

MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge Soft IP

User Guide

Contents

1.	Intro	duction	4
	1.1.	Quick Facts	4
	1.2.	Features	5
	1.3.	Conventions	5
	1.3.1.	Nomenclature	5
	1.3.2.	Data Ordering and Data Types	5
	1.3.3.	Signal Names	5
2.	Funct	ional Description	6
	2.1.	Top	6
	2.2.	D-PHY Common Interface Wrapper	.10
	2.3.	Rx Global Operations Controller	
	2.4.	Capture Controller	.11
	2.5.	Byte2Pixel	.12
	2.6.	Lane Distribution	.12
	2.7.	LVDS Wrapper	.12
	2.8.	Reset and Clocking	.13
3.	Parar	neter Settings	.15
4.	IP Ge	neration and Evaluation	.16
	4.1.	Licensing the IP	
	4.2.	Getting Started	.16
	4.3.	Generating IP in Clarity Designer	
	4.4.	Generated IP Directory Structure and Files	
	4.5.	Running Functional Simulation	
	4.6.	Simulation Strategies	.23
	4.7.	Simulation Environment	.24
	4.8.	Instantiating the IP	.25
	4.9.	Synthesizing and Implementing the IP	.25
	4.10.	Hardware Evaluation	
	4.10.	1. Enabling Hardware Evaluation in Diamond	.25
	4.11.	Updating/Regenerating the IP	
		1. Regenerating an IP in Clarity Designer	
		S	
		Support Assistance	
•	•	A. Resource Utilization	
		B. What is Not Supported	
Re	vision H	istory	.30

Figures

Figure 1.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge System Diagram	4
Figure 2.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Block Diagram	6
Figure 2.2. Single MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:1) Block Diagram	7
Figure 2.3. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:2, Split) Block Diagram	8
Figure 2.4. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (2:2) Block Diagram	8
Figure 2.5. High-Speed Data Transmission	9
Figure 2.6. FPD-Link Transmit Interface Timing Diagram (RGB666)	9
Figure 2.7. FPD-Link Transmit Interface Timing Diagram (RGB888)	9
Figure 2.8. Single MIPI DSI to Dual FPD-Link (Split) Timing Diagram	10
Figure 2.9. MIPI D-PHY Clock Lane Module State Diagram	
Figure 2.10. MIPI D-PHY Data Lane Module State Diagram	11
Figure 4.1. Clarity Designer Window	
Figure 4.2. Starting Clarity Designer from Diamond Design Environment	17
Figure 4.3. Configuring MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP in Clarity Designer	
Figure 4.4. Configuration Tab in IP User Interface	18
Figure 4.5. Video Tab in IP User Interface	19
Figure 4.6. IP Directory Structure	19
Figure 4.7. Simulation Environment Block Diagram	23
Figure 4.8. DSI Model Video Data	24
Figure 4.9. Regenerating IP in Clarity Designer	26
Tables	
Table 1.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Quick Facts	4
Table 2.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Pin Function Description	
Table 2.2. Capture Controller Outputs	11
Table 2.3. Clock Frequency Calculations	13
Table 2.4. Supported Data Rates for MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Configurations	14
Table 3.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Parameter Settings	15
Table 4.1. Files Generated by Clarity Designer	20
Table 4.2. Testbench Directives	
Table 4.3. Testbench Directives for D-PHY Timing Parameters	23
Table 4.4. Testbench Directives for Reference Clock Period	23
Table A.1. Resource Utilization	28

1. Introduction

The Lattice Semiconductor MIPI® DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP with the Lattice Semiconductor CrossLink™ programmable device can translate DSI video streams from MIPI D-PHY interface to LVDS interface for an FDP-Link connection to displays.

The Mobile Industry Processor Interface (MIPI) provides specifications for standardization in consumer mobile devices. MIPI Display Serial Interface (DSI) and MIPI D-PHY specifications were developed to create a standardized interface for all displays used in the mobile industry. As the industry evolves, bandwidth requirements have exceeded what display manufacturers are capable of manufacturing, while application processor vendors can provide very fast interfacing capabilities. For a cost effective solution, displays can be replaced with newer display, and the processor can be retained. Low Voltage Differential Signaling (LVDS) interface has become popular to support fast data rates of video transmission for Flat Panel Display Link (FPD-Link) connections.

This user guide is for MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP design version 1.x.

Figure 1.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge System Diagram

1.1. Quick Facts

Table 1.1 provides quick facts about the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP for CrossLink device.

Table 1.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Quick Facts

		MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Configuration		
		Single MIPI DSI to Single FPD-Link (RX_GEAR=8, RGB888, HS_LP)	Dual MIPI DSI to Dual FPD-Link (RX_GEAR=16, RGB888, HS_LP)	
Core Requirements	FPGA Families Supported	CrossL	ink	
	Targeted Device	LIF-MD6000-6MG81I		
	Data Path Width	32 bits total for 4 lanes	64 bits total for 4 lanes	
	LUTs	863	3367	
Resource Utilization	sysMEM™ EBRs	3	12	
• • • • • • • • • • • • • • • • • • •	Registers	779	2636	
	Programmable I/O	22	22	
	Hard D-PHY	1	2	
	Lattice Implementation	Lattice Diamond® 3.8		
Design Tool	Cunthosis	Lattice Synthesis Engine		
Support	Synthesis	Synopsys [®] Synplify Pro [®] L-2016.03L		
	Simulation	Aldec [®] Active-HDL™ 10.3 Lattice Edition		

1.2. Features

The key features of the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP are:

- Compliant with MIPI D-PHY v1.1, MIPI DSI v1.1 and Open LVDS Display Interface (OpenLDI) v0.95 specifications
- Supports MIPI DSI interfacing from 160 Mb/s up to 1.5 Gb/s
- Supports 1:1, 1:2 (split) and 2:2 MIPI DSI to FPD-Link configurations
- Supports 4 data lanes and one clock lane per MIPI DSI interface
- Supports continuous and non-continuous MIPI D-PHY clock
- Supports common MIPI DSI compatible video formats (RGB888, RGB666)
- Supports MIPI DSI Video Mode operation of Non-Burst Mode with Sync Pulses
- Supports dedicated EoT short packet (EoTp)
- Transmits in OpenLDI unbalanced operating mode format

1.3. Conventions

1.3.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL. This includes radix indications and logical operators.

1.3.2. Data Ordering and Data Types

- The highest bit within a data bus is the most significant bit.
- Single-bit data stream from each MIPI DSI data lane is deserialized into 8-bit or 16-bit parallel data where bit 0 is the first received bit. The size of parallel data depends on the Rx gear setting (RX GEAR).
- Pixel data order before distribution to LVDS lanes is {Red[MSB:0], Green[MSB:0], Blue[MSB:0]}. One, two or four pixels may be sent for distribution to LVDS lanes in one-pixel clock cycle depending on number of Tx channels and Tx gear setting (TX_GEAR). If there are multiple pixels per clock cycle, the pixel in the lower bits is the first received pixel. For instance, the pixel order for 4 pixels per clock is {pixel3, pixel2, pixel1, pixel0} where pixel0 is received first and pixel3 is received last.
- Pixel data is transmitted over LVDS lanes according to OpenLDI 18-bit and 24-bit unbalanced operating mode format

1.3.3. Signal Names

Signal names that end with:

- _n are active low
- _*i* are input signals
 - Some signals are declared as bidirectional (I/O) but are only used as input hence _i identifier is used.
- _o are output signals
 - Some signals are declared as bidirectional (I/O) but are only used as output hence o identifier is used.

5

2. Functional Description

The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP serves as a bridge between a MIPI DSI host and a display device.

2.1. Top

Figure 2.1 shows the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP block diagram.

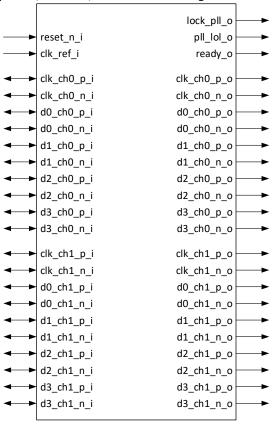


Figure 2.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Block Diagram

Table 2.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Pin Function Description

Port Name	Direction	Function Description			
Clock and Reset					
clk_ref_i I Reference clock for internal PLL. Available only when MIPI D-PHY clock is no continuous					
reset_n_i	I	Asynchronous system reset (active low)			
		MIPI DSI Interface			
clk_ch0_p_i, clk_ch0_n_i	I/O	MIPI D-PHY channel 0 clock lane			
d0_ch0_p_i, d0_ch0_n_i	I/O	MIPI D-PHY channel 0 data lane 0			
d1_ch0_p_i, d1_ch0_n_i	I/O	MIPI D-PHY channel 0 data lane 1			
d2_ ch0_p_i, d2_ ch0_n_i	I/O	MIPI D-PHY channel 0 data lane 2			
d3_ ch0_p_i, d3_ ch0_n_i	I/O	MIPI D-PHY channel 0 data lane 3			
clk_ch1_p_i, clk_ch1_n_i	I/O	MIPI D-PHY channel 1 clock lane			
d0_ch1_p_i, d0_ch1_n_i	I/O	MIPI D-PHY channel 1 data lane 0. Available only for configurations with two Rx channels			

Port Name Direction		Function description	
d1_ch1_p_i, d1_ch1_n_i	1/0	MIPI D-PHY channel 1 data lane 1. Available only for configurations with two Rx channels	
d2_ch1_p_i, d2_ch1_n_i	1/0	MIPI D-PHY channel 1 data lane 2. Available only for configurations with two Rx channels	
d3_ch1_p_i, d3_ch1_n_i	1/0	MIPI D-PHY channel 1 data lane 3. Available only for configurations with two Rx channels	
		FPD-Link Interface	
clk_ch0_p_o, clk_ch0_n_o	I/O	LVDS channel 0 clock lane	
d0_ch0_p_o, d0_ch0_n_o	I/O	LVDS channel 0 data lane 0	
d1_ch0_p_o, d1_ch0_n_o	I/O	LVDS channel 0 data lane 1	
d2_ch0_p_o, d2_ch0_n_o	I/O	LVDS channel 0 data lane 2	
d3_ch0_p_o, d3_ch0_n_o	1/0	LVDS channel 0 data lane 3. Available only for configurations with RGB888 data type	
clk_ch1_p_o, clk_ch1_n_o	I/O	LVDS channel 1 clock lane	
d0_ch1_p_o, d0_ch1_n_o I/O		LVDS channel 1 data lane 0. Available only for configurations with two Tx channels	
d1_ch1_p_o, d1_ch1_n_o	I/O	LVDS channel 1 data lane 1. Available only for configurations with two Tx channels	
d2_ch1_p_o, d2_ch1_n_o	I/O	LVDS channel 1 data lane 2. Available only for configurations with two Tx channels	
d3_ch1_p_o, d3_ch1_n_o	I/O	LVDS channel 1 data lane 3. Available only for configurations with two Tx channels and RGB888 data type	
Miscellaneous Status Signals			
lock_pll_o	0	PLL lock (active high). Available only when miscellaneous status signals option is enabled	
pll_lol_o O PLL loss of lock (active high). Available only when miscellaneous status s option is enabled		PLL loss of lock (active high). Available only when miscellaneous status signals option is enabled	
I ready o		Indicates reset sequence of DDR components is complete (active high). Available only when miscellaneous status signals option is enabled	

Figure 2.2 shows the single MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:1) block diagram.

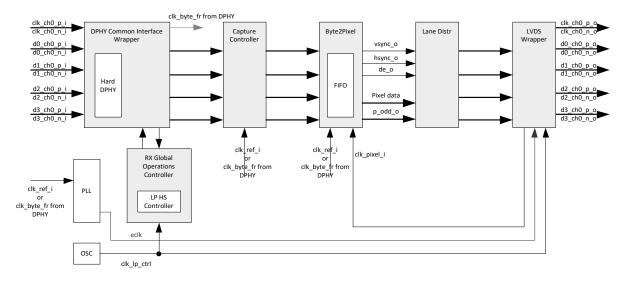


Figure 2.2. Single MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:1) Block Diagram

Figure 2.3 shows the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:2, Split) block diagram.

FPGA-IPUG-02003-1.3

7

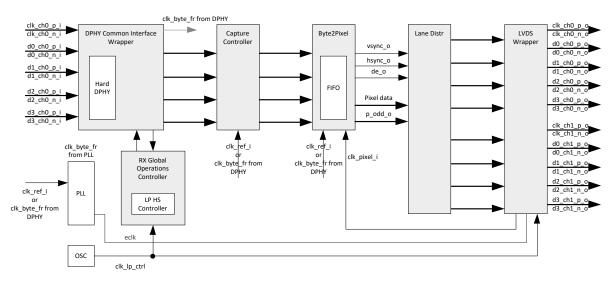


Figure 2.3. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:2, Split) Block Diagram

Figure 2.4 shows the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (2:2) block diagram.

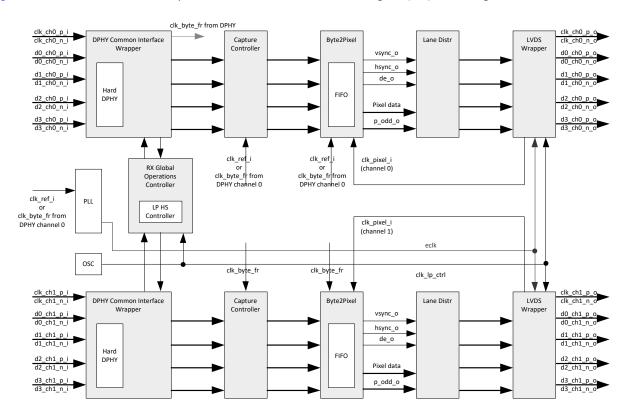


Figure 2.4. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (2:2) Block Diagram

The MIPI DSI receive interface has one MIPI D-PHY clock lane and four MIPI D-PHY data lanes. The clock lane is centeraligned to the data lanes. The clock lane can either be continuous (high speed only, HS_ONLY) or non-continuous (HS_LP).

When the clock lane is non-continuous, proper transition from low power (LP) to high speed (HS) mode of clock lane is required. The data lanes also require proper transition from LP to HS modes. In HS mode, data stream from each data lane is describilized to byte data. The describilization is done with 1:8 gearing or 1:16 gearing depending on Rx gear

setting (RX_GEAR). The byte data is word-aligned based on the SoT Sync sequence defined in the MIPI D-PHY Specification version 1.1.

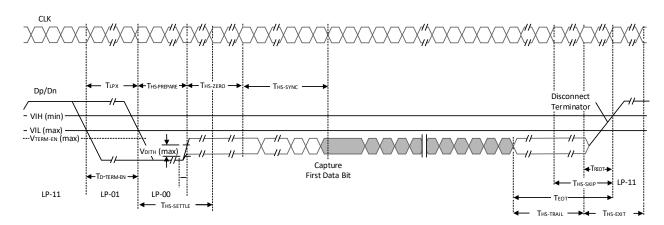


Figure 2.5. High-Speed Data Transmission

RGB data and control signals extracted from DSI packets are transmitted over FPD-Link interface such that output is compliant to OpenLDI unbalanced format as shown in Figure 2.6 to Figure 2.8. Control signals include data enable (DE), vertical and horizontal sync flags (VSYNC and HSYNC). Reserved bits (RES) are tied to 0.

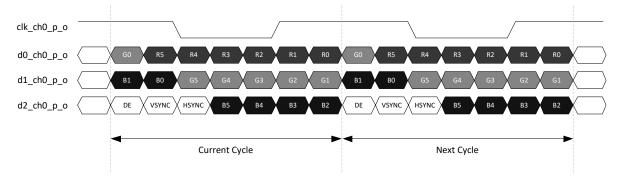


Figure 2.6. FPD-Link Transmit Interface Timing Diagram (RGB666)

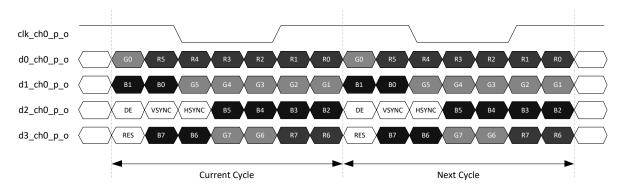


Figure 2.7. FPD-Link Transmit Interface Timing Diagram (RGB888)

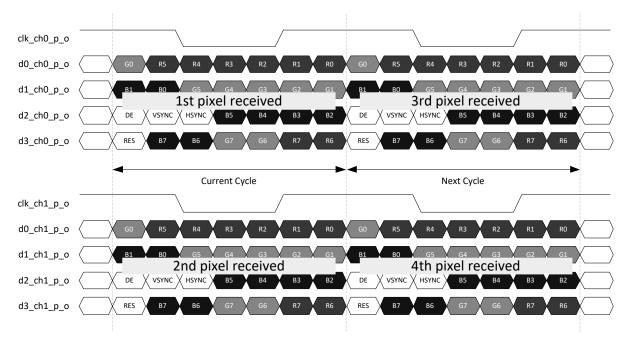


Figure 2.8. Single MIPI DSI to Dual FPD-Link (Split) Timing Diagram

Each data lane is serialized using ODDRx7 or ODDRx14 primitive, depending on Tx gear setting (TX_GEAR). RGB888 requires 4 data lanes while RGB666 requires 3 data lanes only. The clock lane is generated by feeding constant 1100011 or 11000111100011 to another ODDRx7 or ODDRx14, respectively. The clock is edge-aligned against data. Seven bits of data are transmitted in one clock cycle. When TX_GEAR is 14, the first pixel received is transmitted first and the second pixel received is transmitted in the next clock cycle.

In single MIPI DSI to dual FPD-Link configuration, the incoming packets are split into the two channels in an alternate manner. The first pixel received is transmitted over LVDS channel 0 while the next pixel received is transmitted over LVDS channel 1 at the same clock cycle as shown in Figure 2.8. The same approach is implemented regardless of TX GEAR setting.

The dual MIPI DSI to dual FPD-Link configuration is two instances of single MIPI DSI to single FPD-Link that share the same clocks. When MIPI D-PHY clock is continuous, the continuous byte clock from Rx channel 0 is used.

2.2. D-PHY Common Interface Wrapper

When two Rx channels are enabled, each channel has its own D-PHY common interface wrapper. This block instantiates and configures hard D-PHY IP to receive MIPI D-PHY high-speed data from all enabled data lanes. The hard D-PHY IP outputs 8-bit or 16-bit parallel data in non-continuous byte clock domain for each data lane. Size of parallel data depends on Rx gear setting (RX_GEAR).

Byte data are transferred to continuous byte clock domain using multicycle registers. Data enable signal from this block becomes active when SoT Sync is successfully detected by hard D-PHY IP from all enabled data lanes and becomes inactive when MIPI D-PHY data lanes go to Stop state (LP11).

2.3. Rx Global Operations Controller

When two Rx channels are enabled, each channel has its own Rx global operations controller. This block controls the high-speed termination enable of MIPI D-PHY clock and data lanes. When MIPI D-PHY clock is continuous, the HS termination enable of clock lane is tied to VCC. When MIPI D-PHY clock is non-continuous, the HS termination enable of clock lane becomes active after proper LP to HS transition is observed. Oscillator clock is used for this function. The required LP to HS transition on clock lane is shown in Figure 2.9 as per MIPI D-PHY Specification version 1.1.

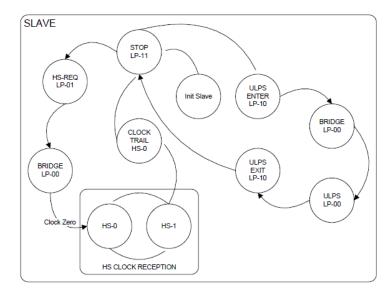


Figure 2.9. MIPI D-PHY Clock Lane Module State Diagram

Similarly, HS termination enable of data lanes becomes high after proper LP to HS transition is detected on data lane 0. A free-running byte clock is used for this function. The required LP to HS transition on data lanes is shown in Figure 2.10 as per MIPI D-PHY Specification version 1.1.

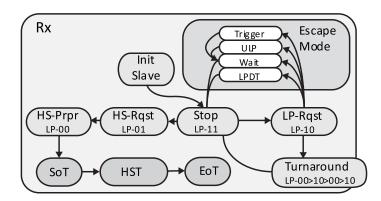


Figure 2.10. MIPI D-PHY Data Lane Module State Diagram

2.4. Capture Controller

When two Rx channels are enabled, each channel has its own capture controller. This block takes data bytes from D-PHY Common Interface Wrapper and detects short and long packets defined by MIPI DSI to generate sync signals and extract video data and other control parameters. Table 2.2 shows outputs of this block that are relevant to MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP.

Table 2.2. Capture Controller Outputs

Port Name Direction		Function Description
payload_en_o Output		Payload data enable to indicate when byte to pixel conversion is required (active high)
payload_o[MSB:0] Output		Video data or payload. Data width is Rx lanes * RX_GEAR
sp_en_o Output		Short packet enable. Goes high for 1 byte clock cycle when short packet is detected (active high)
sp2_en_o	Output	Short packet enable. Goes high for 1 byte clock cycle when short packet is detected from the higher byte when RX_GEAR=16 (active high)
lp_en_o Output		Long packet enable. Goes high for 1 byte clock cycle when long packet is detected (active high)

© 2016-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Port Name	Direction	Function description
lp2_en_o	Output	Long packet enable. Goes high for 1 byte clock cycle when long packet is detected from the higher byte when RX_GEAR=16 (active high)
lp_av_en_o	Output	Long packet enable for active video data. Goes high for 1 byte clock cycle when long packet containing active video is detected (active high)
lp2_av_en_o	Output	Long packet enable for active video data. Goes high for 1 byte clock cycle when long packet containing active video is detected from the higher byte when RX_GEAR=16 (active high)
vc_o[1:0]	Output	Virtual channel
vc2_o[1:0]	Output	Virtual channel from higher byte when RX_GEAR=16
wc_o[15:0]	Output	Word count of long packet
wc2_o[15:0]	Output	Word count of long packet from higher byte when RX_GEAR=16
dt_o[5:0]	Output	Data type
dt2_o[5:0]	Output	Data type from higher byte when RX_GEAR=16
ecc_o[7:0]	Output	ECC of packet header
ecc2_o[7:0]	Output	ECC of packet header from higher byte when RX_GEAR=16

2.5. Byte2Pixel

When two Rx channels are enabled, each channel has its own byte2pixel. This block converts byte data into pixel data using FIFO. Continuous byte clock is used to write data to FIFO while pixel clock is used to read data from FIFO.

The VSYNC and HSYNC outputs are also generated by this block and transferred to pixel clock domain using synchronization registers. Since only DSI Non-Burst Mode with Sync Pulses is supported, the generation of VSYNC and HSYNC control signals is dependent on the MIPI DSI host device as follows. VSYNC goes active high and inactive low when the VSYNC Start and VSYNC End short packets are seen, respectively. HSYNC goes active high when the HSYNC Start, VSYNC Start and VSYNC End short packets are seen. HSYNC goes inactive low when the HSYNC end short packet is seen. MIPI DSI Non-Burst Mode with Sync Events and Burst Mode operations are not supported.

2.6. Lane Distribution

When two Rx channels are enabled, each channel has its own lane distribution. This block is the interface between byte2pixel and lvds wrapper. It rearranges pixel data bits according to OpenLDI unbalanced format discussed in the Top section. The arranged data bits are fed to lvds wrapper for transmission over LVDS lanes.

When TX_GEAR=14 and/or two Tx channels are enabled, multiple pixels are received from byte2pixel in one pixel clock cycle. There may be cases when not all of the pixels received in one cycle are valid, for example odd number of pixels. This module uses p_odd_o output of byte2pixel to determine which of the pixels are valid.

2.7. LVDS Wrapper

This block instantiates one ODDRx7 or one ODDRx14 primitive to serialize parallel data for each LVDS data lane. Selection between ODDRx7 and ODDRx14 depends on Tx gear setting. The clock lane is generated by feeding constant 1100011 or 11000111100011 to another ODDRx7 or ODDRx14, respectively.

This block also divides PLL output clock to generate pixel clock.

A reset synchronization module is enclosed within this block. It takes care of the reset sequence of ODDR blocks and other DDR primitives. Start of HS transmission should only begin when reset synchronization sequence is complete. This block drives its output ready_o high when reset synchronization sequence is complete.

12

2.8. Reset and Clocking

Asynchronous active low reset input (reset_n_i) is used as a system reset. Local reset signals are derived from the system reset to create asynchronous reset assertion and synchronous reset deassertion for logic in different clock domains (non-continuous byte clock not included). Logic in continuous byte clock and pixel clock domains are also reset when ready_o from lvds_wrapper is low. Logic in LVDS wrapper is reset when PLL lock is low. The system reset input must be asserted for at least 60 ns.

Internal PLL could take ~15 ms to be locked after PLL reference clock is made available. Data loss is expected when incoming MIPI DSI transaction begins during this period when PLL lock is not yet obtained. To avoid malfunction, the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP discards any received MIPI DSI packets until it detects VSYNC start short packet.

When MIPI D-PHY clock is continuous, it is expected to be in high speed mode at power on of the device. The HS termination enable of clock lane is tied to VCC. Continuous byte clock is generated by hard D-PHY IP and used as PLL reference clock. Internal PLL generates eclk used to serialize data. A clock divider is used to generate pixel clock inside the lvds wrapper.

When MIPI D-PHY clock is non-continuous, an external clock source (clk_ref_i) is needed for PLL reference clock. Internal PLL generates continuous byte clock and eclk. Internal oscillator clock is used to detect LP to HS transition of clock lane and for reset synchronization sequence of DDR components inside lvds wrapper. Internal oscillator generates ~48 MHz clock.

Maximum fabric clock of CrossLink device is 150 MHz while maximum continuous byte clock is 112.5 MHz due to heavy logic inside capture controller and byte2pixel core modules. Rx gear 16 and Tx gear 14 features are added to achieve higher data rates by doubling the parallel data bus width and dividing byte clock and pixel clock by 2, respectively.

For single Rx to single Tx and dual Rx to dual Tx configurations, the Rx line rate is limited by maximum Tx line rate that is 1.2 Gb/s.

Frequency calculations are given in Table 2.3. DCK refers to MIPI D-PHY clock frequency.

Table 2.3. Clock Frequency Calculations

Clock	Formula
Rx line rate	DCK * 2
Tx line rate	LVDS Output clock * 7
D-PHY clock	DCK
Byte clock	DCK / (RX_GEAR/2)
Pixel clock	Byte clock * Rx lanes * RX_GEAR / (Pixel width * Pixels per pixel clock cycle), where pixels per pixel clock cycle is: TX_GEAR/7 – for single Rx to single Tx or dual Rx to dual Tx TX_GEAR/3.5 – for single Rx to dual Tx
eclk	Pixel clock * (TX_GEAR/2)
LVDS output clock	Pixel clock * (TX_GEAR/7)
Reference clock	Byte clock

Table 2.4. Supported Data Rates for MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Configurations

Configuration			D-PHY line rate	DCK
Data Type	RX_GEAR	TX_GEAR	(Mb/s)	(MHz)
	·	Single DSI to Single	gle FPD-Link	
DCDCCC	0	7	160 – 675	40 – 337.5
RGB666	8	14	675 – 771.42	337.5 – 385.74
RGB888 /	8	7	160 – 900	40 – 450
RGB666_LOOSE	16	14	900 – 1028.57	450 – 514.28
		Single DSI to Du	al FPD-Link	
DCDCCC	8	7	160 – 900	40 – 450
RGB666	16	14	900 – 1500	450 – 750
RGB888 /	8	7	160 – 900	40 – 450
RGB666_LOOSE	16	14	900 – 1500	450 – 750
Dual DSI to Dual FPD-Link				
Same as Single DSI to Single FPD-Link				

3. Parameter Settings

Table 3.1 shows the parameters used to generate MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP.

Table 3.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Parameter Settings

Parameter	Attribute	Options	Description
Number of Rx channels	User-input	1 or 2	Number of MIPI D-PHY channels. If 2 is selected, the following Rx settings is applied to both Rx channels.
Rx Interface	Fixed	MIPI DSI	Receive interface
Number of Rx lanes	Fixed	4	Number of MIPI D-PHY data lanes
Rx gearing	Read-only	8 or 16	Gearbox ratio of receive interface, automatically selected based on Rx data rate (see Reset and Clocking section)
Rx D-PHY IP	Fixed	Hard D-PHY	MIPI D-PHY Implementation
Number of Tx channels	User-input	1 or 2	Number of LVDS channels
Tx Interface	Fixed	LVDS	Transmit interface (FPD-Link)
Number of Tx lanes	Read-only	3 or 4	Derived from data type: 3 lanes for RGB666 while 4 lanes for RGB888.
Tx gearing	Read-only	7 or 14	Gearbox ratio of transmit interface, automatically selected based on Rx data rate (see Reset and Clocking section).
Rx Line Rate	User-input	See Table 2.4	Data rate per MIPI D-PHY lane
Tx Line Rate	Read-only	See Table 2.3	Data rate per LVDS lane
D-PHY Clock Frequency	Read-only	See Table 2.3	MIPI D-PHY clock frequency (DCK). $t_{\text{HS-SETTLE}} \text{ MIPI D-PHY timing parameter is also derived from this setting (85 ns + 6 Ul).} \\ t_{\text{HS-SETTLE}} \text{ counter is implemented in byte clock domain.} \\ \text{The expected actual } t_{\text{HS-SETTLE}} \text{ is 2 byte clock cycles more than the computed value.} \\$
D-PHY Clock Mode	User-input	Continuous or Non- continuous	MIPI D-PHY clock mode
Byte Clock Frequency	Read-only	See Table 2.3	Byte clock frequency
Pixel Clock Frequency	Read-only	See Table 2.3	Pixel clock frequency
Eclk Frequency	Read-only	See Table 2.3	Serializer clock frequency
LVDS Clock Frequency	Read-only	See Table 2.3	LVDS clock frequency
Reference Clock Frequency	Read-only	See Table 2.3	Reference clock frequency
Miscellaneous Signals	User-input	Marked or Unmarked	Brings out miscellaneous status signals to port
Data Type	User-input	RGB888 or RGB666	Supported MIPI DSI data types
RGB666 Type	User-input	Packed or Loosely Packed	Selects between RGB666 Packed and Loosely Packed formats

4. IP Generation and Evaluation

This section provides information on how to generate MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP using the Diamond Clarity Designer, and how to run simulation, synthesis and hardware evaluation.

4.1. Licensing the IP

An IP-specific license is required to enable full, unrestricted use of the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP in a complete, top-level design. The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP is available free of charge.

Request your license by going to the link http://www.latticesemi.com/en/Support/Licensing and request the free Lattice Diamond license. In this form, select the desired CrossLink IP for your design.

You may download or generate the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP and fully evaluate it through functional simulation and implementation (synthesis, map, place and route) without the IP license. The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP also supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See the Hardware Evaluation section for further details.

HOWEVER, THE IP LICENSE IS REQUIRED TO ENABLE TIMING SIMULATION TO OPEN THE DESIGN IN DIAMOND EPIC TOOL, OR TO GENERATE BITSTREAMS THAT DO NOT INCLUDE THE HARDWARE EVALUATION TIMEOUT LIMITATION.

4.2. Getting Started

The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP is available for download from the Lattice IP Server using the Clarity Designer tool. The IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP has been installed, the IP is available in the Clarity Designer user interface as shown in Figure 4.1.

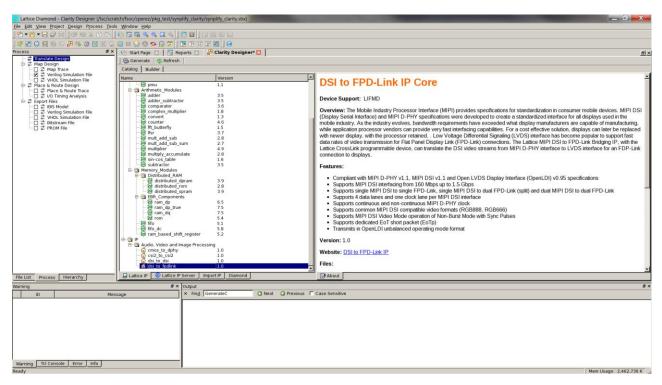


Figure 4.1. Clarity Designer Window

4.3. Generating IP in Clarity Designer

The Clarity Designer tool is used to customize modules and IPs and place them into the device's architecture.

The following describes the procedure for generating MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP in Clarity Designer.

Clarity Designer can be started from the Diamond design environment.

To start Clarity Designer:

- 1. Create a new empty Diamond project for CrossLink family devices.
- 2. From the Diamond main window, choose **Tools** > **Clarity Designer**, or click in Diamond toolbox. The Clarity Designer project dialog box is displayed.
- 3. Select and fill out the following items as shown in Figure 4.2:
 - Create new Clarity design Choose to create a new Clarity Design project directory in which the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP is generated.
 - **Design Location** Clarity Design project directory path.
 - Design Name Clarity Design project name.
 - HDL Output Hardware Description Language Output Format (Verilog).

The Clarity Designer project dialog box also allows you to open an existing Clarity Designer project by selecting the following:

- Open Clarity design Open an existing Clarity Design project.
- **Design File** Name of existing Clarity Design project file with .sbx extension.
- 4. Click the Create button. A new Clarity Designer project is created.

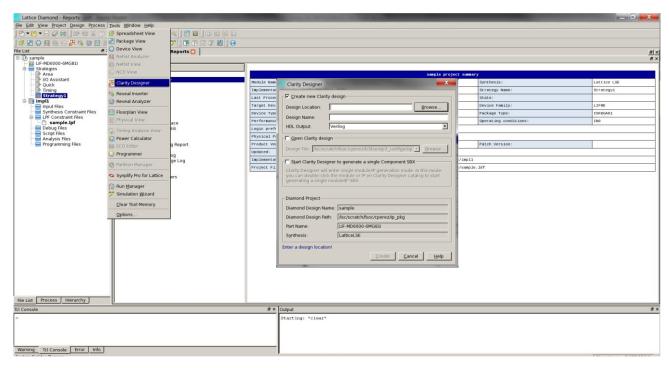


Figure 4.2. Starting Clarity Designer from Diamond Design Environment

To configure the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP in Clarity Designer:

 Double-click dsi_to_fpdlink in the IP list of the Catalog view. The dsi_to_fpdlink dialog box is displayed as shown in Figure 4.3.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice FPGA-IPUG-02003-1.3

17

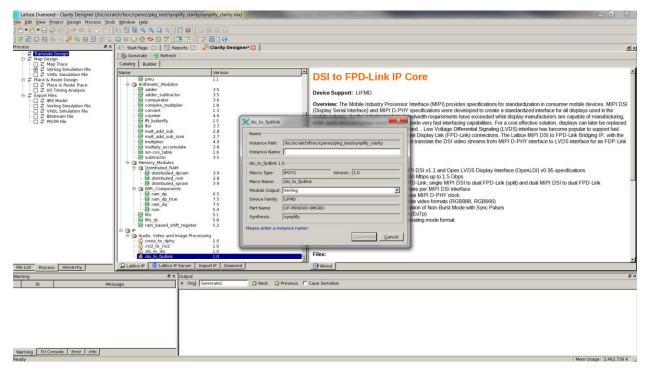


Figure 4.3. Configuring MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP in Clarity Designer

- 2. Enter the Instance Name.
- 3. Click the **Customize** button. An IP configuration interface is displayed as shown in Figure 4.4 and Figure 4.5. From this dialog box, you can select the IP parameter options specific to your application. The parameters are grouped into two tabs: **Configuration** and **Video**.

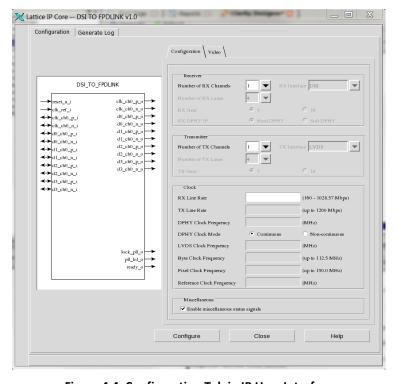


Figure 4.4. Configuration Tab in IP User Interface

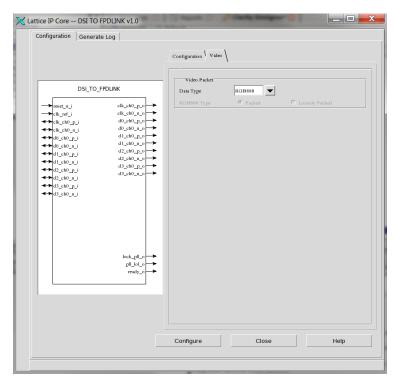


Figure 4.5. Video Tab in IP User Interface

- 4. Select the required parameters, and click the **Configure** button.
- 5. Click Close.
- 6. Click Generate in the toolbox. Clarity Designer generates all the IPs and modules, and creates a top module to wrap them.

For detailed instructions on how to use the Clarity Designer, refer to the Lattice Diamond software user guide.

4.4. Generated IP Directory Structure and Files

The directory structure of generated IP files is shown in Figure 4.6.

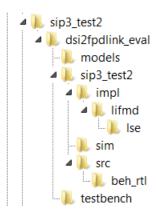


Figure 4.6. IP Directory Structure

The design flow for the IP created with Clarity Designer uses post-synthesized modules (NGO) of the IP core modules for synthesis and uses protected models for simulation. The post-synthesized modules are customized when you configure the IP and created automatically when the IP is generated. The protected models are common to all configurations.

FPGA-IPUG-02003-1.3

19

Table 4.1 provides a list of key files and directories created by Clarity Designer with details on how they are used.

Table 4.1. Files Generated by Clarity Designer

File	Description
<instance_name>.v</instance_name>	Verilog top-level module of MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP used for both synthesis and simulation.
<instance_name>_*.v</instance_name>	Verilog submodules for simulation. Files that do not have equivalent black box modules are also used for synthesis.
<instance_name>_*_beh.v</instance_name>	Protected Verilog models for simulation
<instance_name>_*_bb.v</instance_name>	Verilog black box modules for synthesis
<instance_name>_*.ngo</instance_name>	User interface configured and synthesized modules for synthesis
<instance_name>_params.v</instance_name>	Verilog parameters file, which contains required compiler directives to successfully configure IP during synthesis and simulation.
<instance_name>.lpc</instance_name>	Lattice Parameters Configuration file. This file records all the IP configuration options set through Clarity Designer. It is used by IP generation script to generate configuration-specific IP. It is also used to reload parameter settings in the IP User Interface in Clarity Designer when it is being reconfigured.
<instance_name>_inst.v/vhd</instance_name>	Template for instantiating the generated soft IP top-level in another user-created top module.

All IP files are generated inside \ct_dir> directory (sip3_test2 in Figure 4.6). The \ct_dir> is <Design Location>\<Design Name>\<Instance Name>, see the Generating IP in Clarity Designer section. A separate \cproject_dir> is created each time MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP is created with a different IP instance name.

The \dsi2fpdlink_eval and subdirectories provide files supporting push-button IP evaluation through functional simulations, design implementation (synthesis, map, place and route) and hardware evaluation.

Inside \dsi2fpdlink_eval is \<instance_name> folder (sip3_test2 in Figure 4.6) which contains protected behavioral files in \<instance_name>\src\beh_rtl and a pre-built Diamond project in \<instance_name>\impl\lifmd\<synthesis_tool>. The <instance_name> is the IP instance name specified by user in Clarity Designer. The simulation part of user evaluation provides testbench and test cases supporting RTL simulation for Active-HDL simulator under \testbench folder. Pre-built simulation script files are provided in \<instance_name>\sim\aldec. See the Running Functional Simulation section below for details.

The pll_wrapper model in \c_dir>\models\lifmd is used for both simulation and implementation.

4.5. Running Functional Simulation

The generated IP package includes the behavioral models (<instance_name>_*_beh.v) provided in \project_dir>\dsi2fpdlink_eval\<instance_name>\src\beh_rtl for functional simulation. PLL wrapper (pll_wrapper.v) in \project_dir>\dsi2fpdlink_eval\models\lifmd and parameters file (<instance_name>_params.v) in \project_dir>\dsi2fpdlink_eval\models\lifmd and parameters file (<instance_name>_params.v) in \project_dir>\dsi2fpdlink_eval\testbench.

To run the evaluation simulation on Active-HDL (Windows only):

- 1. Create new project using Lattice Diamond for Windows.
- 2. Open **Active-HDL Lattice Edition** User Interface tool.
- Modify the *.do file located in \<project_dir>\dsi2fpdlink_eval\<instance_name>\sim\aldec\.
 - a. Specify the working directory. For example: set sim_working_folder **C:/my_design**.
 - b. Specify the workspace name that is created in working directory. For example: set workspace_name design_space.
 - c. Specify the design name. For example: set design_name **DesignA**.
 - d. Specify the design path where the IP Core generated using Clarity Designer is located. For example: set design_path **C:/my_designs/DesignA**.

20

- e. Specify the design instance name (same as the instance name specified in Clarity Designer). For example: set design_inst **DesignA_inst**.
- f. Specify the Lattice Diamond primitive path to where it is installed. For example: set diamond dir **C:/lscc/diamond/3.8_x64**.
- 4. Update testbench parameters and/or directives to customize data size, clock, and/or other settings. See Table 4.2 for the list of valid testbench compiler directives.
- 5. Click **Tools > Execute macro**.
- 6. Select the *.do file.
- 7. Wait for the simulation to finish.

Testbench parameters and directives can be modified by setting the define in the vlog command in the *.do file. Table 4.2 is a list of testbench directives.

FPGA-IPUG-02003-1.3

Table 4.2. Testbench Directives

Directive	Description
READY_DURATION	Used when miscellaneous signals are off. For example, debug output port for ready_o and PLL lock are not included in the generated design. This directive is used to set the duration (in ps) of ready_o assertion before the DSI model in the testbench transmits input data to the design. Example: +define+PEADY_DURATION=2000000
	Example: +define+READY_DURATION=2000000 Used to drive low-power blanking. You need to define this in vlog. If this is not defined, the
LP_BLANKING	testbench drives HS data as blanking. Example: +define+LP_BLANKING
NUM_FRAMES	Used to set the number of video frames
NUM_LINES	Used to set the number of lines per frame
VIRTUAL_CHANNEL	Used to set the virtual channel number
	Used to enable or disable debug messages
DPHY_DEBUG_ON	0 – Debug messages disabled
	1 – Debug messages enabled
DPHY_CLK	Used to set the D-PHY clock period (in ps)
FRAME_LPM_DELAY	Used to set the low power mode delay between frames (in ps)
File	Description
DSI_VACT_PAYLOAD	Number of bytes of active pixels per line
DSI_HSA_PAYLOAD	Number of bytes of Horizontal Sync Active Payload (used for Non-burst sync pulse)
DSI_BLLP_PAYLOAD	Number of bytes of BLLP Payload (used for HS data blanking)
DSI_HBP_PAYLOAD	Number of bytes of Horizontal Back Porch Payload (used for HS data blanking, and in LP blanking for Non-burst sync pulse mode)
DSI_HFP_PAYLOAD	Number of bytes of Horizontal Front Porch Payload (used for HS data blanking, and in LP blanking for Non-burst sync pulse mode)
DSI_VSA_LINES	Number of Vertical Sync Active Lines
DSI VBP LINES	Number of Vertical Back Porch Lines
DSI_VFP_LINES	Number of Vertical Front Porch Lines
	Used to enable/disable transmission of EOTP packet
DSI_EOTP_ENABLE	0 – EOTP packet is disabled
	1 – EOTP packet is enabled
DSI_LPS_BLLP_DURATION	Used to set the duration (in ps) for BLLP low-power state (used for LP blanking)
DSI_LPS_HBP_DURATION	Used to set the duration (in ps) for Horizontal Back Porch low-power state (used for LP blanking in Non-burst sync events and Burst mode)
DSI_LPS_HFP_DURATION	Used to set the duration (in ps) for Horizontal Front Porch low-power state (used for LP blanking in Non-burst sync events and Burst mode)
NON_BURST_SYNC_EVENTS	Used to set the video mode type to Non-burst sync events (Not supported by DUT)
BURST_MODE	Used to set the video mode type to Burst Mode (Not supported by DUT)
NON_BURST_SYNC_PULSE	Used to set the video mode type to Non-burst sync pulse

The testbench has default settings for D-PHY timing parameters. Refer to Table 14 of MIPI D-PHY Specification version 1.1 for information regarding D-PHY timing requirements. To modify the D-PHY timing parameters, you can set the following testbench directives:

22

Directive	Description
DPHY_LPX	Used to set T-LPX (in ps)
DPHY_CLK_PREPARE	Used to set T-CLK-PREPARE (in ps)
DPHY_CLK_ZERO	Used to set T-CLK-ZERO (in ps)
DPHY_CLK_PRE	Used to set T-CLK-PRE (in ps)
DPHY_CLK_POST	Used to set T-CLK-POST (in ps)
DPHY_CLK_TRAIL	Used to set T-CLK-TRAIL (in ps)
DPHY_HS_PREPARE	Used to set T-HS-PREPARE (in ps)
DPHY_HS_ZERO	Used to set T-HS-ZERO (in ps)
DPHY_HS_TRAIL	Used to set T-HS-TRAIL (in ps)

By default, the testbench automatically calculates the reference clock period for HS_LP clock mode. You can override the clock period by defining the following testbench directive:

Table 4.4. Testbench Directives for Reference Clock Period

Directive	Description
REF_CLK	Used to set the Reference clock period input to the design (in ps)

4.6. Simulation Strategies

This section describes the simulation environment which demonstrates basic MIPI DSI to LVDS functionality. Figure 4.7 shows a block diagram of the simulation environment.

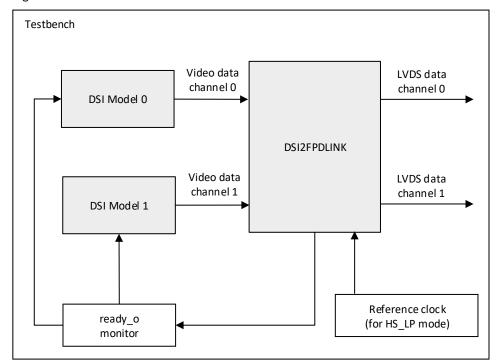


Figure 4.7. Simulation Environment Block Diagram

4.7. Simulation Environment

The simulation environment is made up of the DSI model instance. The number of DSI model instance depends on the number of Rx channel (1 or 2). The instantiated model is connected to the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP instance (DUT) in the testbench. The DSI model is configured based on the DUT configurations and testbench configurations. The testbench monitors assertion of the ready_o before sending the video data to the DUT if miscellaneous signals are enabled. The testbench also transmits reference clock to the DUT if D-PHY clock mode is non-continuous (HS_LP).

The video data transmitted by the DSI model can viewed in the waveform, see Figure 4.8:

- tb.dsi ch0.data0 refers to the data bytes transmitted in Rx channel 0 D-PHY data lane 0
- tb.dsi ch0.data1 refers to the data bytes transmitted in Rx channel 0 D-PHY data lane 1
- tb.dsi_ch0.data2 refers to the data bytes transmitted in Rx channel 0 D-PHY data lane 2
- tb.dsi_ch0.data3 refers to the data bytes transmitted in Rx channel 0 D-PHY data lane 3
- tb.dsi_ch1.data0 refers to the data bytes transmitted in Rx channel 1 D-PHY data lane 0
- tb.dsi ch1.data1 refers to the data bytes transmitted in Rx channel 1 D-PHY data lane 1
- tb.dsi ch1.data2 refers to the data bytes transmitted in Rx channel 1 D-PHY data lane 2
- tb.dsi ch1.data3 refers to the data bytes transmitted in Rx channel 1 D-PHY data lane 3

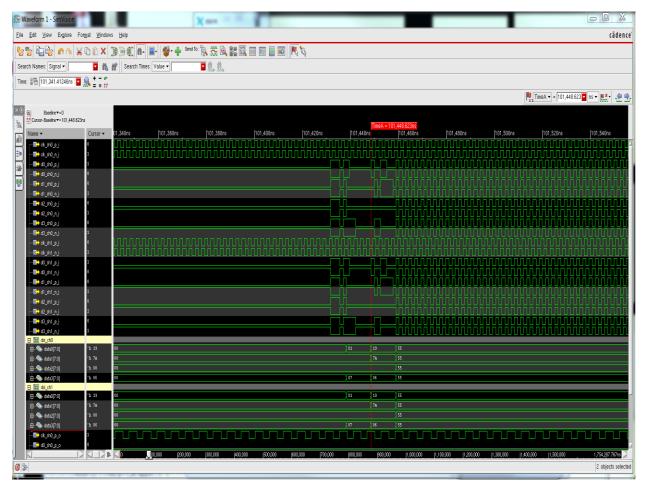


Figure 4.8. DSI Model Video Data

4.8. Instantiating the IP

The core modules of MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP are synthesized and provided in NGO format with black box Verilog source files for synthesis. Verilog source files named

<instance_name>_dsi_2_fpd_link_ip.v and <instance_name>_dphy_2_cmos_ip.v instantiate the black box of core
modules. The top-level file <instance_name>.v instantiates <instance_name>_dsi_2_fpd_link_ip.v, OSC and PLL
components.

The IP instances do not need to be instantiated one by one manually. The top-level file and the other Verilog source files are provided in \cproject_dir>. These files are refreshed each time the IP is regenerated.

A Verilog instance template <instance_name>_inst.v or VHDL instance template <instance_name>_inst.vhd is also provided as a guide if the design is to be included in another top level module.

4.9. Synthesizing and Implementing the IP

In Clarity Designer, the Clarity Designer project file (.sbx) is added to Lattice Diamond as a source file after IP is generated. All required Verilog source files for implementation are invoked automatically. The IP can be directly synthesized, mapped and placed/routed in the Diamond design environment after the IP is generated. Note that default Diamond strategy (.sty) and default Diamond preference file (.lpf) are used. When using the .sbx approach, import the recommended strategy and preferences from

\\project_dir>\dsi2fpdlink_eval\<instance_name>\impl\lifmd\lse or

\cproject_dir>\dsi2fpdlink_eval\<instance_name>\impl\lifmd\synplify directories and set them as active strategy and active preference file.

Push-button implementation of this top-level design with either Lattice Synthesis Engine (LSE) or Synopsys Synplify Pro RTL synthesis is supported via the pre-built Diamond project file <instance_name>_top.ldf located in \crossect_dir>\dsi2fpdlink_eval\<instance_name>\impl\lifthd\lse\ or

To use the pre-built Diamond project file:

- Choose File > Open > Project.
- In the Open Project dialog box, browse to \<project_dir>\dsi2fpdlink_eval\<instance_name>\impl\lifmd\<synthesis_tool>.
- 3. Select and open <instance_name>_top.ldf. At this point, all of the files needed to support top-level synthesis and implementation are imported to the project.
- 4. Select the **Process** tab in the left-hand user interface window.
- 5. Implement the complete design via the standard Diamond user interface flow.

4.10. Hardware Evaluation

The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited period of time (approximately four hours) without requiring the request of an IP license. It may also be used to evaluate the IP in hardware in user-defined designs.

4.10.1. Enabling Hardware Evaluation in Diamond

Choose **Project** > **Active Strategy** > **Translate Design Settings**. The hardware evaluation capability may be enabled or disabled in the **Strategy** dialog box. It is enabled by default.

4.11. Updating/Regenerating the IP

The Clarity Designer allows you to update the local IPs from the Lattice IP server. The updated IP can be used to regenerate the IP instance in the design. To change the parameters of the IP used in the design, the IP must also be regenerated.

4.11.1. Regenerating an IP in Clarity Designer

To regenerate IP in Clarity Designer:

- 1. In the **Builder** tab, right-click the IP instance to be regenerated and select **Config** in the menu as shown in Figure 4.9.
- 2. The **IP Configuration** user interface is displayed. Change the parameters as required and click the **Configure** button.
- 3. Click Generate in the toolbox. Clarity Designer regenerates all the IP instances which are reconfigured.

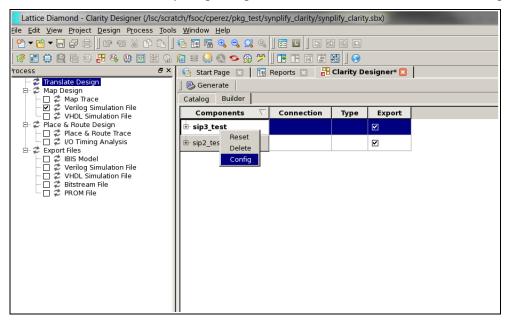


Figure 4.9. Regenerating IP in Clarity Designer

References

For more information about CrossLink devices, refer to the CrossLink Family Data Sheet (FPGA-DS-02007). For further information on interface standards, refer to:

- MIPI Alliance Specification for D-PHY, version 1.1, November 7, 2011, www.mipi.org
- MIPI Alliance Specification for Display Serial Interface, version 1.1, November 22, 2011, www.mipi.org
- Open LVDS Display Interface (OpenLDI) Specification, version 0.95, National Semiconductor, May 13, 1999

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Appendix A. Resource Utilization

Table A.1 lists resource utilization for Lattice CrossLink FPGAs using the MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP. The performance and utilization data target an LIF-MD6000-6MG81I device with -6 speed grade using Lattice Diamond 3.8 and Lattice Synthesis Engine. Performance may vary when using a different software version or targeting a different device density or speed grade within the CrossLink family. Programmable I/O do not count miscellaneous status signals. The values of f_{MAX} shown are based on continuous byte clock. The Target f_{MAX} column shows target byte clock frequency for each configuration. See the Reset and Clocking section for more details on supported clock frequencies.

Table A.1. Resource Utilization

IP User-Configurable Parameters	Slice s	LUTs	Registers	sysMEM EBRs	Programmable I/O	Actual f _{MAX} (MHz)	Target f _{MAX} (MHz)
Single Rx to Single Tx, RX_GEAR=8, TX_GEAR=7, RGB888, Non-continuous D-PHY clock	733	882	800	3	12	119.175	112.5
Single Rx to Single Tx, RX_GEAR=16, TX_GEAR=14, RGB888, Non-continuous D-PHY clock	1496	1865	1495	6	12	92.132	64.285
Single Rx to Dual Tx, RX_GEAR=8, TX_GEAR=7, RGB888, Non-continuous D-PHY clock	750	910	828	3	17	122.579	112.5
Single Rx to Dual Tx, RX_GEAR=16, TX_GEAR=14, RGB888, Non-continuous D-PHY clock	1525	1921	1548	6	17	107.945	93.75
Dual Rx to Dual Tx, RX_GEAR=8, TX_GEAR=7, RGB888, Non-continuous D-PHY clock	1426	1715	1574	6	22	121.477	112.5
Dual Rx to Dual Tx, RX_GEAR=16, TX_GEAR=14, RGB888, Non-continuous D-PHY clock	2609	3685	2964	12	22	95.247	64.285

Appendix B. What is Not Supported

The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP does not support the following features:

- 1:2 (duplicate display) and 2:1 MIPI DSI to FPD-Link configurations
- PPI (PHY Protocol Interface)
- Low-level protocol error detection (SoT Error, SoT Sync Error, and so on.)
- ECC check and error detection/correction of packet header in a short and a long packet
- Checksum calculation and error detection in long packet
- Command mode operation in MIPI DSI
- Non-burst mode with sync events and burst mode in MIPI DSI
- DCS parsing in MIPI DSI
- Interlaced video scan mode

The MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP has the following design limitations:

- Maximum value of word count in a long packet is 16'hFFF5
- Minimum value of word count in a long packet when RX_GEAR=16 is 16'h0002 when byte clock speed is 65 MHz or higher
- Minimum duration of MIPI D-PHY low power states (tLPX) should be at least 74 ns
- Maximum fabric speed is 150 MHz
- Maximum byte clock frequency is 112 MHz, lower than maximum fabric speed due to heavy logic inside core modules
- Video VSYNC and HSYNC outputs solely depend on MIPI DSI VSYNC/HSYNC start and end short packets. For displays that require strict timing, design needs to be modified to have additional control

Revision History

Revision 1.3, April 2019

Section	Change Summary
Introduction	Specified that this user guide can be used for IP design version 1.x.
IP Generation and Evaluation	In Licensing the IP, modified the instructions for requesting free license.
Revision History	Updated revision history table to new template.
All	Minor adjustments in style and formatting.

Revision 1.2, November 2016

Change Summary
Updated Licensing the IP section – Added email address lic_admn@latticesemi.com for requesting free license.

Revision 1.1, July 2016

Section	Change Summary	
All	Updated document number, the previous document number was IPUG122.	
Introduction	Updated Synplify Pro version in Table 1.1. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP Quick Facts, and added simulation in Quick Facts section.	
Functional Description	Updated Figure 2.3. MIPI DSI to OpenLDI/FPD-Link/LVDS Interface Bridge IP (1:2, Split) Block Diagram.	
Parameter Settings	 Updated Generated IP Directory Structure and Files section. Added new sections Running Functional Simulation, Simulation Strategies, and Simulation Environment. Updated Instantiating the IP section with instance templates. 	
IP Generation and Evaluation	 Updated Figure 4.4. Configuration Tab in IP User Interface, Figure 4.5. Video Tab in IP User Interface, and Figure 4.6. Protocol Timing Parameters Tab in IP User Interface. Updated Running Functional Simulation section. 	
Appendix A. Resource Utilization	Updated values of Slices, LUTs, Registers, Actual f _{MAX} in Table A.1. Resource Utilization.	

Revision 1.0, IP Version 1.0, May 2016

Section	Change Summary
All	Initial release

www.latticesemi.com