= LATTICE

LatticeMico SDRSDRAM
Controller

The LatticeMico SDR SDRAM controller has a WISHBONE slave port to
enable the WISHBONE master in the platform to gain access to the SDRAM
memory.

Version

This document describes the 3.9 version of the LatticeMico SDR SDRAM
controller.

Features
The LatticeMico SDR SDRAM controller includes the following features:
WISHBONE B.3 interface
Configurable SDRAM data bus width of up to 32 bits
Configurable SDRAM row address width of up to 14 bits
Configurable SDRAM column address width of up to 14 bits
Configurable bank address width of up to 4 bits

Configurable timing delays for the PRECHARGE, AUTO REFRESH, and
LOAD MODE REGISTER commands

Configurable timing delays for ACTIVE and 100-us delay
Support for linear increment burst-mode transfer
Internal state machine built for SDRAM power-on initialization

Support for MachXO2™ LatticeXP™, LatticeECP™, LatticeEC™,
LatticeECP2M™ LatticeXP2™, and LatticeSC™ devices

Copyright © January 2014 Lattice Semiconductor Corporation.

Features

Slower system clock when you take advantage of the sysCLOCK™ PLL
feature. The system interface clock does not need to be the same as the
SDRAM clock.

System interface that can be in any I/O standards supported by this
feature, with the support of the syslO™ feature on MachXO2, LatticeXP,
LatticeECP/EC, LatticeECP2, Lattice ECP2M, LatticeXP2, and LatticeSC
devices

The SDRAM controller, located between the SDRAM and the bus master,
reduces the effort required to use the SDRAM command interface by
providing a system interface to the WISHBONE bus master. Figure 1 shows
the place of the controller between the WISHBONE bus master and the
SDRAM controller. The bus master can be either a microprocessor or your
proprietary module interface.

Figure 1: SDR SDRAM Controller System

System SDRAM
Interface Interface
Control Command
SDR SDR
BUS SDRAM Synchronous
Master Status Controller DRAM
Address
Address
Data) Data

2 LatticeMico SDR SDRAM Controller

Functional Description

Functional Description

The functional block diagram of the SDRAM controller is shown in Figure 2.

Figure 2: Block Diagram of the SDR SDRAM Controller

WISHBONE wb_sdr_ctrl.v SDRAM
interface interface

\\ 4[\\
Control > o N o Control \>
yd wb_fifo_intf.v Control sdr_fifo_intf.v

e
L G s
< Status Address\\
>
Ni —L///

o>

The WISHBONE interface block puts the incoming WISHBONE command in
the WISHBONE FIFO. The SDRAM interface block consists of three modules,
as shown in Figure 3:

5

Main control module — Contains two state machines and a counter. It is
the primary module of the design. It generates proper iState and cState
outputs according to the system interface control signals.

Signal generation module — Generates the address and command signals
required for the SDRAM according to iState and cState.

LatticeMico SDR SDRAM Controller 3

Functional Description

Data path module — Performs the data latching and dispatching of the data
between the bus master and the SDRAM.

Figure 3: Block Diagram of the SDR SDRAM Interface Block

——» sdr_CLK

—— sdr_CKE
————® sdr_CSn
—— sdr_RASn
—® sdr_CASn
——» sdr_WEn
——® sdr_BA

sdr_A

> sdr_A

"High" ———p» sdr_DQM

sdr_ctrl.v
sdr_sig.v
Main Control
Signal
, Generation
sys_DLY_100US > INIT_FSM iState
\‘_
sys_INIT_DONE - $
sys_R_Wn —
sys_ADSn — P
CMD_FSM cState
sys_REF_REQ — >
sys_REF_ACK A
MSB
sys_ CYC_END - \:LSB|:
14
{ T1T |
COUNTER
M
sys_A | sdr_data.v
e\
cState
sys_CLK —» PLL —» I;’Ogﬂles === Data Path
clkCNT \
A
sys_D < g
sys RESET — g T0Al

Modules

\‘/‘::> sdr_DQ

sys_ D_VALID <

PLL

The SDRAM clock is generated by the internal PLL of the device. For
example, if the system is running at 40 MHz, you can obtain a 100-MHz
SDRAM clock through the dedicated PLL output pin by setting the proper PLL

attributes (multiply = 5 and divide = 2).

LatticeMico SDR SDRAM Controller

Functional Description

Also, by using the PLL’s variable delay line capability, you can tune all the
output signals to the SDRAM to retard or advance the normal output timing for
timing optimization and system reliability improvement.

SDRAM Initialization

Before it can perform normal memory accesses, the SDRAM must be
initialized by a sequence of commands. The INIT_FSM state machine
handles this initialization. Figure 4 shows the state diagram of the INIT_FSM
state machine. During reset, INIT_FSM is forced to the i_NOP state. After
reset, the sys_100us signal is sampled at the rising edge of every PLL clock
cycle to determine if the 100-us power and clock stabilization delay is
completed. After the power and clock stabilization is complete, the SDRAM
initialization sequence begins, and INIT_FSM switches from the i_NOP to the
i_PRE state. The initialization starts with the PRECHARGE command,
followed by two AUTO REFRESH commands, then the LOAD MODE
REGISTER command to configure SDRAM to a specific mode of operation.
The i_PRE,i_AR1,i_AR2, and i_MRS states are used for issuing these
commands. After each of these commands is issued, a corresponding timing
delay must be satisfied before you can issue any command other than NOP.
These timing delays are tgp, trrc, and tyrp for the PRECHARGE, AUTO
REFRESH, and LOAD MODE REGISTER commands, respectively. After the
LOAD MODE REGISTER command is issued and the tyrp timing delay is
satisfied, INIT_FSM goes to the i_ready state and remains there for the

LatticeMico SDR SDRAM Controller 5

Functional Description

normal memory access cycles unless sys_RESET is asserted. Also, the
sys_INIT_DONE signal is set to high to indicate that SDRAM initialization is
complete.

Figure 4: INIT_SFM State Diagram

sys_DLY_100US
endOf_tRP

sys_DLY_100US

endOf_tRFC

endOf_tRFC

endOf_tMRD

The LOAD MODE REGISTER command configures the SDRAM by loading
data into the mode register through the address bus. The data present on the
address bus during the LOAD MODE REGISTER command is loaded to the
mode register. The mode register contents specify the burst length, burst
type, CAS latency, and so forth. Refer to the SDRAM vendor’s data sheet for
more detailed information about the mode register field definitions. As long as
all banks of the SDRAM are put into the idle state by PRECHARGE or AUTO
PRECHARGE, the mode register can be reloaded with different values,
thereby changing the mode of operation. However, in most applications, the
mode register value is not changed after the initialization. This design
assumes that the mode register stays the same after initialization and that a
fixed-mode register content is implemented in the HDL code.

As noted earlier, certain timing delays (tgrp, trrc, and tyrp) must be satisfied
before you can issue another non-NOP command. These SDRAM delays
vary from speed grade to speed grade and sometimes from vendor to vendor.

LatticeMico SDR SDRAM Controller

Functional Description

According to these timing values, the number of clocks in which the state

machine stays in the i_tgp, i_trrc1, i_trrc2, and i_tyrp states is determined.
In cases where tc is larger than the timing delay, the state machine does not
need to switch to the timing delay states and can go directly to the command
states. The dashed lines in Figure 4 show the possible state switching paths.

Read/Write Cycle

Figure 5 shows the CMD_FSM state diagram, which handles the read, write,
and refresh of the SDRAM. The CMD_FSM state machine is initialized to
c_idle during reset. After reset, CMD_FSM stays in c_idle as long as
sys_INIT_DONE is low, which indicates that the SDRAM initialization
sequence is not yet complete. Once the initialization is done, sys ADSn and
sys_REF_REQ are sampled at the rising edge of every clock cycle. A logic
high sampled on sys_ REF_REQ starts a SDRAM refresh cycle, which is
described in “Refresh Cycle” on page 9. If a logic low is sampled on both

LatticeMico SDR SDRAM Controller

Functional Description

sys_REF_REQ and sys_ADSn, a system read cycle or a system write cycle
will begin. These system cycles are composed of a sequence of SDRAM
commands.

Figure 5: CMD_FSM State Diagram

0
W
(sys_INIT_DONE * sys_REF_REQ* sys_ADSn) + sys_INIT_DONE xe¥® /
2 /
of 2 J/
)2l S
& -
- endOf_tRFC
c_idle c_tRFC
& \
& \
g | %
>/ \ .
—_— 3 c \ o [
endOf_Read_Burst Q?' (8 \ \’b endOf_tRFC
6/ <| \\\ '7(
N ol
) ? \
* \
g \ endOf_tDAL
o \
! \
w \
o \
wl \\
> \
D > “\ S
< w 3 2
§ Z “\ ob;r
N 8 \ Ly
& E \ %

_— J E \ —
endOf_Cas_Latency S’ g \ %, endOf_Write_Burst
qu S N\ R

\\\\
\
NS- /,/’ R \Wn
endOf_tRCD * sys_R_Wn endOf_tRCD * sys_R_Wn
c_READA c_tRCD

endOf_tRCD

As with the FP and EDO DRAM, the row address and the column address are

required to pinpoint the memory cell location of the SDRAM access. Since the
SDRAM is composed of four banks, you must provide the bank address as
well.

The SDRAM can be considered as a four-by-N array of rows. All rows are in
the “closed” status after the SDRAM initialization. The rows must be “opened”
before they can be accessed. However, only one row in the same bank can
be opened at a time. Since there are four banks, at most four rows can be
opened at the same time. If a row in one bank is currently opened, it must be
closed before another row in the same bank can be opened. The ACTIVE

LatticeMico SDR SDRAM Controller

Functional Description

command opens the rows and the PRECHARGE command (or the AUTO
PRECHARGE command hidden in the WRITE and READ commands, as
used in this design) closes the rows. When you issue the commands for
opening or closing the rows, you must provide both the row address and the
bank address.

In this design, the ACTIVE command is issued for each read or write access
to open the row. After the tgcp delay is satisfied, a READ or WRITE command
is issued with a high sdr_A[10] to enable AUTO REFRESH to close the row
after access. Therefore, the clocks required for the read and the write cycle
are fixed, and the access can be random over the full address range.

Read or write is determined by the sys_ R_Wn status sampled at the rising
edge of the clock before the trcp delay is satisfied. If a logic high is sampled,
the state machine switches to ¢ READA. If a logic low is sampled, the state
machine switches to c WRITEA.

For read cycles, the state machine switches from c_READA to c_cl for CAS
latency, then switches to c_rdata for transferring data from the SDRAM to bus
master. The number of clocks in which the state machine stays in c_rdata
state is determined by the burst length. After the data is transferred, it
switches back to c_idle.

For write cycles, the state machine switches from c_ WRITEA to c¢_wdata for
transferring data from the bus master to the SDRAM, then switches to
c_tDAL. As with the read cycle, the number of clocks in which the state
machine stays in ¢c_wdata state is determined by the burst length. The tpa
time delay is the sum of WRITE recovery time, tyr, and the AUTO
PRECHARGE timing delay, tgrp. After the rising clock edge of the last data in
the burst sequence, no commands except NOP can be issued to the SDRAM
before tpp is satisfied.

As noted in the “SDRAM Initialization” on page 5, the dashed lines indicate
possible state switching paths when the tcik period is longer than timing delay
specification.

Refresh Cycle

As with the other DRAMs, the SDRAM requires a memory refresh. An
SDRAM refresh request is generated by activating the controller’s
sdr_REF_REQ signal. The sdr_REF_ACK signal acknowledges the
recognition of sdr_REF_REQ and is active throughout the whole refresh
cycle. The sdr_REF_REQ signal must be maintained until the sdr_REF_ACK
signal goes active in order to be recognized as a refresh cycle. No system
read and write access cycles are allowed when sdr_REF_ACK is active. All
system interface cycles are ignored during this period. The sdr_ REF_REQ
signal assertion must be removed when the sdr_ REF_ACK
acknowledgement is received; otherwise, another refresh cycle is again
performed.

LatticeMico SDR SDRAM Controller 9

Functional Description

When the sdr_REF_REQ assertion is received, the CMD_FSM state machine
enters the c_AR state to issue an AUTO REFRESH command to the SDRAM.
After the trrc time delay is satisfied, CMD_FSM returns to c_idle.

Data Path

Figure 6 shows the data flow design between the SDRAM and the system
interface. The module in this design interfaces between the SDRAM with a 4-
bit data bus and the bus master with a 16-bit data bus.

The size of each bus in Figure 6 is shown by the number under the slash

across the bus. The components shown in gray are for read cycles, and the
components shown in white are for write cycles.

Figure 6: Data Path Module

cState >
Combinatorial
Logic
I\
cIkCNT)
/
4 4
sys_CLK ——» To All -
sys_RESET — - Flip-
Flops 7
4 CcE 4
sys_D_VALID R
4 CE 4
sys_D v <’—<l—/— S(
16 |1 6 4 cE 4 4

i

EEN

10 LatticeMico SDR SDRAM Controller

Configuration

Configuration

The following sections describe the graphical user interface (Ul) parameters
and the I/O ports that you can use to configure and operate the LatticeMico

SDR SDRAM controller.

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico
SDR SDRAM controller through the Mico System Builder (MSB) interface.

Table 1: SDR SDRAM Controller Ul Parameters

Dialog Box
Option
Instance Name

Base Address
SDRAM Data Size
SDRAM

Frequency (MHz)
SDR Row Width
SDR Col Width
SDR Bnk Width

Size

AC Timing
SDR_TMRD

SDR_TRP

SDR_TRFG

SDR_TRCD

SDR_TDAL

Description

Specifies the name of the SDRAM controller
instance.

Specifies the base address.
Specifies the width of the memory’s data bus.

Specifies the frequency of the SDRAM clock,
in megahertz.

Specifies the width of the memory’s row
address.

Specifies the width of the memory’s column
address.

Specifies the width of the memory’s bank
address.

Specifies the size of the internal SDRAM
memory, in bytes.

Specifies the number of SDRAM clock cycles
for the LOAD MODE REGISTER command.

Specifies the number of SDRAM clock cycles
for the PRECHARGE command.

Specifies the number of SDRAM clock cycles
for the AUTO REFRESH command during the
SDRAM initialization phase.

Specifies the number of SDRAM clock cycles
for the ACTIVE command.

Specifies the number of SDRAM clock cycles
for the WRITE recovery time plus the AUTO
PRECHARGE time.

Allowable Values

Alphanumeric and
underscores

0X00000000-0XFFFFFFFF
4,8, 16, 32

16384-134217728

Default Value

sdram

0X00000000
16
100

12

1048576

LatticeMico SDR SDRAM Controller

11

Configuration

Table 1: SDR SDRAM Controller Ul Parameters

Dialog Box Description Allowable Values Default Value
Option
SDR_TREF1 Specifies the number of SDRAM clock cycles 1564
loaded into the AUTO REFRESH counter
(after this number of clock cycles, the SDRAM
memory goes into AUTO REFRESH mode).
T 100 ps Defines the 100-us power/clock stabilization 10000
delay.

1/0 Ports

Table 2 describes the input and output ports of the LatticeMico SDR SDRAM

controller.

Table 2: SDR SDRAM Controller I/O Ports

/0 Port Active Direction Initial
State
WISHBONE Slave Port
S_ADR_| High I X
S_DAT_| High I X
S_WE_| High I X
S_STB_I High I X
S_CYC_I High I X
S_SEL_| High I X
s_LOCK_I High I X
S_CTLI High I X
S_BTE_I High I X
S_DAT_O High] 0
S_ACK_O High] 0
S_ERR_O High o 0
S_RTY_O High o 0
S_LOCK_O High | X
Clock and Reset Signal
CLK_I High I X
RST_I High I
SDRAM Port
sdr_DQ High /0 0

Description

Slave address bus

Slave data input bus
Slave write enable signal
Slave strobe signal
Slave cycle signal

Slave select signal

Slave lock signal

Slave CTI signal

Slave BTE signal

Output data bus
Acknowledge to master device
Slave error signal

Slave retry signal

Slave lock signal

Input clock signal

Reset signal (active high)

SDRAM data bus

12

LatticeMico SDR SDRAM Controller

Configuration

Table 2: SDR SDRAM Controller 1/O Ports

1/10 Port

sdr_A
sdr_BA
sdr_CLK
sdr_CKE
sdr_CSn
sdr_ RASn
sdr_CASnh
sdr_Wen
sdr_DQM

Active

High
High
High
High
Low
Low
Low
Low

High

Direction

o/ o/o/ o 0o 0 O0l0O0 O

Initial
State

0

o/ o oo o o o o

Description

SDRAM address bus

SDRAM bank address

SDRAM clock

SDRAM clock enable

SDRAM command inputs CS#
SDRAM command inputs RAS#
SDRAM command inputs CAS#
SDRAM command inputs WE#
SDRAM data bus mask

LatticeMico SDR SDRAM Controller

13

Timing Diagrams

Timing Diagrams
Figure 7 and Figure 8 are the read cycle and write cycle timing diagrams of
the design with three CAS latency cycles. The timing diagrams may be

different because of the values of the tyrp. trp, trRrc: treps OF twr timing
delays; the tck clock period; and the CAS latency. The total number of clocks

for read and write cycles are decided by these factors.

14 LatticeMico SDR SDRAM Controller

Timing Diagrams

Figure 7: SDR SDRAM Read

i

* 1

worany eEal |

MOPUY, S|DOL JEudod PRy w34 IP3 A
1neyap - asem [T

15

LatticeMico SDR SDRAM Controller

Timing Diagrams

Figure 8: SDR SDRAM Write

i

% 1

tw ooamt eAsl|

MOPUIY, S|00L Jeuliod PPy mMalh IP3 A
1nejap - 3Aem (1]

LatticeMico SDR SDRAM Controller

16

EBR Resource Utilization

EBR Resource Utilization
The LatticeMico SDR SDRAM has no EBRs.

Implementation
Table 3 shows the implementation of the LatticeMico SDR SDRAM controller.

Table 3: Implementation of the LatticeMico SDR SDRAM Controller

Device Resources Used Maximum Clock
Frequency1
LFECP10EFPBGA484-5 634 LUTs 101.916
LFE2-35EFPBGA484-7 622 LUTs 114.811
LFXP2-17EFPBGA484-7 621 LUTs 129.938
LFXP20CFPBGA484-5 634 LUTs 84.753
LFSC3GA25EFPBGA900-7 635 LUTs 212.45

1. The maximum clock frequency is obtained by performing a timing analysis with the
Lattice Semiconductor design software.

SDR SDRAM Clock Network Distribution

This section describes the clock network distribution guidelines for the SDR
SDRAM controller.

Root Cause of the Problem

In the SDR SDRAM controller design, the SDRAM clock is generated from
other main clocks, such as the CPU clock, so the SDRAM clock is used both
internally by the FPGA logic and externally by the SDRAM chip on the board.
In the SDR SDRAM, a PIO register is used for the SDRAM'’s output signals.
The clock-to-Q value (T¢g) from the internal clock net to the pad output is
very small (around 2 ns for a LatticeECP2 device with a -6 speed grade). If
the SDRAM clock goes off-chip, the clock signal must be routed from the
primary clock network to the PIO. It will have a long routing delay, which in
most cases will be larger than the T just given. The result, if you check the
Tco externally by subtracting Tk rouTe from the internal T, is @ minus
value and violates the SDRAM chip’s setup-(Tg)-and-hold-(Ty) time
requirement, so the design will fail to run.

LatticeMico SDR SDRAM Controller 17

SDR SDRAM Clock Network Distribution

PLL Phase Shift Solution

Use the PLL’s output port, CLKOS, to generate the clock phase-shifted by 90
degrees to drive the ODDR primitive. The ODDR primitive’s output drives the
SDRAM clock, as shown in the example in Figure 9.

Figure 9: Using the PLL Output Port to Generate SDRAM Clock Output

pmi pll #(.pmi freg clki(25),
.pmi_ freqg clkop(100),
.pmi_freq clkos(100),
.pmi_ family (LATTICE FAMILY),
.pmi_phase adj (90),
.pmi_duty cycle (50),
.pmi clkfb source ("CLKOP"),
.pmi_ fdel ("OFF"),
.pmi_fdel val(0),
.module type ("pmi pll"))
Ul pmi pll (.CLKI(CLK I),
.CLKFB (sdr_clk c),
.RESET (reset 1),
.CLKOP (sdr_clk c),
.CLKOS (sdr_clk io));
ODDRXB sdr_clk inst (
.CLK (sdr_clk io),
.DA(1'Db0),
.DB(1'Dbl),
.LSR(1’'b0),
.Q(sdr CLK));

In Figure 9, the PLL generates two clock outputs: the sdr_clk_c drives the
internal FPGA logic, and the other CLKOS output with a 90-degree phase
shift (if the clock frequency is 100 MHz, it is equivalent to a 2.5-ns delay)
drives the PIO register and feeds directly into the ODDR primitive to generate
the SDRAM clock.

Revision History

Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Added burst read support.

3.1 Added burst write support.

3.2 Added PLL to generate SDRAM clock.

Used I/O register for all SDRAM interface signals.

3.3 PLL generation fixed.

3.4 ECP3 support and read burst fixes.
3.5 ECP3-E silicon clock generation fix.
3.6 Fixed issues with synthesis.

18

LatticeMico SDR SDRAM Controller

SDR SDRAM Clock Network Distribution

Revision History (Continued)

Component Version Description

3.7 Support added for LatticeECP3 -E and -EA silicon. The
-EA silicon is default.

Updated document with new corporate logo.

3.8 Added support for LatticeMico8-based designs in
addition to LatticeMico32-based designs.

Component can be used in designs that do not include
a processor.

3.9 Added support for MachXO2 device family.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCEB5, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

LatticeMico SDR SDRAM Controller 19

SDR SDRAM Clock Network Distribution

20 LatticeMico SDR SDRAM Controller

	LatticeMico SDR SDRAM Controller
	Version
	Features
	Functional Description
	PLL
	SDRAM Initialization
	Read/Write Cycle
	Refresh Cycle
	Data Path

	Configuration
	UI Parameters
	I/O Ports

	Timing Diagrams
	EBR Resource Utilization
	Implementation
	SDR SDRAM Clock Network Distribution
	Root Cause of the Problem
	PLL Phase Shift Solution

