= LATTICE

Version

Features

LatticeMico VID

LatticeMico Voltage ID (VID) is a soft IP that allows users to provide target
voltage set points of the Close Loop Trim (CLT) circuitry on a Lattice Analog
Sense and Control (ASC) device. Although the voltage set points of the CLT
can be defined through voltage profiles during the design stage, the VID IP
provides a mean to update the target set points on the fly while the system is
in operation.

The LatticeMico VID IP provides the voltage set points as starting points for
individual CLT channels. It does not monitor the voltage trimming / margining
process thus cannot be considered as part of the close-loop process. For
more information details of the CLT functionality and process, refer to the
Platform Designer documentation in Diamond online help.

This document describes the 1.1 version of the LatticeMico VID.

The LatticeMico VID IP must be used together with the EFB (Embedded
Functional Block) of the Platform Manager 2 device. The voltage set points of
the CLT channels are updated by the VID IP through the primary I12C port of
the EFB.

WISHBONE Master or WISHBONE Slave mode support.
WISHBONE interface with 8-bit data bus.

Individual control for each CLT channel.

Copyright © May 2014 Lattice Semiconductor Corporation.

Functional Description

Toggling of VID enable signal activates the VID request for the specific
channel.

Support voltage look-up table from 8 to 64 entries per CLT channel.
VID requests are processed in round-robin algorithm without priority.
Maximum of 16 CLT channels can be supported.

The voltage set point for the CLT channels is 13-bit binary value.
Handles internal I°C resources sharing through MUTEX.

External I°C bus collision and arbitration lost detection.
Enable/disable the 1°C Write Protect pin of the ASC devices.

Functional Description

This VID IP can be used as a WISHBONE Master or a WISHBONE Slave.
When in the WISHBONE Master mode, the IP is self-contained and does not
require a microcontroller to function. When in the WISHBONE Slave mode, it
requires LatticeMico soft microcontroller to be used together to complete the
function. Figure 1 and Figure 2 give an overview of the IP applications based
on the mode it is selected.

Figure 1: VID WISHBONE Master Mode Block Diagram

PlatformManager2
,_ _______________ -
X02 |
| [
| VID WBM | ASCO
[‘ @
| 2 o &
chx_sel | @ 2 o F
h_ena[x}- | N VID Control % r 3 | J g ASct
ch_ena[x ontro Z| f—s o
- = S 5| EFB (=] | ®
| = = g @
| é’ @ = | @
| = \ i = &
\
|
| | .
| Look Up | ASC7
| Table o . o
| | &
| | g
|
\
|
‘ External 12C
\ - K g device

2 LatticeMico VID

Functional Description

Figure 2: VID WISHBONE Slave Mode Block Diagram

chx_sel

ch_ena[x]

PlatformManager2
fffffffffffffffff |
VID WBS X0z ! Asco
RE
2~ g 5|18
@ @ a| | Q ASCT
VID Contral | & S |EFB |= \
2 £ Sl | 5
= @ = @
s = \ 8
\
\
| [ascr
) - 2
Look Up [4 =
| I3
]
|
L e Mico8 [
\ Exteral 12C
‘ device
_________________ J

VID Request Triggering Events

A VID event is triggered by the toggling of the channel enable signals
(ch_ena|x]). The polarity of the channel enable signals is set by the users
during the IP configuration. Depending on the polarity of the channel enable
signals, either the rising edge or the falling edge signals a VID request. This
edge at the same time registers the channel select signals (chx_sel). This
tells the VID IP that voltage set point register of channel x needs to be
updated with the voltage value pointed by the chx_sel signals. The
identification of channel x is the ASC slave address and the CLT channel
number. Both are pre-defined during the design stage by the user.

Once a VID request is captured, it is not cleared unless successfully
processed. When a particular channel’s VID request is not being processed,
users can over-write the current request with a new request.

Voltage Look Up Tables

Each channel has a table that stores a set of voltage set point values. The
table size is between eight entries to 64 entries. A common table can be
shared among multiple channels. The IP can have one table to be shared by
all 16 channels, or maximum of 16 tables, one for each channel. The voltage
set point values and the tables are defined during the design stage through
the Platform Designer GUI in the Diamond software.

LatticeMico VID

Functional Description

WISHBONE Master Mode

When in WISHBONE Master mode, the sequence of processing a VID
request is controlled by the WISHBONE Master state machine. The state
machine will not start working unless there is a VID request in place. Before
initiating a transfer on the 1°C bus, the state machine checks for the MUTEX
possession and the 12C bus status. The MUTEX is a soft IP that provides the
arbitration control among resources on XO2 side that need to use the 12C bus.
The WISHBONE master has to own the MUTEX before it can process the VID
request. Then the checking of I°C status register allows the detection of busy
on the external 1°C bus. Only when both conditions are cleared, the state
machine will start the transfer on the 12C bus and disable the I°C Write Protect

pin.

The state machine also checks the arbitration lost during the 1°C WRITE
operation. This is done through the checking of the ARBL bit of the EFB’s 12C
status register. Once the arbitration lost is detected, the master enables the
I°C Write Protect pin, and waits for the 12C bus to be free again. Then it
enables the I°C Write Protect pin and re-transmits the data again. When the
VID request is successfully processed, meaning the read back data matching
sending data, the request bit is cleared. Otherwise, the request is kept and is
processed again in a round-robin fashion.

A normal I1°C bus sequence for a VID request is shown in Figure 3. The
required number of I°C clock to complete a VID request is at least 66. The
sequence could be much longer if arbitration lost is detected during the 1°C
Write operations.

Figure 3: 12C Bus Sequence for VID Request

‘S ‘ Slave Addr + Write

|A | VID Instruction |A }ﬁ

1
>| Set Point data [7:0]

[A [{4'b0000, Set Point data[11:8]]A | 2>

%lSr |

Slave Address+Read |A | Set Point data [7:0] | [{4'b0000, Set Point data[11:8]|NA]P |

WISHBONE Slave Mode

When in WISHBONE Slave mode, the VID IP issues an interrupt request to
inform LatticeMico that a VID request is in place. LatticeMico has to enable
the interrupt mask register in order to see the status change on the interrupt
signal. When the microcontroller decides to process the VID request, it gets
the necessary information first from the VID IP by accessing the register set
through WISHBONE bus. A typical sequence of the processing the VID
request in Slave mode is listed for reference. Refers to the VID Slave Register
Map section for the definition of each register.

1. Enable interrupt mask bit (IRQENR register) to allow the interrupt status
be seen on the interrupt pin.

LatticeMico VID

Functional Description

2. Check if Dual Boot is busy by checking the STATUS register bit 4. Wait
until Dual Boot is not busy before proceeding to the following steps.

3. Find out which channels have the VID requests by read the REQ_LOW
and REQ_HIGH registers

4. Decide to process a particular channel’s request first by writing to the
IN_PROC_LOW or IN_PROC_HIGH registers. Setting a “1” in the register
bit will prevent the new request on the same channel to over-write the
current request. Ideally there should be one active IN_PROC bit at a time.

5. Gather the identification of the CLT channel by reading the CHx_INFO
register, where x corresponds to the position of register bit in the
IN_PROC register. This provides the channel ID and the ASC ID
information to LatticeMico.

6. Getthe ASC slave address by reading the SLAVE_ADDR register, which
provides the ASC slave address of the channel that LatticeMico is going
to process

7. Get the data that needs to be sent to the ASC CLT voltage set point
register. This is stored in the DATA_LOW and DATA_HIGH registers.

8. When all the necessary data is available for the VID request, LatticeMico
writes to the STATUS register to disable the I2C Write Protect so that the
ASC devices can accept data.

9. LatticeMico can enable I°C Write Protect (write to the STATUS register) at
any time to stop the ASC devices from receiving data when arbitration lost
is detected, or when 1C Write is completed.

10. LatticeMico writes to STATUS register (bits 1 to 3) when VID request is
completed. STATUS bits are updated depending on whether the request
is processed successfully or not.

11. Write to the IN_PROC register to clear the bit, indicating the request is
served.

Figure 4 is a state diagram of a 5 VID channel request.

LatticeMico EFB and LatticeMico Mutex
Support

The LatticeMico EFB will be used for the interface between VID control and
the ASC devices. The LatticeMico EFB I°C always acts as 1°C Master, and
ASC I1°C always acts as slave and supports 7-bit addressing only. Users need
to avoid setting the ASC 12C slave address to be the same as the LatticeMico
EFB I°C slave address.

Both VID WBM and LatticeMico 8 will poll the bits of the EFB primary 1°C
Status Register to check the status on the 1°C bus. WBM will issue a START
when the Busy bit is not asserted. When the START is issued, WBM monitors
the ARBL bit to see if it wins the arbitration. If an arbitration loss is
encountered, WBM will monitor the BUSY status bit again to wait for the 12C
bus to free up.

LatticeMico VID

Configuration

Figure 4. State Diagram of 5 VID channel Request

reset

Ich4 or
i2c_nack
or vid_done

ch0

Ich0 or i2¢c_nack
or vid_done

ch4
ch1

lch3 or
i2c_nack
or vid_done

Ich1 or i2c_nack
or vid_done

ch2

Ich2 or
i2c_nack

ch3 or vid_done

In the case of competing 12C resources with background programming, WBM
will write and read the MUTEX component to determine if the 12C resources is
occupied. Detail of arbitrating between VID and internal JTAG-I2C route will
base on the LatticeMico Mutex documentation.

Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the 1/0O ports that
user can use to configure and operate the LatticeMico VID.

6 LatticeMico VID

Configuration

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico VID
through the Mico System Builder (MSB) interface. For more information refer
to the Platform Designer documentation in Diamond online help.

Table 1: VID Ul Parameters

Dialog Box Options

Instance Name

VID Mode Selection

Master Mode

Slave Mode

Number of VID channel

Base Address

EFB Slave Address

Mutex Enable

Mutex Slave Address

Channel Setting

VID Table Setting
Table ID

Initialization File

VID Channel Polarity

Positive Polarity

Negative Polarity

VID Channel Setting

Select Channel Width

Description

Specifies the name of the VID
instance.

Specifies the VID as master
mode.

Specifies the VID as slave mode.

Specifies the number of VID
channel.

Specifies the base address for
configuring the VID. The
minimum boundary alignment is
0x80.

Specifies the base address for
configuring the EFB. The
minimum boundary alignment is
0x80.

When selected, Mutex is
enabled.

Specifies the base address for
configuring the Mutex. The
minimum boundary alignment is
0x80.

Specifies the Table ID.

Specifies the Initialization table.

When selected, chx_ena is
positive edge triggered.

When selected, chx_ena is
negative edge triggered.

Channel select width.

Allowable Values

Alphanumeric and underscores

selected | not selected

selected | not selected

1-16

0X80000000—-0XFFFFFFFF

0X80000000-0XFFFFFFFF

selected | not selected

0X80000000-0XFFFFFFFF

0-15

<user_defined>.mem

selected | not selected

selected | not selected

Default Value

vid

not selected

selected

1

0X80000000

0X80000000

not selected

0X80000000

none

selected

not selected

LatticeMico VID

Configuration

Table 1: VID Ul Parameters (Continued)

Dialog Box Options Description Allowable Values Default Value
ASC ID Specifies the ASD ID. 0-7 0
CLT ID Specifies the CLT ID. 0-7 0

HDL Parameters

Table 2 lists the parameters that appear in the HDL.

Table 2: VID HDL Parameter

Parameter Name

LATTICE_FAMILY

Description

Define the device family for the IP

Allowable Values

MACHXO2 | LPTM2

VID CHANNELS Define the total number of VID channels 1to 16
WBM_VID_EN A value of 1 defines the LatticeMico VID as Master Mode 0] 1
WBS _VID _EN A value of 1 defines the LatticeMico VID as Slave Mode 0|1
WBM_VID_MUTEX_EN A value of 1 defines the Mutex is enabled 0|1
WBM_MUTEX_BASE_AD WISHBONE base address of MUTEX 32 bits
DR
WBM_EFB_BASE_ADDR WISHBONE base address of EFB 32 bits
VID Table (per CLT channel that are using the VID function)
VID TABLEX Define the VID table name ASCI file name
VID_TABLEx_ID Define the VID table IDs of the VID channel 0-15
VID_CHy_SEL_BITS Define the select bits range of the VID channel 3to6
VID CHy_POL A value of 1 defines the Polarity of Chx_ena signal 0|1

is positive edge triggered
VID_CHy_ASC Define the ASC ID of the VID channel Oto7
VID_CHy CLT Define the CLT ID of the VID channel within an ASC Oto7
WAIT_COUNT Number of wait state added between each VID process 0to 15
I°C slave address
ASCy_|2C_S_ADDR I°C slave addresses for ASC devices. 32 bits

Note 1: x=0-15,y=0-7

Note 2: Each VID table has a unique ID. This is to identify which channels are sharing the same VID table. The VID
Table ID always starts from 0. That means if there is one VID table then the VID Table ID=0. The channels that share
a VID table should always use the VID Table ID of the lowest channel that shares the table. Table 3 shows an
example of five VID channels (channels 0 to 4) that share three VID tables. Their IDs are shown in “VID Table ID”
column.

8 LatticeMico VID

Configuration

Table 4: VID 1/0O Ports
1/0 Port

System Clock and Reset

CLOCK

Table 3: Example of Five VID Channels That Share Three VID Tables

VID Table names Channel VID Table ID
vid_3v3 0 0
vid_3v3 1 0
abc_123 2 1
thrd_2v5 3 2
abc_123 4 1

If not using the Platform Designer GUI to configure the IP, users must do
design rule checking manually. Here is a list of design rules for reference.

1.

WISHBONE Master and WISHBONE Slave functions are mutually
exclusive. Their corresponding enable parameter cannot be turned on
(assigned 1'b1) or turned off (assigned 1'b0) at the same time.

Number of VID Channel cannot exceed 16.

Each VID table has a unique ID. This is to identify which channels are
sharing the same VID table. The VID Table ID always starts from 0. That
means if there is one VID table then the VID Table ID=0. The channels
that share a VID table should always use the VID Table ID of the lowest
channel that shares the table.

The number of select bits must correspond to the size of the VID table.
For example a channel with 4-bit select bits can support up to 16-entry
table.

When more than one channels share a table, make sure the VID Table ID
are the same, the number of select inputs are the same, and the table
name are the same.

VID Table ID must not skip number. For example if there are 3 channels,

then ID can be 0, 1, 2, or 0, 0, 1, etc. as long as the numbers starts from 0
and moves up sequentially without skipping, It cannot be, for example, 0,
1,4.

/O Ports

Table 4 describes the input and output ports of the LatticeMico VID.

Direction Active Description

— System Clock

LatticeMico VID

Configuration

Table 4: VID 1/0O Ports (Continued)

1/0 Port
RESETN
WISHBONE Master Signal

WBM_DAT _|

WBM_ACK_|

WBM_ERR_|
WBM_RTY_|

WBM_CYC_O

WBM_STB_O

WBM_WE_O

WBM_ADR_O
WBM_DAT_O

WBM_CTI_O
WBM_BTE_O
WBM_LOCK_O
WBM_SEL_O
WISHBONE Slave Signal
WBS_CYC_|
WBS_STB_|I

WBS_WE_|

WBS_ADR_|
WBS_DAT _|

WBS_CTI_I
WBS_BTE_|
WBS_LOCK_|

WBS_SEL |

Direction

o/lo o o o

Active

Low

High

High

High

High
High

Description

System Reset

8-bit data used to read a byte of data from a specific
register in the register

Transfer acknowledge signal asserted,

indicates the requested transfer is acknowledged.
Not used, always tied to O
Not used, always tied to 0

Indicates a valid bus cycle is present on the WISHBONE
bus.

Indicates the WISHBONE slave is the target

for the current transaction on the bus.

Level sensitive Write/Read control signal.

Low - Read operation, High - Write operation
32-bit wide address used to select a specific register

8-bit data used to read a byte of data from a specific
register

Not used, always tied to 0
Not used, always tied to O
Not used, always tied to O

Not used, always tied to O

Indicates a valid bus cycle is present on the bus.

Asserts an acknowledgment in response to
the assertion of the WISHBONE Master strobe.

Level sensitive Write/Read control signal.

Low - Read operation, High - Write operation
32-bit wide address used to select a specific register

8-bit data used to read a byte of data from a specific
register

Not used, always tied to O
Not used, always tied to 0
Not used, always tied to O

Not used, always tied to 0

10

LatticeMico VID

Register Descriptions

Table 4: VID 1/0O Ports (Continued)

1/0 Port

WBS_DAT_O

WBS_ACK_O
WBS_ERR_O
WBS_RTY_O
Other signals
CHx_SEL
CH_ENA
DB_BUSY
GPIO1
VID_IRQ_O

SLOW_CLOCK

Direction Active

O —
High

| High

| —

| High

0] High

(0] High

Register Descriptions

Description

8-bit data used to read a byte of data from a specific
register

Indicates the requested transfer is acknowledged.
Indicates the address is incorrect

Not used, always tied to 0

VID select signal for VID channel x (x = 0-15)
Each bit is a VID enable signal for VID channel
Dual-boot busy signal (VID WBM only)

Drive the ASC write protect pin

Interrupt request signal (VID WBS only)

Clock for counting the wait state between each VID
process.

The LatticeMico VID WISHBONE Slave module has a register map to allow
the service of the hardened functions through the WISHBONE bus interface
read/write operations. Table 5 through Table 9 describe the register map of

the VID WBS module.

Table 5: WISHBONE Addressable Registers for VID Module

Register Name
CHx_INFO

REQ LOW
REQ _HIGH
IN_PROC_LOW
IN_PROC_HIGH
SLAVE_ADDR
DATA_LOW
DATA_HIGH
STATUS
IRQENR

Register Function Address Access
Holds the info of ASC ID and CLT ID of channel x 0x0 - OxF Read
VID request holding register [7:0] 0x10 Read
VID request holding register [15:8] 0x11 Read

In Process status register [7:0] 0x12 Write

In Process status register [15:8] 0x13 Write
Current ASC I°C Slave Address 0x14 Read
VID data to be transmitted to ASC [7:0] 0x15 Read
VID data to be transmitted to ASC [15:8] 0x16 Read
Status of 1°C transfer ox17 Write
Interrupt Request Enable 0x18 Read/Write

LatticeMico VID

11

Register Descriptions

Table 6 through Table 9 provide details about each register in the LatticeMico
VID.

Channel Information Data Register
Definition - CHx_INFO

The WISHBONE host has Read-Only access to these registers.

Table 6: CHx_INFO Register Bit Definition

Bit Field Description

2:0 ASC ID Identify the ASCO to ASC7 Device

5:3 CLT ID Identify the one of the 8 CLT Channel in each ASC

7:6 RSVD Reserved Bit

Request Register Definition —
REQ LOW/REQ_ HIGH

REQ_LOW / REG_HIGH are 8-bit registers, which combined to hold the VID
channel request value. Each bit corresponding to a VID Channel, i.e. Bit 0
goes high means Channel 0 has triggered the request event. The
WISHBONE host has Read-Only access to these registers.

REQ_LOW register holds the VID Request of the lower 8-bit value [7:0].

REG_HIGH register holds the VID Request of the upper 8-bit value [15:8].

In Process Register Definition —
IN. PROC LOW/IN_PROC HIGH

IN_PROC_LOW /IN_PROC_HIGH are 8-bit registers, which combined to
hold the In Process status. Each bit corresponding to a VID Channel, i.e. Bit 0
goes high means Channel O is in process. The WISHBONE host has Write-
Only access to these registers.

IN_PROC_LOW register holds the In Process Register Status of the lower 8-
bit value [7:0].

IN_PROC_HIGH register holds the In Process Register Status of the upper 8-
bit value [15:8].

12

LatticeMico VID

Register Descriptions

|I2C Slave Address Register Definition —
SLAVE _ADDR

The WISHBONE host has Read-Only access to these registers.

Table 7: SLAVE_ADDR Register Bit Definition
Bit Field Description

5:0 ASCID Holding the 7-bits 12C Address

7:6 RSVD Reserved Bit

VID Data Register Definition —
DATA_LOW / DATA_HIGH

DATA_LOW / DATA HIGH are 8-bit registers, which combined to hold the
current data for transmitting to ASC device. The WISHBONE host has Read-
Only access to these registers.

DATA _LOW register holds the current VID DATA of the lower 8-bit value [7:0].

DATA _HIGH register holds the current VID DATA of the upper 4-bit value
[11:8].

The upper 4 bits value [15:12] of the register is default to 0

|I2C Status Register Definition — STATUS

The WISHBONE host has Read and Write access to these registers expect
bit 4 - DB_BUSY

Table 8: STATUS Register Bit Definition

Bit Field
0 GPIO1
1 DONE
2 FAIL
3 NACK

Description Access

To activate or deactivate the GPIOL1 bit Read/Write
1 — Activated, O - Deactivated

Completion of a successful VID request transfer Read/Write
1 - Completed, 0 - Incomplete

Incomplete VID request transfer Read/Write
1 — Incomplete, 0 - Completed

12C NACK is received Read/Write

1 — NACK received, 0 — ACK received

LatticeMico VID

13

LatticeMico8 Microprocessor Software Support

Table 8: STATUS Register Bit Definition (Continued)

Bit Field Description Access

4 DB_BUSY LatticeMico Dual Boot is busy Read

1 — Dual Boot is Busy, 0 — Dual Boot is Free

74 RSVD Reserved Bit N/A

Interrupt Enable Register Definition —
IRQENR

The WISHBONE host has Read and Write access to these registers.

Table 9: IRQENR Register Bit Definition
Bit Field Description
0 IRQEN VID Interrupt Enable

71 RSVD Reserved Bit

LatticeMico8 Microprocessor Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico VID component.

Device Driver

The VID device driver interacts directly with the VID instance. This section
describes the limitations, type definitions, structure, and functions of the VID
device driver.

Type Definitions

This section describes the type definitions for the VID device context
structure. This structure, shown in Figure 5, contains the VID component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the VID component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions

14 LatticeMico VID

LatticeMico8 Microprocessor Software Support

are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.
Table 10 describes the parameters of the VID device context structure shown
in Figure 5.

Device Context Structure
Figure 5 shows the VID device context structure.

Figure 5: VID Device Context Structure

struct st_MicoVIDCtx_t {
const char * name;
size_t base;
unsigned char intrLevel;
unsigned char master_mode;
unsigned char curr_channel;
unsigned char max_channel;
void * p_efb;
void * p_mutex;
unsigned char i2c_mutex;

} MicoVIDCtx_t;

Table 10 describes the VID device context parameters.

Table 10: VID Device Context Parameters

Parameter Data Type

name const char*
base size t
intrLevel unsigned char

master_mode unsigned char

curr_channel unsigned char

max_channel unsigned char

p_efb void *
p_mutex void *
i2c_mutex unsigned char

Description

VID instance name (entered in MSB)

MSB-assigned base address for this instance

Processor interrupt line to which this instance is connected

This value is 1 if the VID is configured as Master mode.

Otherwise, it is Slave Mode

This value specific the current channel

This value specific maximum number of channel is used
This value points to the EFB instance used by VID

This value points to the Mutex instance used by VID

This value specific the Mutex owner ID for 12C communication protocol

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and ‘function-like'.

LatticeMico VID

15

LatticeMico8 Microprocessor Software Support

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command
line in the application's '‘Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the application's 'Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
‘check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use option 1 or 2.
__MICOVID_ENABLE_MUTEX___

This preprocessor macro definition enables code and data structures for
LatticeMico8 Mutex within LatticeMico VID device driver and application. It
is not defined by default.

__MICOVID_USER_IRQ_HANDLER__

This preprocessor macro definition disables code and data structures
within the device driver that allow the user to define the custom interrupt
routine, the default routine will be disabled. It is not defined by default.

Table 11: C Preprocessor Function-like Macros For VID

Macro Name Second Argument to Macro / Description
Third Argument to Macro (if
exist.

MICO_VID_READ_CHX_INFO The 8-bit value read from the This macro reads a character from the
channel info / channel number channel info register with a specific

channel number

MICO_VID_READ_REQ_LOW The 8-bit value read from the lower This macro reads a character from

byte of channel request register. the lower byte of channel request

register
MICO_VID_READ_REQ_HIGH The 8-bit value read from the This macro reads a character from
upper byte of channel request the upper byte of channel request
register.

register

MICO_VID_WRITE_IN_PROC_LOW The 8-bit value writes to the lower This macro writes a character to the

byte of In Process register. lower byte of In Process register

MICO_VID_WRITE_IN_PROC_HIGH The 8-bit value writes to the upper This macro writes a character to the

byte of In Process register. upper byte of In Process register
MICO_VID_READ_SLAVE_ADDR The 8-bit value read from the This macro reads a character from the
Slave address register 12C slave address register

16 LatticeMico VID

LatticeMico8 Microprocessor Software Support

Table 11: C Preprocessor Function-like Macros For VID (Continued)

Macro Name Second Argument to Macro / Description
Third Argument to Macro (if
exist.
MICO_VID_READ_DATA LOW The 8-bit value read from the lower This macro reads a character from the
byte of current VID data register. lower byte of VID data register
MICO_VID_READ_DATA HIGH The 8-bit value read from the This macro reads a character from the
upper byte of current VID data upper byte of VID data register
register.
MICO_VID_READ_STATUS The 8-bit value read to the status This macro reads a character to the
register. 12C status register
MICO_VID_WRITE_STATUS The 8-bit value writes to the status This macro writes a character to the
register. 12C status register
MICO_VID_READ_IRQENR The 8-bit value read from the This macro reads a character from the
Interrupt Enable register. Interrupt Enable register
MICO_VID_READ_CHX_INFO The 8-bit value read from the This macro reads a character from the
channel info / channel number channel info register with a specific

channel number

MICO_VID_READ_REQ_LOW The 8-bit value read from the lower This macro reads a character from the
byte of channel request register. lower byte of channel request register

MICO_VID_READ_REQ_HIGH The 8-bit value read from the This macro reads a character from the
upper byte of channel request upper byte of channel request register
register.

MICO_VID_WRITE_IN_PROC_LOW The 8-bit value writes to the lower This macro writes a character to the
byte of In Process register. lower byte of In Process register

MICO_VID_WRITE_IN_PROC_HIGH The 8-bit value writes to the upper This macro writes a character to the

byte of In Process register. upper byte of In Process register
MICO_VID_WRITE_IRQENR The 8-bit value writes to the This macro writes a character to the
Interrupt Enable register Interrupt Enable register

Note: The first argument to the macro is the VID address.

Functions

This section describes the implemented device-driver-specific functions.

MicoVIDInit Function
void MicoVIDInit (MicoVIDCtx_t *ctx);

LatticeMico VID 17

LatticeMico8 Microprocessor Software Support

This is the VID initialization function. Table 12 describes the parameter in the
MicoVIDInit function syntax.

Table 12: MicoVIDInit Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx _t structure representing a valid
VID instance.

MicoVIDRegisterEFB Function
void MicoVIDRegisterEFB (MicoVIDCtx_t *ctx,
MicoEFBCtx_t *p_efb);

This function registers an EFB instance into the VID instance. This EFB will
be used for the interface between VID control and the ASC device.

Table 13 describes the parameters in the MicoVIDRegisterEFB function
syntax.

Table 13: MicoVIDRegisterEFB Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

MicoEFBCtx_t Pointer to a valid MicoEFBCtx_t structure representing a valid

EFB instance.

MicoVIDRegisterEFBnMutex Function

void MicoVIDRegisterEFBnMutex (MicoVIDCtx_t *ctx,
MicoEFBCtx_t *p_efb,
MicoMutexCtx_t *p_mutex,
unsigned char i2c_mutex_id);

This function registers an EFB instance and a Mutex instance into the VID
instance. This EFB will be used for the interface between VID control and the
ASC device, and Mutex will be used for controlling the EFB 12C resources to
avoid collision.

Table 14 describes the parameters in the MicoVIDRegisterEFBnMutex
function syntax.

Table 14: MicoVIDRegisterEFBnMutex Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

MicoEFBCtx_t Pointer to a valid MicoEFBCtx_t structure representing a valid
EFB instance.

18

LatticeMico VID

LatticeMico8 Microprocessor Software Support

Table 14: MicoVIDRegisterEFBnMutex Function Parameter (Continued)
Parameter Description
MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure

representing a valid Mutex instance.

unsigned char Mutex owner ID for I2C communication protocol

MicoVIDProcessRequest Function
char MicoVIDProcessRequest (MicoVIDCtx_t *ctx,
unsigned char channel);

This function process the VID Request with an user specific channel. User
has to check which VID channel has triggered the event by reading the
VID_REQ register. Error code will return when the request process is
incomplete.

Table 15 describes the parameter in the MicoVIDProcessRequest function
syntax.

Table 15: MicoVIDProcessRequest Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

unsigned char Channel request to be processed.

Table 16 describes the values returned by the MicoVIDProcessRequest
Function.

Table 16: Values Returned by the MicoVIDProcessRequest Function

Parameter Description

0 Process successful

-1 No request for this channel

-2 Failed to receive ACK during 12C

-3 Failed to verify the ASC device data

MicoVIDISR Function
void MicoVIDISR (MicoVIDCtx_t *ctx);

This is the VID Interrupt handler. The interrupt routine is implemented in the
software driver. User has an option to use the default interrupt handler or
implement a custom interrupt routine.

LatticeMico VID 19

LatticeMico8 Microprocessor Software Support

Table 17 describes the parameter in the MicoVIDISR function syntax.

Table 17: MicoVIDISR Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

Software Usage Example

This section provides an example of using the VID. The example is shown in
Figure 6 and assumes the presence of a VID component named “vid”, a
Mutex component named “mutex” and an EFB component named “efb.

20

LatticeMico VID

LatticeMico8 Microprocessor Software Support

Figure 6: VID Software Example
#include "MicoUtils.h"
#include "'DDStructs.h"
#include "MicoEFB.h"
#include "MicoVID.h"

int main(void){
MicoVIDCtx_t *vid
MicoEFBCtx_t *efb

&vid_vid;
&efb _efb;

#ifdef _ MICOVID_ENABLE_MUTEX_
MicoMutexCtx_t *mutex = &mutex_mutex;
if(mutex == 0){

return(-1);
3

// Register the EFB and Mutex instance into VID
MicoVIDRegisterEFBnMutex(vid, efb, mutex, 0);

else

// Register the EFB instance into VID
MicoVIDRegisterEFB(vid, efb);

#endif

if(vid == 0 || efb == 0){
return(-1);

#ifndef _ MICO_NO_INTERRUPTS___

// Enable the interrupt
MICO_VID_WRITE_IRQENR(vid->base , MICO_VID_ENABLE_IRQ);
#else

unsigned char curr_channel = 0x0;

do{

if(curr_channel < vid->max_channel){
MicoVIDProcessRequest(vid, curr_channel);
curr_channel++;

Yelse{

curr_channel = 0;

MicoSleepMicroSecs (50);
Jwhile (1);
#endif

return(0);
}

LatticeMico VID 21

LatticeMico8 Microprocessor Software Support

Revision History
Component Version Description
1.0 Initial Release.

11 Added WAIT_COUNT parameter to add a wait state
between each successive VID transactions.

Improved the hardware protect capability in the VID
Master Mode.

Fixed VID Write Status Register issue.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Mobile Device, DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK,
FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice,
iCE40, iCEB5, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube?2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress,
ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
iSpLEVER, ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
iSpXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MachXO3, MACO, mobileFPGA, ORCA, PAC, PAC-Designer,
PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue,
Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK,
sysCONFIG, sysDSP, sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD, TransFR,
UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor
Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of
the Best are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

22 LatticeMico VID

	LatticeMico VID
	Version
	Features
	Functional Description
	VID Request Triggering Events
	Voltage Look Up Tables
	WISHBONE Master Mode
	WISHBONE Slave Mode
	LatticeMico EFB and LatticeMico Mutex Support

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Register Descriptions
	Channel Information Data Register Definition - CHx_INFO
	Request Register Definition – REQ_LOW / REQ_HIGH
	In Process Register Definition – IN_PROC_LOW / IN_PROC_HIGH
	I2C Slave Address Register Definition – SLAVE_ADDR
	VID Data Register Definition – DATA_LOW / DATA_HIGH
	I2C Status Register Definition – STATUS
	Interrupt Enable Register Definition – IRQENR

	LatticeMico8 Microprocessor Software Support
	Device Driver
	Software Usage Example

