Lattice Synthesis Engine for
Diamond User Guide

s=LATTICE

April, 2019

Copyright

Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS 1S”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

Lattice Synthesis Engine for Diamond User Guide

http://www.latticesemi.com/legal

Type Conventions Used in This Document

Convention Meaning or Use

Bold

<Italic>
Ctrl+L

Couri er

()
{1}

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.

Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

Lattice Synthesis Engine for Diamond User Guide

Lattice Synthesis Engine for Diamond User Guide

= LATTICE

Contents

Lattice Synthesis Engine for Diamond User Guide

Design Flow Overview: User Interface 5
LSE Strategy Settings in Diamond 6
LSE Strategy Option Settings 7

Allow Duplicate Modules 9
Carry Chain Length 9
Command Line Options 9
Decode Unreachable States 9
Disable Distributed RAM 10
DSP Style 10

DSP Utilization 10

EBR Utilization 10

Fix Gated Clocks 10

Force GSR 11

FSM Encoding Style 11
Hardware Evaluation 11
Intermediate File Dump 12
Loop Limit 12

Macro Search Path 12

Max Fanout Limit 12

Memory Initial Value File Search Path 13
MUX Style 13

Number of Critical Paths 13
Optimization Goal 13
Propagate Constants 14

RAM Style 15

Remove Duplicate Registers 15
Remove LOC Properties 15
Resolved Mixed Drivers 15
Resource Sharing 16

ROM Style 16

Target Frequency 17

Use Carry Chain 17

Lattice Synthesis Engine for Diamond User Guide

CONTENTS

Use IO Insertion 17

Use IO Registers 17

Use LPF Created from SDC in Project 17
VHDL 2008 18

Design Flow Overview: Command Line 18

Preparing the Input 22
Constraint Files 23

Specifying Constraints and Attributes 23
Defining Synthesis Constraints Using LDC Editor 24
Defining Synthesis Constraints Using Text Editor 24
Defining Clocks 25
Defining Generated Clocks 26
Defining Clock Groups 28
Setting Input Delays 29
Setting Output Delays 30
Defining Minimum Delay Paths 31
Defining Maximum Delay Paths 31
Setting Up Attributes 34

black_box_pad_pin 35
full_case 36

GSR 36

loc 37

parallel_case 38
syn_black_box 39
syn_encoding 40
syn_force_pads 44
syn_hier 46
syn_insert_pad 46
syn_keep 49
syn_maxfan 51
syn_multstyle 51
syn_noprune 54
syn_pipeline 56
syn_preserve 58
syn_ramstyle 60
syn_replicate 62
syn_romstyle 64
syn_sristyle 65
syn_sharing 68
syn_state_machine 70
syn_use_carry_chain 74
syn_useenables 75
syn_useioff 77
translate_off/translate_on 77

Inferring Block Primitives 78

Inferring Memory 78
Inferring RAM 79
Inferring RAM with Synchronous Read 81
Inferring Dual-Port RAM 83
Inferring ROM 86
Initializing Inferred RAM 87
Creating Memory Initialization File 91

Inferring Lattice DSP Blocks Using Behavioral HDL 92

Lattice Synthesis Engine for Diamond User Guide 2

CONTENTS

MULT9X9 92
MULT18X18 92
MULT36X36 92
MULTADDSUB 95
MULTADDSUBSUM 98
MULTACC 103
Optimizing LSE for Area and Speed 105
Specifying Optimization Options 107
Preserving Objects from Optimization 107
Setting Fanout Limits 107
Sharing Resources 108
Inserting I/Os 108
Optimizing State Machines 108
Working with Gated Clocks 108

Analyzing the Synthesis Report 108
Viewing Logs and Reports 108
Cross-Probing from Reports to Schematics 110
Navigating Messages/Warnings 110
Analyzing Using Netlist Analyzer 112
Simulating the Synthesis Output 114

Designing with Modules/IP 116
Using IPexpress Modules 117
Using Clarity Modules 118
Creating Your Own Black Box Modules 118
Designing with Lattice Library Primitives 120

Revision History 120

Index 121

Lattice Synthesis Engine for Diamond User Guide 3

= LATTICE

Lattice Synthesis Engine for
Diamond User Guide

Lattice Synthesis Engine (LSE) is the fully-integrated synthesis tool packaged
with Lattice Diamond software, custom-built for many Lattice products.
Depending on the design, LSE can create better resource utilization and
faster timing than other synthesis tools. LSE complements the suite of tools
available in the Lattice Diamond software and provides complete and
comprehensive FPGA/CPLD synthesis solutions.

LSE offers the following advantages:
It's the built-in Lattice synthesis tool optimized for use with Lattice devices.
Provides granular control through tool options.

Supports industry standard Verilog (Verilog 2001 and before) and VHDL
(VHDL 2008 and before) including mixed language, along with industry
standard attributes and SDC constraints. Enables the user to easily
synthesize existing designs using LSE.

Note

LSE follows the IEEE standards listed below.
1076-1987 — IEEE Standard VHDL Language Reference Manual
1076-1993 — IEEE Standard VHDL Language Reference Manual
1076-2008 — IEEE Standard VHDL Language Reference Manual

1364-1995 — IEEE Standard Hardware Description Language Based on the
Verilog(R) Hardware

1364-2001 — IEEE Standard Verilog Hardware Description Language
1364-2005 — IEEE Standard for Verilog Hardware Description Language

Only synthesis constructs described by these standards are supported.

Provides GUI tool support for constraint entry (LDC Editor) and schematic
netlist viewing and analysis (Netlist Analyzer), reducing the time required
for design entry and analysis.

Lattice Synthesis Engine for Diamond User Guide 4

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Offers a choice of optimization goals: Area, Balanced, and Timing
enabling the user to highlight which design goals should be emphasized.

This document describes the basic features of LSE. Sections include design
flow overviews, preparing HDL source files, setting constraints, inferring block
primitives, setting optimization options, analyzing the synthesis report, using
Netlist Analyzer, analyzing timing, simulating, designing with modules, and
designing with intellectual property (IP).

Design Flow Overview: User Interface

LSE is integrated into the Lattice Diamond software. To specify LSE as the
synthesis tool:

1. Choose Project > Active Implementation > Select Synthesis Tool.

The Project Properties dialog box opens with the active implementation
selected, as shown in Figure 1.

Figure 1: Selecting LSE as Synthesis Tool in Lattice Diamond Software

[File Edit View [Project] Design Process Tools Window Help
H-EF-H Property Pages BARAQUE EE EEEDQ
2 [G B[Device. } 5 @

Process

ge Promotion...

4 2 Synthesi
= Latti Active Strategy 3

-

4 & Map De: Active Implementation ¥ Set Top-Level Unit...
I [~
b Select Synthesis Tool
2 Verilog Simulation File g B L/ Module Name:
4 [Process Reports

|| & VHDL Simulatien File

= = 5
Project Properties ’ - M 1
— —
4
I E:““L-EXE’"IU‘E-xc|3| Name: flow_example_xo3l Category: Implementation
a gaf Location: C:/flscc/diamond/3. 7_x64/examples /SimpleDesion_%03L flow_example_xo3l
D top.w
B toplpf Name Value s
FZE Area Top-Level Unit ‘
[170 Assistant |
ER Quick Synthesis Tool [Latﬁce LSE A ”
B Timing HDL Parameters b nplfyFro |=
Strategyl
Verilog Directives
|
Key Data File ‘
I VHDL Library Name work
EPmres e Pl o
ll

2. Inthe dialog box, double-click the Synthesis Tool row in the Value column.
A menu drops down.
Choose Lattice LSE.

4. Click OK.

5. Start the Synthesize Design process. In the Process View (Figure 2), do
one of the following:

Lattice Synthesis Engine for Diamond User Guide 5

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Select Synthesize Design in the Process view, and choose Process
> Run.

Right-click the Synthesize Design process and choose Run.

Double-click the Synthesize Design process.

Figure 2: Diamond Software Process View

Process 5 x

4 |5 Synthesize Design

% Lattice Synthesis Engine
4 2 Map Design

B Map Trace
B Verilog Simulation File
[C] ¥ VHDL Simulation File
4 2 Place & Route Design

[T] ¥ Place & Route Trace

[[1 ¥ VO Timing Analysis
4 o Export Files
[C] & 18IS Model

= Verilog Simulation File
| & VHDL Simulation File
1 : Bitstream File

PROM File

t

LSE Strategy Settings in Diamond

LSE strategies provide a unified view of all the options related to
synthesis. LSE strategy options are listed in the LSE Strategy dialog box.
Open the dialog box by double-clicking a strategy name in the File List
view, as shown in Figure 3.

Lattice Synthesis Engine for Diamond User Guide 6

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE Design Flow Overview: User Interface

Figure 3: Opening the LSE Strategy Dialog Box

f # Lattice Diamond - Reports -
A-@-dFa wa qaQqa EE EEEE
YECEBEE S CEEGALOcB Y EEEEHE @
SRS 2. gies - Strategyl [Eea==)
a @ flow_example_xo3l
3 LCMXO3L-2100C-5BG256C o
4 Strategies Desciion-
@ Area Process l
Fg’ 1D Assrtant 4 77 Synthesize Design
EF Quick Synplify Pro Display catalog: |Al v] | Default]
\c:[;g ;LT:;I E;:Usiﬂﬂ . Name Type Value -
4 [flow_example xo31 ranslote Design Allow Duplicate Modules T/F False
a Input Files . Wap Design Carry Chain !_ength MNum a
Jﬁ top.v Msp Trace ;::;a‘nd Line Options Iext =
Synthesis Constraint Files : tyle ist |=
4 W L}PIF Constraint Files = Ia(:li:?;iss"?rZCe DSP Utilization Num 100 |7
[toppf 10 Timing Analysis Decode Unreachable States T/F False ‘
Debug Files ing Simulation Disable Distributed RAM T/F False
Seript Files Bitstream EBR Utilization Num 100
. Analysis Files FSM Encoding Style List Auto i
Programming Files Fix Gated Clocks T/F True
Force GSR List Auto
Hardware Evaluation List Enable
Intermediate File Dump T/F False
Loop Limit Num 1950
MUX Style List Auto
Macro Search Path Dir
Max Fanout Limit Num 1000 -
File List | Process |
Starting: "prj_project open "C:/’]:)

For information about an option, select it. A brief description appears at the
bottom of the dialog box. Press F1 to open this guide and see the full
description in the Diamond online help.

For more information on optimizing a strategy for area or timing, see
“Optimizing LSE for Area and Speed” on page 105.

LSE Strategy Option Settings

Table 1 lists LSE strategy option settings available in the Diamond Strategy
Setting dialog box.

Table 1: Strategy Option Settings

Name Type Value Targeted Switch

Allow Duplicate Modules True/False False(Default) -allow_duplicate_modules
Carry Chain Length Integer 0 (not limited) (Default) -carry_chain_length
Command line Options Text Text (flags each preceded by *-)
DSP Style List DSP(Default) -use_dsp

DSP Utilization Num 100(Default) -dsp_utilization

Lattice Synthesis Engine for Diamond User Guide 7

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Design Flow Overview: User Interface

Table 1: Strategy Option Settings (Continued)

Name Type Value Targeted Switch
Decode Unreachable True/False False (Default) -decode_unreachable_states
States
Disable Distributed RAM True/False False (Default)
EBR Utilization Float 100 (Default, in %) -bram_utilization
FSM Encoding Style String Binary (Default) | One-Hot | -fsm_encoding_style
Gray
Fix Gated Clocks True/False True (Default) -fix_gated_clocks
Force GSR String Yes | No -force_gsr
| Auto (Default)
Hardware Evaluation List Enable (Default) | Disable -dt
Intermediate File Dump True/False False (Default) -ifd
Loop Limit Number 1950 (Default) -loop_limit
Mux Style String Auto (Default) | PFU Mux | -mux_style
L6Mux Single | L6Mux
Multiple
Macro Search Path Text -p
Max Fanout Limit Integer 1000 (Default) -max_fanout
Memory Initial Value File Text -p
Search Path
Number of Critical Paths Integer 3 (Default) -twr_paths
Optimization Goal String Area | Timing | Balanced -optimization_goal
Use LPF Created from True/False True (Default) | False -Ipf
SDC in Project
Propagate Constants True/False True (Default) -propagate_constants
Ram Style String Auto (Default) | Distributed -ramstyle
| Block_ RAM | Registers
Rom Style String Auto (Default) | ebr | Logic -romstyle
Remove Duplicate True/False True (Default) - remove_duplicate_regs
Registers
Remove LOC properties List Off (Default) | On -r
Resolve Mixed Drivers True/False False (Default) -resolve_mixed_drivers
Resource Sharing True/False True (Default) -resource_sharing
Target Frequency Float 200 (Default, in MHz) -frequency
Use Carry Chain True/False True (Default) -use_carry_chain
Use 10 Insertion True/False True (Default) -use_io_insertion

Lattice Synthesis Engine for Diamond User Guide

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Table 1: Strategy Option Settings (Continued)

Name Type Value Targeted Switch
Use IO Registers True/False True (Default) -use_io_reg
VHDL 2008 True/False False (Default) -vh2008

The following alphabetical list describes all of the strategy options associated
with the LSE synthesis process.

Allow Duplicate Modules

When set to True, allows the design to keep duplicate modules. LSE issues a
warning and uses the last definition of the module. Any previous definitions
are ignored. The default is False, which causes an error if there are duplicate
modules.

This option is equivalent to the “-allow_duplicate_modules” option in the
SYNTHESIS command.

Carry Chain Length

Specifies the maximum number of carry chain cells (CCUSs) that get mapped
to a single carry chain. Default is 0, which is interpreted as infinite length.

This option is equivalent to the “-carry_chain_length” option in the
SYNTHESIS command.

Command Line Options
Enables additional command line options for the LSE Synthesis process.

To enter a command line option:

1. Inthe Strategy dialog box, select LSE in the Process list.

2. Double-click the Value column for the Command line Options option.
3. Type in the option and its value (if any) in the text box.

4. Click Apply.

For detailed description on LSE command line options, see “Design Flow
Overview: Command Line” on page 18.

Decode Unreachable States

When set to True, synthesis infers safe recovery logic from unreachable
states in all the state machines of the design.

Lattice Synthesis Engine for Diamond User Guide 9

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

This option is equivalent to the “-decode_unreachable_states” option in the
SYNTHESIS command.

Disable Distributed RAM

When set to True, inferred memory will not use the distributed RAM of the
PFUs.

DSP Style

Specifies how DSP modules should be implemented: with DSP resources or
with Logic (LUTSs).

This option is equivalent to the “-use_dsp” option in the SYNTHESIS
command.

DSP Utilization
Specifies the percentage of DSP sites that LSE should try to use.

This option is equivalent to the “-dsp_utilization” option in the SYNTHESIS
command.

EBR Utilization

Specifies EBR utilization target setting in percent of total vacant sites. LSE will
honor the setting and do the resource computation accordingly. Default is 100
(in percentage).

This option is equivalent to the “-bram_utilization” option in the SYNTHESIS
command.

Fix Gated Clocks

When set to True, LSE changes standard gated clocks to forms more
effective for FPGAs. Clocks are gated with AND or OR gates to conserve
power, but in FPGAs such clocks cause skew and prevent global clock
resources from being used. The Fix Gated Clocks option is ignored if the
Optimization Goal option is set to Area. See “Optimization Goal” on page 13.

The gated clocks must be specified in the .Idc file with create_clock
constraints. For more information about writing the constraints, see the
following online help topics in the Diamond software:

User Guides > Applying Design Constraints > Using SDC
Constraints > Applying Lattice Synthesis Engine Constraints >
Defining Clocks Using LDC Editor.

Lattice Synthesis Engine for Diamond User Guide 10

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Reference Guides > Constraints Reference Guide > Lattice Synthesis
Engine (LSE) Constraints > Synopsys Desigh Constraints (SDC) >
create_clock.

All inputs of the gating logic must be driven by primary inputs and the gating
logic must be decomposable. Instantiated primitives and black boxes are not
affected. Converted clocks and the associated registers are reported in the
synthesis.log file.

Force GSR

Enables (True) or disables (False) forced use of the global set/reset routing
resources. When the value is Auto, the synthesis tool decides whether to use
the global set/reset resources.

This option is equivalent to the “-force_gsr” option in the SYNTHESIS
command.

FSM Encoding Style

Specifies the encoding style to use with the design.

This option is equivalent to the “-fsm_encoding_style” option in the
SYNTHESIS command. Valid options are auto, one-hot, gray, and binary. The
default value is auto, meaning that the tool looks for the best implementation.

Note

The encoding type “gray” only works with less than or equal to four machine states.
When the number of machine states is large than four, LSE will use other encoding
styles and issue the following warning message:

WARNING - Gray encoding is not supported for state machines with more than
four states.

Hardware Evaluation

Enables or disables the ability to temporarily test IP in a device without an IP
license. If enabled, a timer is added to the design that allows unlicensed IP to
function for about 4 hours in a device. If disabled, you cannot generate a
bitstream if there are any unlicensed IP in the design.

You might want to disable this option to refine your design while waiting for the
license. You will not be able to generate a bitstream, but you will be able to
see how resources are used (without the timer) and close timing. When you
get the license, you can then generate the bitstream.

Regardless of how this option is set, if there are any unlicensed IP in the
design, some features of Diamond, such as gate level simulation and EPIC,
are blocked.

This option is equivalent to the “-dt” option in the SYNTHESIS command.

Lattice Synthesis Engine for Diamond User Guide 11

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Intermediate File Dump

If you set this to True, LSE will produce intermediate encrypted Verilog files. If
you supply Lattice with these files, they can be decrypted and analyzed for
problems. This option is good for analyzing simulation issues.

This option is equivalent to the “-ifd” option in the SYNTHESIS command.

Loop Limit

Specifies the maximum number of iterations of “for” and “while” loops in the
source code. The limit is applied when the loop index is a variable, not when it
is a constant. The higher the loop_limit, the longer the run time. The default
value is 1950. Setting a higher value may cause stack overflow during some
of the optimizations during synthesis. A lower value will be ignored and the
default used instead.

This option is equivalent to the “-loop_limit” option in the SYNTHESIS
command.

Macro Search Path

Allows you to specify a path (or paths) to locate physical macro files used in a
given design. The software will add the specified paths to the list of directories
to search when resolving file references. The option can also be used for
indicating the directories containing include files that are specified in the RTL
design files.

You don't need to specify a search path if the necessary .ngo or .nmc file is in
the directory containing the top-level .ngo file or if the FILE attribute in the
design gives a complete path name for the file (instead of a relative path
name).

The software follows the following order to search for .ngo files:

1. Current implementation directory

2. Project directory

3. Directories where the LPC or IPX source files reside

4. User-specified macro search paths

To specify a macro search path, double-click the Value box, and directly enter
the path or click the ... button to browse for one or more paths.

This option is equivalent to the “-p” option in the SYNTHESIS command.

Max Fanout Limit

Specifies the maximum fanout setting. LSE will make sure that any net in the
design is not exceeding this limit. Default is 1000 fanouts. Does not apply to
clock or reset network.

Lattice Synthesis Engine for Diamond User Guide 12

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

This option is equivalent to the “-max_fanout” option in the SYNTHESIS
command.

Memory Initial Value File Search Path

Allows you to specify a path (or paths) to locate memory initialization file
(.mem) used in a given design. The software will add the specified path(s) to
the list of directories to search when resolving file references.

To specify a search path, double-click the Value box, and directly enter the
path or click the ... button to browse for one or more paths.

This option is equivalent to the “-p” option in the SYNTHESIS command.

MUX Style

Specifies the MUX style setting, which controls the way the macrogenerator
implements the multiplexer macros.
Valid options are:

Auto (default) - LSE looks for the best implementation for each considered
macro.

L6Mux Multiple - Generates multiplexers allowing for multiple L6Mux
resources.

L6Mux Single - Generates multiplexers allowing for the use of a single
L6Mux resource.

PFU Mux - Generates multiplexers using only PFUMux and LUT4
resources.

Note

L6Mux resources will only be inferred when driven by four LUT4 and two PFUMux
devices.

This option is equivalent to the “-mux_style” option in the SYNTHESIS
command.

Number of Critical Paths
Specifies the number of critical timing paths to be reported in the timing report.

This option is equivalent to the “-twr_paths” option in the SYNTHESIS
command.

Optimization Goal
Enables LSE to optimize the design for area, speed, or balanced.

Lattice Synthesis Engine for Diamond User Guide 13

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Valid options are:

Area — Optimizes the design for area by reducing the total amount of logic
used for design implementation.

When Optimization Goal is set to Area, LSE honors the LDC constraints if
there are any. If Use IO Registers is set to Auto, LSE packs input and
output registers into I/O pad cells. See “Use 10 Registers” on page 17..

Note

With the Area setting, LSE also ignores all SDC constraints. These constraints are
not used by LSE and are not added to an .Ipf file for use by the later stages of
implementation.

Timing — Optimizes the design for speed by reducing the levels of logic.

When Optimization Goal is set to Timing and a create_clock constraint is
available in an .Idc file, LSE ignores the Target Frequency setting and
uses the value from the create_clock constraint instead.

If there are multiple clocks, and if not all the clocks use create_clock
constraint, then LSE will assign 200 MHz constraint on the remaining
clocks in Timing Mode.

If Use IO Registers is set to Auto, LSE does not pack input and output
registers into I/O pad cells.

Balanced — Optimizes the design for both area and timing.

When Optimization Goal is set to Balanced, all timing driven optimizations
based on static timing analysis will run depending on LDC constraints. If
Use |0 Registers is set to Auto, LSE does not pack input and output
registers into I/O pad cells.

The default setting depends on the device type. Smaller devices, such as
MachXO and Platform Manager, default to Balanced. Larger devices—
ECP5U, LatticeECP2, LatticeECP3, and LatticeXP2—default to Timing.

For more information, see “Optimizing LSE for Area and Speed” on page 568.

This option is equivalent to the “-optimization_goal” option in the SYNTHESIS
command.

Propagate Constants

When set to True (default), enables constant propagation to reduce area,
where possible. LSE will then eliminate the logic used when constant inputs to
logic cause their outputs to be constant.

You can turn off the operation by setting this option to False.

This option is equivalent to the “-propagate_constants” option in the
SYNTHESIS command.

Lattice Synthesis Engine for Diamond User Guide 14

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

RAM Style

Sets the type of random access memory globally to distributed, embedded
block RAM, or registers.

The default is Auto which attempts to determine the best implementation, that
is, the synthesis tool will map to technology RAM resources (EBR/Distributed)
based on the resource availability.

This option will apply a syn_ramstyle attribute globally in the source to a
module or to a RAM instance. To turn off RAM inference, set its value to
Registers.

Registers — Causes an inferred RAM to be mapped to registers (flip-flops
and logic) rather than the technology-specific RAM resources.

Distributed — Causes the RAM to be implemented using the distributed
RAM or PFU resources.

Block_RAM — Causes the RAM to be implemented using the dedicated
RAM resources. If your RAM resources are limited, for whatever reason,
you can map additional RAMs to registers instead of the dedicated or
distributed RAM resources using this attribute.

This option is equivalent to the “-ramstyle” option in the SYNTHESIS
command.

Remove Duplicate Registers
Specifies the removal of duplicate registers.

When set to True (default), LSE removes a register if it is identical to another
register. If two registers generate the same logic, the second one will be
deleted and the first one will be made to fan out to the second one's
destinations. LSE will not remove duplicate registers if this option is set to
False.

This option is equivalent to the “-remove_duplicate_regs” option in the
SYNTHESIS command.

Remove LOC Properties

Setting this to On removes LOC properties in the synthesized design before
building the Native Generic Database (.ngd) file.

Resolved Mixed Drivers

If a net is driven by a VCC or GND and active drivers, setting this option to
True connects the net to the VCC or GND driver.

Lattice Synthesis Engine for Diamond User Guide 15

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Resource Sharing

When this is set to True (default), the synthesis tool uses resource sharing
techniques to optimize area.

With resource sharing, synthesis uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource sharing,
but at the expense of increased area.

This option is equivalent to the “-resource_sharing” option in the SYNTHESIS
command.

ROM Style

Allows you to globally implement ROM architectures using dedicated,
distributed ROM, or a combination of the two (Auto).

This applies the syn_romstyle attribute globally to the design by adding the
attribute to the module or entity. You can also specify this attribute on a single
module or ROM instance.

Specifying a syn_romstyle attribute globally or on a module or ROM instance
with a value of:

Auto (default) — Allows the synthesis tool to choose the best
implementation to meet the design requirements for speed, size, and so
on.

Logic — Causes the ROM to be implemented using the distributed ROM or
PFU resources. Specifically, the logic value will implement ROM to logic
(LUT4) or ROM technology primitives (such as ROM16X1, ROM32X1,
ROM®64X1, and so on).

EBR — Causes the ROM to be mapped to dedicated EBR block resources.
ROM address or data should be registered to map it to an EBR block. If
your ROM resources are limited, for whatever reason, you can map
additional ROM to registers instead of the dedicated or distributed RAM
resources using this attribute.

Infer ROM architectures using a CASE statement in your code. For the
synthesis tool to implement a ROM, at least half of the available addresses in
the CASE statement must be assigned a value. For example, consider a
ROM with six address bits (64 unique addresses). The CASE statement for
this ROM must specify values for at least 32 of the available addresses.

This option is equivalent to the “-romstyle” option in the SYNTHESIS
command.

Lattice Synthesis Engine for Diamond User Guide 16

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Target Frequency

Specifies the target frequency setting. This frequency applies to all the clocks
in the design. If there are some clocks defined in an .Idc file, the remaining
clocks will get this frequency setting. When a create_clock constraint is
available in an .Idc file, LSE ignores the Target Frequency setting for that
clock and uses the value from the create_clock constraint instead.

This option is equivalent to the “-frequency” option in the SYNTHESIS
command.

Use Carry Chain

Turns on (True) or off (False) carry chain implementation for adders. Default is
True.

This option is equivalent to the “-use_carry_chain” option in the SYNTHESIS
command.

Use 10 Insertion
When set to True, LSE uses IO insertion and GSR.

When set to False, LSE will generate an NGO netlist and an NGD file is not
created.

This option is equivalent to the “-use_io_insertion” option in the SYNTHESIS
command.

See “Creating Your Own Black Box Modules” on page 118 for more
information.

Use 10 Registers

When True, this option forces the synthesis tool to pack all input and output
registers into 1/O pad cells based on the timing requirements for the target
device family. Auto, the default setting, enables this register packing if
Optimization Goal is set to Area. If Optimization Goal is Timing or Balanced,
Auto disables register packing.

This option is equivalent to the “-use_io_reg” option in the SYNTHESIS
command.

You can also control packing on individual registers and ports. See
“syn_useioff” on page 77.

Use LPF Created from SDC in Project

LSE creates a preference (.Ipf) file based on the Synopsys Design Constraint
(.sdc) file. (When you use LSE, SDC constraints must be in a Lattice Design
Constraints (.Idc) file.) When this option is set to True, the synthesis
constraints are also applied to the Map Design stage of implementation.

Lattice Synthesis Engine for Diamond User Guide 17

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

VHDL 2008

When this is set to True, VHDL 2008 is selected as the VHDL standard for the
project.

Design Flow Overview: Command Line

LSE can be run from the command line. Table 2 describes the command
project options available to run LSE. Examples are provided following the
table.

The command is SYNTHESIS. The ‘- option is available to simplify the
command line. A project file containing all the user’s desired arguments can
be constructed as a text file, then passed to LSE using the —f switch. For
example:

synthesis -f synth.synproj

For more information about setting up the Diamond command line
environment, in the Diamond online help, refer to Reference Manuals >
Command Line Reference Guide > Command Line Basics > Setting Up
the Environment to Run Command Line.

Note

Running LSE from the command line requires an environment variable TEMP be set.
Default Cygwin .bashrc unsets this variable, so user must add the following back into
their .bashrc:

export TEMP=/temp

Table 2: LSE Project Options

Required Parameter
Options

Optional -S
Optional -t

Optional -loop_limit
Optional -f
Required -a
Optional -d
Optional -p
Optional -top

Arguments Description Default
<grade> Target grade

<package> Target Package

<value> Iteration limits
<argument_filename> Argument file

“<Supported_Device_Family>" Target Architecture -

<device> Target Device -

<searchpath>} Option search path. \.

<top_module_name> Top-level module -
name

Lattice Synthesis Engine for Diamond User Guide 18

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Table 2: LSE Project Options (Continued)

Required Parameter Arguments Description Default
Options

Required -ver {<verilog_file.v>} Name of input Verilog

(Only for file
source of

this type)

(Multiple

arguments)

Optional -lib <libname> Include library -

(Multiple
arguments)

Required -vhd {<vhdl_file.vhd>} Name of input VHDL -

(Only for file
source of
this type)

(Multiple
arguments)

Optional -ngd <ngd_file.ngd> Name of output ngd <top_module_name>.
file, option available ngd
only for Diamond
devices

Optional -ngo {<ngo_file.ngo>} Name of output ngo <top_module_name>.
file, option available ngo
only for Diamond
devices

Optional -force_gsr {auto | yes | no} GSR insertion, option auto
available only for
Diamond devices

Optional -ramstyle {'auto | distributed | block_ram | RAM style auto
registers }

Optional -romstyle {'auto | ebr | logic } ROM style auto

Optional -output_edif {<filename.edf>} Create EDIF output file <top_module_name>.
edf

Optional -output_hdl {<filename>} Create HDL output file <top_module_name>
_prim.v

Optional -sdc {<sdc_file.sdc>} Input SDC file -

Optional -Ipf {true | false} Generate output Ipf file False

with name:

<top_module_name>_|
se.lpf, option available
only for Diamond
devices

Optional -logfile {<synthesis_logfile>} Name of output log file synthesis.log

Lattice Synthesis Engine for Diamond User Guide 19

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Design Flow Overview: Command Line

Table 2: LSE Project Options (Continued)

Required

Options

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional
Optional

Optional

Optional

Optional

Optional
Optional
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Parameter

-frequency

-max_fanout

-bram_utilization

-fsm_encoding_style

-mux_style

-use_carry_chain

-carry_chain_length

-use_io_insertion
-use_io_reg

-resource_sharing

-propagate_constants

Arguments

{target_frequency }

{max_fanout }

{bram_utilization}

{binary | one-hot | gray}

{auto | pfu_mux |
L6Mux_single |
L6Mux_multiple }

{011}

{ chain_length }

{0[1}
{0]1}
{01}

{01}

-remove_duplicate_regs { 0|1}

-ip_dir
-corename
-ertl_file

-optimization_goal

-hdl_param

-twr_paths

-ifd

-cbn

{location of IP installation}
{name of IP core}
{name of encrypted RTL file}

{area | timing | balanced }

{<name value>}

{Num_paths}

Description

Target frequency for
timing optimization, in
MHz

Maximum driver fanout

Block RAM utilization
factor, percent

Finite State Machine
encoding style

Mux implementation
style

Use carry-chain
resources

Carry chain maximum

length
Insert I/O primitives

Use I/O registers

Allow resource sharing

optimization

Preserve registers with

constant inputs

Allow removal of
duplicate registers

Default

200

1000

100

binary

auto

1 (use)

0 (no limit)

1 (insert)
1 (use)

1 (allow)

1 (allow)

1 (allow)

Location of IP directory \.

Name of IP core

Name of encrypted file

Global optimization
strategy

To pass parameters/

generics to design top

module
Help

Number of TRACE
critical paths

Dump intermediate
files

Disable h/w timer

Consistent Bus
Naming

area

Lattice Synthesis Engine for Diamond User Guide

20

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Table 2: LSE Project Options (Continued)

Required Parameter Arguments Description Default
Options

Optional -fix_gated_clocks {0|1} Fix Gated Clocks 1
Optional -vh2008 - Compile using VHDL

2008 libraries

Optional -key (key dat) Location of the key file
used for decryption

Examples Following are a few examples of SYNTHESIS command lines
and a description of what each does. Command lines only supports MachXO,
MachX02, MachXO3L, and MachXO3LF devices.

Example 1 The following command is a simple example with Verilog and
VHDL file inputs.

synthesis -a MachX2 -d LCMXO2- 2000HC -t TQFP144 -s 5 -top
t op_nodul e_nane -vhd f1.vhd f2.vhd f3.vhd -ver filel.v file2.v
-ngd file.ngd

Example 2 The following example illustrates the usage of a search path -p
option for IP .ngo files or include files.

synthesis -a MachXQ2 -d LCVXQ2- 2000HC -p D:/ny_project/tnp -top
t op_nodul e_nanme -vhd f1.vhd f2.vhd f3.vhd -ver filel.v file2.v
-ngd file.ngd

Example 3 The following example shows VHDL library usage with the -lib
option.

synthesis -a MachX®2 -d LCMXO2-2000HC -top top -1ib work
-vhd top.vhd -lib ny_lib -vhd ff.vhd -ngd file.ngd

Example 4 The following example illustrates the usage of both the -
hdl_param and -optimization_goal options.

synthesis -a MachX2 -d LCMXQO2- 2000HC - hdl _param wi dth 7 depth
5 -optimzation_goal timng -ver filel.v file2.v -ngd file.ngd

Example 5 Thisis an example of a command line with encrypted RTL for IP
designs.

synthesis -a MachXQ2 -d LCMXO2- 2000HC - corenane fil e_datapath -
ertl _file source/file_datapath_enc.vhd -ip_dir encryption -ngd
file.ngd

Example 6 This example shows miscellaneous commands for illustrating
various syntax structures.

synthesis -vhd source/ora.vhd source/top.vhdl source/
anda_vhd. vhd

synthesis -ver source/anda.v source/v_top.v

synthesis -a MachXOQ2 -d LCMXO2- 2000HC -force_gsr auto -ver
top.v mid.v primv -vhd count.vhd

Lattice Synthesis Engine for Diamond User Guide 21

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Preparing the Input

synthesis -lib ..\include_lib.v -ngd top.ngd -Ipf top.lpf -sdc
top. |l dc

Example 7 The following example illustrates the usage of a synthesis
project file with command -f . The synthesis project file contains strategy
setting, Diamond translates strategy options into command line options.

synthesis -f D:/ny_project/ny.synproj

Figure 4 shows the contents of the synthesis project synproj.

Figure 4: Example synproj Project

File Edit Format View Help
-a "Machxo2"

-d LCMx02-1200HC

-t TQFP144

-5 5

-frequency 200
-optimization_goal Balanced
-bram_utilization 100
-ramstyle Auto

-romstyle auto
-use_carry_chain 1
-carry_chain_length 0
-force_gsr Auto
-resource_sharing 1
-propagate_constants 1
-remove_duplicate_regs 1
-mux_style Auto
-max_fanout 1000
-fsm_encoding_style Auto
-twr_paths 3
-fix_gated_clocks 1
-loop_Timit 1950

For more information about running Synthesis from the command line, in the
Diamond software online help, refer to Reference Guides > Command Line
Reference Guide > Command Line Tool Usage > Running SYNTHESIS
from the Command Line.

Preparing the Input

You can create an HDL source file in Diamond Source Editor.

To create an HDL source in Source Editor:

1. From the Diamond main window, choose File > New > File. In the New
File dialog, choose Verilog Files or VHDL Files from the Source Files list.

2. Inthe New File dialog, fill in the File name and Location, choose the file
extension in the Ext. field.

3. Check Add to Implementation option if you want to add this source to
the current project.

4. Click New.

Lattice Synthesis Engine for Diamond User Guide 22

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

5. Inthe pop up Source Editor, you can enter the text. When finished editing,
click File > Save from the Diamond main window.

Note

You can detach Source Editor from the Diamond main window by clicking the Detach
Tool icon on the upper right corner of Source Editor. If you want to attach Source Editor
back to the main window, click the Attach Window icon on the upper right corner of
Source Editor window, or choose Window > Attach Window from Source Editor.

For more information, in the Diamond software online help, refer to User
Guides > Entering the Design > HDL Design Entry.

Constraint Files

LSE enables you to set Synopsys® Design Constraints (SDC), which are
directly interpreted by the synthesis engine. When you use LSE, these SDC
constraints are saved to a Lattice Design Constraints file (.Idc). You can
create several .Idc files and select one of them to serve as the active
synthesis constraint file for an implementation. You can also cause a
synthesis preference file to be generated when the design is synthesized. The
synthesis preferences can then be merged with the logical preference file

(-Ipf).

Lattice Design Constraints (LDC) Editor, as well as Source Editor, are
available for creating and editing .Idc files. LDC Editor provides a spreadsheet
style user interface that enables you to quickly create and edit Synopsys
Design Constraints.

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints.

Specifying Constraints and Attributes

Constraints on specific design elements are provided to LSE using the SDC
constraint language. The constraints reside in the .Idc file, which can be
accessed in the Diamond Synthesis Constraint Files folder in the File List
pane.

In Diamond, a single constraint file can be active at any one time. The active
file is used by synthesis when it is run. There can be multiple .Idc files, but
only one can be active.

The .Idc file can be opened in the LDC Editor (GUI), or the text editor.

To open the LDC Editor, double-click the .Idc file in the File List pane.

Right-click the .Idc file in the File List pane and in the dropdown choose
Open With. The Open With dialog box allows you to choose between the
LDC Editor or the Text Editor.

Lattice Synthesis Engine for Diamond User Guide 23

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints >
Applying Lattice Synthesis Engine Constraints > Defining Synthesis
Constraints Using LDC Editor.

The Timing Closure section of the FPGA Design Guide focuses on timing
requirements, explains timing driven FPGA implementation processes, and
shows how to tackle timing issues when timing closure becomes problematic.
You can access Timing Closure section of the FPGA Design Guide from the
Diamond software Start Page. Or, from the Diamond software online help,
refer to User Guides > Help for Lattice Diamond, and scroll down to FPGA
Design Guide.

Defining Synthesis Constraints Using
LDC Editor

The LDC Editor provides a GUI that enables the user to easily choose the
type of constraint, and provide all the necessary constraint information (the
GUI must make it clear what information is required and what is optional). Key
is to provide the user access to actual design element names that will be
honored by LSE (e.g. instance, port names). Moreover, it will filter the
selection provided to the user based on the legal type. As an example, in a
set_input_delay constraint, the user will only be given a selection of
references for the clock that are considered clocks.

LDC Editor does not perform design rule check (DRC) by default. DRC check
can be enabled in the Diamond software by clicking Tools > Options > LDC
Editor > General > Run DRC check before saving and Enable realtime
DRC check.

When the target of the constraint can not be found, or if the constraint syntax
is incorrect, a warning will display and the constraint will not show in the LDC
Editor.

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints >
Applying Lattice Synthesis Engine Constraints > Defining Synthesis
Constraints Using LDC Editor.

Defining Synthesis Constraints Using
Text Editor

The .Idc file can be edited by Text Editor manually. Do not use TCL features
for constraints which are not supported by LSE now. For example:

set board_del ay 3

set _clock_groups -exclusive \
-group {c0_1} \
-group {c0_0}

Lattice Synthesis Engine for Diamond User Guide 24

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=45588

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

See the following LSE constraints for syntax examples for each constraint.

Defining Clocks

The create_clock constraint creates a clock and defines its characteristics.

Note

In LSE timing, interclock domain paths are always blocked for create_clock. However,
the interclock domain path is still valid for constraints such as set_false_path and
set_multicycle_path.

Syntax create_clock [-name name] -period period_value [-waveform
{valuel value2}] source_object

Arguments -name name

The name string specifies the name of the clock. If this parameter is not
given, the name of the source object is used as the name of the clock.
Virtual clocks are currently not supported.

-period period_value

This value is required and it specifies the clock period in nanoseconds.
The value you specify is the minimum time over which the clock waveform
repeats. The value specified for the period must be positive as the period
of a clock must be greater than zero. The duty cycle of the clock is 50
percent.

-waveform {valuel value2}

The values are a list of edge values. Only two edges are supported.
Floating values are accepted. Valuel must be less than value2, and the
difference must be less than the clock period.

source_object

The source object is the object on which the clock constraint is defined.
The source object can be a port object or a net object in the design. The
object is obtained by using one of the get_ports or get_nets commands. If
you specify a clock constraint on a source object that already has a clock,
the new clock replaces the existing one. Only one source object is
accepted. Wildcards are accepted as long as the resolution shows one
port or net object.

Lattice Synthesis Engine for Diamond User Guide 25

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Example The following example creates two clocks on ports CK1 and CK2
with a period of 6:

create_clock -name nmy_user_clock -period 6 [get_ports CK1]
create_cl ock -name ny_other_user_clock -period 6 [get_ports CK2]

Example The following example creates a clock on port CK3 with a period
of 7.1, and has two edges at 0 and 4.1:

create_clock -period 7.1 -waveform {0 4.1} [get_ports CK3]

For more information about defining clocks with LDC Editor, For more
information, in the Diamond software online help, refer to User Guides >
Applying Design Constraints > Using SDC Constraints > Applying
Lattice Synthesis Engine Constraints > Defining Clocks Using LDC
Editor.

Defining Generated Clocks

The create_generated_clock creates an internally generated clock and
defines its characteristics. This command is used when the clock being
created is related to another clock. The generated clock will now be

considered a clock when defining constraints such as set_input_delay.

Syntax create_generated_clock -source reference_object [-master_clock
clock_object] [-divide_by factor] [-multiply_by factor] [-duty _cycle value]
net_object

Arguments -source reference_object

The reference object is an object on which the source clock of the
generated clock is defined. The source object can be a net object or a port
object. The period of the generated clock is derived from the clock on the
reference object using the multiply and divide factors.

-master_clock clock _object

If the master is defined, the master clock object becomes the source clock
for the generated clock. This is an optional object used to identify a
specific clock, if there is more than one clock on the source object.

-divide_hy factor

This factor is the frequency division factor. The frequency of the generated
clock is equal to the frequency of the source clock divided by this factor, if
the multiply by factor is not specified. For instance, if this factor is equal to
2, the generated clock period is twice the reference clock period. Default
valueis 1.

-multiply_by factor

Lattice Synthesis Engine for Diamond User Guide 26

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

This factor specifies the frequency multiplication number to be used when
finding the generated clock frequency. For instance, if the factor is equal

to 2, the generated clock period is half the reference clock period. If both
multiply_by and divide_by factors are used, the frequency is obtained by

using both factors. Default value is 1.

-duty_cycle value

This value specifies the duty cycle in percentage of the clock period. The
value can be floating point and ranges from 0 to 100. The default value is
50.

net_object

The net_object specifies the source of the clock constraint. This is usually
an internal -net of the design. If you specify a clock constraint on a net that
already has a clock, the new clock replaces the existing clock. Only one
source is accepted. Wildcards are accepted as long as the resolution
shows one net.

This command creates a generated clock in the current design at a
declared net_object by defining its frequency with respect to the frequency
at the reference object. The static timing analysis tool uses this
information to compute and propagate the generated clock's waveform
across the clock network to the clock pins of all sequential elements
driven by this target

Examples The following example creates a generated clock on pin pll1/
CLKOP with a period twice as long as the period at the reference port CLK:

create_generated_cl ock -divide_by 2 -source [get_ports CLK]
[get _pins pll 1/ CLKOP]

The following example creates a generated clock at the primary output of
myPLL with a period 3/4 of the period at the reference pin clk:

create_generated_clock -divide_by 3 -multiply_by 4 -source
[get _ports clk] [get_pins nmyPLL/CLK1]

The following example shows a clock with a duty cycle of 60 percent:

create_generated_cl ock -duty_cycle 60 -source [get_ports clKk]
[get _pins nyPLL/ CLK1]

For more information about defining clocks with LDC Editor, in the Diamond
software online help, refer to User Guides > Applying Design Constraints >

Lattice Synthesis Engine for Diamond User Guide 27

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Using SDC Constraints > Applying Lattice Synthesis Engine Constraints
> Defining Generated Clocks in LDC Editor.

Defining Clock Groups

The clock_groups constraint specifies clock groups that are mutually
exclusive or asynchronous with each other in a design so that the paths
between these clocks are not considered during timing analysis.

Syntax set_clock_groups -asynchronous | -exclusive -group clock_objects
[-group clock_objects]

Arguments -asynchronous

Specifies that the clock groups are asynchronous to each other
(meanwhile, Lattice assume all clocks are asynchronous). Two clocks are
asynchronous with respect to each other if they have no phase
relationship at all.

-exclusive

Specifies that clocks are mutually exclusive. Only one clock group will be
active at any given time.

-group clock_object

Specifies the clock objects in a group. If you specify only one group, it
means that the clocks in that group are exclusive or asynchronous with all
other clocks in the design. A default other group is created for this single
group. Whenever a new clock is created, it is automatically included in this

group.

Examples The following example specifies two clock ports (clka and clkb)
are asynchronous to each other.

create_cl ock -period 10.000 -nanme cl ka_port [get_ports clka]
create_cl ock -period 10.000 -nanme cl kb_port [get_ports clkb]
Set clka_port and clkb_port to be mutually exclusive cl ocks.
set _cl ock_groups -asynchronous -group [get_clocks clka_port] -
group [get_cl ocks cl kb_port]

The previous line is equivalent to the follow ng two

conmands.

set_false_path -from[get_clocks clka_port] -to [get_cl ocks
cl kb_port]

set_false_path -from[get_clocks clkb_port] -to [get_cl ocks
cl ka_port]

The following example specifies four clock constraints that won't be active at
the same time:

For more information about defining clocks with LDC Editor, in the Diamond
software online help, refer to User Guides > Applying Design Constraints >

Lattice Synthesis Engine for Diamond User Guide 28

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

create_cl ock -period 10.000 -nanme cl ka_port [get_ports clka]
create_cl ock -period 10.000 -nanme cl kb_port [get_ports clkb]
create_cl ock -period 10.000 -nane cl kc_port [get_ports clkc]
set _clock_groups -exclusive -group [get_clocks {cl ka_port

cl kb_port}] -group [get_clocks clkc_port]

Using SDC Constraints > Applying Lattice Synthesis Engine Constraints
> Defining Clock Groups in LDC Editor.

Setting Input Delays
The set_input_delay constraint defines the arrival time of an input relative to a
clock.

Syntax set_input_delay delay_value [-max |-min] -clock clock_object
input_port_object
Arguments delay_value
Specifies the arrival time in nanoseconds that represents the amount of
time for which the signal is available at the specified input after a clock
edge.
-max
Specifies that the delay value is the maximum delay.
-min

Specifies that the delay value is the minimum delay.

-clock clock_object
Specifies the clock reference to which the specified input delay is related.
This is a mandatory argument.

input_port_object

Provides one or more input ports in the current design to which
delay_value is assigned. You can also use the keyword “all_inputs” to
include all input ports.

Example The following example sets an input delay of 1.2 ns for port datal
relative to the rising edge of CLK1:

set _input_delay 1.2 -clock [get_clocks CLK1] [get_ports datal]

Example The following example sets an input delay of 1.2 ns minimum and
1.5 ns maximum for port datal relative to the rising edge of CLK1:

Lattice Synthesis Engine for Diamond User Guide 29

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

set _input_delay 1.2 -min -clock [get_clocks CLK1l] [get_ports
dat al]
set _input_delay 1.5 -max -clock [get_clocks CLK1l] [get_ports
dat al]

For more information about setting input and output delays with LDC Editor, in
the Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Setting Input and Output Delays Using LDC Editor.

Setting Output Delays

The set_output_delay constraint defines the output delay of an output relative
to a clock.

Syntax set_output_delay delay_value [-max |-min] -clock clock_object
output_port_object
Arguments delay_value
Specifies the amount of time from a reference clock to a primary output
port.
-max

Specifies that the delay value is the maximum delay.

-min
Specifies that the delay value is the minimum delay.
-clock clock_object

Specifies the clock reference to which the specified output delay is
related. This is a mandatory argument.

output_port_object

Provides one or more (by wildcard) output ports in the current design to
which delay_value is assigned. You can also use the keyword
“all_outputs” to include all output ports.

Example The following example sets an output delay of 1.2 ns for all
outputs relative to clki_c:

set_output_delay 1.2 -clock [get_clocks CLK1l] [get_ports QUT1]
set_output _delay 1.2 -clock [get_clocks CLK1] [all _outputs]

Example The following example sets an output delay of 1.2 ns minimum
and 1.5 ns maximum for port datal relative to the rising edge of CLK1:

Lattice Synthesis Engine for Diamond User Guide 30

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

set_output_delay 1.2 -min -clock [get_clocks CLK1] [get_ports
dat al]
set_output delay 1.5 -max -clock [get_clocks CLK1l] [get_ports
dat al]

For more information about setting input and output delays with LDC Editor, in
the Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Setting Input and Output Delays Using LDC Editor.

Defining Minimum Delay Paths

The set_min_delay constraint specifies the maximum delay for the timing
paths.

Syntax set_max_delay delay_value [-from from port_object or cell_object] [-
to to port_object or cell_object]
Arguments delay_value

Specifies a floating point number in nanoseconds that represents the
required maximum delay value for specified paths.

If the path ending point is on a sequential device, the tool includes library
setup time in the computed delay.

-from from port_object or cell_object

Specifies the timing path start point. A valid timing start point is a clock, a
primary input, a combinational logic cell, or a sequential cell (clock pin).

-to to port_object or cell_object
Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data pin)

Examples The following example sets a maximum delay by constraining all
paths from ffla:CLK to ff2e:D with a delay less than or equal to 5 ns:

set_max_delay 5 -from[get_cells ffla] -to [get_cells ff2e]

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Defining Maximum Delay Paths

The set_max_delay constraint specifies the maximum delay for the timing
paths.

Lattice Synthesis Engine for Diamond User Guide 31

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Syntax set_max_delay delay_value [-from from port_object or cell_object] [-
to to port_object or cell_object]
Arguments delay_value

Specifies a floating point number in nanoseconds that represents the
required maximum delay value for specified paths.

If the path ending point is on a sequential device, the tool includes library
setup time in the computed delay.

-from from port_object or cell_object

Specifies the timing path start point. A valid timing start point is a clock, a
primary input, a combinational logic cell, or a sequential cell (clock pin).

-to to port_object or cell_object
Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data pin)

Examples The following example sets a maximum delay by constraining all
paths from ffla:CLK to ff2e:D with a delay less than or equal to 5 ns:

set_max_delay 5 -from[get_cells ffla] -to [get_cells ff2e]

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Defining False Paths

The set_false_path constraint identifies paths that are considered false and
excluded from timing analysis.

Syntax set false path [-from from port_object or cell_object] [-to to
port_object or cell_object]

or
set_false_path [-through through_net_object]

Arguments -from from port_object or cell_object

Specifies the timing path start point. A valid timing starting point is a clock,
a primary input, a combinational logic cell, or a sequential cell (clock-pin).

-to to port_object or cell_object
Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data-pin).

-through through_net_object

Lattice Synthesis Engine for Diamond User Guide 32

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Specifies a net through which the paths should be blocked.
Examples The following example specifies all paths from clock pins of the

registers in clock domain clkl to data pins of a specific register in clock
domain clk2 as false paths:

set_false_path —from[get_ports clkl] —to [get_cells reg_2]

The following example specifies all paths through the net UO/sigA as false:

set _fal se_path —through [get_nets UQ sigA]

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Lattice Synthesis Engine for Diamond User Guide 33

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Defining Multicycle Paths

The set_multicycle_path constraint defines a path that takes multiple clock
cycles.

Syntax set_multicycle_path ncycles [-from from net_object or cell_object] [-
to to net_object or cell_object]

Arguments ncycles

Specifies a value that represents the number of cycles the data path must
have for setup check. The value is relative to the ending point clock and is
defined as the delay required for arrival at the ending point.

-from from net_object or cell_object

Specifies the timing path start point. A valid timing start point is a
sequential cell (clock pin) or a clock net (signal). You can also use the
keyword “all_registers” to include all registers’ clock inputs.

-to to net_object or cell_object

Specifies the timing path end point. A valid timing end point is a sequential
cell (data-pin) or a clock-net (signal). You can also use the keyword
“all_registers” to include all registers’ data inputs.

Example The following example sets all paths between regl and reg2 to 3
cycles for setup check. Hold check is measured at the previous edge of the
clock at reg2.

set_multicycle_path 3 —from[get_cells regl] —-to [get_cells
reg2]

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Setting Up Attributes

This section describes the Synplify Lattice Attributes that are supported by the
Lattice Synthesis Engine (LSE). These attributes are directly interpreted by
the engine and influence the optimization or structure of the output netlist.
Traditional HDL attributes, such as UGROUP, are also compatible with LSE
and are passed into the netlist to direct Map and Place & Route.

All HDL attributes have priority over Strategy settings.

Lattice Synthesis Engine for Diamond User Guide 34

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

black_box_pad_pin

This attribute specifies pins on a user-defined black box module. The pins are
defined as 1/0 pads that are visible outside of the black box. If there is more
than one port that is an 1/O pad, list the ports inside double-quotes ("),
separated by commas (,), and without enclosed spaces. This attribute must
be used in conjunction with the syn_black_box attribute.

Verilog Syntax object /* synthesis syn_black box black_box_pad_pin =
"portList" */ ;

where object is a module declaration, and portList is a spaceless, comma-
separated list of the black box port names that are 1/0 pads.

Verilog Example

nmodul e bl ack_box_pad_pi n2(
i nput[4:0] inl,
i nput[4:0] in2,
i nput cl Kk,
output[4:0] ¢
)/ * synt hesi s syn_bl ack_box
bl ack_box_pad_pi n="in1(4:0),q" */;

reg [4:0] q;
al ways @ posedge cl k)
begin
q <=inl + in2;
end
endnodul e

nmodul e bl ack_box_pad_pi n_i nst an(
input[4:0] inl,
i nput[4:0] in2,
i nput[4:0] in3,
i nput cl Kk,
;)ut put[5:0] g_out

wire [4:0] q;

reg [5:0] g_out;

bl ack_box_pad_pin2 test _123(
.inl(inl),
.in2(in2),
.clk(cl k),
ja(a

al ways @ posedge cl k)
begin
g_out <= q + ing;

end
endnodul e

VHDL Syntax attribute black_box_pad_pin of object : architecture is
"portList" ;

where object is the architecture name of a black box. Data type is string. The
portList is a spaceless, comma-separated list of the black box port names that
are 1/O pads.

Lattice Synthesis Engine for Diamond User Guide 35

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

VHDL Example

entity BBDLHS is
port (D: in std_logic;
E: in std_logic;
GN: in std_logic_vector(2 downto 0);
Q: out std_logic);
end;

archi tecture BBDLHS behav of BBDLHS is

end bl _box_behav;

attribute syn_black_box : bool ean;

attribute syn_black_box of BBDLHS behav : architecture is true;
attribute black_box_pad_pin : string;

attribute black_box_pad_pin of BBDLHS behav : architecture is

"AN2:0),Q;

full_case

Directive. For Verilog designs only. When used with a case, casex, or casez
statement, this directive indicates that all possible values have been given,
and that no additional hardware is needed to preserve signal values.

Verilog Syntax object /* synthesis full_case */

Verilog Example

nodul e full _casel (g, inl, in2, in3, in4, sel);
out put q;

input inl, in2, in3, in4;
i nput [3:0] sel;

reg q;
al ways @sel or inl or in2 or in3 or in4)
begin
casez (sel) /* synthesis full_case */
4' b11??: q = in4;
4' b?1??: q = in3;
4' b???1: q = inl;
4' b??1?: q = in2;
default: q = 'bx;
endcase
end
endnodul e
GSR

This attribute specifies the use of the global set/reset routing resources.
Allows the user to specify which portions of the design are to be altered in the
way they respond to the GSR reset signal. Unless specified otherwise, all
design elements will respond to the global reset signal if it is present.

Lattice Synthesis Engine for Diamond User Guide 36

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Available values:

ENABLED - This is the default value on most library elements. This value
allows the software to determine the final value and will be overridden by
the parent hierarchy if the parent has a value of anything other than
ENABLED.

DISABLED - This prevents the hierarchy or element from responding to
the GSR value. It cannot be changed by the parent’s value.

FORCEENABLE - This forces the hierarchy or element to respond to the
GSR value. It cannot be changed by the parent’s value.

IPENABLE - This forces the hierarchy or element to respond to the GSR
value when IP is being used in evaluation mode. It cannot be changed by
the parent’s value. This value is only for internal Lattice IP to use. It should
never be used within a design itself.

Verilog Syntax object /* synthesis GSR = {ENABLED | DISABLED |
FORCEENABLE | IPENABLE} */;

Verilog Example

“timescale 1 ns / 1 ns

nodul e top (reg_qg, rotate_q, a, b, r_I, clk, rst)/* synthesis
GSR = "ENABLED' */;

output [7:0] reg_q, rotate_q;

input [7:0] a, b;

input clk, rst, r_I;

subl reg8_ 1 (.clk(clk), .data(a), .q(reg_q), .rst(rst));
sub2 rotate_1 (rotate_q, b, clk, r_I, rst);
endnodul e

VHDL Syntax attribute gsr of object : objectType is ENABLED | DISABLED
| FORCEENABLE | IPENABLE;

VHDL Example

architecture archtest of test is
attribute gsr : string;
attribute gsr of archtest : architecture is “ENABLED’;

loc

The loc attribute specifies pin locations for Lattice I/Os, instances, and
registers, and forward-annotates them to the place-and-route tool. Refer to
the Lattice databook for valid pin location values. If the attribute is on a bus,
the software writes out bit-blasted constraints for forward-annotation.

Verilog Syntax object /* synthesis loc = "pinLocations" */ ;

Lattice Synthesis Engine for Diamond User Guide 37

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

In the syntax, pin_locations is a spaceless, comma-separated list of pin
locations.

Verilog Example

I1/O pin location

i nput [3: 0] DATAO /* synthesis |oc="pl0, pl2, pl1, p15" *;
Regi ster pin |ocation

reg data_in_chl _buf_reg3 /* synthesis | oc="R40C4A7" */;
Vectored internal bus

reg [3:0] data_in_chl_reg /*synthesis loc =

"RA0CA7, RAOCAB, RAOCAS, RAOCA4" */;

VHDL Syntax attribute loc of object : objectType is "pinLocations" ;

In the syntax, pinLocations is a spaceless, comma-separated list of pin
locations.

VHDL Example

entity myconp is port(DATAO : in std_logic_vector (3 downto 0);

)
attribute loc : string;
attribute I oc of DATAO : signal is "pl0, pl2, pll, p15";

parallel _case

Directive. For Verilog designs only. Forces a parallel-multiplexed structure
rather than a priority-encoded structure. This is useful because case
statements are defined to work in priority order, executing (only) the first
statement with a tag that matches the select value.

If the select bus is driven from outside the current module, the current module
has no information about the legal values of select, and the software must
create a chain of disabling logic so that a match on a statement tag disables
all following statements. However, if you know the legal values of select, you
can eliminate extra priority-encoding logic with the parallel_case directive. In
the following example, the only legal values of select are 4'b1000, 4'b0100,
4'b0010, and 4'b0001, and only one of the tags can be matched at a time.
Specify the parallel_case directive so that tag-matching logic can be parallel
and independent, instead of chained.

Note

Designers should be aware that it is possible for the priority of overlapping cases in
post-synthesis simulation to mismatch with the priority behavior in RTL simulation
when using this pragma.

Lattice Synthesis Engine for Diamond User Guide 38

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Verilog Syntax You specify the directive as a comment immediately
following the select value of the case statement.

object /* synthesis parallel_case */

where object is a case, casex or casez statement declaration.

Verilog Example

modul e parallel _casel (g, inl, in2, in3, in4, sel)
out put q;

input inl, in2, in3, in4;
input [3:0] sel

reg q;
al ways @sel or inl or in2 or in3 or in4)
begin
casez (sel) /* synthesis parallel_case */
4' b11??: q = in4;
4' p?1??: q = in3;
4' h???1: q = inl;
4' b??1?: q = in2;
default: q = 'bx;
endcase
end
endnodul e

If the select bus is decoded within the same module as the case statement,
the parallelism of the tag matching is determined automatically, and the
parallel_case directive is unnecessary.

syn_black_box

This attribute specifies that a Verilog module or VHDL architecture declaration
is for a black box. Only the module’s interface is defined for synthesis. The
contents of a black box cannot be optimized during synthesis. A module can
be a black box whether it is empty or not. However, the syn_black box
attribute cannot be used with the top-level module or architecture of a design.
Additionally, the syn_black box attribute is not supported for instances in
Verilog or components in VHDL.

This attribute has an implicit Boolean value of 1 or true.

If any of the ports are 1/0 pads, add the black_box_pad_pin attribute. See
“black_box_pad_pin” on page 35.

Verilog Syntax object /* synthesis syn_black box */ ;
where object is a module declaration.

Verilog Example

Lattice Synthesis Engine for Diamond User Guide 39

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

nodul e bl _box(out,data,clk) /* synthesis syn_bl ack_box */;

VHDL Syntax attribute syn_black box of object : architecture is true ;
where object is an architecture name. Data type is Boolean.

VHDL Example

entity bl_box is
port (data : in std_logic_vector (7 downto 0);
clk : in std_|logic;
out : out std_logic);
end;

architecture bl _box_behav of bl _box is

end bl _box_behav;

attribute syn_black_box : bool ean;

attribute syn_black_box of bl _box_behav : architecture is true;

syn_encoding

This attribute specifies the encoding style for a finite state machine (FSM),
overriding the default LSE encoding. The default encoding is based on the
number of states in the FSM. This attribute takes effect only when LSE infers
an FSM. This attribute has no effect when syn_state_machine is 0, which
blocks inference of an FSM.

Values for syn_encoding are as follows:

sequential — More than one bit of the state register can change at a time,
but because more than one bit can be hot, the value must be decoded to
determine the state. For example: 000, 001, 010, 011, 100

onehot — Only two bits of the state register change (one goes to 0; one
goes to 1) and only one of the state registers is hot (driven by a 1) at a
time. For example: 0000, 0001, 0010, 0100, 1000

gray — Only one bit of the state register changes at a time, but because
more than one bit can be hot, the value must be decoded to determine the
state. For example: 000, 001, 011, 010, 110

There can be no more than four states for gray encoding. If the FSM has
more than four states, LSE switches to sequential encoding.

safe — If the state machine enters an invalid state, additional logic will
drive the state machine into its reset state. The design must have a
defined reset state.

Safe encoding can be combined with either sequential or onehot encoding
(not with gray encoding) as in:

syn_encodi ng = "saf e, onehot"

If the safe value is given by itself, it combines with the encoding method of
a preceding syn_encoding statement or the default method.

Lattice Synthesis Engine for Diamond User Guide 40

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Verilog Syntax Object /* synthesis syn_encoding = "value" */;
Where object is an enumerated type and value is from the list above.

Verilog Example

Lattice Synthesis Engine for Diamond User Guide 41

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_| ogic_unsigned. all;

entity syn_state_nachine2 is

port (
clk : in std_l ogic;
reset: in std_|ogic;
en : in std_logic;
g : out std_logic_vector(1l downto 0)
)
end entity;

architecture behave of syn_state_machine2 is
type state_type is(state0,statel, state2, state3);
signal state,next_state:state_type;
attribute syn_state_nachine : bool ean;
attribute syn_state_machi ne of behave : architecture is true;
attribute syn_encoding : string;
attribute syn_encoding of state, next_state: signal is

"binary";
begi n
process(cl k, reset)
begin
if reset = '1'" then
state <= stateO;
elsif clk'event and clk ="'1" then
state <= next_state;
end if;

end process;
process(state)
begin
case state is
when state0 =>
if (en ="'1") then
g <= "00";
end if;
next _state <= statel;
when statel=>
if (en ="1") then
q <= "01";
end if;
next _state <= state2;
when state2 =>
if (en ="'1) then
g <= "10";
end if;
next_state <= state3;
when state3 =>
if (en ="1") then

g <= "11";
end if;
next _state <= stat eO0;
end case;

end process;
end behave;

Lattice Synthesis Engine for Diamond User Guide 42

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

VHDL Syntax attribute syn_encoding of object: objectType is "value";

Where object is an enumerated type and value is from the list above.

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_|logic_unsigned.all;

entity syn_encodingl is

port (
clk : in std_l ogic;
reset: in std_logic;
en : in std_logic;
q : out std_logic_vector(1l downto 0)
)i
end entity;

archi tecture behave of syn_encodingl is

signal state : std_logic_vector(3 downto 0);
constant stateO : std_logic_vector(3 downto
constant statel : std_logic_vector(3 downto
constant state2 : std_logic_vector(3 downto
constant state3 : std_logic_vector(3 downto
attribute syn_encoding : string;

attribute syn_encoding of state : signal is

begi n
process(cl k, reset, en)
begi n
if reset ='1' then
state <= state0;
q <= "00";
elsif clk'event and clk = "'1' then
case state is
when state0 =>
if (en ="'1") then
q <= "00";
end if;
state <= statel;
when statel=>
if (en ="1") then
g <= "01";
end if;
state <= state2;
when state2 =>
if (en="1) then
q <= "10";
end if;
state <= state3,;
when state3 =>
if (en ="'"1") then
q <= "11";
end if;
state <= stateO;
when others => null;
end case;
end if;
end process;
end behave;

0)
0)
0)
0)

"saf e,

"1000";
"0100";
"0010";

= "0001";

onehot";

Lattice Synthesis Engine for Diamond User Guide

43

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_force_pads

This attribute prevents unused ports from being optimized away to allow 1/0O
pad insertion on the unused port. This attribute is not supported at the global
level. Instead, set the use_io_insertion option to control I/O insertion globally.

This attribute is supported in the rtl, and it will override the global
use_io_insertion option setting on the given input, output, or bidir port.

For example, in the following Verilog file, the syn_force pads attribute can be
set to 1 on an unused input port (dataz), and it will not be optimized away,
regardless of the use_io_insertion global setting.

Verilog syntax object /* synthesis syn_force_pads = {1 | 0} */;
where object is port declaration.

Verilog Example

“define DSIZE 9
“define OSIZE 18

nodul e nul t p9x9(dat aout, dataax, dataay, dataz, clk, rst, ce);
out put [OSIZE-1:0] dataout;
input [DSIZE: 0] dataz /* synthesis syn_force_pads = 1*/;
i nput [DSIZE-1:0] dataax, dataay;
input clk, rst, ce;
reg [DSIZE-1:0] dataax_reg, dataay_reg;

reg [OSI ZE-1: 0] dat aout;
wire [CSIZE-1: 0] dataout_tnp ;
assi gn dataout _tnp = dataax_reg * dataay_reg;

al ways @ posedge cl k or posedge rst)
begi n
if (rst)
begi n
dat aax_reg <= 0;
dataay_reg <= 0;
dat aout <= 0;

end

else if (ce == 1'Dbl)

begi n
dat aax_reg <= dat aax;
dat aay_reg <= dat aay;
dat aout <= dat aout _t np;

end

end
endnodul e

To force 1/0 pads to be inserted for input ports that do not drive logic, follow
the guidelines below.

To force 1/0 pad insertion on an individual port, set the syn_force_pads
attribute on the port with a value to 1. To disable 1/O insertion for a port,
set the attribute on the port with a value of 0.

Lattice Synthesis Engine for Diamond User Guide 44

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Enable this attribute to preserve user-instantiated pads, insert pads on
unconnected ports, insert bi-directional pads on bi-directional ports instead of
converting them to input ports, or insert output pads on unconnected outputs.

If you do not set the syn_force_pads attribute, the synthesis design optimizes
any unconnected /O buffers away.

VHDL syntax Attribute syn_force_pads of object: objectType is "true | false"

VHDL Example

library ieee;

use ieee.std_|ogic_1164. all

use ieee.std_logic_arith.all
use ieee.std_| ogi c_unsigned. al |

entity multp9x9 is
port (dataout : out std_logic_vector(17 downto 0);
dat aax, dataay: in std_|logic_vector(8 downto 0);
dataz : in std_logic_vector(8 dowto 0);
clk,rst,ce: in std_logic
)
attribute syn_force_pads : string;
attribute syn_force_pads of dataz : signal is "true";

end mul t p9x9;
architecture rtl of nultp9x9 is

signal dataax_reg, dataay_reg: std_|logic_vector(8 downto 0);
signal dataout _tnp: std_logic_vector(17 downto 0);

begi n

dataout _tnp <= dataax_reg * dataay_reg
process (clk, rst)

begin

if rst ='1 then
dataax_reg <= (others =>"'0'
dataay_reg <= (others =>"'0'
dataout <= (others =>"'0

elsif clk'event and clk = '1" then

if ce ="1 then

dat aax_reg <= dat aax;
dat aay_reg <= dat aay;
dat aout <= dat aout _t np;

end if;

end if;

end process;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 45

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_hier

This attribute allows you to control the amount of hierarchical transformation
that occurs across boundaries on module or component instances during
optimization. This attribute cannot be applied globally. The user must set this
attribute on the selective modules to stop cross-boundary optimizations.

syn_hier Values The following value can be used for syn_hier:

hard — Preserves the interface of the design unit with no exceptions. This
attribute affects only the specified design units.

Verilog Syntax object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values
described in syn_hier Values. Check the attribute values to determine where
to attach the attribute.

Verilog Example

modul e topl (Q CLK, RST, LD, CE, D)
/* synthesis syn_hier = "hard" */;

VHDL Syntax attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values
described in syn_hier Values. Check the attribute values to determine the
level at which to attach the attribute.

VHDL Example

architecture struct of cpu is
attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

syn_insert_pad
This attribute removes an existing 1/0 buffer from a port or net when 1/O buffer
insertion is enabled.

The syn_insert_pad attribute is used when the use_io_insertion global option
is enabled (when 1/O buffers are automatically inserted) to allow users to
selectively remove an individual buffer from a port or net.

It can also be used to force an 1/O buffer to be inserted on a specific port or
net, if the use_io_insertion global option is disabled.

Setting the attribute to 0 on a port or net removes the 1/0O buffer (or
prevents an I/O buffer from being automatically inserted, if the
use_io_insertion global option is enabled).

Lattice Synthesis Engine for Diamond User Guide 46

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Setting the attribute to 1 on a port or net forces an I/O buffer to be inserted
if the use_io_insertion global option is disabled.

Verilog Syntax object /* synthesis syn_insert_pad = {1 | 0} */;
where object is a port or net declaration.

Verilog Example

“define OSIZE 16
“define DSIZE 8

nodul e nac8x8 (dataout, x, y, clk, rst);

out put [OSIZE: 0] dataout;

i nput [DSIZE-1:0] x, vy;

i nput cl k;

input rst /* synthesis syn_insert_pad = 0 */;
reg [OSlZE: 0] dataout;

reg [DSl ZE-1:0] x_reg, y_reg;

wire [CSIZE-1: 0] multout ;

wire [OSIZE: 0] sumout;

assi gn nul t out
assi gn sum out

= X_reg * y_reg
= mul tout + dataout;
al ways @ posedge cl k or posedge rst)
begin
if (rst)
begin
X_reg
y_reg
dat aout
end
el se
begin
X_reg
y_reg
dat aout
end
end
endnodul e

oo

< %

sum out ;

In the previous example, the input port labeled “rst” will not have an input
buffer connected to it in the technology-mapped netlist after LSE completes.

VHDL Syntax attribute syn_insert_pad of object : objectType is "true |
false" ;

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 47

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;

entity register_en_reset is

generic (
width : integer := 8
)
port (

datain : in std_logic_vector(w dth-1 downto 0);
clk : in std_logic;

enable : in std_logic;

reset : in std_logic;

dataout : out std_logic_vector(w dth-1 downto 0)
);

attribute syn_insert_pad : string;
attribute syn_insert_pad of reset : signal is "false";

end regi ster_en_reset;

architecture lattice_behav of register_en_reset is

begi n

process (clk, reset)

begin
if (reset ='1") then

dataout <= (others => "'0");
elsif (rising_edge(clk) and enable = '1') then
dat aout <= datai n;

end if;

end process;
end lattice_behav;

Lattice Synthesis Engine for Diamond User Guide 48

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_keep

This attribute keeps the specified net intact during optimization and synthesis.
Verilog Syntax object /* synthesis syn_keep =1 */;

where object is a wire or reg declaration. Make sure that there is a space
between the object name and the beginning of the comment slash (/).

Verilog Example

nodul e syn_keep1(
i nput a,
i nput b,
i nput clk,
out put g1,
out put q2);
reg tenpl;
reg tenp2;
reg qi;
reg g2;
wire or_result;
wire keepl/* synthesis syn_keep=1 */;
wi re keep2/* synthesis syn_keep=1 */;

al ways @ posedge cl k)

begin
tenpl = a;
temp2 = b;
end

assign or_result = (tenmpl | tenp2);
assign keepl = or_result;

assign keep2 = or_result;

al ways@ posedge cl k)

begin
gl = keepl;
g2 = keep2;
end
endnodul e

VHDL Syntax attribute syn_keep of object : objectType is true ;
where object is a single or multiple-bit signal.

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 49

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;

entity syn_keepl is
port (
a: in std_logic;
b : in std_logic;
clk: in std_l ogic;
gl: out std_logic;
g2: out std_logic
);

end entity;

architecture behave of syn_keepl is
signal tenpl : std_logic
signal tenp2 : std_logic
signal keepl : std_logic
signal keep2 : std_logic
signal or_result : std_logic;
attribute syn_keep: bool ean;
attribute syn_keep of keepl, keep2: signal is true
begin
process(cl k)
begi n
if clk'event and clk = "'1" then
tenmpl <= a
tenp2 <= b;
end if;
end process

or_result <= (tenpl or tenp2);
keepl <= or_result;
keep2 <= or_result;

process(cl k)

begi n
if clk'event and clk = "'1" then
gl <= keepl
g2 <= keep2
end if;

end process

end behave;

Lattice Synthesis Engine for Diamond User Guide 50

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_maxfan

This attribute overrides the default (global) fan-out guide for an individual
input port, net, or register output.

Verilog Syntax object /* synthesis syn_maxfan = "value" */ ;

Note

LSE will take integer values for non-integral values to syn_maxfan attribute.

For example, syn_maxfan value of 5.1 will be truncated to 5.
Verilog Example

nodul e test (registered_data_out, clock, data_in);

output [31:0] registered_data_out;

i nput cl ock;

input [31:0] data_in /* synthesis syn_maxfan=1000 */;

reg [31:0] registered_data_out /* synthesis syn_maxfan=1000 */;

VHDL Syntax attribute syn_maxfan of object : objectType is "value" ;

VHDL Example

entity test is
port (clock : in bit;
data_in : in bit_vector(31 downto 0);
regi stered_data_out: out bit_vector(31 downto 0));
attribute syn_nmaxfan : integer;
attribute syn_nmaxfan of data_in : signal is 1000;

See Also “Optimizing LSE for Area and Speed” on page 568

syn_multstyle
This attribute specifies whether the multipliers are implemented as dedicated
hardware blocks or as logic.

syn_multstyle Values block_mult | logic

Value Description Default block_mult Implements the multipliers as
dedicated hardware blocks (Lattice: DSP blocks)

This attribute only applies to families that use DSP blocks on the device. To
override this behavior, specify a value of logic.

Verilog Syntax input net /* synthesis syn_multstyle = "block_mult | logic" */;

Verilog Example

Lattice Synthesis Engine for Diamond User Guide 51

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

nmodul e syn_nmul tstyl el(
input [7:0] inl,
input [7:0] in2,
i nput rst,
i nput clk,
output [15:0] result);

reg [7:0] tenpl,temp2;
reg [15:0] result;
wire [15:0] product /*synthesis syn_multstyle = "logic"*/;

al ways@ posedge cl k , negedge rst)
begin
if(!rst)
begin
tenpl
tenp2
end
el se
begin
tenpl
tenp2
end
end

assign product = tenmpl*tenp2;

al ways@ posedge cl k, negedge rst)
begi n
if(lrst)
begin
result = 'b0O;
end
el se
begi n
result = product;
end
end
endnodul e

VHDL Syntax attribute syn_multstyle of instance : signal is "block_mult |
logic";

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 52

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_| ogic_unsigned. all;

entity syn_pipeline2 is
port (
inAl: in std_|l ogic_vector(3 downto 0);
inA2: in std_| ogic_vector(3 downto 0);
inBl: in std_|l ogic_vector(3 downto 0);
inB2: in std_|logic_vector(3 downto 0);

clk : in std_l ogic;
sum: out std_logic_vector(7 downto 0)
)

end entity;

architecture behave of syn pipeline2 is
signal tenpl,tenp2,temp3,tenp4: std_|logic_vector(3 downto 0);
signal sums : std_logic_vector(7 downto 0);
attribute syn_pipeline : string;
attribute syn_pipeline of sums: signal is "true";

begin
process(cl k)
begi n
if clk'event and clk = "'1" then

templ <= inAl;
temp2 <= inAz2;
temp3 <= inB1;
tenmpd4 <= inB2;
sums <= (tenpl*tenp3) + (tenmp2*tenp4d);
end if;
end process;

process(cl k)

begin
if clk'event and clk = "'1' then
sum <= sums;
end if;

end process;
end behave;

Lattice Synthesis Engine for Diamond User Guide 53

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_noprune

This attribute prevents instance optimization for black-box modules (including
technology-specific primitives) with unused output ports. This attribute is not a
global attribute. It works on the component basis. The user must set the
attribute on the instance.

Verilog Syntax object /* synthesis syn_noprune =1 */;
where object is a module an instance. The data type is Boolean.

Verilog Example

nodul e top(al, bl, cl,dl,yl,clk);

out put y1;

i nput al, bl,cl, di;

i nput clk;

wire x2,y2;

reg yl;

syn_noprune ul(al, bl, cl,dl,x2,y2) /* synthesis syn_noprune=1 */

1

al ways @ posedge cl k)
yl<= al;

endnodul e

VHDL Syntax attribute syn_noprune of object : objectType is true ;
where the data type is boolean, and object is a component.

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 54

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
entity top is
port (al, bl : in std_logic;
cl,dl,clk : in std_| ogic;
yl :out std_logic);
end ;
architecture behave of top is
conponent noprune
port (a, b, ¢, d: in std_logic;
X,y : out std_logic);
end conponent;
signal x2,y2 : std_l ogic;
attribute syn_noprune : bool ean;
attribute syn_noprune of noprune : component is true;
begin
ul: noprune port map(al, bl, cl, di, x2, y2);
process begin
wait until (clk ='1") and clk'event;
yl <= al,
end process;
end;

Lattice Synthesis Engine for Diamond User Guide 55

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_pipeline

This attribute permits registers to be moved to improve timing. Specifies that
registers that are outputs of Multipliers/Adders can be moved to improve
timing. Depending on the criticality of the path, the tool moves the output
register to the input side.

Verilog Syntax object /* synthesis syn_pipeline = {1 | 0} */;
where object is a register declaration.

The value of 0 (or false) indicates pipelining for the specified register is
disabled, which means the register position in the design is fixed.

The value of 1 (or true) indicates pipelining for the specified register is
allowed, which means the register may be moved if it helps improve timing.

LSE will identify registers that are candidates for possible pipelining based on
running RTL timing analysis. It may identify some candidate registers, or it
may determine there are none that are suitable.

If LSE decides no candidate registers for pipelining exist, if the user sets the
syn_pipeline attribute to “1” on a specific register in the RTL to force pipelining
for that register, that attribute will not be honored.

If global pipelining is enabled for a design, and given one or more registers
that LSE has identified as possible candidates for pipelining, the user may
prevent these registers from being pipelined by setting synthesis attribute
syn_pipeline=0 for each of those registers in the RTL.

Verilog Example

nodul e pi peline (a,b,c,d,clk,out);

input [3:0] a,b,c,d;
i nput cl k;
out put [7: 0] out ;

reg[7:0]out,outl /* synthesis syn_pipeline = 0 */;
reg[3:0] a_tenp,b_tenp,c_tenp,d_tenp;

al ways @ posedge cl k)
begin

a_temp <= a

b temp <= b

c

d

c_tenp <= c;
d_tenmp <=
outl <= (a_tenp * b_tenp) +(c_tenp * d_tenp);
out <= out1l;

end

endnodul e

)

)

In the previous example, the registers labeled “outl” will not be moved to the
input side of the adder to improve timing.

Lattice Synthesis Engine for Diamond User Guide 56

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

VHDL Syntax attribute syn_pipeline of object : objectType is {true|false} ;

VHDL Example

library ieee;

use ieee.std _logic_1164.all;

USE i eee.nuneric_std. all;

use ieee.std_| ogi c_unsigned. all;

entity syn_pipeline_exp is

port (CLK O : in std_| ogic;
AIN: in std_|logic_vector(3 downto 0);
BIN: in std_logic_vector(3 downto 0);
RST : out std_logic_vector(7 downto 0)
)

end syn_pi pel i ne_exp;

architecture rtl of syn_pipeline_exp is

signal A REGSTR : std_l ogic_vector(3 downto 0);
signal B_REGSTR : std_l ogic_vector(3 downto 0);
signal TMP : std_logic_vector(7 downto 0);

signal TMP1 : std_l ogic_vector(7 downto 0);

signal TMP2 : std_l ogic_vector(7 downto 0);
attribute syn_pipeline : string;

attribute syn_pipeline of TMP1 : signal is "true";

begin
process(CLK 0)
begin
if (CLK 0'event and CLK 0 = '1') then
TMP <= A REGSTR * B_REGSTR
A REGSTR <= A IN;
B_REGSTR <= B_IN,

TMP1 <= TMP;

TMP2 <= TMPIL;

RST <= TMPZ;
end if;

end process;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 57

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_preserve

This attribute prevents sequential optimizations such as constant propagation
and inverter push-through from removing the specified register. The
syn_encoding attribute is not honored if there is a syn_preserve attribute on
any of the state machine registers.

Verilog Syntax object /* synthesis syn_preserve =1 */;
where object is a register definition signal or a module.

Verilog Example

nodul e syn_preservel(
i nput[3:0]in1,
i nput[3:0]in2,
input[3:0]in3,
i nput clk,
output [7:0] result,
output [3:0] sum
)/* synthesis syn_preserve= 1*/;

reg [7:0] result/*synthesis syn_nultstyle = "EBR'*/;
reg [3:0] tenpl,temp2,tenp3;
reg [3:0] sum

al ways @ posedge cl k)

begi n
templ = inl & in2;
tenp2 = ltenpl,
tenp3 = tenpl & tenp2;

result = tenp3*ing;
sum = tenp3 + in3;
end
endnodul e

VHDL Syntax attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a
state register or architecture.

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 58

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Specifying Constraints and Attributes

library ieee
use ieee.std_|l ogic_1164. all
use ieee.std_| ogi c_unsigned.all

entity syn_preserve2 is
port (

inl: in std_logic_vector(3 downto 0);
in2: in std_|l ogic_vector(3 dowto 0);
in3: in std_|l ogic_vector(3 dowto 0);

clk: in std_logic;

result: out std_logic_vector(7 downto 0);
sum : out std_logic_vector(3 downto 0)

)

end entity;

architecture behave of syn_preserve2 is

signal tenpl,tenp2,tenp3 : std_l ogic_vector(3 downto 0);

attribute syn_preserve : bool ean
attribute syn_preserve of behave
attribute syn_multstyle : string

attribute syn_multstyle of result:

begin
process(cl k)
begin
if clk'event and clk = '1' then

templ <= inl and in2
tenp2 <= not tenpl
tenp3 <= tenpl and tenp2;
result <= tenp3*ing;
sum <= tenp3 + in3;
end if;
end process;
end behave;

architecture is true

si gnal

is "EBR';

Lattice Synthesis Engine for Diamond User Guide

59

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_ramstyle

The syn_ramstyle attribute specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module, or to a RAM instance. To
turn off RAM inference, set its value to registers.

The following values can be specified globally or on a module or RAM
instance:

registers — Causes an inferred RAM to be mapped to registers (flip-flops
and logic) rather than the technology-specific RAM resources.

distributed — Causes the RAM to be implemented using the distributed
RAM or PFU resources.

block_ram — Causes the RAM to be implemented using the dedicated
RAM resources. If your RAM resources are limited, you can use this
attribute to map additional RAMs to registers instead of the dedicated or
distributed RAM resources.

no_rw_check (some modes, but all technologies). — You cannot specify
this value alone. Without no_rw_check, the synthesis tool inserts bypass
logic around the RAM to prevent the mismatch. If you know your design
does not read and write to the same address simultaneously, use
no_rw_check to eliminate bypass logic. Use this value only when you
cannot simultaneously read and write to the same RAM location and you
want to minimize overhead logic.

Verilog Syntax object /* synthesis syn_ramstyle = "string" */ ;
where object is a register definition (reg) signal. The data type is string.

Verilog Example

nodul e ramd (dat ai n, dat aout, cl k) ;

out put [31:0] dataout;

i nput clk;

input [31:0] datain;

reg [7:0] dataout[31:0] /* synthesis syn_ranstyl e="bl ock_rant */;

VHDL Syntax attribute syn_ramstyle of object : objectType is "string" ;

where object is a signal that defines a RAM or a label of a component
instance. Data type is string.

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 60

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
entity ramt is
port (d : in std_logic_vector(7 downto 0);

addr : in std_logic_vector(2 downto 0);
we : in std_|logic;
clk : in std_| ogic;

ramout : out std_logic_vector(7 downto 0));
end ramy;
library synplify;
architecture rtl of ramd is
type nemtype is array (127 downto 0) of std_logic_vector (7

downto 0);
signal mem: nmemtype; -- memis the signal that defines the
RAM

attribute syn_ranstyle : string;
attribute syn_ramstyle of mem: signal is "block_rani;

Lattice Synthesis Engine for Diamond User Guide 61

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_replicate

This attribute controls replication. The synthesis tool can automatically
replicate registers during optimization. This attribute disables replication
either globally or on a per register basis.

Verilog Syntax object /* synthesis syn_replicate = 1 | 0 */;

Verilog Example

nodul e syn_replicatel (enl,en2,clk,inl,in2, q);
i nput enl, en2;
i nput cl k;
input [6:0]inl,in2;
out put [6:0]q;
reg [6:0]q;
reg enc /* synthesis syn_maxfan = 1 syn_replicate = 1*/;

al ways @ posedge cl k)
begin
enc = enl & enZ;
end

al ways @ posedge cl k)

begi n
if (enc)
g = inl;
el se
g = inz;
end
endnodul e

VHDL Syntax attribute syn_replicate of object : objectType is true | false ;

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 62

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_| ogic_1164. all

entity syn_ replicate2 is
port (
enl: in std_l ogic;
en2: in std_| ogic;
clk: in std_| ogic;
inl: in std_|logic_vector(6 downto 0)
in2: in std_|logic_vector(6 downto 0)
g: out std_logic_vector(6 downto 0)
)

end entity;

architecture behave of syn_replicate2 is
signal enc : std_logic
attribute syn_maxfan: integer;
attribute syn_maxfan of behave : architecture is 1
attribute syn_replicate: bool ean;
attribute syn_replicate of enc : signal is false

begin
process(cl k)
begi n
if clk'event and clk = "'1" then
enc <= (enl and en2);
end if;

end process

process(cl k)

begi n
if enc ='1" then
g <= inl;
el se
g <= in2;
end if;

end process
end behave;

Lattice Synthesis Engine for Diamond User Guide 63

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_romstyle
This attribute allows you to implement ROM architectures using dedicated or

distributed ROM. Infer ROM architectures using a CASE statement in your
code.

For the synthesis tool to implement a ROM, at least half of the available
addresses in the CASE statement must be assigned a value. For example,
consider a ROM with six address bits (64 unique addresses). The case
statement for this ROM must specify values for at least 32 of the available
addresses. You can apply the syn_romstyle attribute globally to the design by
adding the attribute to the module or entity.

The following values can be specified globally on a module or ROM instance:

auto — Allows the synthesis tool to chose the best implementation to meet
the design requirements for speed, size, etc.

logic — Causes the ROM to be implemented using the distributed ROM or
PFU resources.

EBR — Causes the ROM to be implemented using the dedicated ROM
resources. If your ROM resources are limited, you can use this attribute to
map additional ROM to registers instead of the dedicated or distributed
RAM resources.

Verilog Syntax object /* syn_romstyle = "auto(default) | EBR | logic" */;

Verilog Example
reg [8:0] z /* synthesis syn_ronstyle = "EBR" */;

VHDL Syntax attribute syn_romstyle of object : object_type is
"auto(default) | EBR | logic" ;

VHDL Example

signal z : std_logic_vector(8 downto 0);
attribute syn_ronstyle : string;
attribute syn_ronmstyle of z : signal is "logic";

Lattice Synthesis Engine for Diamond User Guide 64

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_srlstyle
This attribute determines how to implement the sequential shift components.

Verilog Syntax object /* synthesis syn_srlstyle = "string",
where string can take one of the following values:
registers: seqShift register components are implemented as registers.

distributed: seqShift register components are implemented as distributed
RAM.

block_ram: seqShift register components are implemented as block RAM

If the attribute value set by the user cannot be honored (for example, the user
sets the attribute value to "block_ram", however, the selected device does not
contain enough available EBR blocks to implement the shift register), LSE will
display a message to indicate this.

" | registers | distributed | |[block_ram" */ ;
In the above syntax, object is a register declaration.

Verilog Example The following example implements seqShift components
as distributed memory with any required fabric logic.

nodul e test _srl (clk, enable, dataln, result, addr);
i nput clk, enable;
input [3:0] dataln;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[15: 0]
/* synthesis syn_srlstyle="distributed" */;
integer i;
al ways @ posedge cl k) begin
if (enable == 1) begin

for (i=15; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];
end
regBank[0] <= dataln;
end
end
assign result = regBank[addr];
endnodul e

The following example implements a seqShift for 16x256 bits wide and serial
in and serial out register using syn_srlstyle set to block_ram.

VHDL Syntax attribute syn_sristyle of object : signal is
" registers | distributed |block_ram " ;

In the above syntax, object is a register.

Lattice Synthesis Engine for Diamond User Guide 65

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

/1 shift left register with 16X256 bits width and serial in and
serial out
nodul e test(clock, arst, sr_en, shiftin, shiftout)
paraneter sh_| en=16
paranet er sh_wi dt h=256
paramet er ARESET_VALUE = {(sh_wi dth){1' b0}};
i nput cl ock, arst, sr_en;
input [sh_width-1:0] shiftin;
out put [sh_wi dth-1:0] shiftout;
integer i;
reg [sh_width-1:0] sreg [sh_len-1:0] /* synthesis
syn_srl styl e="bl ock_ram' */;
al ways @ posedge cl ock or posedge arst)

begin
if(arst)
begin
for(i = 0;i <=sh_len-1;i = i+1)
sreg[i] <= ARESET_VALUE ;
end
el se
begin
if(sr_en)
begi n
sreg[0] <= shiftin;
for(i=sh_len-1;i>0;i=i-1)
sreg[i] <= sreg[i-1];
end
end
end
assign shiftout = sreg[sh_len-1];
endnmodul e

Verilog Example The example below implements segShift components as
distributed memory primitives:

Lattice Synthesis Engine for Diamond User Guide 66

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_| ogic_unsigned. all;
entity d_ pis
port (clk : in std_|logic;
data_out : out std_logic_vector(127 downto 0));
end d_p;

architecture rtl of d_pis
type dataAryType is array(3 downto 0) of
std_l ogi c_vector (127 downto 0);

signal h_data_pip_i : dataAryType;
attribute syn_srlstyle : string;
attribute syn_srlstyle of h_data_pip_i : signal
is "distributed";
begin
process (d k)
begi n

if (Ok'Event And Gk ="'1") then
h_data_pip_i <= (h_data_pip_i (2 DOWNTO 0)) &
h_data_pip_i(3);
end if;
end process;
data_out <= h_data_pip_i(0);
end rtl;

Lattice Synthesis Engine for Diamond User Guide 67

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Specifying Constraints and Attributes

syn_sharing

Directive. Enables or disables the sharing of operator resources during the

compilation stage of synthesis.

The syn_sharing directive controls resource sharing during the compilation

stage of synthesis. This is a compiler-specific optimization that does not affect
the mapper; this means that the mapper might still perform resource sharing

optimizations to improve timing, even if syn_sharing is disabled.

If you disable resource sharing globally, you can use the syn_sharing directive

to turn on resource sharing for specific modules or architectures.

Verilog Syntax object /* synthesis syn_sharing="on | off” */ ;

Verilog Example

nodul e syn_sharingl (
nput [7:0]
nput [7:0]
nput [7:0]
nput [7:0]
nput cl k,

nput sel 1,
nput sel 2,

i
i
i
i
i
i
i
i nput rst,

i nAl,
i nA2,
i nB1,
i nB2,

out put [15:0] productl,
out put [15:0] product?2
)/ *synthesis syn_sharing = 1*/;

reg [15:0] product1l, product 2;
wire [15:0] tenpl,tenp2;
assign tenpl = i nAl*i nBl
assign tenp2 = i nA2*i nB2
al ways @ posedge cl k)

begin
if(sell)
begi n
if (sel?2)
product 1
el se
product 1
end
el se
begin
if (sel?2)
pr oduct 2
el se
product 2
end
end
endnodul e

tenpl;

tenmp2;

tenpl;

tenp2;

VHDL Syntax attribute syn_sharing of object : objectType is “true | false” ;

Lattice Synthesis Engine for Diamond User Guide

68

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

VHDL Example

library ieee;
use ieee.std_|ogic_1164. all
use i eee.std_| ogi c_unsigned. all

entity syn_sharing2 is

port (
inAl : in std_logic_vector(7 downto 0);
inA2 : in std_logic_vector(7 downto 0);
inBl : in std_logic_vector(7 downto 0);
inB2 : in std_logic_vector(7 downto 0);
clk : in std_logic;
sell : in std_|ogic;
sel2 : in std_|ogic;
rst in std_| ogic;

productl : out std_logic_vector(1l5 downto 0);
product2 : out std_l ogic_vector(15 downto 0)
)

end entity;

architecture behave of syn_sharing2 is
signal tenpl,tenp2: std_logic_vector (15 downto 0);
attribute syn_sharing : bool ean;
attribute syn_sharing of behave : architecture is false
begin
templ <= inAl*i nB1;
tenmp2 <= i nA2*i nB2
process(cl k)
begi n
if clk'event and clk ="1" then
if sell ="1" then
if sel2 ="1" then
productl <= tenpl;
el se
productl <= tenp2;
end if;
el se
if sel2 ="1" then
product2 <= tenpl;
el se
product2 <= tenp2;
end if;

end if;
end if;

end process
end behave;

Lattice Synthesis Engine for Diamond User Guide

69

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_state_machine

This attribute enables/disables state-machine optimization on individual state
registers in the design. To extract some state machines, use this attribute with
a value of 1 on just those individual state-registers to be extracted. If there are
state machines in your design that you do not want extracted, use
syn_state_machine with a value of 0 to override extraction on just those
individual state registers.

All state machines are usually detected during synthesis. However, on
occasion there are cases in which certain state machines are not detected.
You can use this attribute to declare those undetected registers as state
machines.

The syn_sharing attribute only can be used in architecture. The syn_sharing
attribute cannot be used in entity.

Verilog Syntax object /* synthesis syn_state_machine =0 | 1 */;

where object is a state register. Data type is Boolean: 0 does not extract an
FSM, 1 extracts an FSM.

Verilog Example

Lattice Synthesis Engine for Diamond User Guide 70

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

nodul e syn_state_machi nel (clk, reset, en, q);
input clk, reset, en;
output[1:0]q;
reg q;
reg [3:0] state, next_state /* synthesis syn_state_nmachine = 0

*/’
paranmeter state0 = 4' b1000;
parameter statel = 4' b0100;
parameter state2 = 4' b0010;

paraneter state3 = 4' b0001;
al ways @ posedge cl k or posedge reset)
begi n
if (reset)
state <= stateO;
el se
state <= next_state;
end

al ways @ st ate)

begin
case (state)
st at e0:
begi n
if (en == 1)
g <= 2'b00;
next _state <= statel;
end
st at el:
begi n
if (en == 1)
g <= 2'b01;
next _state <= state2;
end
st at e2:
begi n
if (en == 1)
g <= 2'bi0;
next _state <= state3;
end
st ate3:
begi n
if (en == 1)
g <= 2'bi1;
next _state <= stateO;
end
endcase
end
endnodul e

Lattice Synthesis Engine for Diamond User Guide 71

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

VHDL Syntax attribute syn_state_machine of object : objectType is true |
false ;

where object is a signal that holds the value of the state machine.

VHDL Example

attribute syn_state_machine of current_state: signal is true;

Following is the source code used for the example in the previous figure.

Lattice Synthesis Engine for Diamond User Guide 72

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_logic_1164.all;
entity syn_statemachine_exp is
port (CLK O, RESET, INl : in std_logic;
QUT1 : out std_logic_vector (2 downto 0)
)

end syn_st at enachi ne_exp;

architecture behave of syn_statenachine_exp is

type ST_VALS is (STATEO, STATEl, STATE2, STATE3);

si gnal STATE, NXT_ST: ST_VALS;

attribute syn_state_nachine : bool ean;

attribute syn_state_machi ne of STATE : signal is true;

begin
process (CLK 0, RESET)
begi n
if RESET = '1' then
STATE <= STATEO;
el sif rising_edge(CLK 0) then
STATE <= NXT_ST,
end if;
end process;

process (STATE, |N1)
begin
case STATE is
when STATEO =>
QUT1 <= "000";
if INL ="'1 then NXT_ST <= STATEI1;
el se NXT_ST <= STATEQ;

end if;
when STATEl1l =>
QUT1 <= "001";

if INL ="'1" then NXT_ST <= STATEZ;
el se NXT_ST <= STATEZ1;
end if;
when STATE2 =>
QUT1 <= "010";
if INL ='1 then NXT_ST <= STATE3;
el se NXT_ST <= STATEZ;
end if;
when ot hers =>
QUT1 <= "XXX'; NXT_ST <= STATEQ;
end case;
end process;

end behave;

Lattice Synthesis Engine for Diamond User Guide 73

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_use_carry_chain
This attribute is used to turn on or off the carry chain implementation for
adders.

Verilog Syntax object synthesis syn_use_carry chain ={1] 0} */;

Verilog Example To use this attribute globally, apply it to the module.

nodul e test (a, b, clk, rst, d) /* synthesis
syn_use_carry_chain = 1 */;

VHDL Syntax attribute syn_use_carry_chain of object : objectType is true |
false ;

VHDL Example

architecture archtest of test is

signal tenp : std_logic;

signal tenpl : std_logic;

signal tenp2 : std_logic;

signal tenp3 : std_logic;

attribute syn_use_carry_chain : bool ean;

attribute syn_use_carry_chain of archtest : architecture is
true;

Lattice Synthesis Engine for Diamond User Guide 74

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_useenables

This attribute controls the use of clock enables on registers in the design.
Usually exploiting clock enables on registers is beneficial. However, there are
timing closure situations where clock enable routing causes timing violations.
This is one reason why the user may want to stop the use of clock enable on
the register.

Verilog Syntax: object /* synthesis syn_useenables ="0 | 1" */;

Verilog Example

nodul e syn_useenabl el (Dinl, Di n2, en, cl k, Dout) ;
input [7:0] Dinl, Dn2;
i nput clk,en;
output [7:0] Dout;
reg [7:0] tenpl;
reg [7:0] Dout /* synthesis syn_useenables = 0*/;
al ways @ posedge cl k)
begi n
templ <= Dinl & Din2;
end
al ways @ posedge cl k)
begin
if(en)
Dout <= tenpl;
end
endnmodul e

VHDL Syntax:
attribute syn_useenables of object : objectType is "true | false";

VHDL Example

Lattice Synthesis Engine for Diamond User Guide 75

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

library ieee;
use ieee.std_| ogic_1164. all

entity syn_useenable2 is

port (
Dinl : in std_logic_vector(7 downto 0);
Din2 : in std_logic_vector(7 downto 0);
clk : in std_logic;
en : in std_logic;
Dout : out std_logic_vector(7 downto 0)
);
end entity;

architecture behave of syn_useenable2 is
signal tenpl : std_logic_vector(7 downto 0);
attribute syn_useenabl es: bool ean
attribute syn_useenabl es of Dout: signal is fal se

begi n
process(cl k)
begin
if clk'event and clk = "1" then
tenmpl <= Dinl and Din2
end if;

end process;

process(cl k)

begin
if clk'event and clk = '1' then
if en ='1" then
Dout <= tenpl;
end if;
end if;
end process
end behave;

Lattice Synthesis Engine for Diamond User Guide 76

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

syn_useioff

This attribute overrides the default behavior to pack registers into I/O pad cells
based on timing requirements for the target Lattice families. Attribute
syn_useioff is Boolean-valued: 1 enables (default) and O disables register
packing. You can place this attribute on an individual register or port or apply it
globally. When applied globally, the synthesis tool packs all input, output, and
I/O registers into /O pad cells. When applied to a register, the synthesis tool
packs the register into the pad cell; and when applied to a port, it packs all
registers attached to the port into the pad cell.

The syn_useioff attribute can be set on the following ports:
top-level port

register driving the top-level port

lower-level port, if the register is specified as part of the port declaration
Verilog Syntax object /*synthesis syn_useioff = {1 | 0} */ ;

Verilog Example To use this attribute globally, apply it to the module.

nodul e test (a, b, clk, rst, d) /* synthesis syn_useioff =1 */;

To use this attribute on individual ports, apply it to individual port declarations.

nmodul e test (a, b, clk, rst, d);
i nput a;
input b /* synthesis syn_useioff =1 */;

VHDL Syntax attribute syn_useioff of object : objectType is true | false ;

VHDL Example

architecture archtest of test is

signal tenp : std_logic;

signal tenpl : std_| ogic;

signal tenp2 : std_| ogic;

signal tenp3 : std_logic;

attribute syn_useioff : bool ean;

attribute syn_useioff of archtest : architecture is true;

translate off/translate_on

This attribute allows you to synthesize designs originally written for use with
other synthesis tools without needing to modify source code. All source code
that is between these two attributes is ignored during synthesis.

Verilog Syntax /* pragma translate_off */
[* pragma translate_on */

Lattice Synthesis Engine for Diamond User Guide 77

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Verilog Example

nodul e real _tine (ina, inb, out);
i nput ina, inb;

out put out;

/* synthesis translate_off */
realtine cur_tine;

/* synthesis translate_on */
assign out = ina & inb

endnmodul e

VHDL Syntax pragma translate_off
pragma translate_on

VHDL Example

library ieee;
use ieee.std_|l ogic_1164. all
entity adder is
port (a, b, cin:in std_logic;
sum cout:out std_logic);
end adder;
architecture behave of adder is
signal al:std_| ogic;
--synthesis transl ate_off
constant al:std_logic:="0'
--synthesis translate_on
begi n
sum <= (a xor b xor cin);
cout <= (a and b) or (a and cin) or (b and cin); end behave;

Inferring Block Primitives

This section describes inferring block primitives, including Memory and DSP
Blocks.

Inferring Memory

This section describes inferring memory, including inferring RAM, RAM with
Synchronous Read, Inferring Dual-Port RAM, Inferring ROM, Initializing
Inferred RAM, and Creating Memory Initialization File.

Lattice Synthesis Engine for Diamond User Guide 78

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Inferring RAM

The basic inferred RAM is synchronous. It can have synchronous or
asynchronous reads and can be either single- or dual-port. You can also set
initial values. Other features, such as resets and clock enables, can be added
as desired. The following text lists the rules for coding inferred RAM.
Following that, Figure 5 on page 79 (Verilog) and Figure 6 on page 80 (VHDL)
show the code for a simple, single-port RAM with asynchronous read.

To code RAM to be inferred, do the following:
Define the RAM as an indexed array of registers.

To control how the RAM is implemented (with distributed or block RAM),
consider adding the syn_ramstyle attribute. “syn_ramstyle” on page 60.

Control the RAM with a clock edge and a write enable signal.

For synchronous reads, see “Inferring RAM with Synchronous Read” on
page 81.

For single-port RAM, use the same address bus for reading and writing.

For dual-port RAM, pseudo and true, see “Inferring Dual-Port RAM” on
page 83.

If desired, assign initial values to the RAM as described in “Initializing
Inferred RAM” on page 87.

Figure 5: Simple, Single-Port RAM in Verilog

nmodul e ram (din, addr, wite_en, clk, dout);
paraneter addr_wi dth = 8;
paraneter data_wi dth = 8;
i nput [addr_wi dth-1:0] addr;
i nput [data_wi dth-1:0] din;
input wite_en, clk;
reg [data_wi dth-1:0] nem [(1<<addr_wi dth)-1:0];
/1 Define RAM as an indexed nmenory array.

al ways @ posedge clk) // Control with a clock edge.
begin
if (wite_en) // And control with a wite enable.
men{ (addr)] <= din;
end
assign dout = nenfaddr];
endnmodul e

Lattice Synthesis Engine for Diamond User Guide 79

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 6: Simple, Single-Port RAM in VHDL

library | EEE;
use | EEE. std_| ogic_1164. all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity ramis
generic (

addr_width : natural := 8;
data_width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
wite_en : in std_|logic;
clk : in std_logic;
din: in std_logic_vector (data_width - 1 downto 0);

dout : out std_logic_vector (data_width - 1 downto 0));
end ram

architecture rtl of ramis
type nemtype is array ((2** addr_width) - 1 downto 0) of
std_l ogi c_vector(data_width - 1 downto 0);
signal mem: nmemtype,;
-- Define RAM as an indexed nenory array.

begin
process (cl k)
begin
if (clk'event and clk = '1") then --Control with clock edge
if (mwite_en ="'1") then -- Control with a wite enable.
men{conv_i nteger(addr)) <= din;
end if;
end if;

end process;
dout <= men{conv_integer(addr));
end rtl;

Lattice Synthesis Engine for Diamond User Guide 80

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Inferring RAM with Synchronous Read

For synchronous reads, add a register for the read address or for the data
output. Load the register inside the procedure or process that is controlled by
the clock. See the following examples. They show the simple RAM of Figure 5
on page 79 (for Verilog) and Figure 6 on page 80 (for VHDL) modified for
synchronous reads. Changes are in bold text.

Verilog Examples

Figure 7: RAM with Registered Output in Verilog

nmodul e ram (din, addr, wite_en, clk, dout);
paraneter addr_wi dth = 8;
paraneter data_wi dth = 8;
i nput [addr_wi dth-1:0] addr;
i nput [data_wi dth-1:0] din;
input wite_en, clk;
out put [data_wi dth-1:0] dout;
reg [data_wi dth-1:0] dout; // Register for output.
reg [data_wi dth-1:0] nem [(1l<<addr_wi dth)-1:0];

al ways @ posedge cl k)
begin
if (wite_en)
men{ (addr)] <= din;
dout = nmenfaddr]; // Qutput register controlled by clock.
end
endnodul e

Figure 8: RAM with Registered Read Address in Verilog

nodul e ram (din, addr, wite_en, clk, dout);
paranmeter addr_wi dth = 8;
parameter data_wi dth = 8;
i nput [addr_w dth-1:0] addr;
i nput [data_wi dth-1:0] din;
input wite_en, clk;
out put [data_wi dth-1:0] dout;
reg [data_wi dth-1:0] raddr; // Register for read address.
reg [data_w dth-1:0] nmem [(1l<<addr_wi dth)-1:0];

al ways @ posedge cl k)

begin
if (wite_en)
begin
men{ (addr)] <= din;
end
raddr <= addr; // Read addr. register controlled by clock.
end
assign dout = nenfraddr];
endnmodul e

Lattice Synthesis Engine for Diamond User Guide 81

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

VHDL Examples

Figure 9: RAM with Registered Output in VHDL

library | EEE;
use | EEE. std_|ogic_1164.all;
use | EEE. std_| ogi c_unsigned. al | ;

entity ramis
generic (

addr_ width : natural := 8;
data_ width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
wite_en : in std_|logic;
clk : in std_logic;
din: in std_logic_vector (data_width - 1 downto 0);

dout : out std_logic_vector (data_width - 1 downto 0));
end ram

architecture rtl of ramis

type nemtype is array ((2** addr_width) - 1 downto 0) of

std_l ogi c_vector(data_width - 1 downto 0);
signal mem: nemtype;

begi n
process (cl k)
begin
if (clk'event and clk = '1") then
if (mwite_en ="'1') then
menm(conv_i nteger (addr)) <= din;
end if;
end if;

dout <= mem(conv_integer(addr));
-- Qutput register controlled by clock.
end process;
end rtl;

Lattice Synthesis Engine for Diamond User Guide

82

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 10: RAM with Registered Read Address in VHDL

library | EEE;
use | EEE. std_| ogic_1164. all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity ramis
generic (

addr_width : natural := 8;
data_width : natural := 8);
port (
addr : in std_logic_vector (addr_width - 1 downto 0);
wite_en : in std_|logic;
clk : in std_logic;
din: in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram

architecture rtl of ramis
type nemtype is array ((2** addr_width) - 1 downto 0) of
std_l ogi c_vector(data_width - 1 downto 0);
signal mem: nmemtype,;

begin
process (cl k)
begin
if (clk'event and clk = "'1") then
if (mwite_en ="1") then
men{conv_i nteger(addr)) <= din;
end if;

raddr <= addr;
-- Read address register controlled by clock.
end if;
end process;
dout <= nmen{conv_integer(raddr));
end rtl;

Inferring Dual-Port RAM
For dual-port RAM, pseudo or true:

Use two address buses.

If the design does not simultaneously read and write the same address,
add the syn_ramstyle attribute with the no_rw_check value to minimize
overhead logic.

If writing in Verilog, use non-blocking assignments.

The following examples are based on the simple RAM of Figure 5 on page 79
(for Verilog) and Figure 6 on page 80 (for VHDL).

Lattice Synthesis Engine for Diamond User Guide 83

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Verilog Examples

Figure 11: Pseudo Dual-Port RAM in Verilog

nmodul e ram (din, wite_en, waddr, wclk, raddr, rclk, dout);
paraneter addr_width = 8;
paraneter data_wi dth = 8;
i nput [addr_wi dth-1:0] waddr, raddr;
i nput [data_wi dth-1:0] din;
input wite_en, wclk, rclk;
out put [data_wi dth-1:0] dout;
reg [data_wi dth-1:0] dout;
reg [data_wi dth-1:0] nmem [(1<<addr_wi dth)-1:0]
/* synthesis syn_ranstyle = "no_rw_check" */ ;

al ways @ posedge wclk) // Wite nenory.
begin

if (wite_en)

menfwaddr] <= din; // Using wite address bus.

end
al ways @ posedge rclk) // Read nenory.
begin

dout <= meniraddr]; // Using read address bus.
end

endnodul e

Figure 12: True Dual-Port RAM in Verilog

modul e ram (dina, wite_ena, addra, clka, douta,
di nb, wite_enb, addrb, clkb, doutb);
paraneter addr_width = 8;
paraneter data_wi dth = 8;
i nput [addr_wi dth-1:0] addra, addrb;
input [data_wi dth-1:0] dina, dinb;
input wite_ena, clka, wite_enb, clkb;
out put [data_wi dth-1:0] douta, doutb;
reg [data_wi dth-1:0] douta, doutb;
reg [data_w dth-1:0] nmem [(1<<addr_wi dth)-1:0]
/* synthesis syn_ranstyle = "no_rw_check" */ ;

al ways @ posedge clka) // Using port a.
begin
if (wite_ena)
men{ addra] <= dina; // Using address bus a.
douta <= nenf addra] ;
end
al ways @ posedge cl kb) // Using port b.
begin
if (wite_enb)
men{ addrb] <= dinb; // Using address bus b.
doutb <= neni addr b] ;
end
endnmodul e

Lattice Synthesis Engine for Diamond User Guide 84

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

VHDL Examples

Figure 13: Pseudo Dual-Port RAM in VHDL

library | EEE;
use | EEE. std_|ogic_1164.all;
use | EEE. std_| ogi c_unsigned. al | ;

entity ramis
generic (

addr_ width : natural := 8;
data_ width : natural := 8);
port (
wite_en : in std_|logic;
waddr : in std_logic_vector (addr_width - 1 downto 0);
welk @ in std_l ogic;
raddr : in std_logic_vector (addr_width - 1 downto 0);
rclk : in std_logic;
din: in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
end ram

architecture rtl of ramis
type nemtype is array ((2** addr_width) - 1 downto 0) of
std_l ogi c_vector(data_width - 1 downto 0);
signal mem: nemtype;
attribute syn_ramstyle: string;
attribute syn_ranmstyle of mem signal is "no_rw check";
begin
process (weclk) -- Wite nenory.
begin
if (welk'event and welk = '1') then
if (mwite_en ="1") then
men{conv_i nteger (waddr)) <= din;
-- Using wite address bus.
end if;
end if;
end process;
process (rclk) -- Read nmenory.
begin
if (rclk'event and rclk ="'1") then
dout <= nenm(conv_i nteger(raddr));
-- Using read address bus.

end if;
end process;
end rtl;

Lattice Synthesis Engine for Diamond User Guide 85

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 14: True Dual-Port RAM in VHDL

library | EEE;
use | EEE. std_| ogic_1164. all;
use | EEE. std_| ogi c_unsi gned. al | ;

entity ramis
generic (

addr_width : natural := 8;
data_width : natural := 8);
port (
addra : in std_logic_vector (addr_width - 1 downto 0);
wite_ena : in std_|logic;
clka : in std_logic;
dina : in std_logic_vector (data_width - 1 downto 0);

douta : out std_logic_vector (data_width - 1 downto 0);

addrb : in std_logic_vector (addr_width - 1 downto 0);

wite_enb : in std_logic;

clkb : in std_logic;

dinb : in std_logic_vector (data_wi dth - 1 downto 0);

doutb : out std_logic_vector (data width - 1 downto 0));
end ram

architecture rtl of ramis
type nemtype is array ((2** addr_width) - 1 downto 0) of
std_l ogi c_vector(data_width - 1 downto 0);
signal mem: nemtype;
attribute syn_ranmstyle: string;
attribute syn_ranmstyle of mem signal is "no_rw check";
begin
process (clka) -- Using port a.
begin
if (clka' event and clka = "'1') then
if (wite_ena = "'1") then
men{conv_i nteger (addra)) <= dina;
-- Using address bus a.
end if;
douta <= nen(conv_integer(addra));
end if;
end process;
process (clkb) -- Using port b.
begin
if (clkb'event and clkb = '1') then
if (wite_enb ="'1") then
men{ conv_i nt eger (addrb)) <= di nb;
-- Using address bus b.
end if;
doutb <= nen(conv_i nteger (addrb));
end if;
end process;
end rtl;

Inferring ROM
To code ROM to be inferred, do the following:

Define the ROM with a case statement or equivalent if statements.

Lattice Synthesis Engine for Diamond User Guide 86

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Assign constant values, all of the same width.

Assign values for at least 16 addresses or half of the address space,
whichever is greater. For example, if the address has 6 bits, the address
space is 64 words, and at least 32 of them must be assigned values.

To control how the ROM is implemented (with distributed or block ROM),
consider adding the syn_romstyle attribute. See “syn_romstyle” on
page 1339.

Figure 15: ROM Inferred with Case Statement in Verilog

modul e ron(data, addr);
output [3:0] data;
input [4:0] addr;
al ways @addr) begin
case (addr)

0 : data = 'h4;
1 : data = 'h9;
2 . data = 'hil;
15 : data = 'hS§;
16 : data = 'hi;
17 : data = 'hO;
default : data = 'hO;
endcase
end
endnodul e

Figure 16: ROM Inferred with If Statement in VHDL

entity romis

port (addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 dowto 0));
end rom

architecture behave of romis

begin
process(addr)
begin
if addr = 0 then data <= "0100";
elsif addr = 1 then data <= "1001";

el sif addr 2 then data <= "0001";

elsif addr

= 15 then data <= "1000";
elsif addr = 16 then data <= "0001";
elsif addr = 17 then data <= "0000";
el se data <= "0000";
end if;
end process;
end behave;

Initializing Inferred RAM

The following examples show how to infer RAM.

Lattice Synthesis Engine for Diamond User Guide 87

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Inferring Block Primitives

Examplel To specify RAM initial contents, initialize the signal describing the
memory array in Verilog code using initial statements as shown in the
following coding example.

Figure 17: Initializing Block RAM Verilog Coding Example

nodul e v_rans_20a (clk, we, addr, di, do);

i nput clk;
i nput we;

input [5:0] addr;
input [19:0] di;

out put [19:0] do;
ram[63:0];
reg [19:0] do;

reg [19:0]

initial begin

ranf 63] = 20' h0200A; rani62] = 20' h00300; ran{61] = 20' h08101;

ranf 60] = 20' h04000; rani59] = 20' h08601; ran{58] = 20' h0233A;

ran{ 57] = 20' h00300; rani56] = 20' h08602; ran{55] = 20' h02310;

ran{ 54] = 20' h0203B; rani53] = 20' h08300; ran{52] = 20' h04002;

ranf 511 = 20' h08201; rani50] = 20' h00500; ran{49] = 20' h04001;

ranf 48] = 20' h02500; rani47] = 20' h00340; ran{46] = 20' h00241,

ranf 45] = 20' h04002; rani44] = 20' h08300; ran{43] = 20' h08201;

ranf 42] = 20' h00500; rani41] = 20'h08101; ranf{40] = 20' h00602;

ran{ 39] = 20' h04003; rani38] = 20' h0241E; ran{37] = 20' h00301;

ran{ 36] = 20' h00102; rani35] = 20'h02122; ran{34] = 20' h02021;

ranf 33] = 20' h00301; ranf32] = 20'h00102; ran{31] = 20' h02222;

ranf 30] = 20' h04001; ranf29] = 20' h00342; ran{28] = 20' h0232B;

ranf 27] = 20'h00900; rani26] = 20' h00302; ran{25] = 20'h00102;

ranf 24] = 20' h04002; rani23] = 20'h00900; ranf{22] = 20' h08201;

ranf 21] = 20' h02023; rani20] = 20'h00303; ranf{19] = 20' h0243S3;

ran{ 18] = 20' h00301; rani17] = 20' h04004; ran{16] = 20' h00301;

ranf 15] = 20' h00102; ranf14] = 20'h02137; ran{13] = 20' h02036;

ranf 12] = 20' h00301; rani11] = 20'h00102; rani10] = 20' h02237;
ranf 9] = 20' h04004; ran{8] = 20'h00304; ran{7] = 20' h04040;
ranf{ 6] = 20' h02500; ran{5] = 20' h02500; ran{4] = 20'h02500;
ran{ 3] = 20' h0030D; ran{2] = 20'h02341; ranil] = 20' h08201;
ranf 0] = 20' h0400D;

end

al ways @ posedge cl k)

begi n

if (we)

ranfaddr] <= di;

do <= ranfaddr];

end

endnmodul e

Lattice Synthesis Engine for Diamond User Guide 88

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Inferring Block Primitives

Example2 To initialize RAM from values contained in an external file, use a

$readmemb or $readmemh system task in Verilog code.

Figure 18: Initializing Block RAM (External Data File) Verilog Coding

Example

nmodul e ram.int1(input clk, we, input[31:0] inl,
[3:0]addr, output[31:0] out);

reg[31:0] nmem[15:0]/*synthesis syn_ranstyl e=
reg [31:0] outl;

initial
begi n

$readmenh("dat a. dat", menj;
end
al ways @ posedge cl k)
begin
if (we)

meni addr] <= inl;
el se

outl <= neniaddr];
end
assign out = outl;
endnodul e

i nput

"bl ock_ram'*/ ;

Lattice Synthesis Engine for Diamond User Guide

89

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Inferring Block Primitives

Example 3 To specify RAM initial contents, initialize the RAM in the VHDL

code with signal declarations or with variable declarations.

Figure 19: Initializing VHDL Rams with Signal Declarations

library ieee;

use ieee.std_|ogic_1164. all

use ieee.std_| ogi c_unsigned. al |
entity w.r2048x8 is

port (

clk : in std_| ogic;

adr : in std_logic_vector(10 downto 0);
di : in std_logic_vector(7 downto 0);
we : in std_|logic;

dout : out std_logic_vector(7 downto 0));
end;

architecture arch of w r2048x8 is

-- Signal Declaration --

type MEMis array(0 to 2047) of std_logic_vector (7 downto 0)

signal menory : MEM : = (
" 00000000"
"01111000"
"10110011"
"01111000"
"10011011"
"11111111"
"10011011"
"01111000"
"10110011"
"01111000"
" 00000000"
"10000111"
"01001100"
"10000111"
"01100100"
" 00000000"
"01100100"
"10000111"
"01001100"
"10000111"
"11111111"
"01111000"
"10110011"
"01111000"
"10011011"
"11111111"
,others => (others => '0"));
begin
process(cl k)
begi n
if rising_edge(clk) then
if (we ="1") then
menory(conv_i nteger(adr)) <= di
end if;
dout <= nmenory(conv_integer(adr));
end if;
end process
end arch;

Lattice Synthesis Engine for Diamond User Guide

90

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Example 4 To specify RAM initial contents, initialize the RAM in the VHDL
code with readline and read task in VHDL code.

Figure 20: Initializing Block RAM (External Data File) VHDL Coding
Example

library ieee;

use ieee.std_l ogic_1164.all;

use ieee.std_| ogi c_unsigned. all;
use std.textio.all;

entity rams_20c is

port(clk : in std_logic;

we : in std_|logic;
addr : in std_logic_vector(5 downto 0);
din: in std_|l ogic_vector(31 downto 0);

dout : out std_logic_vector(31 downto 0));

end rans_20c;

architecture syn of rans_20c is

type RaniType is array(0 to 63) of bit_vector(31 downto 0);
impure function InitRanFronFile (RanFileNane : in string)
return RanType is

FILE RanFile : text is in RanFileNane;

variable RanFileLine : |ine;
vari abl e RAM : Ranilype;
begin

for I in RanType'range | oop

readl i ne (RanFile, RanFilelLine);

read (RanFileLine, RAMI));

end | oop;

return RAM

end function;

signal RAM: RanfType := InitRanFronfile("rams_20c.data");
begin

process (cl k)

begi n

if clk'event and clk = "'1" then

if we ="1" then

RAM conv_i nteger (addr)) <= to_bitvector(din);

end if;

dout <= to_stdlogicvector(RAM conv_i nteger(addr)));
end if;

end process;

end syn;

Creating Memory Initialization File

If the RAM initialization file is an external data file, there are two ways to point
to the initialization file.

1. Assign the RAM initial file name in the VHDL or Verilog code and set the
location in the “memory initial value file search path” in the LSE project file
or the Diamond project Strategy setting. For example:

Initial begin
$readnmenh("data. dat", nmem;
End

Lattice Synthesis Engine for Diamond User Guide 91

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

The “memory initial value file search path” is an absolute path, i.e.
“C: /design/undesigned/source"

2. Assign the RAM initial file name in the VHDL or Verilog code and its
relative path. For example:

Initial begin
$readmenh("../source/data.dat", men);
end

Inferring Lattice DSP Blocks Using
Behavioral HDL

LSE uses the DSP feature efficiently. LSE packs multipliers, registers, adders,
subtractors, and accumulators to DSP blocks. During the inference LSE
checks all the design rule checks (DRCs). Based on the feasibility, LSE will
pack these primitives to DSP blocks as best as possible.

The following examples include MULT, MULTADDSUB, MULTADDSUBSUM,
and MULTACC.

MULT9X9

9X9 multiplier with/without output registers.

MULT18X18

18X18 multiplier with/without output registers.

MULT36X36

36X36 multiplier with/without output registers.

Following are Verilog and VHDL code examples for MULT.

Lattice Synthesis Engine for Diamond User Guide 92

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 21: MULT - Verilog without Register

“timescale 1 ns / 1 ns
nodul e mult(a, b, c);

paraneter A W DTH
paraneter B W DTH

9;
9;

input [(AWDTH - 1):0] a;
input [(B_WDTH - 1):0] b;
output [(AWDTH + B WDTH - 1):0] c;

assign ¢ = a*b;

endnodul e

Figure 22: MULT - Verilog with Register

“tinmescale 1 ns / 1 ns

nmodul e nmult _reg(clk, a, b,c,rst);

paraneter A WDTH = 9;
paraneter B WDTH = 9;
i nput rst;
i nput cl k;

input [(AWDTH - 1):0] a;

input [(B_WDTH - 1):0] b;

output [(AWDITH + B WDTH - 1):0] c;
reg [(AWDTH + B WDTH - 1):0] c;

al ways @ (posedge cl k)

begin
if (rst)
c <= 18' b0;
el se
c <= a*b;
end
endnodul e

Lattice Synthesis Engine for Diamond User Guide 93

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 23: MULT - VHDL without Register

library ieee;

use ieee.std_logic_1164. all;
--use ieee.nuneric_std.all;

use ieee.std_| ogi c_unsigned. all;

entity Mult is

generic (data_width_a: integer := 9;
data_width_b: integer := 9
)
port (a in std_l ogi c_vector(data_w dth_a-1 downto
0);
b cin std_l ogi c_vector(data_w dth_b-1 downto
0);
q . oout
std_l ogi c_vector(data_w dth_a+data_w dth_b-1 downto 0)
)
end Ml t;

architecture rtl of Milt is

--attribute syn_nultstyle : string ;

--attribute syn_nultstyle of g : signal is "dsp" ;
begin

g <=a?* b;

end rtl;

Lattice Synthesis Engine for Diamond User Guide

94

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 24: MULT - VHDL with Register

library ieee

use ieee.std_|l ogic_1164. al |
--use ieee.nuneric_std.all

use ieee.std_| ogi c_unsigned. all;

entity Miult is

generic (data_width_a: integer := 9;
data_ width_b: integer := 9
)
port (a cin std_l ogi c_vector(data_w dth_a-1 downto
0);
b ©in std_l ogi c_vector(data_w dt h_b-1 downto
0);
clk : in std_logic
rst : in std_logic;
q . oout
std_| ogi c_vector(data_w dth_a+data_w dth_b-1 downto 0)
)
end Ml t;

architecture rtl of Mult is

--attribute syn_nultstyle : string ;

-- attribute syn_nultstyle of q : signal is "dsp"

signal g_s,tenp
:std_logic_vector(data_wi dth_a+data wi dth_b-1 downto 0);
begin

g_s <= a * b;

process(clk, rst)

begi n
if rst ="'1 then
q <= (others=>'0");
elsif clk'event and clk = "'1'" then
q <= q_s;
end if;

end process;

end rtl;

MULTADDSUB

Two multipliers driving adder/subtractor.

Following are Verilog and VHDL code examples for MULTADDSUB.

Lattice Synthesis Engine for Diamond User Guide 95

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 25: MULTADDSUB - Verilog without Register

“timescale 1 ns/ 1 ns
nodul e nul taddsub(a, b, c, q);

paraneter A W DT

H
paraneter B_W DTH

9;
9;

input [(AWDTH - 1):0] a;
input [(B_WDTH - 1):0] b;
input [(AWDTH + B.WDTH - 1):0] c;
output [(AWDTH + B WDTH - 1):0] q;

assign g = a*b+c;

endnodul e

Figure 26: MULTADDSUB - Verilog with Register

“timescale 1 ns / 1 ns

nmodul e Mul t addsub_reg(cl k, a, b, c, q,arst);

parameter A WDTH = 9;
paraneter B_WDTH = 9;
i nput arst;
i nput cl k;

input [(AWDTH - 1):0] a;

input [(B_WDTH - 1):0] b;

input [(AWDTH + B WDTH - 1):0] c;
output [(AWDTH + B WDTH - 1):0] q;

reg [(AWDIH + B WDTH - 1):0] reg_tnp_c;
assign g = reg_tnp_c;

al ways @ posedge cl k, posedge arst)
begi n
i f(arst)
begin
reg_tmp_c <= 0;
end
el se
begi n
reg_tnp_c <= a*b+c;
end

Lattice Synthesis Engine for Diamond User Guide 96

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 27: MULTADDSUB - VHDL without Register

library ieee;
use ieee.std _logic_1164.all;
use ieee.std_| ogi c_unsigned. all;

entity Multaddsub is

generic (data_width_a: integer := 9;
data_width_b: integer :=9;
data_width_c: integer := 18;

product _w dth: integer :=18);

port (a cin std_l ogi c_vector(data_w dth_a-1 downto
0 b ©in std_l ogi c_vector(data_w dt h_b-1 downto
o c cin std_| ogi c_vector(data_w dt h_c-1 downto
0 q : out std_logic_vector(product_wi dth-1 downto
0);

end Mul t addsub;

architecture rtl of Miltaddsub is

--attribute syn_nultstyle : string ;
--attribute syn_nmultstyle of g : signal is "dsp" ;

begin
g <= a*b + c;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 97

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 28: MULTADDSUB - VHDL with Register

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_| ogic_unsigned. all;

entity Multaddsub_reg is

generic (data_width_a: integer := 9;
data_width_b: integer := 9;
data_width_c: integer := 18;

product _wi dth: integer :=18);

port (a s in std_l ogi c_vector(data_w dth_a-1 downto
0);
b s in std_l ogi c_vector(data_w dt h_b-1 downto
0);
c cin std_| ogi c_vector(data_w dt h_c-1 downto
0);
clk : in std_l ogi c;
arst : in std_l ogi c;
q : out std_logic_vector(product_wi dth-1 downto
0);

end Mul t addsub_r eg;

architecture rtl of Miltaddsub_reg is

--attribute syn_nmultstyle : string ;
--attribute syn_nmultstyle of g : signal is "dsp" ;

begin

process(cl k, arst)
begi n
if arst = '1' then
g <= (others =>"'0");
elsif clk'event and clk = "'1'" then
g <= a*b + c;
end if;
end process;
end rtl;

MULTADDSUBSUM

Four multipliers driving two adders/subtractors driving one adder.

Following are Verilog and VHDL code examples for MULTADDSUBSUM.

Lattice Synthesis Engine for Diamond User Guide 98

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 29: MULTADDSUBSUM - Verilog without Register

nmodul e Mul t addsubsum(out, ina, inb, inc, ind, ine, inf, ing,

i nh);

parameter Data_width_in = 9;

parameter Data_wi dth_out = 19;

output [Data_wi dth_out-1:0] out;

input [Data_width_in-1:0] ina, inb, inc, ind, ine, inf,
ing, inh;

wi re[Data_w dt h_out-2: 0] prod4, prodl, prod2, prod3;

wire[Data_wi dt h_out-2: 0] w reSum

wire[Data_w dth_out-2: 0] w reSuni;

assign prodl = ina*inb;
assign prod2 = inc*ind,
assign prod3 = ine*inf;
assign prod4 = ing*inh;

assign wireSum = prodl + prod2;
assign wireSunl = prod3 + prod4;
assign out = wi reSum+ w reSunt;

endnodul e

Lattice Synthesis Engine for Diamond User Guide

99

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 30: MULTADDSUBSUM - Verilog with Register

nmodul e Mul t addsubsum reg(out, ina, inb, inc, ind, ine, inf,
ing, inh,clk4, clkl, clk2, clk3);

parameter Data_width_in = 9;

parameter Data_w dth_out = 19;

output [Data_wi dth_out-1:0] out;

input [Data_width_in-1:0] ina, inb, inc, ind, ine, inf,
ing, inh;

i nputcl k1, clk2, clk3, clk4;

wire[Data_wi dt h_out-2: 0] prod4, prodl, prod2, prod3;

wire[Data_w dth_out-2: 0] wreSum

wire[Data_wi dth_out-2: 0] w reSunt;

reg [Data_width_in-1: 0] inaReg , indReg, ineReg, inhReg;

/1reg [17:0] outReg;

assi gn prodl = i naReg*i nb;
assign prod2 = inc*indReg;
assi gn prod3 = ineReg*inf;
assign prod4 = ing*inhReg;

assign wireSum = prodl + prod2;
assign wireSunl = prod3 + prod4;
assign out = wireSum+ w reSunt;

al ways @ posedge cl kl)
begi n

i naReg = ina;
end

al ways @ posedge cl k2)
begin

i ndReg = ind;
end

al ways @ posedge cl k3)
begi n

i neReg = ine;
end

al ways @ posedge cl k4)
begi n

i nhReg = inh;
end
endnodul e

Lattice Synthesis Engine for Diamond User Guide 100

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 31: MULTADDSUBSUM - VHDL without Register

library ieee;
use ieee.std_| ogic_1164. all;
use i eee.std_| ogic_unsigned. all;

entity Miltaddsubsumis

generic (data_wi dth_a : integer :=9;
data_width_b : integer :=9;
data_ width c : integer :=9;
data width_d . integer := 9
)
port (a :in std_l ogi c_vector(data_wi dth_a-1
downto 0);
b in std_| ogi c_vector(data_w dth_b-1 downto
0);
c in std_l ogi c_vector(data_w dth_c-1 downto
0);
d in std_|l ogi c_vector(data_w dth_d-1 downto
0);
e in std_l ogi c_vector(data_wi dth_a-1 downto
0);
f in std_l ogi c_vector(data_w dth_b-1 downto
0);
g in std_|l ogi c_vector(data_wi dth_c-1 downto
0);
h 1 in std_l ogi c_vector(data_w dth_d-1 downto
0);
-- sum : out
std_l ogi c_vector(data_w dth_a+data_w dth_c downto 0);
q o oout

std_l ogi c_vector(data_wi dth_a+data_wi dth_c-1 downto 0));
end Mul t addsubsum

architecture rtl of Miltaddsubsumis
--attribute syn_nultstyle : string ;
--attribute syn_nultstyle of g : signal is "dsp" ;
signal sumsl, sums?2
std_l ogi c_vector(data_w dt h_a+data wi dth_c-1 downto 0);
begin
sum sl <= a*b + c*d;
sums2 <= e*f + g*h;

q <= sum sl + sum sS2;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 101

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 32: MULTADDSUBSUM - VHDL with Register

library ieee;
use ieee.std_|l ogic_1164. all;
use ieee.std_| ogic_unsigned. all;

entity Multaddsubsumis

generic (data_w dth_a : integer :=9;
data_width_b : integer :=9;
data_ width_c : integer :=9;
data_width_d . integer := 9
)
port (a in std_l ogi c_vector(data_width_a-1
downto 0);
b s in std_l ogi c_vector(data_w dt h_b-1 downto
0);
c s in std_|l ogi c_vector(data_w dth_c-1 downto
0);
d s in std_l ogi c_vector(data_w dth_d-1 downto
0);
e s in std_| ogi c_vector(data_w dt h_a-1 downto
0);
f s in std_l ogi c_vector(data_w dth_b-1 downto
0);
g cin std_l ogi c_vector(data_w dth_c-1 downto
0);
h s in std_| ogi c_vector(data_w dt h_d-1 downto
0);
clk : in std_l ogi c;
arst : in std_l ogi c;

-- sum : out
std_l ogi c_vector(data_w dth_a+data_wi dth_c downto 0);
q : out
std_l ogi c_vector(data_w dth_a+data_wi dth_c-1 downto 0));
end Ml t addsubsum

architecture rtl of Miltaddsubsumis

--attribute syn_nultstyle : string ;
--attribute syn_nultstyle of g : signal is "dsp" ;
signal sumsl, sums2

std_l ogi c_vector(data_w dth_a+data wi dth_c-1 downto 0);

begin

sum sl <= a*b + c*d;
sums2 <= e*f + g*h;
--g <= sum sl + sums2;

process(cl k, arst)
begin
if arst = '1" then
g <= (others=>'0");
elsif clk'event and clk ="'1" then
g <= sum sl + sums2;
end if;
end process;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 102

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

MULTACC

One or two multipliers driving accumulator.

Following are Verilog and VHDL code examples for MULTACC.

Figure 33: MULTACC - Verilog without Register

“timescale 1 ns / 1 ns
modul e nul tacc(a, b, q);

9;
9;

paranmeter A WDTH
paraneter B_W DTH

i nput unsigned [(A WDTH - 1):0] a;
i nput unsigned [(B WDTH - 1):0] b;
out put unsigned [(AWDTH + B WDTH - 1):0] q;

assign g = a*b+q;

endnodul e

Figure 34: MULTACC - Verilog with Register

“tinmescale 1 ns / 1 ns

nmodul e mul tacc_unsign_8_8(clk, a, b, g, set);

paraneter A WDTH = 9;
paraneter B_WDTH = 9;
i nput set;
i nput cl k;

i nput unsigned [(AWDTH - 1):0] a;
i nput unsigned [(B_WDTH - 1):0] b;
out put unsigned [(AWDTH + B WDTH - 1):0] q;

reg [(AAWDTH + B WDTH - 1):0] reg_tnp_c;
assign q = reg_tnp_c;

al ways @ posedge cl k)
begin
i f(set)
begin
reg_tnp_c <= 0;
end
el se
begin
reg_tnp_c <= a*b+q;
end
end

Lattice Synthesis Engine for Diamond User Guide 103

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Figure 35: MULTACC - VHDL without Register

library ieee;

use ieee.std _logic_1164. all;
--use ieee.nuneric_std.all;

use ieee.std_| ogi c_unsigned. all;

entity Miultacc is
generic (data_width_a: integer := 9;
data_width_b: integer := 9;
product _wi dth: integer :=19);

port (
a cin std_l ogi c_vector(data_w dth_a-1 downto 0);
b cin std_| ogi c_vector(data_wi dth_b-1 downto 0);
q . out std_logic_vector(product_w dth-1 downto 0)
)

end Mul t acc;

architecture rtl of Miultacc is

--attribute syn_nultstyle : string ;

--attribute syn_nultstyle of q : signal is "dsp" ;

signal g_s : std_logic_vector(product_wi dth-1 downto
0):=(others=>"0");

signal g_sl1 : std_logic_vector(data_w dth_a+data width_b-1
downto 0):=(others=>'0");

begin
gq_sl <= a*b;
q <= q_s;

q_s <= (' 0"&qy_sl) + q_s;

end rtl;

Lattice Synthesis Engine for Diamond User Guide 104

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Optimizing LSE for Area and Speed

Figure 36: MULTACC - VHDL with Register

library ieee;

use ieee.std_|logic_1164.all;
--use ieee.nuneric_std.all;

use ieee.std_| ogi c_unsigned. al | ;

entity Multacc_reg is
generic (data_width_a: integer := 9;
data width_b: integer := 9;
product _w dth: integer :=19);

port (clk,rst : in std_logic;
a in std_|l ogi c_vector(data_w dth_a-1 downto
0);
b cin std_l ogi c_vector(data_w dth_b-1 downto
0);
q : out std_logic_vector(product_wi dth-1 downto 0)
).

end Multacc_reg;

architecture rtl of Miultacc_reg is

--attribute syn_nultstyle : string ;

--attribute syn_nultstyle of g : signal is "dsp" ;

signal g_s : std_logic_vector(product_wi dth-1 downto
0):=(others=>'0");

signal g_sl1 : std_logic_vector(data_w dth_a+data width_b-1
downto 0):=(others=>'0");

begin
g_sl <= a*b;
q <= q_s;
process(clk, rst)
begi n
if rst ='0" then
g_s <= (others =>'0");
elsif clk'event and clk = "'1' then
g_s <= ('0'&q_s1) + q_s;
end if;

end process;

end rtl;

Optimizing LSE for Area and Speed

The following strategy settings for LSE can help reduce the amount of FPGA
resources that your design requires or increase the speed with which it runs.
(For other synthesis tools, see those tools’ documentation.) Use these
methods along with other, generic coding methods to optimize your design.
Also, consider using the predefined Area or Timing strategies.

Lattice Synthesis Engine for Diamond User Guide 105

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Optimizing LSE for Area and Speed

Minimizing area often produces larger delays, making it more difficult to meet
timing requirements. Maximizing frequency often produces larger designs,
making it more difficult to meet area requirements. Either goal, pushed to an
extreme, may cause the place and route process to run longer or not
complete routing.

To control the global performance of LSE, modify the strategy settings.
Choose Project > Active Strategy > LSE Settings. In the Strategy dialog
box, set the following options, which are found in Synthesize Design > LSE.
See the following text for explanations and more details.

Table 3: LSE Strategy Settings for Area and Speed

Option Area Speed

FSM Encoding Style Binary or Gray One-Hot
Max Fanout Limit <maximum> <minimum>
Optimization Goal Area Timing
Remove Duplicate Registers True False
Resource Sharing True False

Target Frequency <minimum>

Use IO Registers Auto or True Auto or False

FSM Encoding Style If your design includes large finite state machines, the
Binary or Gray style may use fewer resources than One-Hot. Which one is
best depends on the design. One-Hot is usually the fastest style. However, if
the finite state machine is followed by a large output decoder, the Gray style
may be faster.

Max Fanout Limit A larger fanout limit means less duplicated logic and
fewer buffers. A lower fanout limit may reduce delays. The default is 1000,
which is essentially unlimited fanout. Select a balanced fanout constraint. A
large constraint creates nets with large fanouts, and a low fanout constraint
results in replicated logic. You can use this in conjunction with the
syn_replicate attribute. See “syn_replicate” on page 1337. To minimize area,
don't lower this value any more than needed to meet other requirements. To
minimize speed, try much lower values, such as 50.

You can change the fanout limit for portions of the design by using the
syn_maxfan attribute. See “syn_maxfan” on page 1325. Set Max Fanout Limit
to meet your most demanding requirement. Then add syn_maxfan to help
other requirements.

Optimization Goal If setto Area, LSE will choose smaller design forms
over faster whenever possible.

If set to Timing, LSE will choose faster design forms over smaller whenever
possible. If a create_clock constraint is available in an .Idc file, LSE ignores
the Target Frequency setting and uses the value from the create_clock
constraint instead.

Lattice Synthesis Engine for Diamond User Guide 106

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Optimization Options

If you are having trouble meeting one requirement (area or speed) while
optimizing for the other, try setting this option to Balanced.

Remove Duplicate Registers Removing duplicate registers reduces area,
but keeping duplicate registers may reduce delays.

Resource Sharing If set to True, LSE will share arithmetic components
such as adders, multipliers, and counters whenever possible.

If the critical path includes such resources, turning this option off may reduce
delays. However, it may also increase delays elsewhere, possibly reducing
the overall frequency.

Target Frequency A lower frequency target means LSE can focus more on
area. A higher frequency target may force LSE to increase area. Try setting
this value to about 10% higher than your minimum requirement. If
Optimization Goal is set to Timing and a create_clock constraint is available in
an .Idc file, LSE will use the value from the create_clock constraint instead.

Use 10 Registers If set to True, LSE will pack all input and output registers
into I/O pad cells. Register packing reduces area but adds delays.

Auto, the default setting, enables this register packing if Optimization Goal is
set to Area. If Optimization Goal is Timing or Balanced, Auto disables register
packing.

You can also control packing on individual registers. See “syn_useioff” on
page 1352. Set Use IO Registers to meet your most demanding requirement.
Then add syn_useioff to help other requirements.

Specifying Optimization Options

This section describes options provided by LSE to optimize your design.

Preserving Objects from Optimization

Nets can be removed or collapsed during optimization. Attributes can be used
to retain a net for synthesis implementations such as simulation. Duplicate
registers are removed in synthesis. Use attributes to preserve logic for
simulation or analysis.

Setting Fanout Limits

You can use the Max Fanout Limit strategy to specify the maximum fanout
setting. LSE will make sure that any net in the design is not exceeding this
limit. Default is 1000 fanouts. This option is equivalent to the “-max_fanout”
option in the SYNTHESIS command. See “Max Fanout Limit” on page 12.

Lattice Synthesis Engine for Diamond User Guide 107

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Sharing Resources

You can use the Resource Setting strategy to optimize area. With resource
sharing, synthesis uses the same arithmetic operators for mutually exclusive
statements; for example, with the branches of a case statement. Conversely,
you can improve timing by disabling resource sharing, but at the expense of
increased area.See “Resource Sharing” on page 16.

Inserting 1/0Os

LSE uses I/O insertion and GSR to optimize designs. For more information on
this strategy, see “Use 10 Insertion” on page 17

Optimizing State Machines

You can use the FSM Encoding Style strategy to optimize state machines.
Valid options are auto, one-hot, gray, and binary. The default value is auto,
meaning that the tool looks for the best implementation. See “FSM Encoding
Style” on page 11

Working with Gated Clocks

The Fix Gated Clocks strategy can change standard gated clocks to forms
more effective for FPGAs. See “Fix Gated Clocks” on page 10

Analyzing the Synthesis Report

Lattice Diamond generates log files for all project activities. The log files
contain processing information, as well as error and warning messages. If you
run processes, reports are generated.

Viewing Logs and Reports

A log file is displayed in the Output frame as a process is running. A scroll bar
can be used to scroll up and down in the information.

Errors are displayed in red. Warnings are displayed in orange. There are also
information messages. These messages are also displayed in the Warning,
Error, and Info views. These views may not automatically be visible in your
Diamond main window. To turn on the views, choose View > Show Views >
<view>. A check mark indicates the view is displayed.

Lattice Synthesis Engine for Diamond User Guide 108

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Viewing Reports The Reports view displays reports for the major
processes.

There are two panes in the Reports view. The left pane lists the Design
Summary information including the report types. The reports in detail are
displayed in the right pane.

Type of Report Description

Project Summary Lists the summary information of the project including module
name, synthesis tool chosen, implementation name, strategy
name, target device, device family, device type, package type,
performance grade, operating conditions, logic preference file,
software product version, project file name, and location.

Process Reports Lists the synthesis, map, place and route, signal/pad, and
bitstream reports in HTML format.

Analysis Reports Lists the trace and timing reports.

Tool Reports Lists the I/O SSO analysis, hierarchy parsing, PIO DRC, and ECO
Editor reports. Also has a log of Tcl commands used in recent
sessions.

Messages Lists the implementation messages and user defined filters for the
messages.

In the Design Summary pane, there is the report icon [1‘] If a report has been
generated, the icon appears as @ If the report is not the most recent version,
the icon appears as _j To view the contents of the entire report, click on the
report to be viewed. The entire report is then displayed in the right pane of the
Reports view. Use the scroll bar to navigate through the report. Some of the
reports are divided into sections (for example, Map, Place & Route, and
Signal/Pad). Expand the report listing to display the sections in a list. Choose
the desired section. The whole report will be displayed with the selected
section displayed at the top of the right pane of the Reports view.

You can navigate the reports quickly by using the Find function (right-click in
the right pane of the Reports view and choose Find in Text).

Other Reports The Synthesize Design stage produces reports that do not
appear in the Reports view. You can find these reports in the implementation
folder. In the File List view, right-click the implementation name and choose
Open Containing Folder. A window will open showing the contents of the
folder. All of these reports can be read with a text editor.

One of the reports is a detailed description of the device resources that will be
used by the design. This report is much more detailed than the synthesis
report in the Reports view. The report includes the resources used by each
module of the design. Similar information can also be found in the Hierarchy
view. For Synplify Pro, look for <top_module>.areasrr; for Lattice Synthesis
Engine, look for <top_module>.arearep.

Lattice Synthesis Engine for Diamond User Guide 109

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Cross-Probing from Reports to
Schematics

While studying one of the timing or trace reports you might want to see where
a module or port is in the design. You can cross-probe, or jump, from the LSE
timing report and from the place & route trace report to a schematic view of
the design.

To cross-probe from the LSE timing report to a schematic view:
1. After running synthesis with LSE, open the Reports view.

2. Inthe Design Summary column, click LSE Timing Report. It's under
Analysis Reports.

3. Select text that has the name of one or more module instances or ports of
interest.

4. Right-click and choose Filter in Netlist Analyzer.

Netlist Analyzer opens with the technology netlist view of the selected
objects. For more information, see “Analyzing Using Netlist Analyzer” on
page 112.

To cross-probe from the place & route trace report to a schematic view:

1. After running place & route of the design, choose Tools > Synplify Pro
for Lattice.

2. In Synplify Pro, click the Implementation Directory tab.
3. Find the .twr file and double-click it.
A text editor opens in Synplify Pro with the report.
4. Find the name of an instance or port of interest and select it.
Right-click in the selected name and choose one of the following:
Filter in Analyst to see the item by itself
Select in Analyst to find the item in the full schematic

6. If a suitable Analyst view is not open, a dialog box asks if you want to
open one. Click Yes.

7. Go to the Analyst schematic view to see the item.

Navigating Messages/Warnings

If an error or a warning results from the specific line in an HDL source file, you
can easily go to that line to edit the source file.

To navigate errors and warnings:

In the Reports, Output, Error, or Warning view, double-click the line
describing the error or warning.

Lattice Synthesis Engine for Diamond User Guide 110

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

In the Reports, Output, Error, or Warning view, right-click the message
and choose Locate in > Text Editor. If the command is dimmed, there is
no link to a source file. Depending on the message, more than one tool
may be available to view the source. Choose the one you want to use.

Finding Results Your default text editor opens with the appropriate HDL
source file at the line number specified in the error or warning message. You
can then modify the file to debug your design.

After you load a design in Diamond, you can find the information you need via
the following ways.

In the active Reports view, choose Edit > Find. You can type the desired
text into the Find field at the bottom-left of the Reports view window. The
first occurrence of the desired text will be found and highlighted in the right
side of the window for you. Click Next or Previous to find more. And
check the Case Sensitive option if needed for the search. While typing in
the text, the Find field will be automatically colored if no occurrence of the
text is found.

In the active Source Editor, after choosing Edit > Find, you will get the
Find and Replace dialog box. You can enter the text you want to search in
the Find What field and start a search. Use the Find Next command to
find more. If you want to replace the current find, you can use the Replace
tab of the dialog box. Check Match Case, Match Whole Word, Search
Up, Regular Expression options as needed. Use the Replace or
Replace All command to replace the text found.

If you want to find information without loading the files, you can choose
Edit > Find in Files from Diamond main window. In the pop-up Find In
Files dialog box, type the text you want to find, specify the search path
and search filters, and check the desired options: Search subdir, Include
hidden files, Match case, Match whole word, and Regular
expressions. Press Find. The results will be displayed in the Find
Results frame. Double-click any of the findings from the Find Results
frame to open the associated source file in the associated editor. For
example, if the finding is in a log file, the log file will be opened in the
Reports view with the first finding appears on the first line.

You can search the Output log by clicking in the Output view (in the text,
not on the tab) and then pressing Ctrl-F. This opens a basic text search

dialog box at the top of the Output view. You can type the text in the Find
text field and start a search.

Find Results View The Find Results view may not be displayed
automatically in your Diamond main window. To turn on the Find Results view,
select View > Show Views > Find Results. A check mark indicates the frame
is displayed.

The Find Results view can be detached from the main window by clicking the
detaching icon on the upper-right corner of the view. After detaching, you can
double-click on the title bar of the view to get it back to the main window.

For more information about messages, in the Diamond software online help,
refer to User Guides > Managing Projects > Viewing Logs and Reports.

Lattice Synthesis Engine for Diamond User Guide 111

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing Using Netlist Analyzer

Analyzing Using Netlist Analyzer

Netlist Analyzer works with LSE to produce schematic views of your design
while it is being implemented. Use the schematic views to better understand
the hierarchy of the design and how the design is being implemented.

To start Netlist Analyzer:
1. Synthesize the design with LSE.
2. Choose Tools > Netlist Analyzer.

The Netlist Analyzer window opens with the RTL netlist showing. as shown in
Figure 37.

Figure 37: Netlist Analyzer

T aEan
| File Edit View Design Help [
KA S
g i Instances(d)
bl % Ports(6)
@ | - Nets)
@ T Clocks(1)
B
iy U_serial_reg_custom_in_1A
CE
[e it
Q oK —— —
- A0 S
] RST[> 1 RST|
serial_eg_nustom U_serial_req_custom_out_1
- A CE|
> | e 14 R0y gmfz:0]
U_serial_reg_custom_in_1B U_add_custom_1 '_:L'ml_
CE A[3:0] [SUM[3:0] RST
I Gy _9_]_]%‘1:0 B30 serial_reg_custom
i B[3:01 > DIl 2dd_custom
» RST|
- serial_reg_custom
‘ » K
| <] RTL Netiist - top/work (1/1) B8 |

The Netlist Analyzer clock tree, shown in Figure 38, is displayed along with
the design tree, which lists all the clock nets along with their drivers. The clock
tree feature helps locate the clock signal and analyze the clock network of the
design.

The clock tree has three levels:

The first level is a node named “Clocks” with a number denoting the
number of the clock signals in the design.

The second level includes all the drivers of the clock signals,
The third level are the child signals associated with the clock net
The objects in the clock tree show hierarchical names as their name.

Selection is synchronized among the Netlist Analyzer design tree, schematic
view and the clock tree, as shown in Figure 39.

Lattice Synthesis Engine for Diamond User Guide 112

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Analyzing Using Netlist Analyzer

Figure 38: Clock Tree View of Netlist Analyzer

4 = Clocks(13)

4B clki<—

" s
= clk i Tl

4 ¥ LM321ADR_O_31_T-0fcpufitag_reg_d_7_1 0/jtag_update 1.0

"la LM32I_ADR_O_31_I_0/cpu/jtag_'r_ég'_'d'_*?‘:L_.ﬂmqg:ypdate_N_3963

IF LM321_ ADR_O_31_1 0/jtag_m32_inst/ADDR_BITO/CLK [0 ———__

iF LM32I_ADR_O_31_] 0fjtag_Im32_inst/ADDR_BIT1/CLK_I.0
IF LM321_ADR_0_31_1 0/jtag_Im32_inst/ADDR_BIT2/CLK_I.0
IF LM321_ADR_O_31_1 0fjtag_Im32_inst/DATA_BITO/CLK_1.0
IF LM321_ADR_O_31_1 0fjtag_Im32_inst/DATA_BIT1/CLK_I.0
» IF LM32I_ADR_0_31_1 0/jtag_Im32_inst/DATA_BIT2/CLK_I 0
$F LM321_ADR_O_31_1 0fjtag_Im32_inst/DATA_BIT3/CLK_1.0
IF LM321_ADR_0_31_1 0fjtag_Im32_inst/DATA_BIT4/CLK_1.0
> $E LM32I_ ADR_O_31_1.0/jtag_Im32_inst/DATA_BIT5/CLK_1.0
IF LM321_ADR_O_31_1 0fjtag_Im32_inst/DATA_BIT6/CLK_I0
IF LM321_ADR_0_31_] 0fjtag_Im32_inst/DATA_BIT7/CLK_I0

Driver ofa clock signal

a clock signal

Figure 39: Synchronization among Netlist Analyzer Views

& Instances(4)
< Ports(6)
4 T, Nets(9)

R4 A[3:0]
R adderl_in1[3:0]
% adderl_in2[3:0]
R adderl_sum(3:0]
R4 B(3:0]
"l CE

U_serial_reg_custom_in_1A

ECo——E
K> QK o0l
30D L0
R O | S

"L RST

serial_reg_custom

U_serial_reg_custom_out_1
CE

— 0

R SUM[3:.0]
4 [Clocks(1)
4@ 0K U_serial_reg_custom_in_18 U_add_custom_1
X — - prs m
K 0[3:0] B[3:0]
8[3:0] D> D[3:0 add_custom
e RSTI

serial_reg_custom

serial_reg_custom

QK QL0 5uM[3:0]

About Netlist Analyzer Views The Netlist Analyzer window has four parts:

Tool bar provides buttons for various functions.

Netlist browser provides nested lists of module instances, ports, nets, and

clocks.

Schematic view shows a schematic of the design. Depending on the size
of the design, the schematic may be made of multiple sheets.

Mini-map, which is a miniature view of the sheet, helps you pan and zoom

in the schematic view.

Netlist Analyzer can have multiple schematics open. The open schematics
are shown on tabs along the bottom of the window.

Bold lines are buses. Green lines are clock signals.

Lattice Synthesis Engine for Diamond User Guide

113

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Simulating the Synthesis Output

For more information about Netlist Analyzer, in the Diamond software online
help, refer to User Guides > Managing Projects > Analyzing a Design >
About Netlist Analyzer.

Simulating the Synthesis Output

LSE generates a post-synthesis netlist file in Verilog format. The file is
generated after running the Verilog Simulation File process in Diamond. The
file name is <design>_prim.v. This file is a structural netlist of the synthesized
design, and differs from the original RTL used as input for synthesis. The file
is also a post-synthesis source simulation file for functional simulation of
primitive gate-level logic.

Typically, this netlist is used for gate-level simulation, to verify synthesis
results. Some designers prefer to simulate before and after synthesis, and
also after place-and-route. This approach helps to isolate the stage of the
design process where a problem occurred.

The Verilog output file is for functional simulation only. When you input
stimulus into a simulator for functional simulation, use a cycle time for the
stimulus of 1,000 time ticks.

Simulation flow For post-synthesis simulation, the designer needs a
Verilog simulation library, a <design>_prim.v file, and a testbench file.

Method 1 Using Diamond Simulation Wizard.

Note

For more information on Simulation Wizard, refer to the Lattice Diamond User Guide
or the Diamond online help topic User Guides > Simulating the Design >
Simulation in Diamond > Creating a New Simulation Project in Diamond,

1. Run the Verilog Simulation File process, as shown in Figure 40.

Figure 40: Running the Verilog Simulation File Process

Process

4 % Synthesize Design
%L Lattice Synthesis Engine
4 % Map Design
= Map Trace
V| |%L Verilog Simulation File
¥ VHDL Simulation File
4 2 Place & Route Design
] : Place & Route Trace
2 /O Timing Analysis
2 Export Files
& IBIS Model
2 Verilog Simulation File
¥ VHDL Simulation File
& JEDECFile
: Bitstream File

Lattice Synthesis Engine for Diamond User Guide 114

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE

Simulating the Synthesis Output

2. From your project directory, remove or rename the _mapvo.vo (post-map

simulation file).

3. Run the Choose Tools > Simulation Wizard or click the Simulation

Wizard button 7t on the toolbar.

4. Inthe Simulation Wizard, specify a Project Name, Project Location, and

Simulator, and then click Next.

5. In the Simulation Wizard, choose Post-Map Gate-Level, and choose
Verilog as the language, as shown in Figure 41. Click Next.

Figure 41: Simulation Wizard Process Stage

7 Simulation Wizard

Process Stage

Available stages are automatically displayed.

Process Stage
") RTL
@ Post-Map Gate-Level

Language

@ Verilog

Indicate what process stage of the FPGA implementation strategy you wish to simulate,

[< Back][Mext =][Cancel]

6. Inthe Simulation Wizard, add the _prim.v and the testbench into

Simulation Wizard, as shown in Figure 42

7. Continue with the simulation.

Lattice Synthesis Engine for Diamond User Guide

115

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Figure 42: Simulation Wizard Add and Reorder Source

"2 Simulation Wizard [2 [t
Add and Reorder Source
Add HDL type source files and place test bench files under the design files.
Source Files: I:I IEI EI I;I IEI

C:/Users/zsu/Desktop/add/add_tb.v
:C:/Users/zsu/Desktop/add/impll/add_le_in_out_pipeline_clken_syn_rst_prim.v

SDF File:

C:/Users/zsu/Desktop/add/impll/add_impll_mapvo.sdf

Copy Source to Simulation Directory

| Automatically set simulation compilation file order

< Back |[Next >]| Cancel

Method 2 Using a third-party simulation tool such as ModelSim:

1. Compile the simulation library with running cmpl_lib.tcl from the
Command Line. For more information, in the Diamond software online
help, refer to Reference Guides > Command Line Reference Guide >
Command Line Tool Usage > Running cmpl_lib.tcl from the
Command Line.

2. Compile the Verilog simulation library.

3. Add the compiled library and _prim.v, testbench file into third-part
simulation tool and run the simulation.

Designing with Modules/IP

Modules are functional bits of design that can be re-used wherever that
function is needed. Creating such modules with hardware design languages
is common practice. To help your design along, Lattice Semiconductor
provides a variety of modules for common functions. They are optimized for
Lattice device architectures and can be customized. Use these modules to
speed your design work and to get the most effective results.

Lattice Semiconductor’s modules come in a variety of forms:

IPexpress provides a variety of functions ranging from the most basic,
such as arithmetic and memory, to much more complex functions. With
IPexpress these modules can be extensively customized. They can be
created as part of a specific project or as a library for multiple projects. For
more information, in the Diamond software online help, refer to User
Guides > Entering the Design > Designing with Modules > Creating
IPexpress Modules and IP.

Lattice Synthesis Engine for Diamond User Guide 116

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

However, many of these modules can also be used with PMI (see next
item). To decide which method to use, in the Diamond software online
help, refer to User Guides > Entering the Design > Designing with
Modules > Use PMI or IPexpress?

PMI (Parameterized Module Instantiation) is an alternate way to use some
of the modules that come with IPexpress. With PMI, instead of using
IPexpress, you directly instantiate a module into your HDL and customize
it by setting parameters in the HDL. You may find this easier than using
IPexpress if your design requires many variations of the same module. To
decide which method to use, in the Diamond software online help, refer to
User Guides > Entering the Design > Designing with Modules > Use
PMI or IPexpress?

Clarity Designer provides modules similar to those from IPexpress but for
ECP5. As with IPexpress, with Clarity Designer you can customize these
modules. Clarity Designer also helps you connect these modules to each
other and place the PCS and DDR modules in the device’s architecture.
For more information, in the Diamond software online help, refer to User
Guides > Entering the Design > Creating Clarity Designer Modules.

LatticeMico32 microprocessors and LatticeMico8 microcontrollers are
exceptions in that they are not customized with IPexpress. LatticeMico32
and LatticeMico8 have their own development environment. To design
with LatticeMico System, in the Diamond software online help, refer to
User Guides > Entering the Design > Designing with LatticeMico
Platforms.

Reference designs provide you with a starting point on creating your own
modules. Lattice Reference Designs are available in Verilog and VHDL,
and can be downloaded from the Lattice Web site: www.latticesemi.com/

ip.

Lattice library primitives are very basic functions, such as logic gates and
flip-flops. They can be directly instantiated as HDL into designs. But this is
an advanced technique and should usually be avoided. For more
information, see “Designing with Lattice Library Primitives” on page 120.

Of course you can also create your own modules and that is fully supported
too. In fact, Diamond supports creating your own black-box modules. See
“Creating Your Own Black Box Modules” on page 118.

Using IPexpress Modules

Below are the basic steps of using IPexpress modules and IP. For details of
performing these steps, see the following topics.

1. Start running IPexpress. It can be started from Diamond’s Tools menu
after you open your design project. If you want to create a library of
configured modules or IP, IPexpress can be opened as a stand-alone tool
to create a library of modules.

2. If you want to use a Lattice IP that's not visible, it must be downloaded
and installed first. This can be done from IPexpress.

Lattice Synthesis Engine for Diamond User Guide 117

http://www.latticesemi.com/ip
http://www.latticesemi.com/ip

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

3. Customize the module/IP. These modules and IP can be extensively
customized for your design. The options may range from setting the width
of a data bus to selecting features in a communications protocol. At a
minimum you need to specify the design language to use for the output.

4. Generate the module/IP and bring its .ipx file into your project. Prior to
generating the module/IP, select the option “Import IPX to Diamond
Project.” This will then automatically bring the .ipx file into your project
after the generation step completes. If you do not select this option, then
after generation, add the .ipx file to your project as you would with any
other source file (such as a Verilog or VHDL file). If using IPexpress
standalone, there is no project to automatically add the .ipx file.

5. Instantiate the module/IP into the project’s design. An HDL instance
template is generated during the generation step to simplify this step.

6. IPexpress modules and IP can be further modified or updated later. After
the .ipx file has been added to the Diamond project, it is visible in the
project’s file list. Double-clicking the .ipx file brings up the module/IP’s
configuration dialog box where changes can be made and the generation
process repeated.

Using Clarity Modules

Clarity Designer is a tool within the Lattice Diamond software environment
that addresses the need to be able to generate and plan multiple blocks
together. Clarity Designer is used for configuration of blocks, building the
connections between blocks, and planning the resources used by the PCS
and DDR blocks in the design. For device families supported by Clarity
Designer, IPexpress functionality is accomplished along with functionality for
building and planning. The IPexpress tool is disabled when using a device
family supported by Clarity Designer. Device families that are not supported
yet by Clarity Designer still require the use of IPexpress. Clarity Designer is
currently only available for the ECP5 device family. A comparison chart
between IPexpress and Clarity Designer features is shown in Table 4.

Creating Your Own Black Box Modules

In some cases, you may not want to distribute HDL source code because of
the risk of changes or of exposing proprietary information. So, Lattice
Semiconductor offers a compiled Native Generic Object (NGO) netlist format
as an alternative to HDL.

Advantages and Disadvantages An NGO netlist has the following
advantages over HDL source code:

Hides details of internal logic

Easy to distribute

Optimized to meet timing or area requirements

Optional grouping and floorplan constraints

Lattice Synthesis Engine for Diamond User Guide 118

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Table 4. IPexpress versus Clarity Designer

IPExpress Clarity Designer

Configuration / Generation

Modules Yes Yes

IP Yes Yes

Download IP Yes Yes
Building

Rule checking Mo es

Generate Connectivity Mo Yes

Connection Assistance Mo Yes

Design Reuse Mo Yes
Planning (PCS & DDR)

Pre-Synthesis Mo Yes

Placement Assistance Mo Yes

Rule checking Mo Yes

Graphical usage Mo Yes

On the other hand, an NGO netlist:
May not be portable across all device families

Cannot be parameterized

Overview of the Black Box Process The following are the basic steps for
creating and using a black box module. For details about performing these
steps, see the topics listed under “See Also.”

1. Create an NGO netlist.

Start with a design project just for the module and add some attributes.
Then run the synthesis and Translate Design processes.

2. Create support files.

In addition to the NGO netlist, users of the black box module will need
additional information such as declaration and instantiation templates, a
data sheet, a simulation model, and timing attributes.

Note

NGO blocks will be given a unique name which is constructed by appending the
parameter value to the name of the NGO module as in the following example.

For the following module:
nodul e ny_add_sub (DataA, DataB, Add_Sub, Result);

paranmeter bit_width = 6;

endnodul e

After generating the NGO file, the ngo must be renamed with the parameter value
appended to the module name as shown below:

“nmy_add_sub_6. ngo”

Lattice Synthesis Engine for Diamond User Guide 119

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Revision History

3. Instantiate the module.

Following the instructions from the module’s data sheet, copy the
declaration and instantiation templates into your design project.

Designing with Lattice Library
Primitives

Any Lattice library primitive described in the FPGA Libraries Reference Guide
can be instantiated as a Verilog module or VHDL component in your RTL
design. This sort of “gate-level” design can be error-prone and should be
limited to a small number of primitives if attempted at all. In general, Lattice
recommends you rely on IPexpress to generate modules that are built with
Lattice library primitives.

To minimize the amount of code overhead required to design with a library
primitive, Lattice provides a Verilog and VHDL synthesis header library file for
each major FPGA device family. Refer to the Lattice Synthesis Header
Libraries topic for details. Typically the module is treated as a “black box”
which causes the synthesis tool to pass instances of the library primitive into
the target netlist untouched.

Global signals for global set/reset (GSR), power-up reset (PUR), tri-state all
(TSALL), and the internal oscillator (OSCA, OSCC, OSCD, OSCE, OSCF)
can be used within structural models built with Lattice library primitives. For
more information, see How to Use the Global Set/Reset (GSR) Signal, How to
Use the Tristate Interface (TSALL) Global Signal, and How to Use the Internal
Oscillator.

The FPGA Libraries Reference Guide contains descriptions, pinouts, and
schematic diagrams of all library primitives for Lattice FPGA libraries. For
more information, in the Diamond software online help, refer to Reference
Guides > FPGA Libraries Reference Guide.

Revision History

Date

April, 2019

February, 2016 3.7

Diamond Software Description

Updated “Use 10 Insertion” on page 17.

Initial release of document.

Lattice Synthesis Engine for Diamond User Guide 120

= LATTICE

Index

A
analysis reports 109

B
binary finite state machines 11, 106
black box modules

advantages 118

disadvantages 118

process overview 119
black_box_pad_pin HDL directive 35

C
Carry Chain Length (strategy option) 9
case statements 86
Clarity Designer
defined 117
clocks, gated 10
Command Line Options (strategy option)
Lattice Synthesis Engine 9
cross-probing
Synplify Pro for Lattice 110
trace report 110

D

Disable Distributed RAM (strategy option) 10
duplicate registers, removing 15, 107

E
EBR Utilization (strategy option) 10
Encoding Style, FSM 11, 106

F
finite state machines

FSM Encoding Style for LSE 11, 106
Fix Gated Clocks (strategy option) 10

Force GSR (strategy option) 11
frequency
synthesis target
Lattice Synthesis Engine 17,107
FSM Encoding Style (strategy option) 11, 106

G

gated clocks 10

Goal, Optimization 13, 106

gray finite state machines 11, 106
GSR HDL directive 36

H
Hardware Evaluation (strategy option) 11

I
if statements 86
inferring memory

RAM

synchronous read 81

Intermediate File Dump (strategy option) 12
IPexpress

defined 116

L
library primitives
defined 117
limit, fanout
Lattice Synthesis Engine 12,106
loc attribute 37

M

Macro Search Path (strategy option) 12

Max Fanout Limit (strategy option) 12, 106
see also Fanout Limit (strategy option)

Lattice Synthesis Engine for Diamond User Guide

121

INDEX

Memory Initial Value File Search Path (strategy
option) 13
modules
PMI
defined 117
types 116
Mux Style (strategy option) 13

N
Number of Critical Paths (strategy option) 13

@]
one-hot finite state machines 11, 106
Optimization Goal (strategy option) 13, 106

P
Parameterized Module Instantiation
see PMI
PMI
defined 117
process reports 109
Propagate Constants (strategy option) 14

R
RAM
inferring
synchronous read 81
Ram Style (strategy option) 15
read, synchronous 81
Reference designs 117
registers, removing duplicate 15, 107
Remove Duplicate Registers (strategy option) 15,
107
Remove LOC Properties (strategy option) 15
reports
process reports 109
viewing 109
Resolved Mixed Drivers (strategy option) 15
Resource Sharing (strategy option)
Lattice Synthesis Engine 16, 107
Rom Style (strategy option) 16

S
sharing resources

Lattice Synthesis Engine 16, 107
state machines, finite

see finite state machines
Style, FSM Encoding 11, 106
summary

project reports 109
syn_black_box HDL directive 39
syn_force_pads HDL attribute 44
syn_hier HDL attribute 46
syn_keep HDL directive 49
syn_maxfan 106
syn_maxfan HDL attribute 51
syn_multstyle HDL attribute 51
syn_noprune HDL directive 54

syn_pipeline HDL attribute 56
syn_preserve HDL directive 58
syn_ramstyle 79, 83
syn_ramstyle HDL attribute 60
syn_replicate HDL attribute 62
syn_romstyle 87
syn_romstyle HDL attribute 64
syn_srlstyle HDL attribute 65
syn_use_carry_chain HDL attribute 74
syn_useenables HDL attribute 75
syn_useioff HDL attribute 77
synchronous read 81
Synplify Pro for Lattice
cross-probing 110

T

Target Frequency (strategy option) 17,107
see also Frequency (strategy option)

tool reports 109

translate_off/translate_on directive 77

U

Use Carry Chain (strategy option) 17

Use IO Insertion (strategy option) 17

Use |0 Registers (strategy option) 17

Use LPF Created from SDC in Project (strategy
option) 17

\Y
Verilog
case statements 86
if statements 86
VHDL
case statements 86
if statements 86
VHDL 2008 (strategy option) 18
viewing reports 109

Lattice Synthesis Engine for Diamond User Guide

122

	Contents
	Lattice Synthesis Engine for Diamond User Guide
	Design Flow Overview: User Interface
	LSE Strategy Settings in Diamond
	LSE Strategy Option Settings

	Design Flow Overview: Command Line
	Preparing the Input
	Constraint Files

	Specifying Constraints and Attributes
	Defining Synthesis Constraints Using LDC Editor
	Defining Synthesis Constraints Using Text Editor
	Defining Clocks
	Defining Generated Clocks
	Defining Clock Groups
	Setting Input Delays
	Setting Output Delays
	Defining Minimum Delay Paths
	Defining Maximum Delay Paths
	Setting Up Attributes

	Inferring Block Primitives
	Inferring Memory
	Inferring Lattice DSP Blocks Using Behavioral HDL

	Optimizing LSE for Area and Speed
	Specifying Optimization Options
	Preserving Objects from Optimization
	Setting Fanout Limits
	Sharing Resources
	Inserting I/Os
	Optimizing State Machines
	Working with Gated Clocks

	Analyzing the Synthesis Report
	Viewing Logs and Reports
	Cross-Probing from Reports to Schematics
	Navigating Messages/Warnings

	Analyzing Using Netlist Analyzer
	Simulating the Synthesis Output
	Designing with Modules/IP
	Using IPexpress Modules
	Using Clarity Modules
	Creating Your Own Black Box Modules
	Designing with Lattice Library Primitives

	Revision History

	Index

