= LATTICE

LatticeMico SPI

The LatticeMico serial peripheral interface (SPI) provides an industry-
standard interface between a LatticeMico32 processor and off-chip
peripherals, as shown in Figure 1. In master mode, the SPI can be configured
to control communication with up to 32 off-chip SPI ports. In slave mode, the
SPI supports communications with an off-chip SPI master.

Figure 1: Using LatticeMico SPI to Communicate with Peripherals

FPGA Peripheral
N ! Slave
W SPI
I
S LatticeMico
LatticeMico32 |~ N H |[~— SP
Microrocessor [N\ V| B |\
o (master mode) -
N Peripheral
E —PSlave
% SPI

As a simple serial port, an SPI uses few FPGA resources (about 150 slices)
and little board space for wires but runs much slower than a parallel port. The
LatticeMico SPI uses only three pins (clock, data in, and data out) plus one
select for each slave device. An SPI is a good choice for communicating with
low-speed devices that are accessed intermittently and transfer data streams
rather than reading and writing to specific addresses. An SPI is an especially
good choice if you can take advantage of its full-duplex nature, which sends
and receives data at the same time.

Copyright © June 2012 Lattice Semiconductor Corporation.

Version

Version

This document describes the 3.1 version of the LatticeMico SPI.

Features
The LatticeMico SPI provides standard, fully configurable SPI ports including:
WISHBONE B.3 interface
Slave and master modes. Master mode can control up to 32 slaves.

Interrupt request to the processor, configurable for a variety of status
conditions

Library of basic data structures and software routines for operating SPIs
Configurable serial clock (SCLK) frequency

Configurable timing relationships between data and clock signals, and
between data and slave-select signals

Double-buffered transmission, allowing new data to be written at the same
time that previous data is being shifted out

Receive and transmit registers configurable from 1 to 32 bits wide. Longer
transfers can be done with software support.

Option for least-significant bit or most-significant bit first

For additional details about the WISHBONE bus, refer to the LatticeMico32
Processor Reference Manual.

Functional Description

Figure 2 shows the LatticeMico SPI configured as a master port, and Figure 3
shows it configured as a slave port.

On the internal side (the left in these diagrams), the SPI has a standard
WISHBONE slave bus, which connects the SPI with a LatticeMico32
microprocessor and other on-chip components. From the WISHBONE bus,
the SPI appears as a set of addressable registers that can be read or written.
Through these registers, the microprocessor can transmit and receive data
and control the operation of the SPI.

For a description of the WISHBONE bus, refer to the LatticeMico32 Processor
Reference Manual.

On the external side (the right in these diagrams), the SPI has a standard
master or slave SPI interface:

SCLK (serial clock) generated by the master SPI to synchronize the data
transfers.

2 LatticeMico SPI

Functional Description

Figure 2: LatticeMico SPI Master Implementation

PN

MZOWIn—3=

N

PN

MZOWIWn—3=

~N

CLK_I
= =<:::> » SCLK
SPI_DAT | 4
TXDATA Transmit shift » MOSI
SPI_DAT_O v
< RXDATA Receive shift MISO
Status
> SS_NO
SPI_INT_O > SS_N1
€« Control -
Slave select » SS_Nn
Figure 3: LatticeMico SPI Slave Implementation
SCLK
SPI_DAT | 4
TXDATA Transmit shift » MISO
SPI_DAT O v
< RXDATA Receive shift [¢— MOSI
Status - SS_N
SPIL_INT_O
—— Control

MISO (master in, slave out), which transfers data going to the master SPI

from

a slave.

MOSI (master out, slave in), which transfers data going from the master
SPI to a slave.

SS_N (slave select), which is asserted by the master SPI to start a data
transfer. In master mode, the SPI has a slave select signal (SS_NO,
SS_N1, and so on) for each slave SPI. In slave mode, the SPI has a

single SS_N input.

Data Transmit and Receive

Both of the data transmit and receive paths within the LatticeMico SPI use two
registers: a holding register and a shift register. This double buffering allows

the paths to hold one data frame while another is being shifted in or out. The
holding registers, TXDATA and RXDATA, are addressable and can be written

to or read through the WISHBONE bus.

LatticeMico SPI

Functional Description

In the transmit path, TXDATA is written to (or read) through the WISHBONE
bus. Writing to TXDATA clears the transmitter ready status bit (TRDY) to 0,
blocking any new data until the previous data has moved to the shift register.
If no serial transfer is in process, TXDATA immediately moves its data to the
shift register and sets TRDY to 1. If a serial transfer is in process, TXDATA
holds the new data until the previous data has shifted out. If new data comes
in while TRDY is 0, the new data is blocked and the transmit overrun error
status bit (TOE) is set.

In the receive path, the shift register, when full, immediately moves its data to
the holding register, RXDATA, and sets the receiver ready status bit (RRDY)
to 1. RXDATA can be read through the WISHBONE bus. Reading RXDATA
clears the RRDY status bit. If new data comes in while RRDY is set, RXDATA
is overwritten with the new data and the receive overrun error status bit (ROE)
is set.

SPI operations are always full duplex, so every data transfer operation
transmits and receives at the same time. If you just want to receive, your
software must load TXDATA with appropriate dummy data to transmit. Your
software must also use or ignore the received data as appropriate.

The registers can be configured up to 32 bits wide. The transmit and receive
logic can be configured to assume the data is either least-significant bit (LSB)
first or most-significant bit (MSB) first.

Status and Control

The SPI includes status and control registers. These are mainly used to
trigger interrupt requests. The master SPI also has a slave-select register that
is used to select a slave SPI and start a data transfer.

To check the status of the SPI, read the status register. It reports conditions
such as receive and transmit overrun, transmit shift register empty, and
transmitter and receiver ready. For details, see Table 7 on page 10.

To set up an interrupt request on the SPI_INT_O output, set one or more of
the interrupt enable bits in the control register. These bits enable interrupt
requests for most of the conditions reported in the status register. For details,
see Table 8 on page 11.

To clear an interrupt request, clear the associated bit in the status register.
Writing any value to the status register clears the overrun error status bits

(ROE, TOE, and E). Writing the TXDATA register clears the transmit ready
status bit (TRDY). Reading the RXDATA register clears the receiver ready
status bit (RRDY).

To start a data transfer, load the slave select register of the master SPI with a
slave mask and then load the TXDATA register. Loading TXDATA triggers the
next data transfer. The slave select register has one bit for each SS_N output.
Setting the bit to 1 asserts the active-low SS_N. For example, a slave mask of
0x00000020 asserts SS_N5, selecting that slave SPI. It is possible to assert

LatticeMico SPI

Configuration

Configuration

more than one slave select signal, but you must take care to prevent
contention on the MISO bus.

To have a data transfer longer than the transmit and receive registers, set the
SSO bit in the control register to 1. SSO holds the slave select signal after it
would normally be de-asserted. The SPIs will continue to exchange data
frames until SSO is cleared. SCLK stops toggling between frames. Before
clearing SSO to end the data transfer, make sure the transmit shift register is
empty by checking the TMT status bit.

A slave SPI cannot start a data transfer. When the SPI's SS_N input goes low,
the SPI immediately begins the data transfer.

Clocking Sources

The master SPI generates SCLK to synchronize the data transfers. Each SPI
transmits a new data bit with each active edge of SCLK. SCLK is only
available during the data transfer, while SS_N is asserted.

SCLK is derived from the system clock, CLK_]I, by dividing the frequency. The
divisor and other aspects of SCLK can be selected when the SPI is
configured. For details, see the following section.

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the 1/O ports that
you can use to configure and operate the LatticeMico SPI.

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico SPI
through the Mico System Builder (MSB) interface.

Table 1: LatticeMico SPI Ul Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name

Base Address

Setting

Specifies the name of the SPI instance. Alphanumeric and underscores spi

Specifies the base address for the device. = 0X80000000 — OXFFFFFF80 0X80000000
The minimum byte alignment is 0X80.

If other components are
included in the platform, the
range of allowable values will

vary.

LatticeMico SPI

Configuration

Table 1: LatticeMico SPI Ul Parameters (Continued)

Dialog Box Option Description

Data Length Specifies the number of serial data bits per

SPI transaction.

Shift Direction Specifies whether the most significant bit or

the least significant bit is first.
If 0, the most significant bit is first.

If 1, the least significant bit is first.

Phase Specifies the clock phase of the SPI
instance:

If 0, data is latched on the leading edge
of SCLK, and the data changes on the

trailing edge.

If 1, data is latched on the trailing edge
of SCLK, and the data changes on the

leading edge.

Polarity Specifies the polarity of the SPI instance:
If 0, the idle state for SCLK is low.
If 1, the idle state for SCLK is high.

Master

Master Specifes whether the SPI instance is a
master or a slave. When selected, the
LatticeMico SPI acts as a master;
otherwise, it acts as a slave.

Number of Slaves Specifies the number of slave devices
supported.

SCLK Rate
the component input clock (processor clock,
CLK_I). SCLK is derived from the following
equation:

CLK |

LK =
sC 2 x (SCLK_Rate +1)

For example:
For SCLK_Rate = 0:

SCLK = —CLZK—'

For SCLK_Rate = 1:

scLk = S5

Note: The SCLK Rate value is used as the
CLOCK_SEL parameter in the HDL.

Allowable Values

1-32 (master)
1-32 (slave)

0|1 (master/slave)

0]1 (master/slave)

0]1 (master/slave)

selected|not selected

1-32 (master)

Specifies the factor for deriving SCLK from 0 through 26/0ck_counter_width _ 4

Default Value

24 (master)
24 (slave)

1 (master/
slave)

not selected

LatticeMico SPI

Configuration

Table 1: LatticeMico SPI Ul Parameters (Continued)

Dialog Box Option

Clock Counter
Width

Tx Start Delay

Tx Interframe
Pause

Description Allowable Values

Sets the range limit for the clock counter. 1-321
The width should be enough to meet the
number of bits required for the slave clock.

Specifies the time delay factor before 0-63 3
shifting the first bit of data after the SS_N
signal is asserted.

The start delay time is derived from the
following equation:

SCLK Period)

Jdelay = Tx_Start_Delay x(>

Note: The Tx Start Delay value is used as
the DELAY_TIME parameter in the HDL.

Specifies the number of SCLK cycles for 0-63 2
which the SS_N signal is held inactive
between SPI transmit requests.

Note: The Tx Interframe Pause parameter
is used as the INTERVAL_LENGTH value in
the HDL.

HDL Parameters

Default Value

6

Table 2 lists the parameters that appear in the HDL.

Table 2: LatticeMico SPI HDL Parameters

Parameter Name
BASE_ADDR
DATA_LENGTH

SHIFT_DIRECTION

CLOCK_PHASE

Description
Specifies the base address for the device.

Specifies the number of serial data bits.

Specifies whether the most significant bit or the least significant

bit is first.
If 0, the most significant bit is first.

If 1, the least significant bit is first.

Specifies the clock phase of the SPI instance:

If 0, data is latched on the leading edge of SCLK, and the
data changes on the trailing edge.

If 1, data is latched on the trailing edge of SCLK, and the
data changes on the leading edge.

Allowable Values
0X80000000 — OXFFFFFF80

1-32 (master)
1-32 (slave)

0|1 (master/slave)

0]1 (master/slave)

LatticeMico SPI

Configuration

Table 2: LatticeMico SPI HDL Parameters (Continued)

Parameter Name Description Allowable Values

CLOCK_POLARITY Specifies the polarity of the SPI instance: 0|1 (master/slave)
If 0, the idle state for SCLK is low.
If 1, the idle state for SCLK is high.

MASTER Specifes whether the SPI instance is a master or a slave. A 0|1

value of 1 defines the LatticeMico SPI as a master; otherwise, it
acts as a slave.

SLAVE_NUMBER Specifies the number of slave devices supported. 1-32

CLOCK_SEL Specifies the factor for deriving SCLK from the component CLKCNT_WIDTH-1:0
input clock (processor clock, CLK_I). SCLK is derived from the
following equation:

SCLK = 5% (CLOCCII_IEJSEL e
For example:
For CLOCK_SEL = 0:
scLk = SEK
2
For CLOCK_SEL = 1:
SCLK = %—i

Note: The SCLK Rate value in the Ul is used as the
CLOCK_SEL parameter.

DELAY_TIME Specifies the time delay factor before shifting the first bit of data 0-63
after the SS_N signal is asserted.

The start delay time is derived from the following equation:

Delay = DELAY_T|MEx(&<—2PL'°d)

Note: The Tx Start Delay value in the Ul is used as the
DELAY_TIME parameter.

CLKCNT_WIDTH Sets the range limit for the clock counter. The width should be 1-32
enough to meet the number of bits required for the slave clock.

INTERVAL_LENGTH Specifies the number of SCLK cycles for which the SS_N signal 0-63
is held inactive between SPI transmit requests.

Note: The Tx Interframe Pause parameter in the Ul is used as
the INTERVAL_LENGTH value.

/O Ports

The WISHBONE interface supports only classic cycle transfers, which means
that the LatticeMico System master CTI_O is fixed at 000. The interface does
not support cache line wrap; the LatticeMico System master BTE_O is fixed at
00. The slave port does not have RTY_O and ERR_O signals. The RTY_O

8 LatticeMico SPI

Configuration

and ERR_O signals are terminated low. The slave adds an interrupt port
(SPI_INT_O) to the master (processor). Only a master processor 32-bit
operation is supported; S_SEL_1is not supported.

Table 3 describes the input and output ports of the LatticeMico SPI.

Table 3: LatticeMico SPI I/O Port Descriptions

1/0 Port Active Direction Initial State Description
CLK | HIGH | X Input clock signal
RST_I HIGH | X System reset signal

WISHBONE Slave Interface

SPI_ADR_I XX | X Slave address bus
SPI_DAT _I XX | X Slave data input bus
SPI_WE_|I HIGH | X Slave write enable signal
SPI_CYC_I HIGH | X Slave cycle signal
SPI_STB | HIGH | X Slave strobe signal
SPI_SEL_I HIGH | X Slave select signal
SPI_CTIL_I HIGH | X Slave cycle-type indicator
SPI_BTE_I HIGH | X Slave burst type
SPI_LOCK | HIGH | X Slave bus locked
SPI_DAT_O XX 0] 0 Slave data output bus
SPI_ACK_O HIGH (0] 0 Slave acknowledge signal
SPI_ERR_O HIGH (0] 0 Slave error
SPI_RTY_O HIGH o] 0 Slave retry
SPI Interface
MISO HIGH | (master) 0 Master input slave output
O (slave)
MOSI HIGH O (master) 0 Master output slave input
| (slave)
SS_N XX (master) O (master) 0 Slave select signal (active low)
LOW (slave) | (slave)
SCLK X O (master) X Serial clock
Set by polarity | (slave) Set by polarity
parameter parameter
Other Auto-Connected Internal Signals
SPI_INT_O HIGH o 0 Slave interrupt request signal

LatticeMico SPI 9

Register Definitions

User Impact of Initial State

At reset and power up, all registers are cleared to 0 except slave-select and
TMT and TRDY bits in the status register.

Register Definitions

Table 4: Register Map
Register Name | Offset

Receive data 0x00
Transmit data 0x04
Status 0x08
Control 0x0C
Slave select 0x10

The LatticeMico SPI includes the registers shown in Table 4.

31-11 |10 9 8 7 6 5 4 3 2-0
RXDATA

TXDATA

Reserved E RRDY | TRDY | TMT TOE ROE Res’rv.
Res’rv. | SSO Res’rv. | IE IRRDY | ITRDY | Res’rv. ITOE | IROE | Res'rv.
Slave select

Table 5 through Table 9 provide details about each register in the LatticeMico
SPI. Writing any value to the status register clears the ROE, TOE, and E bits.

Table 5: RXDATA Register Bit Definition

Register Name Bit
RXDATA

Reserved

DATA_LENGTH-1:0

Access Mode Description

Read only Data from serial input

31:DATA_LENGTH

Table 6: TXDATA Register Bit Definition

Register Name Bit

Access Mode Description

TXDATA DATA_LENGTH-1:0 Read/write Data to serial output
Reserved 31:DATA_LENGTH

Table 7: Status Register Bit Definition

Register Name Bit Access Mode Description

Reserved 2:0
ROE 3 Read/write
TOE 4 Read/write

Receive overrun error. 1 indicates that the RXDATA register
received new data before the previous data was read.
RXDATA was overwritten with the new data; data has been
lost.

Transmit overrun error. 1 indicates that the TXDATA register
received new data before the previous data was moved to the
shift register. The new data was not written.

10

LatticeMico SPI

Register Definitions

Table 7: Status Register Bit Definition

Register Name Bit Access Mode

TMT 5 Read/write
TRDY 6 Read/write
RRDY 7 Read/write
E 8 Read/write

Reserved 31:9

Table 8: Control Register Bit Definition

Register Name Bit Access Mode

Reserved 2:0

IROE 3 Read/write
ITOE 4 Read/write
Reserved 5

ITRDY 6 Read/write
IRRDY 7 Read/write
IE 8 Read/write
Reserved 9

SSO 10 Read/write
Reserved 31:11

Description

Transmit shift register empty. 1 indicates that the transmit shift
register is empty and ready to receive the next data frame. 0
indicates that the register is in the process of shifting a data
frame out. The TXDATA register holds new data until TMT =
1.

Transmitter ready. 1 indicates that the TXDATA register is
empty and ready to accept new data. O indicates that the
register has data that has not yet moved to the shift register.
New data is blocked until TRDY = 1.

Receiver ready. 1 indicates that the RXDATA register has
data and is ready to be read. 0 indicates that the register is
empty. Reading the register clears RRDY.

Error. 1 indicates that either the receive overrun error or the
transmit overrun error has occurred. As a programming
convenience, the E bit is the logical OR of ROE and TOE.

Description

Set to 1 to enable interrupt requests for receive overrun
errors.

Set to 1 to enable interrupt requests for transmit overrun
errors.

Set to 1 to enable interrupt requests for transmitter ready
conditions.

Set to 1 to enable interrupt requests for receiver ready
conditions.

Set to 1 to enable interrupt requests for receive overrun errors
and transmit overrun errors.

In a master SPI, set to 1 to assert the SS_N outputs
according to the mask in the slave select register. SSO holds
the slave select signal after it would normally be de-asserted.
The SPIs continue to exchange data frames until SSO is
cleared.

LatticeMico SPI

11

Timing Diagram

Table 9: Slave Select Register Bit Definition

Register Name Bit Access Mode Description
slaveselect SLAVE_NUMBER-1:0 Read/write Slave select mask
Reserved 31: SLAVE_NUMBER

The structure shown in Figure 4 depicts the register map layout for the SPI
component. The elements are self-explanatory and are based on the register
map shown in Table 4. This structure, which is defined in the MicoSPI.h
header file, enables you to directly access the SPI registers, if desired. It is
used internally by the device driver for manipulating the SPI.

Figure 4: SPI Register Map Structure

typedef struct st MicoSPI{
volatile unsigned int rx;
volatile unsigned int tx;
volatile unsigned int status;
volatile unsigned int control;
volatile unsigned int sSelect;
}MicoSPI t;

Timing Diagram

The diagram in Figure 5 shows the timing waveforms for an 8-bit data transfer
between an SPI master and an SPI slave.

Figure 5: LatticeMico SPI Timing Diagram

MOSI 1 1 1 L

MISO . I

EBR Resource Utilization
The LatticeMico SPI uses no EBRs.

Software Support

This section describes the software support provided for the LatticeMico SPI
component. It first describes the LatticeMico SPI device driver that directly
interacts with a LatticeMico SPI instance, then it describes LatticeMico SPI
services that manage multiple LatticeMico SPI instances and any related
service. Code examples are provided at the end of this section that show the
typical usage of the software.

12 LatticeMico SPI

Software Support

The support routines are meant for use in a single-threaded environment. If
they are used in a multi-tasking environment, you must provide re-entrance
protections.

Device Driver

The LatticeMico SPI device driver directly interacts with a LatticeMico SPI
instance. This section describes the type definitions for the SPI device context
structure.

This structure, shown in Figure 6, contains SPI component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the SPI component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Figure 6: SPI Device Context Structure

typedef struct st MicoSPICtx t
const char * name;
unsigned int base;
unsigned int intrLevel;
unsigned int master;
unsigned int slaves;
unsigned int datalLength;
unsigned int shiftDir;
DeviceReg t lookupReg;
unsigned int control;
void * onRx;

void * onTx;

void * prev;

void * next;

} MicoSPICtx t;

Table 10 describes the parameters of the SPI device context structure shown
in Figure 6.

Table 10: LatticeMico SPI Context Structure Parameters

Parameter Data Type Description

name const char * Pointer to the SPI instance name

base unsigned int Base address of the SPI instance

intrLevel unsigned int The CPU interrupt request to which the SPI instance’s

interrupt request line is connected

master unsigned int Used by the device driver to store information
provided by the user

slaves unsigned int Used by the device driver to store information
provided by the user

LatticeMico SPI

13

Software Support

Table 10: LatticeMico SPI Context Structure Parameters

Parameter Data Type Description
dataLength unsigned int Width of the SPI instance

shiftDir unsigned int Direction of data transfer of the SPI instance is LSB or
MSB first

lookupReg DeviceReg_t Used by the device driver to register the SPI
component instance with the LatticeMico32 lookup
service. Refer to the LatticeMico32 Software
Developer User Guide for a description of the
DeviceReg_t data type.

control unsigned int Shadow copy of the control register

onRx void * Pointer to rrdy interrupt request handler

onTx void * Pointer to trdy interrupt request handler

prev void * Used by the device driver service to keep track of

registered SPI instances

next void * Used by the device driver service to keep track of
registered SPI instances

Functions

This section describes the implemented device-driver-specific functions.

MicoSPlInit Function

void MicoSPIInit (MicoSPICtx t *ctx)

This function initializes a LatticeMico SPI instance. It is automatically called as
part of the platform initialization for managed builds for each instance of the
SPI. It sets the SPI in a known stopped state for future use and registers this
SPIl instance for the device lookup service.

Table 11 describes the parameter in the MicoSPlInit function syntax.

Table 11: MicoSPIInit Function Parameter

Parameter Description Notes

MicoSPICtx_t * Pointer to a SPI context For a managed build, the structure
referenced is located in DDStructs.c.

14

LatticeMico SPI

Software Support

MicoSPISetSlaveEnable Function

unsigned int MicoSPISetSlaveEnable (MicoSPICtx t *ctx, unsigned
int mask) ;

This function is used to mask the SS_N output bits of the slave-select register
with user-provided data to enable the addressed slaves.

Table 12 describes the parameters in the MicoSPISetSlaveEnable function
syntax.

Table 12: MicoSPISetSlaveEnable Function Parameters

Parameter Description Notes

MicoSPICtx_t * Pointer to a SPI context Pointer to the desired SPI instance’s
context information

unsigned int User provided data mask Used for masking the slave enable
outputs

Table 13 shows the values returned by the MicoSPISetSlaveEnable function.

Table 13: Values Returned by MicoSPISetSlaveEnable Function

Return Value Description
MICOSPI_ERR_SLAVE_DEVICE Returned if SPI instance is not a master.

0 Success

LatticeMico SPI 15

Software Support

MicoSPIGetSlaveEnable Function

unsigned int MicoSPIGetSlaveEnable (MicoSPICtx t *ctx, unsigned
int *pMask) ;

This function retrieves the current state of the SS_N output bits.

Table 14 describes the parameters in the MicoSPIGetSlaveEnable function
syntax.

Table 14: MicoSPIGetSlaveEnable Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx ~ Pointer to a SPI context Pointer to the desired SPI instance's
context information

unsigned int *pMask Pointer to a data Used to retrieve the current value of
storage variable the slave enable outputs

Table 15 shows the values returned by the MicoSPI1GetSlaveEnable function.

Table 15: Values Returned by MicoSPIGetSlaveEnable Function

Return Value Description
MICOSPI_ERR_SLAVE_DEVICE Returned if SPI instance is not a master

0 Success

MicoSPITxData Function

unsigned int MicoSPITxData (MicoSPICtx t *ctx, unsigned int
data, unsigned int bBlock)

This function transmits user-provided data to the addressed slaves. The SPI
slave transmits data to the master SPI device as a result of calling this
function.

This function writes transmit data to the data-transmit register if the SPI
component is ready to accept new data for transmission. The bBlock
argument of this function call dictates the behavior if the SPI component is not
ready to accept new data for transmission. If bBlock is set to 0—that is, do not
block—this function returns without writing data to the data-transmit register
and returns a value of MICOSPI_ERR_WOULD_BLOCK. If bBlock is set to a
non-zero value—that is, block until completion—this function keeps polling
the SPI component's status register until the status indicates that the
component is ready to accept new data. This function then writes the data and
returns a success status.

16

LatticeMico SPI

Software Support

Table 16 describes the parameters in the MicoSPITxData function syntax.

Table 16: MicoSPITxData Function Parameters
Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information.

unsigned int data User provided transmit data Variable containing the data to be
transmitted.

unsigned int bBlock Block execution flag Flag to indicate whether to block
execution until data is transmitted.
If execution is not blocked, loss of
transmit data could occur.

Table 17 shows the values returned by the MicoSPITxData function.

Table 17: Values Returned by MicoSPITxData Function

Return Value Description Notes
MICOSPI_ERR_WOULD_BLOCK Returned if SPI Indicates a possible
instance does not loss of transmit data

block execution

0 Success

MicoSPIlIsTxDone Function

unsigned int MicoSPIIsTxDone (MicoSPICtx t *ctx)
This function checks to see if the shift register is empty.

Table 18 describes the parameter in the MicoSPIIsTXDone function syntax.

Table 18: MicoSPIlIsTxDone Function Parameter
Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

Table 19 shows the values returned by the MicoSPlIsTXDone function.

Table 19: Values Returned by MicoSPIlIsTxDone Function

Return Value Description
Non-zero value Transmission done
0 Transmission pending

LatticeMico SPI 17

Software Support

MicoSPIRxData Function

unsigned int MicoSPIRxData (MicoSPICtx t *ctx, unsigned int
*pData, unsigned int bBlock)

This function retrieves data from the addressed slave ports. It reads data from
the receive-data register if the status register indicates that there is data
available for reading. The bBlock argument of this function call dictates the
behavior if the status register indicates that there is no data available. If
bBlock is set to 0—that is, do not block—this function returns immediately
with a value of MICOSPI_ERR_WOULD_BLOCK, indicating that there was
no data available for reading. If bBlock is set to a non-zero value—that is,
block until completion—this function keeps polling the status register until
there is data available for reading. The function then reads the data and
returns a success status.

Table 20 describes the parameters in the MicoSPIRxData function syntax.

Table 20: MicoSPIRxData Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

unsigned int *pData Pointer to data storage Pointer to a variable for storage of the
variable received data

unsigned int bBlock Block execution flag Flag to indicate whether to block
execution until data is received

Table 21 shows the values returned by the MicoSPIRxData function.

Table 21: Values Returned by MicoSPIRxData Function

Return Value Description

MICOSPI_ERR_WOULD_BLOCK Returned if SPI instance does not block
execution

0 Success

MicoSPIEnableTxIntr Function

unsigned int MicoSPIEnableTxIntr (MicoSPICtx t *ctx,
MicoSPIDataHandler t handler)

This function registers the interrupt request handler and enables transmit
interrupt requests.

18 LatticeMico SPI

Software Support

Table 22 describes the parameters in the MicoSPIEnableTxIntr function
syntax.

Table 22: MicoSPIEnableTxIntr Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information

MicoSPIDataHandler t Structure of transmit Used to set the address of the

handler data handler transmit data handling interrupt
routine

Table 23 shows the values returned by the MicoSPIEnableTxIntr function.

Table 23: Values Returned by MicoSPIEnableTxIntr Function

Return Value Description

MICOSPI_ERR_INVALID_PARAMETER Returned if interrupt request handler does
not exist

0 Success

MicoSPIDisableTxIntr Function

void MicoSPIDisableTxIntr (MicoSPICtx t *ctx)
This function disables transmit interrupt requests.

Table 24 describes the parameter in the MicoSPIDisableTxIntr function
syntax.

Table 24: MicoSPIDisableTxIntr Function Parameter

Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

LatticeMico SPI

19

Software Support

MicoSPIEnableRxIntr Function

unsigned int MicoSPIEnableRxIntr (MicoSPICtx t *ctx,
MicoSPIDataHandler t handler)

This function registers the interrupt request handler and enables receive
interrupt requests.

Table 25 describes the parameters in the MicoSPIEnableRxIntr function
syntax.

Table 25: MicoSPIEnableRxIntr Function Parameters

Parameter Description Notes

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI
instance's context information

MicoSPIDataHandler_t Structure of receive Used to set the address of the

handler data handler receive data handling interrupt
routine

Table 26 shows the values returned by the MicoSPIEnableRxIntr function.

Table 26: Values Returned by MicoSPIEnableRxIntr Function

Return Value Description

MICOSPI_ERR_INVALID_PARAMETER Returned if interrupt request handler does
not exist.

0 Success

MicoSPIDisableRxIntr Function

void MicoSPIDisableRxIntr (MicoSPICtx t *ctx)
This function disables receive interrupt requests.

Table 27 describes the parameter in the MicoSPIDisableRxIntr function
syntax.

Table 27: MicoSPIDisableRxIntr Function Parameters

Parameter Description Note

MicoSPICtx_t *ctx Pointer to a SPI context Pointer to the desired SPI instance's
context information

20

LatticeMico SPI

Software Support

Figure 7: Polling Method

Services

The SPI device driver registers SPI instances with the LatticeMico32 lookup
service, using their instance names for device names and “SPIDevice” as the
device type.

For information on the LatticeMico32 lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Software Usage Examples

This section provides two examples of typical software usage. One
demonstrates the polling method, and the other demonstrates the ISR
servicing method.

Polling Method

The sample code shown in Figure 7 shows how the LatticeMico SPI
constantly queries the register in a loop to ascertain whether the register has
data to transfer.

#include "MicoSPIService.h"

/*

* Names of the SPI master and slave, as

* defined in MSB
*/

const char *const SPIM_ INSTANCE NAME
const char *const SPIS_INSTANCE_NAME

int main(void) {
int runs = 0;
int slave address

int slave txdata =

int master txdata

n spim_" H
n SpiS_" H

0x01;
0x55;
~slave txdata;

MicoSPICtx t *pMaster;
MicoSPICtx t *pSlave;

/* Fetch pointers to master/slave SPI dev-ctx instances */
pMaster = (MicoSPICtx_t *)MicoGetDevice (SPIM_INSTANCE_ NAME) ;
pSlave = (MicoSPICtx t *)MicoGetDevice (SPIS INSTANCE NAME) ;

LatticeMico SPI

21

Software Support

Figure 7: Polling Method (Continued)

/* Make sure pointers are valid */

if (pMaster == 0)
printf ("Cannot use SPI Master as ctx is unidentified\n");
return(0) ;

1

if (pSlave == 0){
printf ("Cannot use SPI Slave 0 as ctx is unidentified\n");
return(0) ;

!

/* MAIN PROGRAM BODY (RUNS INFINITELY) */
while (1) {
/* Write Slave Data: Block till loaded */
MicoSPITxData (pSlave, slave txdata,l);

/* Enable slave by writing to master */
MicoSPISetSlaveEnable (pMaster, slave address);

/* Check slave enable status. */
MicoSPIGetSlaveEnable (pMaster, &slave address) ;

if (slave_address != 0x01) {
printf ("failed to select internal slave! fatal error\n");
while (1) ;

!

/* write data targetted for slave */
MicoSPITxData (pMaster,master_ txdata,l) ;

/* wait for master's transmission to complete */
while (1) {

volatile unsigned int iTimeout;

unsigned int iValue;

do{

1f (MicoSPIIsTxDone (pMaster) !=0)
break;
}while (1) ;

22 LatticeMico SPI

Software Support

Figure 7: Polling Method (Continued)

/* read data if there's data to read */

iTimeout = 0;
dof{
if (MicoSPIRxData (pMaster, &master txdata, 0) == 0)
break;
if (iTimeout >= 10)
pStatus = (volatile unsigned int *) (pMaster->base + 8);
ivalue = *pStatus;
pStatus = (volatile unsigned int *) (pMaster-s>base + 0);
ivalue = *pStatus;
if (MicoSPIRxData (pSlave, &slave txdata, 0) != 0){

printf ("Internal slave did not rx data: hw error\n");

while (1) ;
!
printf ("master failed to rx data within a second %d\n",
iTimeout) ;
while (1) ;
1
iTimeout++;
MicoSleepMilliSecs (100) ;
}while (1) ;
break;

/* at this point, the slave must also have transmitted data
* and received data

*/
if (MicoSPIIsTxDone (pSlave) == 0) {
printf ("Internal slave tx not done: hw error\n");
while (1) {};

if (MicoSPIRxData (pSlave, &slave txdata, 0) != 0){
printf ("Internal slave did not rx data: hw error\n");
while (1) ;

/* compare data and output results to console */
if ((master_txdata & Oxff) != ((~slave txdata) & Oxff))
printf ("data corruption\n") ;
printf ("master received : 0x%x\n", master txdata);
printf ("slave received: 0x%$x\n", slave_ txdata) ;
while (1) {};

}

printf ("successfully completed %d iteration\n", ++runs);

LatticeMico SPI

23

Software Support

ISR Servicing Method

The example in Figure 8 shows how the LatticeMico SPI creates an interrupt

request when data is available to be transferred.

Figure 8: ISR Servicing Method

#include "MicoSPIService.h"

const char *const SPIM INSTANCE NAME = "spim ";
const char *const SPIS INSTANCE NAME = "spis ";

/********* Global Variables ***********************/
static int slave address=0x01;

static int slave txdata = 0x55;

static int slave_rxdata=0;

static int master txdata = OxAA;

static int master rxdata=0;

static int transfer complete=0;

// Create Pointers for WB Devices.
MicoSPICtx_t *pMaster;
MicoSPICtx t *pSlave;

void OnMasterRx (void) {

/*
* If you don't want to be interrupted any more, disable
* the interrupts
*/

MicoSPIDisableRxIntr (pMaster) ;

transfer complete=1;

/* read received data here */

MicoSPIRxData (pMaster, &master rxdata, O0);

void OnMasterTx (void) {
/*
* If you don't want to be interrupted any more, disable
* the interrupts
*/
MicoSPIDisableTxIntr (pMaster) ;
transfer complete=1;

/*

* load new tx data or disable tx interrupt; otherwise, this
* will spin in a loop

*/

MicoSPITxData (pMaster,master txdata,l);

return;

24

LatticeMico SPI

Software Support

Figure 8: ISR Servicing Method (Continued)

/*************************
* USER-MAIN ENTRY POINT *
*************************/
int main(void) {
int runs = 0;

/* Set Pointers to WB Device Addresses. */
pMaster = (MicoSPICtx_t *)MicoGetDevice (SPIM_INSTANCE_ NAME) ;
pSlave = (MicoSPICtx t *)MicoGetDevice (SPIS INSTANCE NAME) ;

/* Make sure devices were found and that the pointers aren't null */

if (pMaster == 0)
printf ("Cannot use SPI Master as ctx is unidentified\n");
return(0) ;

!

if (pSlave == 0){
printf ("Cannot use SPI Slave as ctx is unidentified\n");
return(0) ;

}

/* MAIN PROGRAM BODY (REPEATS FOREVER) */
while (1) {

/* Write Slave Data: Block till loaded */
MicoSPITxData (pSlave, slave txdata,l);

/* Enable slave by writing to master */
MicoSPISetSlaveEnable (pMaster, slave address) ;
MicoSPIGetSlaveEnable (pMaster, &slave address) ;

if (slave_address != 0x01) {
printf (" failed to select slave!! fatal error\n");
while (1) {};

}

/* write first data targeted for slave, block until loaded */
MicoSPITxData (pMaster,master txdata,l) ;

/* Enable interrupts on master. */

MicoSPIEnableRxIntr (pMaster, OnMasterRx) ;

MicoSPIEnableTxIntr (pMaster, OnMasterTx) ;

/* wait for master's transmission complete */
while (1) {
volatile unsigned int iTimeout;
unsigned int iValue;
volatile unsigned int *pStatus;
pStatus = ((volatile unsigned int *) (pMaster->base + 8));
ivalue = *pStatus;

LatticeMico SPI

25

Software Support

Figure 8: ISR Servicing Method (Continued)

/* wait for transmission to complete */
do{

/* Check Completion Flag */

if (transfer complete!=0)

break;

}while (1) ;
transfer complete=0;
iTimeout = 0;

/* read data if there's data to read */

do{
if (MicoSPIRxData (pMaster, &master rxdata, 0) == 0)
break;
if (iTimeout >= 10)
pStatus = ((volatile unsigned int *) (pMaster->base + 8));
ivalue = *pStatus;
if (MicoSPIRxData (pSlave, &slave rxdata, 0) != 0){
printf ("Internal slave did not rx data: hw error\n");
while (1) {};
}
printf ("master failed to rx data within a second %d\n",
iTimeout) ;
while (1) {};
}
iTimeout++;
MicoSleepMilliSecs (100) ;
}while (1) ;
break;
!
/*

* at this point, the slave must also have transmitted
* data and received data

*/

if (MicoSPIIsTxDone (pSlave) == 0) {
printf ("Internal slave tx not done: hw error\n");
while (1) {};

1

if (MicoSPIRxData (pSlave, &slave rxdata, 0) != 0) {
printf ("Internal slave did not rx data: hw error\n");
while (1) {};

}

26

LatticeMico SPI

Software Support

Figure 8: ISR Servicing Method (Continued)

/* compare data */

if ((master rxdata & Oxff) != ((~slave rxdata) & Oxff)) {
printf ("data corruption\n") ;
printf ("master received : 0x%x\n", master rxdata);
printf ("slave received: 0x%x\n", slave rxdata) ;
while (1) {};

}

printf ("successfully completed %d iterations\n", ++runs);

slave txdata=slave rxdata;

master txdata=master rxdata;

}
}
Revision History
Component Version Description
1.0 Initial release.
3.0 (7.0 SP2) Version number change only. No RTL code change.
3.1 Rewrote the code to correct errors and provide cleaner
functionality.
3.1 Updated document with new corporate logo.
Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE,
ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA,
ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M,
LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2,
MACH, MachXO, MachX0O2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform
Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG,
SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysl/O, sysMEM, The Simple
Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other
countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

LatticeMico SPI 27

Software Support

28 LatticeMico SPI

	LatticeMico SPI
	Version
	Features
	Functional Description
	Data Transmit and Receive
	Status and Control
	Clocking Sources

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Definitions
	Timing Diagram
	EBR Resource Utilization
	Software Support
	Device Driver
	Functions
	Services
	Software Usage Examples
	ISR Servicing Method

