
Copyright © October 2014 Lattice Semiconductor Corporation.

LatticeMico SPI Flash
Controller

The LatticeMico Serial Peripheral Interface (SPI) flash controller is a
WISHBONE slave device that provides an industry-standard interface
between a central processing unit (CPU) and an off-chip SPI flash memory
device. The controller has two separate WISHBONE slave ports: Port S and
Port C. Port S can be used by the CPU to read from, or write to, any memory
location within the SPI flash. Port C provides a mechanism to configure the
SPI flash and issue any command from the SPI Flash's command set.

Version
This document describes the 3.7 version of the LatticeMico SPI flash
controller.

Features
The LatticeMico SPI flash controller includes the following features:

 Two WISHBONE B.3 slave interfaces: Port S (Data Port) and Port C
(Control Port)

 Option to enable/disable Control Port

 Option to individually configure the data bus widths of Port S and Port C to
8 or 32 bits

 Option to configure controller with Page Program Buffer to speed up Page
Program

 Option to configure controller with Page Read Buffer to speed up Page
Read

 Configurable serial clock (SCLK) frequency

Functional Description

2 LatticeMico SPI Flash Controller

 Configurable SPI flash sector size

 Configurable SPI flash page size

 Configurable SPI flash command set

For additional details about the WISHBONE bus, refer to the LatticeMico8
Processor Reference Manual or the LatticeMico32 Processor Reference
Manual.

Functional Description
The SPI flash controller hardware is composed of two modules:

 Module wb_intf receives and processes WISHBONE Data Port (Port S)
and Control Port (Port C) signals and transfers the requested SPI flash
command to the spi_flash_intf module.

 Module spi_flash_intf translates the SPI flash command in to serial form
that is communicated to the SPI flash.

The types of transactions with the SPI flash controller can be categorized into

four classes:

Byte/Halfword/Word read or write These read from (or write to) the SPI
flash memory can only be initiated on WISHBONE Port S. The SPI flash
controller will only initiate a new read from (or write to) SPI flash memory
when it determines that the SPI flash is not busy processing another
command. The SPI flash memory address is obtained from the lower 24 bits
of the WISHBONE address. On a write to the SPI flash memory, the SPI flash
controller obtains the write data from the WISHBONE Port S's input data bus.
It asserts S_ACK_O as soon as the write command is transmitted to the SPI
flash (i.e., the SPI flash controller does not wait for the write to complete in the
SPI flash). On a read from the SPI flash memory, the SPI flash controller
asserts S_ACK_O only when data is returned from the SPI flash. It then puts
this data on the WISHBONE Port S's output data bus.

Erase, Write enable/disable, Status read/write, Power up/down These
SPI flash commands can only be initiated on WISHBONE Port C. Each of
these commands is assigned an address within the memory map shown in
Table 3 on page 7. To initiate a particular SPI flash command, the user must
perform a WISHBONE read or write to the command's assigned address in
the memory map. If the command does not involve any return data from the
SPI flash, the SPI flash controller core asserts C_ACK_O as soon as the
command is issued to the SPI flash.

Note

The SPI flash is a non-volatile memory and therefore it is not possible to
overwrite a location that has been written to previously without erasing it.
In order to erase memory, the user must issue an erase command via
WISHBONE Port C.

Configuration

LatticeMico SPI Flash Controller 3

SPI Flash Controller configuration commands These commands can
only be initiated on WISHBONE Port C. They are used to perform the
following tasks:

 Configure the SPI flash command instruction set so that the core can be
used with a variety of SPI flash vendors.

 Control whether the SPI flash reads will be performed as "fast reads" or
"slow reads."

 Control the SPI flash page and sector sizes.

SPI flash page read/program The process of reading or writing an entire
page via WISHBONE Port S can be slow, because each page read/write
needs to be split up in to multiple WISHBONE read/writes. The user can
speed up the SPI flash page read/program by using the page read/program
buffers. These buffers can only be accessed via WISHBONE Port C (see
Memory Map in Table 3).

Configuration
The following sections describe the graphical user interface (UI) parameters
and the I/O ports that you can use to configure and operate the LatticeMico
SPI flash controller.

UI Parameters
Table 1 shows the user interface parameters available for configuring the
LatticeMico SPI flash ROM controller through the Mico System Builder (MSB)
interface.

Table 1: SPI Flash Controller UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the SPI flash controller
instance.

Alphanumeric and
underscores

SPIFlash

Memory Base Address Specifies the base address for the Data Port of
the SPI flash controller instance. The minimum
boundary alignment is 0x4.

0x00000000 –
0xFFFFFFFF

16777216

Control Port Settings

Control Port Enable WISHBONE slave port that can
perform all SPI flash commands such as chip/
sector erase, write enable/disable, read/write
status register, power up/down, etc.

1, 0 0

Page Program Buffer Enable Page Program Buffer to speed up page
program by locally storing a page before
writing entire page to SPI flash.

Size of buffer is equal to page size.

1, 0 0

Configuration

4 LatticeMico SPI Flash Controller

Page Read Buffer Enable Page Read Buffer to speed up page
reads by reading an entire page from SPI flash
and locally storing it.

Size of buffer is equal to page size.

1, 0 0

Control Base Address Specifies the base address for the Control Port
of SPI flash controller instance. The minimum
boundary alignment is 0x800.

0x80000000 –
0xFFFFF800

0x80000000

Page Program Buffer
Setting

Indicates whether the Page Program Buffer is
using EBR or Distributed RAM

Use EBR for Page
Program Buffer
Memory; Use
Distributed RAM for
Page Program Buffer
Memory

Use
Distributed
RAM for Page
Program
Buffer
Memory

Page Read Buffer Setting Indicates whether the Page Read buffer is
using EBR or Distributed RAM

Use EBR for Page
Read Buffer Memory;
Use Distributed RAM
for Page Read Buffer
Memory

Use
Distributed
RAM for Page
Read Buffer
Memory

SPI Flash Settings

Page Size Specifies the size of each page in the SPI
flash. Refer to the SPI flash data sheet to
obtain this value.

256

Sector Size Specifies the size of each sector in the SPI
flash. Refer to the SPI flash data sheet to
obtain this value.

32768

SCLK Rate Specifies the factor for deriving SCLK from the
component input clock (processor clock
CLK_I). SCLK is derived from the following
equation:

SCLK = CLK_I/(2 x SCLK_Rate)

For example:

For SCLK Rate = 0, SCLK = CLK_I
For SCLK Rate = 1, SCLK = CLK_1/2

0 – 15 0

SPI Flash Command Opcodes Specify the one-byte instruction opcode for each command within the
SPI flash instruction set. Refer to the SPI flash data sheet to obtain these values.

Slow Read 3

Fast Read 11

Byte Program 2

Page Program 2

Block Erase Type 1 32

Block Erase Type 2 82

Block Erase Type 3 216

Table 1: SPI Flash Controller UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

Configuration

LatticeMico SPI Flash Controller 5

I/O Ports
Table 2 describes the input and output ports of LatticeMico SPI flash
controller.

Chip Erase 96

Write Enable 6

Write Disable 4

Read Status Register 5

Write Status Register 1

Deep Power Down 185

Resume from Power Down 171

Read Manufacturer ID 159

WISHBONE Data Bus Size

Data Port Size of WISHBONE data bus on the data (S)
port

8, 32 32

Control Port Size of WISHBONE data bus on the control (C)
port

8, 32 32

Table 1: SPI Flash Controller UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

Table 2: LatticeMico SPI Flash I/O Port Descriptions

I/O Port Active Direction Initial State Description

RST_I HIGH I 1

CLK_I I

Data WISHBONE Port

S_ADR_I [31:0] I 0 Address from WISHBONE interface

S_DAT_I [31:0] or
S_DAT_I [7:0]

I 0 Data input from WISHBONE interface. The bus can be
configured to be 8 or 32 bits. The bus holds valid data
when S_WE_I is 1. The bus is big-endian (byte 0 is on
S_DAT_I[31:24]). S_SEL_I indicates which byte(s) have
valid data.

S_WE_I I 0 Write Enable signal indicates whether the current
WISHBONE bus cycle will perform a read or a write (0 =
read, 1 = write).

S_STB_I I 0 Strobe signal indicates that valid data and address are
being presented on S_DAT_I and S_ADR_I busses
respectively.

S_CYC_I I 0 Cycle signal indicates that a WISHBONE bus cycle is in
progress.

Configuration

6 LatticeMico SPI Flash Controller

S_SEL_I [3:0] or
S_SEL_I [0:0]

I 0 Select input array signal indicating where the valid data
should be expected on S_DAT_I and S_DAT_O busses.
This bus is 4 bits when S_DAT_I is 32 bits;
otherwise, it is 1 bit wide. Each bit in S_SEL_I
corresponds to a byte in the two data busses. Similar to
S_DAT_I, this bus is big-endian (byte 0 is encoded on
S_SEL_I [3]).

S_CTI_I [2:0] I 0 Cycle Type signal indicating which type of WISHBONE
bus cycle is in progress. The only WISHBONE bus cycles
that are permitted on this port are Classic Cycles (000
and 111).

S_BTE_I [1:0] I 0 Unused

S_LOCK_I i 0 Unused

S_DAT_O [31:0]
or S_DAT_O [7:0]

O X Data output from WISHBONE interface. This bus can
be configured to be 8 or 32 bits. This bus holds valid
data when S_WE_I is 0. The bus is big-endian (byte 0 is
on S_DAT_0 [31:24]). S_SEL_I indicates which byte(s)
have valid data.

S_ACK_O O X Acknowledge output indicates that the current
WISHBONE bus cycle is normally terminated.

S_ERR_O O X Unused

S_RTY_O O X Unused

Control WISHBONE Port

C_ADR_I [31:0] I O Address from WISHBONE interface

C_DAT_I [31:0] or
C_DAT_I [7:0]

I O Data input from WISHBONE interface. This bus can be
configured to be 8 or 32 bits. The bus holds valid data
when C_WE_I is 1. The bus is big-endian (byte 0 is on
C_DAT_I [31:24]). C_SEL_I indicates which byte(s) have
valid data.

C_WE_I I O Write Enable signal indicates whether the current
WISHBONE bus cycle will perform a read or a write (0 -
read, 1 = write).

C_STB_I I O Strobe signal indicates that valid data and address are
being presented on C_DAT_I and C_ADR_I busses
respectively.

C_CYC_I I O Cycle signal indicates that a WISHBONE bus cycle is in
progress.

C_SEL_I [3:0] or
C_SEL_I [0:0]

I O Select input array signal indicating where the valid data
should be expected on C_DAT_I and C_DAT_O busses.
This bus is 4 bits when C_DAT_I is 32 bits;
otherwise, it is 1 bit wide. Each bit in C_SEL_I
corresponds to a byte in the two data busses. Similar to
C_DAT_I, this bus is big-endian (byte 0 is encoded on
C_SEL_I[3]).

Table 2: LatticeMico SPI Flash I/O Port Descriptions (Continued)

I/O Port Active Direction Initial State Description

Register Descriptions

LatticeMico SPI Flash Controller 7

Register Descriptions
The LatticeMico SPI flash controller includes the registers shown in Table 3.
The user must enable the Control WISHBONE Port in order to access these
registers. Table 4 through Table 25 describe the individual registers in detail.

C_CTI_I [2:0] I O Cycle Type signal indicating which type of WISHBONE
bus cycle is in progress. The only WISHBONE bus cycles
that are permitted on this port are Classic Cycles (000
and 111) and Burst (010).

C_BTE_I [1:0] i O Burst Type signal indicating type of burst. Permitted
values are 00 (sequential incrementing address burst).

C_LOCK_I I O Unused

C_DAT_O [31:0]
or C_DAT_O [7:0]

O X Data output from WISHBONE interface. This bus can
be configured to be 8 or 32 bits. This bus holds valid
data when C_WE_I is 0 and C_ACK_O is 1. The bus is
big-endian (byte 0 is on C_DAT_O[31:24]). C_SEL_I
indicates which byte(s) have valid data.

C_ACK_O O X Acknowledge output indicates that the current data
transfer of an ongoing WISHBONE bus cycle is normally
terminated. When C_CTI_I is 000 or 111, the WISHBONE
bus cycle is terminated. When C_CTI_I is 010, the next
data transfer in the ongoing WISHBONE burst cycle is
commenced.

C_ERR_O O X Unused

C_RTY_O O X Unused

SPI Interface

SI O 0 Serial data from SPI flash controller (FPGA) to SPI flash

SO I X Serial data to SPI flash controller (FPGA) FROM SPI
flash

CS LOW I 1 SPI flash Chip Select

SCK I 0 Serial clock to SPI flash

WP LOW I 1 SPI flash Write Protect

Table 2: LatticeMico SPI Flash I/O Port Descriptions (Continued)

I/O Port Active Direction Initial State Description

Table 3: Register Map

Register Name Offset 31-24 23-16 15-8 7 6 5 4 3 2 1 0

Registers to issue SPI flash commands

Page Program 0x000 Page Program Address

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Reserved Start

Register Descriptions

8 LatticeMico SPI Flash Controller

Page Read 0x004 Page Read Address

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Reserved Start

Block Erase Type 1 0x008 Erase Address

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Reserved Start

Block Erase Type 2 0x00C Erase Address

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Reserved Start

Block Erase Type 3 0x010 Erase Address

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Reserved Start

Chip Erase 0x014 Reserved Start

Write Enable 0x018 Reserved Enable

Write Disable 0x01c Reserved Disable

Status Read 0x020 Reserved SPI flash status register (Refer to SPI flash data sheet.)

Status Write 0x024 Reserved SPI flash status register (Refer to SPI flash data sheet.)

Power Down 0x028 Reserved Start

Power Up 0x02c Reserved Start

Manufacture ID 0x030
Reserved

SPI flash manufacturer’s device ID
(Refer to SPI flash data sheet.)

Registers to issue a user-defined command to SPI flash

USER CMD 0 0x034
to
0x040

Least-significant word of command (Byte 0 is the first byte sent to SPI flash.)

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Byte 3

USER CMD 1 0x038
to
0x044

Most-significant word of command (Byte 3 is the last byte sent to SPI flash.)

Byte 0
(LSB)

Byte 1 Byte 2
(MSB)

Byte 3

User CMD Length 0x03C
to
0x048

Length (in bytes)

User Return Length 0x040
to
0x04C

Length (in bytes)

Table 3: Register Map (Continued)

Register Name Offset 31-24 23-16 15-8 7 6 5 4 3 2 1 0

Register Descriptions

LatticeMico SPI Flash Controller 9

User Return Data 0x044
to
0x050

Byte 0
(LSB)

Byte 1 Byte 2
(MSB) Byte 3 (last byte received from SPI flash)

User CMD 0x048
to
0x054

Reserved Start

Registers to configure SPI flash controller internals

Read Speed 0x100 Reserved Fast

Page Program Size 0x104 Size (in bytes)

Reserved
Byte 0
(LSB)

Byte 1 (MSB)

Page Read Size 0x108 Size (in bytes)

Reserved
Byte 0
(LSB)

Byte 1 (MSB)

Registers to configure SPI flash controller for a SPI flash’s instruction set

Slow Read CFG 0x180 Reserved Opcode

Fast Read CFG 0x184 Reserved Opcode

Byte Program CFG 0x188 Reserved Opcode

Page Program CFG 0x18c Reserved Opcode

Block Erase 1 CFG 0x190 Reserved Opcode

Block Erase 2 CFG 0x194 Reserved Opcode

Block Erase 3 CFG 0x198 Reserved Opcode

Chip Erase CFG 0x19c Reserved Opcode

Write Enable CFG 0x1a0 Reserved Opcode

Write Disable CFG 0x1a4 Reserved Opcode

Read Status CFG 0x1a8 Reserved Opcode

Write Status CFG 0x1ac Reserved Opcode

Power Down CFG 0x1b0 Reserved Opcode

Power Up CFG 0x1b4 Reserved Opcode

Read ID CFG 0x1b8 Reserved Opcode

Page Program

Buffer

0x200-

0x3FF

Byte 0
(LSB)

Byte 1 Byte 2
Byte 3 (MSB)

Page Read

Buffer

0x400-

0x6FF

Byte 0
(LSB)

Byte 1 Byte 2
Byte 3 (MSB)

Table 3: Register Map (Continued)

Register Name Offset 31-24 23-16 15-8 7 6 5 4 3 2 1 0

Register Descriptions

10 LatticeMico SPI Flash Controller

Table 4: Page Program Register (ADDR = 0x000)

Name Bit(s) Access Mode Description

Address 31-8 Read/Write 24-bit Page Address. Bits 31-24 contain least-significant
byte of address and bits 15-8 contain most-significant
byte.

Start 0 Write Writing a 1 to this bit will commence a page program
operation.

Table 5: Page Read Register (Addr = 0x004)

Name Bit(s) Access Mode Description

Address 31-8 Read/Write 24-bit Page Address. Bits 31-24 contain least-significant
byte of address and bits 15-8 contain most-significant
byte.

Start 0 Write Writing a 1 to this bit will commence a page read
operation.

Table 6: Block Erase Type 1 Register (Addr = 0x00c)

Name Bit(s) Access Mode Description

Address 31-8 Read/Write 24-bit Page Address. Bits 31-24 contain least-significant
byte of address and bits 15-8 contain most-significant
byte.

Start 0 Write Writing a 1 to this bit will commence the 4K block erase
operation.

Table 7: Block Erase Type 2 Register (Addr = 0x010)

Name Bit(s) Access Mode Description

Address 31-8 Read/Write 24-bit Page Address. Bits 31-24 contain least-significant
byte of address and bits 15-8 contain most-significant
byte.

Start 0 Write Writing a 1 to this bit will commence the 32K block erase
operation.

Table 8: Block Erase Type 3 Register (Addr = 0x014)

Name Bit(s) Access Mode Description

Address 31-8 Read/Write 24-bit Page Address. Bits 31-24 contain least-significant
byte of address and bits 15-8 contain most-significant
byte.

Start 0 Write Writing a 1 to this bit will commence the 64K block erase
operation.

Register Descriptions

LatticeMico SPI Flash Controller 11

Table 9: Chip Erase Register (Addr = 0x018)

Name Bit(s) Access Mode Description

Start 0 Write-only Write a 1 or 0 to this location to initiate a SPI flash chip
erase command.

Table 10: Write Enable Register (Addr = 0x018)

Name Bit(s) Access Mode Description

Enable 0 Write-only Write 1 to this location to initiate a SPI flash “Write
Enable” command.

Table 11: Write Disable Register (Addr = 0x01c)

Name Bit(s) Access Mode Description

Disable 0 Write-only Write 1 to this location to initiate a SPI flash “Write
Disable” command.

Table 12: Status Read Register (Addr = 0x020)

Name Bit(s) Access Mode Description

Value 7:0 Read-only Read the Status Register in SPI flash.

Table 13: Status Write Register (Addr = 0x024)

Name Bit(s) Access Mode Description

Value 7:0 Write-only Write to the Status Register in SPI flash.

Table 14: Power Down Register (Addr = 0x028)

Name Bit(s) Access Mode Description

Start 0 Write-only Initiate a “Deep Power Down” command in SPI flash by
writing a 1 or 0.

Table 15: Power Up Register (Addr = 0x02c)

Name Bit(s) Access Mode Description

Start 0 Write-only Initiate a “Resume from Power Down” command in SPI
flash by writing a 1 or 0.

Table 16: Manufacturer ID Register (Addr = 0x030)

Name Bit(s) Access Mode Description

Value 7:0 Read-only Read the Manufacturer ID in the SPI flash.

Register Descriptions

12 LatticeMico SPI Flash Controller

Table 17: User CMD 0 Register (Addr = 0x034)

Name Bit(s) Access Mode Description

LSW 31:0 Read/Write The least-significant word of a user-defined command
that will be issued to SPI flash.

Table 18: User CMD 1 Register (Addr = 0x038)

Name Bit(s) Access Mode Description

MSW 31:0 Read/Write The most-significant word of a user-defined command
that will be issued to SPI flash.

Table 19: User CMD Length Register (Addr = 0x03c)

Name Bit(s) Access Mode Description

Length 2:0 Read/Write The number of bytes that constitute a user-defined
command (command is written to registers User CFG 0
and User CFG 1). The number of bytes is represented
using the formula:

Total Bytes = Length + 1

The minimum value is 1 and maximum value is 8.

Table 20: User Return Length Register (Addr = 0x040)

Name Bit(s) Access Mode Description

Length 2:0 Read/Write The number of bytes returned by the SPI flash on a user-
defined command. The return data is available in the
User Return Data register. The number of bytes is
represented using the formula:

Total Bytes = Length

The minimum value is 0 and maximum value is 1.

Table 21: User Return Data Register (Addr = 0x044)

Name Bit(s) Access Mode Description

Return Data 31:0 Read-only The data that is returned by SPI flash on a user-defined
command. The total bytes is determined by value in the
User Return Length register.

EBR Utilization

LatticeMico SPI Flash Controller 13

EBR Utilization
This component does not use any EBRs.

Table 22: User CMD Register (Addr = 0x048)

Name Bit(s) Access Mode Description

Start 0 Write-only Issue a user-defined command to SPI flash. The user
must make sure that the following registers have valid
contents prior to writing to this register:

 User CMD 0

 User CMD 1

 User CMD Length

 User Return Length

The user can read the User Return Data register after a
write to this register to get the returned data from SPI
flash.

Table 23: Read Speed Register (Addr = 0x100)

Name Bit(s) Access Mode Description

Fast 0 Write-only Configure the SPI flash controller to perform fast or slow
reads.

0 – Slow reads
1 – Fast reads

Table 24: Page Program Size REgister (Addr = 0x104)

Name Bit(s) Access Mode Description

Size 15:0 Read/Write The number of bytes to be written to SPI flash on a Page
Program. The minimum value is 0 and maximum value is
PAGE_SIZE.

The SPI flash controller will write the number of bytes
specified in this field from the Page Program Buffer to the
SPI flash.

Table 25: Page Read Size Register (0x108)

Name Bit(s) Access Mode Description

Size 15:0 Read/Write The number of bytes to be read from SPI flash on a Page
Read. The minimum value is 0 and maximum value is
PAGE_SIZE.

The SPI flash controller will read the number of bytes
specified in this field from SPI flash in to the Page Read
Buffer.

LatticeMico32 Microprocessor Software Support

14 LatticeMico SPI Flash Controller

LatticeMico32 Microprocessor Software Support
This section describes the LatticeMico32 microprocessor software support
provided for the LatticeMico SPI flash controller. Please note that the
supporting routines are meant for use in a single-threaded environment. If you
want to use them in a multi-tasking environment, you must provide re-
entrance protections.

Device Driver
The SPI flash driver interacts directly with the SPI flash controller and, in turn,
the SPI flash device. This section describes the type definitions, structure,
and functions of the SPI flash device driver.

Context Structure
This section describes the type definitions for the SPI flash controller context
structure. It is shown in Figure 1, which contains SPI flash controller-specific
information that is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts SPI flash controller-specific information from the platform definition
file. The members should not be manipulated directly since this structure is for
exclusive use by the device driver. Table 26 on page 15 describes the SPI
flash controller context structure shown in Figure 1.

Figure 1: Type Definitions for SPI Flash Controller Context Structure

typedef struct st_MicoSPIFlashCtx_t {
 const char *name;
 unsigned int memory_base;
 unsigned int memory_size; unsigned int memory_wbSize;
 unsigned int control_base;
 unsigned int control_port;

unsigned int control_wbSize;
 unsigned int program_buf_en;
 unsigned int read_buf_en;
 unsigned int page_size;
 unsigned int sector_size;
 unsigned int page_pgm_buff_ebr;
 unsigned int page_pgm_buff_dist_ram;
 unsigned int page_rd_buff_ebr;
 unsigned int page_rd_buff_dist_ram;
 DeviceReg_t lookupReg;
 void *prev;
 void *next;
} MicoSPIFlashCtx_t;

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 15

Table 26: LatticeMico SPI Flash Controller Context Structure Parameters

Parameter Data Type Description

name const char * Pointer to the SPI flash controller’s instance name

memory_base unsigned int Base address of the Data WISHBONE Port (memory)

memory_size unsigned int Size (in bytes) of the memory

memory_wbSize unsigned int Indicates whether the Data WISHBONE Port has an 8-bit data bus or a
32-bit data bus.

control_base unsigned int Base address of the Control WISHBONE port

control_port unsigned int Indicates whether the Control WISHBONE Port is enabled in hardware
and supports the entire SPI flash instruction set.

control_wbSize unsigned int Indicates whether the Control WISHBONE port has an 8-bit data bus or a
32-bit data bus.

program_buf_en unsigned int Indicates whether the Page Program Buffer is enabled in hardware.

Used by the device driver to decide whether page programming is to be
done via the faster method of using the Page Program Buffer to do bulk
writes or via the slower method of performing individual byte writes to the
memory.

read_buf_en unsigned int Indicates whether the Page Read Buffer is enabled in hardware.

Used by the device driver to decide whether page read is to be done via
the faster method of initiating bulk reads to the flash and storing in the
Page Read Buffer or via the slower method of performing individual byte
reads from the memory.

page_pgm_buff
_ebr

unsigned int Indicates whether the Page Program Buffer is using EBR

page_pgm_buff
_dist_ram

unsigned int Indicates whether the Page Program Buffer is using distributed RAM

page_rd_buff_ebr unsigned int Indicates whether the Page Read Buffer is using EBR

page_rd_buff_dist
_ram

unsigned int Indicates whether the Page Read Buffer is using distributed RAM

page_size unsigned int Indicates the size of each page in the SPI flash.

sector_size unsigned int Indicates the size of each sector in the SPI flash.

lookup_reg DeviceReg_t Used by the device driver to register the SPI flash controller component
instance with the LatticeMico32 lookup service.

Refer to the LatticeMico32 Software Developer User Guide for a
description of the DeviceReg_t data type.

prev void * Used by the device driver service to keep track of registered SPI
instances

next void * Used by the device driver service to keep track of registered SPI
instances

LatticeMico32 Microprocessor Software Support

16 LatticeMico SPI Flash Controller

Functions
This section describes the implemented device driver-specific functions.

MicoSPIFlash_Initialize Function

void MicoSPIFlash_Initialize (MicoSPIFlashCtx_t *ctx);

This function initializes a LatticeMico SPI flash controller device instance. It is
automatically called as part of platform initialization for managed builds for
each instance of the SPI flash controller. It sets the controller to a known
stopped state for future use and registers this SPI flash controller instance for
the device lookup service.

MicoSPIFlash_ReadID Function

int MicoSPIFlash_ReadID (MicoSPIFlashCtx_t *ctx);

This function reads the Manufacturer ID from the SPI flash device to which
this SPI flash controller instance is connected.

MicoSPIFlash_StatusRead Function

int MicoSPIFlash_StatusRead (MicoSPIFlashCtx_t *ctx);

This function reads the contents of the Status Register from the SPI flash
device to which this SPI flash controller instance is connected. Since SPI
flash manufacturers define the contents of this status register in a

Table 27: MicoSPIFlashCtx_t Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

Table 28: MicoSPIFlash_ReadID Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance

Table 29: MicoSPIFlashReadID Return Values

Return Value Description

0x00 to 0xFF SPI flash manufacturer ID

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 17

manufacturer-specific format, it is the responsibility of the software developer
to refer to the SPI flash data sheet to interpret the returned data.

MicoSPIFlash_WriteEnable Function

int MicoSPIFlash_WriteEnable (MicoSPIFlashCtx_t *ctx);

This function issues a Write Enable command to the SPI flash device that is
connected to the SPI flash controller instance. This function must be invoked
before erasing or before programming the SPI flash.

MicoSPIFlash_WriteDisable Function

int MicoSPIFlash_WriteDisable (MicoSPIFlashCtx_t *ctx);

This function issues a Write Disable command to the SPI flash device that is
connected to the SPI flash controller instance. It sets up the SPI flash to

Table 30: MicoSPIFlash_StatusRead Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

Table 31: MicoSPIFlash_StatusRead Return Values

Return Value Description

0 – 255 SPI flash status register

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will not
accept commands on WISHBONE C Port.

Table 32: MicoSPIFlash_WriteEnable Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

Table 33: MicoSPIFlash_WriteEnable Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Write Enable” command was
successfully sent to SPI flash.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will not
accept commands on WISHBONE C Port.

LatticeMico32 Microprocessor Software Support

18 LatticeMico SPI Flash Controller

disallow any erase or programming operation that might be initiated in the
future.

MicoSPIFlash_ChipErase Function

int MicoSPIFlash_ChipErase (MicoSPIFlashCtx_t *ctx);

This function erases the SPI flash device that is connected to the SPI flash
controller instance. This function requests that the SPI flash perform a chip
erase, and then it exits. It does not wait for the SPI flash to actually complete
erasing the chip. This allows the software execution to continue even though
the SPI flash is still in the process of erasing all data.

Table 34: MicoSPIFlash_WriteDisable Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

Table 35: MicoSPIFlash_WriteDisable Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Write Disable” command was
successfully sent to SPI flash.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will not
accept commands on WISHBONE C Port.

Note

Since it is possible that the SPI flash controller might receive a new SPI flash
request from any of the two WISHBONE ports while an erase is in progress,
the SPI flash controller hardware is designed to issue a new command to the
SPI flash only when the SPI flash indicates it is not busy.

Table 36: MicoSPIFlash_ChipErase Parameter

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t
structure representing a valid SPI flash
instance.

Table 37: MicoSPIFlash_ChipErase Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Chip Erase” command was
successfully sent to SPI flash.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 19

MicoSPIFlash_BlockErase Function

int MicoSPIFlash_BlockErase (MicoSPIFlashCtx_t *ctx, unsigned
int anAddress unsigned int aType);

This function issues a command to the SPI flash device that is connected to
the SPI flash controller instance to erase the block (also known as section) at
the specified address. This function can issue one of the three types of block
erases that are specified by the SPI flash command instructions defined in
Block Erase 1 CFG, Block Erase 2 CFG, and Block Erase 3 CFG registers
shown in Table 3 on page 7.

This function requests that the SPI flash perform a block erase, and then it
exits. It does not wait for the SPI flash to actually complete erasing the block.
This allows the software execution to continue even though the SPI flash is
still in the process of erasing all data in specified block.

Note

Since it is possible that the SPI flash controller might receive a new SPI flash
request from any of the two WISHBONE ports while an erase is in progress,
the SPI flash controller hardware is designed to issue a new command to the
SPI flash only when the SPI flash indicates it is not busy.

Table 38: MicoSPIFlash_BlockErase Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int anAddress Address of SPI flash sector/block to be erased

unsigned int aType Indicates the type of SPI flash block erase command to
be used. This, in turn, also determines the size of block
that is being erased. The three legal values are:

1 – Type 1 for block size of 4K
2 – Type 2 for block size of 32K
3 – Type 3 for block size of 64K

Table 39: MicoSPIFlash_BlockErase Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Block Erase” command was
successfully sent to SPI flash.

SPI_COMMAND_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

SPI_INVALID_BLOCK_ERASE_TYPE Failure. The SPI flash block erase type is
not one of the three legal values.

SPI_ADDRESS_OUT_OF_RANGE Failure. The address is invalid and does not
point to any block within the SPI flash.

LatticeMico32 Microprocessor Software Support

20 LatticeMico SPI Flash Controller

MicoSPIFlash_PageProgram Function

int MicoSPIFlash_PageProgram (MicoSPIFlashCtx_t *ctx, unsigned
int anAddress, unsigned int aLength, char *rData);

This function is used to perform bulk writes to SPI flash. There are two ways
that bulk writes to SPI flash can be performed, depending on whether the
Page Program Buffer is enabled in hardware. When the Page Program Buffer
is enabled, the function performs bulk writes by first writing the data to the SPI
flash controller’s Page Program Buffer and then sending this data to the SPI
flash in one command. When the Page Program Buffer is disabled in
hardware, the function performs these writes via the significantly slower
method of writing the given data to SPI flash one byte per SPI flash
command.

The function will only write to a single page, and it can start at any address
within the page. The software developer must note that this function will stop
writing data to SPI flash as soon as it reaches the end of a page.

Table 40: MicoSPIFlash_Page Program Parameters

Parameter Description

MicoSPIFlashCtx_t*ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int anAddress The first location in SPI flash memory where
program will commence. It can be any location
within the page.

unsigned int aLength The total number of bytes to be written to SPI
flash. The hardware will terminate the writes at
the end of a page even if there are additional
bytes to be written.

char *rData The array of bytes to be written to SPI flash. The
software developer must ensure that the byte
array contains the number of bytes specified in
the aLength argument. Otherwise, the program
can unexpectedly crash.

Table 41: MicoSPIFlash_Page Program Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Program” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will not
accept commands on WISHBONE C Port.

SPI_ADDRESS_OUT_OF_RANGE Failure. The address is invalid and does not
point to any block within the SPI flash.

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 21

MicoSPIFlash_PageRead Function

int MicoSPIFlash_PageRead (MicoSPIFlashCtx_t *ctx, unsigned int
anAddress, unsigned int aLength char *rData);

This function is used to perform bulk reads from SPI flash. There are two
ways that bulk reads from SPI flash can be performed, depending on whether
the Page Read Buffer is enabled in hardware. When the Page Read Buffer is
enabled, the function reads an entire page in a single SPI flash command and
stores it to the SPI flash controller’s Page Read Buffer before returning it to
the caller software code. When the Page Read Buffer is disabled in hardware,
the function performs these reads via a significantly slower method of reading
data from SPI flash one byte per SPI flash command. The maximum number
of bytes the function can read is limited to the number of bytes in a page.

Table 42: MicoSPIFlash_PageRead Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int anAddress The first location in SPI flash memory where read
will commence. It can be any location within the
page.

unsigned int aLength The total number of bytes to be read from SPI
flash. The hardware will terminate the reads at the
end of a page even if there are additional bytes to
be read.

char *rData The data from SPI flash is returned in this array.
The function will not perform malloc. The task of
allocating space for aLength bytes in this array is
left to the software that calls this function.

Table 43: MicoSPIFlash_PageRead Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Read” command was successfully
completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will not
accept commands on WISHBONE C Port.

SPI_ADDRESS_OUT_OF_RANGE Failure. The address is invalid and does not
point to any block within the SPI flash.

LatticeMico32 Microprocessor Software Support

22 LatticeMico SPI Flash Controller

MicoSPIFlash_AlignedPageProgram Function

int MicoSPIFlash_AlignedPageProgram (MicoSPIFlashCtx_t *ctx,
unsigned int anAddress, unsigned int aLength, unsigned int
*rData);

This function is used to perform bulk writes to SPI flash. The difference
between this function and MicoSPIFlash_PageProgram function is that this
function is optimized for the scenario in which the address is word-aligned
and the number of bytes to be written is a multiple of 4. There are two ways
that bulk writes to SPI flash can be performed, depending on whether the
Page Program Buffer is enabled in hardware. When the Page Program Buffer
is enabled, the function performs bulk writes by first writing the data to the SPI
flash controller’s Page Program Buffer and then sending this data to the SPI
flash in one command. When the Page Program Buffer is disabled in
hardware, the function performs these writes via a significantly slower method
of writing the given data to SPI flash one byte per SPI flash command.

The function will only write to a single page and it can start at any address
within the page. The software developer must note that this function will stop
writing data to SPI flash as soon as it reaches the end of a page.

Table 44: MicoSPIFlash_AlignedPageProgram Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int anAddress The first location in SPI flash where program will
commence. This location can be any address
within the page as long as it is word-aligned.

unsigned int aLength The total number of bytes to be written to SPI
flash. The hardware will terminate the writes at the
end of a page even if there are additional bytes to
be written.

integer *rData The array of integers to be written to SPI flash. The
software developer must ensure that the byte array
contains the number of bytes specified in the
aLength argument. Otherwise, the program can
unexpectedly crash.

Table 45: MicoSPIFlash_AlignedPageProgram Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Program” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

SPI_ADDRESS_OUT_OF_RANGE Failure. The address is invalid and does not
point to any block within the SPI flash.

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 23

MicoSPIFlash_AlignedPageRead Function

int MicoSPIFlash_AlignedPageRead (MicoSPIFlashCtx_t *ctx,
unsigned int anAddress, unsigned int aLength, unsigned int
*rData);

This function is used to perform bulk reads from SPI flash. The difference
between this function and the MicoSPIFlash_PageRead function is that this
function is optimized for the scenario in which the address is word-aligned
and the number of bytes to be read is a multiple of 4. There are two ways that
bulk reads from SPI flash can be performed, depending on whether the Page
Read Buffer is enabled in hardware. When the Page Read Buffer is enabled,
the function reads an entire page in a single SPI flash command and stores it
to the SPI flash controller’s Page Read Buffer before returning it to the caller
software code. When the Page Read Buffer is disabled in hardware, the
function performs these reads via a significantly slower method of reading
data from SPI flash one byte per SPI flash command. The maximum number
of bytes the function can read is limited to the number of bytes in a page.

Table 46: MicoSPIFlash_AlignedPageRead Parameters

Parameter ‘Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int anAddress The first location in SPI flash memory where
read will commence. It can be any location
within the page as long as it is aligned to a word
boundary.

unsigned int aLength The total number of bytes to be read from SPI
flash. The number must be a multiple of 4. The
software developer must note that the hardware
will terminate the reads at the end of a page
even if there are additional bytes to be read.

integer *rData The data from SPI flash is returned in this array.
The function will not perform a malloc. The task
of allocating space for (aLength/4) integers in
this array is left to the software that calls this
function.

Table 47: MicoSPIFlash_AlignedPageRead Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Read” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

SPI_ADDRESS_OUT_OF_RANGE Failure. The address is invalid and does not
point to any block within the SPI flash.

LatticeMico32 Microprocessor Software Support

24 LatticeMico SPI Flash Controller

MicoSPIFlash_ReadSpeed Function

int MicoSPIFlash_ReadSpeed (MicoSPIFlashCtx_t *ctx, unsigned
int aSpeed);

This function is used to configure the SPI flash controller instance so that it
performs all read requests to SPI flash in either the slow or fast read mode.
The slow and fast read instruction opcodes are defined in the Slow Read CFG
or Fast Read CFG of the register map shown in Table 3 on page 7. The
software developer must ensure that these opcodes match the SPI flash data
sheet.

MicoSPIFlash_ReadCmdOpcodes Function

int MicoSPIFlash_ReadCmdOpcode (MicoSPIFlashCtx_t *ctx,
MicoSPIFlashCmdOpcodeTable_t *opcode);

This function provides the SPI flash instruction set for which the SPI flash
controller instance has been configured.

Table 48: MicoSPIFlash_ReadSpeed Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

unsigned int aSpeed 0 – Slow reads
1 – Fast reads

Table 49: MicoSPIFlash_ReadSpeed Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Read” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

Table 50: MicoSPIFlash_ReadCmdOpcodes Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash instance.

MicoSPIFlashCmdOpcodeTable_t
*opcode

Pointer to a valid
MicoSPIFlashCmdOpcodeTable_t structure
representing a list of the SPI flash instruction
opcodes. The function will not perform malloc.
It is the responsibility of the software calling
this function to allocate memory for this
structure.

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 25

MicoSPIFlash_WriteCmdOpcodes Function

int MicoSPIFlash_WriteCmdOpcode (MicoSPIFlasCtx_t *ctx,
MicoSPIFlashCmdOpcodeTable_t *opcode);

This function provides the software developer with a mechanism to change
the SPI flash instruction set for the SPI flash controller instance.

Macros
This section describes the implemented user C macros that can be used by
the software developer to directly access the SPI flash controller’s registers,
shown in Table 3 on page 7. There are two sets of macros, one for when the
Control WISHBONE port’s data bus is 8 bits wide and another for when the
data bus is 32 bits wide. These macros can be found in the file
MicoSPIFlash.h.

Macros have either one or two input arguments. The first input argument "X"
is always the base address of the SPI flash controller, as assigned by MSB.
The second input argument "Y" is optional, depending on the macro’s
function. Table 54 lists all the macros for a 32 bit data bus on the Control
WISHBONE port. Table 55 on page 33 lists all the macros for an 8 bit data

Table 51: MicoSPIFlash_ReadCmdOpcodes Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Read” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

Table 52: MicoSPIFlash_WriteCmdOpcodes Parameters

Parameter Description

MicoSPIFlashCtx_t *ctx Pointer to a valid MicoSPIFlashCtx_t
structure representing a valid SPI flash
instance.

MicoSPIFlashCmdOpcodeTable_t
*opcode

Pointer to a valid
MicoSPIFlashCMDOpcodeTable_t structure
representing a list of the SPI flash
instruction opcodes.

Table 53: MicoSPIFlash_WriteCmdOpcodes Return Values

Return Value Description

SPI_COMMAND_SUCCESS The “Page Read” command was
successfully completed.

SPI_CONTROL_PORT_ERROR Failure. SPI flash controller hardware will
not accept commands on WISHBONE C
Port.

LatticeMico32 Microprocessor Software Support

26 LatticeMico SPI Flash Controller

bus on the Control WISHBONE port.

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port

Macro Name Second Argument to
Macro

Description

MICO_SPI_PAGE_
PROGRAM

The 24-bit address in the
SPI flash where data
programming will
commence.

This macro initiates a SPI flash "page program" by writing
to the "Page Program" register.

Usage:

If SPI flash cotroller’s base address is 0x80001000 and
SPI flash address to be programmed is 0x100000,

MICO_SPI_PAGE_PROGRAM (0x80001000, 0x100000);

NOTE : The software developer must ensure that the Page
Program Buffer is enabled in hardware and that it contains
the data that needs to be programmed.

MICO_SPI_PAGE_READ The 24-bit address in the
SPI flash where data
reading will commence.

This macro initiates a SPI flash "page read" by writing to
the "Page Read" register.

Usage:

If SPI flash controller’s base address is 0x80001000 and
SPI flash address to be read from is 0x100000,

MICO_SPI_PAGE_READ (0x80001000, 0x100000);

NOTE: The software developer must ensure that the Page
Read Buffer is enabled in hardware.

MICO_SPI_BLOCK_
ERASE_TYPE1

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 4Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE1 (0x80001000,
0x100000);

MICO_SPI_BLOCK_
ERASE_TYPE2

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 32Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE2 (0x80001000,
0x100000);

MICO_SPI_BLOCK_
ERASE_TYPE3

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 64Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE3 (0x80001000,
0x100000);

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 27

MICO_SPI_CHIP_ERASE Macros This macro initiates the SPI flash "chip erase"
command to erase the entire chip.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_CHIP_ERASE (0x80001000);

MICO_SPI_WRITE_
ENABLE

This macro initiates the SPI flash "write enable" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_WRITE_ENABLE (0x80001000);

MICO_SPI_WRITE_
DISABLE

This macro initiates the SPI flash "write disable" command.

Usage:

If SPI flash controller’s base address is 0x800010000,

MICO_SPI_WRITE_DISABLE (0x80001000);

MICO_SPI_STATUS_
READ

The status register read
from the SPI flash.

This macro initiates the SPI flash "status register read"
command.

Usage:

If SPI flash controller’s base address is 0x80001000,

unsigned int status;

MICO_SPI_STATUS_READ (0x80001000, status);

MICO_SPI_STATUS_
WRITE

The value written to the
status register in the SPI
flash

This macro initiates the SPI flash "status register write"
command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the value to be written to SPI flash’s status register is 0x2,

unsigned int status = 0x2;

MICO_SPI_STATUS_WRITE (0x80001000, status);

MICO_SPI_POWER_
DOWN

This macro initiates the SPI flash "power down" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_DOWN (0x80001000);

MICO_SPI_POWER_UP This macro initiates the SPI flash "power up" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_UP (0x80001000);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

28 LatticeMico SPI Flash Controller

MICO_SPI_
MANUFACTURER_ID

The manufacturer ID read
from the SPI flash

This macro initiates the SPI flash "read manufacturer ID"
command.

Usage:

If SPI flash controller’s base address is 0x80001000,

unsigned int ID;

MICO_SPI_MANUFACTURER_ID (0x80001000, ID);

MICO_SPI_CUSTOM_
LSW

The least-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to provide the
least-significant word of the user-defined command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_LSW (0x80001000, 0x12345678);

MICO_SPI_CUSTOM_
MSW

The most-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to provide the
most-significant word of the user-defined command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_MSW (0x80001000, 0x12345678);

NOTE: This macro is optional since the SPI flash
command could be four bytes or less.

MICO_SPI_CUSTOM_
LENGTH

The length, in bytes, of the
user-defined command
that is issued to the SPI
flash.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to indicate the
number of bytes transmitted as part of the user command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes transmitted is 1, then

MICO_SPI_CUSTOM_LENGTH (0x80001000, 0x1);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 29

MICO_SPI_CUSTOM_
RETURN_LENGTH

The length, in bytes, of the
data returned by the SPI
flash for the user-defined
command that is issued.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to indicate the
number of bytes returned from the SPI flash as part of the
user command. The return length can be zero.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4, then

MICO_SPI_CUSTOM_RETURN_LENGTH (0x80001000,
0x4);

MICO_SPI_CUSTOM_
RETURN_DATA

The data returned by the
SPI flash for the user-
defined command.

NOTE: The first byte
returned from the SPI flash
is the most-significant byte
of this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to obtain the
data returned by the SPI flash if return length is non-zero.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4 and the sequence
received from SPI flash is 0x12, 0x23, 0x56, then 0x78.

unsigned int retValue;

MICO_SPI_CUSTOM_RETURN_DATA (0x80001000,
retValue);

retValue will be equal to 0x12345678.

MICO_SPI_CUSTOM This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to initiate
transmission of user-defined command to SPI flash.

NOTE: The software developer must make sure that the
user-defined command, length, and return length are set
up prior to use of this macro.

MICO_SPI_CFG_WR_
PAGE_PROGRAM_SIZE

The number of bytes to be
programmed on a SPI
flash "page program".

This macro is used to indicate the number of bytes to be
programmed in to SPI flash on a SPI flash "page program"
command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be programmed is 256, then

unsigned int size = 0x100;

MICO_SPI_CFG_WR_PAGE_PROGRAM_SIZE
(0x80001000, size);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

30 LatticeMico SPI Flash Controller

MICO_SPI_CFG_WR_
PAGE_READ_SIZE

The number of bytes to be
read on a SPI flash "page
read".

This macro is used to indicate the number of bytes to be
read from the SPI flash on a SPI flash "page read"
command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be read is 256, then

unsigned int size = 0x100;

MICO_SPI_CFG_WR_PAGE_READ_SIZE (0x80001000,
size);

MICO_SPI_CMD_CFG_
WR_SLOW_READ

The opcode for the SPI
flash "slow read"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "slow read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_SLOW_READ (0x80001000,
0xAB);

MICO_SPI_CMD_CFG_
WR_FAST_READ

The opcode for the SPI
flash "fast read" command.

This macro initialized the SPI flash controller with the SPI
flash’s "fast read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_FAST_READ(0x80001000,
0xAB);

MICO_SPI_CMD_CFG_
WR_BYTE_PROGRAM

The opcode for the SPI
flash "byte program"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "byte program" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BYTE_PROGRAM
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_PAGE_PROGRAM

The opcode for the SPI
flash "page program"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "page program" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ PAGE_PROGRAM
(0x80001000, 0xAB);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 31

MICO_SPI_CMD_CFG_
WR_BLOCK_ERASE_
TYPE1

The opcode for the SPI
flash "block erase type 1"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 1" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE1
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_BLOCK_ERASE_
TYPE2

The opcode for the SPI
flash "block erase type 2"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 2" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE2
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_BLOCK_ERASE_
TYPE3

The opcode for the SPI
flash "block erase type 3"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 3" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE3
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_CHIP_ERASE

The opcode for the SPI
flash "chip erase"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "chip erase" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ CHIP_ERASE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_WRITE_ENABLE

The opcode for the SPI
flash "write enable"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "write enable" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ WRITE_ENABLE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_WRITE_DISABLE

The opcode for the SPI
flash "write disable"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "write disable" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ WRITE_DISABLE
(0x80001000, 0xAB);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

32 LatticeMico SPI Flash Controller

MICO_SPI_CMD_CFG_
WR_STATUS_READ

The opcode for the SPI
flash "status register read"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "status register read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ STATUS_READ
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_STATUS_WRITE

The opcode for the SPI
flash "status register write"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "status register write" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ STATUS_WRITE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_POWER_DOWN

The opcode for the SPI
flash "power down"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "power down" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ POWER_DOWN
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_
WR_POWER_UP

The opcode for the SPI
flash "power up"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "power up" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ POWER_UP (0x80001000,
0xAB);

MICO_SPI_CMD_CFG_
WR_MANUFACTURER_ID

The opcode for the SPI
flash "read manufacturer
ID" command.

This macro initialized the SPI flash controller with the SPI
flash’s "read manufacturer ID" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ MANUFACTURER_ID
(0x80001000, 0xAB);

Table 54: Macros to be used for a 32-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 33

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port

Macro Name Second Argument to
Macro

Description

MICO_SPI_PAGE_
PROGRAM_BYTEWISE

The 24-bit address in the
SPI flash where data
programming will
commence.

This macro initiates a SPI flash "page program" by writing
to the "Page Program" register.

Usage:

If SPI flash controller’s base address is 0x80001000 and
SPI flash address to be programmed is 0x100000,

MICO_SPI_PAGE_PROGRAM (0x80001000, 0x100000);

NOTE : The software developer must ensure that the
Page Program Buffer is enabled in hardware and it
contains the data that needs to be programmed.

MICO_SPI_PAGE_READ_
BYTEWISE

The 24-bit address in the
SPI flash where data
reading will commence.

This macro initiates a SPI flash "page read" by writing to
the "Page Read" register.

Usage:

If SPI flash controller’s base address is 0x80001000 and
SPI flash address to be read from is 0x100000,

MICO_SPI_PAGE_READ (0x80001000, 0x100000);

NOTE: The software developer must ensure that the Page
Read Buffer is enabled in hardware.

MICO_SPI_BLOCK_ERASE
_TYPE1_BYTEWISE

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 4Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE1 (0x80001000,
0x100000);

MICO_SPI_BLOCK_ERASE
_TYPE2_BYTEWISE

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 32Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE2 (0x80001000,
0x100000);

MICO_SPI_BLOCK_ERASE
_TYPE3_BYTEWISE

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash "sector erase" command to
erase a 64Kbytes sector.

Usage:

If SPI flash controller’s base a address is 0x80001000 and
SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE3 (0x80001000,
0x100000);

LatticeMico32 Microprocessor Software Support

34 LatticeMico SPI Flash Controller

MICO_SPI_CHIP_ERASE_
BYTEWISE

This macro initiates the SPI flash "chip erase" command to
erase the entire chip.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_CHIP_ERASE (0x80001000);

MICO_SPI_WRITE_
ENABLE_BYTEWISE

This macro initiates the SPI flash "write enable" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_WRITE_ENABLE(0x80001000);

MICO_SPI_WRITE_
DISABLE_BYTEWISE

This macro initiates the SPI flash "write disable"
command.

Usage:

If SPI flash controller’s base address is 0x800010000,

MICO_SPI_WRITE_DISABLE(0x80001000);

MICO_SPI_STATUS_READ
_BYTEWISE

The status register read
from the SPI flash.

This macro initiates the SPI flash "status register read"
command.

Usage:

If SPI flash controller’s base address is 0x80001000,

unsigned int status;

MICO_SPI_STATUS_READ (0x80001000, status);

MICO_SPI_STATUS_
WRITE_BYTEWISE

The value written to the
status register in the SPI
flash.

This macro initiates the SPI flash "status register write"
command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the value to be written to SPI flash’s status register is 0x2,

unsigned int status = 0x2;

MICO_SPI_STATUS_WRITE (0x80001000, status);

MICO_SPI_POWER_
DOWN_BYTEWISE

This macro initiates the SPI flash "power down" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_DOWN (0x80001000);

MICO_SPI_POWER_UP_
BYTEWISE

This macro initiates the SPI flash "power up" command.

Usage:

If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_UP (0x80001000);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 35

MICO_SPI_
MANUFACTURER_ID_
BYTEWISE

The manufacturer ID read
from the SPI flash.

This macro initiates the SPI flash "read manufacturer ID"
command.

Usage:

If SPI flash controller’s base address is 0x80001000,

unsigned int ID;

MICO_SPI_MANUFACTURER_ID (0x80001000, ID);

MICO_SPI_CUSTOM_LSW
_BYTEWISE

The least-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to provide the
least-significant word of the user-defined command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_LSW (0x80001000, 0x12345678);

MICO_SPI_CUSTOM_MSW
_BYTEWISE

The most-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to provide the
most-significant word of the user-defined command.

Usage:

If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_MSW (0x80001000, 0x12345678);

NOTE: This macro is optional since the SPI flash
command could be four bytes or less.

MICO_SPI_CUSTOM_
LENGTH_BYTEWISE

The length, in bytes, of the
user-defined command
that is issued to the SPI
flash.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to indicate the
number of bytes transmitted as part of the user command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes transmitted is 1, then

MICO_SPI_CUSTOM_LENGTH (0x80001000, 0x1);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

36 LatticeMico SPI Flash Controller

MICO_SPI_CUSTOM_
RETURN_LENGTH_
BYTEWISE

The length, in bytes, of the
data returned by the SPI
flash for the user-defined
command that is issued.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to indicate the
number of bytes returned from the SPI flash as part of the
user command. The return length can be zero.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4, then

MICO_SPI_CUSTOM_RETURN_LENGTH (0x80001000,
0x4);

MICO_SPI_CUSTOM_
RETURN_DATA_
BYTEWISE

The data returned by the
SPI flash for the user-
defined command.

NOTE: The first byte
returned from the SPI flash
is the most-significant byte
of this word.

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to obtain the
data returned by the SPI flash if return length is non-zero.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4 and the sequence
received from SPI flash is 0x12, 0x23, 0x56, then 0x78.

unsigned int retValue;

MICO_SPI_CUSTOM_RETURN_DATA (0x80001000,
retValue);

retValue will be equal to 0x12345678.

MICO_SPI_CUSTOM_
BYTEWISE

This macro is part of the group of macros that are used to
create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented in
this SPI flash controller. This macro is used to initiate
transmission of user-defined command to SPI flash.

NOTE: The software developer must make sure that the
user-defined command, length, and return length are set
up prior to use of this macro.

MICO_SPI_CFG_WR_
PAGE_PROGRAM_SIZE_
BYTEWISE

The number of bytes to be
programmed on a SPI
flash "page program".

This macro is used to indicate the number of bytes to be
programmed in to SPI flash on a SPI flash "page program"
command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be programmed is 256, then

unsigned int size = 0x100;

MICO_SPI_CFG_WR_PAGE_PROGRAM_SIZE
(0x80001000, size);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 37

MICO_SPI_CFG_WR_
PAGE_READ_SIZE_
BYTEWISE

The number of bytes to be
read on a SPI flash "page
read".

This macro is used to indicate the number of bytes to be
read from the SPI flash on a SPI flash "page read"
command.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be read is 256, then

unsigned int size = 0x100;

MICO_SPI_CFG_WR_PAGE_READ_SIZE (0x80001000,
size);

MICO_SPI_CMD_CFG_WR
_SLOW_READ_BYTEWISE

The opcode for the SPI
flash "slow read"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "slow read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_SLOW_READ (0x80001000,
0xAB);

MICO_SPI_CMD_CFG_WR
_FAST_READ_BYTEWISE

The opcode for the SPI
flash "fast read" command.

This macro initialized the SPI flash controller with the SPI
flash’s "fast read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_FAST_READ (0x80001000,
0xAB);

MICO_SPI_CMD_CFG_WR
_BYTE_PROGRAM_
BYTEWISE

The opcode for the SPI
flash "byte program"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "byte program" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BYTE_PROGRAM
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_PAGE_PROGRAM_
BYTEWISE

The opcode for the SPI
flash "page program"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "page program" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ PAGE_PROGRAM
(0x80001000, 0xAB);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

38 LatticeMico SPI Flash Controller

MICO_SPI_CMD_CFG_WR
_BLOCK_ERASE_TYPE1_
BYTEWISE

The opcode for the SPI
flash "block erase type 1"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 1" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE1
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_BLOCK_ERASE_TYPE2_
BYTEWISE

The opcode for the SPI
flash "block erase type 2"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 2" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE2
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_BLOCK_ERASE_TYPE3_
BYTEWISE

The opcode for the SPI
flash "block erase type 3"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "block erase type 3" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE3
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_CHIP_ERASE_BYTEWISE

The opcode for the SPI
flash "chip erase"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "chip erase" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ CHIP_ERASE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_WRITE_ENABLE_
BYTEWISE

The opcode for the SPI
flash "write enable"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "write enable" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ WRITE_ENABLE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_WRITE_DISABLE_
BYTEWISE

The opcode for the SPI
flash "write disable"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "write disable" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ WRITE_DISABLE
(0x80001000, 0xAB);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

LatticeMico SPI Flash Controller 39

MICO_SPI_CMD_CFG_WR
_STATUS_READ_
BYTEWISE

The opcode for the SPI
flash "status register read"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "status register read" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ STATUS_READ
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_STATUS_WRITE_
BYTEWISE

The opcode for the SPI
flash "status register write"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "status register write" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ STATUS_WRITE
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_POWER_DOWN_
BYTEWISE

The opcode for the SPI
flash "power down"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "power down" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ POWER_DOWN
(0x80001000, 0xAB);

MICO_SPI_CMD_CFG_WR
_POWER_UP_BYTEWISE

The opcode for the SPI
flash "power up"
command.

This macro initialized the SPI flash controller with the SPI
flash’s "power up" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ POWER_UP (0x80001000,
0xAB);

MICO_SPI_CMD_CFG_WR
_MANUFACTURER_ID_
BYTEWISE

The opcode for the SPI
flash "read manufacturer
ID" command.

This macro initialized the SPI flash controller with the SPI
flash’s "read manufacturer ID" command opcode.

Usage:

If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

MICO_SPI_CMD_CFG_WR_ MANUFACTURER_ID
(0x80001000, 0xAB);

Table 55: Macros to be used for an 8-bit Data Bus on the WISHBONE Control Port (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico32 Microprocessor Software Support

40 LatticeMico SPI Flash Controller

Accessing SPI Flash Controller without
Device Drivers
The device driver functions and macros hide the SPI flash controller’s
implementation from the software developer by providing a software
translation layer between the developer’s application and the actual
hardware-specific details. It is, nevertheless, possible to access the SPI flash
controller directly without using Lattice-provided drivers. You can do this by
accessing (reading from or writing to) the registers defined in Table 3 on
page 7. The orientation of data is very important, because the LatticeMico32
microprocessor is a big-endian microprocessor. Therefore, the software
developer is advised to read the following information to understand the
impact of endianness when the microprocessor interacts with the
component's registers. In a big-endian architecture, the most-significant byte
of a multi-byte object is stored at the lowest address, and the least-significant
byte of that object is stored at the highest address.

Assume that you have a design that contains the SPI flash controller and that
it is assigned a base address of 0x80000000. Now let’s consider that one
wants to write to the "Slow Read CFG" register at an offset of 0x180 from the
base address. Valid data is located in bits 7-0, while the rest of the bits (31-8)
are ignored. There are two ways in C to write to this register depending on
whether one is performing a byte (“unsigned char” or “signed char”) write or
whether one is performing a word (“unsigned int” or “signed int”) write.
Figure 2 shows sample code that uses a byte write.

Figure 3 shows sample code that uses a word write.

As mentioned before, LatticeMico32 microprocessor is a big-endian
microprocessor. Therefore from the programmer's perspective, the least-
significant byte (bits 7-0) of the Slow Read CFG register will appear in the
most-significant location of "opcode" variable. The sample code in Figure 3
will write a value of 0xAB to bits 7-0 of the Slow Read CFG register.

On the other hand, the sample code in Figure 4 will produce incorrect
behavior. The C/C++ compiler will promote the 8-bit value 0xAB in to a 32-bit

Figure 2: Correct access to Slow Read CFG register using byte write

unsigned char opcode = 0xAB;
*(volatile unsigned char *)0x80000180 = opcode;

Figure 3: Correct access to Slow Read CFG register using word write

unsigned int opcode = 0xAB000000;
*(volatile unsigned int *)0x80000180 = opcode;

Figure 4: Incorrect access to Slow Read CFG register using word write

unsigned int opcode = 0xAB;
*(volatile unsigned int *)0x80000180 = opcode;

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 41

value of 0x000000AB. Thus the most-significant byte is 0x00 and that gets
written to bits 7-0 instead of the value 0xAB.

LatticeMico8 Microcontroller Software Support
This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico SPI flash controller.

Device Driver
The SPI flash driver interacts directly with the SPI flash controller and, in turn,
the SPI flash device. This section describes the type definitions, structure,
and functions of the SPI flash device driver.

Context Structure
This section describes the type definitions for the SPI flash controller context
structure. It is shown in Figure 5, which contains SPI flash controller-specific
information that is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts SPI flash controller-specific information from the platform definition
file. As part of the managed build process, designers can choose to control
the size of the generated structure, and hence the software executable, by
selectively enabling some of the elements in this structure via C preprocessor
macro definitions. These C preprocessor macro definitions are explained later
in this document. The members should not be manipulated directly since this
structure is for exclusive use by the device driver. The SPI flash controller
context structure is shown in Figure 5.

Table 56 describes the parameters of the SPI Flash device context structure
shown in Figure 5. The table also identifies any C preprocessor 'macro
definition' that controls the the generation of the parameter. If the 'state'
associated with a C preprocessor 'macro definition' is 'ifdef', then it means
that the application must be compiled with this macro definition for the
parameter to be generated. If the 'state' associated with a C preprocessor
'macro definition' is 'ifndef', then it means that the application must be
compiled without this macro definition for the parameter to be generated.

Figure 5: LatticeMico8 Type Definitions for SPI Flash Controller Context

Structure

typedef struct st_MicoSPIFlashCtx_t {
const char *name;

#ifdef __MICOSPIFLASH_CONTROL__
size_t control_base;
unsigned int page_size;
unsigned int sector_size;

#endif
}

LatticeMico8 Microcontroller Software Support

42 LatticeMico SPI Flash Controller

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters

Macro Name Second Argument to
Macro

Description

MICO_SPI_PAGE_
PROGRAM

The 24-bit address in the
SPI flash where data
programming will
commence.

This macro initiates a SPI flash ‘page program’ by writing
to the ‘Page Program’ register.

Usage:
If SPI flash controller’s base address is 0x80001000 and
SPI flash address to be programmed is 0x100000,

MICO_SPI_PAGE_PROGRAM(0x80001000,
0x100000);

NOTE : The software developer must ensure that the
Page Program Buffer is enabled in hardware and it
contains the data that needs to be programmed.

MICO_SPI_PAGE_READ The 24-bit address in the
SPI flash where data
reading will commence.

This macro initiates a SPI flash ‘page read’ by writing to
the ‘Page Read’ register.

Usage:
If SPI flash controller’s base address is 0x80001000 and
SPI flash address to be read from is 0x100000,

MICO_SPI_PAGE_READ(0x80001000, 0x100000);

NOTE: The software developer must ensure that the
Page Read Buffer is enabled in hardware.

MICO_SPI_BLOCK_ERASE_
TYPE1

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash ‘sector erase’ command
to erase a 4Kbytes sector.

Usage:
If SPI flash controller’s base a address is 0x80001000
and SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE1(0x80001000,
0x100000);

MICO_SPI_BLOCK_ERASE_
TYPE2

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash ‘sector erase’ command
to erase a 32Kbytes sector.

Usage:
If SPI flash controller’s base a address is 0x80001000
and SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE2(0x80001000,
0x100000);

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 43

MICO_SPI_BLOCK_ERASE_
TYPE3

The 24-bit address of the
sector in SPI flash that
needs to be erased.

This macro initiates a SPI flash ‘sector erase’ command
to erase a 64Kbytes sector.

Usage:
If SPI flash controller’s base a address is 0x80001000
and SPI flash sector address is 0x100000,

MICO_SPI_BLOCK_ERASE_TYPE3(0x80001000,
0x100000);

MICO_SPI_CHIP_ERASE - This macro initiates the SPI flash ‘chip erase’ command
to erase the entire chip.

Usage:
If SPI flash controller’s base address is 0x80001000,

MICO_SPI_CHIP_ERASE(0x80001000);

MICO_SPI_WRITE_ENABLE - This macro initiates the SPI flash ‘write enable’
command.

Usage:
If SPI flash controller’s base address is 0x80001000,

MICO_SPI_WRITE_ENABLE(0x80001000);

MICO_SPI_WRITE_
DISABLE

- This macro initiates the SPI flash ‘write disable’
command.

Usage:
If SPI flash controller’s base address is 0x800010000,

MICO_SPI_WRITE_DISABLE(0x80001000);

MICO_SPI_STATUS_READ The status register read
from the SPI flash.

This macro initiates the SPI flash ‘status register read’
command.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char status;
MICO_SPI_STATUS_READ(0x80001000, status);

MICO_SPI_STATUS_WRITE The value written to the
status register in the SPI
flash.

This macro initiates the SPI flash ‘status register write’
command.

Usage:
If SPI flash controller’s base address is 0x80001000, and
the value to be written to SPI flash’s status register is
0x2,

unsigned char status = 0x2;
MICO_SPI_STATUS_WRITE(0x80001000, status);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

44 LatticeMico SPI Flash Controller

MICO_SPI_POWER_DOWN - This macro initiates the SPI flash ‘power down’
command.

Usage:
If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_DOWN(0x80001000);

MICO_SPI_POWER_UP - This macro initiates the SPI flash ‘power up’ command.

Usage:
If SPI flash controller’s base address is 0x80001000,

MICO_SPI_POWER_UP(0x80001000);

MICO_SPI_
MANUFACTURER_ID

The manufacturer ID read
from the SPI flash.

This macro initiates the SPI flash ‘read manufacturer ID’
command.

Usage:
If SPI flash controller’s base address is 0x80001000,

MICO_SPI_MANUFACTURER_ID(0x80001000);

MICO_SPI_CUSTOM_LSW The least-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to provide
the least-significant word of the user-defined command.

Usage:
If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_LSW(0x80001000, 0x12345678);

MICO_SPI_CUSTOM_MSW The most-significant word
of the user-defined
command that is issued to
the SPI flash.

NOTE: The first byte to be
transmitted to SPI flash is
the most-significant byte of
this word.

This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to provide
the most-significant word of the user-defined command.

Usage:
If SPI flash controller’s base address is 0x80001000, and
the sequence of four bytes to be transmitted are 0x12,
0x34, 0x56, and then 0x78,

MICO_SPI_CUSTOM_MSW(0x80001000,
0x12345678);

NOTE: This macro is optional since the SPI flash
command could be four bytes or less.

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 45

MICO_SPI_CUSTOM_
LENGTH

The length, in bytes, of the
user-defined command
that is issued to the SPI
flash.

This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to indicate
the number of bytes transmitted as part of the user
command.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the number of bytes transmitted is 1, then

MICO_SPI_CUSTOM_LENGTH(0x80001000, 0x1);

MICO_SPI_CUSTOM_
RETURN_LENGTH

The length, in bytes, of the
data returned by the SPI
flash for the user-defined
command that is issued.

This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to indicate
the number of bytes returned from the SPI flash as part
of the user command. The return length can be zero.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4, then

MICO_SPI_CUSTOM_RETURN_LENGTH(0x80001000
, 0x4);

MICO_SPI_CUSTOM_
RETURN_DATA

The return data on a SPI
flash user-defined
command.

This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to obtain
the data returned by the SPI flash if return length is non-
zero.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the number of bytes returned is 4 and the sequence
received from SPI flash is 0x12, 0x23, 0x56, then 0x78.

unsigned long retValue;
MICO_SPI_CUSTOM_RETURN_DATA(0x80001000,
retValue);

retValue will be equal to 0x12345678.

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

46 LatticeMico SPI Flash Controller

MICO_SPI_CUSTOM - This macro is part of the group of macros that are used
to create user-defined commands to be issued to the SPI
flash. These macros are useful when the SPI flash
supports additional commands that are not implemented
in this SPI flash controller. This macro is used to initiate
transmission of user-defined command to SPI flash.

NOTE: The software developer must make sure that the
user-defined command, length, and return length are set
up prior to use of this macro.

MICO_SPI_CFG_RD_
READ_SPEED

The return data. This macro is used to obtain the contents of 'Read
Speed' register from Table 3 on page 7.

Usage:
If SPI flash controller's base address is 0x80001000,

unsigned char speed;
MICO_SPI_CFG_RD_READ_SPEED(0x80001000,
speed);

MICO_SPI_CFG_WR_
READ_SPEED

Fast read (0x1) or Slow
read (0x0)

This macro is used to set the default 'Read Speed' to be
used on a SPI flash 'page read' command.

Usage:
If SPI flash controller's base address is 0x80001000,

unsigned char speed = 0x1; // 0x1 (fast), 0x0 (slow)
MICO_SPI_CFG_WR_READ_SPEED(0x80001000,
speed);

MICO_SPI_CFG_RD_PAGE_
PROGRAM_SIZE

The number of bytes to be
programmed on a SPI
flash 'page program'
returned by the SPI flash
controller.

This macro is used to obtain the contents of 'Page
Program Size' register from Table 3 on page 7.

Usage:
If SPI flash controller’s base address is 0x80001000,
then

unsigned int size; // value from 'Page Program Size'
register is stored in this variable
MICO_SPI_CFG_RD_PAGE_PROGRAM_SIZE(0x8000
1000, size);

MICO_SPI_CFG_WR_
PAGE_PROGRAM_SIZE

The number of bytes to be
programmed on a SPI
flash ‘page program’.

This macro is used to indicate the number of bytes to be
programmed in to SPI flash on a SPI flash ‘page
program’ command.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be programmed is 256, then

unsigned int size = 0x100;
MICO_SPI_CFG_WR_PAGE_PROGRAM_SIZE(0x800
01000, size);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 47

MICO_SPI_CFG_RD_PAGE_
READ_SIZE

Opcode for the SPI flash
'page read' command
returned by the SPI flash
controller.

This macro is used to obtain the contents of 'Page Read
Size' register from Table 3 on page 7.

Usage:
If SPI flash controller’s base address is 0x80001000,
then

unsigned int size; // value from 'Page Read Size' register
is stored in this variable
MICO_SPI_CFG_RD_PAGE_READ_SIZE(0x80001000,
size);

MICO_SPI_CFG_WR_
PAGE_READ_SIZE

The number of bytes to be
read on a SPI flash ‘page
read’.

This macro is used to indicate the number of bytes to be
read from the SPI flash on a SPI flash ‘page read’
command.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the number of bytes to be read is 256, then

unsigned int size = 0x100;
MICO_SPI_CFG_WR_PAGE_PROGRAM_SIZE(0x800
01000, size);

MICO_SPI_CMD_CFG_RD_
SLOW_READ

Opcode for the SPI flash
'slow read' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'slow read' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Slow Read CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_SLOW_READ(0x80001000
, opcode);

MICO_SPI_CMD_CFG_WR_
SLOW_READ

The opcode for the SPI
flash ‘slow read’ command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘slow read’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_SLOW_READ(0x8000100
0, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

48 LatticeMico SPI Flash Controller

MICO_SPI_CMD_CFG_RD_
FAST_READ

Opcode for the SPI flash
'fast read' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'fast read' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Fast Read CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_FAST_READ(0x80001000,
opcode);

MICO_SPI_CMD_CFG_WR_
FAST_READ

The opcode for the SPI
flash ‘fast read’ command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘fast read’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_FAST_READ(0x80001000,
opcode);

MICO_SPI_CMD_CFG_RD_
BYTE_PROGRAM

Opcode for the SPI flash
'byte program' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'byte program' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Byte Program CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_BYTE_PROGRAM(0x8000
1000, opcode);

MICO_SPI_CMD_CFG_WR_
BYTE_PROGRAM

The opcode for the SPI
flash ‘byte program’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘byte program’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ BYTE_PROGRAM
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 49

MICO_SPI_CMD_CFG_RD_
PAGE_PROGRAM

Opcode for the SPI flash
'page program' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'page program' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Page Program
CFG' register is stored in this variable
MICO_SPI_CMD_CFG_RD_PAGE_PROGRAM(0x8000
1000, opcode);

MICO_SPI_CMD_CFG_WR_
PAGE_PROGRAM

The opcode for the SPI
flash ‘page program’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘page program’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ PAGE_PROGRAM
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
BLOCK_ERASE_TYPE1

Opcode for the SPI flash
'block erase type 1'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'block erase (type 1)' command opcode that is
current programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Block Erase 1 CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_BLOCK_ERASE_TYPE1(0
x80001000, opcode);

MICO_SPI_CMD_CFG_WR_
BLOCK_ERASE_TYPE1

The opcode for the SPI
flash ‘block erase type 1’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘block erase type 1’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE1
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

50 LatticeMico SPI Flash Controller

MICO_SPI_CMD_CFG_RD_
BLOCK_ERASE_TYPE2

Opcode for the SPI flash
'block erase type 2'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'block erase (type 2)' command opcode that is
current programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Block Erase 2 CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_BLOCK_ERASE_TYPE2(0
x80001000, opcode);

MICO_SPI_CMD_CFG_WR_
BLOCK_ERASE_TYPE2

The opcode for the SPI
flash ‘block erase type 2’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘block erase type 2’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE2
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
BLOCK_ERASE_TYPE3

Opcode for the SPI flash
'block erase type 3'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'block erase (type 3)' command opcode that is
current programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Block Erase 3 CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_BLOCK_ERASE_TYPE3(0
x80001000, opcode);

MICO_SPI_CMD_CFG_WR_
BLOCK_ERASE_TYPE3

The opcode for the SPI
flash ‘block erase type 3’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘block erase type 3’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ BLOCK_ERASE_TYPE3
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 51

MICO_SPI_CMD_CFG_RD_
CHIP_ERASE

Opcode for the SPI flash
'chip erase' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'chip erase' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Chip Erase CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_CHIP_ERASE(0x80001000
, opcode);

MICO_SPI_CMD_CFG_WR_
CHIP_ERASE

The opcode for the SPI
flash ‘chip erase’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘chip erase’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ CHIP_ERASE
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
WRITE_ENABLE

Opcode for the SPI flash
'write enable' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'write enable' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Write Enable CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_WRITE_ENABLE(0x80001
000, opcode);

MICO_SPI_CMD_CFG_WR_
WRITE_ENABLE

The opcode for the SPI
flash ‘write enable’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘write enable’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ WRITE_ENABLE
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

52 LatticeMico SPI Flash Controller

MICO_SPI_CMD_CFG_RD_
WRITE_DISABLE

Opcode for the SPI flash
'write disable' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'write disable' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Write Disable CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_WRITE_DISABLE(0x80001
000, opcode);

MICO_SPI_CMD_CFG_WR_
WRITE_DISABLE

The opcode for the SPI
flash ‘write disable’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘write disable’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ WRITE_DISABLE
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
STATUS_READ

Opcode for the SPI flash
'status register read'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'status read' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Status Read CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_STATUS_READ(0x800010
00, opcode);

MICO_SPI_CMD_CFG_WR_
STATUS_READ

The opcode for the SPI
flash ‘status register read’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘status register read’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ STATUS_READ
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 53

MICO_SPI_CMD_CFG_RD_
STATUS_WRITE

Opcode for the SPI flash
'status register write'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'status write' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Status Write CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_STATUS_WRITE(0x80001
000, opcode);

MICO_SPI_CMD_CFG_WR_
STATUS_WRITE

The opcode for the SPI
flash ‘status register write’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘status register write’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ STATUS_WRITE
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
POWER_DOWN

Opcode for the SPI flash
'power down' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'power down' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Power Down CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_POWER_DOWN(0x80001
000, opcode);

MICO_SPI_CMD_CFG_WR_
POWER_DOWN

The opcode for the SPI
flash ‘power down’
command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘power down’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ POWER_DOWN
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

54 LatticeMico SPI Flash Controller

C Preprocessor Macro Definitions
This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and 'function-like'.

MICO_SPI_CMD_CFG_RD_
POWER_UP

Opcode for the SPI flash
'power up' command
returned by the SPI flash
controller.

This macro is used to obtain the opcode of the SPI
flash's 'power up' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Power Up CFG'
register is stored in this variable
MICO_SPI_CMD_CFG_RD_POWER_UP(0x80001000,
opcode);

MICO_SPI_CMD_CFG_WR_
POWER_UP

The opcode for the SPI
flash ‘power up’ command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘power up’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ POWER_UP
(0x80001000, opcode);

MICO_SPI_CMD_CFG_RD_
MANUFACTURER_ID

Opcode for the SPI flash
'read manufacturer ID'
command returned by the
SPI flash controller.

This macro is used to obtain the opcode of the SPI
flash's 'manufacturer ID' command opcode that is current
programmed within the SPI flash controller.

Usage:
If SPI flash controller’s base address is 0x80001000,

unsigned char opcode; // value from 'Manufacturer ID
CFG' register is stored in this variable
MICO_SPI_CMD_CFG_RD_MANUFACTURER_ID(0x8
0001000, opcode);

MICO_SPI_CMD_CFG_
WR_MANUFACTURER_ID

The opcode for the SPI
flash ‘read manufacturer
ID’ command.

This macro initialized the SPI flash controller with the
SPI flash’s ‘read manufacturer ID’ command opcode.

Usage:
If SPI flash controller’s base address is 0x80001000 and
the opcode is 0xAB,

unsigned char opcode = 0xAB;
MICO_SPI_CMD_CFG_WR_ MANUFACTURER_ID
(0x80001000, opcode);

Table 56: LatticeMico8 SPI Flash Controller Context Structure Parameters (Continued)

Macro Name Second Argument to
Macro

Description

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 55

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command-
line in the application's 'Build Properties'. Please refer to the LatticeMico8
Software Developers User Guide for more information on how to manually
add the macro definition in the the application's 'Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
'check-box' associated with the macro definition. Please refer to the
LatticeMico8 Software Developers User Guide for more information on
how to set up the check/uncheck the macro definitions in the application's
'Build Properties' GUI.

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use options 1 or 2. The ‘object-like’
macro definitions are:

 __MICOSPIFLASH_CONTROL__

This preprocessor macro definition enables code and data structures
within the device driver that are used when the Control Port is enabled
within the SPI flash controller. The Control Port is used for SPI flash
operations that modify the state of the SPI flash (i.e., operations excluding
a byte read or a byte write within an erased SPI flash page).

The 'function-like' macro definitions are used in the LatticeMico8 software
drivers to access the component's Register Map in order to perform certain
operations. All 'function-like' macro definitions take input parameters that are
used in performing the operations encoded within the macro. Table 57
describes the 'function-like' macros available in the LatticeMico8 SPI Flash
driver header file 'MicoSPIFlash.h'. Table 57 also shows how each macro can
be used by the software developer in his application code.

Table 57: LatticeMico8 SPI Flash C Preprocessor Function-Like Macros

Parameters Data Type C Preprocessor Macro Definition Description

Name State

name const char* Instance-specific component name
(entered in MSB)

control_base size_t __MICOSPIFLASH_CONTROL__ ifdef MSB-assigned Control Port base
address for this instance

page_size unsigned int __MICOSPIFLASH_CONTROL__ ifdef Size of SPI Flash page in bytes

sector_size unsigned int __MICOSPIFLASH_CONTROL__ ifdef Size of SPI Flash sector in bytes

LatticeMico8 Microcontroller Software Support

56 LatticeMico SPI Flash Controller

Functions
This section describes the implemented device-driver-specific functions.

MicoSPIFlash_Initialize Function
void MicoSPIFlash_Initialize(MicoSPIFlashCtx *ctx);

This function initializes a LatticeMico SPI flash controller instance on the basis
of the passed SPI flash controller context structure. This initialization function
is responsible for initializing the interrupts or buffer parameters for interrupt-
driven operation. As a part of the managed build process, the LatticeDDInit
function calls this initialization routine for each SPI flash controller instance
that is present in the platform. Table 58 describes the parameter in the
MicoSPIFlash_Initialize function syntax.

Table 58: MicoSPIFlash_Initialize Function Parameter

Parameter Description

MicoSPIFlashCtx_t * Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash controller instance.

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 57

MicoSPIFlash_PageOp Function
void MicoSPIFlash_PageOp(MicoSPIFlashCtx *ctx, unsigned
long anAddress, char *rData, char read_op);

This function is used to perform bulk reads from, or writes to, the SPI flash.
There are two ways that bulk reads/writes to SPI flash can be performed,
depending on whether the page buffers (Page Program Buffer for writes and
Page Read Buffer for reads) are enabled in hardware. When the Page
Program Buffer is enabled, the function performs bulk writes by first writing
the data to the SPI flash controller’s Page Program Buffer and then sending
this data to the SPI flash in one command. When the Page Program Buffer is
disabled in hardware, the function performs these writes via the significantly
slower method of writing the given data to SPI flash one byte per SPI flash
command. Similarly, when the Page Read Buffer is enabled, the function
performs buld reads by first reading the data from the SPI flash to the SPI
flash controller’s Page Read Buffer and then storing it in to the data array that
is an input argument to the function. When the Page Read Buffer is disabled
in hardware, the function performs these reads via the significantly slower
method of reading the given data from SPI flash one byte per SPI flash
command.

The function will only read/write a single page. The software developer must
note that this function will stop reading data from or writing data to the SPI
flash as soon as it reaches the end of a page. Table 59 describes the
parameters in the MicoSPIFlash_PageOp function syntax.

MicoSPIFlash_BlockErase Function
void MicoSPIFlash_BlockErase(MicoSPIFlashCtx *ctx,
unsigned long anAddress, unsigned char aType);

This function issues a command to the SPI flash device that is connected to
the SPI flash controller instance to erase the block (also known as section) at
the specified address. This function can issue one of the three types of block
erases that are specified by the SPI flash command instructions defined in
Block Erase 1 CFG, Block Erase 2 CFG, and Block Erase 3 CFG registers
shown in Table 3 on page 7. This function requests that the SPI flash perform

Table 59: MicoSPIFlash_PageOp Function Parameters

Parameter Description

MicoSPIFlashCtx_t * Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash controller instance.

unsigned long anAddress The first location in the SPI flash memory where
program will commence. It can be any location within
the page.

char *rData The array of bytes to be written to SPI flash. The
software developer must ensure that the byte array is as
large as the SPI flash page. Otherwise, the program can
unexpectedly crash.

char read_op Indicates whether we are performing a page read (0x1)
or a page write (0x0).

LatticeMico8 Microcontroller Software Support

58 LatticeMico SPI Flash Controller

a block erase, and then it exits. It does not wait for the SPI flash to actually
complete erasing the block. This allows the software execution to continue
even though the SPI flash is still in the process of erasing all data in specified
block.

Software Usage Example

This section provides an example on how to use the LatticeMico8 device
driver for the SPI flash controller. The example, shown in Figure 6, assumes
the presence of a SPI flash controller named "SPIFlash" whose Control Port,
Page Read Buffer, and Page Program Buffer are enabled.

Note

Since it is possible that the SPI flash controller might receive a new SPI flash request
from any of the two WISHBONE ports while an erase is in progress, the SPI flash
controller hardware is designed to issue a new command to the SPI flash only when
the SPI flash indicates it is not busy.

Table 60: MicoSPIFlash_BlockErase Function Parameters

Parameter Description

MicoSPIFlashCtx_t * Pointer to a valid MicoSPIFlashCtx_t structure
representing a valid SPI flash controller instance.

unsigned long anAddress Address of SPI flash sector/block to be erased.

unsigned char aType Indicates the type of SPI flash block erase command to
be used. This, in turn, also determines the size of block
that is being erased. The three legal values are:

1 – Type 1 for block size of 4K

2 – Type 2 for block size of 32K

3 – Type 3 for block size of 64K

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 59

Accessing the SPI Flash from Data Port of SPI
Flash Controller

The example shown in Figure 6 shows how a page can be read from (or
written to) the SPI flash using the Control Port of the SPI flash controller. The
software developer can also choose to bypass the SPI flash controller's
device drivers and access the SPI flash directly using the Data (S) port of the
SPI flash controller. The Data port provides a virtual one-to-one map of the
physical SPI flash memory. This means that the software developer can
directly access SPI flash contents by accessing it's equivalent virtual map.
That is, physical address 0 within the SPI flash corresponds to virtual address
'Data port base address + 0x0' within the SPI flash controller.

Figure 6: Example of How to Use LatticeMico8 Device Driver for SPI

Flash Controller

#include "DDStructs.h"
#include "MicoUtils.h"
#include "MicoSPIFlash.h"

char wdata[256];
char rdata[256];

int main(void)
{

// Fetch the context for SPI flash controller named
"SPIFlash" from DDStructs.h

MicoSPIFlashCtx_t *spiflash = &spi_flash_SPIFlash;

// Set up read/write FIFOs with initial data
unsigned int idx;

 for (idx = 0; idx < 256; idx++) {
 wdata[idx] = 0x12;
 rdata[idx] = 0x0;
 }

 // Perform a chip erase by calling the 'chip erase' macro
within MicoSPIFlash.h
 MICO_SPI_CHIP_ERASE (spiflash->control_base);

 // Fill the page at physical flash address 0 with contents
of 'wdata' array
 MicoSPIFlash_PageOp (spiflash, 0x0, wdata, 0);

// Read the contents of page at physical flash address 0 in
to 'rdata' array

MicoSPIFlash_PageOp (spiflash, 0x0, rdata, 1);

 return 0;
}

LatticeMico8 Microcontroller Software Support

60 LatticeMico SPI Flash Controller

In order to read a byte from physical address 0 of SPI flash,

unsigned char value = *(unsigned char *)0x01000000; // Data
port's base address is 0x01000000

In order to write a byte to physical address 10 of SPI flash,

*(unsigned char *)0x0200000A; // Data port's base address is
0x02000000

The software developer must follow the following rules when writing code to
access the SPI flash from the Data Port:

1. Every read or write is a byte wide. Therefore it is recommended that the
software developer work with 'char' data type.

2. The software developer must ensure that the Data port address being
accessed is within the LatticeMico8 addressable range. The addressable
range can be computed from two values set within the LatticeMico8
configuration GUI: Scratchpad base address, and Data addressable
range. For example, if Scratchpad base is 0x00000000 and Data
addressable range is 64K, then SPI flash controller's Data port address
must be within 0x00010000.

Note

The byte read/write examples shown above require that LatticeMico8's addressable
range be 4Gbyte in order to to be accessibly by LatticeMico8 when the Scratchpad
base address is 0x00000000.

Revision History
Component Version Description

1.0 Initial Release.

3.0 (7.0 SP2) Version number change only. No RTL code change.

3.1 Added SPI flash programming feature.

3.2 Added read/write support.

3.3 (8.1 SP1) The data busses on the two WISHBONE interfaces can be
configured to be 8 or 32 bits. Register map updated to
support 8-bit and 32-bit WISHBONE data bus.

3.4 Software support added for LatticeMico8.

3.5 Fixed custom command macros in the LatticeMico32
device drivers.

3.6 Fixed RTL codes to return Manufacturer ID in LatticeMico8
and LatticeMico32 device.

3.7 Added options to use EBRs or Distributed RAM for Page
Program Buffer Memory and Page Read Buffer Memory.

LatticeMico8 Microcontroller Software Support

LatticeMico SPI Flash Controller 61

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of
Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their
respective owners.

http://www.latticesemi.com/legal

	LatticeMico SPI Flash Controller
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	I/O Ports

	Register Descriptions
	EBR Utilization
	LatticeMico32 Microprocessor Software Support
	Device Driver
	Accessing SPI Flash Controller without Device Drivers

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example

