= LATTICE

Version

Features

LatticeMico Fault Logger

The LatticeMico Fault Logger IP allows the user’s design to store Analog
Sense and Control (ASC) RDAT (read data) to FLASH based upon user
defined trigger criteria. It does this by continuously buffering RDAT
information in FPGA memory, then sending that information to FLASH when
the user defined trigger is asserted.

The Lattice IP offers two different ways to do fault logging:

Smaller designs and fewer FPGA resources can use the fault logging
function that is embedded on the ASC device.

Larger designs that need features such as timestamp or user data logging
can use the fault logger IP described here.

For more information refer to the Platform Designer documentation in
Diamond online help.

This document describes the 1.2 version of the LatticeMico Fault Logger.

The LatticeMico Fault Logger IP must be used together with the Embedded
Functional Block (EFB) of the MachXO2/Platform Manager 2 device or the
Soft-EFB of other devices, and has the following features to support the fault
logging task

RDAT frame buffering for any number of ASC'’s.

Copyright © February 2016 Lattice Semiconductor Corporation.

Functional Description

Writes fault log snapshot to either MachXO2/Platform Manager 2
embedded User Flash Memory (UFM) or to an external FLASH memory.

User defined trigger (to start the write-to-FLASH operation).
Maskable interrupt, set by the user defined trigger.
WISHBONE slave interface to LatticeMico8 microcontroller.
Storage of FLASH related opcodes.

Four bytes of additional storage for user-defined data.
Optional internal or external time stamp.

All data is register-mapped and accessible by the LatticeMico8
microcontroller from the WISHBONE bus.

Configurable to use either EBR or distributed RAM.
Fault Record Counter function for ECP5 devices.

External SPI Flash memory error flag signal on ECP5 devices.

Functional Description

Refer to Figure 1 on page 3. The fault logger IP continuously buffers RDAT
frames into FPGA memory during normal operation. When it receives a
trigger from the user logic (typically Logibuilder logic), the fault logger IP will
suspend RDAT frame buffering and asserts a LatticeMico8 microcontroller
interrupt. The LatticeMico8 microcontroller will then read the fault log
snapshot via WISHBONE byte reads and write the data to FLASH. When the
entire fault log is stored to FLASH, the LatticeMico8 microcontroller will clear
the fault log IP interrupt and the fault logger IP will resume normal operation.

The fault logger can be configured to buffer between one and eight RDAT
frames at a time, depending on user choice. A new RDAT frame is presented
to the fault logger IP once every 16 ps by the ASCVM. The RDAT data for all
logged ASC's is presented to the fault logger at the same time, but on
separate interfaces. Malformed RDAT frames (CRC errors) are filtered out by
the ASCVM and are not presented to the fault logger.

Fault Log Triggering

The fault log trigger is an input from the user signal pool and should be
connected by the user. A rising edge on this signal (usp_trigger_i) constitutes
a “trigger event”. This will suspend all data buffering and will cause a fault
logger interrupt to be sent to the LatticeMico8 microcontroller. The fault logger
IP will also assert a busy signal output (usp_busy_o) to indicate that the fault
log is being stored to FLASH and that it will ignore all trigger events until the
LatticeMico8 microcontroller clears the fault logger IP interrupt.

The designer can select which user signal pool node will be connected to the
trigger signal. The signal should be a registered node to keep it synchronous
to the Fault Logger IP synchronous logic.

LatticeMico Fault Logger

Functional Description

Figure 1. Fault Logger Block Diagram

External SPI FLASH| —

PlatformManager2
1
X02 |
Fault Logger [3 |
EFB | 3 — & ASCVM1
o = =) |
v = 4] s RDAT Buffer
w T }&
2 & S 3 | ©
- m 4 ®
z Z m | -~
- w
i ©
& S 2 — . AscvM7
o e
€= | RDAT Buffer
=1
m
Control r] |
Logic s | N
- T User Signal Pool
c
@ Mico8 = |
a0 |
D .
— | User Signal 170

User Log Storage

Users can store 4 bytes of user signal pool data in the fault log. These fault
logger inputs are buffered into FPGA memory once every 4 us and will be
included as part of the fault log written to FLASH. Buffering of these signals is
suspended while usp_busy_o is asserted.

The designer can enable user log bytes and select which design signals will
be connected to the user log inputs.

The user log bytes are WISHBONE register readable and are included as part
of the fault log written to FLASH. Refer to “Fault Log Mapping Table” on

page 4 to see where these signals reside in a fault log map. Refer to “ASC
Fault Log Record Memory Map” on page 5 when ASC is configured for Fault
Log Mode. More information about how to configure the user log bytes refer to
Platform Designer documentation in Lattice Diamond online help.

Timestamp Function

The user may optionally include an internal timestamp function that logs the
number of seconds since the last reset of the MachXO2/Platform Manager 2/
ECPS5. The timestamp counts up to 10 years and will not roll over. It is
WISHBONE register readable and is included as part of the fault log written to
FLASH. This internal timestamp function can only be included if parameters
have been set with FAULTLOGGER_TIMESTAMP_ENABLED=1 and
FAULTLOGGER_EXTTIMESTAMP_ENABLED=0.

The user can also provide an external time stamp to configure Fault Logger
IP. When doing so, the user must also provide an additional input timestamp
signal to the usp_timestamp_i port and set

LatticeMico Fault Logger

Functional Description

Table 1: Fault Log Map

Element Name

FAULTLOGGER_TIMESTAMP_ENABLED=1 and
FAULTLOGGER_EXTTIMESTAMP_ENABLED=1.

Please see the Fault Log Mapping Table (generated by Platform Designer) to
see where the timestamp resides in a fault log map, or see Platform Designer
for information about how to enable the timestamp option.

Please see “Configuration Parameters” for more information about the fault
log timestamp.

Fault Log Mapping Table

Table 1 is the Fault Log Map. The length of the fault log will vary with differing
user configurations. For example, a fault log that logs three ASCs will be
shorter than a fault log that includes eight ASCs. The location of similar data
within a fault log will also change with differing configurations. For example,
the address of the timestamp will be at a lower address location in a fault log
with two ASCs than if the fault log includes seven ASCs. When using the
External SPI Flash mode, each Fault Log will be mapped to 128 bytes to
match the SPI Flash memory page limitation.

Platform Designer provides an ASCII based, Fault Log Mapping Table file to
tell the user where individual RDAT bits and user log and timestamp bytes are
for a given Fault Logger IP configuration. Please refer to the Platform
Designer documentation in the Diamond online help for the usage and
location of this automatically generated document.

Number Required/ Description

Number of Bytes Optional

0 HEADER 1 Required The fault flag is the first byte of FLASH storage map. 0x3C in this
location indicates that there is a fault log snapshot stored in this
FLASH page. This flag is not stored in the fault logger IP, but is
inserted by LatticeMico8 microcontroller.

1 LENGTH 1 Required Total number of bytes in the storage element map. This value will
be calculated by software at startup and then stored in parameter
FAULT_LOG_LENGTH.

2 ASCO RDAT 7 Required This is the RDAT frame from ASCO. The contents of this element
will be the same contents and ordering of the data within a 3WI
RDAT frame.

3 ASC1 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends on
parameter FAULTLOGGER_ASC_LOG_CNT >= 2.

4 ASC2 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends
parameter FAULTLOGGER_ASC_LOG_CNT >= 3.

5 ASC3 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends
parameter FAULTLOGGER_ASC_LOG_CNT >=4.

6 ASC4 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends
parameter FAULTLOGGER_ASC_LOG_CNT >=5.

4 LatticeMico Fault Logger

Functional Description

Table 1: Fault Log Map (Continued)

Element Name Number Required/ Description
Number of Bytes Optional
7 ASC5 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends

parameter FAULTLOGGER_ASC_LOG_CNT >=6.

8 ASC6 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends
parameter FAULTLOGGER_ASC_LOG_CNT >=7.

9 ASC7 RDAT 7 Optional. Same as ASCO RDATA element, except that inclusion depends
parameter FAULTLOGGER_ASC_LOG_CNT >= 8.

10 USERO 1 Required. First byte of user log data and corresponds to signal
USP_USRLOGO_I.

11 USER1 1 Required. Second byte of user log data and corresponds to signal
USP_USRLOGL1_I.

12 USER2 1 Required. Third byte of user log data and corresponds to signal
USP_USRLOG2_l.

13 USERS3 1 Required. Fourth byte of user log data and corresponds to signal
USP_USRLOG3_I.

14 TIME 4 Optional Timestamp. Indicates distance since last power on reset. Only
included if parameter
FAULTLOGGER_TIMESTAMP_ENABLED=1.

15 FOOTER 1 Required End delimiter. Value is always 0x2A. Not stored in fault logger IP.
This flag is not stored in the fault logger IP, but is inserted by
LatticeMico8 microcontroller.

ASC Fault Log Record Memory Map

Table 2 is the ASC fault log record memory map. When the ASC is configured
for Fault Log Mode, the memory block is used to record the status of the ASC
GPIOs, VMON, IMON, TMON and other significant logic signals on the
occurrence of the user defined fault trigger condition.

Each fault record has seven bytes: six bytes of ASC specific data and one
byte of user specified FPGA signals.

Table 2: ASC Fault Log Record Memory Map

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

0 0 0 1 1 1 1 0 0

1 0 0 0 1 0 0 0 1

2 FL_FULL FL_ACT 0 0 1 EE_DONE 1 AGOOD

3 AGOOD RGPIO10 RGPIO9 RGPIO8 RGPIO7 RGPIO6 RGPIO5 RGPIO4
4 RGPIO3 RGPIO2 RGPIO1 RHVYOUT4 RHVOUT3 RHVOUT2 RHVOUT1 IMON_1B
5 IMON_1A HIMONB HIMONA HVMONB HVMONA VMON_9B VMON_9A VMON_8B

LatticeMico Fault Logger 5

Configuration

Table 2: ASC Fault Log Record Memory Map

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

6 VMON_8A VMON_7B VMON_7A VMON 6B VMON 6A VMON 5B VMON_5A VMON_4B
7 VMON_4A VMON_3B VMON 3A VMON 2B VMON 2A VMON_1B VMON_1A TMON_2B
8 TMON_2A TMON_1B TMON_1A TMonint B TMonint A 1 0 1

9 USRO[7] USRO[6] USRO[5] USRO[4] USRO[3] USRO[2] USRO[1] USRO[0]

10 USR1[7] USR1[6] USR1[5] USR1[4] USR1[3] USR1[2] USR1[1] USR1[0]

11 USR2[7] USR2[6] USR2[5] USR2[4] USR2[3] USR2[2] USR2[1] USR2[0]
12 USR3[7] USR3J[6] USR3J[5] USR3[4] USR3J3] USR3J2] USR3[1] USR3J[0]
13 Timer[31] Timer[30] Timer[29] Timer[28] Timer[27] Timer[26] Timer[25] Timer[24]

14 Timer[23] Timer[22] Timer[21] Timer[20] Timer[19] Timer[18] Timer[17] Timer[16]

15 Timer[15] Timer[14] Timer[13] Timer[12] Timer[11] Timer[10] Timer[9] Timer[8]
16 Timer[7] Timer[6] Timer[5] Timer[4] Timer[3] Timer[2] Timer[1] Timer[O]
17 0 0 1 0 1 0 1 0
Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the I/O ports that

user can use to configure and operate the LatticeMico Fault Logger. For more
information refer to the Platform Designer documentation in Diamond online

help.

Ul Parameters

Table 3 shows the Ul parameters available for configuring the LatticeMico
Fault Logger through the Mico System Builder (MSB) interface.

Table 3: Fault Logger Ul Parameters

Dialog Box Options Description Allowable Values Default Value

Instance Name Specifies the name of the Fault Alphanumeric and underscores faultlogger
Logger instance

Lattice Family Specifies the device family name MachX0O2, LPTM2, ECP5U, MachX02
ECP5UM
Base Address Specifies the base address for ~ 0X80000000—0XFFFFFFFF 0X80000000

configuring the Fault Logger.
The minimum boundary
alignment is 0x80.

SPI/IC Connecting Module Setting

6 LatticeMico Fault Logger

Configuration

Table 3: Fault Logger Ul Parameters (Continued)

Dialog Box Options

Use Harden EFB

Use Soft EFB

Fault Logger Setting

External Time Stamp Enable

Internal Time Stamp Enable

Number of ASC Log

Number of User Log

Use USER MCLK Macro

RDAT Storage Setting

Distributed RAM

EBR

Flash Memory Setting
Flash Mode

Maximum Memory Storage

User Flash Memory

External SPI Flash

Starting Address of SPI
Flash for Log Data

SPI Chip Select Number

Description

Select this option to use Harden

EFB

Select this option to use Soft
EFB

Select this option to enable

External Time Stamp. Can only
be enabled when Use Soft EFB

is selected.

Select this option to enable

Internal Time Stamp. Can only
be enabled when External Time
Stamp Enable is not selected.

Specifies the number of ASC
Log

Specifies the number of User
Log

Select this option to enable the
ECP5's USERMCLK macro. Can
only be enabled when Use Soft

EFB is selected.

When selected, RDAT data will

be stored in Distributed RAM

When selected, RDAT data will

be stored in EBR

Specifies the number of bytes in

the external Flash Storage

When selected, fault log data will
be stored in User Flash Memory

When selected, fault log data will
be stored in external SPI Flash

Specifies the starting address in
the SPI Flash space to reserve

for the Fault Log data

Specifies which chip select line is
connected to external SPI Flash.

Allowable Values

selected | not selected

selected | not selected

selected | not selected

selected | not selected

1-8

0-4

selected | not selected

selected | not selected

selected | not selected

0- 268435456

selected | not selected

selected | not selected

0- 268435456

Default Value

selected

not selected

not selected

selected

not selected

selected

not selected

100

selected

not selected

0x000000

LatticeMico Fault Logger

Configuration

Table 3: Fault Logger Ul Parameters (Continued)

Dialog Box Options Description Allowable Values Default Value

Prescale Value for SPI A calculated prescale value for ~ 0x00 - Ox3F 0x00
the SPI IP, based on the system
clock frequency and the SPI bus
frequency. Can only be enabled
when Use Soft EFB is selected.

Fmsck = Fsource / (Nspibr + 1)
SPI Flash Command

Read Specifies the opcode for external 0 - 255 3
SPI Flash Read (READ)

Write Specifies the opcode for external 0 - 255 2
SPI Flash Write (PP)

Write Enable Specifies the opcode for external 0 - 255 6
SPI Flash Write Enable (WREN)

Write Disable Specifies the opcode for external 0 - 255 4
SPI Flash Write Disable (WRDI)

Read Status Specifies the opcode for external 0 - 255 5
SPI Flash Read Status (RDSR)

Write Status Specifies the opcode for external 0 - 255 1
SPI Flash Write Status (WRSR)

HDL Parameters

Table 4 lists the parameters that appear in the HDL.

Table 4: Fault Logger HDL Parameters

Parameter Name Description Allowable
Values
LATTICE_FAMILY Define the device family for the IP MACHXO?2 |
LPTM2 |
ECP5U |
ECP5UM
FAULTLOGGER_ASCO_ASC1012 A value of 1 defines the ASCO is configured as 0|1
ASC1220, otherwise, ASCQO is configured as
ASC1012
FAULTLOGGER_ASC_LOG_CNT Define the total number of ASC Log 1to8
FAULTLOGGER_USER_LOG_CNT Define the total number of User Log Oto4
FAULTLOGGER_TIMESTAMP_ENABLED A value of 1 defines that the Time Stamp is 0|1
enabled

FAULTLOGGER_EXTTIMESTAMP_ENABL A value of 1 defines that the External Time Stamp 0] 1
ED is enabled

8 LatticeMico Fault Logger

Configuration

Table 4: Fault Logger HDL Parameters (Continued)

Parameter Name Description Allowable
Values

FAULTLOGGER_STORAGE_DISTRAM A value of 1 defines the Distributed Ram isused for 0|1
storage, otherwise, EBR is used for storage

FAULTLOGGER_SPI_USERCLOCK A value of one defines that the ECP5’s 0|1
USERMCLK macro is enabled

FAULTLOGGER_FPGA A value of one defines that SPI Arbitrator Logic will 0|1
be used in an ECPS5, or in any FPGA without
Harden EFB.

Control Register Parameters

FAULTLOGGER_SPIFLASH_READ_CMD Define the opcode for SPI Flash Read (READ) 0to 255

FAULTLOGGER_SPIFLASH_WRITE_CMD Define the opcode for SPI Flash Write (PP) 0 to 255

FAULTLOGGER_SPIFLASH_WREN_CMD Define the opcode for SPI Flash Write Enable 0to 255
(WREN)

FAULTLOGGER_SPIFLASH_WRDI_CMD Define the opcode for SPI Flash Write Disable 0 to 255
(WRDI)

FAULTLOGGER_SPIFLASH_RDSR_CMD Define the opcode for SPI Flash Read Status 0to 255
(RDSR)

FAULTLOGGER_SPIFLASH_WRSR_CMD Define the opcode for SPI Flash Write Status 0to 255
(WRSR)

FAULTLOGGER_SPI_CHIP_SELECT Define the SPI Flash chip select line Oto7

FAULTLOGGER_LOG_CNT Define the number of bytes in the UFM or SPI 0 to 268435456
Flash

FAULTLOGGER_SPIFLASH_STAADDR Define the starting address in the SPI Flash space 0x000000 to
to reserve for the Fault Log data. OXFFFFFF

FAULTLOGGER_SPIBR Define the calculated prescale value for SPI IP, 0x00 to Ox3F

based on the system clock frequency and the SPI
bus frequency.

Fmsck = Fsource / (Nspipr + 1)

/O Ports

Table 5 describes the input and output ports of the LatticeMico Fault Logger.

Table 5: Fault Logger 1/O Ports

1/0 Port Direction Active Description
System Clock and Reset

clk_wishbone | — WISHBONE System Clock

LatticeMico Fault Logger 9

Configuration

Table 5: Fault Logger I/O Ports (Continued)

1/0 Port Direction Active Description

clk_3wi | — Logibuilder Clock used to enable loading of the user log
signals from the user signal pool buffers.

resetn | Low System Reset

WISHBONE Slave Signal

WBS_CYC_| High Indicates a valid bus cycle is present on the bus.

WBS_STB_| | High Asserts an acknowledgment in response to

the assertion of the WISHBONE Master strobe.

WBS_WE | | — Level sensitive Write/Read control signal.

Low - Read operation, High - Write operation

WBS_ADR_| — 32-bit wide address used to select a specific register

WBS_DAT _| | — 8-bit data used to read a byte of data from a specific
register

WBS_CTIL_I | — Not used, always tied to O

WBS_BTE_| — Not used, always tied to O

WBS_LOCK_| | — Not used, always tied to 0

WBS_SEL | | — Not used, always tied to O

WBS_DAT_O @) — 8-bit data used to read a byte of data from a specific
register

WBS_ACK_O (@) High Indicates the requested transfer is acknowledged.

WBS_ERR_O (0] — Indicates the address is incorrect

WBS_RTY_O (@) — Not used, always tied to 0

User Signal Pool Ports

usp_trigger_i | Low to High This input triggers storage of all signals to FLASH memory.

A transition from 0 to 1 constitutes a trigger

usp_db_busy i | High Dual-boot or ASC-boot busy signal

10 LatticeMico Fault Logger

Configuration

Table 5: Fault Logger I/O Ports (Continued)

1/0 Port Direction Active Description

usp_busy_o @) High This output indicates that the fault logger is currently
having its fault log contents being stored to FLASH. While
this busy signal is asserted, all fault log triggers will be
ignored.

usp_usrlog0_i | — User log signal byte 0. This port will only be used if
USR_LOG_CNT>=1.

usp_usrlogl_i | — User log signal byte 1. This port will only be used if
USR_LOG_CNT>=2.

usp_usrlog2_i | — User log signal byte 2. This port will only be used if
USR_LOG_CNT>=3.

usp_usrlog3_i | — User log signal byte 3. This port will only be used if
USR_LOG_CNT=4.

usp_timestamp_i — User-provided External Time Stamp (optional). Only
available for ECP5.

usp_recordreg_o O — The register value of the Fault Logger Record counter.
Only available for ECP5.

usp_memerr_o (0] High Indicates that the memory is full or contains invalid data.
This is the value of the FLTLGINTPTREG.FLASHFULL
register’s bit. Only available for Fault Logger SPI mode.

ASCVM Interface Ports

rdat0_data_i | — This is the RDAT data from ASCO. This port will be
connected to ASCVM output fl_asc0_data.

rdat0_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_ascO_valid.

rdatl_data i | — This is the RDAT data from ASCL1. This port will be
connected to ASCVM output fl_ascl_data. This port will
only be used if ASC1 is logged

rdatl_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_ascl_valid. This port will
only be used if ASC1 is logged

rdat2_data_i | — This is the RDAT data from ASC2. This port will be
connected to ASCVM output fl_asc2_data. This port will
only be used if ASC2 is logged

rdat2_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc2_valid. This port will
only be used if ASC2 is logged

rdat3_data_i | — This is the RDAT data from ASC3. This port will be
connected to ASCVM output fl_asc3_data. This port will
only be used if ASC3 is logged

LatticeMico Fault Logger 11

Configuration

Table 5: Fault Logger I/O Ports (Continued)

1/0 Port Direction Active Description

rdat3_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc3_valid. This port will
only be used if ASC3 is logged

rdat4_data_i | — This is the RDAT data from ASCA4. This port will be
connected to ASCVM output fl_asc4_data. This port will
only be used if ASC4 is logged

rdat4_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc4_valid. This port will
only be used if ASC4 is logged

rdats_data i | — This is the RDAT data from ASCS5. This port will be
connected to ASCVM output fl_asc5_data. This port will
only be used if ASC5 is logged

rdat5_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc5_valid. This port will
only be used if ASC5 is logged

rdat6_data_i | — This is the RDAT data from ASC6. This port will be
connected to ASCVM output fl_asc6_data. This port will
only be used if ASC6 is logged

rdat6_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc6_valid. This port will
only be used if ASC6 is logged

rdat7_data_i | — This is the RDAT data from ASC7. This port will be
connected to ASCVM output fl_asc7_data. This port will
only be used if ASC7 is logged

rdat7_valid_i | High This is the RDAT valid bit for the data. This port will be
connected to ASCVM output fl_asc7_valid. This port will
only be used if ASC7 is logged

Other signals

fl_irg_o (0] High Interrupt from fault logger IP to LatticeMico8
microcontroller. This signal will go high when the fault
logger has received a fault log trigger. This interrupt is
sticky (and will stay high until the interrupt is cleared by the
LatticeMico8 microcontroller)

clk_logibuilder | — The rising edge of this 250 kHz clock allows the user log
and signals to be loaded into the user signal pool buffers.
This signal should be connected automatically to the
ASCVM's Logibuilder clock output.

SPI Flash Interface (Following Ports are for ECP5 or FPGAs without harden EFB)
SPI Flash Interface
flash_mosi (@) — External signal, connected to SPI Flash Data IN

flash_miso | — External signal, connected to SPI Flash Data OUT

12 LatticeMico Fault Logger

Configuration

Table 5: Fault Logger I/O Ports (Continued)

1/0 Port Direction
flash_clk (@)
flash_mcsn @)

Fault Log SPI Interface
faultlog_clk_oe |
faultlog_clk_o |
faultlog_clk_i 0
faultlog_mosi_oe |
faultlog_mosi_o |
faultlog_mosi_i @)
faultlog_miso_oe |
faultlog_miso_o |
faultlog_miso_i 0

faultlog_mcsn_oe |

faulutlog_mscn_o |

External SPI Master Interface

extspi_mosi |
extspi_miso (@)
extspi_clk |
extspi_mcsn (0]

Miscellaneous Signals
extspi_req |

extspi_grant (0]

Active

Description

External signal, connected to SPI Flash Clock. When using
configuration flash, this serves as an output node to
USERMCLK macro.

External signal, connected to SPI Flash Data Chip Select

Connect to the Soft EFB’s spi_clk_oe output
Connect to the Soft EFB’s spi_clk_o output
Connect to the Soft EFB’s spi_clk_i output
Connect to the Soft EFB’s mosi_oe output
Connect to the Soft EFB’s mosi_o output
Connect to the Soft EFB’s mosi_i output
Connect to the Soft EFB’s miso_oe output
Connect to the Soft EFB’s miso_o output
Connect to the Soft EFB’s miso_i output

Connect to the Soft EFB’s mscn_oe output. mscn_oe/
mscn_o pairs are 8-bit buses from the Soft EFB. By
default, the mcsn_oe[0]/mcsn_o[0] pair is connected to the
faultlog_mcsn_oe/faultlog_mcsn_o pair. If the user
chooses chip select, Platform Designer selects one of the
eight bits from the mcsn_oe/mcsn_o pairs to connect to the
faultlog_mcsn_oe/faultiog_mcsn_o pair, based on the
value of the FAULTLOGGER_SPI_CHIP_SELECT
parameter.

Connect to the Soft EFB’s mscn_o output

Connect to the external SPI Master’s MOSI output
Connect to the external SPI Master’'s MISO output
Connect to the external SPI Master’'s SCLK output

Connect to the external SPI Master’'s CSN output

Request input from the external SPI Master

Grant output signal from the SPI Arbitrator

LatticeMico Fault Logger

13

Register Descriptions

Register Descriptions

The LatticeMico Fault Logger WISHBONE module has a register map to allow
the service of the hardened functions through the WISHBONE bus interface
read/write operations. Table 6 through Table 8 describe the register map of

the Fault Logger module.

Table 6: WISHBONE Addressable Registers for Fault Logger Module

Register Name

Register Function

Address

Access

CONTENT Holds the information of the Fault Log 0x00 - 0x59 Read
IRQ Interrupt Request Register 0x60 Read/Write
SPI_RD_CMD Holds the opcode for SPI Flash Read (READ) 0x61 Read
SPI_WR_CMD Holds the opcode for SPI Flash Write (PP) 0x62 Read
SPI_WREN_CMD Holds the opcode for SPI Flash Write Enable (WREN) 0x63 Read
SPI_WRDI_CMD Holds the opcode for SPI Flash Write Disable (WRDI) 0x64 Read
SPI_RDSR_CMD Holds the opcode for SPI Flash Read Status (RDSR) 0x65 Read
SPI_WRSR_CMD Holds the opcode for SPI Flash Write Status (WRSR) 0x66 Read
SPI_CHP_SEL Holds the chip select line of the SPI Flash 0x67 Read
LOG_CNT Indicates data capacity (in bytes) of the fault log flash 0x70 - 0x73 Read/Write
SPISTARTADDR Indicates Start address for the Flash storage space 0x74-0x77 Read/Write
FLSPIARBREG Indicates Fault Logger SPI Arbitrator ownership 0x78 Read/Write
SPIBRREG Indicates the value of the FAULTLOGGER_SPIBR 0x79 Read/Write
parameter
FLRECCNTREG Indicates Fault log Record Count. 0x7S-0x7B Read/Write
Table 7 and Table 8 provide details about each register in the LatticeMico
Fault Logger.
Fault Log Content Register Definition —
The WISHBONE host has Read-Only access to these registers. The fault log
actual length of the fault log will vary, but the MachXO2/Platform Manager 2
can use up to 0x45 (dec 69). Addresses 0x46-0x59 are reserved for future
expansion of the fault log. For details on the byte per byte contents of the fault
log contents, please see the “Fault Log Map” on page 4.
14 LatticeMico Fault Logger

Register Descriptions

Interrupt Request Register Definition —

IRQ

The WISHBONE host has Read and Write access to these registers.

Table 7: CHx_INFO Register Bit Definition

Bit Field Description Access
0 IRQ Interrupt Bit for Fault Log event Read
1 IRQCLR Interrupt Clear Bit for Fault Log event Read/Write
2 IRQMSK Interrupt output mask. Asserted low. If this bit is 0, output fl_irg_o will Read/Write
remain low, even when the interrupt bit (FLTLGINTPTREG.IRQ) is high.
3 FLASHFUL Indicate that the flash is full or contains invalid data Read/Write
L
IRQ2 Interrupt Bit for External SPI master event. This bit is set when the External Read

SP| Master has completed its event.
IRQCLR2 Interrupt Clear Bit for External SPI Master event. Read/Write

74 RSVD Reserved Bit Read/Write

SPI Flash Command Register Definition

SPI Flash Command Registers are 8-bit registers, each register holds a
specific SPI Flash command and correlates to a corresponding Verilog
parameter. The WISHBONE host has Read-Only access to these registers.

Table 8: SPI Flash Command Register Definition

Register Name Corresponding Verilog Parameter Address Access
SPI_RD_CMD FAULTLOGGER_SPIFLASH_READ_CMD 0x61 Read
SPI_WR_CMD FAULTLOGGER_SPIFLASH_WRITE_CMD 0x62 Read
SPI_WREN_CMD FAULTLOGGER_SPIFLASH_WREN_CMD 0x63 Read
SPI_WRDI_CMD FAULTLOGGER_SPIFLASH_WRDI_CMD 0x64 Read
SPI_RDSR_CMD FAULTLOGGER_SPIFLASH_RDSR_CMD 0x65 Read
SPI_WRSR_CMD FAULTLOGGER_SPIFLASH_WRSR_CMD 0x66 Read

LatticeMico Fault Logger 15

Register Descriptions

SPI Flash Chip Select Register
Definition - SPI._ CHP_SEL

SPI_CHP_CMD is an 8-bit register that specifies which chip select line
(LatticeMico EFB/SoftEFB SPI Master) is connected to the fault logging SPI
flash. This register correlates to the Verilog parameter
FAULTLOGGER_SPI_CHIP_SELECT. The WISHBONE host has Read-Only
access to these registers.

Fault Log Data Capacity Register
Definition — LOG_CNT

LOG_CNT is a 32-bit registers that indicates data capacity (in bytes) of the
fault log FLASH. This field is context dependent: it can show the max storable
data in either the UFM or external SPI FLASH. This register correlates to
Verilog parameter FAULTLOGGER_LOG_CNT. The WISHBONE host has
Read and Write access to this register.

SPI Flash Fault Log Starting Address
Register Definition - SPI_START_ADDR

SPI_START_ADDR is a 32-bit register that indicates the start address (in
bytes) of the FLASH storage space. This register correlates to the Verilog
parameter FAULTLOGGER_SPIFLASH_STAADDR. The WISHBONE host
has Read and Write access to this register. This parameter is only valid for
ECPS5 devices.

Fault Log SPI Arbitrator Ownership
Register Definition - FL_SPI_ ARB_REG

FL_SPI_ARB_REG is an 8-bit register that indicates ownership of the Fault

Logger arbitrator. The WISHBONE host has Read and Write access to this

register. The following table describes legal patterns of the Fault Logger SPI
arbitrator.

Table 9: Fault Logger Ownership Legal Pattern

Ownership Pattern Description

Default 0x00 Default value of the arbitrator

MICO 0x03 Indicates that Mico owns the arbitrator
External SPI master 0x05 Indicates that the external SPI master owns

the arbitrator

16

LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

Soft-EFB SPI Baud Rate Register
Definition - SPI BR_REG

LOG_CNT is an 8-bit register that indicates the Soft-EFB SPI's desired baud
rate. This register correlates to the Verilog parameter
FAULTLOGGER_SPIBR. The WISHBONE host has Read and Write access
to this register.

Fault Log Record Counter Register
Definition - FL_ REC_CNT_REG

LOG_CNT is a 16-bit register that allows the WISHBONE host to store the
amount of Fault Log entries in SPI FLASH. The WISHBONE host has Read
and Write access to this register.

LatticeMico8 Microcontroller Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico Fault Logger component.

Device Driver

The Fault Logger device driver interacts directly with the Fault Logger
instance. This section describes the limitations, type definitions, structure, and
functions of the Fault Logger device driver.

Type Definitions

This section describes the type definitions for the Fault Logger device context
structure. This structure, shown in Figure 2, contains the Fault Logger
component instance-specific information and is dynamically generated in the
DDsStructs.h header file. This information is largely filled in by the managed
build process by extracting the Fault Logger component-specific information
from the platform specification file. As part of the managed build process,
designers can choose to control the size of the generated structure, and
hence the software executable, by selectively enabling some of the elements
in this structure via C preprocessor macro definitions. These C preprocessor
macro definitions are explained later in this document. You should not
manipulate the members directly, because this structure is for exclusive use
by the device driver. Table 10 describes the parameters of the Fault Logger
device context structure shown in Figure 2.

LatticeMico Fault Logger

17

LatticeMico8 Microcontroller Software Support

Device Context Structure
Figure 2 shows the Fault Logger device context structure.

Figure 2: Fault Logger Device Context Structure

struct st_MicoFLCtx_t {
const char * name;
size_t base;
unsigned char intrLevel;
unsigned char mem_mode;
unsigned char fl_spibr;
unsigned long flash_start_addr;
unsigned long curr_addr;
unsigned long max_addr;

unsigned int record_cnt;
unsigned long last_empty_addr;
void * p_efb;

void * p_sefb;

} MicoFLCtx_t;

Table 10 describes the Fault Logger device context parameters.

Table 10: Fault Logger Device Context Parameters

Parameter Data Type Description

name const char* Fault Logger instance name (entered in MSB)

base size_t MSB-assigned base address for this instance

intrLevel unsigned char Processor interrupt line to which this instance is connected

mem_mode unsigned char This value specifies the current Flash Memory Mode (UFM/SPI Flash)
fl_spibr unsigned char This value specifies the expected Soft-EFB SPI baud rate
flash_start_addr unsigned long This value specifies the start address for fault log storage

curr_addr unsigned long This value specifies the current Flash Memory Address

max_addr unsigned long This value specifies the maximum flash storage

record_cnt unsigned int This value specifies the number of sets of log data contained in SPI Flash
flash_start_addr unsigned long This value specifies the last empty address before the external SPI master

accesses SPI Flash
p_efb void* This value points to the EFB instance used by Fault Logger

p_sefb void* This value points to the Soft-EFB instance used by Fault Logger

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: ‘'object-
like' and ‘function-like".

18 LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1.

Manually adding the -D<macro name> option to the compiler's command
line in the application's '‘Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the application's 'Build Properties' GUI.

Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
‘check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use option 1 or 2.

__MICOFL_NO_SPI_INIT_VALIDATION__

This preprocessor macro definition disables code and data structures
within the device driver that disable the LatticeMico8 EFB SPI module in
the software driver and application. In order words, LatticeMico8 assumes
the connected SPI Flash is NOT shared with other SPI Master, and does
not check whether the SPI is occupied by other SPI Master or not during
the power cycle. It is not defined by default.

__MICOFL_USER_IRQ_HANDLER__

This preprocessor macro definition disables code and data structures
within the device driver that allow the user to define the custom interrupt
routine, the default routine will be disabled. It is not defined by default.

Table 11: C Preprocessor Function-like Macros For Fault Logger

Macro Name

MICO_FL_READ_CONTENT

MICO_FL_READ_IRQ

MICO_FL_WRITE_IRQ

MICO_FL_READ_SPI_RD_CMD

MICO_FL_READ_SPI_WR_CMD

Second Argument to Macro / Description

Third Argument to Macro (if

exist.

The 8-bit value reads from the This macro reads a character from

Fault Log content / address offset the Fault Log content register with a
specific address offset

The 8-bit value reads from the This macro reads a character from
Interrupt register. the Interrupt register.
The 8-bit value reads from the This macro reads a character to the

Interrupt register. Interrupt register.

The 8-bit value reads from the SPI This macro reads a character to the
Flash Read Command register. SPI Flash Read Command register

The 8-bit value reads from the SPI This macro reads a character to the
Flash Write Command register. SPI Flash Write Command register

LatticeMico Fault Logger

19

LatticeMico8 Microcontroller Software Support

Table 11: C Preprocessor Function-like Macros For Fault Logger (Continued)

Macro Name

MICO_FL_READ_SPI_WREN_CMD

MICO_FL_READ_SPI_WRDI_CMD

MICO_FL_READ_SPI_RDSR_CMD

MICO_FL_READ_SPI_WRSR_CMD

MICO_FL_READ_SPI_CHP_SEL

MICO_FL_READ_LOG_CNT_OFFSET

MICO_FL_WRITE_LOG_CNT_OFFSET

MICO_FL_READ_SPI_START_ADDR

MICO_FL_WRITE_SPI_START_ADDR

MICO_FL_READ_SPI_ARB_REG

MICO_FL_WRITE_SPI_ARB_REG

MICO_FL_READ_SPI_BR_REG

MICO_FL_WRITE_SPI_BR_REG

MICO_FL_READ_RECCNT_REG

MICO_FL_WRITE_RECCNT_REG

Second Argument to Macro /
Third Argument to Macro (if
exist.

The 8-bit value reads from the SPI
Flash Write Enable Command
register.

The 8-bit value reads from the SPI
Flash Write Disable Command
register.

The 8-bit value reads from the SPI
Flash Read Status Command
register.

The 8-bit value reads from the SPI
Flash Write Status Command
register.

The 8-bit value reads from the SPI
Flash Chip Select register.

The 8-bit value reads from Fault
Log Data Capacity register /
address offset

The 8-bit value writes to Fault Log
Data Capacity register / address
offset

The 8-bit value reads from SPI
Starting Address register

The 8-bit value writes to SPI
Starting Address register

The 8-bit value reads from Fault
Log SPI Arbitrator register

The 8-bit value writes to Fault Log
SPI Arbitrator register

The 8-bit value reads from SPI
Baud Rate register

The 8-bit value writes to SPI Baud
Rate register

The 8-bit value reads from Fault
Log Record Counter register

The 8-bit value writes to Fault Log
Record Counter register

Note: The first argument to the macro is the Fault Logger address.

__MICOFL_USE_SOFT_EFB__

Description

This macro reads a character to the
SPI Flash Write Enable Command
register

This macro reads a character to the
SPI Flash Write Disable Command
register

This macro reads a character to the
SPI Flash Read Status Command
register

This macro reads a character to the
SPI Flash Write Status Command
register

This macro reads a character to the
SPI Flash Chip Select register

This macro reads a character from
the Fault Log Data Capacity
register with a specific address
offset

This macro writes a character to the
Fault Log Data Capacity register
with a specific address offset

This macro reads a character from
the SPI Start Address register

This macro writes a character to the
SPI Start Address register

This macro reads a character from
the Fault Log SPI Arbitrator register

This macro writes a character to the
Fault Log SPI Arbitrator register

This macro reads a character from
the SPI Baud Rate register

This macro writes a character to the
SPI Baud Rate register

This macro reads a character from
the Fault Log Record Counter
register

This macro writes a character to the
Fault Log Record Counter register

20

LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

This preprocessor macro definition indicates whether Fault Logger is
using Soft-EFB. It is not defined by default.

Functions

This section describes the implemented device-driver-specific functions.

MicoFLInit Function
void MicoFLInit (MicoFLCtx t *ctx);

This is the Fault Logger initialization function.

Table 12 describes the parameter in the MicoFLInit function syntax

Table 12: MicoFLInit Function Parameter

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

MicoFLRegisterEFB Function
void MicoFLRegisterEFB (MicoFLCtx_t *ctx,
MicoEFBCtx_t *p_efb);

This function registers an EFB instance into the Fault Logger instance. This
EFB will be used for the communication between Fault Logger control and the
UFM or external SPI Flash.

Table 13 describes the parameters in the MicoFLRegisterEFB function
syntax.

Table 13: MicoFLRegisterEFB Function Parameters

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx_t structure representing a valid
Fault Logger instance.

MicoEFBCtx_t Pointer to a valid MicoEFBCtx_t structure representing a valid
EFB instance.

MicoFL_UFMValidation Function
void MicoFL_UFMvalidation(MicoFLCtx_t *ctx);

This function validate whether the User Flash memory (UFM) contains a valid
Fault Log and check for the next available empty slot for the next entry. This
function should be called only once during the system power-up. Error code
will return when the validation process is failed.

LatticeMico Fault Logger

21

LatticeMico8 Microcontroller Software Support

Table 14 describes the parameter in the MicoFL_UFMValidation function
syntax.

Table 14: MicoFL_UFMValidation Function Parameter

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

Table 15 describes the values returned by the MicoFL_UFMValidation
Function.

Table 15: Values Returned by the MicoFL_UFMValidation Function

Parameter Description

0 Valid log file

-1 Invalid log file

-2 Unexpected return

MicoFL_SPIValidation Function
void MicoFL_SPIValidation(MicoFLCtx_t *ctx);

This function validate whether the external SPI memory contains a valid Fault
Log and check for the next available empty slot for the next entry. This
function should be called only once during the system power-up. Error code
will return when the validation process is failed.

Table 16 describes the parameter in the MicoFL_SPIValidation function
syntax.

Table 16: MicoFL_SPIValidation Function Parameter

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

Table 17 describes the values returned by the MicoFL_SPIValidation
Function.

Table 17: Values Returned by the MicoFL_SPIValidation Function

Parameter Description

0 Valid log file

-1 Invalid log file

-2 Unexpected return

22

LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

MicoFL_WriteUFM Function
void MicoFL _WriteUFM (MicoFLCtx_t *ctx);

This function record the fault logger snapshot to the User Flash Memory
(UFM). Error code will return when the write process is failed.

Table 18 describes the parameter in the MicoFL_WriteUFM function syntax.

Table 18: MicoFL_WriteUFM Function Parameter
Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

Table 19 describes the values returned by the MicoFL_WriteUFM Function.

Table 19: Values Returned by the MicoFL_WriteUFM Function

Parameter Description
0 Valid log file
-1 Write to an invalid memory (Not enough space)

MicoFL_WriteSPI Function
void MicoFL _WriteSPlI (MicoFLCtx_t *ctx);

This function record the fault logger snapshot to the external SPI Flash
memory. Error code will return when the write process is failed.

Table 20 describes the parameter in the MicoFL_WriteSPI function syntax.

Table 20: MicoFL_WriteSPI Function Parameter
Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

Table 21 describes the values returned by the MicoFL_WriteSPI Function.

Table 21: Values Returned by the MicoFL_WriteSPI Function

Parameter Description
0 Write successfully
-1 Write to an invalid memory (not enough space),

MicoFLISR Function
void MicoFLISR (MicoFLCtx_t *ctx);

LatticeMico Fault Logger 23

LatticeMico8 Microcontroller Software Support

This function is the Fault Logger Interrupt handler. Each Fault Logger instance
has it's own default interrupt handler implementation. If the developer wishes
to use their own interrupt handler, they must define

__ MICOFL_USER_IRQ_HANDLER___ preprocessor.

Table 22 describes the values returned by the MicoFLISR Function.

Table 22: MicoFL_WriteUFM Function Parameter

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

MicoFLRegisterSEFB Function
void MicoFLRegisterSEFB (MicoFLCtx t *ctx,
MicoEFBCtx_t *p_sefb);

This function registers a Soft-EFB instance into the Fault Logger instance.
This Soft-EFB handles the communication between Fault Logger control and
the external SPI Flash.

Table 23 describes the parameters in the MicoFLRegisterSEFB function
syntax.

Table 23: MicoFLRegisterSEFB Function Parameters

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

MicoSEFBCtx_t Pointer to a valid MicoSEFBCtx_t structure representing a valid
Soft-EFB instance.

MicoFL_Soft SPIValidation Function
void MicoFL_Soft_SPIValidation (MicoFLCtx_t *ctx,
unsigned char power_on);

This function validates whether the external SPI memory contains a valid
Fault Log and checks for the next available empty slot for the next entry. This
function is called once during the system power-up and is called again if the
Memory Error bit is flagged. A failed validation process will return an error
code.

24

LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

Table 24 describes the parameters in the MicoFL_Soft_SPIValidation function
syntax.

Table 24: MicoFL_Soft_SPIValidation Function Parameters

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

unsigned char Indicates whether this function was called during power-up. A
value of 0 indicates that it was not called.

Table 25 describes the values returned by the MicoFL_Soft_SPIValidation
function.

Table 25: Values returned by the MicoFL_Soft_SPIValidation Function

Parameter Description

0 Valid log file

-1 Invalid log file

-2 Unexpected return

MicoFL_WriteSoftSPI Function
void MicoFL_WriteSoftSPl (MicoFLCtx_t *ctx);

This function record the fault logger snapshot to the external SPI Flash
memory. Error code will return when the write process is failed.

Table 26 describes the parameter in the MicoFL_WriteSoftSPI function
syntax.

Table 26: MicoFL_WriteSoftSPI Function Parameter

Parameter Description

MicoFLCtx_t Pointer to a valid MicoFLCtx _t structure representing a valid
Fault Logger instance.

Table 27 describes the values returned by the MicoFL_WriteSoftSPI function.

Table 27: Values returned by the MicoFL_WriteSoftSPI function

Parameter Description
0 Write was successful
-1 Wrote to invalid memory (not enough space)

LatticeMico Fault Logger

25

LatticeMico8 Microcontroller Software Support

Software Usage Example

This section provides an example of using the Fault Logger. The example is
shown in Figure 3 and assumes the presence of a Fault Logger component
named “faultlogger”, and a EFB component named “efb”.

Figure 3: Fault Logger Software Example

#include
#include
#include
#include

"MicoUtils.h"
"DDStructs.h"
"MicoEFB.h"
"MicoFL.h"

int main(void){
MicoFLCtx_t *fl = &fFaultlogger_faultlogger;
MicoEFBCtx_t *efb = &efb_efb;

size_t fl_address = (size_t)(fl->base);

// Register the EFB instance into Fault Logger
MicoFLRegisterEFB(fl, efb);

// Validate the Fault Logger Flash Memory

MicoFL_

SP1vValidation(fl);

#ifdef __ MICO_NO_INTERRUPTS_

do{

MICO_FL_READ_IRQ(Ffl_address, status);
if (status & MICO_FL_IRQ_TRI){
MicoFL_WriteSPI1(fl);

}

Iwhile(1);

#else

MICO_FL_WRITE_IRQ(FI_address ,MICO_FL_IRQ EN);

#endi f

return(0);

26

LatticeMico Fault Logger

LatticeMico8 Microcontroller Software Support

Revision History

Component Version
1.0
11

1.2

Description
Initial release.

Fixed Fault Logger masked-out issue that occurred when
Dual-Boot is busy.

Added section “ASC Fault Log Record Memory Map” on
page 5.

Added ECPS5 support with new scan, record counter, Fault
Log SPI arbitrator, and external timestamp functions.

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of
Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their

respective owners.

LatticeMico Fault Logger

27

http://www.latticesemi.com/legal

LatticeMico8 Microcontroller Software Support

28 LatticeMico Fault Logger

	LatticeMico Fault Logger
	Version
	Features
	Functional Description
	Fault Log Triggering
	User Log Storage
	Timestamp Function
	Fault Log Mapping Table
	ASC Fault Log Record Memory Map

	Configuration
	HDL Parameters
	I/O Ports

	Register Descriptions
	Fault Log Content Register Definition – CONTENT
	Interrupt Request Register Definition – IRQ
	SPI Flash Command Register Definition
	SPI Flash Chip Select Register Definition - SPI_CHP_SEL
	Fault Log Data Capacity Register Definition – LOG_CNT
	SPI Flash Fault Log Starting Address Register Definition - SPI_START_ADDR
	Fault Log SPI Arbitrator Ownership Register Definition - FL_SPI_ARB_REG
	Soft-EFB SPI Baud Rate Register Definition - SPI_BR_REG
	Fault Log Record Counter Register Definition - FL_REC_CNT_REG

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example

