
Copyright © December 2012 Lattice Semiconductor Corporation.

LatticeMico UART

The LatticeMico UART is a universal asynchronous receiver-transmitter used
to interface to RS232 serial devices. The UART has many characteristics
similar to those of the 16450 UART. To preserve FPGA resources, the
LatticeMico UART is not identical to the 16450, so it is not source-code-
compatible.

Version
This document describes the 3.8 version of the LatticeMico UART.

Features
The UART includes the following features:

 WISHBONE B.3 interface. Data busses are 8-bit wide.

 Similar to the NS16450 UART. The optional 16-word-deep FIFO is
implemented in the UART when FIFO mode is selected.

 Insertion or extraction of standard asynchronous communication bits
(start, stop, and parity) to or from the serial data

 Holding and shifting registers, which eliminate the need for precise
synchronization between the CPU (WISHBONE interface) and serial data

 A common interrupt line for all internal UART data and error events.
Interrupt conditions include receiver line errors, receiver buffer available,
transmit buffer empty, and detection of status flag change.

 Fully prioritized interrupt system control

 Optional modem function (not presently supported)

Functional Description

2 LatticeMico UART

 Support for instantiating the UART multiple times

 Fully programmable serial interface characteristics:

 5-, 6-, 7-, or 8-bit characters

 Even-, odd-, or no-parity bit generation and detection

 1-, 1.5-, or 2-stop bit generation and detection

 False-start bit detection

 Line-break generation and detection

 Interactive control signaling and status reporting capabilities

For additional details about the WISHBONE bus, refer to the LatticeMico8
Processor Reference Manual or the LatticeMico32 Processor Reference
Manual.

Functional Description
The LatticeMico UART provides an interface between the LatticeMico
WISHBONE system bus and an RS232 serial communication channel.
Figure 1 shows the major blocks implemented in the UART in non-FIFO
mode. When you select FIFO mode, RBR in the RXCVER block and THR in
the TXMTT block become 16-word-deep FIFOs. In non-FIFO mode, these are
simple registers.

Figure 1: UART Usage Diagram

Functional Description

LatticeMico UART 3

UART Clock Frequencies
The UART only has a single clock input. The UART uses the WISHBONE
CLK_I input frequency to transfer data between the LatticeMico embedded
microcontroller family and the UART control and status registers. CLK_I is
also used to transfer and receive data on the UART’s SOUT abd SIN pins.

Receiver
In non-FIFO mode, the serial receiver (RXCVER) section contains an 8-bit
receiver buffer register (RBR) and receiver shift register (RSR). In FIFO
mode, the RBR is a 16-word-deep FIFO.

Since the serial frame is asynchronous to the receiving clock, a high-to-low
transition of the SIN pin is treated as the start bit of a frame. However, to avoid
receiving incorrect data because of SIN signal noise, false-start
bit detection is implemented. The UART requires the start bit to be low at least
50 percent of the baud rate clock. The UART samples SIN for half the bit
duration, and if a sample is low, a start bit is detected.

Once a valid start bit is received, the data bits and the parity bit are sampled
at the RS232 baud rate. If the start bit is exactly equal to the bit duration, each
of the following bits will be sampled at the center of the bit itself.

The receive logic monitors the incoming data stream and reports the state of
the incoming line in the line status register (LSR). The LSR is used to indicate
overrun, parity, and framing errors. It also indicates when a line break has
been received.

Whenever a framing error is detected, the UART assumes that the error was
due to the start bit of the following frame and tries to resynchronize it. To do
this, it samples the start bit twice. If both samples of the SIN are low, the
UART resynchronizes and accepts the data following the second start bit. The
resynchronization does not occur for a framing error caused by a break
character.

Once every bit is received, the data in the receive shift register is transferred
to the receive buffer register (RBR). The data-ready bit in the LSR is set to 1
to indicate to the CPU that a byte of data has been received. The external
rxrdy_n output is asserted (that is, logic 0) simultaneously with the data-ready
bit. You can also configure the UART to generate an interrupt upon successful
transfer from the RSR to the RBR.

Functional Description

4 LatticeMico UART

The behavior of the receiver is controlled by the finite state machine (FSM),
as shown in Figure 2.

The receiver state machine includes the following states:

 idle

When reset or after the stop state, the receiver FSM is reset to this state.
When in this state, it waits for SIN to be changed from high to low and stay
low for half a bit duration to be considered a valid start bit. Once a valid
start bit is detected, the FSM switches to the “shift” state.

 shift

When the FSM is in this state, it waits one bit duration for each data bit to
shift into the RSR. After the last data bit is shifted in, the FSM switches to
the “parity” state if parity is enabled. Otherwise, it switches to the “stop”
state.

 parity

When the FSM is in this state, it waits for one bit duration and then
samples the parity bit. Once the parity bit is sampled, the FSM switches to
the “stop” state.

 stop

Whether the stop-bit length is configured to be 1, 1.5, or 2 bits long, the
FSM always waits for one bit duration and then samples the stop bit. As
long as a logic 1 is sampled at the stop bit, the framing error flag (FE) in
LSR is not set. The receiver does not check whether the stop bit is in the
right length as configured. The FSM switches back to the “idle” state after
sampling the stop bit.

Figure 2: Receiver State Machine

Start bit not
detected

Not last
data bit

Start bit
detected

idle shift

paritystop

Last data bit &
parity disable

Last data bit &
parity enable

Functional Description

LatticeMico UART 5

Transmitter
The serial transmitter (TXMITT) section consists of an 8-bit transmitter hold
register (THR) and transmitter shift register (TSR) when the UART is in non-
FIFO mode. When the UART is in FIFO mode, THR is a 16-word-deep FIFO.
The UART provides two methods of indicating the status of THR: a txrdy_n
output signal or a transmit holding register ready (THRR) flag in the line status
register (LSR). If UART is in non-FIFO mode when THR is empty, the txrdy_n
pin becomes low active, and the THR empty flag in LSR is set to a logic 1. A
write to the THR interferes with a transmission in progress if THRE is active or
trdy_n is deasserted. After the data is loaded in THR, the THR empty flag in
LSR is reset to logic 0, and the txrdy_n pin goes inactive high. If the UART is
in FIFO mode, when THR FIFO is not full, the txrdy_n pin becomes low active,
and the THR Ready flag in LSR is set to logic 1.

The serial data transmission is automatically enabled after the data is loaded
into THR. First, a start bit (logic 0) is transmitted and the data in THR is
automatically parallel-loaded to TSR. The data bits are shifted out of TSR,
followed by the parity bit, if parity is enabled. Finally, the stop bit (logic 1) is
generated to indicate the end of the frame. After a frame is fully transmitted,
another frame is transmitted immediately if THR is not empty. This automatic
sequencing causes the frames to be transmitted back to back, which
increases the transmission bandwidth. The SOUT pin is held high when no
transmission is in progress.

The behavior of the transmitter is controlled by the finite state machine (FSM),
as shown in Figure 3.

The transmitter state machine includes the following states:

 start

When the UART is reset, the FSM transmitter is reset to this state. When
in this state, the transmitter waits to assert the start bit. A start bit is

Figure 3: Transmitter State Machine for Non-FIFO Mode

start shift

stop_2bit

stop_1bit

parity
stop_halfbit

THR empty Not last data bit

THR not
empty

Last data bit &
parity enable

Last data
bit & parity
disable

1 stop bit

2 stop bit

1.5 stop
bit

Functional Description

6 LatticeMico UART

asserted as soon as THR is not empty. Once a low SOUT (start bit) is
asserted, the FSM switches to the “shift” state.

 shift

When the FSM is in this state, it waits for the last (most significant) data bit
to be shifted out. After the last data bit is shifted out, the FSM switches to
the “parity” state if parity is enabled. Otherwise, it switches to the
“stop_1bit” state.

 parity

When the FSM is in this state, the last data bit is still in transmission.
When the transmission is complete, the FSM asserts the parity bit. Once
the parity bit is asserted, the FSM switches to the “stop_1bit” state.

 stop_1bit

Whether the stop bit is configured to be 1, 1.5, or 2 bits long, the FSM
always switches to this state, waits for a baud clock cycle, and then
asserts the stop bits. For one stop bit, the FSM switches back to the “start”
state and waits to assert the start bit of another frame. For 1.5 stop bits, it
switches to the “stop_halfbit” state and stays there for just half a baud
clock cycle before switching to the “start” state. For two stop bits, it
switches to the “stop_2bit” state and then switches back to the “start”
state. The stop bit is asserted at the time that the FSM leaves the
“stop_1bit” state.

 stop_halfbit

This state is for 5-bit data bits with a 1.5 stop bit. The FSM stays in this
state for only half a baud clock cycle and then switches to the “start” state.

 stop_2bit

When the FSM is in this state, the first stop bit is in transmission. It waits
for a baud clock cycle and then asserts the second stop bit and switches
to the “start” state.

Interrupt
The common interrupt request pin (INTR) goes to high active when any
interrupt conditions are matched and enabled by the interrupt enable register
(IER), which is described in Table 5.

The UART prioritizes interrupts into four levels to minimize external software
interaction, and it records these in the interrupt identification register (IIR),
which is described in Table 6. The four levels of interrupt conditions in order of
priority are receiver line status, received data ready, transmitter holding
register empty, and modem status, which is described in Table 7.

Performing a read cycle on IIR freezes all interrupts and indicates the highest
priority pending interrupt to the CPU. No other interrupts are acknowledged
until the pending interrupt is serviced. Whenever the IIR is read, the current
pending interrupt is cleared. Any pending lower-priority interrupt becomes
visible in the IIR after the previous IIR read.

Functional Description

LatticeMico UART 7

The behavior of the interrupt is controlled by the FSM, as shown in Figure 4.

The interrupt pin state machine includes the following states:

 idle

When the UART is reset, the interrupt FSM is reset to this state. When in
this state, it waits for the enabled interrupt conditions to be true, and then
it switches to the interrupt state with the highest priority.

 int0

The FSM switches to this state when the highest-priority level interrupt
occurs. It stays at this state until the LSR is read.

 int1

The FSM switches to this state when the second-priority level interrupt
occurs. It stays at this state until the RBR is read.

 int2

The FSM switches to this state when the third-priority level interrupt
occurs. It stays at this state until the IIR is read or after THR is written.

 int3

The FSM switches to this state when the fourth-priority level interrupt
occurs. It stays at this state until the MSR is read.

Figure 4: Interrupt Behavior for non-FIFO Mode

int3
int0

int2 int1

idle

MSR is not
read yet

No
interrupt

LSR is not
read yet

MSR is
read

Receiver line
status interrupt

LSR is read
(FIFO is empty)

Modem status
interrupt

IIR is not
read and
THR is not
written

Receiver
data ready
interrupt

RBR is not
read yet

RBR is read
(receiver line
error is not
present)

THR empty
interrupt

IIR is read
or THR is
written

LSR is read
(FIFO is not
empty)

RBR is read
(receiver line
error is
present)

Functional Description

8 LatticeMico UART

The interrupt continues to be generated as long as the corresponding enable
bit in IER is set and the corresponding interrupt condition is matched.

WISHBONE Interface
The LatticeMico processors interface to the UART control and status registers
by using the WISHBONE bus. The registers can only be accessed via the
WISHBONE classic bus cycles.

All the control registers are aligned to a byte boundary. Refer to Table 4 on
page 12 for more details on the register memory map. The SEL_I input is
ignored. All control registers, with the exception of the baudrate divisor
register, are 8 bits wide. Therefore, any access to a control register is a byte
transfer (C char). The baudrate divisor register is 16 bits wide and can be
accessed using two single-byte transfers.

When the microprocessor initiates a bus cycle, it starts by asserting STB_I
and CYC_I. The UART responds to the cycle with UART_ACK_O at the first
rising edge following the the STB_I and CYC_I assertion. The UART_ACK_O
stays active for a single CLK_I cycle, terminating the transfer and accepting or
returning data.

Configuration

LatticeMico UART 9

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico UART.

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico
UART through the Mico System Builder (MSB) interface. For the data bit and
the stop bit, refer to the LCR register description.

Table 1: UART UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the UART instance. Alphanumeric and
underscores

uart

Base Address Specifies the base address for configuring the UART. The
minimum boundary alignment is 0x80.

0X80000000–
0XFFFFFFFF

0X80000000

UART
Configuration

Baud Rate Specifies the speed in bits per second. 9600, 19200,
38400, 57600,
115200

115200

Data Bits Specifies the number of data bits in each transfer. 6, 7, 8 8

Stop Bits Specifies the number of stop bits in each transfer. 1, 2 1

Parity Enable Enables the feature of making the number of "one" bits
between any start/stop pair odd or even.

1, 0 0

Odd Parity Ensures that the number of "one" bits between any start/
stop pair is always odd. If unselected, the number of "one"
bits is always even.

1, 0 0

Stick Parity Sets the parity to always "one" or always "zero" 1, 0 0

Set Break Enables the ability to insert a break in transmission. 1, 0 0

Tx/Rx FIFO
Enabled

Enables the Tx and Rx FIFO in the UART. 1, 0 0

Sideband Signals

Receiver Ready Component generates an active-low signal that indicates
data is available in RBR.

1, 0 0

Transceiver Ready Component generates an active-low signal that indicates
that THR is empty and new data is ready to be sent.

1, 0 0

Software Settings

Configuration

10 LatticeMico UART

HDL Parameters
Table 2 lists the parameters that appear in the HDL.

Use interrupt Specifies whether the software driver transmits or receives
data using interrupts. If you select this option, the software
driver transmits or receives data using interrupts. If you do
not select it, the software driver polls the UART registers
for transmission or reception of data.

1, 0 1

Block on transmit Specifies whether the driver returns until it is able to queue
data for transmission. If true, the driver does not return
until it is able to queue data for transmission.

1, 0 1

Block on receive Specifies whether the driver returns until data is received.
If true, the driver does not return until data is received.

1, 0 1

Rx Buffer Size Specifies the size of the incoming data buffer implemented
by the software driver, in bytes. This buffer is used only
when operating in interrupt mode. In non-interrupt mode
(polling mode), this data buffer is not used; however, the
data associated with it is still allocated.

2-32 4

Tx Buffer Size Specifies the size of the outgoing data buffer implemented
by the software driver, in bytes. This buffer is used only
when operating in interrupt mode. In non-interrupt mode
(polling mode), this data buffer is not used; however, the
data associated with it is still allocated.

2-32 4

Transmit Settings for Simulation

Print Transmit
Character in RTL
Simulation

Prints the Transmit characters to the console window in
the RTL simulator.

0, 1 0

Emulate Transmit
Operation

Emulates the Transmit of a character rather than
physically transmitting it bit-by-bit on the TX line of the
UART. This option is available only when the Transmit
characters need to be printed to the console window of
RTL simulator and is used when a shorter simulation time
is required.

0, 1 0

Table 1: UART UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

Table 2: UART HDL Parameters

Parameter Name Description Allowable Values

BAUD_RATE Specifies the speed in bits per second. 9600, 19200, 38400, 57600,
115200

FIFO Specifies the use of a 16-word-deep FIFO in the UART 1 (Yes), 0 (No)

Configuration

LatticeMico UART 11

I/O Ports
Table 3 describes the input and output ports of the LatticeMico UART.

User Impact of Initial State
After reset, the transmitter idles until transmission begins.

Table 3: UART I/O Ports

I/O Port Active Direction Initial State Description

RESET High I Reset signal, active high

CLK_I — I Clock signal 16 times the receiving/transmitting
baud rate clock frequency

UART_ADR_I [4:0] — I Address from WISHBONE interface

UART_DAT_I [7:0] — I Data input from WISHBONE interface

UART_DAT_O [7:0] — O Data output to WISHBONE interface

UART_SEL_I — I Select input array, which indicates where the valid
data is expected on a data bus

UART_STB_I High I Strobe input indicating that the slave is selected

UART_CYC_I High I Cycle signal indicating that a valid bus cycle is in
progress

UART_WE_I — I Write enable input

0 = read

1 = write

UART_BTE_I High I Burst-type extension

UART_ACK_O High O 0 Acknowledge output, indicating the termination of a
normal bus cycle

INTR High O 0 Interrupt request, active high, used to request
service from the CPU whenever one of the following
four conditions happens:

 Receiver line errors

 Receiver buffer available

 Transmit buffer empty

 Modem status flag change detected

SIN High I — RS232 serial data input

SOUT High O 1 RS232 serial data output

Register Descriptions

12 LatticeMico UART

Register Descriptions
The LatticeMico UART includes the registers shown in Table 4:

 Two data buffering registers, RBR and THR

 Three status registers, IIR, LSR, and MSR

 Three control registers, IER, LCR, and MCR

 Baud-rate generator, DIV

Table 5 through Table 11 provide details about each register in the LatticeMico
UART.

Interrupt Enable Register
The interrupt enable register provides discrete control over each of the
independent interrupt sources provided by the UART. When the interrupt is
masked, the INTR output is not activated when the masked interrupt source
becomes active. An interrupt is masked when the corresponding register bit is
set to 0.

Table 4: Register Map

Register Name Offset 7 6 5 4 3 2 1 0

Receive buffer register/transmit
holding register

0x0 Data
bit 7

Data
bit 6

Data
bit 5

Data
bit 4

Data
bit 3

Data
bit 2

Data
bit 1

Data bit
0

Interrupt enable register 0x1 0 0 0 0 MSI RLSI THRI RBRI

Interrupt identification register 0x2 0 0 0 0 0 ID1 ID0 STAT

Line control register 0x3 0 SB SP EPS PEN STB WLS1 WLS0

Modem control register 0x4 0 0 0 0 0 0 RTS DTR

Line status register 0x5 0 TEMT THRR BI FE PE OE DR

Modem status register 0x6 DCD RI DSR CTS DDCD TERI DDSR DCTS

Baud-rate divisor register 0x8 Divisor bits [7:0].

Baud-rate divisor register 0x9 Divisor bits [15:8]

Table 5: Interrupt Enable Register (IER, Addr = 0x04)

Register Name Bit Access Mode Description

RBRI 0 Write only Receiver buffer register interrupt (1 = enable, 0 = disable)

THRI 1 Write only Transmitter hold register interrupt (1 = enable, 0 = disable)

RLSI 2 Write only Receiver line status interrupt (1 = enable, 0 = disable)

MSI 3 Write only Modem status interrupt (1 = enable, 0 = disable)

Register Descriptions

LatticeMico UART 13

Interrupt Identification Register
The interrupt identification register holds information about which interrupt is
currently active. Table 7 shows bit encoding for each interrupt source. The
THRE interrupt is cleared by either reading the IIR register or writing to the
THR FIFO in FIFO mode or THR register in non-FIFO mode. But if the THR
FIFO in FIFO mode or the THR register in non-FIFO mode is empty, the
THRE interrupt is again asserted by the UART after reading the IIR register,
provided that the THRI bit of the IER register is set.

Table 6: Interrupt Identification Register (IIR, Addr = 0x08)

Register Name Bit Access Mode Description

STAT 0 Read only Interrupt state

ID1:0 2:1 Read only Interrupt identification code (see Table 7)

Table 7: Four Prioritized Interrupt Levels and Sources

Interrupt Level ID1 ID0 STAT Source of Interrupt Interrupt Reset Control

None 0 0 1 No interrupt pending None

Highest 1 1 0 LSR error flags (OE/PE/FE/BI) Reading LSR

Second 1 0 0 LSR receiver data-ready flag. Reading RBR in non-FIFO
mode. In FIFO mode, when
FIFO becomes empty.

Third 0 1 0 LSR flag THR empty (THRE) Reading IIR or writing THR

Fourth 0 0 0 Modem status Reading MSR

Register Descriptions

14 LatticeMico UART

Line Control Register
The line control register is used to define the data protocol between the
interconnected serial devices. It controls the number of data bits sent, parity,
the number of stop bits, stick parity, and the transmit break bit.

Table 8: Line Control Register (LCR, Addr = 0x0C)

Register Name Bit Access Mode Description

WLS1: 1:0 Write only Defines the data length:

 00 – 5 bit

 01 – 6 bit

 10 – 7 bit

 11 – 8 bit

STB 2 Write only Stop-bit definition:

 0 – 1 stop

 1 –

WLS1:0 = 00: 1.5 stop

WLS1:0 = 01: 2 stop

WLS1:0 = 10: 2 stop

WLS1:0 = 11: 2 stop

PEN 3 Write only Parity enable:

 0 – Parity bit disable

 1 – Parity bit enable

EPS 4 Write only Parity even:

 0 – Odd parity selected

 1 – Even parity selected

SP 5 Write only Stick parity:

 0 – Stick parity disable

 1 –

When PEN, EPS, or SP is set (that is, 1), parity is
sent or checked for 0.

When PEN or SP is set, EPS is clear, parity is sent or
checked for 1.

SB 6 Write only Tx break:

 0 – Disable break assertion

 1 – Assert break. SOUT is driven low active (break
character) as long as this bit is 1. It has no effect on
the transmitter logic.

Register Descriptions

LatticeMico UART 15

Modem Control Register
In Table 9, loopback mode for testing (bit 4) and auxiliary user-defined output
Out2 (bit 3) and Out1 (bit 2) are removed, because they can be implemented
with in-system programmability (ISP).

Line Status Register
Table 10 provides information about the line status register.

Table 9: Modem Control Register (MCR, Addr=0x10)

Register Name Bit Access Mode Description

DTR 0 Write only Controls the data-terminal-ready (DTRn) output.

 DTR=0: force DTRn output to a logic 1 (normal default)

 DTR=1: force DTRn output to a logic 0

RTS 1 Write only Controls the request-to-send (RTSn) output.

 RTS=0: force RTSn output to a logic 1 (normal default)

 RTS=1: force RTSn output to a logic 0

Table 10: Line Status Register (LSR, Addr=0x14)

Register
Name

Bit Access Mode Description

DR 0 Read only Receiver data-ready. DR indicates status of RBR. It is set to
logic 1 when RBR data is valid and is reset to logic 0 when
RBR is empty. When line errors (OE/PE/FE/BI) occur, DR is
also set to logic 1, and RBR is updated to reflect the data bits
portion of the frame. Pin RxRDYn is the complement of this
bit.

OE 1 Read only Overrun error. This bit is set when the next character is
transferred into RBR before the previous RBR data is read by
the CPU. The previous RBR data is lost when the overrun
occurs.

PE 2 Read only Parity error. This bit is set to logic 1 only when the parity is
enabled and the parity bit is not at the logic state it should be.
For even parity, the parity bit should be 1 if an odd number of
1s in the data bits is received. Otherwise, the parity bit should
be 0. For odd parity, the parity bit should be 1 if an even
number of 1s in the data bits is received. Otherwise, the parity
bit should be 0.

FE 3 Read only Framing error. FE is reset to logic 0 whenever SIN is sampled
high at the center of the first stop bit, regardless to how many
stop bits the UART is configured.

Register Descriptions

16 LatticeMico UART

The four error flags (OE, PE, FE, and BI) of LSR are reset to logic 0 after a
LSR read.

Modem Status Register
Table 11 provides information about the modem status register.

Whenever bit 0-3 is set to logic 1, a modem status interrupt is generated if the
interrupt is enabled. These four bits are reset to logic 0 whenever CPU reads
MSR.

BI 4 Read only Break interrupt. BI is set to logic 1 whenever SIN is low for
longer than a whole data frame (the time of start bit + data bits
+ parity bit + stop bits). If SIN is still low after BI is reset to
logic 0 by reading LSR, BI is not set to logic 1 again. Since
break is also a framing error, FE is also set to 1 when BI is
set.

THRR 5 Read only THR ready. THRE is set to logic 1 whenever THR is ready,
which indicates that the transmitter is ready to accept new
data to transmit. Pin TxRDYn is the complement of this bit.

TEMT 6 Read only Both THR and TSR are empty. This bit is set to logic 1 when
THRE is set to 1 and the last data bit in the TSR is shifted out
through SOUT.

Table 10: Line Status Register (LSR, Addr=0x14) (Continued)

Register
Name

Bit Access Mode Description

Table 11: Modem Status Register (MSR, Addr=0x18)

Register Name Bit Access Mode Description

DCTS 0 Read only Delta CTS indicates that the CTSn has changed state since
the last time it was read by CPU.

DDSR 1 Read only Delta DSR indicates that the DSRn has changed state since
the last time it was read by CP.

TERI 2 Read only Trailing edge of RI indicates that the RIn input has changed
from a low to a high state.

DDCD 3 Read only Delta DCD indicates that the DCDn input has changed state.

CTS 4 Read only Clear to sent is the complement of the CTSn input.

DSR 5 Read only Data set ready is the complement of the DSRn input.

RI 6 Read only Ring indicator is the complement of the RIn input.

DCD 7 Read only Data carrier detect is the complement of the DCDn input.

EBR Resource Utilization

LatticeMico UART 17

Baud-Rate Divisor Register
The LatticeMico UART includes a baud-rate divisor register, detailed in
Table 12.

The software can change the value of the divider. The value written to the
divider is determined by the following equation:

divisor_value = (clk_in_MHz * 1000 * 1000)/baud_rate;

The clk_in_MHz frequency is in megahertz.

Here is an example:

clk_in_mhz= 25 MHz
desired baud_rate = 115200

divider = (25 * 1000 * 1000)/115200 = 217

EBR Resource Utilization
The LatticeMico UART has no EBRs.

Usage Model
This section describes the software usage model for the LatticeMico UART.
The UART device drivers provide a simple and easy-to-use interface to
interact with the physical UART device.

The device driver presents the UART as a simple character device from which
a designer can either “get” characters or “put” characters from transmission.
The UART can be configured through Mico System Builder (MSB) to operate
in an interrupt-driven mode or in a polled mode. In the polled mode, the
hardware does not raise an interrupt to indicate whether a character has been
successfully transmitted/received, or that the transmission/reception has
resulted in an error. Therefore, it is the responsibility of the application layer to
keep track of the transmission and reception of characters via the UART. In
the interrupt-driven mode, the hardware raises an interrupt for every character
that is transmitted/received or for errors that may have occured. Therefore,
the application layer does not need to continuously monitor the UART.

Table 12: Baud-Rate Divisor Register

Register Name Bit Access Description

DIV 15:0 Write read only The divisor register is used to
divide the CLK_I input to generate
the baud-rate clock.

LatticeMico32 Microprocessor Software Support

18 LatticeMico UART

Interrupt-driven mode is more suitable to an asynchronous mode of operation,
where the foreground thread of operation does not need to be synchronized
to the transmission and reception of data through the UART. The interrupt-
driven mode relies on receive and transmit buffers that are implemented in the
software. The size of these buffers is configurable through MSB.

Error Detection and Handling
The UART reports PE (parity error) or FE (framing error) for the character
received. However, the detection of the framing error depends on the logic
level detected by the UART when expecting the stop bit. Because the
detection of the framing error depends on the baud rate between the two
UARTs, as well as on the character transmitted by the other end when the
UARTS are using different baud rates, it is not very reliable.

When retrieving a character from the UART, the UART software driver will
check the LSR (line status register) for the framing and parity errors only if it is
operating in interrupt mode. If the FE or PE flag is set, the UART interrupt will
ignore the character. Since the FE and PE flags are in the LSR and are reset
on reading the LSR, and since in polled-transmit mode the LSR needs to be
read by the transmit function, the UART software driver does not check the
FE or PE flags when performing a polled receive.

LatticeMico32 Microprocessor Software Support
This section describes the LatticeMico32 microprocessor software support
provided for the LatticeMico UART component. It first describes the basic
UART device-driver interface and then describes the UART lookup service
and the UART file-mode service.

Note

The space required for the buffers, which is a minimum of two bytes for transmission
and two bytes for reception, is always allocated irrespective of the mode of operation.
These allocated buffers are used in interrupt-driven mode but not in polled mode. The
compile-time declaration of buffers eliminates the need for performing run-time
memory allocation, which allows better memory usage.

Note

While the device driver by itself does not provide for error detection or correction or
flow control of the streaming data, a higher-level software protocol can provide these
facilities.

Note

The supporting routines are meant for use in a single-threaded environment. If you use
them in a multi-tasking environment, you must provide re-entrance protections.

LatticeMico32 Microprocessor Software Support

LatticeMico UART 19

Register Map Structure
The structure shown in Figure 5 depicts the register map layout for the UART
component. The elements are self-explanatory and are based on the register
map shown in Table 4. This structure, which is defined in the MicoUART.h
header file, enables you to directly access the UART registers, if desired. It is
used internally by the device driver for manipulating the UART.

Device Driver
The UART device driver interacts directly with the UART instance. This
section describes the limitations, type definitions, structure, and functions of
the UART device driver.

Limitations
The UART device driver assumes that the UART component is used as a
basic serial transmission/reception device devoid of hardware flow control.

 Software control: any desired software control must be provided by the
application.

 Modem functionality: although the UART component has modem
functionality, this feature is not supported in the LatticeMico8 UART
component driver.

Type Definitions

This structure, shown in Figure 6, contains the UART component instance
specific information and is dynamically generated in the DDStructs.h header
file. This information is largely filled in by the managed build process by
extracting the UART component-specific information from the platform
specification file. You should not manipulate the members directly, because
this structure is for exclusive use by the device driver.

Figure 5: UART Register Map Structure

typedef struct st_MicoUart {
volatile unsigned char rxtx;
volatile unsigned char ier;
volatile unsigned char iir;
volatile unsigned char lcr;
volatile unsigned char mcr;
volatile unsigned char lsr;
volatile unsigned char msr;
volatile unsigned short div;

}MicoUart_t;

LatticeMico32 Microprocessor Software Support

20 LatticeMico UART

Figure 6: UART Device Context Structure

Table 13 describes the parameters of the UART device context structure
shown in Figure 6.

Table 13: UART Device Context Structure Parameters

Parameter Data Type Description

name const char * Instance-specific component name (entered
in MSB)

base unsigned int MSB-assigned base address for this instance

intrLevel unsigned char Processor interrupt line to which this instance
is connected

intrAvail unsigned char Indicates whether the UART is to be used in
interrupt mode (1) or not (0), as configured in
MSB

baudrate unsigned int Baud rate as configured in MSB. It can be
modified at run time.

databits unsigned int Data bits as configured in MSB. The data bits
can be changed at run time by using the
MicoUart_dataConfig function call.

stopbits unsigned int Stop bits as configured in MSB. The stop bits
can be changed at run time by using the
MicoUart_dataConfig function call.

typedef struct st_MicoUartCtx_t {
const char* name;
unsigned int base;
unsigned char intrLevel;
unsigned char intrAvail;
unsigned int baudrate;
unsigned int databits;
unsigned int stopbits;
unsigned char rxBufferSize;
unsigned char txBufferSize;
unsigned char blockingTx;
unsigned char blockingRx;
unsigned char *rxBuffer;
unsigned char *txBuffer;
DeviceReg_t lookupReg;
unsigned char rxWriteLoc;
unsigned char rxReadLoc;
unsigned char txWriteLoc;
unsigned char txReadLoc;
unsigned int timeoutMicroSecs;
volatile unsigned char txDataBytes;
volatile unsigned char rxDataBytes;
unsigned int errors;
unsigned char ier;
unsigned int fifoenable;
void * prev;
void * next;
} MicoUartCtx_t;

LatticeMico32 Microprocessor Software Support

LatticeMico UART 21

rxBufferSize unsigned char Size in bytes of the receive buffer for interrupt-
driven operation, as configured in MSB

txBufferSize unsigned char Size in bytes of the transmit buffer for
interrupt-driven operation, as configured in
MSB

blockingTx unsigned char Indicates whether the device driver must
operate in blocking mode (1) or in non-
blocking mode (0) for transmission

blockingRx unsigned char Indicates whether the device driver must
operate in blocking mode (1) or in non-
blocking mode (0) for reception

rxWriteLoc unsigned char Used internally for recexive buffer
management

rxReadLoc unsigned char Used internally for receive buffer
management

txWriteLoc unsigned char Used internally for transmit buffer
management

txReadLoc unsigned char Used internally for transmit buffer
management

timeoutMicroSecs unsigned int Used internally to detect device errors on
transmission

txDataBytes volatile
unsigned char

Used internally for transmit buffer
management

rxDataBytes volatile
unsigned char

Used internally for receive buffer
management

errors unsigned int Not used (reserved for future use)

ier unsigned char Used internally as a shadow of the UART IER
register

fifoenable unsigned int Indicates whether the UART has a TX/RX
FIFO (1) or not (0).

prev void * Used internally for device lookup service

next void * Used internally for device lookup service

rxBuffer[4] unsigned char Internal use for receive buffer implementation.
The size of the array is configurable on a per-
instance basis through MSB.

Table 13: UART Device Context Structure Parameters (Continued)

Parameter Data Type Description

LatticeMico32 Microprocessor Software Support

22 LatticeMico UART

Functions
This section describes the implemented device-driver-specific functions.

MicoUartInit Function
void MicoUartInit(MicoUartCtx *ctx);

This function initializes a LatticeMico UART instance on the basis of the
passed UART context structure. This initialization function is responsible for
the following:

 Initializing the interrupts or buffer parameters for interrupt-driven operation

 Registering the UART instance with UART service

As a part of the managed build process, the LatticeDDInit function calls this
initialization routine for each UART instance that is present in the platform.

Table 14 describes the parameter in the MicoUartInit function syntax.

MicoUart_setRate Function
unsigned int MicoUart_setRate(MicoUartCtx_t *ctx, unsigned int
baudrate);

This function sets the baud rate of a UART instance. The software does not
check for the validity of the baud-rate value. The function computes the UART
divisor value on the basis of the following formula:

divisor_value = divisor = cpu_frequency/baud_rate;

Cpu_frequency is the frequency specified in hertz.

This result is then loaded into the divisor register. It also programs the desired
baud rate in the UART control register.

txBuffer[4] unsigned char Internal use for transmit buffer
implementation. The size of the array is
configurable on a per-instance basis through
MSB.

lookupReg DeviceReg_t Used by the device driver to register the
UART component instance with the
LatticeMico lookup service. Refer to the
LatticeMico Software Developer User Guide
for a description of the DeviceReg_t data
type.

Table 14: MicoUartInit Function Parameter

Parameter Description

MicoUartCtx_t* Pointer to a valid MicoUartCtx_t structure representing a valid
UART instance.

Table 13: UART Device Context Structure Parameters (Continued)

Parameter Data Type Description

LatticeMico32 Microprocessor Software Support

LatticeMico UART 23

Table 15 describes the parameters in the MicoUart_setRate function syntax.

Table 16 shows the values returned by the MicoUart_setRate function.

MicoUart_dataConfig Function
unsigned int MicoUart_dataConfig(MicoUartCtx_t *ctx,
 unsigned int dwidth,
 unsigned char parity_en,
 unsigned char even_odd,
 unsigned int stopbits)

This function changes the following UART data-reception transmission
parameters:

 Data width

 Enable parity generation and detection

 Parity selection if parity generation and detection is enabled

 Stop bits

Table 15: MicoUart_setRate Function Parameters

Parameter Description Notes

MicoUartCtx_t* Pointer to a valid
MicoUartCtx_t structure
representing a valid UART
instance.

unsigned int Baud rate No software check is performed.
Depending on the CPU clock
speed, the baud rate might result
in loss of communication or
excessive errors. Consult the
component data sheet for more
information.

Table 16: Values Returned by the MicoUart_setRate Function

Return Value Description

0 Successful

MICOUART_ERR_INVALID_ARGUMENT Failure: baud rate value was zero.

LatticeMico32 Microprocessor Software Support

24 LatticeMico UART

Table 17 describes the parameters in the MicoUart_dataConfig function
syntax.

Table 18 shows the values returned by the MicoUart_dataConfig function
syntax.

MicoUart_setBlockMode Function
unsigned int MicoUart_setBlockMode(MicoUartCtx_t *ctx, unsigned
int uiBlock);

This function changes the device driver mode of operation to blocking mode if
it was operating in non-blocking mode. Blocking and non-blocking behavior is
discussed in “MicoUart_putC Function” on page 25 and “MicoUart_getC
Function” on page 26.

Table 17: MicoUart_dataConfig Function Parameters

Parameter Description

MicoUartCtx_t *ctx Pointer to a valid MicoUartCtx_t structure
representing a valid UART instance

unsigned int dwidth Data width.

Allowed values: 5, 6, 7, 8

unsigned int parity_en Enable parity

 0 = Parity disabled

 1 = Parity enabled

unsigned int even_odd Parity type:

 0 = Odd parity

 1 = Even parity

Note: This parameter is ignored if parity is
disabled.

unsigned int stopbits Stop-bits selection:

 1 = 1 stop bit

 2 = 1.5 or 2 stop bits, depending on the data
width

Table 18: Values Returned by the MicoUart_dataConfig Function

Return Value Description

0 Successful

MICOUART_ERR_INVALID_ARGUMENT Failure: bad argument to the function.

LatticeMico32 Microprocessor Software Support

LatticeMico UART 25

Table 19 describes the parameters in the MicoUart_setBlockMode function
syntax.

Table 20 shows the values returned by the MicoUart_setBlockMode function.

MicoUart_putC Function
unsigned int MicoUart_putC(MicoUartCtx_t *ctx, unsigned char
ucChar);

This function posts a character to the UART THR for transmission. The
behavior depends on the mode of operation:

 Interrupt-driven blocking mode – This function attempts to add the
incoming byte of data to the software-implemented transmit buffer. If the
buffer is full, the function waits until space is available in the buffer. When
space is available, the incoming byte of data is posted to the software-
implemented transmit buffer, and the function returns.

 Non-interrupt-driven blocking mode – The function directly polls the UART
status register and waits for the UART transmit-hold register to become
empty. Once empty, the function queues the character and returns. If the
transmit-hold-register is empty, the function loads the character for
transmission and returns.

 Interrupt-driven non-blocking mode – The function queries the software-
implemented transmit buffer. If there is space in the buffer, it queues the
character and returns with a success status. If there is no space in the
buffer, it returns the MICOUART_ERR_WOULD_BLOCK error code.

 Non-interrupt driven non-blocking mode – The function queries the UART
line status register and checks the THRE bit to see if the THR is empty. If
the THR is empty, it is loaded with the incoming data byte, and the
function returns. If the UART status register indicates that the transmit-
hold register is not empty, the function returns immediately with the
MICOUART_ERR_WOULD_BLOCK error code.

Table 19: MicoUart_setBlockMode Function Parameters

Parameter Description

MicoUartCtx_t* Pointer to a valid MicoUartCtx_t structure representing
a valid UART instance

unsigned int 0 – Set operation to non-blocking

1 – Set operation to blocking

Table 20: Value Returned by the MicoUart_setBlockMode Function

Return Value Description

0 Successful

LatticeMico32 Microprocessor Software Support

26 LatticeMico UART

Table 21 describes the parameters in the MicoUart_putC function syntax.

Table 22 shows the values returned by the MicoUart_putC function.

MicoUart_getC Function
unsigned int MicoUart_getC(MicoUartCtx_t *ctx, unsigned char
*pucChar);

This function attempts to retrieve a received character from the UART. The
exact behavior depends on the operating mode:

 Interrupt-driven blocking mode – The function returns immediately with a
received character if there is one waiting in the receive buffer. If there is no
character pending in the receive buffer, the function continuously polls the
receive buffer for a new character. The function returns when a character
is placed into the software-implemented receive buffer.

 Non-interrupt-driven blocking mode – The function returns immediately
with the character in the receive-holding register if the UART status
indicates there is a character pending. If the UART status indicates there
is no character to read, the function continuously polls the UART status
register for a new character. The function returns as soon as the RBR is
no longer empty.

 Interrupt-driven non-blocking mode – The function returns immediately if
there is a new character waiting in the receive buffer. If there is no
character waiting in the receive buffer, the function returns immediately
with the MICOUART_ERR_WOULD_BLOCK error code.

 Non-interrupt-driven non-blocking mode – The function returns
immediately with the character in the UART receive-hold register if the
UART status indicates there is a character pending. If there is no

Table 21: MicoUart_putC Function Parameters

Parameter Description

MicoUserCtx_t* Pointer to a valid MicoUartCtx_t structure
representing a valid UART instance

unsigned char Character to queue for transmission

Table 22: Values Returned by the MicoUart_putC Function

Return Value Description

0 Successful

MICOUART_ERR_WOULD_
BLOCK

UART operates in non-blocking mode, and the
function blocks, indicating that there is no room to
queue this character.

MICOUART_ERR_DEVICE_
ERROR

UART operates in blocking mode, and even after a
complete word time, there is no space to queue
another character, indicating that this is a device
error.

LatticeMico32 Microprocessor Software Support

LatticeMico UART 27

character pending, the function returns with the
MICOUART_ERR_WOULD_BLOCK error status.

Table 23 describes the parameters in the MicoUart_getC function syntax.

Table 24 shows the values returned by the MicoUart_getC function.

Services
The UART component software support includes support for the following two
types of services:

 Lookup service – UART device driver registers UART instances with
LatticeMico lookup service, using their instance names for device names
and “UARTDevice” as the device type.

For information on the LatticeMico lookup service, refer to the LatticeMico
Software Developer User's Guide.

 File service – Each UART instance makes itself available as a file device
to the LatticeMico file services. File device support for the UART is limited
to the standard input and output of characters and does not provide an
actual file system support. The UART file service has the following
limitations:

 The UART file service does not support an explicit file system,
although it does support standard file operations, such as fopen,
fprintf, fgets, and fscanf.

 The UART file system assumes that there is an appropriate
connection to the LatticeMico UART instance that provides a console
for it to communicate with, for example, the LatticeMico UART
instance connected over a serial link to a PC’s serial port, with the PC
hosting a serial terminal program such as Hyperlink or TeraTerm.

Table 23: MicoUart_getC Function Parameters

Parameter Description

MicoUartCtx_t* Pointer to a valid MicoUartCtx_t structure representing a
valid UART instance

unsigned char* Pointer to unsigned character location where the read
character should be stored

Table 24: Values Returned by the MicoUart_getC Function

Return Value Description

0 Successful

MICOUART_ERR_WOULD_
BLOCK

UART is operating in non-blocking mode, and the
function would block, indicating that there is no
character to be read.

LatticeMico32 Microprocessor Software Support

28 LatticeMico UART

 For file-read operations such as fscanf and fgets, the UART file
service implementation echoes the characters over the transmit
channel. This behavior is not modifiable.

 The UART file service read function implementation treats a \r or a \n
as an input delimiter character. This behavior is not modifiable.

 The UART file service allows the UART to be treated as a standard I/O
stream, provided that it is explicitly set to be used this way through the
C/C++ SPE platform configuration tab or at run time programmatically.

 The UART file system support is limited to single-threaded
applications.

 The UART file system sets the UART to operate in blocking mode.
This behavior cannot be modified.

For information on LatticeMico file services, refer to the LatticeMico Software
Developer User Guide.

UART Code Reduction
You can reduce the impact of the UART device driver and services on the
overall code size by following these guidelines:

 If appropriate, reduce the transmit and receive buffer sizes to the
minimum. You can do this through the MSB user interface.

 If not required, disable the UART file services by defining the following
macro in the C/C++ Software Project Environment (SPE) LatticeMico
Preprocessor defines:

_MICOUART_FILESUPPORT_DISABLED_

This macro disables the UART-specific file system registration function,
allowing the linker to eliminate all the UART file service software code.
However, you can no longer use any UART instance for standard input/
output or file operation.

 If none of the UART instances operate using interrupts, you can eliminate
the code for interrupt-driven operation by defining the
_MICOUART_NO_INTERRUPTS_ preprocessor macro. This change
reduces the code size, but the device driver operates on all UART
instances present in the system in poll mode.

Software Usage Examples
This section provides examples of using the UART as a file device and as a
standard I/O device at run time.

LatticeMico32 Microprocessor Software Support

LatticeMico UART 29

Using a UART as a File Device
The default managed build process initializes the UART instance by invoking
the UART initialization function described previously in this document. This
initialization function makes the UART available to the LatticeMico lookup
service, as well as to the LatticeMico file service.

Because the UART instance is available as a file device, it can be used for
any other file operation, as shown in the example in Figure 7. In the example,
it is assumed that the platform contains a UART named “uart.”

Setting UART as a Standard I/O Device at Run Time
The UART implementation allows C/C++ SPE to flag it as a device capable of
serving standard input/output streams. You can also enable this functionality
at run time. The example shown in Figure 8 shows how to set a UART

Figure 7: UART Used as File Device

#include <stdio.h>

int main(void) {

/*
 * You have a UART instance named "uart" in your platform
 * and you wish to use it as a file device.
 */

/*
 * STEP 1: "Open" the UART device, using the device-
 * naming convention.

*/

FILE *fptr = fopen("\\\\uart\\", "wt");
if(fptr == 0) {

/* ERROR: failed to open our UART device */
return(-1);

}

/* STEP 2: "Write" some data to our UART device */
fprintf(fptr, "i wrote bytes to the uart\r\n");
/* STEP 3: "Close" our device now that we’re done using it.
*/
fclose(fptr);

/*
 * Wait for a second just in case the isr is still servicing
 * the transmit buffer, since the UART baud rate is much
 * slower than the CPU clock speed.
*/

MicoSleepMilliSecs(1000);
return(0);

}

LatticeMico32 Microprocessor Software Support

30 LatticeMico UART

instance as a standard input/output device and also demonstrates the lookup
capability. The example assumes the presence of a UART component named
“uart.”

Figure 8: UART Used as Standard I/O Device

#include <stdio.h>
#include "DDStructs.h"
#include "LookupServices.h"
#include "MicoFileDevices.h"
#include "MicoUtils.h"

int main(void) {
int i;
char cBuffer[256];

/*
 * You have a UART instance named "uart" in your platform
 * and you wish to use it as a standard I/O device for
 * printf and fgets (and scanf, etc.)
*/

/* STEP1: Fetch UART context */
MicoUartCtx_t *pUart = (MicoUartCtx_t *)
MicoGetDevice("uart");
if(pUart == 0) {

/* ERROR: Failed to find a named device */
return(-1);

}

/* Set this device as standard input device. Device "0" is
the stdin file handle.*/
i = MicoFileRedirIO(0, pUart->name);
if(i != 0) {

/* ERROR: Failed to set this device for std input */
return(-1);

}

/* Set this device as standard output device. Device "1" is
the stdout file handle.*/
i = MicoFileRedirIO(1, pUart->name);
if(i != 0) {

/* ERROR: failed to set this device for std output */
return(-1);

}

/*
 * Read a line from the UART!
 * NOTE: Do not enter more than 255 characters!
 */
gets(cBuffer);

/*
 * "Write" over the UART as standard output!
 */
printf("You just entered a line using UART: %s\r\n",
cBuffer);

Support for C/C++ "printf" in RTL Simulation

LatticeMico UART 31

Using the Device Driver API Directly
The “UartEcho” template provided with the LatticeMico System software
demonstrates the use of the raw device driver API for manipulating the UART
device. This template is located in the following directory:

<install_path>\micosystem\utilities\templates\Uart_Echo

Support for C/C++ "printf" in RTL Simulation
Each UART instance makes itself available as a file device to the LatticeMico
file services. When the UART instance is used as a Standard Output and
Error console (C/C++ stdout and stderr), all C/C++ "printfs" are redirected to
the UART instance and are viewable on the console connected to the UART;
for example, a UART instance connected over a serial link to PC's serial port,
with the PC hosting a serial terminal program such as Hyperlink or TeraTerm.

Viewing C/C++ “printfs” During RTL Simulation It might be desirable for
the software programmer to be able to view the C/C++ "printfs" even during
RTL simulation. Although the aforementioned console is not available during
RTL simulation, the UART component has an alternate mechanism that
allows you to view C/C++ "printfs" in the RTL simulator.

To view characters transmitted by the UART instance:

 Enable the "Print Transmit Character" dialog box option in the UART GUI.

This option enables behavioral code within the UART component that will
print characters transmitted by the UART instance on its SOUT port during
RTL simulation. This behavioral code is invisible to synthesis tools and
does not impact the actual design. Therefore the designer does not have
to maintain two sets of RTL code, one for simulation and the other for
synthesis.

Speeding up RTL Simulation The UART transmits each character serially
over the SOUT port, which might take hundreds of LatticeMico clock cycles.
One way to speed up RTL simulation is to turn off the SOUT logic.

/*
 * Wait for a second just in case the isr is still servicing
 * the transmit buffer, since the uart buad rate is much
 * slower than the CPU clock speed
 */
MicoSleepMilliSecs(1000);

return(0);
}

Figure 8: UART Used as Standard I/O Device (Continued)

LatticeMico8 Microcontroller Software Support

32 LatticeMico UART

To speed up RTL simulation:

1. Enable the "Emulate Transmit Operation" dialog box option in the UART
GUI.

2. Define the SIMULATION Verilog macro during RTL simulation. For
example, use the +define+SIMULATION option while compiling the
UART RTL for simulation.

Since the disabling of SOUT logic is predicated on defining the SIMULATION
Verilog macro, it is acceptable to keep the "Emulate Transmit Operation"
option enabled during synthesis. This means that the designer does not have
to maintain two sets of RTL code, one for simulation and the other for
synthesis.

Disabling “Interrupt” to Further Reduce RTL Simulation Time To
reduce RTL simulation time further, the designer can disable the “interrupt”
feature of the UART. This feature raises an interrupt whenever a character
has been successfully transmitted over the SOUT port.

To disable the UART “interrupt” feature, take one of the following
actions:

 Disable the "Use Interrupts" dialog box option in the UART GUI. The
drawback of this option is that the designer will now need to maintain two
sets of RTL code, one for simulation in which interrupts are disabled and
another for synthesis in which interrupts are enabled.

 Disable the interrupts by defining the _MICOUART_NO_INTERRUPTS_
preprocessor macro while compiling the C/C++ software application. This
macro will disable all software code that monitors and uses the UART's
interrupt mechanism to transmit characters over the SOUT port. The
advantage of this approach is that the designer need not maintain two
sets of RTL code. The designer can leave the "Use Interrupts" option
enabled for synthesis as well as simulation. The drawback of this
approach is that the designer will have to recompile the C/C++ software
application without the _MICOUART_NO_INTERRUPTS_ preprocessor
macro whenever the software is tested on the actual FPGA. But given that
the software compilation time is invariably much smaller than the time
required to synthesis a new FPGA bitstream for the design, this option
might be a better match for the software developer than the previous
option in which interrupts are disabled in RTL.

LatticeMico8 Microcontroller Software Support
This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico UART component.

LatticeMico8 Microcontroller Software Support

LatticeMico UART 33

Device Driver
The UART device driver interacts directly with the UART instance. This
section describes the limitations, type definitions, structure, and functions of
the UART device driver.

Limitations
The UART device driver assumes that the UART component is used as a
basic serial transmission/reception device devoid of hardware flow control.

 Software control: any desired software control must be provided by the
application.

 Although the UART component has modem functionality, this feature is
not supported in the LatticeMico8 UART component driver.

Type Definitions
This section describes the type definitions for the UART device context
structure. This structure, shown in Figure 9, contains the UART component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the UART component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions
are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.

Table 25 describes the parameters of the UART device context structure
shown in Figure 9. The table also identifies any C preprocessor 'macro
definition' that controls the the generation of the parameter. If the 'state'
associated with a C preprocessor 'macro definition' is 'ifdef', then it means
that the application must be compiled with this macro definition for the
parameter to be generated. If the 'state' associated with a C preprocessor
'macro definition' is 'ifndef', then it means that the application must be
compiled without the this macro definition for the parameter to be generated.

C Preprocessor Macro Definitions
This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and 'function-like'.

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command-
line in the application's 'Build Properties'. Refer to the LatticeMico8
Software Developers User Guide for more information on how to manually
add the macro definition in the the application's 'Build Properties' GUI.

LatticeMico8 Microcontroller Software Support

34 LatticeMico UART

Figure 9: UART Device Context Structure

typedef struct st_MicoUartCtx_t {
const char *name;
size_t base;
#ifndef __MICO_NO_INTERRUPTS__
#ifdef __MICOUART_INTERRUPT__
unsigned char intrLevel;
unsigned char intrAvail;
unsigned char rxBufferSize;
unsigned char txBufferSize;
#endif
#endif

#ifdef __MICOUART_BLOCKING__
unsigned char blockingTx;
unsigned char blockingRx;
#endif

#ifndef __MICO_NO_INTERRUPTS__
#ifdef __MICOUART_INTERRUPT__
unsigned int fifoenable;
unsigned char *rxBuffer;
unsigned char *txBuffer;
unsigned char rxWriteLoc;
unsigned char rxReadLoc;
unsigned char txWriteLoc;
unsigned char rxReadLoc;
volatile unsigned char txDataBytes;
volatile unsigned char rxDataBytes;
#endif
#endif
} MicoUartCtx_t;

Table 25: UART Device Context Structure Parameters

Parameter Data
Type

C Preprocessor Macro
Definition Name

C Preprocessor
Macro Definition
State

Description

name const
char *

Instance-specific component name
(entered in MSB)

base size_t __MICO_NO_INTERRUPTS__ ifndef MSB-assigned base address for
this instance

__MICOUART_INTERRUPTS__ ifdef

intrLevel unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Processor interrupt line to which
this instance is connected

__MICOUART_INTERRUPTS__ ifdef

intrAvail unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Indicates whether the UART is to
be used in interrupt mode (1) or
not (0), as configured in MSB__MICOUART_INTERRUPTS__ ifdef

rxBufferSize unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Size in bytes of the receive buffer
for interrupt-driven operation, as
configured in MSB__MICOUART_INTERRUPTS__ ifdef

LatticeMico8 Microcontroller Software Support

LatticeMico UART 35

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
'check-box' associated with the macro definition. Refer to the LatticeMico8
Software Developers User Guide for more information on how to set up

txBufferSize unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Size in bytes of the transmit buffer
for interrupt-driven operation, as
configured in MSB__MICOUART_INTERRUPTS__ ifdef

blockingTx unsigned
char

__MICOUART_BLOCKING__ ifndef Indicates whether the device driver
must operate in blocking mode (1)
or in non-blocking mode (0) for
transmission

blockingRx unsigned
char

__MICOUART_BLOCKING__ ifdef Indicates whether the device driver
must operate in blocking mode (1)
or in non-blocking mode (0) for
reception

fifoenable unsigned
int

__MICO_NO_INTERRUPTS__ ifndef Indicates whether the UART has a
TX/RX FIFO (1) or not (0).

__MICOUART_INTERRUPTS__ ifdef

rxBuffer[4] unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Internal use for receive buffer
implementation. The size of the
array is configurable on a per-
instance basis through MSB.

__MICOUART_INTERRUPTS__ ifdef

txBuffer[4] unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Internal use for transmit buffer
implementation. The size of the
array is configurable on a per-
instance basis through MSB.

__MICOUART_INTERRUPTS__ ifdef

rxWriteLoc unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for recexive buffer
management

__MICOUART_INTERRUPTS__ ifdef

rxReadLoc unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for receive buffer
management

__MICOUART_INTERRUPTS__ ifdef

txWriteLoc unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for transmit buffer
management

__MICOUART_INTERRUPTS__ ifdef

txReadLoc unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for transmit buffer
management

__MICOUART_INTERRUPTS__ ifdef

txDataBytes volatile
unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for transmit buffer
management

__MICOUART_INTERRUPTS__ ifdef

rxDataBytes volatile
unsigned
char

__MICO_NO_INTERRUPTS__ ifndef Used internally for receive buffer
management

__MICOUART_INTERRUPTS__ ifdef

Table 25: UART Device Context Structure Parameters (Continued)

Parameter Data
Type

C Preprocessor Macro
Definition Name

C Preprocessor
Macro Definition
State

Description

LatticeMico8 Microcontroller Software Support

36 LatticeMico UART

the check/uncheck the macro definitions in the application's 'Build
Properties' GUI.

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use options 1 or 2.

 __MICOUART_INTERRUPTS__

This preprocessor macro definition enables code and data structures
within the device driver that allow the UART to be used in an interrupt-
driven mode. It is not defined by default.

 __MICOUART_BLOCKING__

This preprocessor macro definition enables code and data structures
within the device driver that allow the UART to be used in a blocking
mode. It is not defined by default.

 __MICOUART_MISC__

This preprocessor macro definition enables the function that modifies the
baudrade of the UART on-the-fly. It is not defined by default.

The 'function-like' macro definitions are used in the LatticeMico8 software
drivers to access the component's Register Map in order to perform certain
operations. All 'fuction-like' macro definitions take input parameters that are
used in performing the operations encoded within the macro. Table 26
describes the 'function-like' macros available in the LatticeMico8 UART driver
header file 'MicoUART.h'. Table 26 also shows how each macro can be used
by the software developer in his application code.

Table 26: C Preprocessor Function-like Macros Available to the Software
Developer

Macro Name Second Argument to
Macro

Description

MICO_UART_RD_RBR The 8-bit value read from
the RBR register.

This macro reads a
character from the Receive
Buffer.

MICO_UART_WR_THR The 8-bit value to be
written to the THR register.

This macro writes a
character to the Transmit
Buffer.

MICO_UART_RD_IER The 8-bit value read from
the IER register

This macro reads from the
Interrupt Enable register.

MICO_UART_WR_IER The 8-bit value to be
written to the IER register

This macro writes to the
Interrupt Enable register.

MICO_UART_RD_IIR The 8-bit value read from
the IIR register

This macro reads from the
Interrupt Identification
register.

LatticeMico8 Microcontroller Software Support

LatticeMico UART 37

Functions
This section describes the implemented device-driver-specific functions.

MicoUartInit Function
void MicoUartInit(MicoUartCtx *ctx);

This function initializes a LatticeMico UART instance on the basis of the
passed UART context structure. This initialization function is responsible for
initializing the interrupts or buffer parameters for interrupt-driven operation. As
a part of the managed build process, the LatticeDDInit function calls this
initialization routine for each UART instance that is present in the platform.

Table 27 describes the parameter in the MicoUartInit function syntax.

MICO_UART_WR_IIR The 8-bit value to be
written to the IIR register

This macro writes to the
Interrupt Identification
register.

MICO_UART_RD_LCR The 8-bit value read from
the LCR register

This macro reads from the
Line Control register.

MICO_UART_WR_LCR The 8-bit value to be
written to the LCR register

This macro writes to the
Line Control register.

MICO_UART_RD_LSR The 8-bit value read from
the LSR register.

This macro reads from the
Line Status register.

MICO_UART_RD_MCR The 8-bit value read from
the MCR register

This macro writes to the
Modem Control register.

MICO_UART_WR_MCR The 8-bit value to be
written to the MCR register

This macro writes to the
Modem Control register.

MICO_UART_RD_DIV The 16-bit value read from
the DIV register

This macro reads from the
Baudrate Divisor register.

MICO_UART_WR_DIV The 16-bit value to be
written to the DIV register

This macro reads from the
Baudrate Divisor register.

Table 27: MicoUartInit Function Parameter

Parameter Description

MicoUartCtx_t* Pointer to a valid MicoUartCtx_t structure representing
a valid UART instance.

Table 26: C Preprocessor Function-like Macros Available to the Software
Developer (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

38 LatticeMico UART

MicoUart_putC Function
void MicoUart_putC(MicoUartCtx_t *ctx, char aChar);

This function posts a character to the UART THR for transmission. The
behavior depends on the mode of operation:

 Interrupt-driven blocking mode – This function attempts to add the
incoming byte of data to the software-implemented transmit buffer. If the
buffer is full, the function waits until space is available in the buffer. When
space is available, the incoming byte of data is posted to the software-
implemented transmit buffer, and the function returns.

 Non-interrupt-driven blocking mode – The function directly polls the UART
status register and waits for the UART transmit-hold register to become
empty. Once empty, the function queues the character and returns. If the
transmit-hold-register is empty, the function loads the character for
transmission and returns.

 Interrupt-driven non-blocking mode – The function queries the software-
implemented transmit buffer. If there is space in the buffer, it queues the
character and returns.

 Non-interrupt driven non-blocking mode – The function queries the UART
line status register and checks the THRE bit to see if the THR is empty. If
the THR is empty, it is loaded with the incoming data byte, and the
function returns. If the UART status register indicates that the transmit
hold register is not empty, the function returns immediately with loading
the data byte in the THR register.

Table 28 describes the parameters in the MicoUart_putC function syntax.

MicoUart_getC Function
unsigned int MicoUart_getC(MicoUartCtx_t *ctx, unsigned char
*pucChar);

This function attempts to retrieve a received character from the UART. The
exact behavior depends on the operating mode:

 Interrupt-driven blocking mode – The function returns immediately with a
received character if there is one waiting in the receive buffer. If there is no
character pending in the receive buffer, the function continuously polls the
receive buffer for a new character. The function returns when a character
is placed into the software-implemented receive buffer.

 Non-interrupt-driven blocking mode – The function returns immediately
with the character in the receive-holding register if the UART status
indicates there is a character pending. If the UART status indicates there
is no character to read, the function continuously polls the UART status

Table 28: MicoUart_putC Function Parameters

Parameter Description

MicoUserCtx_t* Pointer to a valid MicoUartCtx_t structure representing
a valid UART instance

unsigned char Character to queue for transmission

LatticeMico8 Microcontroller Software Support

LatticeMico UART 39

register for a new character. The function returns as soon as the RBR is
no longer empty.

 Interrupt-driven non-blocking mode – The function returns immediately if
there is a new character waiting in the receive buffer. If there is no
character waiting in the receive buffer, the function returns immediately.

 Non-interrupt-driven non-blocking mode – The function returns
immediately with the character in the UART receive-hold register if the
UART status indicates there is a character pending. If there is no
character pending, the function returns without reading tje receive-hold
register.

Table 29 describes the parameters in the MicoUart_getC.

MicoUart_setRate Function
unsigned int MicoUart_setRate(MicoUartCtx_t *ctx, unsigned int
baudrate);

This function sets the baud rate of a UART instance. The software does not
check for the validity of the baud-rate value. The function computes the UART
divisor value on the basis of the following formula:

divisor_value = divisor = cpu_frequency/baud_rate;

Cpu_frequency is the frequency specified in hertz.

This result is then loaded into the divisor register. It also programs the desired
baud rate in the UART control register.

Table 29: MicoUart_getC Function Parameters

Parameter Description

MicoUartCtx_t* Pointer to a valid MicoUartCtx_t structure representing
a valid UART instance

unsigned char* Pointer to unsigned character location where the read
character should be stored

LatticeMico8 Microcontroller Software Support

40 LatticeMico UART

Table 30 describes the parameters in the MicoUart_setRate function syntax.

Software Usage Example
This section provides an example of using the UART as a standard I/O device
at run time. The example is shown in Figure 10 and assumes the presence of
a UART component named "uart.”

Table 30: MicoUart_setRate Function Parameters

Parameter Description Notes

MicoUartCtx_t* Pointer to a valid
MicoUartCtx_t structure
representing a valid UART
instance.

unsigned int Baud rate No software check is performed.
Depending on the CPU clock
speed, the baud rate might result
in loss of communication or
excessive errors. Consult the
component data sheet for more
information.

LatticeMico8 Microcontroller Software Support

LatticeMico UART 41

Figure 10: UART used as a standart I/O device

Support for Viewing Characters
Transmitted by UART in RTL Simulation
It might be desirable for the software developer to be able to view the
transmitted characters during RTL simulation. Normally the transmitted
characters would travel over the serial link to PC's serial port and be viewable
in serial terminal programs such as Hyperlink or TeraTerm. Although such

#include "DDStructs.h"
#include "MicoUtils.h"
#include "MicoUART.h"

static unsigned char GetCharacter(MicoUartCtx_t *pUart)
{

unsigned char c;
MicoUart_getC(pUart, &c);
return(c);

}

static void SendCharacter(MicoUartCtx_t *pUart, unsigned char c)
{

MicoUart_putC(pUart, c);
return;

}

int main (void)
{
 /*
 * Fetch the UART context for UART named "uart" from DDStructs.h
 */
 MicoUartCtx_t *uart = &uart_core_uart;

 /*
 * Set UART baudrate to 115200
 */
 MicoUart_setRate (uart, 115200);

 /*
 * Echo 255 characters
 */
 unsigned char i = 0, c;
 do {
 c = GetCharacter (uart);

 /*
 * Wait for some time since the UART baud rate is much slower
 * than the CPU clock speed
 */
 MicoSleepMilliSecs (100);

 SendCharacter (uart, c);
 } while (++i < 255);
}

LatticeMico8 Microcontroller Software Support

42 LatticeMico UART

consoles are not available during RTL simulation, the UART component has
an alternate mechanism that allows the software developer to view
transmitted characters in the RTL simulator. To view the characters
transmitted, enable the "Print Transmit Character" dialog box option in the
UART GUI. This option enables behavioral code within the UART component
that will print characters transmitted by the UART instance on its SOUT port
during RTL simulation. This behavioral code is invisible to synthesis tools and
does not impact the actual design. Therefore the designer does not have to
maintain two sets of RTL code, one for simulation and the other for synthesis.

Speeding up RTL Simulation
The UART transmits each character serially over the SOUT port, which might
take hundreds of LatticeMico clock cycles. One way to speed up RTL
simulation is to turn off the SOUT logic.

To speed up RTL simulation:

1. Enable the "Emulate Transmit Operation" dialog box option in the UART
GUI.

2. Define the SIMULATION Verilog macro during RTL simulation. For
example, use the +define+SIMULATION option while compiling the UART
RTL for simulation.

Since the disabling of SOUT logic is predicated on defining the SIMULATION
Verilog macro, it is acceptable to keep the "Emulate Transmit Operation"
option enabled during synthesis. This means that the designer does not have
to maintain two sets of RTL code, one for simulation and the other for
synthesis.

Disable "Interrupt" to further reduce RTL
simulation time

To reduce RTL simulation time further, the designer can disable the “interrupt”
feature of the UART. This feature raises an interrupt whenever a character
has been successfully transmitted over the SOUT port.

To disable the UART “interrupt” feature, take one of the following actions:

1. Disable the "Use Interrupts" dialog box option in the UART GUI. The
drawback of this option is that the designer will now need to maintain two
sets of RTL code, one for simulation in which interrupts are disabled and
another for synthesis in which interrupts are enabled.

2. Disable the interrupts by not defining __MICOUART_INTERRUPT__
preprocessor macro while compiling the C/C++ software application. This
macro will disable all software code that monitors and uses the UART's
interrupt mechanism to transmit characters over the SOUT port. While the
advantage of this approach is that the designer need not maintain two
sets of RTL code, the designer will have to recompile the software
application with the __MICOUART_INTERRUPT__ preprocessor macro

LatticeMico8 Microcontroller Software Support

LatticeMico UART 43

whenever the software is tested on the actual FPGA. But given that the
software compilation time is invariably much smaller than the time
required to synthesis a new FPGA bitstream for the design, this option
might be a better match for the software developer than the previous
option in which interrupts are disabled in RTL.

.

Revision History
Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Used CPU clock for the MSR update.

3.1 Modified baud-rate generation.

Updated RX and TX path of the UART to a faster clock.

Implemented six-word-deep FIFO when the FIFO option is
selected.

3.2 FIFO support was added for the UART driver.

3.3 (8.1 SP1) Sideband signal options added so that UART generates
active-low sideband signals indicating full RBR and empty
THR.

3.4 Transmit option added for printing transmit character to the
simulator console window.

3.5 (8.1 SP1) WISHBONE data bus size changed from 32 bits to 8 bits.
WISHBONE address bus size changed from 32 bits to 4
bits. Register map compressed to make all registers byte-
addressable and eliminate unused space.

3.6 Software support added for LatticeMico8.

3.7 Removes issue that did not utilize FIFO beyond the first
entry.

3.7 Updated document with new corporate logo.

3.8 Removed unused signals.

Component can be used in designs that do not include a
processor.

LatticeMico8 Microcontroller Software Support

44 LatticeMico UART

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

	LatticeMico UART
	Version
	Features
	Functional Description
	UART Clock Frequencies
	Receiver
	Transmitter
	Interrupt
	WISHBONE Interface

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Descriptions
	Interrupt Enable Register
	Interrupt Identification Register
	Line Control Register
	Modem Control Register
	Line Status Register
	Modem Status Register
	Baud-Rate Divisor Register

	EBR Resource Utilization
	Usage Model
	Error Detection and Handling

	LatticeMico32 Microprocessor Software Support
	Register Map Structure
	Device Driver
	UART Code Reduction
	Software Usage Examples

	Support for C/C++ "printf" in RTL Simulation
	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example
	Support for Viewing Characters Transmitted by UART in RTL Simulation

