

1:2 and 1:1 MIPI DSI Display Interface Bridge Soft IP

User Guide

Contents

1. Introduction	4
1.1. Quick Facts	4
1.2. Features	4
1.3. Conventions	5
1.3.1. Nomenclature	5
1.3.2. Data Ordering and Data Types	5
1.3.3. Signal Names	5
2. Functional Description	6
2.1. Design and Module Description	7
3. Parameter Settings	8
4. IP Generation and Evaluation	11
4.1. Licensing the IP	11
4.2. Getting Started	11
4.3. Generating IP in Clarity Designer	12
4.4. Generated IP Directory Structure and Files	16
4.5. Running Functional Simulation	17
4.6. Simulation Strategies	20
4.7. Simulation Environment	20
4.8. Instantiating the IP	22
4.9. Synthesizing and Implementing the IP	22
4.10. Hardware Evaluation	22
4.10.1. Enabling Hardware Evaluation in Diamond	22
4.11. Updating/Regenerating the IP	23
4.11.1. Regenerating an IP in Clarity Designer	23
References	24
Technical Support Assistance	24
Appendix A. Resource Utilization	25
Appendix B. What is Not Supported	26
Appendix C. Initializing the DCS ROM	27
Low-Power Mode	27
High-Speed Mode	27
Revision History	30

Figures

Figure 1.1. Data Ordering for a Gear 16 x4 Configuration	5
Figure 2.1. DSI to DSI Block Diagram	θ
Figure 4.1. Clarity Designer Window	11
Figure 4.2. Starting Clarity Designer from Diamond Design Environment	12
Figure 4.3. Configuring DSI to DSI Bridge IP in Clarity Designer	13
Figure 4.4. Configuration Tab in IP User Interface	14
Figure 4.5. Initialization Tab in IP User Interface	14
Figure 4.6. Protocol Timing Parameters Tab in IP User Interface	15
Figure 4.7. Miscellaneous Tab in IP User Interface	15
Figure 4.8. DSI to DSI Bridge IP Directory Structure	16
Figure 4.9. Simulation Environment Block Diagram	20
Figure 4.10. PLL Lock and DCS done Miscellaneous Signals	21
Figure 4.11. D-PHY DSI Model Video Data	21
Figure 4.12. Regenerating IP in Clarity Designer	23
Figure C.1. DCS ROM for DCS Low-Power Mode	27
Figure C.2. Sample DCS ROM for x4 Gear 8 DCS High-Speed Mode	28
Figure C.3. Sample DCS ROM for x4 Gear 16 DCS High-Speed Mode	29
Figure C.4. Directory Containing the Sample DCS ROM Initialization Files	29
Tables	
Table 1.1. MIPI DSI to DSI Display Interface Bridge IP Quick Facts	
Table 2.1. Top Level Ports	θ
Table 3.1. DSI to DSI Parameter Settings	8
Table 4.1. List of Generated Files	16
Table 4.2. Testbench Directives	18
Table 4.3. Testbench Directives for D-PHY Timing Parameters	19
Table A.1. Resource Utilization	25

1. Introduction

The Mobile Industry Processor Interface (MIPI®) provides specifications for standardization in consumer mobile devices. MIPI Display Serial Interface (DSI) and MIPI D-PHY specifications were developed to create a standardized interface for all displays used in the mobile industry. As the industry evolves, bandwidth requirements have exceeded what display manufacturers are capable of manufacturing, while application processor vendors can provide very fast interfacing capabilities. For a cost effective solution, displays can later be replaced with newer display, with the processor retained. Also, multiple displays have gained popularity and extending the output to two display interfaces from a single source becomes a requirement to support these applications.

The Lattice Semiconductor MIPI DSI to DSI Display Interface Bridge IP allows you to resolve these interfacing problems with the Lattice Semiconductor CrossLink™ programmable device.

This user guide is for MIPI DSI to DSI Display Interface Bridge Soft IP design version 1.x.

1.1. Quick Facts

Table 1.1 provides quick facts about the MIPI DSI to DSI Display Interface Bridge IP for CrossLink device.

Table 1.1. MIPI DSI to DSI Display Interface Bridge IP Quick Facts

		DSI to DSI IP Configuration			
		4-Lane Gear 16 Continuous Rx Clock	4-Lane Gear 8 Continuous Rx Clock	4-Lane Gear 16 Non-continuous Rx Clock	4-Lane Gear 8 Non-continuous Rx Clock
IP Requirements	FPGA Families Supported	CrossLink			
	Targeted Device	LIF-MD6000-6MG81I			
_	LUTs	2871	1944	2941	2024
Resource Utilization	EBRs	8	4	8	4
Otilization	Registers	1789	1175	1804	1190
	Programmable I/O	13	13	14	14
	Lattice Implementation	Lattice Diamond [®] 3.8 or later			
Design Tool	Conthacts	Lattice Synthesis Engine			
Support	Synthesis	Synopsys® Synplify Pro® L-2016.03L			
	Simulation	Aldec [®] Active HDL™ 10.3 Lattice Edition			

1.2. Features

The key features of the MIPI DSI to DSI Display Interface Bridge IP are:

- Interfaces one or two MIPI DSI compliant receivers to a MIPI DSI transmitter
- Supports up to 6 Gb/s per MIPI DSI interface.
- Supports 1, 2, 3, or 4 data lanes and one clock lane per MIPI DSI interface
- Allows you to store and program a new set of device DCS (Display Command Set)
- Supports all MIPI DSI compatible video formats (RGB, YCbCr and User Defined)
- Compliant with MIPI D-PHY v1.1 and MIPI DSI v1.1 specifications

5

1.3. Conventions

1.3.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL. This includes radix indications and logical operators.

1.3.2. Data Ordering and Data Types

The highest bit within a data bus is the most significant bit.

Single-bit data stream from each MIPI D-PHY data lane is deserialized into 8-bit or 16-bit parallel data where bit 0 is the first received bit. The size of the parallel data bus depends on the Rx gear setting.

When gear setting is 16, the byte in the lower 8 bits of the 16-bit parallel data is the first byte.

Byte arrangement within data words is illustrated in Figure 1.1.

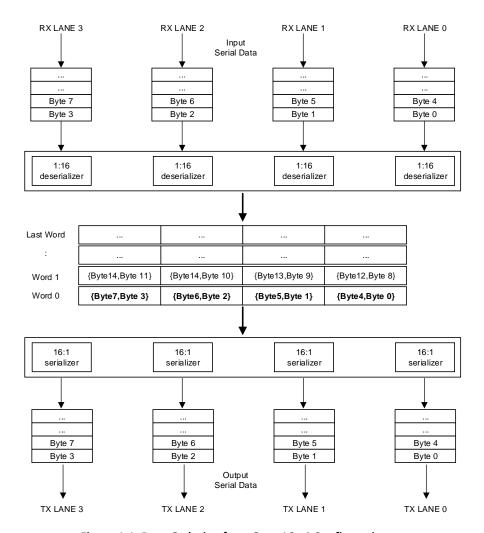


Figure 1.1. Data Ordering for a Gear 16 x4 Configuration

1.3.3. Signal Names

Signal names that end with:

- _*i* are input pins.
- _o are output pins.
- _io are bi-directional pins.
- _n_i are active low input signals.

2. Functional Description

Figure 2.1 shows the top level diagram of the 2:1 MIPI DSI Display Interface Bridge.

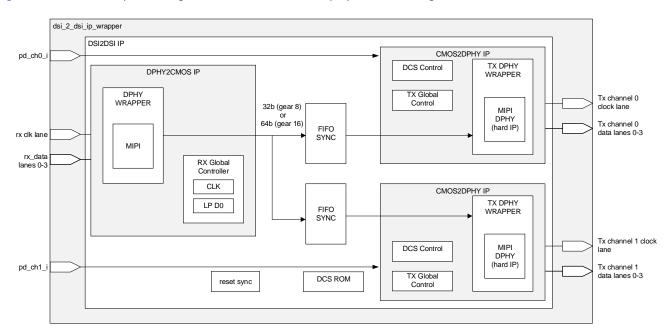


Figure 2.1. DSI to DSI Block Diagram

Table 2.1 describes the ports of the 1:2 MIPI DSI Display Interface Bridge IP.

Table 2.1. Top Level Ports

Signal	Direction	Functional Description
clk_p_i	I	Positive differential Rx D-PHY input clock
clk_n_i	I	Negative differential Rx D-PHY input clock
d0_p_io	I/O	Positive differential Rx D-PHY input data 0
d0_n_io	I/O	Negative differential Rx D-PHY input data 0
d1_p_i	I	Positive differential Rx D-PHY input data 1
d1_n_i	I	Negative differential Rx D-PHY input data 1
d2_p_i	I	Positive differential Rx D-PHY input data 2
d2_n_i	I	Negative differential Rx D-PHY input data 2
d3_p_i	I	Positive differential Rx D-PHY input data 3
d3_n_i	I	Negative differential Rx D-PHY input data 3
clk_ch0_p_o	0	Positive differential Tx D-PHY output clock, channel 0
clk_ch0_n_o	0	Negative differential Tx D-PHY output clock, channel 0
d0_ch0_p_io	I/O	Positive differential Tx D-PHY output data 0, channel 0
d0_ch0_n_io	I/O	Negative differential Tx D-PHY output data 0, channel 0
d1_ch0_p_o	0	Positive differential Tx D-PHY output data 1, channel 0
d1_ch0_n_o	0	Negative differential Tx D-PHY output data 1, channel 0
d2_ch0_p_o	0	Positive differential Tx D-PHY output data 2, channel 0
d2_ch0_n_o	0	Negative differential Tx D-PHY output data 2, channel 0
d3_ch0_p_o	0	Positive differential Tx D-PHY output data 3, channel 0
d3_ch0_n_o	0	Negative differential Tx D-PHY output data 3, channel 0
clk_ch1_p_o	0	Positive differential Tx D-PHY output clock, channel 1
clk_ch1_n_o	0	Negative differential Tx D-PHY output clock, channel 1
d0_ch1_p_io	1/0	Positive differential Tx D-PHY output data 0, channel 1

Signal	Direction	Functional Description	
d0_ch1_n_io	I/O	Negative differential Tx D-PHY output data 0, channel 1	
d1_ch1_p_o	0	Positive differential Tx D-PHY output data 1, channel 1	
d1_ch1_n_o	0	Negative differential Tx D-PHY output data 1, channel 1	
d2_ch1_p_o	0	Positive differential Tx D-PHY output data 2, channel 1	
d2_ch1_n_o	0	Negative differential Tx D-PHY output data 2, channel 1	
d3_ch1_p_o	0	Positive differential Tx D-PHY output data 3, channel 1	
d3_ch1_n_o	0	Negative differential Tx D-PHY output data 3, channel 1	
ref_clk_i	1	Input reference clock in Non-continuous Rx clock mode	
reset_n_i	1	Asynchronous active low system reset	
pd_ch0_i	1	Power down pin of Tx channel 0	
pd_ch1_i	1	Power down pin of Tx channel 1	
	Miscellaneous Debug Ports		
tx0_dcsrom_done	0	Indicates the DCS initialization of Tx channel 0 is done	
tx0_tinit_done	0	Indicates the Initialization delay counter from Tx channel 0 is done	
tx0_pll_lock	0	PLL lock indicator for Tx channel 0	
tx0_byteclock	0	Tx channel 0 output byte clock	
tx0_lp_clk_en	0	Low-power clock enable of Tx channel 0	
fifo0_empty	0	Indicates that synchronizing FIFO for Tx channel 0 is empty	
tx1_dcsrom_done	0	Indicates the DCS initialization of Tx channel 1 is done	
tx1_tinit_done	0	Indicates the Initialization delay counter from Tx channel 1 is done	
tx1_pll_lock	0	PLL lock indicator for Tx channel 1	
tx1_byteclock	0	Tx channel 1 output byte clock	
tx1_lp_clk_en	0	Low-power clock enable of Tx channel 1	
fifo1_empty	0	Indicates that synchronizing FIFO for Tx channel 1 is empty	

2.1. Design and Module Description

Within the dsi2dsi_ip block are instances of:

- dphy2cmos.v
 - Instantiates the MIPI D-PHY Rx soft IP wrapper. The D-PHY wrapper uses Snow DDR I/O and fabric to receive MIPI serial data. This converts the incoming serial data from the D-PHY data lanes to 32-bit (gear 8) or 64-bit (gear 16) words.
 - Instantiates the Rx global controller which contains finite state machines (FSMs) that detects the state transitions of the clock and data lanes.
- fifo sync.v
 - The design uses two instances of 32-word deep FIFO used to pass the Rx data to the Tx clock domains, one for each Tx channel.
 - The purpose of these FIFOs are for clock domain synchronization only and not for data buffering. The MIPI D-PHY specification does not allow for flow control, therefore, the Rx and the Tx byte clock must equal.
- cmos2dphy.v
 - There are two instances of this IP block, one for each Tx channel. Each instance contains the hard MIPI D-PHY Tx wrapper that serializes the packet data. Each wrapper contains its own Tx PLL.
 - This also contains the Tx Global Control module that controls the transitions of the Tx clock and data lanes.
 - This also have the instance of the file containing the Display Command Set. To change the DCS of the DSI peripheral, you must modify the DCS data array in the dcs_rom.v.
- dcs_rom.v
 - the DCS ROM contains the Display Command Set for the DSI slave.

3. Parameter Settings

 $\label{thm:continuous} \textbf{Table 3.1} \ \textbf{lists the user parameters used to generate the design}.$

Table 3.1. DSI to DSI Parameter Settings

Parameter	Attribute	Options	Description
Number of Rx Lanes	User -configurable	1, 2, 3 or 4	This selects the number of MIPI D-PHY data lanes. The number of Tx data lanes is the same as the number of Rx lanes.
Rx Gear	User -configurable	Gear8 or Gear16	Input serial bits are converted into 8-bit or 16-bit data bus. Gear8 is automatically selected for line rates lower than 250 Mb/s, and Gear16 is automatically selected for line rates above 900 Mb/s.
Rx D-PHY IP	User -configurable	Hard D-PHY or Soft D-PHY	The Hard IP option is only available for single DSI to single DSI configuration. Selecting Hard IP makes use of one of the hardened D-PHY modules as the Rx D-PHY. Selecting the Soft D-PHY IP option generates a Soft D-PHY Rx logic. The maximum line rate when Soft IP is selected is 1.2 Gb/s.
Lane Aligner FIFO Typer	User -configurable	EBR or LUT	If lane aligner is enabled, you have the option to choose FIFO implementation for resource optimization.
Enable Lane Aligner	User -configurable	ON or OFF	Word aligner is sufficient enough to handle data lane skews within 1 byte clock period. Option to use lane aligner is retained in case the customer's system have more than 1 byte clock period of skew.
Number of Tx Channels	Read Only	1 or 2	Rx D-PHY IP should be set to Soft D-PHY to enable this option. This option configures the bridge to have two transmission channels. The two channels are asynchronous with each other.
Rx Line Rate	User -configurable	192–1440	Data rate per lane in Mb/s. It must be noted that T _{LPX} , the D-PHY low-power state period, must be twice the byte clock period.
D-PHY Clock Frequency	Read Only	96–720	The D-PHY Clock Frequency is half of the line rate, in MHz.
Rx D-PHY Clock Mode	User -configurable	Continuous or Non-Continuous	In continuous mode, the input D-PHY clock lanes are always in high-speed mode. The DSI to DSI bridge utilizes this clock to generate the byte clock for internal logic.
			In non-continuous mode, the input D-PHY clock lanes go to low-power states. Therefore, an external clock, refclk_i, is needed.
Tx D-PHY Clock Mode	User -configurable	Continuous or Non-Continuous	In continuous mode, the output D-PHY clock lanes are always in high speed mode. In non-continuous mode, the output D-PHY clock lanes go to low power states.
Byte Clock Frequency	Read Only	(Line rate) / (Rx Gear)	This is the frequency that the internal logic operates at.
Reference Clock Frequency	Read Only	(Line rate) / (Rx Gear)	The frequency of the reference clock for the Tx PLL. This clock is also used to clock the Rx byte clock domain if the D-PHY Clock Mode is noncontinuous.

9

Parameter	Attribute	Options	Description
tINIT_SLAVE Value	User -configurable	16-bit non-zero decimal value	This parameter, in addition to the DCS ROM Wait Time parameter, sets the period needed to meet the required initialization time of the DSI slave. The value is in terms of byte clock cycles. The D-PHY specification places a minimum period of $100~\mu s$, but this parameter may be increased depending on the receiver requirement. During this period, all incoming data is ignored by the bridge.
Bypass tINIT counter	User -configurable	ON or OFF	User can bypass tINIT counter since PLL lock time takes around 15 ms, more than enough to meet D-PHY tINIT requirement.
Number of DCS Words	User -configurable	10-bit non-zero decimal value	This defines the number of valid words in the DCS ROM initialization file, including the sync pattern and the trail bytes.
DCS ROM Wait Time	User -configurable	1–4096	This parameter sets the interval between DCS packets in terms of number of byte clock cycles. This applies to both high-speed and low-power DCS timing mode.
DCS Mode	User -configurable	Low power or High Speed	DCS initialization of the DSI slave may be performed in D-PHY low-power timing mode, or in high-speed mode. High-Speed option is only available for 1-, 2- or 4-lane configuration only.
DCS ROM Initialization File	User -configurable	Text file	This must be a text file that contains the display command set data packets. See Appendix C for the format of entries.
Bypass DCS	User -configurable	ON or OFF	User can bypass DCS feature and send DCS from AP through bridge under normal operation.
HS-SKIP Parameter*	User -configurable	0–20	This sets the T _{HS-SKIP} in terms of number of byte clock cycles. This is the time interval during which the design neglects the high-speed data lane transitions before data lane0 goes to LP-11 state. It is suggested that the minimum input trail be at least 3 byte clock cycles to give the design enough allowance to trim the glitches and still have enough trail bytes.
t_HS-PREPARE	User -configurable	1–99	This sets the T _{HS-PREPARE} counter in terms of number of byte clock cycles. It is the time the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.
t_HS-ZERO	User -configurable	1–99	This sets the T _{HS-ZERO} counter in terms of number of byte clock cycles. It is the time the transmitter drives the HS-0 state prior to transmitting the Sync sequence. In gear 8, the actual T _{HS-ZERO} has ~2.5 cycles more than the specified value due to the register delays when converting data from parallel to serial. In gear 16, the actual value has ~3.5 cycles more.
t_CLK-PRE	User -configurable	1–99	This sets the T _{CLK-PRE} counter in terms of number of byte clock cycles. This is the time that the transmitter drives the HS clock prior to any associated Data Lane beginning the transition from LP to HS mode. The actual T _{CLK-PRE} has 2 more additional byte clock cycles due to register delays.

© 2016-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Parameter	Attribute	Options	Description
t_CLK-POST	User -configurable	1–99	This sets the T _{CLK-POST} counter in terms of number of byte clock cycles. This is the time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of T _{HS-TRAIL} to the beginning of T _{CLK-TRAIL} . The actual T _{CLK-POST} has one more additional byte clock cycle due to register delays.
Enable Miscellaneous Status Signals	User -configurable	ON or OFF	Enabling the miscellaneous signals ports out some internal signals for debug purposes.
Enable Tx0 DCS done Enable Tx1 DCS done Enable Tx0 tINIT done Enable Tx1 tINIT done Enable Tx0 PLL lock Enable Tx1 PLL lock Enable Tx1 Byte clock Enable Tx1 Byte clock Enable Tx0 LP Clock Enable Enable Tx1 LP Clock Enable Enable Tx1 TPC Empty Enable Tx1 FIFO Empty	User -configurable	ON or OFF	Each miscellaneous signal can be enabled/disabled separately.

^{*}Note: EoT processing is not performed in the design. Thus, one or more additional bytes from data lanes may be present after the trail. Refer to MIPI D-PHY Specification, Appendix A.3 High Speed Receive at the Slave Side.

To clean up these unwanted bytes, it is recommended to extend the input trail and increase the HS-SKIP value.

10

4. IP Generation and Evaluation

This section provides information on how to generate MIPI DSI to DSI Display Interface Bridge IP using the Diamond Clarity Designer, and how to run simulation, synthesis and hardware evaluation.

4.1. Licensing the IP

An IP-specific license is required to enable full, unrestricted use of the MIPI DSI to DSI Display Interface Bridge IP in a complete, top-level design. The MIPI DSI to DSI Display Interface Bridge IP license is available free of charge.

Request your license by going to the link http://www.latticesemi.com/en/Support/Licensing and request the free Lattice Diamond license. In this form, you will select the desired CrossLink IP for your design.

You may download and generate the MIPI DSI to DSI Display Interface Bridge IP and fully evaluate through functional simulation and implementation (synthesis, map, place and route) without an IP license. The DSI to DSI Bridge IP also supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See the Hardware Evaluation section for further details.

HOWEVER, THE IP LICENSE IS REQUIRED TO ENABLE TIMING SIMULATION, TO OPEN THE DESIGN IN DIAMOND EPIC TOOL, OR TO GENERATE BITSTREAMS THAT DO NOT INCLUDE THE HARDWARE EVALUATION TIMEOUT LIMITATION.

4.2. Getting Started

The MIPI DSI to DSI Display Interface Bridge IP is available for download from the Lattice IP Server using the Clarity Designer tool. The IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP has been installed, the IP is available in the Clarity Designer user interface as shown in Figure 4.1.

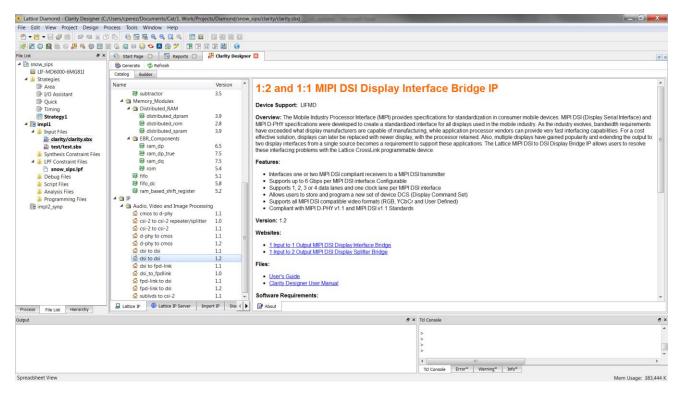


Figure 4.1. Clarity Designer Window

4.3. Generating IP in Clarity Designer

The Clarity Designer tool is used to customize modules and IPs and place them into the device's architecture. Besides configuration and generation of modules and IPs, Clarity Designer can also create a top module template in which all generated modules and IPs are instantiated.

The following describes the procedure for generating MIPI DSI to DSI Display Interface Bridge IP in Clarity Designer. Clarity Designer can be started from the Diamond design environment.

To start Clarity Designer:

- 1. Create a new empty Diamond project for CrossLink family devices.
- From the Diamond main window, choose Tools > Clarity Designer, or click in Diamond toolbox. The Clarity Designer project dialog box is displayed.
- 3. Select and or fill out the following items as shown in Figure 4.2.
 - Create new Clarity design Choose to create a new Clarity Design project directory in which the MIPI DSI to DSI Display Interface Bridge IP is generated.
 - **Design Location** Clarity Design project directory path.
 - **Design Name** Clarity Design project name.
 - HDL Output Hardware Description Language Output Format (Verilog).

The Clarity Designer project dialog box also allows you to open an existing Clarity Designer project by selecting the following:

- Open Clarity design Open an existing Clarity Design project.
- **Design File** Name of existing Clarity Design project file with .sbx extension.
- 4. Click the Create button. A new Clarity Designer project is created.

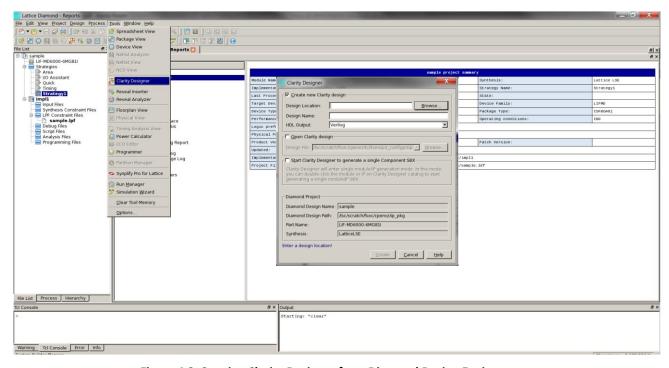


Figure 4.2. Starting Clarity Designer from Diamond Design Environment

To configure the MIPI DSI to DSI Display Interface Bridge IP in Clarity Designer:

1. Double-click **dsi to dsi** in the IP list of the Catalog view. The **dsi to dsi** dialog box is displayed as shown in Figure 4.3.

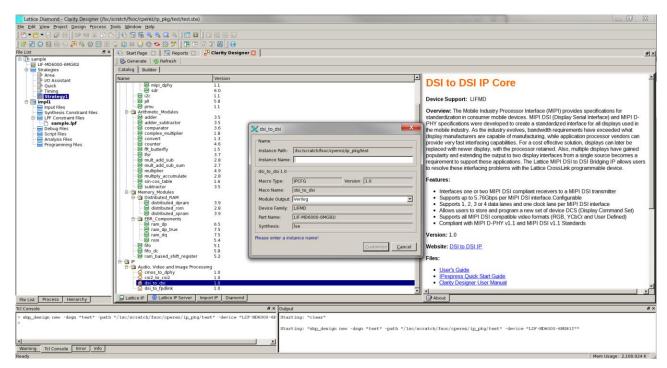


Figure 4.3. Configuring DSI to DSI Bridge IP in Clarity Designer

- 2. Enter the **Instance Name**.
- 3. Click the **Customize** button. An IP configuration interface is displayed as shown in Figure 4.4 to Figure 4.7. From this dialog box, you can select the IP parameter options specific to your application.

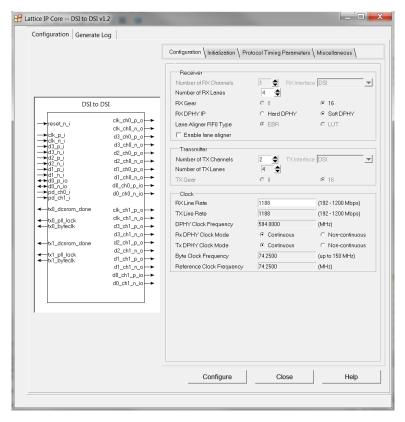


Figure 4.4. Configuration Tab in IP User Interface

4. To configure Initialization parameters, click the **Initialization** tab as shown in Figure 4.5.

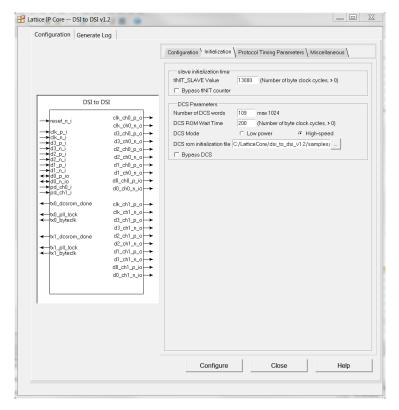


Figure 4.5. Initialization Tab in IP User Interface

© 2016-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

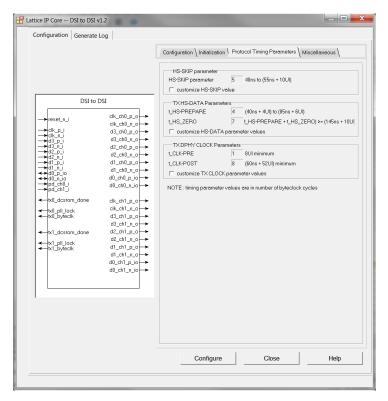


Figure 4.6. Protocol Timing Parameters Tab in IP User Interface

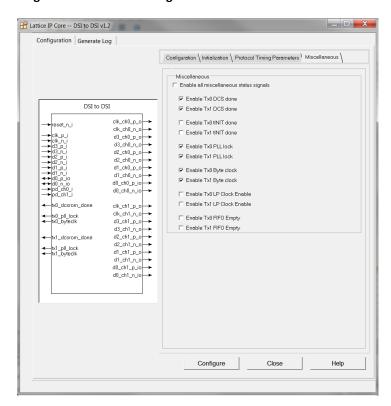


Figure 4.7. Miscellaneous Tab in IP User Interface

- 5. Select the required parameters, and click the **Configure** button.
- 6. Click Close.

7. Click Generate in the toolbox. Clarity Designer generates all the IPs and modules, and creates a top module to wrap them.

For detailed instructions on how to use the Clarity Designer, refer to the Lattice Diamond software user guide.

4.4. Generated IP Directory Structure and Files

The directory structure of generated IP files is shown in Figure 4.8.

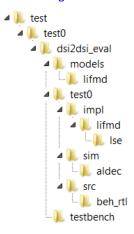


Figure 4.8. DSI to DSI Bridge IP Directory Structure

The design flow for the IP created with Clarity Designer uses post-synthesized modules (NGO) of IP core modules for synthesis and uses protected models for simulation. The post-synthesized modules are customized when you configure the IP and created automatically when the IP is generated. The protected models are common to all configurations. Other files are also provided to enable functional simulation and implementation.

Table 4.1 provides a list of key files and directories created by Clarity Designer with details on where they are located and how they are used.

Table 4.1. List of Generated Files

File	Description
<instance_name>.v</instance_name>	Verilog top-level module of MIP D-PHY to CMOS IP used for both synthesis and simulation
<instance_name>_*.v</instance_name>	Verilog submodules for simulation. Files that do not have equivalent black box modules are also used for synthesis.
<instance_name>_inst.v/vhd</instance_name>	Template for instantiating the design in another user-created top module
<instance_name>_*_beh.v</instance_name>	Protected Verilog models for simulation
<instance_name>_*_bb.v</instance_name>	Verilog black box modules for synthesis
<instance_name>_*.ngo</instance_name>	User Interface configured and synthesized modules for synthesis
<instance_name>_params.v</instance_name>	Verilog parameters file which contains required compiler directives to successfully configure IP during synthesis and simulation
<instance_name>.lpc</instance_name>	Lattice Parameters Configuration file. This file records all the IP configuration options set through Clarity Designer. It is used by IP generation script to generate configuration-specific IP. It is also used to reload parameter settings in the IP user interface in Clarity Designer when it is being reconfigured.

17

All IP files are generated inside \c_dir> directory (test in Figure 4.8). The \cproject_dir> is
<design_location>\<design_name>\<instance_name>, see the Generating IP in Clarity Designer section. A separate \cproject_dir> is created each time DSI to DSI Bridge IP is created with a different IP instance name.

The \dsi2dsi_eval and subdirectories provide files supporting push-button IP evaluation through functional simulations, design implementation (synthesis, map, place and route) and hardware evaluation. Inside \dsi2dsi_eval is \<instance_name> folder (test0 in Figure 4.8) which contains protected behavioral files in \<instance_name>\src\beh_rtl and a pre-built Diamond project in \<instance_name>\impl\lifmd\<synthesis_tool>. The \<instance_name> is the IP instance name you specified in Clarity Designer. The simulation part of user evaluation provides testbench and test cases supporting RTL simulation for Active-HDL simulator under \ropiect_dir>\testbench. Separate directories located at \ropiect_dir>\dsi2dsi_eval\<instance_name>\sim\aldec are provided and contain specific pre-built simulation script files. See the Running Functional Simulation section below for details.

4.5. Running Functional Simulation

To run simulations using Active HDL:

- Modify the *.do file located in \sproject_dir>\dsi2dsi_eval\<instance_name>\sim\aldec\.
 - a. Specify the working directory (sim_working_folder). For example: set sim_working_folder **C:/my_design**.
 - b. Specify the workspace name that is created in the working directory. For example: set workspace_name **design_space**.
 - c. Specify the design name. For example: set design name **DesignA**.
 - d. Specify the design path where the IP Core generated using Clarity Designer is located. For example: set design_path **C:/my_designs/DesignA**.
 - e. Specify the design instance name (same as the instance name specified in Clarity Designer). For example: set design inst **DesignA_inst**.
 - f. Specify the Lattice Diamond Primitive path (diamond_dir) to where it is installed. For example: set diamond_dir C:/lscc/diamond/3.8_x64.
- Update testbench parameters to customize data size, clock, and/or other settings. See Table 4.2 and Table 4.3 for the list of valid testbench compiler directives.
- 3. From the Tools menu, select Active-HDL.
- 4. In the Active-HDL window, under the **Tools** tab, select **Execute Macro**.
- 5. Select the *.do file located in \roject_dir>\dsi2dsi_eval\<instance_name>\sim\aldec\dsi2dsi.do.
- 6. Click OK.
- 7. Wait for the simulation to finish.

Table 4.2 is a list of testbench directives which can be modified by setting the define in the vlog command in the $dsi_2dsi.do$ file.

Example:

```
vlog \
+define+NUM_FRAMES=60 \
+define+NUM_LINES=1080 \
```

FPGA-IPLIG-02001-1 4

Table 4.2. Testbench Directives

Directive	Description
	Used when misc signals are off (for example, debug output ports for PLL lock, tINIT done and/or DCS ROM done are not included in the generated design).
PLL DURATION,	This directive is used to set the duration of PLL lock (in ps), tINIT done, and/or DCS ROM
tinit_duration,	done before the D-PHY model in the testbench transmits input data to the design.
DCS DURATION	Example:
DC3_DORATION	+define+PLL_DURATION=15000000
	+define+tINIT_DURATION=100000000
	+define+DCS_DURATION=950000000
	Used to control the power-down pin of Tx channel 0
PD_CH0	0 – Channel 0 is enabled
	1 – Channel 0 is enabled
	Used to control the power-down pin of Tx channel 1
PD_CH1	0 – Channel 1 is enabled
	1 – Channel 1 is enabled
NUM_FRAMES	Used to set the number of video frames
NUM_LINES	Used to set the number of lines per frame
FRAME_LPM_DELAY	Used to set the low-power mode delay between frames (in ps)
VIDEO DATA TYPE	Video data type, in decimal value.
VIDEO_DATA_TITE	For example, for RGB888 (0x3E), +define+VIDEO_DATA_TYPE=62
VACT_PAYLOAD	Number of bytes of active pixels per line
HSA_PAYLOAD	Number of bytes of Horizontal Sync Active Payload (used for Non-burst sync pulse)
BLLP_PAYLOAD	Number of bytes of BLLP Payload (used for HS data blanking)
UDD DAVI CAD	Number of bytes of Horizontal Back Porch Payload (used for HS data blanking, and in LP
HBP_PAYLOAD	blanking for Non-burst sync pulse mode)
HED DAVIOAD	Number of bytes of Horizontal Front Porch Payload (used for HS data blanking, and in LF
HFP_PAYLOAD	blanking for Non-burst sync pulse mode)
VSA_LINES	Number of Vertical Sync Active Lines
VBP_LINES	Number of Vertical Back Porch Lines
VFP_LINES	Number of Vertical Front Porch Lines
	Used to enable/disable transmission of End-of-Transmit packet
EOTP_ENABLE	0 – EOTP packet is disabled
	1 – EOTP packet is enabled
LPS_BLLP_DURATION	Used to set the duration (in ps) for BLLP low-power state (used for LP blanking)
IDS HDD DIDATION	Used to set the duration (in ps) for Horizontal Back Porch low-power state
LPS_HBP_DURATION	(used for LP blanking in Non-burst sync events and Burst mode)
LPS HFP DURATION	Used to set the duration (in ps) for Horizontal Front Porch low-power state
LI 3_III F_DONATION	(used for LP blanking in Non-burst sync events and Burst mode)
VIRTUAL_CHANNEL	Used to set the virtual channel number
NON_BURST_SYNC_EVENTS	Video Mode Types. One of the following video mode types must be defined. The default
BURST_MODE	mode used by the testbench is Non-burst sync pulse.
NON_BURST_SYNC_PULSE	For example add +define+BURST_MODE in vlog command to enable Burst Mode
TRAIL_GLITCH_ENABLE	User can enable transmitting of glitches at the end of the HS trail to model tREOT by defining TRAIL_GLITCH_ENABLE (+define+TRAIL_GLITCH_ENABLE)
TRAIL_GLITCH_INTERVAL	Used to set interval of the trail glitches if TRAIL_GLITCH_ENABLE is defined
	Used to enable or disable debug messages
DPHY_DEBUG_ON	0 – Debug messages are disabled
	1 – Debug messages are enabled
FRAME_LPM_DELAY	Used to set the low-power mode delay between frames (in ps)
	By default, the testbench automatically calculates the D-PHY clock period, but you can
DPHY_CLK_PERIOD	change/override the clock period by defining the directive in vlog (in ps).
	For example +define+DPHY_CLK_PERIOD=1684

Directive	Description
REFCLK_PERIOD	By default, the testbench automatically calculates the reference clock period for Non-Continuous Rx Clock Mode, but you can change/override the clock period by defining the directive in vlog (in ps). For example +define+REFCLK PERIOD=6736
HS_BLANKING	By default, low-power blanking is used during HS_LP mode. To use HS data blanking, HS_BLANKING may be added in the list of defines (+define+HS_BLANKING)
LP_BLANKING	By default, HS data blanking is used during HS_ONLY mode. To use low-power blanking, LP_BLANKING may be added in the list of defines (+define+LP_BLANKING)

The testbench has default setting for the D-PHY timing parameters listed in Table 4.3. If you would like to modify the D-PHY timing parameters, you can set the following directives.

Table 4.3. Testbench Directives for D-PHY Timing Parameters

Directive	Description
DPHY_LPX	Used to set T-LPX (in ps)
DPHY_CLK_PREPARE	Used to set T-CLK-PREPARE (in ps)
DPHY_CLK_ZERO	Used to set T-CLK-ZERO (in ps)
DPHY_CLK_PRE	Used to set T-CLK-PRE (in ps)
DPHY_CLK_POST	Used to set T-CLK-POST (in ps)
DPHY_CLK_TRAIL	Used to set T-CLK-TRAIL (in ps)
DPHY_HS_PREPARE	Used to set T-HS-PREPARE (in ps)
DPHY_HS_ZERO	Used to set T-HS-ZERO (in ps)
DPHY_HS_TRAIL	Used to set T-HS-TRAIL (in ps)

Refer to MIPI D-PHY Specification version 1.1, Table 14 for information regarding D-PHY timing requirements.

4.6. Simulation Strategies

This section describes the simulation environment which demonstrates basic DSI to DSI Bridge IP functionality. Figure 4.9 shows the block diagram of the simulation environment.

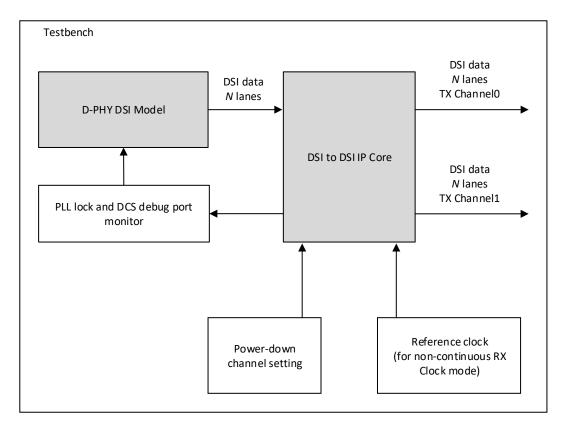


Figure 4.9. Simulation Environment Block Diagram

4.7. Simulation Environment

The simulation environment is made up of the D-PHY DSI model instance connected to the IP core instance in the testbench. The D-PHY DSI model is configured based on the IP core configurations and testbench configurations. The testbench can be configured to set the power-down channel setting for the IP core Tx channels. The testbench also transmits reference clock to the IP core if the clock mode is non-continuous. If miscellaneous signals such as PLL lock and DCS done debug ports are included in the IP core, the testbench monitors assertion of these signals before sending the DSI video data to the IP core.

Figure 4.10. shows an example simulation where PLL lock and DCS done debug ports are included. Note that in case of two Tx channels, Tx channel 0 DCS is done first before Tx channel 1 DCS. Tx channel 1 may output the data at an earlier time if it detects the input data immediately after DCS is done as shown in the figure at Time A.

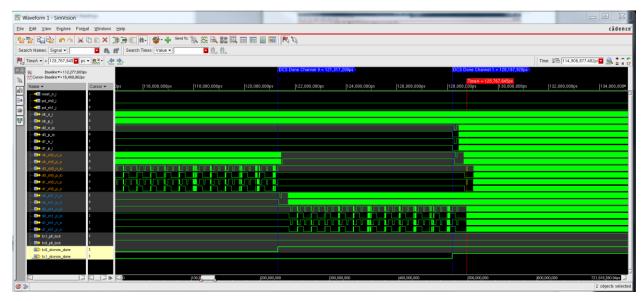


Figure 4.10. PLL Lock and DCS done Miscellaneous Signals

The video data transmitted by the D-PHY DSI model can viewed in the waveform, see Figure 4.11:

- tb.dphy_ch0.data0 refers to the data bytes transmitted in D-PHY data lane 0
- tb.dphy_ch0.data1 refers to the data bytes transmitted in D-PHY data lane 1
- tb.dphy_ch0.data2 refers to the data bytes transmitted in D-PHY data lane 2
- tb.dphy_ch0.data3 refers to the data bytes transmitted in D-PHY data lane 3

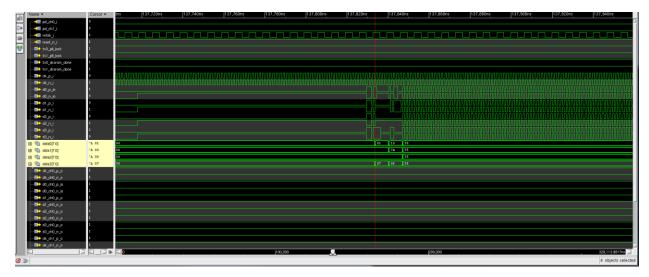


Figure 4.11. D-PHY DSI Model Video Data

4.8. Instantiating the IP

The core modules of the 1:2 MIPI DSI Display Interface Bridge IP are synthesized and provided in NGO format with black box Verilog source files for synthesis. A Verilog source file named <instance_name>_dsi_2_dsi_ip.v instantiates the black box of core modules. The top-level file <instance_name>.v instantiates <instance_name> dsi_2_dsi_ip.v.

The IP instances do not need to be instantiated one by one manually. The top-level file and the other Verilog source files are provided in \cproject dir>. These files are refreshed each time the IP is regenerated.

The MIPI DSI Display Interface Bridge Soft IP is intended as a complete standalone solution. However, a Verilog instance template *<instancename>_inst.vhd* is also generated as a guide if the design is to be included in another top level module.

4.9. Synthesizing and Implementing the IP

In Clarity Designer, the Clarity Designer project file (.sbx) is added to Lattice Diamond as a source file after IP is generated. All required Verilog source files for implementation are invoked automatically. The IP can be directly synthesized, mapped and placed/routed in the Diamond design environment after the IP is generated. Note that default Diamond strategy (.sty) and default Diamond preference file (.lpf) are used. When using the .sbx approach, import the recommended strategy and preferences from \roject_dir>\dsi2dsi_eval\<instancename>\impl\lifmd\lse or \roject_dir>\dsi2dsi_eval\<instancename>\impl\lifmd\synplify directories. All required files are invoked automatically. The design can be directly synthesized, mapped, placed and routed (PAR) in the Diamond design environment after the cores are generated.

Push-button implementation of this top-level design with either Lattice Synthesis Engine (LSE) or Synopsys Synplify Pro RTL synthesis is supported via the Diamond project file <instancename>_top.ldf located in \cproject dir>\dsi2dsi eval\cinstancename>\impl\lifthd\csynthesis tool> directory.

To use the pre-built Diamond project file:

- 1. Choose File > Open > Project.
- In the Open Project dialog box browse to \<project_dir>\dsi2dsi_eval\<instancename>\impl\lifmd\<synthesis_tool>.
- 3. Select and open <instancename>_top.ldf. At this point, all of the files needed to support top-level synthesis and implementation are imported to the project.
- 4. Select the **Process** tab in the left-hand user interface window.
- 5. Implement the complete design via the standard Diamond user interface flow.

4.10. Hardware Evaluation

The MIPI DSI to DSI Display Interface Bridge IP supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP that operate in hardware for a limited period of time (approximately four hours) without requiring the request of an IP license. It may also be used to evaluate the core in hardware in user-defined designs.

4.10.1. Enabling Hardware Evaluation in Diamond

If using LSE, choose **Project > Active Strategy > LSE Settings**. If using Synplify Pro, choose **Project > Active Strategy > Translate Design Settings**. The hardware evaluation capability may be enabled or disabled in the **Strategy** dialog box. It is enabled by default.

4.11. Updating/Regenerating the IP

The Clarity Designer allows you to update the local IPs from the Lattice IP server. The updated IP can be used to regenerate the IP instance in the design. To change the parameters of the IP used in the design, the IP must also be regenerated.

4.11.1. Regenerating an IP in Clarity Designer

To regenerate IP in Clarity Designer:

1. In the **Builder** tab, right-click the IP instance to be regenerated and select **Config** in the menu as shown in Figure 4.12.

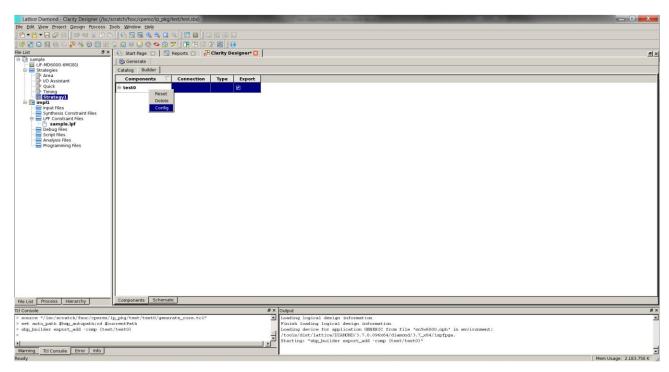


Figure 4.12. Regenerating IP in Clarity Designer

- 2. The IP Configuration user interface is displayed. Change the parameters as required and click the **Configure** button.
- 3. Click Generate in the toolbox. Clarity Designer regenerates all the IP instances which are reconfigured.

References

For more information about CrossLink devices, refer to the CrossLink Family Data Sheet (FPGA-DS-02007). For further information on interface standards, refer to:

- MIPI Alliance Specification for D-PHY, version 1.1, November 7, 2011, www.mipi.org
- MIPI Alliance Specification for Display Serial Interface, version 1.1, November 22, 2011, www.mipi.org

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Appendix A. Resource Utilization

Table A.1 lists resource utilization for Lattice CrossLink FPGAs using the 1:2 MIPI DSI Display Interface Bridge IP. The performance and utilization data target an LIF-MD6000-6MG81I device with -6 speed grade using Lattice Diamond 3.9 and Lattice Synthesis Engine. Performance may vary when using a different software version or targeting a different device density or speed grade within the CrossLink family. The values of f_{MAX} shown are based on byte clock. The Target f_{MAX} column shows target byte clock frequency for each configuration.

Table A.1. Resource Utilization

IP User-Configurable Parameters	Slices	LUTs	Registers	sysMEM EBRs	Actual f _{MAX} (MHz)	Target f _{MAX} (MHz)
Continuous Rx Clock Mode, 4-lane, gear 16	2257	2871	1789	8	99.33	74.25
Continuous Rx Clock Mode, 4-lane, gear 8	1492	1944	1175	4	115.221	112.5
Non-continuous Rx Clock Mode, 4-lane, gear 16	2099	2941	1804	8	94.438	74.25
Non-continuous Rx Clock Mode, 4-lane, gear 8	1563	2024	1190	4	113.520	112.5

Appendix B. What is Not Supported

The IP does not support the following features:

- Cycling Redundancy Check (CRC) and Error Correction Code (ECC) checking and generation
- Bidirectional Communication
- Low-Level Protocol Error reporting
- Protocol Watchdog Timers
- End of Transmit (EoT) processing

The 1:2 MIPI DSI Display Interface Bridge IP has the following design limitations:

- Minimum duration of MIPI D-PHY low-power states (tLPX) should be at least two times the byte clock period.
- Maximum byte clock frequency is 112.5 MHz, lower than maximum fabric speed due to heavy logic inside core
 modules
- Video VSYNC and HSYNC outputs solely depend on MIPI DSI VSYNC/HSYNC start and end short packets. For displays that require strict timing, the design needs to be modified to have additional control.

Appendix C. Initializing the DCS ROM

Display Command Set (DCS) initialization is used to configure the command registers of a DSI-compliant display. The bridge has an option to perform this in high-speed or in low-power mode.

In either DCS mode, the number of entries must correspond to the Number of DCS Words indicated in the user interface.

There should be no empty lines within the text file. Comments within the file are not supported.

Low-Power Mode

To initialize the DCS ROM in low-power mode, the input file must contain one byte of data in each line, in hex format. Figure C.1. shows the sample entries.

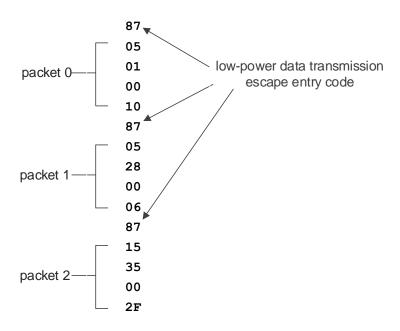


Figure C.1. DCS ROM for DCS Low-Power Mode

The 8'h87 byte indicates the start of a new packet. In this example, the DCS Controller breaks down the DCS words into 3 packets. The last entry should be the last valid byte. DCS Word Count in this example is 15.

High-Speed Mode

When the DCS ROM initialization is in high-speed mode, the interval between high-speed transmissions may be set through the DCS ROM Wait Time parameter. Multiple packets may be concatenated to reduce overhead of frequent switching between low-power state and high-speed mode.

The entries within the input file should be in the following format:

<trail bit indicator><DCS byte lane3><DCS byte lane2><DCS byte lane1><DCS byte lane0>

For each high-speed transmission, each lane must start with the SoT pattern 8'hB8, and the last word should be made up of complete trail bytes with the trail indicator bit set to 1. The design checks this trail bit indicator to determine the end of the high-speed transmission.

© 2016-2019 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Sample DCS for Gear 8

Figure C.2 shows the sample entries for the DCS initialization file of a 4-lane, gear 8 configuration.

Figure C.2. Sample DCS ROM for x4 Gear 8 DCS High-Speed Mode

In this example, an End-of-Transmit packet is sent after each DCS packets. The last word after each high-speed transmission must be made up completely of trail bits. The DCS Word Count in this example is 15.

Sample DCS for Gear 16

The byte order of DCS words for gear 16 configuration should follow the order described in Figure 1.1. Figure C.3 shows the sample entries for 4-lane gear 16 configuration:

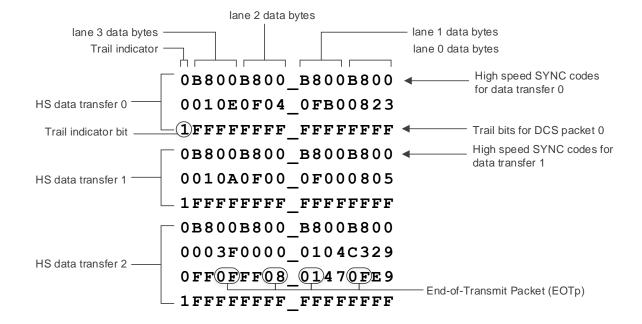


Figure C.3. Sample DCS ROM for x4 Gear 16 DCS High-Speed Mode

This example contains three DCS packets concatenated with EoTp at the end of each. The first word for each lane contains the MIPI D-PHY high-speed synchronization sequence 8'hB8, padded with zeros at the start. The zero padding is used for alignment purposes only. These may be removed, but the data bytes should be adjusted accordingly. The DCS Word Count in this example is 10.

Sample DCS ROM files are also available in the dsi_to_dsi_v<x>.<y>/samples folder in the IP installation directory.

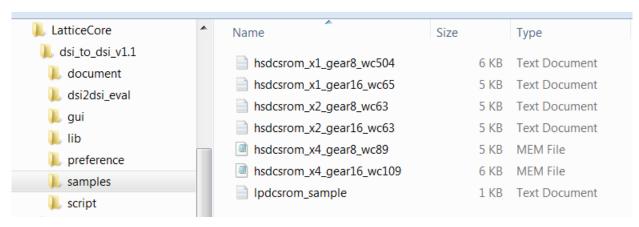


Figure C.4. Directory Containing the Sample DCS ROM Initialization Files

Revision History

Revision 1.4, IP Version 1.2, April 2019

Section	Change Summary
Introduction	Specified that this user guide can be used for IP design version 1.x.
IP Generation and Evaluation	In Licensing the IP, modified the instructions for requesting free license.
Revision History	Updated revision history table to new template.
All	Minor adjustments in style and formatting.

Revision 1.3, IP Version 1.2, January 2017

Section	Change Summary
Introduction	 Updated resource utilization data in Table 1.1. MIPI DSI to DSI Display Interface Bridge IP Quick Facts in Quick Facts section. Updated maximum data rate supported from 5.76 Gb/s to 6 Gb/s in Features section.
Parameter Settings	Added parameters for lane aligner, bypassing tINIT, bypassing DCS and separate enable of miscellaneous signals in Table 3.1. DSI to DSI Parameter Setting.
IP Generation and Evaluation	 Updated IP name in IP Catalog to dsi to dsi in Generating IP in Clarity Designer section. Updated Figure 4.1. Clarity Designer Window, Figure 4.4. Configuration Tab in IP User Interface, Figure 4.5. Initialization Tab in IP User Interface, Figure 4.6. Protocol Timing Parameters Tab in IP User Interface and Figure 4.8. DSI to DSI Bridge IP Directory Structure. Added Figure 4.7. Miscellaneous Tab in IP User Interface. Updated parameter for PLL, tINIT and DCS wait time in Table 4.2. Testbench Directives in Running Functional Simulation section. Updated Simulation Environment section to show DCS transmission of Tx channel 0 occurs before DCS transmission of Tx channel 1.
Appendix A. Resource Utilization	Updated resource utilization and maximum frequency data with Diamond 3.9 in Table A.1. Resource Utilization.
Appendix B. What is Not Supported	Updated Rx fabric clock limitation from 112 MHz to 112.5 MHz.

Revision 1.2, November 2016

Section	Change Summary
IP Generation and Evaluation	Updated Licensing the IP section – Added email address lic_admn@latticesemi.com for
	requesting free license.

Revision 1.1, July 2016

Section	Change Summary
All	Updated document number, the previous document number was IPUG120.
Introduction	 Updated Synplify Pro version in Table 1.1. MIPI DSI to DSI Display Interface Bridge IP Quick Facts in Quick Facts section. Updated Figure 1.1. Data Ordering for a Gear 16 x4 Configuration in Conventions section.
Parameter Settings	 Added configurability of Tx D-PHY parameters. Added parameters t_HS-PREPARE, t_HS-ZERO, t_CLK-PRE, and t_CLK-POST to Table 3.1. DSI to DSI Parameter Settings.
IP Generation and Evaluation	 Updated Figure 4.4. Configuration Tab in IP User Interface, Figure 4.5. Initialization Tab in IP User Interface, and Figure 4.6. Protocol Timing Parameters Tab in IP User Interface. Updated Running Functional Simulation section.
Appendix C. Initializing the DCS ROM	Updated content.

Revision 1.0, IP Version 1.0, May 2016

Section	Change Summary
All	Initial release

www.latticesemi.com