value is the address from where the microprocessor starts fetching
instructions on removal of reset. It is the sum of the LatticeMico SPI flash
ROM base address assigned in the MSB perspective and the offset in the
SPI flash where the LatticeMico32 boot application will reside. The offset
depends on the FPGA bitstream size.

3. Generate the platform.

Figure 52: Sample Layout in SPI Flash Memory

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

66 LatticeMico32 Tutorial

Prepare LED_Versa for Flash Deployment

The first step is to compile the LED_Versa ELF. You cannot use the
LED_Versa ELF created in Task 3, since it was built for both deployment and
execution from SRAM and data inline memory. What you need is an
LED_Versa ELF that is built for deployment into parallel flash memory and is
built for execution from SRAM and data inline memory. Therefore, before
deploying LED_Versa application to parallel flash memory, you must
recompile LED_Versa ELF to change the deployment location to parallel flash
memory. As part of this recompilation, the Lattice Software Project
Environment (C/C++ SPE) will instruct GCC to build a code relocator into the
LED_Versa ELF. This code relocator is essential, because it will be
responsible for copying the LED_Versa program and read/write data memory
sections to EBR (On-chip memory) and copying the read-only sections to data
inline memory from SPI flash memory for execution of the LED_Versa
software upon board reset.

To change the properties and rebuild the LEDTest project:

1. In the C/C++ pers pective, select LEDTest and choose Project >
Properties .

2. In the Properties dialog box, select Platform.

3. In the Linker Script section, do the following:

a. Select Enable Deployment.

b. For Program memory, choose ebr

c. For Read-only data memory, choose Data_IM.

d. For Read/write data memory, choose ebr.

The Platform Properties dialog box should look like the example
shown in Figure 53.

4. Click OK.

Note

You can no longer use the new LEDTest ELF for debugging and execution purposes
from Lattice C/C++ SPE, since it has been prepared for parallel flash deployment. The
LEDTest ELF must be recreated, as shown in Task 3, for this purpose.

Note

For deployment, you must not use a JTAG UART. If the code uses standard C file
operations, such as printf, scanf, or fopen, your deployed code will not work if it uses a
JTAG UART as a standard I/O device or for file operations. You can use the RS-232
UART for standard I/O operations, for that you need to include the UART platform into
the MSB platform. As this tutorial doesn't uses the standard C file operations, so no
need to worry about setting Stdio Redirection.

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 67

5. In the MSB perspective, verify that the LatticeMico32 Exception Handler
address is set to 0x04120000. If it is not, update the Exception Handler
address and regenerate the platform.

6. In the C/C++ perspective, select LEDTest and choose Project > Build
Project.

Generating LatticeMico32 Bootable
Application Binary

Once the LatticeMico32 application is ready to be deployed, you must add a
loader that can copy the application data to the appropriate target memories.
The application data must be converted into binary format that can then be
merged with the FPGA bitstream to form a SPI flash image.

The LatticeMico C/C++ SPE perspective provides a graphical user interface
for this purpose.

To generate a bootable application binary:

1. From the C/C++ SPE perspective, choose Tools > Software
Deployment to activate the Software Deployment Tools dialog box,
shown in Figure 54 on page 68.

2. Select Flash Deployment from the list of configurations, and click New.

The main tab of the Software Deployment Tools Dialog now appears, as
Shown in Figure 55 on page 69.

Figure 53: Platform Properties

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

68 LatticeMico32 Tutorial

The main tab consists of the following fields:

 Name – Specifies name of the current configuration.

 Project – Specifies the C/C++ SPE project to use for selecting an
application to deploy. Click the Browse button for a list of available
selections.

 C/C++ Application – Specifies the application (.elf file) to be deployed in
the selected project. Click the Browse button for a list of available
applications in the selected project, or click the Search Project button to
select an application (.elf file).

 Reset Vector Address (EBA Value) – Contains the EBA value chosen
for the LatticeMico32 microprocessor, as described in “Reset Vector
Address (EBA Value)” on page 65.

 Use Diamond Deployment Tool to deploy Application.

 Prepend Code Relocator (for backward compatibility only) - For
projects compiled using a LatticeMico version prior to 8.0, enables the
flash programmer utility to use the provided boot copier and merge the
application binary image with the boot copier code. In these earlier
versions, the code relocator was not built into the application; therefore, it
was necessary to prepend a separate relocator code to the actual
application.

Figure 54: Software Deployment Tools Dialog Box

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 69

 Save Binary Output File As – Selects the output file that will be
generated by this tool. The output file must have a .bit extension. Click the
Browse button to select the directory in which to generate the output file.

To prepare LED_Versa for flash deployment:

1. Click the Browse button next to the Project box.

The Project Selection dialog box appears, as shown in Figure 56 on
page 70.

2. Select LED_Versa and click OK to select the project containing the
executable that needs to be programmed to flash.

3. Click Search Project next to the C/C++ Application text box.

The Program Selection dialog box appears, as shown in Figure 57 on
page 70. It contains the list of executables for the selected project,
LED_Versa.

4. From the Binaries list, select LED_Versa.elf and click OK.

5. Select Use Diamond Deployment Tool to deploy Application option.

6. In the Reset Vector Address box, under Deployment Options, enter
0x04120000, It is the sum of the LatticeMico SPI flash ROM base address
assigned in the MSB perspective and the offset in the SPI flash where the
LatticeMico32 boot application (LED_Versa) will reside, this value should
be equal to the LatticeMico32 EBA value.

Figure 55: Main Tab of the Software Deployment Tools Dialog Box

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

70 LatticeMico32 Tutorial

Figure 56: Project Selection Dialog Box

Figure 57: Program Selection Dialog Box

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 71

7. Save Binary Output File As - Click the Browse button and browse to the
following location and save it as LEDtest.bit.

 For Windows: <Diamond_install_path>\examples\lm32_tutor\LEDtest.bit

 For Linux: ~/LatticeMico32/lm32_tutor/LEDtest.bit

8. Click Analyze to confirm that the selected LED_Versa sections are being
deployed to SPI flash memory.

In this tutorial, you deploy all LED_Versa sections to SPI flash memory.
Clicking on Analyze should show that the following sections are
deployed: .boot, .text, .rodata, .data, .bss.

The Software Deployment Tools Configuration dialog box should look like
the example shown in Figure 58.

9. Click Apply to save the configuration if you want to reprogram the
application with these settings.

10. Click Start.

As the programmer application executes successfully, you see a console
display similar to the one shown in Figure 59.

Figure 58: Main Tab of the Software Deployment Tools Configuration Dialog Box with Use

Diamond Deployment Tool to Deploy Application Enabled

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

72 LatticeMico32 Tutorial

Generating Production Microprocessor
Bitstream

You might have observed that the Exception Handler address was changed to
0x04120000 and the platform Generate function was performed, but the
Diamond Bitstream Generation process was never run. Now you will build a
new FPGA bitstream following these steps:

1. Save the bitstream containing the Development LatticeMico32
microprocessor. Go to the lm32_tutorial directory and rename
“platform1.bit” to “platform1_development.bit.” This bitstream is your fail-
safe recovery point to allow debugging to continue in the event that the
Production LatticeMico32 microprocessor fails to operate.

2. Return to Diamond and run the Bitstream File process. When Diamond
finishes running this process, you have a new platform1.bit file. This file
contains the Production LatticeMico32 microprocessor.

Merging the Bitstream and the Application Binary
to Deploy into the SPI Flash Memory Using
Deployment Tool

Now you will merge the FPGA bitstream and the LatticeMico32 bootable
Application (LED_Versa) binary into a single SPI flash image.

Once the .bit file containing the bootable application binary is ready, you must
program it into the SPI flash. If this application binary must co-exist with the
FPGA bitstream (or a portion of it), it must be merged with the FPGA
bitstream binary.

Deployment Tool is a convenient interface for performing this task. For
detailed information on this tool, refer to Deployment Tool online Help.

The following steps use a sample FPGA bitstream, fpga.bit, generated by
Lattice Diamond and a sample bootable application binary, mico32_sw.bit, to
illustrate the procedure for merging these two FPGA bitstreams.

Figure 59: Console Display

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 73

To merge the bitstream and the bootable application binary:

1. Launch Deployment Tool as follows:

 In Windows: choose Programs > Lattice Diamond <version number> >
Accessories > Deployment Tool.

 In Linux: enter the following on a command line:

$ <Programmer install path>/bin/lin/./deployment

The Deployment Tool Getting Started dialog box appears, as shown in
Figure 60.

2. In the Function Type dropdown menu, choose External Memory.

3. In the Output File Type dropdown menu, choose Advanced SPI Flash.

4. Click OK to display the Step 1 of 4: Select Input File(s) dialog box, s
shown in Figure 61 on page 74.

5. Double-click the File Name box and browse to the FPGA bitstream,

 For Windows:
<Diamond_install_path>\examples\lm32_tutor\platform1\platform1_platfor
m1.bit

 For Linux: ~/LatticeMico32/examples/lm32_tutor/platform1/
platform1_platform1.bit

6. Click Next to display the Step 2 of 4: Advanced SPI Flash Options dialog
box, as shown in as shown in Figure 62 on page 74.

7. In the Output Format dropdown menu, select Intel Hex.

8. In the SPI Flash Size (Mb) dropdown menu, choose 64.

9. Select the option Retain Bitstream Header.

10. Select User Data Files option.

11. In the Number of User Data Files dropdown menu, ensure that the
number is 1.

12. In the User Data File 1 box, click to browse to the application
binary(.bit) file.

Figure 60: Deployment Tool Getting Started Dialog Box

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

74 LatticeMico32 Tutorial

Figure 61: Step 1 of 4: Select Input File(s) Dialog Box

Figure 62: Step 2 of 4: Advanced SPI Flash Options Dialog Box

LATTICEMICO32 TUTORIAL : Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory

LatticeMico32 Tutorial 75

 For Windows: <Diamond_install_path>\examples\lm32_tutor\LEDtest.bit

 For Linux: ~/LatticeMico32/lm32_tutor/LEDtest.bit

13. In the Starting Address dropdown menu, choose the starting address
0x00120000.

14. Click Next to display the Step 3 of 4: Select Output File(s) dialog box, as
as shown in Figure 63 on page 75.

15. In the Output File 1 box, click to change output file (.mcs) save
location.

By default it will save in the following location for this tutorial:

Figure 63: Step 3 of 4: Select Output File(s) Dialog Box

LATTICEMICO32 TUTORIAL : Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Applica-

76 LatticeMico32 Tutorial

< Diamond_install_path>/examples/lm32_tutor/platform1/
platform1_platform1.mcs

16. Click Next to display the Step 4 of 4: Advanced SPI Flash Options dialog
box, as shown in Figure 64 on page 76.

17. Click Generate.

This generated file contains the merged FPGA bitstream and the LatticeMico
bootable software application (LED_Versa) in a single SPI flash image file that
Diamond Programmer can now use for programming the SPI flash.

1. You can see the Deployment Generation Status as shown Figure 65 on
page 77.

Task 8: Deploy the SPI Flash Image (Merged With
Production Microprocessor Bitstream and
Application Software) to SPI Flash Memory

To deploy the microprocessor bitstream:

1. In Diamond, choose Tools > Programmer.

Figure 64: Step 4 of 4: Generate Deployment Dialog Box

LATTICEMICO32 TUTORIAL : Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Applica-

LatticeMico32 Tutorial 77

In the Programmer window, the LFE3-35EA device and platform1.bit
should still be displayed. If they are not displayed, follow the instructions
in “Task 5: Download the Hardware Bitstream to the FPGA” on page 50.

2. Highlight the row, and then click the Device Properties button on the
Programmer toolbar to display the Device Properties dialog box.

3. Under Access Mode, select SPI Flash Background Programming.

4. Under Operation, select SPI Flash Erase, Program, Verify.

5. Under Programming options, click to provide the merged SPI Flash
Image (.mcs file) created by the Deployment tool.

For this tutorial it will be in the following location:

< Diamond_install_path>/examples/lm32_tutor/platform1/
platform1_platform1.mcs

6. In the SPI Flash Options box:

a. Under Family, select SPI Serial Flash.

b. For Vendor, select STMicro.

c. For Device, select SPI-M2564.

d. For Package, select 16-lead SOIC.

7. Click Load Size from Programming File to load the data file size.

The Device Properties dialog box should resemble the illustration shown
in as shown Figure 66 on page 78.

8. Click OK in the Device Proerties dialog box.

9. Click the Program button on the Programmer toolbar to initiate the
deployment.

Programmer deploys the SPI flash by means of the FPGA. The results are
shown in the Programmer output console in shown Figure 67 on page 79.

10. Disconnect and then reconnect the power supply.

The FPGA takes about three seconds to be programmed by the SPI flash.

After the FPGA is programmed, the first part of the SPI Flash Image is
used to configure the FPGA, after configuration LatticeMico32

Figure 65: Deployment Generation Status

LATTICEMICO32 TUTORIAL : Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Applica-

78 LatticeMico32 Tutorial

microprocessor starts executing from the SPI flash memory base address
0x04120000.

The code locator built into the LED_Versa application (as part of
crt0ram.S), performs the following tasks,

 Copies the LED_Versa instructions and read/write data from the SPI
flash memory and writes them into the EBR.

 Copies the LED_Versa read-only data from the spi flash memory and
writes them into the data inline memory.

After the software application is copied into the EBR and data inline
memory, the code locator performs a control transfer (unconditional
branch) and begins running the LED_Versa program. Figure 68 on
page 80 illustrates these steps.

Figure 66: Device Properties Dialog Box

LATTICEMICO32 TUTORIAL : Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Applica-

LatticeMico32 Tutorial 79

Figure 67: Programmer Output Console

LATTICEMICO32 TUTORIAL : Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Applica-

80 LatticeMico32 Tutorial

Figure 68: Running the LED_Versa Program

LATTICEMICO32 TUTORIAL : Summary

LatticeMico32 Tutorial 81

Summary
You have finished the LatticeMico32 Tutorial. In this tutorial, you have learned
how to do the following:

 Set up a Lattice Diamond FPGA project.

 Create microprocessor platform for the LatticeMico32 embedded
microprocessor in MSB.

 Create the software application code for the microprocessor platform with
C/C++ SPE.

 Generate a bitstream of the microprocessor platform in Diamond and
download it to the board with Programmer.

 Download the hardware bitstream to the FPGA on the board.

 Debug and execute the software application code on the board.

 Download the .elf file containing the software application code to the
parallel flash memory.

 Deploy the microprocessor bitstream to the SPI flash memory.

LATTICEMICO32 TUTORIAL : Glossary

82 LatticeMico32 Tutorial

Glossary
Following are the terms and concepts that you should understand to use this
tutorial effectively.

breakpoints. Breakpoints are a combination of signal states that are used to
indicate when simulation should stop. Breakpoints enable you to stop the
program at certain points to examine the current state and the test
environment to determine whether the program functions as expected.

C/C++ SPE. C/C++ SPE is an abbreviation for the C/C++ Software Project
Environment, which is an integrated development environment based on
Eclipse for developing, debugging, and deploying C/C++ applications. The
C/C++ SPE tool chain uses a GNU C/C++ tool chain (compiler, assembler,
linker, debugger, and other utilities such as objdump) optimized for the
LatticeMico process. It uses the same graphical user interface as MSB.

CDT. CDT is an abbreviation for C/C++ development tools, which are
components, or plug-ins, of the Eclipse development environment on which
the LatticeMico System is based.

CFI. CFI is an abbreviation for Common Flash Interface (CFI) parallel flash
memory, which is an open standard jointly developed by a number of chip
vendors for a type of EEPROM that stores information without requiring a
power source.

code-relocator code. Code-relocator code is code that copies the software
application code to a destination memory and jumps to the application start
address to run the application.

CSR. CSR is an abbreviation for a control and status register, which is a
register in most CPUs that stores additional information about the results of
machine instructions, for example, comparisons. It usually consists of several
independent flags, such as carry, overflow, and zero. The CSR is mainly used
to determine the outcome of conditional branch instructions or other forms of
conditional execution.

debugging. Debugging is the process of reading back or probing the states
of a configured device to ensure that the device is behaving as expected while
in circuit. Specifically, debugging in software is the process of locating and
reducing the errors in the source code (the program logic). Debugging in
hardware is the process of finding and reducing errors in the circuit design
(logical circuits) or in the physical interconnections of the circuits. The
difference between running and debugging software is the placement of
breakpoints in debugging.

Eclipse. Eclipse is an open-source platform that provides application
frameworks for software application development. The LatticeMico System
interface is based on the Eclipse environment.

.elf file. An .elf file is a file in executable linked format that contains the
software application code written in C/C++ SPE.

LATTICEMICO32 TUTORIAL : Glossary

LatticeMico32 Tutorial 83

GDB. GDB is an abbreviation for GNU Debugger, which is a source-level
debugger based on the GNU compiler. It is part of the C/C++ SPE Debugger.

GNU Compiler Collection (GCC). The GNU Compiler Collection (GCC) is a
set of programming language compilers. It is free software produced by the
GNU Project.

HAL. HAL is an acronym for hardware abstraction layer, which is the
programmer’s model of the hardware platform. It enables you to change the
platform with minimal impact to your C code.

hardware debugger module. The hardware debugger module is a
component of C/C++ SPE that is used to find problems in the software
application.

hardware platform. A hardware platform is the embedded microprocessor in
an SoC (system on a chip) design and the attached components, buses,
component properties, and their connectivity.

IRQ. IRQ is an abbreviation for interrupt request, which is the means by which
a hardware component requests computing time from the CPU. There are 16
IRQ assignments (0-15), each representing a different physical (or virtual)
piece of hardware. For example, IRQ0 is reserved for the system timer, while
IRQ1 is reserved for the keyboard. The lower the number, the more critical the
function.

JTAG ports. JTAG ports are pins on an FPGA or ispXPGA device that can
capture data and programming instructions.

.lpf file. The logical preference file (.lpf) is a post-synthesis FPGA constraint
file that stores logical preferences that have been defined in the pre-map
stage and post-map stage. This file is automatically generated when you
create a new project in Lattice Diamond, and it stores logical preferences only.

master port. A master port is a port that can initiate read and write
transactions.

MSB. MSB is an abbreviation for Mico System Builder, which is an integrated
development environment based on Eclipse for choosing components, such
as a memory controller and serial interface, to attach to the Lattice
Semiconductor 32-bit embedded microprocessor. It also enables you to
specify the connectivity between these elements. MSB then enables you to
generate a top-level design that includes the microprocessor and the chosen
components. It uses the same graphical user interface as C/C++ SPE.

.msb file. An .msb file is an XML-format file output by MSB.

perspective. A perspective is a combination of windows, menus, and
toolbars in the LatticeMico System graphical user interface that enables you
to perform a particular task. For example, the Debug perspective has views
that enable you to debug the programs that you created in C++ SPE.

project. A project is the software application code written in C/C++ SPE.

LATTICEMICO32 TUTORIAL : Recommended References

84 LatticeMico32 Tutorial

PROM. Programmable read-only memory (PROM) is a permanent memory
device that is programmed by the customer rather than by the device
manufacturer. It differs from a ROM, which is programmed at the time of
manufacture. PROMs have been mostly superseded by EEPROMs, which
can be reprogrammed.

running. Running is the process of executing a software program.

slave port. A slave port is a port that cannot initiate transactions but can
respond to transactions initiated by a master port if it determines that it is the
targeted component for the initiated transaction.

software application. The software application is the code that runs on the
LatticeMico32 microprocessor to control the components, the bus, and the
memories. The application is written in a high-level language such as C++.

SPI. SPI is an acronym for serial peripheral interface, a core that allows high-
speed synchronous serial data transfers between microprocessors,
microcontrollers, and peripheral devices. It can operate either as a master or
as a slave.

watchpoint. A watchpoint is a type of breakpoint that stops the execution of a
software program whenever the value of a specific expression changes,
without indicating where this may occur. A watchpoint halts program
execution, even if the new value being written is the same as the old value of
the field.

XML. XML is an abbreviation for Extensible Markup Language, which is a
general-purpose markup language used to create special-purpose markup
languages for use on the Worldwide Web.

Recommended References
The following reference materials are recommended to supplement this
tutorial:

 LatticeMico System online Help. From the LatticeMico Help menu, choose
Help > Help Contents.

 LatticeMico32 Hardware Developer User Guide, which explains how to
use the Lattice Mico System Builder to create and configure a hardware
platform for the LatticeMico32 embedded microprocessor

 LatticeMico32 Software Developer User Guide, which explains how to use
C/C++ SPE to program the microprocessor, gives examples of the code
used for different parts of the architecture, and describes the processes
occurring in the background

 LatticeMico32 Processor Reference Manual, which contains information
on the architecture of the LatticeMico32 microprocessor chip, including
configuration options, pipeline architecture, register architecture, debug
architecture, and details about the instruction set.

LATTICEMICO32 TUTORIAL : Recommended References

LatticeMico32 Tutorial 85

 LatticeECP3 Versa Evaluation Board User's Guide, which describes the
features and functionality of the the LatticeECP3 Versa Evaluation Board.

 Lattice Diamond Installation Guide, which explains how to install
LatticeMico System on the Linux Red Hat operating system.

 Eclipse C/C++ Development Toolkit User Guide, which is an online
manual from Eclipse that gives instructions for using the C/C++
Development Toolkit (CDT) in the Eclipse Workbench

 LatticeMico Asynchronous SRAM Controller, which describes the features
and functionality of the LatticeMico asynchronous SRAM controller

 LatticeMico Parallel Flash Controller, which describes the features and
functionality of the LatticeMico parallel flash controller

 LatticeMico DMA Controller, which describes the features and
functionality of the LatticeMico DMA controller

 LatticeMico On-Chip Memory Controller, which describes the features and
functionality of the LatticeMico on-chip memory controller

 LatticeMico GPIO, which describes the features and functionality of the
LatticeMico GPIO

 LatticeMico SPI, which describes the features and functionality of the
LatticeMico serial peripheral interface (SPI)

 LatticeMico SPI Flash, which describes the features and functionality of
the LatticeMico SPI flash component

 LatticeMico Timer, which describes the features and functionality of the
LatticeMico timer

 LatticeMico UART, which describes the features and functionality of the
LatticeMico universal asynchronous receiver-transmitter (UART)

 Lattice Diamond Installation Notice for the current release, which explains
how to install the LatticeMico System software

 LLatticeECP3 Family Handbook, which is a collection of the data sheets
and application notes on LatticeECP3 devices

 LatticeECP3 Family Data Sheet

LATTICEMICO32 TUTORIAL : Recommended References

86 LatticeMico32 Tutorial

	LatticeMico32 Tutorial
	Introduction
	Learning Objectives
	Time to Complete This Tutorial
	System Requirements
	Accessing Online Help
	About the Tutorial Design
	Tutorial Data Flow

	LatticeECP3 Versa Evaluation Board
	Task 1: Create a New Lattice Diamond Project
	Task 2: Create the Development Microprocessor Platform
	Create a New MSB Platform
	Add the Microprocessor Core
	Add On-Chip and Off-Chip Memory
	Add the Peripheral Components
	Specify the Connections Between Master and Slave Ports
	Assign Component Addresses
	Assign Interrupt Request Priorities
	Perform a Design Rule Check
	Generate the Microprocessor Platform
	Create a User Top-Level Module

	Task 3: Create the Software Application Code
	Create a New C/C++ SPE Project
	Linker Configuration
	Build the Project

	Task 4: Generate the Microprocessor Bitstream
	Import the MSB Output File

	Connect the Microprocessor to the FPGA Pins
	Perform Functional Simulation
	Perform Timing Simulation
	Generate the Bitstream

	Task 5: Download the Hardware Bitstream to the FPGA
	Task 6: Debug and Execute the Software Application Code on the Development Board
	Software Application Code Execution Flow
	Debug the Software Application Code on the Board
	Insert Breakpoints
	Execute the Software Application Code
	Modify and Re-execute the Software Application Code

	Task 7: Setting up the Options to Deploy the Software Code to the SPI Flash Memory
	Selecting the Appropriate LatticeMico EBA Value
	Generating LatticeMico32 Bootable Application Binary
	Generating Production Microprocessor Bitstream

	Task 8: Deploy the SPI Flash Image (Merged With Production Microprocessor Bitstream and Application Software) to SPI Flash Memory
	Summary
	Glossary
	Recommended References

