
Lattice Synthesis Engine for
Diamond User Guide

April, 2019

ii Lattice Synthesis Engine for Diamond User Guide

Copyright
Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Lattice Synthesis Engine for Diamond User Guide iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv Lattice Synthesis Engine for Diamond User Guide

Lattice Synthesis Engine for Diamond User Guide 1

Contents

Lattice Synthesis Engine for Diamond User Guide 4

Design Flow Overview: User Interface 5
LSE Strategy Settings in Diamond 6
LSE Strategy Option Settings 7

Allow Duplicate Modules 9
Carry Chain Length 9
Command Line Options 9
Decode Unreachable States 9
Disable Distributed RAM 10
DSP Style 10
DSP Utilization 10
EBR Utilization 10
Fix Gated Clocks 10
Force GSR 11
FSM Encoding Style 11
Hardware Evaluation 11
Intermediate File Dump 12
Loop Limit 12
Macro Search Path 12
Max Fanout Limit 12
Memory Initial Value File Search Path 13
MUX Style 13
Number of Critical Paths 13
Optimization Goal 13
Propagate Constants 14
RAM Style 15
Remove Duplicate Registers 15
Remove LOC Properties 15
Resolved Mixed Drivers 15
Resource Sharing 16
ROM Style 16
Target Frequency 17
Use Carry Chain 17

CONTENTS

Lattice Synthesis Engine for Diamond User Guide 2

Use IO Insertion 17
Use IO Registers 17
Use LPF Created from SDC in Project 17
VHDL 2008 18

Design Flow Overview: Command Line 18

Preparing the Input 22
Constraint Files 23

Specifying Constraints and Attributes 23
Defining Synthesis Constraints Using LDC Editor 24
Defining Synthesis Constraints Using Text Editor 24
Defining Clocks 25
Defining Generated Clocks 26
Defining Clock Groups 28
Setting Input Delays 29
Setting Output Delays 30
Defining Minimum Delay Paths 31
Defining Maximum Delay Paths 31
Setting Up Attributes 34

black_box_pad_pin 35
full_case 36
GSR 36
loc 37
parallel_case 38
syn_black_box 39
syn_encoding 40
syn_force_pads 44
syn_hier 46
syn_insert_pad 46
syn_keep 49
syn_maxfan 51
syn_multstyle 51
syn_noprune 54
syn_pipeline 56
syn_preserve 58
syn_ramstyle 60
syn_replicate 62
syn_romstyle 64
syn_srlstyle 65
syn_sharing 68
syn_state_machine 70
syn_use_carry_chain 74
syn_useenables 75
syn_useioff 77
translate_off/translate_on 77

Inferring Block Primitives 78
Inferring Memory 78

Inferring RAM 79
Inferring RAM with Synchronous Read 81
Inferring Dual-Port RAM 83
Inferring ROM 86
Initializing Inferred RAM 87
Creating Memory Initialization File 91

Inferring Lattice DSP Blocks Using Behavioral HDL 92

CONTENTS

Lattice Synthesis Engine for Diamond User Guide 3

MULT9X9 92
MULT18X18 92
MULT36X36 92
MULTADDSUB 95
MULTADDSUBSUM 98
MULTACC 103

Optimizing LSE for Area and Speed 105

Specifying Optimization Options 107
Preserving Objects from Optimization 107
Setting Fanout Limits 107
Sharing Resources 108
Inserting I/Os 108
Optimizing State Machines 108
Working with Gated Clocks 108

Analyzing the Synthesis Report 108
Viewing Logs and Reports 108
Cross-Probing from Reports to Schematics 110
Navigating Messages/Warnings 110

Analyzing Using Netlist Analyzer 112

Simulating the Synthesis Output 114

Designing with Modules/IP 116
Using IPexpress Modules 117
Using Clarity Modules 118
Creating Your Own Black Box Modules 118
Designing with Lattice Library Primitives 120

Revision History 120

Index 121

Lattice Synthesis Engine for Diamond User Guide 4

Lattice Synthesis Engine for
Diamond User Guide

Lattice Synthesis Engine (LSE) is the fully-integrated synthesis tool packaged
with Lattice Diamond software, custom-built for many Lattice products.
Depending on the design, LSE can create better resource utilization and
faster timing than other synthesis tools. LSE complements the suite of tools
available in the Lattice Diamond software and provides complete and
comprehensive FPGA/CPLD synthesis solutions.

LSE offers the following advantages:

 It’s the built-in Lattice synthesis tool optimized for use with Lattice devices.

 Provides granular control through tool options.

 Supports industry standard Verilog (Verilog 2001 and before) and VHDL
(VHDL 2008 and before) including mixed language, along with industry
standard attributes and SDC constraints. Enables the user to easily
synthesize existing designs using LSE.

 Provides GUI tool support for constraint entry (LDC Editor) and schematic
netlist viewing and analysis (Netlist Analyzer), reducing the time required
for design entry and analysis.

Note

LSE follows the IEEE standards listed below.

 1076-1987 – IEEE Standard VHDL Language Reference Manual

 1076-1993 – IEEE Standard VHDL Language Reference Manual

 1076-2008 – IEEE Standard VHDL Language Reference Manual

 1364-1995 – IEEE Standard Hardware Description Language Based on the
Verilog(R) Hardware

 1364-2001 – IEEE Standard Verilog Hardware Description Language

 1364-2005 – IEEE Standard for Verilog Hardware Description Language

Only synthesis constructs described by these standards are supported.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 5

 Offers a choice of optimization goals: Area, Balanced, and Timing
enabling the user to highlight which design goals should be emphasized.

This document describes the basic features of LSE. Sections include design
flow overviews, preparing HDL source files, setting constraints, inferring block
primitives, setting optimization options, analyzing the synthesis report, using
Netlist Analyzer, analyzing timing, simulating, designing with modules, and
designing with intellectual property (IP).

Design Flow Overview: User Interface
LSE is integrated into the Lattice Diamond software. To specify LSE as the
synthesis tool:

1. Choose Project > Active Implementation > Select Synthesis Tool.

The Project Properties dialog box opens with the active implementation
selected, as shown in Figure 1.

Figure 1: Selecting LSE as Synthesis Tool in Lattice Diamond Software

2. In the dialog box, double-click the Synthesis Tool row in the Value column.

A menu drops down.

3. Choose Lattice LSE.

4. Click OK.

5. Start the Synthesize Design process. In the Process View (Figure 2), do
one of the following:

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 6

 Select Synthesize Design in the Process view, and choose Process
> Run.

 Right-click the Synthesize Design process and choose Run.

 Double-click the Synthesize Design process.

Figure 2: Diamond Software Process View

LSE Strategy Settings in Diamond
LSE strategies provide a unified view of all the options related to
synthesis. LSE strategy options are listed in the LSE Strategy dialog box.
Open the dialog box by double-clicking a strategy name in the File List
view, as shown in Figure 3.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 7

Figure 3: Opening the LSE Strategy Dialog Box

For information about an option, select it. A brief description appears at the
bottom of the dialog box. Press F1 to open this guide and see the full
description in the Diamond online help.

For more information on optimizing a strategy for area or timing, see
“Optimizing LSE for Area and Speed” on page 105.

LSE Strategy Option Settings
Table 1 lists LSE strategy option settings available in the Diamond Strategy
Setting dialog box.

Table 1: Strategy Option Settings

Name Type Value Targeted Switch

Allow Duplicate Modules True/False False(Default) -allow_duplicate_modules

Carry Chain Length Integer 0 (not limited) (Default) -carry_chain_length

Command line Options Text Text (flags each preceded by ‘-‘)

DSP Style List DSP(Default) -use_dsp

DSP Utilization Num 100(Default) -dsp_utilization

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 8

Decode Unreachable
States

True/False False (Default) -decode_unreachable_states

Disable Distributed RAM True/False False (Default)

EBR Utilization Float 100 (Default, in %) -bram_utilization

FSM Encoding Style String Binary (Default) | One-Hot |
Gray

-fsm_encoding_style

Fix Gated Clocks True/False True (Default) -fix_gated_clocks

Force GSR String Yes | No
| Auto (Default)

-force_gsr

Hardware Evaluation List Enable (Default) | Disable -dt

Intermediate File Dump True/False False (Default) -ifd

Loop Limit Number 1950 (Default) -loop_limit

Mux Style String Auto (Default) | PFU Mux |
L6Mux Single | L6Mux
Multiple

-mux_style

Macro Search Path Text -p

Max Fanout Limit Integer 1000 (Default) -max_fanout

Memory Initial Value File
Search Path

Text -p

Number of Critical Paths Integer 3 (Default) -twr_paths

Optimization Goal String Area | Timing | Balanced -optimization_goal

Use LPF Created from
SDC in Project

True/False True (Default) | False -lpf

Propagate Constants True/False True (Default) -propagate_constants

Ram Style String Auto (Default) | Distributed
| Block_ RAM | Registers

-ramstyle

Rom Style String Auto (Default) | ebr | Logic -romstyle

Remove Duplicate
Registers

True/False True (Default) - remove_duplicate_regs

Remove LOC properties List Off (Default) | On -r

Resolve Mixed Drivers True/False False (Default) -resolve_mixed_drivers

Resource Sharing True/False True (Default) -resource_sharing

Target Frequency Float 200 (Default, in MHz) -frequency

Use Carry Chain True/False True (Default) -use_carry_chain

Use IO Insertion True/False True (Default) -use_io_insertion

Table 1: Strategy Option Settings (Continued)

Name Type Value Targeted Switch

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 9

The following alphabetical list describes all of the strategy options associated
with the LSE synthesis process.

Allow Duplicate Modules
When set to True, allows the design to keep duplicate modules. LSE issues a
warning and uses the last definition of the module. Any previous definitions
are ignored. The default is False, which causes an error if there are duplicate
modules.

This option is equivalent to the “-allow_duplicate_modules” option in the
SYNTHESIS command.

Carry Chain Length
Specifies the maximum number of carry chain cells (CCUs) that get mapped
to a single carry chain. Default is 0, which is interpreted as infinite length.

This option is equivalent to the “-carry_chain_length” option in the
SYNTHESIS command.

Command Line Options
Enables additional command line options for the LSE Synthesis process.

To enter a command line option:

1. In the Strategy dialog box, select LSE in the Process list.

2. Double-click the Value column for the Command line Options option.

3. Type in the option and its value (if any) in the text box.

4. Click Apply.

For detailed description on LSE command line options, see “Design Flow
Overview: Command Line” on page 18.

Decode Unreachable States
When set to True, synthesis infers safe recovery logic from unreachable
states in all the state machines of the design.

Use IO Registers True/False True (Default) -use_io_reg

VHDL 2008 True/False False (Default) -vh2008

Table 1: Strategy Option Settings (Continued)

Name Type Value Targeted Switch

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 10

This option is equivalent to the “-decode_unreachable_states” option in the
SYNTHESIS command.

Disable Distributed RAM
When set to True, inferred memory will not use the distributed RAM of the
PFUs.

DSP Style
Specifies how DSP modules should be implemented: with DSP resources or
with Logic (LUTs).

This option is equivalent to the “-use_dsp” option in the SYNTHESIS
command.

DSP Utilization
Specifies the percentage of DSP sites that LSE should try to use.

This option is equivalent to the “-dsp_utilization” option in the SYNTHESIS
command.

EBR Utilization
Specifies EBR utilization target setting in percent of total vacant sites. LSE will
honor the setting and do the resource computation accordingly. Default is 100
(in percentage).

This option is equivalent to the “-bram_utilization” option in the SYNTHESIS
command.

Fix Gated Clocks
When set to True, LSE changes standard gated clocks to forms more
effective for FPGAs. Clocks are gated with AND or OR gates to conserve
power, but in FPGAs such clocks cause skew and prevent global clock
resources from being used. The Fix Gated Clocks option is ignored if the
Optimization Goal option is set to Area. See “Optimization Goal” on page 13.

The gated clocks must be specified in the .ldc file with create_clock
constraints. For more information about writing the constraints, see the
following online help topics in the Diamond software:

 User Guides > Applying Design Constraints > Using SDC
Constraints > Applying Lattice Synthesis Engine Constraints >
Defining Clocks Using LDC Editor.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 11

 Reference Guides > Constraints Reference Guide > Lattice Synthesis
Engine (LSE) Constraints > Synopsys Design Constraints (SDC) >
create_clock.

All inputs of the gating logic must be driven by primary inputs and the gating
logic must be decomposable. Instantiated primitives and black boxes are not
affected. Converted clocks and the associated registers are reported in the
synthesis.log file.

Force GSR
Enables (True) or disables (False) forced use of the global set/reset routing
resources. When the value is Auto, the synthesis tool decides whether to use
the global set/reset resources.

This option is equivalent to the “-force_gsr” option in the SYNTHESIS
command.

FSM Encoding Style
Specifies the encoding style to use with the design.

This option is equivalent to the “-fsm_encoding_style” option in the
SYNTHESIS command. Valid options are auto, one-hot, gray, and binary. The
default value is auto, meaning that the tool looks for the best implementation.

Hardware Evaluation
Enables or disables the ability to temporarily test IP in a device without an IP
license. If enabled, a timer is added to the design that allows unlicensed IP to
function for about 4 hours in a device. If disabled, you cannot generate a
bitstream if there are any unlicensed IP in the design.

You might want to disable this option to refine your design while waiting for the
license. You will not be able to generate a bitstream, but you will be able to
see how resources are used (without the timer) and close timing. When you
get the license, you can then generate the bitstream.

Regardless of how this option is set, if there are any unlicensed IP in the
design, some features of Diamond, such as gate level simulation and EPIC,
are blocked.

This option is equivalent to the “-dt” option in the SYNTHESIS command.

Note

The encoding type “gray” only works with less than or equal to four machine states.
When the number of machine states is large than four, LSE will use other encoding
styles and issue the following warning message:

WARNING - Gray encoding is not supported for state machines with more than
four states.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 12

Intermediate File Dump
If you set this to True, LSE will produce intermediate encrypted Verilog files. If
you supply Lattice with these files, they can be decrypted and analyzed for
problems. This option is good for analyzing simulation issues.

This option is equivalent to the “-ifd” option in the SYNTHESIS command.

Loop Limit
Specifies the maximum number of iterations of “for” and “while” loops in the
source code. The limit is applied when the loop index is a variable, not when it
is a constant. The higher the loop_limit, the longer the run time. The default
value is 1950. Setting a higher value may cause stack overflow during some
of the optimizations during synthesis. A lower value will be ignored and the
default used instead.

This option is equivalent to the “-loop_limit” option in the SYNTHESIS
command.

Macro Search Path
Allows you to specify a path (or paths) to locate physical macro files used in a
given design. The software will add the specified paths to the list of directories
to search when resolving file references. The option can also be used for
indicating the directories containing include files that are specified in the RTL
design files.

You don’t need to specify a search path if the necessary .ngo or .nmc file is in
the directory containing the top-level .ngo file or if the FILE attribute in the
design gives a complete path name for the file (instead of a relative path
name).

The software follows the following order to search for .ngo files:

1. Current implementation directory

2. Project directory

3. Directories where the LPC or IPX source files reside

4. User-specified macro search paths

To specify a macro search path, double-click the Value box, and directly enter
the path or click the ... button to browse for one or more paths.

This option is equivalent to the “-p” option in the SYNTHESIS command.

Max Fanout Limit
Specifies the maximum fanout setting. LSE will make sure that any net in the
design is not exceeding this limit. Default is 1000 fanouts. Does not apply to
clock or reset network.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 13

This option is equivalent to the “-max_fanout” option in the SYNTHESIS
command.

Memory Initial Value File Search Path
Allows you to specify a path (or paths) to locate memory initialization file
(.mem) used in a given design. The software will add the specified path(s) to
the list of directories to search when resolving file references.

To specify a search path, double-click the Value box, and directly enter the
path or click the ... button to browse for one or more paths.

This option is equivalent to the “-p” option in the SYNTHESIS command.

MUX Style
Specifies the MUX style setting, which controls the way the macrogenerator
implements the multiplexer macros.

Valid options are:

 Auto (default) - LSE looks for the best implementation for each considered
macro.

 L6Mux Multiple - Generates multiplexers allowing for multiple L6Mux
resources.

 L6Mux Single - Generates multiplexers allowing for the use of a single
L6Mux resource.

 PFU Mux - Generates multiplexers using only PFUMux and LUT4
resources.

This option is equivalent to the “-mux_style” option in the SYNTHESIS
command.

Number of Critical Paths
Specifies the number of critical timing paths to be reported in the timing report.

This option is equivalent to the “-twr_paths” option in the SYNTHESIS
command.

Optimization Goal
Enables LSE to optimize the design for area, speed, or balanced.

Note

L6Mux resources will only be inferred when driven by four LUT4 and two PFUMux
devices.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 14

Valid options are:

 Area – Optimizes the design for area by reducing the total amount of logic
used for design implementation.

When Optimization Goal is set to Area, LSE honors the LDC constraints if
there are any. If Use IO Registers is set to Auto, LSE packs input and
output registers into I/O pad cells. See “Use IO Registers” on page 17..

 Timing – Optimizes the design for speed by reducing the levels of logic.

When Optimization Goal is set to Timing and a create_clock constraint is
available in an .ldc file, LSE ignores the Target Frequency setting and
uses the value from the create_clock constraint instead.

If there are multiple clocks, and if not all the clocks use create_clock
constraint, then LSE will assign 200 MHz constraint on the remaining
clocks in Timing Mode.

If Use IO Registers is set to Auto, LSE does not pack input and output
registers into I/O pad cells.

 Balanced – Optimizes the design for both area and timing.

When Optimization Goal is set to Balanced, all timing driven optimizations
based on static timing analysis will run depending on LDC constraints. If
Use IO Registers is set to Auto, LSE does not pack input and output
registers into I/O pad cells.

The default setting depends on the device type. Smaller devices, such as
MachXO and Platform Manager, default to Balanced. Larger devices—
ECP5U, LatticeECP2, LatticeECP3, and LatticeXP2—default to Timing.

For more information, see “Optimizing LSE for Area and Speed” on page 568.

This option is equivalent to the “-optimization_goal” option in the SYNTHESIS
command.

Propagate Constants
When set to True (default), enables constant propagation to reduce area,
where possible. LSE will then eliminate the logic used when constant inputs to
logic cause their outputs to be constant.

You can turn off the operation by setting this option to False.

This option is equivalent to the “-propagate_constants” option in the
SYNTHESIS command.

Note

With the Area setting, LSE also ignores all SDC constraints. These constraints are
not used by LSE and are not added to an .lpf file for use by the later stages of
implementation.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 15

RAM Style
Sets the type of random access memory globally to distributed, embedded
block RAM, or registers.

The default is Auto which attempts to determine the best implementation, that
is, the synthesis tool will map to technology RAM resources (EBR/Distributed)
based on the resource availability.

This option will apply a syn_ramstyle attribute globally in the source to a
module or to a RAM instance. To turn off RAM inference, set its value to
Registers.

 Registers – Causes an inferred RAM to be mapped to registers (flip-flops
and logic) rather than the technology-specific RAM resources.

 Distributed – Causes the RAM to be implemented using the distributed
RAM or PFU resources.

 Block_RAM – Causes the RAM to be implemented using the dedicated
RAM resources. If your RAM resources are limited, for whatever reason,
you can map additional RAMs to registers instead of the dedicated or
distributed RAM resources using this attribute.

This option is equivalent to the “-ramstyle” option in the SYNTHESIS
command.

Remove Duplicate Registers
Specifies the removal of duplicate registers.

When set to True (default), LSE removes a register if it is identical to another
register. If two registers generate the same logic, the second one will be
deleted and the first one will be made to fan out to the second one's
destinations. LSE will not remove duplicate registers if this option is set to
False.

This option is equivalent to the “-remove_duplicate_regs” option in the
SYNTHESIS command.

Remove LOC Properties
Setting this to On removes LOC properties in the synthesized design before
building the Native Generic Database (.ngd) file.

Resolved Mixed Drivers
If a net is driven by a VCC or GND and active drivers, setting this option to
True connects the net to the VCC or GND driver.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 16

Resource Sharing
When this is set to True (default), the synthesis tool uses resource sharing
techniques to optimize area.

With resource sharing, synthesis uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource sharing,
but at the expense of increased area.

This option is equivalent to the “-resource_sharing” option in the SYNTHESIS
command.

ROM Style
Allows you to globally implement ROM architectures using dedicated,
distributed ROM, or a combination of the two (Auto).

This applies the syn_romstyle attribute globally to the design by adding the
attribute to the module or entity. You can also specify this attribute on a single
module or ROM instance.

Specifying a syn_romstyle attribute globally or on a module or ROM instance
with a value of:

 Auto (default) – Allows the synthesis tool to choose the best
implementation to meet the design requirements for speed, size, and so
on.

 Logic – Causes the ROM to be implemented using the distributed ROM or
PFU resources. Specifically, the logic value will implement ROM to logic
(LUT4) or ROM technology primitives (such as ROM16X1, ROM32X1,
ROM64X1, and so on).

 EBR – Causes the ROM to be mapped to dedicated EBR block resources.
ROM address or data should be registered to map it to an EBR block. If
your ROM resources are limited, for whatever reason, you can map
additional ROM to registers instead of the dedicated or distributed RAM
resources using this attribute.

Infer ROM architectures using a CASE statement in your code. For the
synthesis tool to implement a ROM, at least half of the available addresses in
the CASE statement must be assigned a value. For example, consider a
ROM with six address bits (64 unique addresses). The CASE statement for
this ROM must specify values for at least 32 of the available addresses.

This option is equivalent to the “-romstyle” option in the SYNTHESIS
command.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: User Interface

Lattice Synthesis Engine for Diamond User Guide 17

Target Frequency
Specifies the target frequency setting. This frequency applies to all the clocks
in the design. If there are some clocks defined in an .ldc file, the remaining
clocks will get this frequency setting. When a create_clock constraint is
available in an .ldc file, LSE ignores the Target Frequency setting for that
clock and uses the value from the create_clock constraint instead.

This option is equivalent to the “-frequency” option in the SYNTHESIS
command.

Use Carry Chain
Turns on (True) or off (False) carry chain implementation for adders. Default is
True.

This option is equivalent to the “-use_carry_chain” option in the SYNTHESIS
command.

Use IO Insertion
When set to True, LSE uses IO insertion and GSR.

When set to False, LSE will generate an NGO netlist and an NGD file is not
created.

This option is equivalent to the “-use_io_insertion” option in the SYNTHESIS
command.

See “Creating Your Own Black Box Modules” on page 118 for more
information.

Use IO Registers
When True, this option forces the synthesis tool to pack all input and output
registers into I/O pad cells based on the timing requirements for the target
device family. Auto, the default setting, enables this register packing if
Optimization Goal is set to Area. If Optimization Goal is Timing or Balanced,
Auto disables register packing.

This option is equivalent to the “-use_io_reg” option in the SYNTHESIS
command.

You can also control packing on individual registers and ports. See
“syn_useioff” on page 77.

Use LPF Created from SDC in Project
LSE creates a preference (.lpf) file based on the Synopsys Design Constraint
(.sdc) file. (When you use LSE, SDC constraints must be in a Lattice Design
Constraints (.ldc) file.) When this option is set to True, the synthesis
constraints are also applied to the Map Design stage of implementation.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Lattice Synthesis Engine for Diamond User Guide 18

VHDL 2008
When this is set to True, VHDL 2008 is selected as the VHDL standard for the
project.

Design Flow Overview: Command Line
LSE can be run from the command line. Table 2 describes the command
project options available to run LSE. Examples are provided following the
table.

The command is SYNTHESIS. The ‘-f’ option is available to simplify the
command line. A project file containing all the user’s desired arguments can
be constructed as a text file, then passed to LSE using the –f switch. For
example:

synthesis -f synth.synproj

For more information about setting up the Diamond command line
environment, in the Diamond online help, refer to Reference Manuals >
Command Line Reference Guide > Command Line Basics > Setting Up
the Environment to Run Command Line.

Note

Running LSE from the command line requires an environment variable TEMP be set.
Default Cygwin .bashrc unsets this variable, so user must add the following back into
their .bashrc:

export TEMP=/temp

Table 2: LSE Project Options

Required
Options

Parameter Arguments Description Default

Optional -s <grade> Target grade

Optional -t <package> Target Package

Optional -loop_limit <value> Iteration limits

Optional -f <argument_filename> Argument file

Required -a “<Supported_Device_Family>” Target Architecture -

Optional -d <device> Target Device -

Optional -p <searchpath>} Option search path. \.

Optional -top <top_module_name> Top-level module
name

-

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Lattice Synthesis Engine for Diamond User Guide 19

Required

(Only for
source of
this type)

(Multiple
arguments)

-ver {<verilog_file.v>} Name of input Verilog
file

-

Optional

(Multiple
arguments)

-lib <libname> Include library -

Required

(Only for
source of
this type)

(Multiple
arguments)

-vhd {<vhdl_file.vhd>} Name of input VHDL
file

-

Optional -ngd <ngd_file.ngd> Name of output ngd
file, option available
only for Diamond
devices

<top_module_name>.
ngd

Optional -ngo {<ngo_file.ngo>} Name of output ngo
file, option available
only for Diamond
devices

<top_module_name>.
ngo

Optional -force_gsr {auto | yes | no} GSR insertion, option
available only for
Diamond devices

auto

Optional -ramstyle { auto | distributed | block_ram |
registers }

RAM style auto

Optional -romstyle { auto | ebr | logic } ROM style auto

Optional -output_edif {<filename.edf>} Create EDIF output file <top_module_name>.
edf

Optional -output_hdl {<filename>} Create HDL output file <top_module_name>
_prim.v

Optional -sdc {<sdc_file.sdc>} Input SDC file -

Optional -lpf {true | false} Generate output lpf file
with name:

<top_module_name>_l
se.lpf, option available
only for Diamond
devices

False

Optional -logfile {<synthesis_logfile>} Name of output log file synthesis.log

Table 2: LSE Project Options (Continued)

Required
Options

Parameter Arguments Description Default

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Lattice Synthesis Engine for Diamond User Guide 20

Optional -frequency {target_frequency } Target frequency for
timing optimization, in
MHz

200

Optional -max_fanout {max_fanout } Maximum driver fanout 1000

Optional -bram_utilization {bram_utilization} Block RAM utilization
factor, percent

100

Optional -fsm_encoding_style {binary | one-hot | gray} Finite State Machine
encoding style

binary

Optional -mux_style { auto | pfu_mux |
L6Mux_single |
L6Mux_multiple }

Mux implementation
style

auto

Optional -use_carry_chain {0|1} Use carry-chain
resources

1 (use)

Optional -carry_chain_length { chain_length } Carry chain maximum
length

0 (no limit)

Optional -use_io_insertion { 0|1 } Insert I/O primitives 1 (insert)

Optional -use_io_reg { 0|1 } Use I/O registers 1 (use)

Optional -resource_sharing { 0|1 } Allow resource sharing
optimization

1 (allow)

Optional -propagate_constants { 0|1 } Preserve registers with
constant inputs

1 (allow)

Optional -remove_duplicate_regs { 0|1 } Allow removal of
duplicate registers

1 (allow)

Optional -ip_dir {location of IP installation} Location of IP directory \.

Optional -corename {name of IP core} Name of IP core -

Optional -ertl_file {name of encrypted RTL file} Name of encrypted file -

Optional -optimization_goal { area | timing | balanced } Global optimization
strategy

area

Optional -hdl_param {<name value>} To pass parameters/
generics to design top
module

-

Optional -h - Help -

Optional -twr_paths {Num_paths} Number of TRACE
critical paths

3

Optional -ifd - Dump intermediate
files

-

Optional -dt - Disable h/w timer -

Optional -cbn - Consistent Bus
Naming

-

Table 2: LSE Project Options (Continued)

Required
Options

Parameter Arguments Description Default

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Design Flow Overview: Command Line

Lattice Synthesis Engine for Diamond User Guide 21

Examples Following are a few examples of SYNTHESIS command lines
and a description of what each does. Command lines only supports MachXO,
MachXO2, MachXO3L, and MachXO3LF devices.

Example 1 The following command is a simple example with Verilog and
VHDL file inputs.

synthesis -a MachXO2 -d LCMXO2-2000HC -t TQFP144 -s 5 -top
top_module_name -vhd f1.vhd f2.vhd f3.vhd -ver file1.v file2.v
-ngd file.ngd

Example 2 The following example illustrates the usage of a search path -p
option for IP .ngo files or include files.

synthesis -a MachXO2 -d LCMXO2-2000HC -p D:/my_project/tmp -top
top_module_name -vhd f1.vhd f2.vhd f3.vhd -ver file1.v file2.v
-ngd file.ngd

Example 3 The following example shows VHDL library usage with the -lib
option.

synthesis -a MachXO2 -d LCMXO2-2000HC -top top -lib work
-vhd top.vhd -lib my_lib -vhd ff.vhd -ngd file.ngd

Example 4 The following example illustrates the usage of both the -
hdl_param and -optimization_goal options.

synthesis -a MachXO2 -d LCMXO2-2000HC -hdl_param width 7 depth
5 -optimization_goal timing -ver file1.v file2.v -ngd file.ngd

Example 5 This is an example of a command line with encrypted RTL for IP
designs.

synthesis -a MachXO2 -d LCMXO2-2000HC -corename file_datapath -
ertl_file source/file_datapath_enc.vhd -ip_dir encryption -ngd
file.ngd

Example 6 This example shows miscellaneous commands for illustrating
various syntax structures.

synthesis -vhd source/ora.vhd source/top.vhdl source/
anda_vhd.vhd
synthesis -ver source/anda.v source/v_top.v
synthesis -a MachXO2 -d LCMXO2-2000HC -force_gsr auto -ver
top.v mid.v prim.v -vhd count.vhd

Optional -fix_gated_clocks {0|1} Fix Gated Clocks 1

Optional -vh2008 - Compile using VHDL
2008 libraries

Optional -key (key dat) Location of the key file
used for decryption

=

Table 2: LSE Project Options (Continued)

Required
Options

Parameter Arguments Description Default

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Preparing the Input

Lattice Synthesis Engine for Diamond User Guide 22

synthesis -lib ..\include_lib.v -ngd top.ngd -lpf top.lpf -sdc
top.ldc

Example 7 The following example illustrates the usage of a synthesis
project file with command -f . The synthesis project file contains strategy
setting, Diamond translates strategy options into command line options.

synthesis -f D:/my_project/my.synproj

Figure 4 shows the contents of the synthesis project synproj.

Figure 4: Example synproj Project

For more information about running Synthesis from the command line, in the
Diamond software online help, refer to Reference Guides > Command Line
Reference Guide > Command Line Tool Usage > Running SYNTHESIS
from the Command Line.

Preparing the Input

You can create an HDL source file in Diamond Source Editor.

To create an HDL source in Source Editor:

1. From the Diamond main window, choose File > New > File. In the New
File dialog, choose Verilog Files or VHDL Files from the Source Files list.

2. In the New File dialog, fill in the File name and Location, choose the file
extension in the Ext. field.

3. Check Add to Implementation option if you want to add this source to
the current project.

4. Click New.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 23

5. In the pop up Source Editor, you can enter the text. When finished editing,
click File > Save from the Diamond main window.

For more information, in the Diamond software online help, refer to User
Guides > Entering the Design > HDL Design Entry.

Constraint Files
LSE enables you to set Synopsys® Design Constraints (SDC), which are
directly interpreted by the synthesis engine. When you use LSE, these SDC
constraints are saved to a Lattice Design Constraints file (.ldc). You can
create several .ldc files and select one of them to serve as the active
synthesis constraint file for an implementation. You can also cause a
synthesis preference file to be generated when the design is synthesized. The
synthesis preferences can then be merged with the logical preference file
(.lpf).

Lattice Design Constraints (LDC) Editor, as well as Source Editor, are
available for creating and editing .ldc files. LDC Editor provides a spreadsheet
style user interface that enables you to quickly create and edit Synopsys
Design Constraints.

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints.

Specifying Constraints and Attributes
Constraints on specific design elements are provided to LSE using the SDC
constraint language. The constraints reside in the .ldc file, which can be
accessed in the Diamond Synthesis Constraint Files folder in the File List
pane.

In Diamond, a single constraint file can be active at any one time. The active
file is used by synthesis when it is run. There can be multiple .ldc files, but
only one can be active.

The .ldc file can be opened in the LDC Editor (GUI), or the text editor.

 To open the LDC Editor, double-click the .ldc file in the File List pane.

 Right-click the .ldc file in the File List pane and in the dropdown choose
Open With. The Open With dialog box allows you to choose between the
LDC Editor or the Text Editor.

Note

You can detach Source Editor from the Diamond main window by clicking the Detach
Tool icon on the upper right corner of Source Editor. If you want to attach Source Editor
back to the main window, click the Attach Window icon on the upper right corner of
Source Editor window, or choose Window > Attach Window from Source Editor.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 24

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints >
Applying Lattice Synthesis Engine Constraints > Defining Synthesis
Constraints Using LDC Editor.

The Timing Closure section of the FPGA Design Guide focuses on timing
requirements, explains timing driven FPGA implementation processes, and
shows how to tackle timing issues when timing closure becomes problematic.
You can access Timing Closure section of the FPGA Design Guide from the
Diamond software Start Page. Or, from the Diamond software online help,
refer to User Guides > Help for Lattice Diamond, and scroll down to FPGA
Design Guide.

Defining Synthesis Constraints Using
LDC Editor
The LDC Editor provides a GUI that enables the user to easily choose the
type of constraint, and provide all the necessary constraint information (the
GUI must make it clear what information is required and what is optional). Key
is to provide the user access to actual design element names that will be
honored by LSE (e.g. instance, port names). Moreover, it will filter the
selection provided to the user based on the legal type. As an example, in a
set_input_delay constraint, the user will only be given a selection of
references for the clock that are considered clocks.

LDC Editor does not perform design rule check (DRC) by default. DRC check
can be enabled in the Diamond software by clicking Tools > Options > LDC
Editor > General > Run DRC check before saving and Enable realtime
DRC check.

When the target of the constraint can not be found, or if the constraint syntax
is incorrect, a warning will display and the constraint will not show in the LDC
Editor.

For more information, in the Diamond software online help, refer to User
Guides > Applying Design Constraints > Using SDC Constraints >
Applying Lattice Synthesis Engine Constraints > Defining Synthesis
Constraints Using LDC Editor.

Defining Synthesis Constraints Using
Text Editor

The .ldc file can be edited by Text Editor manually. Do not use TCL features
for constraints which are not supported by LSE now. For example:

set board_delay 3
set_clock_groups -exclusive \
 -group {c0_1} \
 -group {c0_0}

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=45588

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 25

See the following LSE constraints for syntax examples for each constraint.

Defining Clocks
The create_clock constraint creates a clock and defines its characteristics.

Syntax create_clock [-name name] -period period_value [-waveform
{value1 value2}] source_object

Arguments -name name

The name string specifies the name of the clock. If this parameter is not
given, the name of the source object is used as the name of the clock.
Virtual clocks are currently not supported.

-period period_value

This value is required and it specifies the clock period in nanoseconds.
The value you specify is the minimum time over which the clock waveform
repeats. The value specified for the period must be positive as the period
of a clock must be greater than zero. The duty cycle of the clock is 50
percent.

-waveform {value1 value2}

The values are a list of edge values. Only two edges are supported.
Floating values are accepted. Value1 must be less than value2, and the
difference must be less than the clock period.

source_object

The source object is the object on which the clock constraint is defined.
The source object can be a port object or a net object in the design. The
object is obtained by using one of the get_ports or get_nets commands. If
you specify a clock constraint on a source object that already has a clock,
the new clock replaces the existing one. Only one source object is
accepted. Wildcards are accepted as long as the resolution shows one
port or net object.

Note

In LSE timing, interclock domain paths are always blocked for create_clock. However,
the interclock domain path is still valid for constraints such as set_false_path and
set_multicycle_path.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 26

Example The following example creates two clocks on ports CK1 and CK2
with a period of 6:

Example The following example creates a clock on port CK3 with a period
of 7.1, and has two edges at 0 and 4.1:

For more information about defining clocks with LDC Editor, For more
information, in the Diamond software online help, refer to User Guides >
Applying Design Constraints > Using SDC Constraints > Applying
Lattice Synthesis Engine Constraints > Defining Clocks Using LDC
Editor.

Defining Generated Clocks
The create_generated_clock creates an internally generated clock and
defines its characteristics. This command is used when the clock being
created is related to another clock. The generated clock will now be
considered a clock when defining constraints such as set_input_delay.

Syntax create_generated_clock -source reference_object [-master_clock
clock_object] [-divide_by factor] [-multiply_by factor] [-duty_cycle value]
net_object

Arguments -source reference_object

The reference object is an object on which the source clock of the
generated clock is defined. The source object can be a net object or a port
object. The period of the generated clock is derived from the clock on the
reference object using the multiply and divide factors.

-master_clock clock_object

If the master is defined, the master clock object becomes the source clock
for the generated clock. This is an optional object used to identify a
specific clock, if there is more than one clock on the source object.

-divide_by factor

This factor is the frequency division factor. The frequency of the generated
clock is equal to the frequency of the source clock divided by this factor, if
the multiply by factor is not specified. For instance, if this factor is equal to
2, the generated clock period is twice the reference clock period. Default
value is 1.

-multiply_by factor

create_clock -name my_user_clock -period 6 [get_ports CK1]
create_clock -name my_other_user_clock -period 6 [get_ports CK2]

create_clock -period 7.1 -waveform {0 4.1} [get_ports CK3]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 27

This factor specifies the frequency multiplication number to be used when
finding the generated clock frequency. For instance, if the factor is equal
to 2, the generated clock period is half the reference clock period. If both
multiply_by and divide_by factors are used, the frequency is obtained by
using both factors. Default value is 1.

-duty_cycle value

This value specifies the duty cycle in percentage of the clock period. The
value can be floating point and ranges from 0 to 100. The default value is
50.

net_object

The net_object specifies the source of the clock constraint. This is usually
an internal -net of the design. If you specify a clock constraint on a net that
already has a clock, the new clock replaces the existing clock. Only one
source is accepted. Wildcards are accepted as long as the resolution
shows one net.

This command creates a generated clock in the current design at a
declared net_object by defining its frequency with respect to the frequency
at the reference object. The static timing analysis tool uses this
information to compute and propagate the generated clock's waveform
across the clock network to the clock pins of all sequential elements
driven by this target

Examples The following example creates a generated clock on pin pll1/
CLKOP with a period twice as long as the period at the reference port CLK:

The following example creates a generated clock at the primary output of
myPLL with a period 3/4 of the period at the reference pin clk:

The following example shows a clock with a duty cycle of 60 percent:

For more information about defining clocks with LDC Editor, in the Diamond
software online help, refer to User Guides > Applying Design Constraints >

create_generated_clock -divide_by 2 -source [get_ports CLK]
[get_pins pll1/CLKOP]

create_generated_clock -divide_by 3 -multiply_by 4 -source
[get_ports clk] [get_pins myPLL/CLK1]

create_generated_clock -duty_cycle 60 -source [get_ports clk]
[get_pins myPLL/CLK1]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 28

Using SDC Constraints > Applying Lattice Synthesis Engine Constraints
> Defining Generated Clocks in LDC Editor.

Defining Clock Groups
The clock_groups constraint specifies clock groups that are mutually
exclusive or asynchronous with each other in a design so that the paths
between these clocks are not considered during timing analysis.

Syntax set_clock_groups -asynchronous | -exclusive -group clock_objects
[-group clock_objects]

Arguments -asynchronous

Specifies that the clock groups are asynchronous to each other
(meanwhile, Lattice assume all clocks are asynchronous). Two clocks are
asynchronous with respect to each other if they have no phase
relationship at all.

-exclusive

Specifies that clocks are mutually exclusive. Only one clock group will be
active at any given time.

-group clock_object

Specifies the clock objects in a group. If you specify only one group, it
means that the clocks in that group are exclusive or asynchronous with all
other clocks in the design. A default other group is created for this single
group. Whenever a new clock is created, it is automatically included in this
group.

Examples The following example specifies two clock ports (clka and clkb)
are asynchronous to each other.

The following example specifies four clock constraints that won't be active at
the same time:

For more information about defining clocks with LDC Editor, in the Diamond
software online help, refer to User Guides > Applying Design Constraints >

create_clock -period 10.000 -name clka_port [get_ports clka]
create_clock -period 10.000 -name clkb_port [get_ports clkb]
Set clka_port and clkb_port to be mutually exclusive clocks.
set_clock_groups -asynchronous -group [get_clocks clka_port] -
group [get_clocks clkb_port]
The previous line is equivalent to the following two
commands.
set_false_path -from [get_clocks clka_port] -to [get_clocks
clkb_port]
set_false_path -from [get_clocks clkb_port] -to [get_clocks
clka_port]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 29

Using SDC Constraints > Applying Lattice Synthesis Engine Constraints
> Defining Clock Groups in LDC Editor.

Setting Input Delays
The set_input_delay constraint defines the arrival time of an input relative to a
clock.

Syntax set_input_delay delay_value [-max |-min] -clock clock_object
input_port_object

Arguments delay_value

Specifies the arrival time in nanoseconds that represents the amount of
time for which the signal is available at the specified input after a clock
edge.

-max

Specifies that the delay value is the maximum delay.

-min

Specifies that the delay value is the minimum delay.

-clock clock_object

Specifies the clock reference to which the specified input delay is related.
This is a mandatory argument.

input_port_object

Provides one or more input ports in the current design to which
delay_value is assigned. You can also use the keyword “all_inputs” to
include all input ports.

Example The following example sets an input delay of 1.2 ns for port data1
relative to the rising edge of CLK1:

Example The following example sets an input delay of 1.2 ns minimum and
1.5 ns maximum for port data1 relative to the rising edge of CLK1:

create_clock -period 10.000 -name clka_port [get_ports clka]
create_clock -period 10.000 -name clkb_port [get_ports clkb]
create_clock -period 10.000 -name clkc_port [get_ports clkc]
set_clock_groups -exclusive -group [get_clocks {clka_port
clkb_port}] -group [get_clocks clkc_port]

set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports data1]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 30

For more information about setting input and output delays with LDC Editor, in
the Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Setting Input and Output Delays Using LDC Editor.

Setting Output Delays
The set_output_delay constraint defines the output delay of an output relative
to a clock.

Syntax set_output_delay delay_value [-max |-min] -clock clock_object
output_port_object

Arguments delay_value

Specifies the amount of time from a reference clock to a primary output
port.

-max

Specifies that the delay value is the maximum delay.

-min

Specifies that the delay value is the minimum delay.

-clock clock_object

Specifies the clock reference to which the specified output delay is
related. This is a mandatory argument.

output_port_object

Provides one or more (by wildcard) output ports in the current design to
which delay_value is assigned. You can also use the keyword
“all_outputs” to include all output ports.

Example The following example sets an output delay of 1.2 ns for all
outputs relative to clki_c:

Example The following example sets an output delay of 1.2 ns minimum
and 1.5 ns maximum for port data1 relative to the rising edge of CLK1:

set_input_delay 1.2 -min -clock [get_clocks CLK1] [get_ports
data1]
set_input_delay 1.5 -max -clock [get_clocks CLK1] [get_ports
data1]

set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]
set_output_delay 1.2 -clock [get_clocks CLK1] [all_outputs]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 31

For more information about setting input and output delays with LDC Editor, in
the Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Setting Input and Output Delays Using LDC Editor.

Defining Minimum Delay Paths
The set_min_delay constraint specifies the maximum delay for the timing
paths.

Syntax set_max_delay delay_value [-from from port_object or cell_object] [-
to to port_object or cell_object]

Arguments delay_value

Specifies a floating point number in nanoseconds that represents the
required maximum delay value for specified paths.

If the path ending point is on a sequential device, the tool includes library
setup time in the computed delay.

-from from port_object or cell_object

Specifies the timing path start point. A valid timing start point is a clock, a
primary input, a combinational logic cell, or a sequential cell (clock pin).

-to to port_object or cell_object

Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data pin)

Examples The following example sets a maximum delay by constraining all
paths from ff1a:CLK to ff2e:D with a delay less than or equal to 5 ns:

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Defining Maximum Delay Paths
The set_max_delay constraint specifies the maximum delay for the timing
paths.

set_output_delay 1.2 -min -clock [get_clocks CLK1] [get_ports
data1]
set_output delay 1.5 -max -clock [get_clocks CLK1] [get_ports
data1]

set_max_delay 5 -from [get_cells ff1a] -to [get_cells ff2e]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 32

Syntax set_max_delay delay_value [-from from port_object or cell_object] [-
to to port_object or cell_object]

Arguments delay_value

Specifies a floating point number in nanoseconds that represents the
required maximum delay value for specified paths.

If the path ending point is on a sequential device, the tool includes library
setup time in the computed delay.

-from from port_object or cell_object

Specifies the timing path start point. A valid timing start point is a clock, a
primary input, a combinational logic cell, or a sequential cell (clock pin).

-to to port_object or cell_object

Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data pin)

Examples The following example sets a maximum delay by constraining all
paths from ff1a:CLK to ff2e:D with a delay less than or equal to 5 ns:

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Defining False Paths

The set_false_path constraint identifies paths that are considered false and
excluded from timing analysis.

Syntax set_false_path [-from from port_object or cell_object] [-to to
port_object or cell_object]

or

set_false_path [-through through_net_object]

Arguments -from from port_object or cell_object

Specifies the timing path start point. A valid timing starting point is a clock,
a primary input, a combinational logic cell, or a sequential cell (clock-pin).

-to to port_object or cell_object

Specifies the timing path end point. A valid timing end point is a primary
output, a combinational logic cell, or a sequential cell (data-pin).

-through through_net_object

set_max_delay 5 -from [get_cells ff1a] -to [get_cells ff2e]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 33

Specifies a net through which the paths should be blocked.

Examples The following example specifies all paths from clock pins of the
registers in clock domain clk1 to data pins of a specific register in clock
domain clk2 as false paths:

The following example specifies all paths through the net UO/sigA as false:

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

set_false_path –from [get_ports clk1] –to [get_cells reg_2]

set_false_path –through [get_nets UO/sigA]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 34

Defining Multicycle Paths

The set_multicycle_path constraint defines a path that takes multiple clock
cycles.

Syntax set_multicycle_path ncycles [-from from net_object or cell_object] [-
to to net_object or cell_object]

Arguments ncycles

Specifies a value that represents the number of cycles the data path must
have for setup check. The value is relative to the ending point clock and is
defined as the delay required for arrival at the ending point.

-from from net_object or cell_object

Specifies the timing path start point. A valid timing start point is a
sequential cell (clock pin) or a clock net (signal). You can also use the
keyword “all_registers” to include all registers’ clock inputs.

-to to net_object or cell_object

Specifies the timing path end point. A valid timing end point is a sequential
cell (data-pin) or a clock-net (signal). You can also use the keyword
“all_registers” to include all registers’ data inputs.

Example The following example sets all paths between reg1 and reg2 to 3
cycles for setup check. Hold check is measured at the previous edge of the
clock at reg2.

For more information about defining delay paths with LDC Editor, in the
Diamond software online help, refer to User Guides > Applying Design
Constraints > Using SDC Constraints > Applying Lattice Synthesis
Engine Constraints > Defining Delay Paths Using LDC Editor.

Setting Up Attributes
This section describes the Synplify Lattice Attributes that are supported by the
Lattice Synthesis Engine (LSE). These attributes are directly interpreted by
the engine and influence the optimization or structure of the output netlist.
Traditional HDL attributes, such as UGROUP, are also compatible with LSE
and are passed into the netlist to direct Map and Place & Route.

All HDL attributes have priority over Strategy settings.

set_multicycle_path 3 –from [get_cells reg1] –to [get_cells
reg2]

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 35

black_box_pad_pin
This attribute specifies pins on a user-defined black box module. The pins are
defined as I/O pads that are visible outside of the black box. If there is more
than one port that is an I/O pad, list the ports inside double-quotes ("),
separated by commas (,), and without enclosed spaces. This attribute must
be used in conjunction with the syn_black_box attribute.

Verilog Syntax object /* synthesis syn_black_box black_box_pad_pin =
"portList" */ ;

where object is a module declaration, and portList is a spaceless, comma-
separated list of the black box port names that are I/O pads.

Verilog Example

VHDL Syntax attribute black_box_pad_pin of object : architecture is
"portList" ;

where object is the architecture name of a black box. Data type is string. The
portList is a spaceless, comma-separated list of the black box port names that
are I/O pads.

module black_box_pad_pin2(
input[4:0] in1,
input[4:0] in2,
input clk,
output[4:0] q
)/* synthesis syn_black_box
black_box_pad_pin="in1(4:0),q" */;

reg [4:0] q;
always @(posedge clk)

begin
q <= in1 + in2;

end
endmodule

module black_box_pad_pin_instan(
input[4:0] in1,
input[4:0] in2,
input[4:0] in3,
input clk,
output[5:0] q_out
);

wire [4:0] q;
reg [5:0] q_out;
black_box_pad_pin2 test_123(

.in1(in1),

.in2(in2),

.clk(clk),

.q(q)
);

always @(posedge clk)
begin

q_out <= q + in3;
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 36

VHDL Example

full_case

Directive. For Verilog designs only. When used with a case, casex, or casez
statement, this directive indicates that all possible values have been given,
and that no additional hardware is needed to preserve signal values.

Verilog Syntax object /* synthesis full_case */

Verilog Example

GSR
This attribute specifies the use of the global set/reset routing resources.
Allows the user to specify which portions of the design are to be altered in the
way they respond to the GSR reset signal. Unless specified otherwise, all
design elements will respond to the global reset signal if it is present.

entity BBDLHS is
port (D: in std_logic;
E: in std_logic;
GIN : in std_logic_vector(2 downto 0);
Q : out std_logic);

end;

architecture BBDLHS_behav of BBDLHS is
end bl_box_behav;
attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS_behav : architecture is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of BBDLHS_behav : architecture is
"GIN(2:0),Q";

module full_case1 (q, in1, in2, in3, in4, sel);
output q;
input in1, in2, in3, in4;
input [3:0] sel;
reg q;
always @(sel or in1 or in2 or in3 or in4)
begin
casez (sel) /* synthesis full_case */
4'b11??: q = in4;
4'b?1??: q = in3;
4'b???1: q = in1;
4'b??1?: q = in2;
default: q = 'bx;

endcase
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 37

Available values:

 ENABLED – This is the default value on most library elements. This value
allows the software to determine the final value and will be overridden by
the parent hierarchy if the parent has a value of anything other than
ENABLED.

 DISABLED – This prevents the hierarchy or element from responding to
the GSR value. It cannot be changed by the parent’s value.

 FORCEENABLE – This forces the hierarchy or element to respond to the
GSR value. It cannot be changed by the parent’s value.

 IPENABLE – This forces the hierarchy or element to respond to the GSR
value when IP is being used in evaluation mode. It cannot be changed by
the parent’s value. This value is only for internal Lattice IP to use. It should
never be used within a design itself.

Verilog Syntax object /* synthesis GSR = {ENABLED | DISABLED |
FORCEENABLE | IPENABLE} */ ;

Verilog Example

VHDL Syntax attribute gsr of object : objectType is ENABLED | DISABLED
| FORCEENABLE | IPENABLE;

VHDL Example

loc
The loc attribute specifies pin locations for Lattice I/Os, instances, and
registers, and forward-annotates them to the place-and-route tool. Refer to
the Lattice databook for valid pin location values. If the attribute is on a bus,
the software writes out bit-blasted constraints for forward-annotation.

Verilog Syntax object /* synthesis loc = "pinLocations" */ ;

`timescale 1 ns / 1 ns
module top (reg_q, rotate_q, a, b, r_l, clk, rst)/* synthesis
GSR = "ENABLED" */;
output [7:0] reg_q, rotate_q;
input [7:0] a, b;
input clk, rst, r_l;

sub1 reg8_1 (.clk(clk), .data(a), .q(reg_q), .rst(rst));
sub2 rotate_1 (rotate_q, b, clk, r_l, rst);
endmodule

architecture archtest of test is
attribute gsr : string;
attribute gsr of archtest : architecture is “ENABLED”;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 38

In the syntax, pin_locations is a spaceless, comma-separated list of pin
locations.

Verilog Example

VHDL Syntax attribute loc of object : objectType is "pinLocations" ;

In the syntax, pinLocations is a spaceless, comma-separated list of pin
locations.

VHDL Example

parallel_case
Directive. For Verilog designs only. Forces a parallel-multiplexed structure
rather than a priority-encoded structure. This is useful because case
statements are defined to work in priority order, executing (only) the first
statement with a tag that matches the select value.

If the select bus is driven from outside the current module, the current module
has no information about the legal values of select, and the software must
create a chain of disabling logic so that a match on a statement tag disables
all following statements. However, if you know the legal values of select, you
can eliminate extra priority-encoding logic with the parallel_case directive. In
the following example, the only legal values of select are 4'b1000, 4'b0100,
4'b0010, and 4'b0001, and only one of the tags can be matched at a time.
Specify the parallel_case directive so that tag-matching logic can be parallel
and independent, instead of chained.

I/O pin location
input [3:0]DATA0 /* synthesis loc="p10,p12,p11,p15" *;
Register pin location
reg data_in_ch1_buf_reg3 /* synthesis loc="R40C47" */;
Vectored internal bus
reg [3:0] data_in_ch1_reg /*synthesis loc =
"R40C47,R40C46,R40C45,R40C44" */;

entity mycomp is port(DATA0 : in std_logic_vector (3 downto 0);
 .
 .
 .
);
attribute loc : string;
attribute loc of DATA0 : signal is "p10,p12,p11,p15";

Note

Designers should be aware that it is possible for the priority of overlapping cases in
post-synthesis simulation to mismatch with the priority behavior in RTL simulation
when using this pragma.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 39

Verilog Syntax You specify the directive as a comment immediately
following the select value of the case statement.

object /* synthesis parallel_case */

where object is a case, casex or casez statement declaration.

Verilog Example

If the select bus is decoded within the same module as the case statement,
the parallelism of the tag matching is determined automatically, and the
parallel_case directive is unnecessary.

syn_black_box
This attribute specifies that a Verilog module or VHDL architecture declaration
is for a black box. Only the module’s interface is defined for synthesis. The
contents of a black box cannot be optimized during synthesis. A module can
be a black box whether it is empty or not. However, the syn_black_box
attribute cannot be used with the top-level module or architecture of a design.
Additionally, the syn_black_box attribute is not supported for instances in
Verilog or components in VHDL.

This attribute has an implicit Boolean value of 1 or true.

If any of the ports are I/O pads, add the black_box_pad_pin attribute. See
“black_box_pad_pin” on page 35.

Verilog Syntax object /* synthesis syn_black_box */ ;

where object is a module declaration.

Verilog Example

module parallel_case1 (q, in1, in2, in3, in4, sel);
output q;
input in1, in2, in3, in4;
input [3:0] sel;
reg q;
always @(sel or in1 or in2 or in3 or in4)
begin
casez (sel) /* synthesis parallel_case */
4'b11??: q = in4;
4'b?1??: q = in3;
4'b???1: q = in1;
4'b??1?: q = in2;
default: q = 'bx;

endcase
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 40

VHDL Syntax attribute syn_black_box of object : architecture is true ;

where object is an architecture name. Data type is Boolean.

VHDL Example

syn_encoding
This attribute specifies the encoding style for a finite state machine (FSM),
overriding the default LSE encoding. The default encoding is based on the
number of states in the FSM. This attribute takes effect only when LSE infers
an FSM. This attribute has no effect when syn_state_machine is 0, which
blocks inference of an FSM.

Values for syn_encoding are as follows:

 sequential – More than one bit of the state register can change at a time,
but because more than one bit can be hot, the value must be decoded to
determine the state. For example: 000, 001, 010, 011, 100

 onehot – Only two bits of the state register change (one goes to 0; one
goes to 1) and only one of the state registers is hot (driven by a 1) at a
time. For example: 0000, 0001, 0010, 0100, 1000

 gray – Only one bit of the state register changes at a time, but because
more than one bit can be hot, the value must be decoded to determine the
state. For example: 000, 001, 011, 010, 110

There can be no more than four states for gray encoding. If the FSM has
more than four states, LSE switches to sequential encoding.

 safe – If the state machine enters an invalid state, additional logic will
drive the state machine into its reset state. The design must have a
defined reset state.

Safe encoding can be combined with either sequential or onehot encoding
(not with gray encoding) as in:

syn_encoding = "safe,onehot"

If the safe value is given by itself, it combines with the encoding method of
a preceding syn_encoding statement or the default method.

module bl_box(out,data,clk) /* synthesis syn_black_box */;

entity bl_box is
port (data : in std_logic_vector (7 downto 0);
clk : in std_logic;
out : out std_logic);

end;

architecture bl_box_behav of bl_box is
end bl_box_behav;
attribute syn_black_box : boolean;
attribute syn_black_box of bl_box_behav : architecture is true;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 41

Verilog Syntax Object /* synthesis syn_encoding = "value" */;

Where object is an enumerated type and value is from the list above.

Verilog Example

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 42

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity syn_state_machine2 is
port(

clk : in std_logic;
reset: in std_logic;
en : in std_logic;
q : out std_logic_vector(1 downto 0)
);

end entity;

architecture behave of syn_state_machine2 is
type state_type is(state0,state1,state2,state3);
signal state,next_state:state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of behave : architecture is true;
attribute syn_encoding : string;
attribute syn_encoding of state,next_state: signal is

"binary";
begin

process(clk,reset)
begin

if reset = '1' then
state <= state0;

elsif clk'event and clk = '1' then
state <= next_state;

end if;
end process;
process(state)
begin

case state is
when state0 =>

if (en = '1') then
 q <= "00";

end if;
next_state <= state1;

when state1=>
if (en = '1') then

 q <= "01";
end if;
next_state <= state2;

when state2 =>
if (en = '1') then

 q <= "10";
end if;
next_state <= state3;

when state3 =>
if (en = '1') then

 q <= "11";
end if;
next_state <= state0;

end case;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 43

VHDL Syntax attribute syn_encoding of object: objectType is "value";

Where object is an enumerated type and value is from the list above.

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity syn_encoding1 is
port(

clk : in std_logic;
reset: in std_logic;
en : in std_logic;
q : out std_logic_vector(1 downto 0)
);

end entity;

architecture behave of syn_encoding1 is
signal state : std_logic_vector(3 downto 0);
constant state0 : std_logic_vector(3 downto 0) := "1000";
constant state1 : std_logic_vector(3 downto 0) := "0100";
constant state2 : std_logic_vector(3 downto 0) := "0010";
constant state3 : std_logic_vector(3 downto 0) := "0001";
attribute syn_encoding : string;
attribute syn_encoding of state : signal is "safe,onehot";

begin
process(clk,reset,en)
begin

if reset = '1' then
state <= state0;
q <= "00";

elsif clk'event and clk = '1' then
case state is

when state0 =>
if (en = '1') then

 q <= "00";
end if;
state <= state1;

when state1=>
if (en = '1') then

 q <= "01";
end if;
state <= state2;

when state2 =>
if (en = '1') then

 q <= "10";
end if;
state <= state3;

when state3 =>
if (en = '1') then

 q <= "11";
end if;
state <= state0;

when others => null;
end case;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 44

syn_force_pads
This attribute prevents unused ports from being optimized away to allow I/O
pad insertion on the unused port. This attribute is not supported at the global
level. Instead, set the use_io_insertion option to control I/O insertion globally.

This attribute is supported in the rtl, and it will override the global
use_io_insertion option setting on the given input, output, or bidir port.

For example, in the following Verilog file, the syn_force_pads attribute can be
set to 1 on an unused input port (dataz), and it will not be optimized away,
regardless of the use_io_insertion global setting.

Verilog syntax object /* synthesis syn_force_pads = {1 | 0} */;

where object is port declaration.

Verilog Example

To force I/O pads to be inserted for input ports that do not drive logic, follow
the guidelines below.

 To force I/O pad insertion on an individual port, set the syn_force_pads
attribute on the port with a value to 1. To disable I/O insertion for a port,
set the attribute on the port with a value of 0.

`define DSIZE 9
`define OSIZE 18

module multp9x9(dataout, dataax, dataay, dataz, clk, rst, ce);
 output [`OSIZE-1:0] dataout;
 input [`DSIZE:0] dataz /* synthesis syn_force_pads = 1*/;
 input [`DSIZE-1:0] dataax, dataay;
 input clk, rst, ce;
 reg [`DSIZE-1:0] dataax_reg, dataay_reg;

 reg [`OSIZE-1:0] dataout;
 wire [`OSIZE-1:0] dataout_tmp ;
 assign dataout_tmp = dataax_reg * dataay_reg;

 always @(posedge clk or posedge rst)
 begin
 if (rst)
 begin
 dataax_reg <= 0;
 dataay_reg <= 0;
 dataout <= 0;
 end
 else if (ce == 1'b1)
 begin
 dataax_reg <= dataax;
 dataay_reg <= dataay;
 dataout <= dataout_tmp;
 end
 end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 45

Enable this attribute to preserve user-instantiated pads, insert pads on
unconnected ports, insert bi-directional pads on bi-directional ports instead of
converting them to input ports, or insert output pads on unconnected outputs.

If you do not set the syn_force_pads attribute, the synthesis design optimizes
any unconnected I/O buffers away.

VHDL syntax Attribute syn_force_pads of object: objectType is "true | false"
;

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity multp9x9 is
 port (dataout : out std_logic_vector(17 downto 0);
 dataax, dataay: in std_logic_vector(8 downto 0);
 dataz : in std_logic_vector(8 downto 0);
 clk,rst,ce: in std_logic
);
 attribute syn_force_pads : string;
 attribute syn_force_pads of dataz : signal is "true";

end multp9x9;

architecture rtl of multp9x9 is

signal dataax_reg,dataay_reg: std_logic_vector(8 downto 0);
signal dataout_tmp: std_logic_vector(17 downto 0);

begin

 dataout_tmp <= dataax_reg * dataay_reg;
 process (clk, rst)
 begin
 if rst = '1' then
 dataax_reg <= (others => '0');
 dataay_reg <= (others => '0');
 dataout <= (others => '0');
 elsif clk'event and clk = '1' then
 if ce = '1' then
 dataax_reg <= dataax;
 dataay_reg <= dataay;
 dataout <= dataout_tmp;
 end if;
 end if;
 end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 46

syn_hier
This attribute allows you to control the amount of hierarchical transformation
that occurs across boundaries on module or component instances during
optimization. This attribute cannot be applied globally. The user must set this
attribute on the selective modules to stop cross-boundary optimizations.

syn_hier Values The following value can be used for syn_hier:

hard – Preserves the interface of the design unit with no exceptions. This
attribute affects only the specified design units.

Verilog Syntax object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values
described in syn_hier Values. Check the attribute values to determine where
to attach the attribute.

Verilog Example

VHDL Syntax attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values
described in syn_hier Values. Check the attribute values to determine the
level at which to attach the attribute.

VHDL Example

syn_insert_pad
This attribute removes an existing I/O buffer from a port or net when I/O buffer
insertion is enabled.

The syn_insert_pad attribute is used when the use_io_insertion global option
is enabled (when I/O buffers are automatically inserted) to allow users to
selectively remove an individual buffer from a port or net.

It can also be used to force an I/O buffer to be inserted on a specific port or
net, if the use_io_insertion global option is disabled.

 Setting the attribute to 0 on a port or net removes the I/O buffer (or
prevents an I/O buffer from being automatically inserted, if the
use_io_insertion global option is enabled).

module top1 (Q, CLK, RST, LD, CE, D)
 /* synthesis syn_hier = "hard" */;

architecture struct of cpu is
attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 47

 Setting the attribute to 1 on a port or net forces an I/O buffer to be inserted
if the use_io_insertion global option is disabled.

Verilog Syntax object /* synthesis syn_insert_pad = {1 | 0} */;

where object is a port or net declaration.

Verilog Example

In the previous example, the input port labeled “rst” will not have an input
buffer connected to it in the technology-mapped netlist after LSE completes.

VHDL Syntax attribute syn_insert_pad of object : objectType is "true |
false" ;

VHDL Example

`define OSIZE 16
`define DSIZE 8

module mac8x8 (dataout, x, y, clk, rst);
 output [`OSIZE:0] dataout;
 input [`DSIZE-1:0] x, y;
 input clk;
 input rst /* synthesis syn_insert_pad = 0 */;
 reg [`OSIZE:0] dataout;
 reg [`DSIZE-1:0] x_reg, y_reg;
 wire [`OSIZE-1:0] multout ;
 wire [`OSIZE:0] sum_out;

 assign multout = x_reg * y_reg;
 assign sum_out = multout + dataout;

 always @(posedge clk or posedge rst)
 begin
 if (rst)
 begin
 x_reg = 0;
 y_reg = 0;
 dataout = 0;
 end
 else
 begin
 x_reg = x;
 y_reg = y;
 dataout = sum_out;
 end
 end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 48

library ieee;
use ieee.std_logic_1164.all;

entity register_en_reset is
 generic (
 width : integer := 8
);
 port (
 datain : in std_logic_vector(width-1 downto 0);
 clk : in std_logic;
 enable : in std_logic;
 reset : in std_logic;
 dataout : out std_logic_vector(width-1 downto 0)
);
 attribute syn_insert_pad : string;
 attribute syn_insert_pad of reset : signal is "false";

end register_en_reset;

architecture lattice_behav of register_en_reset is

begin
 process (clk,reset)
 begin
 if (reset = '1') then
 dataout <= (others => '0');
 elsif (rising_edge(clk) and enable = '1') then
 dataout <= datain;
 end if;
 end process;
end lattice_behav;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 49

syn_keep
This attribute keeps the specified net intact during optimization and synthesis.

Verilog Syntax object /* synthesis syn_keep = 1 */ ;

where object is a wire or reg declaration. Make sure that there is a space
between the object name and the beginning of the comment slash (/).

Verilog Example

VHDL Syntax attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal.

VHDL Example

module syn_keep1(
input a,
input b,
input clk,
output q1,
output q2);

reg temp1;
reg temp2;
reg q1;
reg q2;
wire or_result;
wire keep1/* synthesis syn_keep=1 */;
wire keep2/* synthesis syn_keep=1 */;

always @(posedge clk)
begin

temp1 = a;
temp2 = b;

end
assign or_result = (temp1 | temp2);
assign keep1 = or_result;
assign keep2 = or_result;
always@(posedge clk)

begin
q1 = keep1;
q2 = keep2;

end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 50

library ieee;
use ieee.std_logic_1164.all;

entity syn_keep1 is
port(

a : in std_logic;
b : in std_logic;
clk: in std_logic;
q1: out std_logic;
q2: out std_logic
);

end entity;

architecture behave of syn_keep1 is
signal temp1 : std_logic;
signal temp2 : std_logic;
signal keep1 : std_logic;
signal keep2 : std_logic;
signal or_result : std_logic;
attribute syn_keep: boolean;
attribute syn_keep of keep1,keep2: signal is true;

begin
process(clk)
begin

if clk'event and clk = '1' then
temp1 <= a;
temp2 <= b;

end if;
end process;

or_result <= (temp1 or temp2);
keep1 <= or_result;
keep2 <= or_result;

process(clk)
begin

if clk'event and clk = '1' then
q1 <= keep1;
q2 <= keep2;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 51

syn_maxfan
This attribute overrides the default (global) fan-out guide for an individual
input port, net, or register output.

Verilog Syntax object /* synthesis syn_maxfan = "value" */ ;

Verilog Example

VHDL Syntax attribute syn_maxfan of object : objectType is "value" ;

VHDL Example

See Also “Optimizing LSE for Area and Speed” on page 568

syn_multstyle
This attribute specifies whether the multipliers are implemented as dedicated
hardware blocks or as logic.

syn_multstyle Values block_mult | logic

Value Description Default block_mult Implements the multipliers as
dedicated hardware blocks (Lattice: DSP blocks)

This attribute only applies to families that use DSP blocks on the device. To
override this behavior, specify a value of logic.

Verilog Syntax input net /* synthesis syn_multstyle = "block_mult | logic" */;

Verilog Example

Note

LSE will take integer values for non-integral values to syn_maxfan attribute.

For example, syn_maxfan value of 5.1 will be truncated to 5.

module test (registered_data_out, clock, data_in);
output [31:0] registered_data_out;
input clock;
input [31:0] data_in /* synthesis syn_maxfan=1000 */;
reg [31:0] registered_data_out /* synthesis syn_maxfan=1000 */;

entity test is
 port (clock : in bit;
 data_in : in bit_vector(31 downto 0);
 registered_data_out: out bit_vector(31 downto 0));
attribute syn_maxfan : integer;
attribute syn_maxfan of data_in : signal is 1000;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 52

VHDL Syntax attribute syn_multstyle of instance : signal is "block_mult |
logic";

VHDL Example

module syn_multstyle1(
input [7:0] in1,
input [7:0] in2,
input rst,
input clk,
output [15:0] result);

reg [7:0] temp1,temp2;
reg [15:0] result;
wire [15:0] product /*synthesis syn_multstyle = "logic"*/;

always@(posedge clk ,negedge rst)
begin

if(!rst)
begin

temp1 = 'b0;
temp2 = 'b0;

end
else

begin
temp1 = in1;
temp2 = in2;

end
end

assign product = temp1*temp2;

always@(posedge clk, negedge rst)
begin

if(!rst)
begin

result = 'b0;
end

else
begin

result = product;
end

end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 53

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity syn_pipeline2 is
port(

 inA1: in std_logic_vector(3 downto 0);
 inA2: in std_logic_vector(3 downto 0);
 inB1: in std_logic_vector(3 downto 0);
 inB2: in std_logic_vector(3 downto 0);
 clk : in std_logic;
 sum : out std_logic_vector(7 downto 0)
);

end entity;

architecture behave of syn_pipeline2 is
signal temp1,temp2,temp3,temp4: std_logic_vector(3 downto 0);
signal sum_s : std_logic_vector(7 downto 0);
attribute syn_pipeline : string;
attribute syn_pipeline of sum_s: signal is "true";

begin
process(clk)
begin

if clk'event and clk = '1' then
temp1 <= inA1;
temp2 <= inA2;
temp3 <= inB1;
temp4 <= inB2;
sum_s <= (temp1*temp3) + (temp2*temp4);

end if;
end process;

process(clk)
begin

if clk'event and clk = '1' then
sum <= sum_s;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 54

syn_noprune
This attribute prevents instance optimization for black-box modules (including
technology-specific primitives) with unused output ports. This attribute is not a
global attribute. It works on the component basis. The user must set the
attribute on the instance.

Verilog Syntax object /* synthesis syn_noprune = 1 */ ;

where object is a module an instance. The data type is Boolean.

Verilog Example

VHDL Syntax attribute syn_noprune of object : objectType is true ;

where the data type is boolean, and object is a component.

VHDL Example

module top(a1,b1,c1,d1,y1,clk);
output y1;
input a1,b1,c1,d1;
input clk;
wire x2,y2;
reg y1;
syn_noprune u1(a1,b1,c1,d1,x2,y2) /* synthesis syn_noprune=1 */
;

always @(posedge clk)
 y1<= a1;

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 55

library ieee;
use ieee.std_logic_1164.all;
entity top is
 port (a1, b1 : in std_logic;
 c1,d1,clk : in std_logic;
 y1 :out std_logic);
end ;
architecture behave of top is
component noprune
port (a, b, c, d : in std_logic;
 x,y : out std_logic);
end component;
signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of noprune : component is true;
begin
 u1: noprune port map(a1, b1, c1, d1, x2, y2);
 process begin
 wait until (clk = '1') and clk'event;
 y1 <= a1;
 end process;
end;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 56

syn_pipeline
This attribute permits registers to be moved to improve timing. Specifies that
registers that are outputs of Multipliers/Adders can be moved to improve
timing. Depending on the criticality of the path, the tool moves the output
register to the input side.

Verilog Syntax object /* synthesis syn_pipeline = {1 | 0} */ ;

where object is a register declaration.

The value of 0 (or false) indicates pipelining for the specified register is
disabled, which means the register position in the design is fixed.

The value of 1 (or true) indicates pipelining for the specified register is
allowed, which means the register may be moved if it helps improve timing.

LSE will identify registers that are candidates for possible pipelining based on
running RTL timing analysis. It may identify some candidate registers, or it
may determine there are none that are suitable.

If LSE decides no candidate registers for pipelining exist, if the user sets the
syn_pipeline attribute to “1” on a specific register in the RTL to force pipelining
for that register, that attribute will not be honored.

If global pipelining is enabled for a design, and given one or more registers
that LSE has identified as possible candidates for pipelining, the user may
prevent these registers from being pipelined by setting synthesis attribute
syn_pipeline=0 for each of those registers in the RTL.

Verilog Example

In the previous example, the registers labeled “out1” will not be moved to the
input side of the adder to improve timing.

module pipeline (a,b,c,d,clk,out);

input [3:0] a,b,c,d;
input clk;
output[7:0]out;

reg[7:0]out,out1 /* synthesis syn_pipeline = 0 */;
reg[3:0] a_temp,b_temp,c_temp,d_temp;

always @(posedge clk)
begin
 a_temp <= a;
 b_temp <= b;
 c_temp <= c;
 d_temp <= d;
 out1 <= (a_temp * b_temp) +(c_temp * d_temp);
 out <= out1;
end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 57

VHDL Syntax attribute syn_pipeline of object : objectType is {true|false} ;

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity syn_pipeline_exp is
port (CLK_0 : in std_logic;

A_IN : in std_logic_vector(3 downto 0);
B_IN : in std_logic_vector(3 downto 0);
RST : out std_logic_vector(7 downto 0)

);
end syn_pipeline_exp;

architecture rtl of syn_pipeline_exp is
signal A_REGSTR : std_logic_vector(3 downto 0);
signal B_REGSTR : std_logic_vector(3 downto 0);
signal TMP : std_logic_vector(7 downto 0);
signal TMP1 : std_logic_vector(7 downto 0);
signal TMP2 : std_logic_vector(7 downto 0);
attribute syn_pipeline : string;
attribute syn_pipeline of TMP1 : signal is "true";

begin
process(CLK_0)
begin

if (CLK_0'event and CLK_0 = '1') then
TMP <= A_REGSTR * B_REGSTR;
A_REGSTR <= A_IN;
B_REGSTR <= B_IN;
TMP1 <= TMP;
TMP2 <= TMP1;
RST <= TMP2;

end if;
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 58

syn_preserve
This attribute prevents sequential optimizations such as constant propagation
and inverter push-through from removing the specified register. The
syn_encoding attribute is not honored if there is a syn_preserve attribute on
any of the state machine registers.

Verilog Syntax object /* synthesis syn_preserve = 1 */ ;

where object is a register definition signal or a module.

Verilog Example

VHDL Syntax attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a
state register or architecture.

VHDL Example

module syn_preserve1(
input[3:0]in1,
input[3:0]in2,
input[3:0]in3,
input clk,
output [7:0] result,
output [3:0] sum
)/* synthesis syn_preserve= 1*/;

reg [7:0] result/*synthesis syn_multstyle = "EBR"*/;
reg [3:0] temp1,temp2,temp3;
reg [3:0] sum;

always@(posedge clk)
begin

temp1 = in1 & in2;
temp2 = !temp1;
temp3 = temp1 & temp2;
result = temp3*in3;
sum = temp3 + in3;

end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 59

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity syn_preserve2 is
port(

 in1: in std_logic_vector(3 downto 0);
 in2: in std_logic_vector(3 downto 0);
 in3: in std_logic_vector(3 downto 0);
 clk: in std_logic;
 result: out std_logic_vector(7 downto 0);
 sum : out std_logic_vector(3 downto 0)
);

end entity;

architecture behave of syn_preserve2 is
signal temp1,temp2,temp3 : std_logic_vector(3 downto 0);
attribute syn_preserve : boolean;
attribute syn_preserve of behave: architecture is true;
attribute syn_multstyle : string;
attribute syn_multstyle of result: signal is "EBR";

begin
process(clk)
begin

if clk'event and clk = '1' then
temp1 <= in1 and in2;
temp2 <= not temp1;
temp3 <= temp1 and temp2;
result <= temp3*in3;
sum <= temp3 + in3;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 60

syn_ramstyle
The syn_ramstyle attribute specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module, or to a RAM instance. To
turn off RAM inference, set its value to registers.

The following values can be specified globally or on a module or RAM
instance:

 registers – Causes an inferred RAM to be mapped to registers (flip-flops
and logic) rather than the technology-specific RAM resources.

 distributed – Causes the RAM to be implemented using the distributed
RAM or PFU resources.

 block_ram – Causes the RAM to be implemented using the dedicated
RAM resources. If your RAM resources are limited, you can use this
attribute to map additional RAMs to registers instead of the dedicated or
distributed RAM resources.

 no_rw_check (some modes, but all technologies). – You cannot specify
this value alone. Without no_rw_check, the synthesis tool inserts bypass
logic around the RAM to prevent the mismatch. If you know your design
does not read and write to the same address simultaneously, use
no_rw_check to eliminate bypass logic. Use this value only when you
cannot simultaneously read and write to the same RAM location and you
want to minimize overhead logic.

Verilog Syntax object /* synthesis syn_ramstyle = "string" */ ;

where object is a register definition (reg) signal. The data type is string.

Verilog Example

VHDL Syntax attribute syn_ramstyle of object : objectType is "string" ;

where object is a signal that defines a RAM or a label of a component
instance. Data type is string.

VHDL Example

module ram4 (datain,dataout,clk);
output [31:0] dataout;
input clk;
input [31:0] datain;
reg [7:0] dataout[31:0] /* synthesis syn_ramstyle="block_ram" */;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 61

library ieee;
use ieee.std_logic_1164.all;
entity ram4 is
 port (d : in std_logic_vector(7 downto 0);
 addr : in std_logic_vector(2 downto 0);
 we : in std_logic;
 clk : in std_logic;
 ram_out : out std_logic_vector(7 downto 0));
end ram4;
library synplify;
architecture rtl of ram4 is
type mem_type is array (127 downto 0) of std_logic_vector (7
downto 0);
signal mem : mem_type; -- mem is the signal that defines the
RAM
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 62

syn_replicate
This attribute controls replication. The synthesis tool can automatically
replicate registers during optimization. This attribute disables replication
either globally or on a per register basis.

Verilog Syntax object /* synthesis syn_replicate = 1 | 0 */;

Verilog Example

VHDL Syntax attribute syn_replicate of object : objectType is true | false ;

VHDL Example

module syn_replicate1 (en1,en2,clk,in1,in2,q);
input en1,en2;
input clk;
input [6:0]in1,in2;
output [6:0]q;
reg [6:0]q;
reg enc /* synthesis syn_maxfan = 1 syn_replicate = 1*/;

always @(posedge clk)

begin
enc = en1 & en2;

end

always @(posedge clk)
begin

if (enc)
q = in1;

else
q = in2;

end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 63

library ieee;
use ieee.std_logic_1164.all;

entity syn_replicate2 is
port(

 en1: in std_logic;
 en2: in std_logic;
 clk: in std_logic;
 in1: in std_logic_vector(6 downto 0);
 in2: in std_logic_vector(6 downto 0);
 q: out std_logic_vector(6 downto 0)
);

end entity;

architecture behave of syn_replicate2 is
signal enc : std_logic;
attribute syn_maxfan: integer;
attribute syn_maxfan of behave : architecture is 1;
attribute syn_replicate: boolean;
attribute syn_replicate of enc : signal is false;

begin
process(clk)
begin

if clk'event and clk = '1' then
enc <= (en1 and en2);

end if;
end process;

process(clk)
begin

if enc = '1' then
q <= in1;

else
q <= in2;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 64

syn_romstyle
This attribute allows you to implement ROM architectures using dedicated or
distributed ROM. Infer ROM architectures using a CASE statement in your
code.

For the synthesis tool to implement a ROM, at least half of the available
addresses in the CASE statement must be assigned a value. For example,
consider a ROM with six address bits (64 unique addresses). The case
statement for this ROM must specify values for at least 32 of the available
addresses. You can apply the syn_romstyle attribute globally to the design by
adding the attribute to the module or entity.

The following values can be specified globally on a module or ROM instance:

 auto – Allows the synthesis tool to chose the best implementation to meet
the design requirements for speed, size, etc.

 logic – Causes the ROM to be implemented using the distributed ROM or
PFU resources.

 EBR – Causes the ROM to be implemented using the dedicated ROM
resources. If your ROM resources are limited, you can use this attribute to
map additional ROM to registers instead of the dedicated or distributed
RAM resources.

Verilog Syntax object /* syn_romstyle = "auto(default) | EBR | logic" */ ;

Verilog Example

VHDL Syntax attribute syn_romstyle of object : object_type is
"auto(default) | EBR | logic" ;

VHDL Example

reg [8:0] z /* synthesis syn_romstyle = "EBR" */;

signal z : std_logic_vector(8 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "logic";

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 65

syn_srlstyle
This attribute determines how to implement the sequential shift components.

Verilog Syntax object /* synthesis syn_srlstyle = "string",

where string can take one of the following values:

registers: seqShift register components are implemented as registers.

distributed: seqShift register components are implemented as distributed
RAM.

block_ram: seqShift register components are implemented as block RAM

If the attribute value set by the user cannot be honored (for example, the user
sets the attribute value to "block_ram", however, the selected device does not
contain enough available EBR blocks to implement the shift register), LSE will
display a message to indicate this.

" | registers | distributed | |block_ram" */ ;

In the above syntax, object is a register declaration.

Verilog Example The following example implements seqShift components
as distributed memory with any required fabric logic.

The following example implements a seqShift for 16x256 bits wide and serial
in and serial out register using syn_srlstyle set to block_ram.

VHDL Syntax attribute syn_srlstyle of object : signal is

" registers | distributed |block_ram " ;

In the above syntax, object is a register.

module test_srl(clk, enable, dataIn, result, addr);
input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[15:0]

/* synthesis syn_srlstyle="distributed" */;
integer i;
always @(posedge clk) begin

if (enable == 1) begin
for (i=15; i>0; i=i-1) begin

regBank[i] <= regBank[i-1];
end

regBank[0] <= dataIn;
end

end
assign result = regBank[addr];
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 66

Verilog Example The example below implements seqShift components as
distributed memory primitives:

// shift left register with 16X256 bits width and serial in and
serial out
module test(clock, arst, sr_en, shiftin, shiftout);
parameter sh_len=16;
parameter sh_width=256;
parameter ARESET_VALUE = {(sh_width){1'b0}};
input clock,arst,sr_en;
input [sh_width-1:0] shiftin;
output [sh_width-1:0] shiftout;
integer i;
reg [sh_width-1:0] sreg [sh_len-1:0] /* synthesis
syn_srlstyle="block_ram" */;

always @(posedge clock or posedge arst)
begin

if(arst)
begin

for(i = 0;i <= sh_len-1;i = i+1)
sreg[i] <= ARESET_VALUE ;

end
else

begin
if(sr_en)
begin

sreg[0] <= shiftin;
for(i=sh_len-1;i>0;i=i-1)

sreg[i] <= sreg[i-1];
end

end
end

assign shiftout = sreg[sh_len-1];
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 67

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity d_p is

port (clk : in std_logic;
data_out : out std_logic_vector(127 downto 0));

end d_p;

architecture rtl of d_p is
type dataAryType is array(3 downto 0) of

std_logic_vector(127 downto 0);
signal h_data_pip_i : dataAryType;
attribute syn_srlstyle : string;
attribute syn_srlstyle of h_data_pip_i : signal
is "distributed";
begin

process (Clk)
begin

if (Clk'Event And Clk = '1') then
h_data_pip_i <= (h_data_pip_i(2 DOWNTO 0)) &
h_data_pip_i(3);

end if;
end process;

data_out <= h_data_pip_i(0);
end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 68

syn_sharing
Directive. Enables or disables the sharing of operator resources during the
compilation stage of synthesis.

The syn_sharing directive controls resource sharing during the compilation
stage of synthesis. This is a compiler-specific optimization that does not affect
the mapper; this means that the mapper might still perform resource sharing
optimizations to improve timing, even if syn_sharing is disabled.

If you disable resource sharing globally, you can use the syn_sharing directive
to turn on resource sharing for specific modules or architectures.

Verilog Syntax object /* synthesis syn_sharing=”on | off” */ ;

Verilog Example

VHDL Syntax attribute syn_sharing of object : objectType is “true | false” ;

module syn_sharing1 (
input [7:0] inA1,
input [7:0] inA2,
input [7:0] inB1,
input [7:0] inB2,
input clk,
input sel1,
input sel2,
input rst,
output [15:0] product1,
output [15:0] product2
)/*synthesis syn_sharing = 1*/;

reg [15:0] product1,product2;
wire [15:0] temp1,temp2;
assign temp1 = inA1*inB1;
assign temp2 = inA2*inB2;
always@(posedge clk)

begin
if(sel1)

begin
if (sel2)

product1 = temp1;
else

product1 = temp2;
end

else
begin

if (sel2)
product2 = temp1;

else
product2 = temp2;

end
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 69

VHDL Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity syn_sharing2 is
port(

inA1 : in std_logic_vector(7 downto 0);
inA2 : in std_logic_vector(7 downto 0);
inB1 : in std_logic_vector(7 downto 0);
inB2 : in std_logic_vector(7 downto 0);
clk : in std_logic;
sel1 : in std_logic;
sel2 : in std_logic;
rst : in std_logic;
product1 : out std_logic_vector(15 downto 0);
product2 : out std_logic_vector(15 downto 0)
);

end entity;

architecture behave of syn_sharing2 is
 signal temp1,temp2: std_logic_vector(15 downto 0);
 attribute syn_sharing : boolean;
 attribute syn_sharing of behave : architecture is false;
begin

temp1 <= inA1*inB1;
temp2 <= inA2*inB2;
process(clk)
begin

if clk'event and clk ='1' then
if sel1 = '1' then

if sel2 = '1' then
product1 <= temp1;

else
product1 <= temp2;

end if;
else

if sel2 = '1' then
product2 <= temp1;

else
product2 <= temp2;

end if;

end if;
end if;

end process;
end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 70

syn_state_machine
This attribute enables/disables state-machine optimization on individual state
registers in the design. To extract some state machines, use this attribute with
a value of 1 on just those individual state-registers to be extracted. If there are
state machines in your design that you do not want extracted, use
syn_state_machine with a value of 0 to override extraction on just those
individual state registers.

All state machines are usually detected during synthesis. However, on
occasion there are cases in which certain state machines are not detected.
You can use this attribute to declare those undetected registers as state
machines.

The syn_sharing attribute only can be used in architecture. The syn_sharing
attribute cannot be used in entity.

Verilog Syntax object /* synthesis syn_state_machine = 0 | 1 */ ;

where object is a state register. Data type is Boolean: 0 does not extract an
FSM, 1 extracts an FSM.

Verilog Example

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 71

module syn_state_machine1 (clk, reset, en, q);
input clk, reset, en;
output[1:0]q;
reg q;
reg [3:0] state,next_state /* synthesis syn_state_machine = 0

*/;
parameter state0 = 4'b1000;
parameter state1 = 4'b0100;
parameter state2 = 4'b0010;
parameter state3 = 4'b0001;
always @(posedge clk or posedge reset)

begin
if (reset)

state <= state0;
else

state <= next_state;
end

always @(state)
begin

case (state)
state0:

begin
if (en == 1)
q <= 2'b00;

next_state <= state1;
end

state1:
begin

if (en == 1)
q <= 2'b01;

next_state <= state2;
end

state2:
begin

if (en == 1)
q <= 2'b10;

next_state <= state3;
end

state3:
begin

if (en == 1)
q <= 2'b11;

next_state <= state0;
end

endcase
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 72

VHDL Syntax attribute syn_state_machine of object : objectType is true |
false ;

where object is a signal that holds the value of the state machine.

VHDL Example

Following is the source code used for the example in the previous figure.

attribute syn_state_machine of current_state: signal is true;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 73

library ieee;
use ieee.std_logic_1164.all;
entity syn_statemachine_exp is
port (CLK_0, RESET, IN1 : in std_logic;
 OUT1 : out std_logic_vector (2 downto 0)
);
end syn_statemachine_exp;

architecture behave of syn_statemachine_exp is
type ST_VALS is (STATE0, STATE1, STATE2, STATE3);
signal STATE, NXT_ST: ST_VALS;
attribute syn_state_machine : boolean;
attribute syn_state_machine of STATE : signal is true;

begin
process (CLK_0, RESET)
begin

if RESET = '1' then
STATE <= STATE0;

elsif rising_edge(CLK_0) then
STATE <= NXT_ST;

end if;
end process;

process (STATE, IN1)
begin

case STATE is
when STATE0 =>

OUT1 <= "000";
if IN1 = '1' then NXT_ST <= STATE1;
else NXT_ST <= STATE0;
end if;

when STATE1 =>
OUT1 <= "001";
if IN1 = '1' then NXT_ST <= STATE2;
else NXT_ST <= STATE1;
end if;

when STATE2 =>
OUT1 <= "010";
if IN1 = '1' then NXT_ST <= STATE3;
else NXT_ST <= STATE2;
end if;

when others =>
OUT1 <= "XXX"; NXT_ST <= STATE0;

end case;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 74

syn_use_carry_chain
This attribute is used to turn on or off the carry chain implementation for
adders.

Verilog Syntax object synthesis syn_use_carry_chain = {1| 0} */ ;

Verilog Example To use this attribute globally, apply it to the module.

VHDL Syntax attribute syn_use_carry_chain of object : objectType is true |
false ;

VHDL Example

module test (a, b, clk, rst, d) /* synthesis
syn_use_carry_chain = 1 */;

architecture archtest of test is
signal temp : std_logic;
signal temp1 : std_logic;
signal temp2 : std_logic;
signal temp3 : std_logic;
attribute syn_use_carry_chain : boolean;
attribute syn_use_carry_chain of archtest : architecture is
true;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 75

syn_useenables
This attribute controls the use of clock enables on registers in the design.
Usually exploiting clock enables on registers is beneficial. However, there are
timing closure situations where clock enable routing causes timing violations.
This is one reason why the user may want to stop the use of clock enable on
the register.

Verilog Syntax: object /* synthesis syn_useenables = "0 | 1" */;

Verilog Example

VHDL Syntax:

attribute syn_useenables of object : objectType is "true | false";

VHDL Example

module syn_useenable1 (Din1,Din2,en,clk,Dout);
input [7:0] Din1, Din2;
input clk,en;
output [7:0] Dout;
reg [7:0] temp1;
reg [7:0] Dout /* synthesis syn_useenables = 0*/;
always@(posedge clk)

begin
temp1 <= Din1 & Din2;

end
always @(posedge clk)

begin
if(en)

Dout <= temp1;
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 76

library ieee;
use ieee.std_logic_1164.all;

entity syn_useenable2 is
port(

 Din1 : in std_logic_vector(7 downto 0);
 Din2 : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 en : in std_logic;
 Dout : out std_logic_vector(7 downto 0)
);

end entity;

architecture behave of syn_useenable2 is
signal temp1 : std_logic_vector(7 downto 0);
attribute syn_useenables: boolean;
attribute syn_useenables of Dout: signal is false;

begin
process(clk)
begin

if clk'event and clk = '1' then
temp1 <= Din1 and Din2;

end if;
end process;

process(clk)
begin

if clk'event and clk = '1' then
if en = '1' then

Dout <= temp1;
end if;

end if;
end process;

end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Constraints and Attributes

Lattice Synthesis Engine for Diamond User Guide 77

syn_useioff
This attribute overrides the default behavior to pack registers into I/O pad cells
based on timing requirements for the target Lattice families. Attribute
syn_useioff is Boolean-valued: 1 enables (default) and 0 disables register
packing. You can place this attribute on an individual register or port or apply it
globally. When applied globally, the synthesis tool packs all input, output, and
I/O registers into I/O pad cells. When applied to a register, the synthesis tool
packs the register into the pad cell; and when applied to a port, it packs all
registers attached to the port into the pad cell.

The syn_useioff attribute can be set on the following ports:

 top-level port

 register driving the top-level port

 lower-level port, if the register is specified as part of the port declaration

Verilog Syntax object /*synthesis syn_useioff = {1 | 0} */ ;

Verilog Example To use this attribute globally, apply it to the module.

To use this attribute on individual ports, apply it to individual port declarations.

VHDL Syntax attribute syn_useioff of object : objectType is true | false ;

VHDL Example

translate_off/translate_on
This attribute allows you to synthesize designs originally written for use with
other synthesis tools without needing to modify source code. All source code
that is between these two attributes is ignored during synthesis.

Verilog Syntax /* pragma translate_off */
/* pragma translate_on */

module test (a, b, clk, rst, d) /* synthesis syn_useioff = 1 */;

module test (a, b, clk, rst, d);
input a;
input b /* synthesis syn_useioff = 1 */;

architecture archtest of test is
signal temp : std_logic;
signal temp1 : std_logic;
signal temp2 : std_logic;
signal temp3 : std_logic;
attribute syn_useioff : boolean;
attribute syn_useioff of archtest : architecture is true;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 78

Verilog Example

VHDL Syntax pragma translate_off
pragma translate_on

VHDL Example

Inferring Block Primitives
This section describes inferring block primitives, including Memory and DSP
Blocks.

Inferring Memory
This section describes inferring memory, including inferring RAM, RAM with
Synchronous Read, Inferring Dual-Port RAM, Inferring ROM, Initializing
Inferred RAM, and Creating Memory Initialization File.

module real_time (ina, inb, out);
input ina, inb;
output out;
/* synthesis translate_off */
realtime cur_time;
/* synthesis translate_on */
assign out = ina & inb;
endmodule

library ieee;
use ieee.std_logic_1164.all;
entity adder is
 port (a, b, cin:in std_logic;
 sum, cout:out std_logic);
end adder;
architecture behave of adder is
signal a1:std_logic;
--synthesis translate_off
constant a1:std_logic:='0';
--synthesis translate_on
begin
 sum <= (a xor b xor cin);
 cout <= (a and b) or (a and cin) or (b and cin); end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 79

Inferring RAM
The basic inferred RAM is synchronous. It can have synchronous or
asynchronous reads and can be either single- or dual-port. You can also set
initial values. Other features, such as resets and clock enables, can be added
as desired. The following text lists the rules for coding inferred RAM.
Following that, Figure 5 on page 79 (Verilog) and Figure 6 on page 80 (VHDL)
show the code for a simple, single-port RAM with asynchronous read.

To code RAM to be inferred, do the following:

 Define the RAM as an indexed array of registers.

 To control how the RAM is implemented (with distributed or block RAM),
consider adding the syn_ramstyle attribute. “syn_ramstyle” on page 60.

 Control the RAM with a clock edge and a write enable signal.

 For synchronous reads, see “Inferring RAM with Synchronous Read” on
page 81.

 For single-port RAM, use the same address bus for reading and writing.

 For dual-port RAM, pseudo and true, see “Inferring Dual-Port RAM” on
page 83.

 If desired, assign initial values to the RAM as described in “Initializing
Inferred RAM” on page 87.

Figure 5: Simple, Single-Port RAM in Verilog

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
reg [data_width-1:0] mem [(1<<addr_width)-1:0];
// Define RAM as an indexed memory array.

always @(posedge clk) // Control with a clock edge.
begin
if (write_en) // And control with a write enable.
mem[(addr)] <= din;

end
assign dout = mem[addr];

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 80

Figure 6: Simple, Single-Port RAM in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (

addr_width : natural := 8;
data_width : natural := 8);

port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en : in std_logic;
clk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;
-- Define RAM as an indexed memory array.

begin
process (clk)
begin
if (clk'event and clk = '1') then --Control with clock edge
if (write_en = '1') then -- Control with a write enable.

mem(conv_integer(addr)) <= din;
end if;

end if;
end process;
dout <= mem(conv_integer(addr));

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 81

Inferring RAM with Synchronous Read
For synchronous reads, add a register for the read address or for the data
output. Load the register inside the procedure or process that is controlled by
the clock. See the following examples. They show the simple RAM of Figure 5
on page 79 (for Verilog) and Figure 6 on page 80 (for VHDL) modified for
synchronous reads. Changes are in bold text.

Verilog Examples

Figure 7: RAM with Registered Output in Verilog

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] dout; // Register for output.
reg [data_width-1:0] mem [(1<<addr_width)-1:0];

always @(posedge clk)
begin
if (write_en)

mem[(addr)] <= din;
dout = mem[addr]; // Output register controlled by clock.

end
endmodule

Figure 8: RAM with Registered Read Address in Verilog

module ram (din, addr, write_en, clk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addr;
input [data_width-1:0] din;
input write_en, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] raddr; // Register for read address.
reg [data_width-1:0] mem [(1<<addr_width)-1:0];

always @(posedge clk)
begin
if (write_en)
begin

mem[(addr)] <= din;
end
raddr <= addr; // Read addr. register controlled by clock.

end
assign dout = mem[raddr];

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 82

VHDL Examples

Figure 9: RAM with Registered Output in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (

addr_width : natural := 8;
data_width : natural := 8);

port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en : in std_logic;
clk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;
begin

process (clk)
begin
if (clk'event and clk = '1') then

if (write_en = '1') then
mem(conv_integer(addr)) <= din;

end if;
end if;
dout <= mem(conv_integer(addr));

-- Output register controlled by clock.
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 83

Inferring Dual-Port RAM
For dual-port RAM, pseudo or true:

 Use two address buses.

 If the design does not simultaneously read and write the same address,
add the syn_ramstyle attribute with the no_rw_check value to minimize
overhead logic.

 If writing in Verilog, use non-blocking assignments.

The following examples are based on the simple RAM of Figure 5 on page 79
(for Verilog) and Figure 6 on page 80 (for VHDL).

Figure 10: RAM with Registered Read Address in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (

addr_width : natural := 8;
data_width : natural := 8);

port (
addr : in std_logic_vector (addr_width - 1 downto 0);
write_en : in std_logic;
clk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;
begin

process (clk)
begin
if (clk'event and clk = '1') then

if (write_en = '1') then
mem(conv_integer(addr)) <= din;

end if;
raddr <= addr;

-- Read address register controlled by clock.
end if;

end process;
dout <= mem(conv_integer(raddr));

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 84

Verilog Examples

Figure 11: Pseudo Dual-Port RAM in Verilog

module ram (din, write_en, waddr, wclk, raddr, rclk, dout);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] waddr, raddr;
input [data_width-1:0] din;
input write_en, wclk, rclk;
output [data_width-1:0] dout;
reg [data_width-1:0] dout;
reg [data_width-1:0] mem [(1<<addr_width)-1:0]
/* synthesis syn_ramstyle = "no_rw_check" */ ;

always @(posedge wclk) // Write memory.
begin
if (write_en)

mem[waddr] <= din; // Using write address bus.
end
always @(posedge rclk) // Read memory.
begin
dout <= mem[raddr]; // Using read address bus.

end
endmodule

Figure 12: True Dual-Port RAM in Verilog

module ram (dina, write_ena, addra, clka, douta,
dinb, write_enb, addrb, clkb, doutb);
parameter addr_width = 8;
parameter data_width = 8;
input [addr_width-1:0] addra, addrb;
input [data_width-1:0] dina, dinb;
input write_ena, clka, write_enb, clkb;
output [data_width-1:0] douta, doutb;
reg [data_width-1:0] douta, doutb;
reg [data_width-1:0] mem [(1<<addr_width)-1:0]
/* synthesis syn_ramstyle = "no_rw_check" */ ;

always @(posedge clka) // Using port a.
begin
if (write_ena)

mem[addra] <= dina; // Using address bus a.
douta <= mem[addra];

end
always @(posedge clkb) // Using port b.
begin
if (write_enb)

mem[addrb] <= dinb; // Using address bus b.
doutb <= mem[addrb];

end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 85

VHDL Examples

Figure 13: Pseudo Dual-Port RAM in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (

addr_width : natural := 8;
data_width : natural := 8);

port (
write_en : in std_logic;
waddr : in std_logic_vector (addr_width - 1 downto 0);
wclk : in std_logic;
raddr : in std_logic_vector (addr_width - 1 downto 0);
rclk : in std_logic;
din : in std_logic_vector (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;
attribute syn_ramstyle: string;
attribute syn_ramstyle of mem: signal is "no_rw_check";

begin
process (wclk) -- Write memory.
begin
if (wclk'event and wclk = '1') then
if (write_en = '1') then

mem(conv_integer(waddr)) <= din;
-- Using write address bus.

end if;
end if;

end process;
process (rclk) -- Read memory.
begin
if (rclk'event and rclk = '1') then

dout <= mem(conv_integer(raddr));
-- Using read address bus.

end if;
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 86

Inferring ROM
To code ROM to be inferred, do the following:

 Define the ROM with a case statement or equivalent if statements.

Figure 14: True Dual-Port RAM in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram is
generic (

addr_width : natural := 8;
data_width : natural := 8);

port (
addra : in std_logic_vector (addr_width - 1 downto 0);
write_ena : in std_logic;
clka : in std_logic;
dina : in std_logic_vector (data_width - 1 downto 0);
douta : out std_logic_vector (data_width - 1 downto 0);
addrb : in std_logic_vector (addr_width - 1 downto 0);
write_enb : in std_logic;
clkb : in std_logic;
dinb : in std_logic_vector (data_width - 1 downto 0);
doutb : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is
type mem_type is array ((2** addr_width) - 1 downto 0) of
std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;
attribute syn_ramstyle: string;
attribute syn_ramstyle of mem: signal is "no_rw_check";

begin
process (clka) -- Using port a.
begin
if (clka'event and clka = '1') then
if (write_ena = '1') then

mem(conv_integer(addra)) <= dina;
-- Using address bus a.

end if;
douta <= mem(conv_integer(addra));

end if;
end process;
process (clkb) -- Using port b.
begin
if (clkb'event and clkb = '1') then

if (write_enb = '1') then
mem(conv_integer(addrb)) <= dinb;

-- Using address bus b.
end if;
doutb <= mem(conv_integer(addrb));

end if;
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 87

 Assign constant values, all of the same width.

 Assign values for at least 16 addresses or half of the address space,
whichever is greater. For example, if the address has 6 bits, the address
space is 64 words, and at least 32 of them must be assigned values.

 To control how the ROM is implemented (with distributed or block ROM),
consider adding the syn_romstyle attribute. See “syn_romstyle” on
page 1339.

Initializing Inferred RAM
The following examples show how to infer RAM.

Figure 15: ROM Inferred with Case Statement in Verilog

module rom(data, addr);
output [3:0] data;
input [4:0] addr;
always @(addr) begin
case (addr)

0 : data = 'h4;
1 : data = 'h9;
2 : data = 'h1;
...
15 : data = 'h8;
16 : data = 'h1;
17 : data = 'h0;
default : data = 'h0;

endcase
end

endmodule

Figure 16: ROM Inferred with If Statement in VHDL

entity rom is
port (addr : in std_logic_vector(4 downto 0);

data : out std_logic_vector(3 downto 0));
end rom;

architecture behave of rom is
begin

process(addr)
begin
if addr = 0 then data <= "0100";
elsif addr = 1 then data <= "1001";
elsif addr = 2 then data <= "0001";
...
elsif addr = 15 then data <= "1000";
elsif addr = 16 then data <= "0001";
elsif addr = 17 then data <= "0000";
else data <= "0000";
end if;

end process;
end behave;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 88

Example1 To specify RAM initial contents, initialize the signal describing the
memory array in Verilog code using initial statements as shown in the
following coding example.

Figure 17: Initializing Block RAM Verilog Coding Example

module v_rams_20a (clk, we, addr, di, do);
input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] do;
reg [19:0] ram [63:0];
reg [19:0] do;
initial begin
ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
ram[57] = 20'h00300; ram[56] = 20'h08602; ram[55] = 20'h02310;
ram[54] = 20'h0203B; ram[53] = 20'h08300; ram[52] = 20'h04002;
ram[51] = 20'h08201; ram[50] = 20'h00500; ram[49] = 20'h04001;
ram[48] = 20'h02500; ram[47] = 20'h00340; ram[46] = 20'h00241;
ram[45] = 20'h04002; ram[44] = 20'h08300; ram[43] = 20'h08201;
ram[42] = 20'h00500; ram[41] = 20'h08101; ram[40] = 20'h00602;
ram[39] = 20'h04003; ram[38] = 20'h0241E; ram[37] = 20'h00301;
ram[36] = 20'h00102; ram[35] = 20'h02122; ram[34] = 20'h02021;
ram[33] = 20'h00301; ram[32] = 20'h00102; ram[31] = 20'h02222;
ram[30] = 20'h04001; ram[29] = 20'h00342; ram[28] = 20'h0232B;
ram[27] = 20'h00900; ram[26] = 20'h00302; ram[25] = 20'h00102;
ram[24] = 20'h04002; ram[23] = 20'h00900; ram[22] = 20'h08201;
ram[21] = 20'h02023; ram[20] = 20'h00303; ram[19] = 20'h02433;
ram[18] = 20'h00301; ram[17] = 20'h04004; ram[16] = 20'h00301;
ram[15] = 20'h00102; ram[14] = 20'h02137; ram[13] = 20'h02036;
ram[12] = 20'h00301; ram[11] = 20'h00102; ram[10] = 20'h02237;
 ram[9] = 20'h04004; ram[8] = 20'h00304; ram[7] = 20'h04040;
 ram[6] = 20'h02500; ram[5] = 20'h02500; ram[4] = 20'h02500;
 ram[3] = 20'h0030D; ram[2] = 20'h02341; ram[1] = 20'h08201;
 ram[0] = 20'h0400D;
end
always @(posedge clk)
begin
if (we)
ram[addr] <= di;
do <= ram[addr];
end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 89

Example2 To initialize RAM from values contained in an external file, use a
$readmemb or $readmemh system task in Verilog code.

Figure 18: Initializing Block RAM (External Data File) Verilog Coding

Example

module ram_int1(input clk, we, input[31:0] in1, input
[3:0]addr, output[31:0] out);
reg[31:0] mem [15:0]/*synthesis syn_ramstyle= "block_ram"*/ ;
reg [31:0] out1;
initial
begin
 $readmemh("data.dat", mem);
end
always @(posedge clk)
begin
if (we)
 mem[addr] <= in1;
else
 out1 <= mem[addr];
end
assign out = out1;
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 90

Example 3 To specify RAM initial contents, initialize the RAM in the VHDL
code with signal declarations or with variable declarations.

Figure 19: Initializing VHDL Rams with Signal Declarations

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity w_r2048x8 is
port (
 clk : in std_logic;
 adr : in std_logic_vector(10 downto 0);
 di : in std_logic_vector(7 downto 0);
 we : in std_logic;
 dout : out std_logic_vector(7 downto 0));
end;
architecture arch of w_r2048x8 is
-- Signal Declaration --
type MEM is array(0 to 2047) of std_logic_vector (7 downto 0);
signal memory : MEM := (
 "00000000"
,"01111000"
,"10110011"
,"01111000"
,"10011011"
,"11111111"
,"10011011"
,"01111000"
,"10110011"
,"01111000"
,"00000000"
,"10000111"
,"01001100"
,"10000111"
,"01100100"
,"00000000"
,"01100100"
,"10000111"
,"01001100"
,"10000111"
,"11111111"
,"01111000"
,"10110011"
,"01111000"
,"10011011"
,"11111111"
,others => (others => '0'));
begin
process(clk)
begin
 if rising_edge(clk) then
 if (we = '1') then
 memory(conv_integer(adr)) <= di;
 end if;
 dout <= memory(conv_integer(adr));
 end if;
end process;
end arch;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 91

Example 4 To specify RAM initial contents, initialize the RAM in the VHDL
code with readline and read task in VHDL code.

Creating Memory Initialization File
If the RAM initialization file is an external data file, there are two ways to point
to the initialization file.

1. Assign the RAM initial file name in the VHDL or Verilog code and set the
location in the “memory initial value file search path” in the LSE project file
or the Diamond project Strategy setting. For example:

Initial begin
 $readmemh("data.dat", mem);
End

Figure 20: Initializing Block RAM (External Data File) VHDL Coding

Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;
entity rams_20c is
port(clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0));
end rams_20c;
architecture syn of rams_20c is
type RamType is array(0 to 63) of bit_vector(31 downto 0);
impure function InitRamFromFile (RamFileName : in string)
return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;
begin
for I in RamType'range loop
readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));
end loop;
return RAM;
end function;
signal RAM : RamType := InitRamFromFile("rams_20c.data");
begin
process (clk)
begin
if clk'event and clk = '1' then
if we = '1' then
RAM(conv_integer(addr)) <= to_bitvector(din);
end if;
dout <= to_stdlogicvector(RAM(conv_integer(addr)));
end if;
end process;
end syn;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 92

The “memory initial value file search path” is an absolute path, i.e.
“C: /design/undesigned/source"

2. Assign the RAM initial file name in the VHDL or Verilog code and its
relative path. For example:

Initial begin
 $readmemh("../source/data.dat", mem);
end

Inferring Lattice DSP Blocks Using
Behavioral HDL

LSE uses the DSP feature efficiently. LSE packs multipliers, registers, adders,
subtractors, and accumulators to DSP blocks. During the inference LSE
checks all the design rule checks (DRCs). Based on the feasibility, LSE will
pack these primitives to DSP blocks as best as possible.

The following examples include MULT, MULTADDSUB, MULTADDSUBSUM,
and MULTACC.

MULT9X9
9X9 multiplier with/without output registers.

MULT18X18
18X18 multiplier with/without output registers.

MULT36X36
36X36 multiplier with/without output registers.

Following are Verilog and VHDL code examples for MULT.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 93

Figure 21: MULT - Verilog without Register

Figure 22: MULT - Verilog with Register

`timescale 1 ns / 1 ns

module mult(a,b,c);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input [(A_WIDTH - 1):0] a;
input [(B_WIDTH - 1):0] b;
output [(A_WIDTH + B_WIDTH - 1):0] c;

assign c = a*b;

endmodule

`timescale 1 ns / 1 ns

module mult_reg(clk,a,b,c,rst);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input rst;
input clk;
input [(A_WIDTH - 1):0] a;
input [(B_WIDTH - 1):0] b;
output [(A_WIDTH + B_WIDTH - 1):0] c;
reg [(A_WIDTH + B_WIDTH - 1):0] c;

always @ (posedge clk)

begin
if (rst)

c <= 18'b0;
else

c <= a*b;
end

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 94

Figure 23: MULT - VHDL without Register

library ieee;
use ieee.std_logic_1164.all;
--use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity Mult is
generic (data_width_a: integer := 9;
 data_width_b: integer := 9
);
 port (a : in std_logic_vector(data_width_a-1 downto
0);
 b : in std_logic_vector(data_width_b-1 downto
0);
 q : out
std_logic_vector(data_width_a+data_width_b-1 downto 0)
);
end Mult;

architecture rtl of Mult is
 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;
begin

 q <= a * b;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 95

Figure 24: MULT - VHDL with Register

MULTADDSUB
Two multipliers driving adder/subtractor.

Following are Verilog and VHDL code examples for MULTADDSUB.

library ieee;
use ieee.std_logic_1164.all;
--use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity Mult is
generic (data_width_a: integer := 9;
 data_width_b: integer := 9
);
 port (a : in std_logic_vector(data_width_a-1 downto
0);
 b : in std_logic_vector(data_width_b-1 downto
0);

 clk : in std_logic;
 rst : in std_logic;

 q : out
std_logic_vector(data_width_a+data_width_b-1 downto 0)
);
end Mult;

architecture rtl of Mult is
 --attribute syn_multstyle : string ;
 -- attribute syn_multstyle of q : signal is "dsp" ;

signal q_s,temp
:std_logic_vector(data_width_a+data_width_b-1 downto 0);
begin

q_s <= a * b;
process(clk,rst)
begin

if rst = '1' then
 q <= (others=>'0');

elsif clk'event and clk = '1' then
q <= q_s;

end if;

end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 96

Figure 25: MULTADDSUB - Verilog without Register

Figure 26: MULTADDSUB - Verilog with Register

`timescale 1 ns / 1 ns

module multaddsub(a,b,c,q);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input [(A_WIDTH - 1):0] a;
input [(B_WIDTH - 1):0] b;
input [(A_WIDTH + B_WIDTH - 1):0] c;
output [(A_WIDTH + B_WIDTH - 1):0] q;

assign q = a*b+c;

endmodule

`timescale 1 ns / 1 ns

module Multaddsub_reg(clk,a,b,c,q,arst);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input arst;
input clk;
input [(A_WIDTH - 1):0] a;
input [(B_WIDTH - 1):0] b;
input [(A_WIDTH + B_WIDTH - 1):0] c;
output [(A_WIDTH + B_WIDTH - 1):0] q;

reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;
assign q = reg_tmp_c;

always @(posedge clk,posedge arst)
begin
 if(arst)
 begin
 reg_tmp_c <= 0;
 end
 else
 begin
 reg_tmp_c <= a*b+c;
 end

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 97

Figure 27: MULTADDSUB - VHDL without Register

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Multaddsub is
generic (data_width_a: integer := 9;
 data_width_b: integer := 9;
 data_width_c: integer := 18;
 product_width: integer :=18);
 port (a : in std_logic_vector(data_width_a-1 downto
0);
 b : in std_logic_vector(data_width_b-1 downto
0);
 c : in std_logic_vector(data_width_c-1 downto
0);
 q : out std_logic_vector(product_width-1 downto
0));
end Multaddsub;

architecture rtl of Multaddsub is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;

begin

 q <= a*b + c;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 98

Figure 28: MULTADDSUB - VHDL with Register

MULTADDSUBSUM
Four multipliers driving two adders/subtractors driving one adder.

Following are Verilog and VHDL code examples for MULTADDSUBSUM.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Multaddsub_reg is
generic (data_width_a: integer := 9;
 data_width_b: integer := 9;
 data_width_c: integer := 18;
 product_width: integer :=18);
 port (a : in std_logic_vector(data_width_a-1 downto
0);
 b : in std_logic_vector(data_width_b-1 downto
0);
 c : in std_logic_vector(data_width_c-1 downto
0);

 clk : in std_logic;
 arst : in std_logic;

 q : out std_logic_vector(product_width-1 downto
0));
end Multaddsub_reg;

architecture rtl of Multaddsub_reg is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;

begin

process(clk,arst)
begin

if arst = '1' then
q <= (others => '0');

elsif clk'event and clk = '1' then
q <= a*b + c;

end if;
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 99

Figure 29: MULTADDSUBSUM - Verilog without Register

module Multaddsubsum(out, ina, inb, inc, ind, ine, inf, ing,
inh);

parameter Data_width_in = 9;
parameter Data_width_out = 19;
output [Data_width_out-1:0] out;
input [Data_width_in-1:0] ina, inb, inc, ind, ine, inf,

ing, inh;
wire[Data_width_out-2:0] prod4, prod1, prod2, prod3;
wire[Data_width_out-2:0] wireSum;
wire[Data_width_out-2:0] wireSum1;

 assign prod1 = ina*inb;
 assign prod2 = inc*ind;
 assign prod3 = ine*inf;
 assign prod4 = ing*inh;
 assign wireSum = prod1 + prod2;
 assign wireSum1 = prod3 + prod4;
 assign out = wireSum+ wireSum1;

endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 100

Figure 30: MULTADDSUBSUM - Verilog with Register

module Multaddsubsum_reg(out, ina, inb, inc, ind, ine, inf,
ing, inh,clk4, clk1, clk2, clk3);

parameter Data_width_in = 9;
parameter Data_width_out = 19;
output [Data_width_out-1:0] out;
input [Data_width_in-1:0] ina, inb, inc, ind, ine, inf,

ing, inh;
inputclk1, clk2, clk3, clk4;
wire[Data_width_out-2:0] prod4, prod1, prod2, prod3;
wire[Data_width_out-2:0] wireSum;
wire[Data_width_out-2:0] wireSum1;
reg [Data_width_in-1:0] inaReg , indReg, ineReg, inhReg;
//reg [17:0] outReg;

 assign prod1 = inaReg*inb;
 assign prod2 = inc*indReg;
 assign prod3 = ineReg*inf;
 assign prod4 = ing*inhReg;
 assign wireSum = prod1 + prod2;
 assign wireSum1 = prod3 + prod4;
 assign out = wireSum+ wireSum1;

always @(posedge clk1)
begin

inaReg = ina;
end

always @(posedge clk2)
begin

indReg = ind;
end

always @(posedge clk3)
begin

ineReg = ine;
end

always @(posedge clk4)
begin

inhReg = inh;
end
endmodule

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 101

Figure 31: MULTADDSUBSUM - VHDL without Register

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Multaddsubsum is
generic (data_width_a : integer := 9;

 data_width_b : integer := 9;
 data_width_c : integer := 9;
 data_width_d : integer := 9
);

 port (a : in std_logic_vector(data_width_a-1
downto 0);

 b : in std_logic_vector(data_width_b-1 downto
0);

 c : in std_logic_vector(data_width_c-1 downto
0);

 d : in std_logic_vector(data_width_d-1 downto
0);

 e : in std_logic_vector(data_width_a-1 downto
0);

 f : in std_logic_vector(data_width_b-1 downto
0);

 g : in std_logic_vector(data_width_c-1 downto
0);

 h : in std_logic_vector(data_width_d-1 downto
0);

 -- sum : out
std_logic_vector(data_width_a+data_width_c downto 0);

 q : out
std_logic_vector(data_width_a+data_width_c-1 downto 0));
end Multaddsubsum;

architecture rtl of Multaddsubsum is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;
 signal sum_s1,sum_s2 :
std_logic_vector(data_width_a+data_width_c-1 downto 0);

begin

sum_s1 <= a*b + c*d;
sum_s2 <= e*f + g*h;
q <= sum_s1 + sum_s2;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 102

Figure 32: MULTADDSUBSUM - VHDL with Register

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Multaddsubsum is
generic (data_width_a : integer := 9;

 data_width_b : integer := 9;
 data_width_c : integer := 9;
 data_width_d : integer := 9
);

 port (a : in std_logic_vector(data_width_a-1
downto 0);

 b : in std_logic_vector(data_width_b-1 downto
0);

 c : in std_logic_vector(data_width_c-1 downto
0);

 d : in std_logic_vector(data_width_d-1 downto
0);

 e : in std_logic_vector(data_width_a-1 downto
0);

 f : in std_logic_vector(data_width_b-1 downto
0);

 g : in std_logic_vector(data_width_c-1 downto
0);

 h : in std_logic_vector(data_width_d-1 downto
0);

 clk : in std_logic;
 arst : in std_logic;
 -- sum : out

std_logic_vector(data_width_a+data_width_c downto 0);
 q : out

std_logic_vector(data_width_a+data_width_c-1 downto 0));
end Multaddsubsum;

architecture rtl of Multaddsubsum is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;
 signal sum_s1,sum_s2 :
std_logic_vector(data_width_a+data_width_c-1 downto 0);

begin

sum_s1 <= a*b + c*d;
sum_s2 <= e*f + g*h;
--q <= sum_s1 + sum_s2;

process(clk,arst)
begin

if arst = '1' then
q <= (others=>'0');

elsif clk'event and clk = '1' then
q <= sum_s1 + sum_s2;

end if;
end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 103

MULTACC
One or two multipliers driving accumulator.

Following are Verilog and VHDL code examples for MULTACC.

Figure 33: MULTACC - Verilog without Register

Figure 34: MULTACC - Verilog with Register

`timescale 1 ns / 1 ns

module multacc(a,b,q);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input unsigned [(A_WIDTH - 1):0] a;
input unsigned [(B_WIDTH - 1):0] b;
output unsigned [(A_WIDTH + B_WIDTH - 1):0] q;

 assign q = a*b+q;

endmodule

`timescale 1 ns / 1 ns

module multacc_unsign_8_8(clk,a,b,q,set);

parameter A_WIDTH = 9;
parameter B_WIDTH = 9;

input set;
input clk;
input unsigned [(A_WIDTH - 1):0] a;
input unsigned [(B_WIDTH - 1):0] b;
output unsigned [(A_WIDTH + B_WIDTH - 1):0] q;

reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;
assign q = reg_tmp_c;

always @(posedge clk)
begin
 if(set)
 begin
 reg_tmp_c <= 0;
 end
 else
 begin
 reg_tmp_c <= a*b+q;
 end
end

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Inferring Block Primitives

Lattice Synthesis Engine for Diamond User Guide 104

Figure 35: MULTACC - VHDL without Register

library ieee;
use ieee.std_logic_1164.all;
--use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity Multacc is
generic (data_width_a: integer := 9;

 data_width_b: integer := 9;
 product_width: integer :=19);

 port (
a : in std_logic_vector(data_width_a-1 downto 0);
b : in std_logic_vector(data_width_b-1 downto 0);
q : out std_logic_vector(product_width-1 downto 0)
);

end Multacc;

architecture rtl of Multacc is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;
 signal q_s : std_logic_vector(product_width-1 downto
0):=(others=>'0');
 signal q_s1 : std_logic_vector(data_width_a+data_width_b-1
downto 0):=(others=>'0');
begin

q_s1 <= a*b;
q <= q_s;
q_s <= ('0'&q_s1) + q_s;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Optimizing LSE for Area and Speed

Lattice Synthesis Engine for Diamond User Guide 105

Figure 36: MULTACC - VHDL with Register

Optimizing LSE for Area and Speed
The following strategy settings for LSE can help reduce the amount of FPGA
resources that your design requires or increase the speed with which it runs.
(For other synthesis tools, see those tools’ documentation.) Use these
methods along with other, generic coding methods to optimize your design.
Also, consider using the predefined Area or Timing strategies.

library ieee;
use ieee.std_logic_1164.all;
--use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity Multacc_reg is
generic (data_width_a: integer := 9;

 data_width_b: integer := 9;
 product_width: integer :=19);

 port (clk,rst : in std_logic;
 a : in std_logic_vector(data_width_a-1 downto

0);
 b : in std_logic_vector(data_width_b-1 downto

0);
q : out std_logic_vector(product_width-1 downto 0)

);
end Multacc_reg;

architecture rtl of Multacc_reg is

 --attribute syn_multstyle : string ;
 --attribute syn_multstyle of q : signal is "dsp" ;
 signal q_s : std_logic_vector(product_width-1 downto
0):=(others=>'0');
 signal q_s1 : std_logic_vector(data_width_a+data_width_b-1
downto 0):=(others=>'0');
begin

 q_s1 <= a*b;
 q <= q_s;
 process(clk,rst)
 begin

 if rst = '0' then
q_s <= (others => '0');

 elsif clk'event and clk = '1' then
 q_s <= ('0'&q_s1) + q_s;
 end if;

 end process;

end rtl;

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Optimizing LSE for Area and Speed

Lattice Synthesis Engine for Diamond User Guide 106

Minimizing area often produces larger delays, making it more difficult to meet
timing requirements. Maximizing frequency often produces larger designs,
making it more difficult to meet area requirements. Either goal, pushed to an
extreme, may cause the place and route process to run longer or not
complete routing.

To control the global performance of LSE, modify the strategy settings.
Choose Project > Active Strategy > LSE Settings. In the Strategy dialog
box, set the following options, which are found in Synthesize Design > LSE.
See the following text for explanations and more details.

FSM Encoding Style If your design includes large finite state machines, the
Binary or Gray style may use fewer resources than One-Hot. Which one is
best depends on the design. One-Hot is usually the fastest style. However, if
the finite state machine is followed by a large output decoder, the Gray style
may be faster.

Max Fanout Limit A larger fanout limit means less duplicated logic and
fewer buffers. A lower fanout limit may reduce delays. The default is 1000,
which is essentially unlimited fanout. Select a balanced fanout constraint. A
large constraint creates nets with large fanouts, and a low fanout constraint
results in replicated logic. You can use this in conjunction with the
syn_replicate attribute. See “syn_replicate” on page 1337. To minimize area,
don’t lower this value any more than needed to meet other requirements. To
minimize speed, try much lower values, such as 50.

You can change the fanout limit for portions of the design by using the
syn_maxfan attribute. See “syn_maxfan” on page 1325. Set Max Fanout Limit
to meet your most demanding requirement. Then add syn_maxfan to help
other requirements.

Optimization Goal If set to Area, LSE will choose smaller design forms
over faster whenever possible.

If set to Timing, LSE will choose faster design forms over smaller whenever
possible. If a create_clock constraint is available in an .ldc file, LSE ignores
the Target Frequency setting and uses the value from the create_clock
constraint instead.

Table 3: LSE Strategy Settings for Area and Speed

Option Area Speed

FSM Encoding Style Binary or Gray One-Hot

Max Fanout Limit <maximum> <minimum>

Optimization Goal Area Timing

Remove Duplicate Registers True False

Resource Sharing True False

Target Frequency <minimum>

Use IO Registers Auto or True Auto or False

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Specifying Optimization Options

Lattice Synthesis Engine for Diamond User Guide 107

If you are having trouble meeting one requirement (area or speed) while
optimizing for the other, try setting this option to Balanced.

Remove Duplicate Registers Removing duplicate registers reduces area,
but keeping duplicate registers may reduce delays.

Resource Sharing If set to True, LSE will share arithmetic components
such as adders, multipliers, and counters whenever possible.

If the critical path includes such resources, turning this option off may reduce
delays. However, it may also increase delays elsewhere, possibly reducing
the overall frequency.

Target Frequency A lower frequency target means LSE can focus more on
area. A higher frequency target may force LSE to increase area. Try setting
this value to about 10% higher than your minimum requirement. If
Optimization Goal is set to Timing and a create_clock constraint is available in
an .ldc file, LSE will use the value from the create_clock constraint instead.

Use IO Registers If set to True, LSE will pack all input and output registers
into I/O pad cells. Register packing reduces area but adds delays.

Auto, the default setting, enables this register packing if Optimization Goal is
set to Area. If Optimization Goal is Timing or Balanced, Auto disables register
packing.

You can also control packing on individual registers. See “syn_useioff” on
page 1352. Set Use IO Registers to meet your most demanding requirement.
Then add syn_useioff to help other requirements.

Specifying Optimization Options
This section describes options provided by LSE to optimize your design.

Preserving Objects from Optimization
Nets can be removed or collapsed during optimization. Attributes can be used
to retain a net for synthesis implementations such as simulation. Duplicate
registers are removed in synthesis. Use attributes to preserve logic for
simulation or analysis.

Setting Fanout Limits
You can use the Max Fanout Limit strategy to specify the maximum fanout
setting. LSE will make sure that any net in the design is not exceeding this
limit. Default is 1000 fanouts. This option is equivalent to the “-max_fanout”
option in the SYNTHESIS command. See “Max Fanout Limit” on page 12.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Lattice Synthesis Engine for Diamond User Guide 108

Sharing Resources

You can use the Resource Setting strategy to optimize area. With resource
sharing, synthesis uses the same arithmetic operators for mutually exclusive
statements; for example, with the branches of a case statement. Conversely,
you can improve timing by disabling resource sharing, but at the expense of
increased area.See “Resource Sharing” on page 16.

Inserting I/Os

LSE uses I/O insertion and GSR to optimize designs. For more information on
this strategy, see “Use IO Insertion” on page 17

Optimizing State Machines

You can use the FSM Encoding Style strategy to optimize state machines.
Valid options are auto, one-hot, gray, and binary. The default value is auto,
meaning that the tool looks for the best implementation. See “FSM Encoding
Style” on page 11

Working with Gated Clocks

The Fix Gated Clocks strategy can change standard gated clocks to forms
more effective for FPGAs. See “Fix Gated Clocks” on page 10

Analyzing the Synthesis Report
Lattice Diamond generates log files for all project activities. The log files
contain processing information, as well as error and warning messages. If you
run processes, reports are generated.

Viewing Logs and Reports
A log file is displayed in the Output frame as a process is running. A scroll bar
can be used to scroll up and down in the information.

Errors are displayed in red. Warnings are displayed in orange. There are also
information messages. These messages are also displayed in the Warning,
Error, and Info views. These views may not automatically be visible in your
Diamond main window. To turn on the views, choose View > Show Views >
<view>. A check mark indicates the view is displayed.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Lattice Synthesis Engine for Diamond User Guide 109

Viewing Reports The Reports view displays reports for the major
processes.

There are two panes in the Reports view. The left pane lists the Design
Summary information including the report types. The reports in detail are
displayed in the right pane.

In the Design Summary pane, there is the report icon . If a report has been
generated, the icon appears as . If the report is not the most recent version,
the icon appears as . To view the contents of the entire report, click on the
report to be viewed. The entire report is then displayed in the right pane of the
Reports view. Use the scroll bar to navigate through the report. Some of the
reports are divided into sections (for example, Map, Place & Route, and
Signal/Pad). Expand the report listing to display the sections in a list. Choose
the desired section. The whole report will be displayed with the selected
section displayed at the top of the right pane of the Reports view.

You can navigate the reports quickly by using the Find function (right-click in
the right pane of the Reports view and choose Find in Text).

Other Reports The Synthesize Design stage produces reports that do not
appear in the Reports view. You can find these reports in the implementation
folder. In the File List view, right-click the implementation name and choose
Open Containing Folder. A window will open showing the contents of the
folder. All of these reports can be read with a text editor.

One of the reports is a detailed description of the device resources that will be
used by the design. This report is much more detailed than the synthesis
report in the Reports view. The report includes the resources used by each
module of the design. Similar information can also be found in the Hierarchy
view. For Synplify Pro, look for <top_module>.areasrr; for Lattice Synthesis
Engine, look for <top_module>.arearep.

Type of Report Description

Project Summary Lists the summary information of the project including module
name, synthesis tool chosen, implementation name, strategy
name, target device, device family, device type, package type,
performance grade, operating conditions, logic preference file,
software product version, project file name, and location.

Process Reports Lists the synthesis, map, place and route, signal/pad, and
bitstream reports in HTML format.

Analysis Reports Lists the trace and timing reports.

Tool Reports Lists the I/O SSO analysis, hierarchy parsing, PIO DRC, and ECO
Editor reports. Also has a log of Tcl commands used in recent
sessions.

Messages Lists the implementation messages and user defined filters for the
messages.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Lattice Synthesis Engine for Diamond User Guide 110

Cross-Probing from Reports to
Schematics
While studying one of the timing or trace reports you might want to see where
a module or port is in the design. You can cross-probe, or jump, from the LSE
timing report and from the place & route trace report to a schematic view of
the design.

To cross-probe from the LSE timing report to a schematic view:

1. After running synthesis with LSE, open the Reports view.

2. In the Design Summary column, click LSE Timing Report. It’s under
Analysis Reports.

3. Select text that has the name of one or more module instances or ports of
interest.

4. Right-click and choose Filter in Netlist Analyzer.

Netlist Analyzer opens with the technology netlist view of the selected
objects. For more information, see “Analyzing Using Netlist Analyzer” on
page 112.

To cross-probe from the place & route trace report to a schematic view:

1. After running place & route of the design, choose Tools > Synplify Pro
for Lattice.

2. In Synplify Pro, click the Implementation Directory tab.

3. Find the .twr file and double-click it.

A text editor opens in Synplify Pro with the report.

4. Find the name of an instance or port of interest and select it.

5. Right-click in the selected name and choose one of the following:

 Filter in Analyst to see the item by itself

 Select in Analyst to find the item in the full schematic

6. If a suitable Analyst view is not open, a dialog box asks if you want to
open one. Click Yes.

7. Go to the Analyst schematic view to see the item.

Navigating Messages/Warnings
If an error or a warning results from the specific line in an HDL source file, you
can easily go to that line to edit the source file.

To navigate errors and warnings:

 In the Reports, Output, Error, or Warning view, double-click the line
describing the error or warning.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing the Synthesis Report

Lattice Synthesis Engine for Diamond User Guide 111

 In the Reports, Output, Error, or Warning view, right-click the message
and choose Locate in > Text Editor. If the command is dimmed, there is
no link to a source file. Depending on the message, more than one tool
may be available to view the source. Choose the one you want to use.

Finding Results Your default text editor opens with the appropriate HDL
source file at the line number specified in the error or warning message. You
can then modify the file to debug your design.

After you load a design in Diamond, you can find the information you need via
the following ways.

 In the active Reports view, choose Edit > Find. You can type the desired
text into the Find field at the bottom-left of the Reports view window. The
first occurrence of the desired text will be found and highlighted in the right
side of the window for you. Click Next or Previous to find more. And
check the Case Sensitive option if needed for the search. While typing in
the text, the Find field will be automatically colored if no occurrence of the
text is found.

 In the active Source Editor, after choosing Edit > Find, you will get the
Find and Replace dialog box. You can enter the text you want to search in
the Find What field and start a search. Use the Find Next command to
find more. If you want to replace the current find, you can use the Replace
tab of the dialog box. Check Match Case, Match Whole Word, Search
Up, Regular Expression options as needed. Use the Replace or
Replace All command to replace the text found.

 If you want to find information without loading the files, you can choose
Edit > Find in Files from Diamond main window. In the pop-up Find In
Files dialog box, type the text you want to find, specify the search path
and search filters, and check the desired options: Search subdir, Include
hidden files, Match case, Match whole word, and Regular
expressions. Press Find. The results will be displayed in the Find
Results frame. Double-click any of the findings from the Find Results
frame to open the associated source file in the associated editor. For
example, if the finding is in a log file, the log file will be opened in the
Reports view with the first finding appears on the first line.

 You can search the Output log by clicking in the Output view (in the text,
not on the tab) and then pressing Ctrl-F. This opens a basic text search
dialog box at the top of the Output view. You can type the text in the Find
text field and start a search.

Find Results View The Find Results view may not be displayed
automatically in your Diamond main window. To turn on the Find Results view,
select View > Show Views > Find Results. A check mark indicates the frame
is displayed.

The Find Results view can be detached from the main window by clicking the
detaching icon on the upper-right corner of the view. After detaching, you can
double-click on the title bar of the view to get it back to the main window.

For more information about messages, in the Diamond software online help,
refer to User Guides > Managing Projects > Viewing Logs and Reports.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing Using Netlist Analyzer

Lattice Synthesis Engine for Diamond User Guide 112

Analyzing Using Netlist Analyzer
Netlist Analyzer works with LSE to produce schematic views of your design
while it is being implemented. Use the schematic views to better understand
the hierarchy of the design and how the design is being implemented.

To start Netlist Analyzer:

1. Synthesize the design with LSE.

2. Choose Tools > Netlist Analyzer.

The Netlist Analyzer window opens with the RTL netlist showing. as shown in
Figure 37.

Figure 37: Netlist Analyzer

The Netlist Analyzer clock tree, shown in Figure 38, is displayed along with
the design tree, which lists all the clock nets along with their drivers. The clock
tree feature helps locate the clock signal and analyze the clock network of the
design.

The clock tree has three levels:

 The first level is a node named “Clocks” with a number denoting the
number of the clock signals in the design.

 The second level includes all the drivers of the clock signals,

 The third level are the child signals associated with the clock net

The objects in the clock tree show hierarchical names as their name.
Selection is synchronized among the Netlist Analyzer design tree, schematic
view and the clock tree, as shown in Figure 39.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Analyzing Using Netlist Analyzer

Lattice Synthesis Engine for Diamond User Guide 113

Figure 38: Clock Tree View of Netlist Analyzer

Figure 39: Synchronization among Netlist Analyzer Views

About Netlist Analyzer Views The Netlist Analyzer window has four parts:

 Tool bar provides buttons for various functions.

 Netlist browser provides nested lists of module instances, ports, nets, and
clocks.

 Schematic view shows a schematic of the design. Depending on the size
of the design, the schematic may be made of multiple sheets.

 Mini-map, which is a miniature view of the sheet, helps you pan and zoom
in the schematic view.

Netlist Analyzer can have multiple schematics open. The open schematics
are shown on tabs along the bottom of the window.

Bold lines are buses. Green lines are clock signals.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Simulating the Synthesis Output

Lattice Synthesis Engine for Diamond User Guide 114

For more information about Netlist Analyzer, in the Diamond software online
help, refer to User Guides > Managing Projects > Analyzing a Design >
About Netlist Analyzer.

Simulating the Synthesis Output

LSE generates a post-synthesis netlist file in Verilog format. The file is
generated after running the Verilog Simulation File process in Diamond. The
file name is <design>_prim.v. This file is a structural netlist of the synthesized
design, and differs from the original RTL used as input for synthesis. The file
is also a post-synthesis source simulation file for functional simulation of
primitive gate-level logic.

Typically, this netlist is used for gate-level simulation, to verify synthesis
results. Some designers prefer to simulate before and after synthesis, and
also after place-and-route. This approach helps to isolate the stage of the
design process where a problem occurred.

The Verilog output file is for functional simulation only. When you input
stimulus into a simulator for functional simulation, use a cycle time for the
stimulus of 1,000 time ticks.

Simulation flow For post-synthesis simulation, the designer needs a
Verilog simulation library, a <design>_prim.v file, and a testbench file.

Method 1 Using Diamond Simulation Wizard.

1. Run the Verilog Simulation File process, as shown in Figure 40.

Figure 40: Running the Verilog Simulation File Process

Note

For more information on Simulation Wizard, refer to the Lattice Diamond User Guide
or the Diamond online help topic User Guides > Simulating the Design >
Simulation in Diamond > Creating a New Simulation Project in Diamond,

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Simulating the Synthesis Output

Lattice Synthesis Engine for Diamond User Guide 115

2. From your project directory, remove or rename the _mapvo.vo (post-map
simulation file).

3. Run the Choose Tools > Simulation Wizard or click the Simulation
Wizard button on the toolbar.

4. In the Simulation Wizard, specify a Project Name, Project Location, and
Simulator, and then click Next.

5. In the Simulation Wizard, choose Post-Map Gate-Level, and choose
Verilog as the language, as shown in Figure 41. Click Next.

Figure 41: Simulation Wizard Process Stage

6. In the Simulation Wizard, add the _prim.v and the testbench into
Simulation Wizard, as shown in Figure 42

7. Continue with the simulation.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Lattice Synthesis Engine for Diamond User Guide 116

Figure 42: Simulation Wizard Add and Reorder Source

Method 2 Using a third-party simulation tool such as ModelSim:

1. Compile the simulation library with running cmpl_lib.tcl from the
Command Line. For more information, in the Diamond software online
help, refer to Reference Guides > Command Line Reference Guide >
Command Line Tool Usage > Running cmpl_lib.tcl from the
Command Line.

2. Compile the Verilog simulation library.

3. Add the compiled library and _prim.v, testbench file into third-part
simulation tool and run the simulation.

Designing with Modules/IP
Modules are functional bits of design that can be re-used wherever that
function is needed. Creating such modules with hardware design languages
is common practice. To help your design along, Lattice Semiconductor
provides a variety of modules for common functions. They are optimized for
Lattice device architectures and can be customized. Use these modules to
speed your design work and to get the most effective results.

Lattice Semiconductor’s modules come in a variety of forms:

 IPexpress provides a variety of functions ranging from the most basic,
such as arithmetic and memory, to much more complex functions. With
IPexpress these modules can be extensively customized. They can be
created as part of a specific project or as a library for multiple projects. For
more information, in the Diamond software online help, refer to User
Guides > Entering the Design > Designing with Modules > Creating
IPexpress Modules and IP.

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Lattice Synthesis Engine for Diamond User Guide 117

However, many of these modules can also be used with PMI (see next
item). To decide which method to use, in the Diamond software online
help, refer to User Guides > Entering the Design > Designing with
Modules > Use PMI or IPexpress?

 PMI (Parameterized Module Instantiation) is an alternate way to use some
of the modules that come with IPexpress. With PMI, instead of using
IPexpress, you directly instantiate a module into your HDL and customize
it by setting parameters in the HDL. You may find this easier than using
IPexpress if your design requires many variations of the same module. To
decide which method to use, in the Diamond software online help, refer to
User Guides > Entering the Design > Designing with Modules > Use
PMI or IPexpress?

 Clarity Designer provides modules similar to those from IPexpress but for
ECP5. As with IPexpress, with Clarity Designer you can customize these
modules. Clarity Designer also helps you connect these modules to each
other and place the PCS and DDR modules in the device’s architecture.
For more information, in the Diamond software online help, refer to User
Guides > Entering the Design > Creating Clarity Designer Modules.

 LatticeMico32 microprocessors and LatticeMico8 microcontrollers are
exceptions in that they are not customized with IPexpress. LatticeMico32
and LatticeMico8 have their own development environment. To design
with LatticeMico System, in the Diamond software online help, refer to
User Guides > Entering the Design > Designing with LatticeMico
Platforms.

 Reference designs provide you with a starting point on creating your own
modules. Lattice Reference Designs are available in Verilog and VHDL,
and can be downloaded from the Lattice Web site: www.latticesemi.com/
ip.

 Lattice library primitives are very basic functions, such as logic gates and
flip-flops. They can be directly instantiated as HDL into designs. But this is
an advanced technique and should usually be avoided. For more
information, see “Designing with Lattice Library Primitives” on page 120.

Of course you can also create your own modules and that is fully supported
too. In fact, Diamond supports creating your own black-box modules. See
“Creating Your Own Black Box Modules” on page 118.

Using IPexpress Modules

Below are the basic steps of using IPexpress modules and IP. For details of
performing these steps, see the following topics.

1. Start running IPexpress. It can be started from Diamond’s Tools menu
after you open your design project. If you want to create a library of
configured modules or IP, IPexpress can be opened as a stand-alone tool
to create a library of modules.

2. If you want to use a Lattice IP that’s not visible, it must be downloaded
and installed first. This can be done from IPexpress.

http://www.latticesemi.com/ip
http://www.latticesemi.com/ip

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Lattice Synthesis Engine for Diamond User Guide 118

3. Customize the module/IP. These modules and IP can be extensively
customized for your design. The options may range from setting the width
of a data bus to selecting features in a communications protocol. At a
minimum you need to specify the design language to use for the output.

4. Generate the module/IP and bring its .ipx file into your project. Prior to
generating the module/IP, select the option “Import IPX to Diamond
Project.” This will then automatically bring the .ipx file into your project
after the generation step completes. If you do not select this option, then
after generation, add the .ipx file to your project as you would with any
other source file (such as a Verilog or VHDL file). If using IPexpress
standalone, there is no project to automatically add the .ipx file.

5. Instantiate the module/IP into the project’s design. An HDL instance
template is generated during the generation step to simplify this step.

6. IPexpress modules and IP can be further modified or updated later. After
the .ipx file has been added to the Diamond project, it is visible in the
project’s file list. Double-clicking the .ipx file brings up the module/IP’s
configuration dialog box where changes can be made and the generation
process repeated.

Using Clarity Modules
Clarity Designer is a tool within the Lattice Diamond software environment
that addresses the need to be able to generate and plan multiple blocks
together. Clarity Designer is used for configuration of blocks, building the
connections between blocks, and planning the resources used by the PCS
and DDR blocks in the design. For device families supported by Clarity
Designer, IPexpress functionality is accomplished along with functionality for
building and planning. The IPexpress tool is disabled when using a device
family supported by Clarity Designer. Device families that are not supported
yet by Clarity Designer still require the use of IPexpress. Clarity Designer is
currently only available for the ECP5 device family. A comparison chart
between IPexpress and Clarity Designer features is shown in Table 4.

Creating Your Own Black Box Modules
In some cases, you may not want to distribute HDL source code because of
the risk of changes or of exposing proprietary information. So, Lattice
Semiconductor offers a compiled Native Generic Object (NGO) netlist format
as an alternative to HDL.

Advantages and Disadvantages An NGO netlist has the following
advantages over HDL source code:

 Hides details of internal logic

 Easy to distribute

 Optimized to meet timing or area requirements

 Optional grouping and floorplan constraints

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Designing with Modules/IP

Lattice Synthesis Engine for Diamond User Guide 119

On the other hand, an NGO netlist:

 May not be portable across all device families

 Cannot be parameterized

Overview of the Black Box Process The following are the basic steps for
creating and using a black box module. For details about performing these
steps, see the topics listed under “See Also.”

1. Create an NGO netlist.

Start with a design project just for the module and add some attributes.
Then run the synthesis and Translate Design processes.

2. Create support files.

In addition to the NGO netlist, users of the black box module will need
additional information such as declaration and instantiation templates, a
data sheet, a simulation model, and timing attributes.

Table 4: IPexpress versus Clarity Designer

Note

NGO blocks will be given a unique name which is constructed by appending the
parameter value to the name of the NGO module as in the following example.

For the following module:

module my_add_sub (DataA, DataB, Add_Sub, Result);

parameter bit_width = 6;

...

endmodule

After generating the NGO file, the ngo must be renamed with the parameter value
appended to the module name as shown below:

“my_add_sub_6.ngo”

LATTICE SYNTHESIS ENGINE FOR DIAMOND USER GUIDE : Revision History

Lattice Synthesis Engine for Diamond User Guide 120

3. Instantiate the module.

Following the instructions from the module’s data sheet, copy the
declaration and instantiation templates into your design project.

Designing with Lattice Library
Primitives

Any Lattice library primitive described in the FPGA Libraries Reference Guide
can be instantiated as a Verilog module or VHDL component in your RTL
design. This sort of “gate-level” design can be error-prone and should be
limited to a small number of primitives if attempted at all. In general, Lattice
recommends you rely on IPexpress to generate modules that are built with
Lattice library primitives.

To minimize the amount of code overhead required to design with a library
primitive, Lattice provides a Verilog and VHDL synthesis header library file for
each major FPGA device family. Refer to the Lattice Synthesis Header
Libraries topic for details. Typically the module is treated as a “black box”
which causes the synthesis tool to pass instances of the library primitive into
the target netlist untouched.

Global signals for global set/reset (GSR), power-up reset (PUR), tri-state all
(TSALL), and the internal oscillator (OSCA, OSCC, OSCD, OSCE, OSCF)
can be used within structural models built with Lattice library primitives. For
more information, see How to Use the Global Set/Reset (GSR) Signal, How to
Use the Tristate Interface (TSALL) Global Signal, and How to Use the Internal
Oscillator.

The FPGA Libraries Reference Guide contains descriptions, pinouts, and
schematic diagrams of all library primitives for Lattice FPGA libraries. For
more information, in the Diamond software online help, refer to Reference
Guides > FPGA Libraries Reference Guide.

Revision History

Date Diamond Software
Version

Description

April, 2019 3.11 Updated “Use IO Insertion” on page 17.

February, 2016 3.7 Initial release of document.

Lattice Synthesis Engine for Diamond User Guide 121

Index

A
analysis reports 109

B
binary finite state machines 11, 106
black box modules

advantages 118
disadvantages 118
process overview 119

black_box_pad_pin HDL directive 35

C
Carry Chain Length (strategy option) 9
case statements 86
Clarity Designer

defined 117
clocks, gated 10
Command Line Options (strategy option)

Lattice Synthesis Engine 9
cross-probing

Synplify Pro for Lattice 110
trace report 110

D
Disable Distributed RAM (strategy option) 10
duplicate registers, removing 15, 107

E
EBR Utilization (strategy option) 10
Encoding Style, FSM 11, 106

F
finite state machines

FSM Encoding Style for LSE 11, 106
Fix Gated Clocks (strategy option) 10

Force GSR (strategy option) 11
frequency

synthesis target
Lattice Synthesis Engine 17, 107

FSM Encoding Style (strategy option) 11, 106

G
gated clocks 10
Goal, Optimization 13, 106
gray finite state machines 11, 106
GSR HDL directive 36

H
Hardware Evaluation (strategy option) 11

I
if statements 86
inferring memory

RAM
synchronous read 81

Intermediate File Dump (strategy option) 12
IPexpress

defined 116

L
library primitives

defined 117
limit, fanout

Lattice Synthesis Engine 12, 106
loc attribute 37

M
Macro Search Path (strategy option) 12
Max Fanout Limit (strategy option) 12, 106

see also Fanout Limit (strategy option)

INDEX

Lattice Synthesis Engine for Diamond User Guide 122

Memory Initial Value File Search Path (strategy
option) 13

modules
PMI

defined 117
types 116

Mux Style (strategy option) 13

N
Number of Critical Paths (strategy option) 13

O
one-hot finite state machines 11, 106
Optimization Goal (strategy option) 13, 106

P
Parameterized Module Instantiation

see PMI
PMI

defined 117
process reports 109
Propagate Constants (strategy option) 14

R
RAM

inferring
synchronous read 81

Ram Style (strategy option) 15
read, synchronous 81
Reference designs 117
registers, removing duplicate 15, 107
Remove Duplicate Registers (strategy option) 15,

107
Remove LOC Properties (strategy option) 15
reports

process reports 109
viewing 109

Resolved Mixed Drivers (strategy option) 15
Resource Sharing (strategy option)

Lattice Synthesis Engine 16, 107
Rom Style (strategy option) 16

S
sharing resources

Lattice Synthesis Engine 16, 107
state machines, finite

see finite state machines
Style, FSM Encoding 11, 106
summary

project reports 109
syn_black_box HDL directive 39
syn_force_pads HDL attribute 44
syn_hier HDL attribute 46
syn_keep HDL directive 49
syn_maxfan 106
syn_maxfan HDL attribute 51
syn_multstyle HDL attribute 51
syn_noprune HDL directive 54

syn_pipeline HDL attribute 56
syn_preserve HDL directive 58
syn_ramstyle 79, 83
syn_ramstyle HDL attribute 60
syn_replicate HDL attribute 62
syn_romstyle 87
syn_romstyle HDL attribute 64
syn_srlstyle HDL attribute 65
syn_use_carry_chain HDL attribute 74
syn_useenables HDL attribute 75
syn_useioff HDL attribute 77
synchronous read 81
Synplify Pro for Lattice

cross-probing 110

T
Target Frequency (strategy option) 17, 107

see also Frequency (strategy option)
tool reports 109
translate_off/translate_on directive 77

U
Use Carry Chain (strategy option) 17
Use IO Insertion (strategy option) 17
Use IO Registers (strategy option) 17
Use LPF Created from SDC in Project (strategy

option) 17

V
Verilog

case statements 86
if statements 86

VHDL
case statements 86
if statements 86

VHDL 2008 (strategy option) 18
viewing reports 109

	Contents
	Lattice Synthesis Engine for Diamond User Guide
	Design Flow Overview: User Interface
	LSE Strategy Settings in Diamond
	LSE Strategy Option Settings

	Design Flow Overview: Command Line
	Preparing the Input
	Constraint Files

	Specifying Constraints and Attributes
	Defining Synthesis Constraints Using LDC Editor
	Defining Synthesis Constraints Using Text Editor
	Defining Clocks
	Defining Generated Clocks
	Defining Clock Groups
	Setting Input Delays
	Setting Output Delays
	Defining Minimum Delay Paths
	Defining Maximum Delay Paths
	Setting Up Attributes

	Inferring Block Primitives
	Inferring Memory
	Inferring Lattice DSP Blocks Using Behavioral HDL

	Optimizing LSE for Area and Speed
	Specifying Optimization Options
	Preserving Objects from Optimization
	Setting Fanout Limits
	Sharing Resources
	Inserting I/Os
	Optimizing State Machines
	Working with Gated Clocks

	Analyzing the Synthesis Report
	Viewing Logs and Reports
	Cross-Probing from Reports to Schematics
	Navigating Messages/Warnings

	Analyzing Using Netlist Analyzer
	Simulating the Synthesis Output
	Designing with Modules/IP
	Using IPexpress Modules
	Using Clarity Modules
	Creating Your Own Black Box Modules
	Designing with Lattice Library Primitives

	Revision History

	Index

