
Copyright © May 2014 Lattice Semiconductor Corporation.

LatticeMico VID

LatticeMico Voltage ID (VID) is a soft IP that allows users to provide target
voltage set points of the Close Loop Trim (CLT) circuitry on a Lattice Analog
Sense and Control (ASC) device. Although the voltage set points of the CLT
can be defined through voltage profiles during the design stage, the VID IP
provides a mean to update the target set points on the fly while the system is
in operation.

The LatticeMico VID IP provides the voltage set points as starting points for
individual CLT channels. It does not monitor the voltage trimming / margining
process thus cannot be considered as part of the close-loop process. For
more information details of the CLT functionality and process, refer to the
Platform Designer documentation in Diamond online help.

Version

This document describes the 1.1 version of the LatticeMico VID.

Features

The LatticeMico VID IP must be used together with the EFB (Embedded
Functional Block) of the Platform Manager 2 device. The voltage set points of
the CLT channels are updated by the VID IP through the primary I2C port of
the EFB.

 WISHBONE Master or WISHBONE Slave mode support.

 WISHBONE interface with 8-bit data bus.

 Individual control for each CLT channel.

Functional Description

2 LatticeMico VID

 Toggling of VID enable signal activates the VID request for the specific
channel.

 Support voltage look-up table from 8 to 64 entries per CLT channel.

 VID requests are processed in round-robin algorithm without priority.

 Maximum of 16 CLT channels can be supported.

 The voltage set point for the CLT channels is 13-bit binary value.

 Handles internal I2C resources sharing through MUTEX.

 External I2C bus collision and arbitration lost detection.

 Enable/disable the I2C Write Protect pin of the ASC devices.

Functional Description

This VID IP can be used as a WISHBONE Master or a WISHBONE Slave.
When in the WISHBONE Master mode, the IP is self-contained and does not
require a microcontroller to function. When in the WISHBONE Slave mode, it
requires LatticeMico soft microcontroller to be used together to complete the
function. Figure 1 and Figure 2 give an overview of the IP applications based
on the mode it is selected.

Figure 1: VID WISHBONE Master Mode Block Diagram

Functional Description

LatticeMico VID 3

VID Request Triggering Events

A VID event is triggered by the toggling of the channel enable signals
(ch_ena[x]). The polarity of the channel enable signals is set by the users
during the IP configuration. Depending on the polarity of the channel enable
signals, either the rising edge or the falling edge signals a VID request. This
edge at the same time registers the channel select signals (chx_sel). This
tells the VID IP that voltage set point register of channel x needs to be
updated with the voltage value pointed by the chx_sel signals. The
identification of channel x is the ASC slave address and the CLT channel
number. Both are pre-defined during the design stage by the user.

Once a VID request is captured, it is not cleared unless successfully
processed. When a particular channel’s VID request is not being processed,
users can over-write the current request with a new request.

Voltage Look Up Tables

Each channel has a table that stores a set of voltage set point values. The
table size is between eight entries to 64 entries. A common table can be
shared among multiple channels. The IP can have one table to be shared by
all 16 channels, or maximum of 16 tables, one for each channel. The voltage
set point values and the tables are defined during the design stage through
the Platform Designer GUI in the Diamond software.

Figure 2: VID WISHBONE Slave Mode Block Diagram

Functional Description

4 LatticeMico VID

WISHBONE Master Mode

When in WISHBONE Master mode, the sequence of processing a VID
request is controlled by the WISHBONE Master state machine. The state
machine will not start working unless there is a VID request in place. Before
initiating a transfer on the I2C bus, the state machine checks for the MUTEX
possession and the I2C bus status. The MUTEX is a soft IP that provides the
arbitration control among resources on XO2 side that need to use the I2C bus.
The WISHBONE master has to own the MUTEX before it can process the VID
request. Then the checking of I2C status register allows the detection of busy
on the external I2C bus. Only when both conditions are cleared, the state
machine will start the transfer on the I2C bus and disable the I2C Write Protect
pin.

The state machine also checks the arbitration lost during the I2C WRITE
operation. This is done through the checking of the ARBL bit of the EFB’s I2C
status register. Once the arbitration lost is detected, the master enables the
I2C Write Protect pin, and waits for the I2C bus to be free again. Then it
enables the I2C Write Protect pin and re-transmits the data again. When the
VID request is successfully processed, meaning the read back data matching
sending data, the request bit is cleared. Otherwise, the request is kept and is
processed again in a round-robin fashion.

A normal I2C bus sequence for a VID request is shown in Figure 3. The
required number of I2C clock to complete a VID request is at least 66. The
sequence could be much longer if arbitration lost is detected during the I2C
Write operations.

WISHBONE Slave Mode

When in WISHBONE Slave mode, the VID IP issues an interrupt request to
inform LatticeMico that a VID request is in place. LatticeMico has to enable
the interrupt mask register in order to see the status change on the interrupt
signal. When the microcontroller decides to process the VID request, it gets
the necessary information first from the VID IP by accessing the register set
through WISHBONE bus. A typical sequence of the processing the VID
request in Slave mode is listed for reference. Refers to the VID Slave Register
Map section for the definition of each register.

1. Enable interrupt mask bit (IRQENR register) to allow the interrupt status
be seen on the interrupt pin.

Figure 3: I2C Bus Sequence for VID Request

Functional Description

LatticeMico VID 5

2. Check if Dual Boot is busy by checking the STATUS register bit 4. Wait
until Dual Boot is not busy before proceeding to the following steps.

3. Find out which channels have the VID requests by read the REQ_LOW
and REQ_HIGH registers

4. Decide to process a particular channel’s request first by writing to the
IN_PROC_LOW or IN_PROC_HIGH registers. Setting a “1” in the register
bit will prevent the new request on the same channel to over-write the
current request. Ideally there should be one active IN_PROC bit at a time.

5. Gather the identification of the CLT channel by reading the CHx_INFO
register, where x corresponds to the position of register bit in the
IN_PROC register. This provides the channel ID and the ASC ID
information to LatticeMico.

6. Get the ASC slave address by reading the SLAVE_ADDR register, which
provides the ASC slave address of the channel that LatticeMico is going
to process

7. Get the data that needs to be sent to the ASC CLT voltage set point
register. This is stored in the DATA_LOW and DATA_HIGH registers.

8. When all the necessary data is available for the VID request, LatticeMico
writes to the STATUS register to disable the I2C Write Protect so that the
ASC devices can accept data.

9. LatticeMico can enable I2C Write Protect (write to the STATUS register) at
any time to stop the ASC devices from receiving data when arbitration lost
is detected, or when I2C Write is completed.

10. LatticeMico writes to STATUS register (bits 1 to 3) when VID request is
completed. STATUS bits are updated depending on whether the request
is processed successfully or not.

11. Write to the IN_PROC register to clear the bit, indicating the request is
served.

Figure 4 is a state diagram of a 5 VID channel request.

LatticeMico EFB and LatticeMico Mutex
Support

The LatticeMico EFB will be used for the interface between VID control and
the ASC devices. The LatticeMico EFB I2C always acts as I2C Master, and
ASC I2C always acts as slave and supports 7-bit addressing only. Users need
to avoid setting the ASC I2C slave address to be the same as the LatticeMico
EFB I2C slave address.

Both VID WBM and LatticeMico 8 will poll the bits of the EFB primary I2C
Status Register to check the status on the I2C bus. WBM will issue a START
when the Busy bit is not asserted. When the START is issued, WBM monitors
the ARBL bit to see if it wins the arbitration. If an arbitration loss is
encountered, WBM will monitor the BUSY status bit again to wait for the I2C
bus to free up.

Configuration

6 LatticeMico VID

In the case of competing I2C resources with background programming, WBM
will write and read the MUTEX component to determine if the I2C resources is
occupied. Detail of arbitrating between VID and internal JTAG-I2C route will
base on the LatticeMico Mutex documentation.

Configuration

The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
user can use to configure and operate the LatticeMico VID.

Figure 4: State Diagram of 5 VID channel Request

Configuration

LatticeMico VID 7

UI Parameters

Table 1 shows the UI parameters available for configuring the LatticeMico VID
through the Mico System Builder (MSB) interface. For more information refer
to the Platform Designer documentation in Diamond online help.

Table 1: VID UI Parameters

Dialog Box Options Description Allowable Values Default Value

Instance Name Specifies the name of the VID
instance.

Alphanumeric and underscores vid

VID Mode Selection

Master Mode Specifies the VID as master
mode.

selected | not selected not selected

Slave Mode Specifies the VID as slave mode. selected | not selected selected

Number of VID channel Specifies the number of VID
channel.

1 - 16 1

Base Address Specifies the base address for
configuring the VID. The
minimum boundary alignment is
0x80.

0X80000000–0XFFFFFFFF 0X80000000

EFB Slave Address Specifies the base address for
configuring the EFB. The
minimum boundary alignment is
0x80.

0X80000000–0XFFFFFFFF 0X80000000

Mutex Enable When selected, Mutex is
enabled.

selected | not selected not selected

Mutex Slave Address Specifies the base address for
configuring the Mutex. The
minimum boundary alignment is
0x80.

0X80000000–0XFFFFFFFF 0X80000000

Channel Setting

VID Table Setting

Table ID Specifies the Table ID. 0-15 0

Initialization File Specifies the Initialization table. <user_defined>.mem none

VID Channel Polarity

Positive Polarity When selected, chx_ena is
positive edge triggered.

selected | not selected selected

Negative Polarity When selected, chx_ena is
negative edge triggered.

selected | not selected not selected

VID Channel Setting

Select Channel Width Channel select width. 3-6 3

Configuration

8 LatticeMico VID

HDL Parameters

Table 2 lists the parameters that appear in the HDL.

ASC ID Specifies the ASD ID. 0-7 0

CLT ID Specifies the CLT ID. 0-7 0

Table 1: VID UI Parameters (Continued)

Dialog Box Options Description Allowable Values Default Value

Table 2: VID HDL Parameter

Parameter Name Description Allowable Values

LATTICE_FAMILY Define the device family for the IP MACHXO2 | LPTM2

VID CHANNELS Define the total number of VID channels 1 to 16

WBM_VID_EN A value of 1 defines the LatticeMico VID as Master Mode 0 | 1

WBS_VID_EN A value of 1 defines the LatticeMico VID as Slave Mode 0 | 1

WBM_VID_MUTEX_EN A value of 1 defines the Mutex is enabled 0 | 1

WBM_MUTEX_BASE_AD
DR

WISHBONE base address of MUTEX 32 bits

WBM_EFB_BASE_ADDR WISHBONE base address of EFB 32 bits

VID Table (per CLT channel that are using the VID function)

VID TABLEx Define the VID table name ASCI file name

VID_TABLEx_ID Define the VID table IDs of the VID channel 0 - 15

VID_CHy_SEL_BITS Define the select bits range of the VID channel 3 to 6

VID CHy_POL A value of 1 defines the Polarity of Chx_ena signal

is positive edge triggered

0 | 1

VID_CHy_ASC Define the ASC ID of the VID channel 0 to 7

VID_CHy_CLT Define the CLT ID of the VID channel within an ASC 0 to 7

WAIT_COUNT Number of wait state added between each VID process 0 to 15

I2C slave address

ASCy_I2C_S_ADDR I2C slave addresses for ASC devices. 32 bits

Note 1: x = 0 – 15, y = 0 - 7

Note 2: Each VID table has a unique ID. This is to identify which channels are sharing the same VID table. The VID
Table ID always starts from 0. That means if there is one VID table then the VID Table ID=0. The channels that share
a VID table should always use the VID Table ID of the lowest channel that shares the table. Table 3 shows an
example of five VID channels (channels 0 to 4) that share three VID tables. Their IDs are shown in “VID Table ID”
column.

Configuration

LatticeMico VID 9

If not using the Platform Designer GUI to configure the IP, users must do
design rule checking manually. Here is a list of design rules for reference.

1. WISHBONE Master and WISHBONE Slave functions are mutually
exclusive. Their corresponding enable parameter cannot be turned on
(assigned 1’b1) or turned off (assigned 1’b0) at the same time.

2. Number of VID Channel cannot exceed 16.

3. Each VID table has a unique ID. This is to identify which channels are
sharing the same VID table. The VID Table ID always starts from 0. That
means if there is one VID table then the VID Table ID=0. The channels
that share a VID table should always use the VID Table ID of the lowest
channel that shares the table.

4. The number of select bits must correspond to the size of the VID table.
For example a channel with 4-bit select bits can support up to 16-entry
table.

5. When more than one channels share a table, make sure the VID Table ID
are the same, the number of select inputs are the same, and the table
name are the same.

6. VID Table ID must not skip number. For example if there are 3 channels,
then ID can be 0, 1, 2, or 0, 0, 1, etc. as long as the numbers starts from 0
and moves up sequentially without skipping, It cannot be, for example, 0,
1, 4.

I/O Ports

Table 4 describes the input and output ports of the LatticeMico VID.

Table 3: Example of Five VID Channels That Share Three VID Tables

VID Table names Channel VID Table ID

vid_3v3 0 0

vid_3v3 1 0

abc_123 2 1

thrd_2v5 3 2

abc_123 4 1

Table 4: VID I/O Ports

I/O Port Direction Active Description

System Clock and Reset

CLOCK I — System Clock

Configuration

10 LatticeMico VID

RESETN I Low System Reset

WISHBONE Master Signal

WBM_DAT_I I — 8-bit data used to read a byte of data from a specific
register in the register

WBM_ACK_I I High Transfer acknowledge signal asserted,

indicates the requested transfer is acknowledged.

WBM_ERR_I I — Not used, always tied to 0

WBM_RTY_I I — Not used, always tied to 0

WBM_CYC_O O High Indicates a valid bus cycle is present on the WISHBONE
bus.

WBM_STB_O O High Indicates the WISHBONE slave is the target

for the current transaction on the bus.

WBM_WE_O O — Level sensitive Write/Read control signal.

Low - Read operation, High - Write operation

WBM_ADR_O O — 32-bit wide address used to select a specific register

WBM_DAT_O O — 8-bit data used to read a byte of data from a specific
register

WBM_CTI_O O — Not used, always tied to 0

WBM_BTE_O O — Not used, always tied to 0

WBM_LOCK_O O — Not used, always tied to 0

WBM_SEL_O O — Not used, always tied to 0

WISHBONE Slave Signal

WBS_CYC_I I High Indicates a valid bus cycle is present on the bus.

WBS_STB_I I High Asserts an acknowledgment in response to

the assertion of the WISHBONE Master strobe.

WBS_WE_I I — Level sensitive Write/Read control signal.

 Low - Read operation, High - Write operation

WBS_ADR_I I — 32-bit wide address used to select a specific register

WBS_DAT_I I — 8-bit data used to read a byte of data from a specific
register

WBS_CTI_I I — Not used, always tied to 0

WBS_BTE_I I — Not used, always tied to 0

WBS_LOCK_I I — Not used, always tied to 0

WBS_SEL_I I — Not used, always tied to 0

Table 4: VID I/O Ports (Continued)

I/O Port Direction Active Description

Register Descriptions

LatticeMico VID 11

Register Descriptions

The LatticeMico VID WISHBONE Slave module has a register map to allow
the service of the hardened functions through the WISHBONE bus interface
read/write operations. Table 5 through Table 9 describe the register map of
the VID WBS module.

WBS_DAT_O O — 8-bit data used to read a byte of data from a specific
register

WBS_ACK_O O High Indicates the requested transfer is acknowledged.

WBS_ERR_O O — Indicates the address is incorrect

WBS_RTY_O O — Not used, always tied to 0

Other signals

CHx_SEL I High VID select signal for VID channel x (x = 0-15)

CH_ENA I — Each bit is a VID enable signal for VID channel

DB_BUSY I High Dual-boot busy signal (VID WBM only)

GPIO1 O High Drive the ASC write protect pin

VID_IRQ_O O High Interrupt request signal (VID WBS only)

SLOW_CLOCK I — Clock for counting the wait state between each VID
process.

Table 4: VID I/O Ports (Continued)

I/O Port Direction Active Description

Table 5: WISHBONE Addressable Registers for VID Module

Register Name Register Function Address Access

CHx_INFO Holds the info of ASC ID and CLT ID of channel x 0x0 - 0xF Read

REQ_LOW VID request holding register [7:0] 0x10 Read

REQ_HIGH VID request holding register [15:8] 0x11 Read

IN_PROC_LOW In Process status register [7:0] 0x12 Write

IN_PROC_HIGH In Process status register [15:8] 0x13 Write

SLAVE_ADDR Current ASC I2C Slave Address 0x14 Read

DATA_LOW VID data to be transmitted to ASC [7:0] 0x15 Read

DATA_HIGH VID data to be transmitted to ASC [15:8] 0x16 Read

STATUS Status of I2C transfer 0x17 Write

IRQENR Interrupt Request Enable 0x18 Read/Write

Register Descriptions

12 LatticeMico VID

Table 6 through Table 9 provide details about each register in the LatticeMico
VID.

Channel Information Data Register
Definition - CHx_INFO

The WISHBONE host has Read-Only access to these registers.

Request Register Definition –
REQ_LOW / REQ_HIGH

REQ_LOW / REG_HIGH are 8-bit registers, which combined to hold the VID
channel request value. Each bit corresponding to a VID Channel, i.e. Bit 0
goes high means Channel 0 has triggered the request event. The
WISHBONE host has Read-Only access to these registers.

REQ_LOW register holds the VID Request of the lower 8-bit value [7:0].

REG_HIGH register holds the VID Request of the upper 8-bit value [15:8].

In Process Register Definition –
IN_PROC_LOW / IN_PROC_HIGH

IN_PROC_LOW / IN_PROC_HIGH are 8-bit registers, which combined to
hold the In Process status. Each bit corresponding to a VID Channel, i.e. Bit 0
goes high means Channel 0 is in process. The WISHBONE host has Write-
Only access to these registers.

IN_PROC_LOW register holds the In Process Register Status of the lower 8-
bit value [7:0].

IN_PROC_HIGH register holds the In Process Register Status of the upper 8-
bit value [15:8].

Table 6: CHx_INFO Register Bit Definition

Bit Field Description

2:0 ASC ID Identify the ASC0 to ASC7 Device

5:3 CLT ID Identify the one of the 8 CLT Channel in each ASC

7:6 RSVD Reserved Bit

Register Descriptions

LatticeMico VID 13

I2C Slave Address Register Definition –
SLAVE_ADDR

The WISHBONE host has Read-Only access to these registers.

VID Data Register Definition –
DATA_LOW / DATA_HIGH

DATA_LOW / DATA_HIGH are 8-bit registers, which combined to hold the
current data for transmitting to ASC device. The WISHBONE host has Read-
Only access to these registers.

DATA _LOW register holds the current VID DATA of the lower 8-bit value [7:0].

DATA _HIGH register holds the current VID DATA of the upper 4-bit value
[11:8].

The upper 4 bits value [15:12] of the register is default to 0

I2C Status Register Definition – STATUS

The WISHBONE host has Read and Write access to these registers expect
bit 4 - DB_BUSY

Table 7: SLAVE_ADDR Register Bit Definition

Bit Field Description

5:0 ASC ID Holding the 7-bits I2C Address

7:6 RSVD Reserved Bit

Table 8: STATUS Register Bit Definition

Bit Field Description Access

0 GPIO1 To activate or deactivate the GPIO1 bit

1 – Activated, 0 - Deactivated

Read/Write

1 DONE Completion of a successful VID request transfer

1 – Completed, 0 - Incomplete

Read/Write

2 FAIL Incomplete VID request transfer

1 – Incomplete, 0 - Completed

Read/Write

3 NACK I2C NACK is received

1 – NACK received, 0 – ACK received

Read/Write

LatticeMico8 Microprocessor Software Support

14 LatticeMico VID

Interrupt Enable Register Definition –
IRQENR

The WISHBONE host has Read and Write access to these registers.

LatticeMico8 Microprocessor Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico VID component.

Device Driver

The VID device driver interacts directly with the VID instance. This section
describes the limitations, type definitions, structure, and functions of the VID
device driver.

Type Definitions

This section describes the type definitions for the VID device context
structure. This structure, shown in Figure 5, contains the VID component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the VID component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions

4 DB_BUSY LatticeMico Dual Boot is busy

1 – Dual Boot is Busy, 0 – Dual Boot is Free

Read

7:4 RSVD Reserved Bit N/A

Table 8: STATUS Register Bit Definition (Continued)

Bit Field Description Access

Table 9: IRQENR Register Bit Definition

Bit Field Description

0 IRQEN VID Interrupt Enable

7:1 RSVD Reserved Bit

LatticeMico8 Microprocessor Software Support

LatticeMico VID 15

are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.
Table 10 describes the parameters of the VID device context structure shown
in Figure 5.

Device Context Structure
Figure 5 shows the VID device context structure.

Table 10 describes the VID device context parameters.

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and 'function-like'.

Figure 5: VID Device Context Structure

struct st_MicoVIDCtx_t {
 const char * name;
 size_t base;
 unsigned char intrLevel;
 unsigned char master_mode;
 unsigned char curr_channel;
 unsigned char max_channel;
 void * p_efb;
 void * p_mutex;
 unsigned char i2c_mutex;
} MicoVIDCtx_t;

Table 10: VID Device Context Parameters

Parameter Data Type Description

name const char* VID instance name (entered in MSB)

base size_t MSB-assigned base address for this instance

intrLevel unsigned char Processor interrupt line to which this instance is connected

master_mode unsigned char This value is 1 if the VID is configured as Master mode.

Otherwise, it is Slave Mode

curr_channel unsigned char This value specific the current channel

max_channel unsigned char This value specific maximum number of channel is used

p_efb void * This value points to the EFB instance used by VID

p_mutex void * This value points to the Mutex instance used by VID

i2c_mutex unsigned char This value specific the Mutex owner ID for I2C communication protocol

LatticeMico8 Microprocessor Software Support

16 LatticeMico VID

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command
line in the application's 'Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the application's 'Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
'check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use option 1 or 2.

 __MICOVID_ENABLE_MUTEX__

This preprocessor macro definition enables code and data structures for
LatticeMico8 Mutex within LatticeMico VID device driver and application. It
is not defined by default.

 __MICOVID_USER_IRQ_HANDLER__

This preprocessor macro definition disables code and data structures
within the device driver that allow the user to define the custom interrupt
routine, the default routine will be disabled. It is not defined by default.

Table 11: C Preprocessor Function-like Macros For VID

Macro Name Second Argument to Macro /
Third Argument to Macro (if
exist.

Description

MICO_VID_READ_CHX_INFO The 8-bit value read from the
channel info / channel number

This macro reads a character from the
channel info register with a specific
channel number

MICO_VID_READ_REQ_LOW The 8-bit value read from the lower
byte of channel request register.

This macro reads a character from

the lower byte of channel request
register

MICO_VID_READ_REQ_HIGH The 8-bit value read from the
upper byte of channel request
register.

This macro reads a character from

the upper byte of channel request
register

MICO_VID_WRITE_IN_PROC_LOW The 8-bit value writes to the lower
byte of In Process register.

This macro writes a character to the

 lower byte of In Process register

MICO_VID_WRITE_IN_PROC_HIGH The 8-bit value writes to the upper
byte of In Process register.

This macro writes a character to the
upper byte of In Process register

MICO_VID_READ_SLAVE_ADDR The 8-bit value read from the
Slave address register

This macro reads a character from the
I2C slave address register

LatticeMico8 Microprocessor Software Support

LatticeMico VID 17

Functions

This section describes the implemented device-driver-specific functions.

MicoVIDInit Function
void MicoVIDInit (MicoVIDCtx_t *ctx);

MICO_VID_READ_DATA_LOW The 8-bit value read from the lower
byte of current VID data register.

This macro reads a character from the
lower byte of VID data register

MICO_VID_READ_DATA_HIGH The 8-bit value read from the
upper byte of current VID data
register.

This macro reads a character from the
upper byte of VID data register

MICO_VID_READ_STATUS The 8-bit value read to the status
register.

This macro reads a character to the
I2C status register

MICO_VID_WRITE_STATUS The 8-bit value writes to the status
register.

This macro writes a character to the
I2C status register

MICO_VID_READ_IRQENR The 8-bit value read from the
Interrupt Enable register.

This macro reads a character from the
Interrupt Enable register

MICO_VID_READ_CHX_INFO The 8-bit value read from the
channel info / channel number

This macro reads a character from the
channel info register with a specific
channel number

MICO_VID_READ_REQ_LOW The 8-bit value read from the lower
byte of channel request register.

This macro reads a character from the
lower byte of channel request register

MICO_VID_READ_REQ_HIGH The 8-bit value read from the
upper byte of channel request
register.

This macro reads a character from the
upper byte of channel request register

MICO_VID_WRITE_IN_PROC_LOW The 8-bit value writes to the lower
byte of In Process register.

This macro writes a character to the
lower byte of In Process register

MICO_VID_WRITE_IN_PROC_HIGH The 8-bit value writes to the upper
byte of In Process register.

This macro writes a character to the
upper byte of In Process register

MICO_VID_WRITE_IRQENR The 8-bit value writes to the
Interrupt Enable register

This macro writes a character to the
Interrupt Enable register

Note: The first argument to the macro is the VID address.

Table 11: C Preprocessor Function-like Macros For VID (Continued)

Macro Name Second Argument to Macro /
Third Argument to Macro (if
exist.

Description

LatticeMico8 Microprocessor Software Support

18 LatticeMico VID

This is the VID initialization function. Table 12 describes the parameter in the
MicoVIDInit function syntax.

MicoVIDRegisterEFB Function
void MicoVIDRegisterEFB (MicoVIDCtx_t *ctx,

MicoEFBCtx_t *p_efb);

This function registers an EFB instance into the VID instance. This EFB will
be used for the interface between VID control and the ASC device.

Table 13 describes the parameters in the MicoVIDRegisterEFB function
syntax.

MicoVIDRegisterEFBnMutex Function
void MicoVIDRegisterEFBnMutex (MicoVIDCtx_t *ctx,

MicoEFBCtx_t *p_efb,
MicoMutexCtx_t *p_mutex,
unsigned char i2c_mutex_id);

This function registers an EFB instance and a Mutex instance into the VID
instance. This EFB will be used for the interface between VID control and the
ASC device, and Mutex will be used for controlling the EFB I2C resources to
avoid collision.

Table 14 describes the parameters in the MicoVIDRegisterEFBnMutex
function syntax.

Table 12: MicoVIDInit Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx _t structure representing a valid
VID instance.

Table 13: MicoVIDRegisterEFB Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

MicoEFBCtx_t Pointer to a valid MicoEFBCtx_t structure representing a valid
EFB instance.

Table 14: MicoVIDRegisterEFBnMutex Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

MicoEFBCtx_t Pointer to a valid MicoEFBCtx_t structure representing a valid
EFB instance.

LatticeMico8 Microprocessor Software Support

LatticeMico VID 19

MicoVIDProcessRequest Function
char MicoVIDProcessRequest (MicoVIDCtx_t *ctx,

unsigned char channel);

This function process the VID Request with an user specific channel. User
has to check which VID channel has triggered the event by reading the
VID_REQ register. Error code will return when the request process is
incomplete.

Table 15 describes the parameter in the MicoVIDProcessRequest function
syntax.

Table 16 describes the values returned by the MicoVIDProcessRequest
Function.

MicoVIDISR Function
void MicoVIDISR (MicoVIDCtx_t *ctx);

This is the VID Interrupt handler. The interrupt routine is implemented in the
software driver. User has an option to use the default interrupt handler or
implement a custom interrupt routine.

MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure

representing a valid Mutex instance.

unsigned char Mutex owner ID for I2C communication protocol

Table 15: MicoVIDProcessRequest Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

unsigned char Channel request to be processed.

Table 16: Values Returned by the MicoVIDProcessRequest Function

Parameter Description

0 Process successful

-1 No request for this channel

-2 Failed to receive ACK during I2C

-3 Failed to verify the ASC device data

Table 14: MicoVIDRegisterEFBnMutex Function Parameter (Continued)

Parameter Description

LatticeMico8 Microprocessor Software Support

20 LatticeMico VID

Table 17 describes the parameter in the MicoVIDISR function syntax.

Software Usage Example

This section provides an example of using the VID. The example is shown in
Figure 6 and assumes the presence of a VID component named “vid”, a
Mutex component named “mutex” and an EFB component named “efb.

Table 17: MicoVIDISR Function Parameter

Parameter Description

MicoVIDCtx_t Pointer to a valid MicoVIDCtx_t structure representing a valid
VID instance.

LatticeMico8 Microprocessor Software Support

LatticeMico VID 21

Figure 6: VID Software Example
#include "MicoUtils.h"
#include "DDStructs.h"
#include "MicoEFB.h"
#include "MicoVID.h"

int main(void){
MicoVIDCtx_t *vid = &vid_vid;
MicoEFBCtx_t *efb = &efb_efb;

#ifdef __MICOVID_ENABLE_MUTEX__
MicoMutexCtx_t *mutex = &mutex_mutex;
if(mutex == 0){
 return(-1);
}
// Register the EFB and Mutex instance into VID
MicoVIDRegisterEFBnMutex(vid, efb, mutex, 0);
else
// Register the EFB instance into VID
MicoVIDRegisterEFB(vid, efb);
#endif

if(vid == 0 || efb == 0){
 return(-1);
}

#ifndef __MICO_NO_INTERRUPTS__
// Enable the interrupt
MICO_VID_WRITE_IRQENR(vid->base , MICO_VID_ENABLE_IRQ);
#else
unsigned char curr_channel = 0x0;
do{
if(curr_channel < vid->max_channel){
MicoVIDProcessRequest(vid, curr_channel);
curr_channel++;
}else{
curr_channel = 0;
}
MicoSleepMicroSecs (50);
}while (1);
#endif

return(0);
}

LatticeMico8 Microprocessor Software Support

22 LatticeMico VID

Revision History
Component Version Description

1.0 Initial Release.

1.1  Added WAIT_COUNT parameter to add a wait state
between each successive VID transactions.

 Improved the hardware protect capability in the VID
Master Mode.

 Fixed VID Write Status Register issue.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Mobile Device, DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK,
FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice,
iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress,
ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA, ORCA, PAC, PAC-Designer,
PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue,
Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK,
sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR,
UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor
Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of
the Best are service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

	LatticeMico VID
	Version
	Features
	Functional Description
	VID Request Triggering Events
	Voltage Look Up Tables
	WISHBONE Master Mode
	WISHBONE Slave Mode
	LatticeMico EFB and LatticeMico Mutex Support

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Register Descriptions
	Channel Information Data Register Definition - CHx_INFO
	Request Register Definition – REQ_LOW / REQ_HIGH
	In Process Register Definition – IN_PROC_LOW / IN_PROC_HIGH
	I2C Slave Address Register Definition – SLAVE_ADDR
	VID Data Register Definition – DATA_LOW / DATA_HIGH
	I2C Status Register Definition – STATUS
	Interrupt Enable Register Definition – IRQENR

	LatticeMico8 Microprocessor Software Support
	Device Driver
	Software Usage Example

