
Copyright © June 2012 Lattice Semiconductor Corporation.

LatticeMico SPI

The LatticeMico serial peripheral interface (SPI) provides an industry-
standard interface between a LatticeMico32 processor and off-chip
peripherals, as shown in Figure 1. In master mode, the SPI can be configured
to control communication with up to 32 off-chip SPI ports. In slave mode, the
SPI supports communications with an off-chip SPI master.

As a simple serial port, an SPI uses few FPGA resources (about 150 slices)
and little board space for wires but runs much slower than a parallel port. The
LatticeMico SPI uses only three pins (clock, data in, and data out) plus one
select for each slave device. An SPI is a good choice for communicating with
low-speed devices that are accessed intermittently and transfer data streams
rather than reading and writing to specific addresses. An SPI is an especially
good choice if you can take advantage of its full-duplex nature, which sends
and receives data at the same time.

Figure 1: Using LatticeMico SPI to Communicate with Peripherals

LatticeMico32

FPGA

Microrocessor

W
I
S
H
B
O
N
E

LatticeMico
SPI

(master mode)

Slave
SPI

Peripheral

Slave
SPI

Peripheral

Version

2 LatticeMico SPI

Version
This document describes the 3.1 version of the LatticeMico SPI.

Features
The LatticeMico SPI provides standard, fully configurable SPI ports including:

 WISHBONE B.3 interface

 Slave and master modes. Master mode can control up to 32 slaves.

 Interrupt request to the processor, configurable for a variety of status
conditions

 Library of basic data structures and software routines for operating SPIs

 Configurable serial clock (SCLK) frequency

 Configurable timing relationships between data and clock signals, and
between data and slave-select signals

 Double-buffered transmission, allowing new data to be written at the same
time that previous data is being shifted out

 Receive and transmit registers configurable from 1 to 32 bits wide. Longer
transfers can be done with software support.

 Option for least-significant bit or most-significant bit first

For additional details about the WISHBONE bus, refer to the LatticeMico32
Processor Reference Manual.

Functional Description
Figure 2 shows the LatticeMico SPI configured as a master port, and Figure 3
shows it configured as a slave port.

On the internal side (the left in these diagrams), the SPI has a standard
WISHBONE slave bus, which connects the SPI with a LatticeMico32
microprocessor and other on-chip components. From the WISHBONE bus,
the SPI appears as a set of addressable registers that can be read or written.
Through these registers, the microprocessor can transmit and receive data
and control the operation of the SPI.

For a description of the WISHBONE bus, refer to the LatticeMico32 Processor
Reference Manual.

On the external side (the right in these diagrams), the SPI has a standard
master or slave SPI interface:

 SCLK (serial clock) generated by the master SPI to synchronize the data
transfers.

Functional Description

LatticeMico SPI 3

 MISO (master in, slave out), which transfers data going to the master SPI
from a slave.

 MOSI (master out, slave in), which transfers data going from the master
SPI to a slave.

 SS_N (slave select), which is asserted by the master SPI to start a data
transfer. In master mode, the SPI has a slave select signal (SS_N0,
SS_N1, and so on) for each slave SPI. In slave mode, the SPI has a
single SS_N input.

Data Transmit and Receive
Both of the data transmit and receive paths within the LatticeMico SPI use two
registers: a holding register and a shift register. This double buffering allows
the paths to hold one data frame while another is being shifted in or out. The
holding registers, TXDATA and RXDATA, are addressable and can be written
to or read through the WISHBONE bus.

Figure 2: LatticeMico SPI Master Implementation

Figure 3: LatticeMico SPI Slave Implementation

TXDATA

Status

Control

Slave select

Receive shift

Transmit shift

RXDATA

SPI_DAT_I

SPI_DAT_O

SPI_INT_O

CLK_I
SCLK

MOSI

MISO

SS_N0
SS_N1

SS_Nn

...

W
I
S
H
B
O
N
E

TXDATA

Status

Control

Receive shift

Transmit shift

RXDATA

SPI_DAT_I

SPI_DAT_O

SPI_INT_O

SCLK

MISO

MOSI

SS_N

W
I
S
H
B
O
N
E

Functional Description

4 LatticeMico SPI

In the transmit path, TXDATA is written to (or read) through the WISHBONE
bus. Writing to TXDATA clears the transmitter ready status bit (TRDY) to 0,
blocking any new data until the previous data has moved to the shift register.
If no serial transfer is in process, TXDATA immediately moves its data to the
shift register and sets TRDY to 1. If a serial transfer is in process, TXDATA
holds the new data until the previous data has shifted out. If new data comes
in while TRDY is 0, the new data is blocked and the transmit overrun error
status bit (TOE) is set.

In the receive path, the shift register, when full, immediately moves its data to
the holding register, RXDATA, and sets the receiver ready status bit (RRDY)
to 1. RXDATA can be read through the WISHBONE bus. Reading RXDATA
clears the RRDY status bit. If new data comes in while RRDY is set, RXDATA
is overwritten with the new data and the receive overrun error status bit (ROE)
is set.

SPI operations are always full duplex, so every data transfer operation
transmits and receives at the same time. If you just want to receive, your
software must load TXDATA with appropriate dummy data to transmit. Your
software must also use or ignore the received data as appropriate.

The registers can be configured up to 32 bits wide. The transmit and receive
logic can be configured to assume the data is either least-significant bit (LSB)
first or most-significant bit (MSB) first.

Status and Control
The SPI includes status and control registers. These are mainly used to
trigger interrupt requests. The master SPI also has a slave-select register that
is used to select a slave SPI and start a data transfer.

To check the status of the SPI, read the status register. It reports conditions
such as receive and transmit overrun, transmit shift register empty, and
transmitter and receiver ready. For details, see Table 7 on page 10.

To set up an interrupt request on the SPI_INT_O output, set one or more of
the interrupt enable bits in the control register. These bits enable interrupt
requests for most of the conditions reported in the status register. For details,
see Table 8 on page 11.

To clear an interrupt request, clear the associated bit in the status register.
Writing any value to the status register clears the overrun error status bits
(ROE, TOE, and E). Writing the TXDATA register clears the transmit ready
status bit (TRDY). Reading the RXDATA register clears the receiver ready
status bit (RRDY).

To start a data transfer, load the slave select register of the master SPI with a
slave mask and then load the TXDATA register. Loading TXDATA triggers the
next data transfer. The slave select register has one bit for each SS_N output.
Setting the bit to 1 asserts the active-low SS_N. For example, a slave mask of
0x00000020 asserts SS_N5, selecting that slave SPI. It is possible to assert

Configuration

LatticeMico SPI 5

more than one slave select signal, but you must take care to prevent
contention on the MISO bus.

To have a data transfer longer than the transmit and receive registers, set the
SSO bit in the control register to 1. SSO holds the slave select signal after it
would normally be de-asserted. The SPIs will continue to exchange data
frames until SSO is cleared. SCLK stops toggling between frames. Before
clearing SSO to end the data transfer, make sure the transmit shift register is
empty by checking the TMT status bit.

A slave SPI cannot start a data transfer. When the SPI’s SS_N input goes low,
the SPI immediately begins the data transfer.

Clocking Sources
The master SPI generates SCLK to synchronize the data transfers. Each SPI
transmits a new data bit with each active edge of SCLK. SCLK is only
available during the data transfer, while SS_N is asserted.

SCLK is derived from the system clock, CLK_I, by dividing the frequency. The
divisor and other aspects of SCLK can be selected when the SPI is
configured. For details, see the following section.

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico SPI.

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico SPI
through the Mico System Builder (MSB) interface.

Table 1: LatticeMico SPI UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the SPI instance. Alphanumeric and underscores spi

Base Address Specifies the base address for the device.
The minimum byte alignment is 0X80.

0X80000000 – 0XFFFFFF80

If other components are
included in the platform, the
range of allowable values will
vary.

0X80000000

Setting

Configuration

6 LatticeMico SPI

Data Length Specifies the number of serial data bits per
SPI transaction.

1-32 (master)
1-32 (slave)

24 (master)
24 (slave)

Shift Direction Specifies whether the most significant bit or
the least significant bit is first.

 If 0, the most significant bit is first.

 If 1, the least significant bit is first.

0|1 (master/slave) 1 (master/
slave)

Phase Specifies the clock phase of the SPI
instance:

 If 0, data is latched on the leading edge
of SCLK, and the data changes on the
trailing edge.

 If 1, data is latched on the trailing edge
of SCLK, and the data changes on the
leading edge.

0|1 (master/slave) 1

Polarity Specifies the polarity of the SPI instance:

 If 0, the idle state for SCLK is low.

 If 1, the idle state for SCLK is high.

0|1 (master/slave) 1

Master

Master Specifes whether the SPI instance is a
master or a slave. When selected, the
LatticeMico SPI acts as a master;
otherwise, it acts as a slave.

selected|not selected not selected

Number of Slaves Specifies the number of slave devices
supported.

1-32 (master) 1

SCLK Rate Specifies the factor for deriving SCLK from
the component input clock (processor clock,
CLK_I). SCLK is derived from the following
equation:

For example:

For SCLK_Rate = 0:

For SCLK_Rate = 1:

Note: The SCLK Rate value is used as the
CLOCK_SEL parameter in the HDL.

0 through 2clock_counter_width - 1 7

Table 1: LatticeMico SPI UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

SCLK CLK_I
2 SCLK_Rate 1+()×
--=

SCLK CLK_I
2

----------------=

SCLK CLK_I
4

----------------=

Configuration

LatticeMico SPI 7

HDL Parameters
Table 2 lists the parameters that appear in the HDL.

Clock Counter
Width

Sets the range limit for the clock counter.
The width should be enough to meet the
number of bits required for the slave clock.

1-32 1 6

Tx Start Delay Specifies the time delay factor before
shifting the first bit of data after the SS_N
signal is asserted.

The start delay time is derived from the
following equation:

Note: The Tx Start Delay value is used as
the DELAY_TIME parameter in the HDL.

0-63 3

Tx Interframe
Pause

Specifies the number of SCLK cycles for
which the SS_N signal is held inactive
between SPI transmit requests.

Note: The Tx Interframe Pause parameter
is used as the INTERVAL_LENGTH value in
the HDL.

0-63 2

Table 1: LatticeMico SPI UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

Delay Tx_Start_Delay
SCLK_Period

2
------------------------------------ 
 ×=

Table 2: LatticeMico SPI HDL Parameters

Parameter Name Description Allowable Values

BASE_ADDR Specifies the base address for the device. 0X80000000 – 0XFFFFFF80

DATA_LENGTH Specifies the number of serial data bits. 1-32 (master)
1-32 (slave)

SHIFT_DIRECTION Specifies whether the most significant bit or the least significant
bit is first.

 If 0, the most significant bit is first.

 If 1, the least significant bit is first.

0|1 (master/slave)

CLOCK_PHASE Specifies the clock phase of the SPI instance:

 If 0, data is latched on the leading edge of SCLK, and the
data changes on the trailing edge.

 If 1, data is latched on the trailing edge of SCLK, and the
data changes on the leading edge.

0|1 (master/slave)

Configuration

8 LatticeMico SPI

I/O Ports
The WISHBONE interface supports only classic cycle transfers, which means
that the LatticeMico System master CTI_O is fixed at 000. The interface does
not support cache line wrap; the LatticeMico System master BTE_O is fixed at
00. The slave port does not have RTY_O and ERR_O signals. The RTY_O

CLOCK_POLARITY Specifies the polarity of the SPI instance:

 If 0, the idle state for SCLK is low.

 If 1, the idle state for SCLK is high.

0|1 (master/slave)

MASTER Specifes whether the SPI instance is a master or a slave. A
value of 1 defines the LatticeMico SPI as a master; otherwise, it
acts as a slave.

0|1

SLAVE_NUMBER Specifies the number of slave devices supported. 1-32

CLOCK_SEL Specifies the factor for deriving SCLK from the component
input clock (processor clock, CLK_I). SCLK is derived from the
following equation:

For example:

For CLOCK_SEL = 0:

For CLOCK_SEL = 1:

Note: The SCLK Rate value in the UI is used as the
CLOCK_SEL parameter.

CLKCNT_WIDTH-1:0

DELAY_TIME Specifies the time delay factor before shifting the first bit of data
after the SS_N signal is asserted.

The start delay time is derived from the following equation:

Note: The Tx Start Delay value in the UI is used as the
DELAY_TIME parameter.

0-63

CLKCNT_WIDTH Sets the range limit for the clock counter. The width should be
enough to meet the number of bits required for the slave clock.

1-32

INTERVAL_LENGTH Specifies the number of SCLK cycles for which the SS_N signal
is held inactive between SPI transmit requests.

Note: The Tx Interframe Pause parameter in the UI is used as
the INTERVAL_LENGTH value.

0-63

Table 2: LatticeMico SPI HDL Parameters (Continued)

Parameter Name Description Allowable Values

SCLK CLK_I
2 CLOCK_SEL 1+()×
---=

SCLK CLK_i
2

----------------=

SCLK CLK_i
4

----------------=

Delay DELAY_TIME SCLK_Period
2

------------------------------------ 
 ×=

Configuration

LatticeMico SPI 9

and ERR_O signals are terminated low. The slave adds an interrupt port
(SPI_INT_O) to the master (processor). Only a master processor 32-bit
operation is supported; S_SEL_I is not supported.

Table 3 describes the input and output ports of the LatticeMico SPI.

Table 3: LatticeMico SPI I/O Port Descriptions

I/O Port Active Direction Initial State Description

CLK_I HIGH I X Input clock signal

RST_I HIGH I X System reset signal

WISHBONE Slave Interface

SPI_ADR_I XX I X Slave address bus

SPI_DAT_I XX I X Slave data input bus

SPI_WE_I HIGH I X Slave write enable signal

SPI_CYC_I HIGH I X Slave cycle signal

SPI_STB_I HIGH I X Slave strobe signal

SPI_SEL_I HIGH I X Slave select signal

SPI_CTI_I HIGH I X Slave cycle-type indicator

SPI_BTE_I HIGH I X Slave burst type

SPI_LOCK_I HIGH I X Slave bus locked

SPI_DAT_O XX O 0 Slave data output bus

SPI_ACK_O HIGH O 0 Slave acknowledge signal

SPI_ERR_O HIGH O 0 Slave error

SPI_RTY_O HIGH O 0 Slave retry

SPI Interface

MISO HIGH I (master)
O (slave)

0 Master input slave output

MOSI HIGH O (master)
I (slave)

0 Master output slave input

SS_N XX (master)
LOW (slave)

O (master)
I (slave)

0 Slave select signal (active low)

SCLK X

Set by polarity
parameter

O (master)
I (slave)

X

Set by polarity
parameter

Serial clock

Other Auto-Connected Internal Signals

SPI_INT_O HIGH O 0 Slave interrupt request signal

Register Definitions

10 LatticeMico SPI

User Impact of Initial State
At reset and power up, all registers are cleared to 0 except slave-select and
TMT and TRDY bits in the status register.

Register Definitions
The LatticeMico SPI includes the registers shown in Table 4.

Table 5 through Table 9 provide details about each register in the LatticeMico
SPI. Writing any value to the status register clears the ROE, TOE, and E bits.

Table 4: Register Map

Register Name Offset 31-11 10 9 8 7 6 5 4 3 2-0

Receive data 0x00 RXDATA

Transmit data 0x04 TXDATA

Status 0x08 Reserved E RRDY TRDY TMT TOE ROE Res’rv.

Control 0x0C Res’rv. SSO Res’rv. IE IRRDY ITRDY Res’rv. ITOE IROE Res’rv.

Slave select 0x10 Slave select

Table 5: RXDATA Register Bit Definition

Register Name Bit Access Mode Description

RXDATA DATA_LENGTH-1:0 Read only Data from serial input

Reserved 31:DATA_LENGTH

Table 6: TXDATA Register Bit Definition

Register Name Bit Access Mode Description

TXDATA DATA_LENGTH-1:0 Read/write Data to serial output

Reserved 31:DATA_LENGTH

Table 7: Status Register Bit Definition

Register Name Bit Access Mode Description

Reserved 2:0

ROE 3 Read/write Receive overrun error. 1 indicates that the RXDATA register
received new data before the previous data was read.
RXDATA was overwritten with the new data; data has been
lost.

TOE 4 Read/write Transmit overrun error. 1 indicates that the TXDATA register
received new data before the previous data was moved to the
shift register. The new data was not written.

Register Definitions

LatticeMico SPI 11

TMT 5 Read/write Transmit shift register empty. 1 indicates that the transmit shift
register is empty and ready to receive the next data frame. 0
indicates that the register is in the process of shifting a data
frame out. The TXDATA register holds new data until TMT =
1.

TRDY 6 Read/write Transmitter ready. 1 indicates that the TXDATA register is
empty and ready to accept new data. 0 indicates that the
register has data that has not yet moved to the shift register.
New data is blocked until TRDY = 1.

RRDY 7 Read/write Receiver ready. 1 indicates that the RXDATA register has
data and is ready to be read. 0 indicates that the register is
empty. Reading the register clears RRDY.

E 8 Read/write Error. 1 indicates that either the receive overrun error or the
transmit overrun error has occurred. As a programming
convenience, the E bit is the logical OR of ROE and TOE.

Reserved 31:9

Table 8: Control Register Bit Definition

Register Name Bit Access Mode Description

Reserved 2:0

IROE 3 Read/write Set to 1 to enable interrupt requests for receive overrun
errors.

ITOE 4 Read/write Set to 1 to enable interrupt requests for transmit overrun
errors.

Reserved 5

ITRDY 6 Read/write Set to 1 to enable interrupt requests for transmitter ready
conditions.

IRRDY 7 Read/write Set to 1 to enable interrupt requests for receiver ready
conditions.

IE 8 Read/write Set to 1 to enable interrupt requests for receive overrun errors
and transmit overrun errors.

Reserved 9

SSO 10 Read/write In a master SPI, set to 1 to assert the SS_N outputs
according to the mask in the slave select register. SSO holds
the slave select signal after it would normally be de-asserted.
The SPIs continue to exchange data frames until SSO is
cleared.

Reserved 31:11

Table 7: Status Register Bit Definition

Register Name Bit Access Mode Description

Timing Diagram

12 LatticeMico SPI

The structure shown in Figure 4 depicts the register map layout for the SPI
component. The elements are self-explanatory and are based on the register
map shown in Table 4. This structure, which is defined in the MicoSPI.h
header file, enables you to directly access the SPI registers, if desired. It is
used internally by the device driver for manipulating the SPI.

Timing Diagram
The diagram in Figure 5 shows the timing waveforms for an 8-bit data transfer
between an SPI master and an SPI slave.

EBR Resource Utilization
The LatticeMico SPI uses no EBRs.

Software Support
This section describes the software support provided for the LatticeMico SPI
component. It first describes the LatticeMico SPI device driver that directly
interacts with a LatticeMico SPI instance, then it describes LatticeMico SPI
services that manage multiple LatticeMico SPI instances and any related
service. Code examples are provided at the end of this section that show the
typical usage of the software.

Table 9: Slave Select Register Bit Definition

Register Name Bit Access Mode Description

slaveselect SLAVE_NUMBER-1:0 Read/write Slave select mask

Reserved 31: SLAVE_NUMBER

Figure 4: SPI Register Map Structure

typedef struct st_MicoSPI{
volatile unsigned int rx;
volatile unsigned int tx;
volatile unsigned int status;
volatile unsigned int control;
volatile unsigned int sSelect;

}MicoSPI_t;

Figure 5: LatticeMico SPI Timing Diagram

Software Support

LatticeMico SPI 13

The support routines are meant for use in a single-threaded environment. If
they are used in a multi-tasking environment, you must provide re-entrance
protections.

Device Driver
The LatticeMico SPI device driver directly interacts with a LatticeMico SPI
instance. This section describes the type definitions for the SPI device context
structure.

This structure, shown in Figure 6, contains SPI component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the SPI component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Table 10 describes the parameters of the SPI device context structure shown
in Figure 6.

Figure 6: SPI Device Context Structure

typedef struct st_MicoSPICtx_t {
const char * name;
unsigned int base;
unsigned int intrLevel;
unsigned int master;
unsigned int slaves;
unsigned int dataLength;
unsigned int shiftDir;
DeviceReg_t lookupReg;
unsigned int control;
void * onRx;
void * onTx;
void * prev;
void * next;
} MicoSPICtx_t;

Table 10: LatticeMico SPI Context Structure Parameters

Parameter Data Type Description

name const char * Pointer to the SPI instance name

base unsigned int Base address of the SPI instance

intrLevel unsigned int The CPU interrupt request to which the SPI instance’s
interrupt request line is connected

master unsigned int Used by the device driver to store information
provided by the user

slaves unsigned int Used by the device driver to store information
provided by the user

Software Support

14 LatticeMico SPI

Functions
This section describes the implemented device-driver-specific functions.

MicoSPIInit Function
void MicoSPIInit(MicoSPICtx_t *ctx)

This function initializes a LatticeMico SPI instance. It is automatically called as
part of the platform initialization for managed builds for each instance of the
SPI. It sets the SPI in a known stopped state for future use and registers this
SPI instance for the device lookup service.

Table 11 describes the parameter in the MicoSPIInit function syntax.

dataLength unsigned int Width of the SPI instance

shiftDir unsigned int Direction of data transfer of the SPI instance is LSB or
MSB first

lookupReg DeviceReg_t Used by the device driver to register the SPI
component instance with the LatticeMico32 lookup
service. Refer to the LatticeMico32 Software
Developer User Guide for a description of the
DeviceReg_t data type.

control unsigned int Shadow copy of the control register

onRx void * Pointer to rrdy interrupt request handler

onTx void * Pointer to trdy interrupt request handler

prev void * Used by the device driver service to keep track of
registered SPI instances

next void * Used by the device driver service to keep track of
registered SPI instances

Table 11: MicoSPIInit Function Parameter

Parameter Description Notes

MicoSPICtx_t * Pointer to a SPI context For a managed build, the structure
referenced is located in DDStructs.c.

Table 10: LatticeMico SPI Context Structure Parameters

Parameter Data Type Description

Software Support

LatticeMico SPI 15

MicoSPISetSlaveEnable Function
unsigned int MicoSPISetSlaveEnable(MicoSPICtx_t *ctx, unsigned
int mask);

This function is used to mask the SS_N output bits of the slave-select register
with user-provided data to enable the addressed slaves.

Table 12 describes the parameters in the MicoSPISetSlaveEnable function
syntax.

Table 13 shows the values returned by the MicoSPISetSlaveEnable function.

Table 12: MicoSPISetSlaveEnable Function Parameters

Parameter Description Notes

MicoSPICtx_t * Pointer to a SPI context Pointer to the desired SPI instance’s
context information

unsigned int User provided data mask Used for masking the slave enable
outputs

Table 13: Values Returned by MicoSPISetSlaveEnable Function

Return Value Description

MICOSPI_ERR_SLAVE_DEVICE Returned if SPI instance is not a master.

0 Success

Software Support

16 LatticeMico SPI

MicoSPIGetSlaveEnable Function
unsigned int MicoSPIGetSlaveEnable(MicoSPICtx_t *ctx, unsigned
int *pMask);

This function retrieves the current state of the SS_N output bits.

Table 14 describes the parameters in the MicoSPIGetSlaveEnable function
syntax.

Table 15 shows the values returned by the MicoSPIGetSlaveEnable function.

MicoSPITxData Function
unsigned int MicoSPITxData(MicoSPICtx_t *ctx, unsigned int
data, unsigned int bBlock)

This function transmits user-provided data to the addressed slaves. The SPI
slave transmits data to the master SPI device as a result of calling this
function.

This function writes transmit data to the data-transmit register if the SPI
component is ready to accept new data for transmission. The bBlock
argument of this function call dictates the behavior if the SPI component is not
ready to accept new data for transmission. If bBlock is set to 0—that is, do not
block—this function returns without writing data to the data-transmit register
and returns a value of MICOSPI_ERR_WOULD_BLOCK. If bBlock is set to a
non-zero value—that is, block until completion—this function keeps polling
the SPI component's status register until the status indicates that the
component is ready to accept new data. This function then writes the data and
returns a success status.

Table 14: MicoSPIGetSlaveEnable Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

unsigned int *pMask Pointer to a data
storage variable

Used to retrieve the current value of
the slave enable outputs

Table 15: Values Returned by MicoSPIGetSlaveEnable Function

Return Value Description

MICOSPI_ERR_SLAVE_DEVICE Returned if SPI instance is not a master

0 Success

Software Support

LatticeMico SPI 17

Table 16 describes the parameters in the MicoSPITxData function syntax.

Table 17 shows the values returned by the MicoSPITxData function.

MicoSPIIsTxDone Function
unsigned int MicoSPIIsTxDone(MicoSPICtx_t *ctx)

This function checks to see if the shift register is empty.

Table 18 describes the parameter in the MicoSPIIsTXDone function syntax.

Table 19 shows the values returned by the MicoSPIIsTXDone function.

Table 16: MicoSPITxData Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information.

unsigned int data User provided transmit data Variable containing the data to be
transmitted.

unsigned int bBlock Block execution flag Flag to indicate whether to block
execution until data is transmitted.
If execution is not blocked, loss of
transmit data could occur.

Table 17: Values Returned by MicoSPITxData Function

Return Value Description Notes

MICOSPI_ERR_WOULD_BLOCK Returned if SPI
instance does not
block execution

Indicates a possible
loss of transmit data

0 Success

Table 18: MicoSPIIsTxDone Function Parameter

Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

Table 19: Values Returned by MicoSPIIsTxDone Function

Return Value Description

Non-zero value Transmission done

0 Transmission pending

Software Support

18 LatticeMico SPI

MicoSPIRxData Function
unsigned int MicoSPIRxData(MicoSPICtx_t *ctx, unsigned int
*pData, unsigned int bBlock)

This function retrieves data from the addressed slave ports. It reads data from
the receive-data register if the status register indicates that there is data
available for reading. The bBlock argument of this function call dictates the
behavior if the status register indicates that there is no data available. If
bBlock is set to 0—that is, do not block—this function returns immediately
with a value of MICOSPI_ERR_WOULD_BLOCK, indicating that there was
no data available for reading. If bBlock is set to a non-zero value—that is,
block until completion—this function keeps polling the status register until
there is data available for reading. The function then reads the data and
returns a success status.

Table 20 describes the parameters in the MicoSPIRxData function syntax.

Table 21 shows the values returned by the MicoSPIRxData function.

MicoSPIEnableTxIntr Function
unsigned int MicoSPIEnableTxIntr(MicoSPICtx_t *ctx,
MicoSPIDataHandler_t handler)

This function registers the interrupt request handler and enables transmit
interrupt requests.

Table 20: MicoSPIRxData Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

unsigned int *pData Pointer to data storage
variable

Pointer to a variable for storage of the
received data

unsigned int bBlock Block execution flag Flag to indicate whether to block
execution until data is received

Table 21: Values Returned by MicoSPIRxData Function

Return Value Description

MICOSPI_ERR_WOULD_BLOCK Returned if SPI instance does not block
execution

0 Success

Software Support

LatticeMico SPI 19

Table 22 describes the parameters in the MicoSPIEnableTxIntr function
syntax.

Table 23 shows the values returned by the MicoSPIEnableTxIntr function.

MicoSPIDisableTxIntr Function
void MicoSPIDisableTxIntr(MicoSPICtx_t *ctx)

This function disables transmit interrupt requests.

Table 24 describes the parameter in the MicoSPIDisableTxIntr function
syntax.

Table 22: MicoSPIEnableTxIntr Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information

MicoSPIDataHandler_t
handler

Structure of transmit
data handler

Used to set the address of the
transmit data handling interrupt
routine

Table 23: Values Returned by MicoSPIEnableTxIntr Function

Return Value Description

MICOSPI_ERR_INVALID_PARAMETER Returned if interrupt request handler does
not exist

0 Success

Table 24: MicoSPIDisableTxIntr Function Parameter

Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

Software Support

20 LatticeMico SPI

MicoSPIEnableRxIntr Function
unsigned int MicoSPIEnableRxIntr(MicoSPICtx_t *ctx,
MicoSPIDataHandler_t handler)

This function registers the interrupt request handler and enables receive
interrupt requests.

Table 25 describes the parameters in the MicoSPIEnableRxIntr function
syntax.

Table 26 shows the values returned by the MicoSPIEnableRxIntr function.

MicoSPIDisableRxIntr Function
void MicoSPIDisableRxIntr(MicoSPICtx_t *ctx)

This function disables receive interrupt requests.

Table 27 describes the parameter in the MicoSPIDisableRxIntr function
syntax.

Table 25: MicoSPIEnableRxIntr Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information

MicoSPIDataHandler_t
handler

Structure of receive
data handler

Used to set the address of the
receive data handling interrupt
routine

Table 26: Values Returned by MicoSPIEnableRxIntr Function

Return Value Description

MICOSPI_ERR_INVALID_PARAMETER Returned if interrupt request handler does
not exist.

0 Success

Table 27: MicoSPIDisableRxIntr Function Parameters

Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

Software Support

LatticeMico SPI 21

Services
The SPI device driver registers SPI instances with the LatticeMico32 lookup
service, using their instance names for device names and “SPIDevice” as the
device type.

For information on the LatticeMico32 lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Software Usage Examples
This section provides two examples of typical software usage. One
demonstrates the polling method, and the other demonstrates the ISR
servicing method.

Polling Method
The sample code shown in Figure 7 shows how the LatticeMico SPI
constantly queries the register in a loop to ascertain whether the register has
data to transfer.

Figure 7: Polling Method

#include "MicoSPIService.h"

/*
 * Names of the SPI master and slave, as
 * defined in MSB
 */
const char *const SPIM_INSTANCE_NAME = "spim_";
const char *const SPIS_INSTANCE_NAME = "spis_";

int main(void){
 int runs = 0;
 int slave_address = 0x01;
 int slave_txdata = 0x55;
 int master_txdata = ~slave_txdata;
 MicoSPICtx_t *pMaster;
 MicoSPICtx_t *pSlave;

 /* Fetch pointers to master/slave SPI dev-ctx instances */
 pMaster = (MicoSPICtx_t *)MicoGetDevice(SPIM_INSTANCE_NAME);
 pSlave = (MicoSPICtx_t *)MicoGetDevice(SPIS_INSTANCE_NAME);

Software Support

22 LatticeMico SPI

 /* Make sure pointers are valid */
 if(pMaster == 0){
 printf("Cannot use SPI Master as ctx is unidentified\n");
 return(0);
 }
 if(pSlave == 0){
 printf("Cannot use SPI Slave 0 as ctx is unidentified\n");
 return(0);
 }

 /* MAIN PROGRAM BODY (RUNS INFINITELY) */
 while(1){
 /* Write Slave Data: Block till loaded */
 MicoSPITxData(pSlave,slave_txdata,1);

 /* Enable slave by writing to master */
 MicoSPISetSlaveEnable(pMaster, slave_address);

 /* Check slave enable status. */
 MicoSPIGetSlaveEnable(pMaster, &slave_address);
 if(slave_address != 0x01){
 printf("failed to select internal slave! fatal error\n");
 while(1);
 }

 /* write data targetted for slave */
 MicoSPITxData(pMaster,master_txdata,1);

 /* wait for master's transmission to complete */
 while(1){
 volatile unsigned int iTimeout;
 unsigned int iValue;
 do{
 if(MicoSPIIsTxDone(pMaster)!=0)
 break;
 }while(1);

Figure 7: Polling Method (Continued)

Software Support

LatticeMico SPI 23

/* read data if there's data to read */
 iTimeout = 0;
 do{
 if(MicoSPIRxData(pMaster, &master_txdata, 0) == 0)
 break;
 if(iTimeout >= 10){
 pStatus = (volatile unsigned int *)(pMaster->base + 8);
 iValue = *pStatus;
 pStatus = (volatile unsigned int *)(pMaster->base + 0);
 iValue = *pStatus;
 if(MicoSPIRxData(pSlave, &slave_txdata, 0) != 0){
 printf("Internal slave did not rx data: hw error\n");
 while(1);
 }
 printf("master failed to rx data within a second %d\n",
 iTimeout);
 while(1);
 }
 iTimeout++;
 MicoSleepMilliSecs(100);
 }while(1);
 break;
 }

/* at this point, the slave must also have transmitted data
 * and received data
 */
 if(MicoSPIIsTxDone(pSlave) == 0){
 printf("Internal slave tx not done: hw error\n");
 while(1){};
 }

 if(MicoSPIRxData(pSlave, &slave_txdata, 0) != 0){
 printf("Internal slave did not rx data: hw error\n");
 while(1);
 }

 /* compare data and output results to console */
 if((master_txdata & 0xff) != ((~slave_txdata) & 0xff)){
 printf("data corruption\n");
 printf("master received : 0x%x\n", master_txdata);
 printf("slave received: 0x%x\n", slave_txdata);
 while(1){};
 }
 printf("successfully completed %d iteration\n", ++runs);
 }
}

Figure 7: Polling Method (Continued)

Software Support

24 LatticeMico SPI

ISR Servicing Method
The example in Figure 8 shows how the LatticeMico SPI creates an interrupt
request when data is available to be transferred.

Figure 8: ISR Servicing Method

#include "MicoSPIService.h"

const char *const SPIM_INSTANCE_NAME = "spim_";
const char *const SPIS_INSTANCE_NAME = "spis_";

/********* Global Variables ***********************/
static int slave_address=0x01;
static int slave_txdata = 0x55;
static int slave_rxdata=0;
static int master_txdata = 0xAA;
static int master_rxdata=0;
static int transfer_complete=0;

// Create Pointers for WB Devices.
MicoSPICtx_t *pMaster;
MicoSPICtx_t *pSlave;

void OnMasterRx(void){
 /*
 * If you don't want to be interrupted any more, disable
 * the interrupts
 */
 MicoSPIDisableRxIntr(pMaster);
 transfer_complete=1;
 /* read received data here */
 MicoSPIRxData(pMaster, &master_rxdata, 0);
}

void OnMasterTx(void){
 /*
 * If you don't want to be interrupted any more, disable
 * the interrupts
 */
 MicoSPIDisableTxIntr(pMaster);
 transfer_complete=1;

/*
 * load new tx data or disable tx interrupt; otherwise, this
 * will spin in a loop
 */
 MicoSPITxData(pMaster,master_txdata,1);
 return;
}

Software Support

LatticeMico SPI 25

 /*************************
 * USER-MAIN ENTRY POINT *
 *************************/
int main(void){
 int runs = 0;

/* Set Pointers to WB Device Addresses. */
 pMaster = (MicoSPICtx_t *)MicoGetDevice(SPIM_INSTANCE_NAME);
 pSlave = (MicoSPICtx_t *)MicoGetDevice(SPIS_INSTANCE_NAME);

/* Make sure devices were found and that the pointers aren't null */
 if(pMaster == 0){
 printf("Cannot use SPI Master as ctx is unidentified\n");
 return(0);
 }
 if(pSlave == 0){
 printf("Cannot use SPI Slave as ctx is unidentified\n");
 return(0);
 }

 /* MAIN PROGRAM BODY (REPEATS FOREVER) */
 while(1){

 /* Write Slave Data: Block till loaded */
 MicoSPITxData(pSlave,slave_txdata,1);
 /* Enable slave by writing to master */
 MicoSPISetSlaveEnable(pMaster, slave_address);
 MicoSPIGetSlaveEnable(pMaster, &slave_address);
 if(slave_address != 0x01){
 printf(" failed to select slave!! fatal error\n");
 while(1){};
 }

 /* write first data targeted for slave, block until loaded */
 MicoSPITxData(pMaster,master_txdata,1);
 /* Enable interrupts on master. */
 MicoSPIEnableRxIntr(pMaster, OnMasterRx);
 MicoSPIEnableTxIntr(pMaster, OnMasterTx);

 /* wait for master's transmission complete */
 while(1){
 volatile unsigned int iTimeout;
 unsigned int iValue;
 volatile unsigned int *pStatus;
 pStatus = ((volatile unsigned int *)(pMaster->base + 8));
 iValue = *pStatus;

Figure 8: ISR Servicing Method (Continued)

Software Support

26 LatticeMico SPI

/* wait for transmission to complete */
 do{
 /* Check Completion Flag */
 if(transfer_complete!=0)
 break;
 }while(1);
 transfer_complete=0;
 iTimeout = 0;

/* read data if there's data to read */
 do{
 if(MicoSPIRxData(pMaster, &master_rxdata, 0) == 0)
 break;
 if(iTimeout >= 10){
 pStatus = ((volatile unsigned int *)(pMaster->base + 8));
 iValue = *pStatus;
 if(MicoSPIRxData(pSlave, &slave_rxdata, 0) != 0){
 printf("Internal slave did not rx data: hw error\n");
 while(1){};
 }
 printf("master failed to rx data within a second %d\n",
 iTimeout);
 while(1){};
 }
 iTimeout++;
 MicoSleepMilliSecs(100);
 }while(1);
 break;
 }

 /*
 * at this point, the slave must also have transmitted
 * data and received data
 */
 if(MicoSPIIsTxDone(pSlave) == 0){
 printf("Internal slave tx not done: hw error\n");
 while(1){};
 }
 if(MicoSPIRxData(pSlave, &slave_rxdata, 0) != 0){
 printf("Internal slave did not rx data: hw error\n");
 while(1){};
 }

Figure 8: ISR Servicing Method (Continued)

Software Support

LatticeMico SPI 27

.

 /* compare data */
 if((master_rxdata & 0xff) != ((~slave_rxdata) & 0xff)){
 printf("data corruption\n");
 printf("master received : 0x%x\n", master_rxdata);
 printf("slave received: 0x%x\n", slave_rxdata);
 while(1){};
 }
 printf("successfully completed %d iterations\n", ++runs);
 slave_txdata=slave_rxdata;
 master_txdata=master_rxdata;
 }
}

Figure 8: ISR Servicing Method (Continued)

Revision History
Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Version number change only. No RTL code change.

3.1 Rewrote the code to correct errors and provide cleaner
functionality.

3.1 Updated document with new corporate logo.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE,
ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA,
ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M,
LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2,
MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform
Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG,
SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple
Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other
countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Software Support

28 LatticeMico SPI

	LatticeMico SPI
	Version
	Features
	Functional Description
	Data Transmit and Receive
	Status and Control
	Clocking Sources

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Definitions
	Timing Diagram
	EBR Resource Utilization
	Software Support
	Device Driver
	Functions
	Services
	Software Usage Examples
	ISR Servicing Method

