

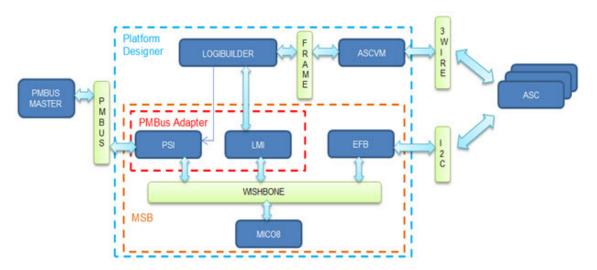
The LatticeMico PMBus Adapter provides major functions of PMBus protocol 1.1 for PMbus master to configure and monitor Analog Sense and Control (ASC) registers for Lattice Platform Manager 2 devices. The LatticeMico PMBus adapter also provide the SMBAltert for fault detection and the host can monitor the fault status through status commands. The LatticeMico PMBus master can control the operation of system such as system on or off, margin up or down and interleave on or off.

## **Version**

This document describes the 1.0 version of the LatticeMico PMBus Adapter.

### **Features**

The LatticeMico PMBus Adapter IP must be used together with the EFB (Embedded Functional Block) of the Platform Manager 2 device. Updating fault limit and measurement values are using the primary of I<sup>2</sup>C port of the EFB. The LatticeMico PMBus Adapter has the following features to support the PMBus task:


- WISHBONE interfaces with 8-bit data bus.
- ▶ Responds with a key capabilities byte depending on configuration.
- Turns the sequencing on or off; or margin up or down; or interleave one or off; to implement the functions needed.
- Prevents the external PMBus master from updating the threshold and margining by write protect.
- Allows the Platform Manager 2 device to manage the Analog Point of Loads (APOLs), the ASCs, and LogiBuilder (LgB).

- ▶ PMBus host can configure and monitor up to eight ASCs.
- PMBus host can configure and monitor ASC registers through LatticeMico PMBus Adapter dynamically.
- Indicate fault status driven by LogiBuilder.

## **Functional Description**

The LatticeMico PMBus Adapter can be configured into several modes by selecting the configuration options. Enable SMBAlert, Package Error Checking (PEC), or both by selecting the appropriate options during configuration.

Figure 1: LatticeMico PMBus Adapter Block Diagram



For more information on the ASC functions, refer to *DS1042*, *L-ASC10 Data Sheet*.

# **Basic Operation**

Table 1 shows the summary of LatticeMico PMBus Adapter supporting commands.

**Table 1: LatticeMico PMBus Adapter Supporting Commands** 

| Command |                         | Туре            | Byte | Page (Lower | r 4-bits)  |            |
|---------|-------------------------|-----------------|------|-------------|------------|------------|
| Code    | Name                    | _               |      | 0x00-0x2F   | 0x30-0x3F  | 0x40-0x5F  |
| 0x00    | Page                    | Read/Write Byte | 1    | Read/Write  | Read/Write | Read/Write |
| 0x19    | Capability              | Read Byte       | 1    | No Page Sup | port       |            |
| 0x01    | Operation               | Read/Write Byte | 1    | No Page Sup | port       |            |
| 0xD3    | MFR_Coefficient         | Read Word       | 2    |             | Read Only  |            |
| 0x78    | Status_Byte             | Read Byte       | 1    | No Page Sup | port       |            |
| 0x79    | Status_Word             | Read Word       | 2    | No Page Sup | port       |            |
| 0x7A    | Status_VOUT             | Read Byte       | 1    | No Page Sup | port       |            |
| 0x7B    | Status_IOUT             | Read Byte       | 1    | No Page Sup | port       |            |
| 0x7C    | Status_Input            | Read Byte       | 1    | No Page Sup | port       |            |
| 0x7D    | Status_Temperature      | Read Byte       | 1    | No Page Sup | port       |            |
| 0x7E    | Status_CML              | Read Byte       | 1    | No Page Sup | port       |            |
| 0x7F    | Status_Other            | Read Byte       | 1    | No Page Sup | port       |            |
| 0x80    | Status_MFR_Specific     | Read Byte       | 1    | No Page Sup | port       |            |
| 0x81    | Status_FANs_1_2         | Read Byte       | 1    | No Page Sup | port       |            |
| 0x82    | Status_FANs_3_4         | Read Byte       | 1    | No Page Sup | port       |            |
| 0x03    | Clear_Faults            | Send Byte       | 1    | No Page Sup | port       |            |
| 0xD0    | MFR_Interleave_Off      | Send Byte       | 1    | No Page Sup | port       |            |
| 0xD1    | MFR_Interleave_On       | Send Byte       | 1    | No Page Sup | port       |            |
| 0x40    | MFR_VOUT_OV_Fault_Limit | Read/Write Word | 2    | Read/Write  | -          | -          |
| 0x44    | MFR_VOUT_UV_Fault_Limit | Read/Write Word | 2    | Read/Write  | -          | -          |
| 0x46    | MFR_IOUT_OC_Fault_Limit | Read/Write Word | 2    | -           | Read/Write | -          |
| 0x4B    | MFR_IOUT_UC_Fault_Limit | Read/Write Word | 2    | -           | Read/Write | -          |
| 0x4F    | MFR_TOUT_OT_Fault_Limit | Read/Write Word | 2    | -           | -          | Read/Write |
| 0x53    | MFR_TOUT_UT_Fault_Limit | Read/Write Word | 2    | -           | -          | Read/Write |
| 0x8B    | MFR_Read_VOUT           | Read Word       | 2    | Read Only   | -          | -          |
| 0x8C    | MFR_Read_IOUT           | Read Word       | 2    | -           | Read Only  | -          |
| 0x8D    | MFR_Read_Temperature    | Read Word       | 2    | -           | -          | Read Only  |

Table 1: LatticeMico PMBus Adapter Supporting Commands (Continued)

| Command |                | Type            | Type Byte |             | Page (Lower 4-bits) |           |  |
|---------|----------------|-----------------|-----------|-------------|---------------------|-----------|--|
| Code    | Name           |                 |           | 0x00-0x2F   | 0x30-0x3F           | 0x40-0x5F |  |
| 0x98    | PMBus_Revision | Read Byte       | 1         | No Page Sur | port                |           |  |
| 0x10    | Write_Protect  | Read/Write Byte | 1         | No Page Sup | port                |           |  |

## **Page Command**

The Page command uses the read/write protocol with one data byte. The PMBus host can either read or write a new page value into the LatticeMico8 microcontroller data memory. The valid range of page number is from 0x00 to 0x5F. If the PMBus host reads or writes a page number which is not in this range or not been configured any valid value, the CML MICO\_PMBUS\_INVALID\_DATA bit will be flagged and/or trigger the SMBAlert signal, and PMBus Adapter will also ignore this page command. In this case, the page number will not change to new value and remain the least valid page number.

#### Write Page Command Behavior

- The LatticeMico8 microcontroller translates the page value to the corresponding ASC register
- The LatticeMico8 microcontroller saves this page value into the microprocessor memory.
- 3. The LatticeMico8 microcontroller sets the coefficient value based on the page number
- 4. The LatticeMico8 microcontroller reads the threshold value from the local cache memory

The LatticeMico8 microcontroller reads the voltage/current/temperature value from the ASC immediately based on the current PMBus page value. This Improves the performance if the subsequent command is a Read Value command. A subsequent PMBus Write/Read command is expected immediately after the Page command is issued.

## **Read Page Command Behavior**

1. The LatticeMico8 microcontroller will respond the PMBus Host with the current Page value that has been set.

The Page command provides the ability to configure and monitor multiple ASC VMON/IMON/TMON register value using the same PMBUS address. The mapping should be dynamic according to the user's selection in the Platform Designer software.

Table 2 shows the ASC VMON/IMON/TMON mapping.

**Table 2: Page Number and corresponding Monitor** 

| Page Numbers | Function |
|--------------|----------|
| 0x00-0x2F    | VMON     |
| 0x30-0x3F    | IMON     |
| 0x40-0x5F    | TMON     |
| Others       | Reserved |

## **Capability Command**

The Capability command uses the Read Byte protocol with one data byte. This command provides a way for the PMBus Master to determine some key capabilities of the PMBus Slave device.

**Table 3: Detailed Information of Capability Byte** 

| Bits | Description | Value | Meaning                |
|------|-------------|-------|------------------------|
| 7    | PEC         | 0     | Not supported          |
|      |             | 1     | Support                |
| 6:5  | Bus Speed   | 00    | Max Bus Speed = 100kHz |
|      |             | 01    | Max Bus Speed = 400kHz |
|      |             | 10/11 | Reserved               |
| 4    | SMBALERT    | 0     | Not Support this pin   |
|      |             | 1     | Support this pin       |
| 3.0  | Reserved    | Х     | Reserved               |
|      |             |       |                        |

## **Operation Command**

The Operation command uses the Read/Write protocol with one data byte. The PMBus host can either read or write the operation value from the PMBus IP. This command is used to turn the unit on and off in conjunction with the input from the control pin. This command is also used to cause the unit to set the output voltage to the upper or lower margin voltages. The unit stays in the commanded operating mode until a subsequent Operation command instructs the device to change to another mode. The Operation command can use for any monitor in any ASC (IMON, VMON, and TMON).

"Margin Low (Act on Fault)" means that if a under-voltage/current/temperature is detected, the unit treats this as a fault and responds by a fault response command (or sends a PMBALERT to the PMBus master). Similarly, "Margin

High (Act on Fault)" means an over-voltage/current/temperature is treated as a fault.

"Ignore Fault" means that any voltage/current/temperature fault that is detected will be ignored, the unit will ignore the condition, and the unit will continue to operate.

Each Operation setting option maps to a particular LMI output port. Table 4 shows the Operation setting options and the mapping between the settings and LMI output ports.

**Table 4: Summary of Operation Setting Options** 

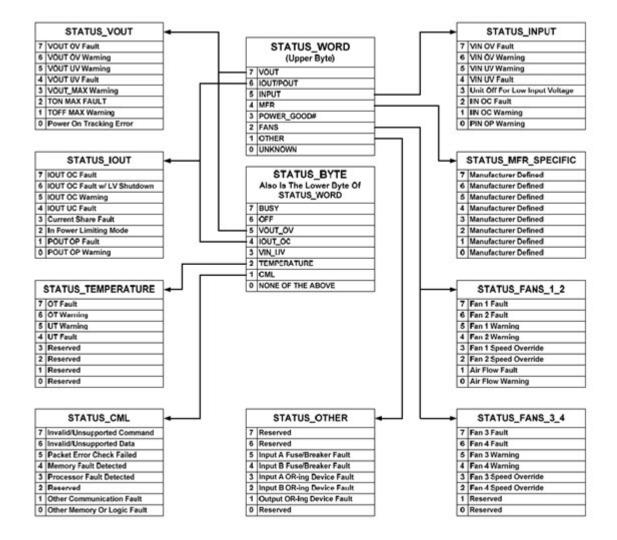
| Bit[7:6] | Bit[5:4] | Bit[3:2] | Bit[1:0] | Unit          | Margin                     | LMI Port            |
|----------|----------|----------|----------|---------------|----------------------------|---------------------|
| 00       | XX       | XX       | XX       | Immediate Off | N/A                        | PMBUS_IMMED_OFF     |
| 01       | XX       | XX       | XX       | Soft Off      | N/A                        | PMBUS_SOFT_OFF      |
| 10       | 00       | XX       | XX       | On            | Off                        | PMBUS_MARGIN_OFF    |
| 10       | 01       | 01       | XX       | On            | Margin Low (Ignore Fault)  | PMBUS_MARGIN_LOW_IF |
| 10       | 01       | 10       | XX       | On            | Margin Low (Act On Fault)  | PMBUS_MARGIN_LOW_AF |
| 10       | 10       | 01       | XX       | On            | Margin High (Ignore Fault) | PMBUS_MARGIN_HI_IF  |
| 10       | 10       | 10       | XX       | On            | Margin High (Act On Fault) | PMBUS_MARGIN_HI_AF  |

## **Manufacturer Coefficient Command**

The Manufacturer Coefficient command uses the Read Word command with 2 data bytes. This command is similar to the Coefficient command in the PMBus Specification, except it can only read out the "m" coefficient of IMON. The PMBus Host can use this command to retrieve the "m" coefficients needed by the data in Direct Format for encoding the actual threshold or measurement value of IMON.

If the user does not set this coefficient value, the default value of the coefficient will be 0. In this case, if the PMBus host requests to write IMON Fault Limit, the PMBus Adapter will not setup the IMON Fault Limit value, and it will flag CML MICO\_PMBUS\_STATUS\_CML\_INVALID\_DATA bit and/or will trigger the SMBAlert.

For more information about this data, refer to "Fault\_limit Command" on page 14.


6

### **Status Command**

The Status command uses the Read Byte/Word Protocol. All Status commands are binary and read only; these commands provide a way for the PMBus Master to retrieve the status information from the LatticeMico PMBus Adapter current status information.

The user is responsible for connecting these signals in the LogiBuilder in the Platform Designer software, and sending the corresponding status information back to the LatticeMico8 microcontroller.

Figure 2: Status Commands Mapping



## Status\_Byte Command

The Status\_Byte command returns one byte of information with a summary of the most critical faults/warnings. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_Byte command is requested.

Table 5: Status\_Byte Summary

| Bit | Status            |
|-----|-------------------|
| 7   | BUSY              |
| 6   | OFF               |
| 5   | VOUT_OV           |
| 4   | IOUT_OC           |
| 3   | VIN_UV            |
| 2   | TEMPERATURE       |
| 1   | CML               |
| 0   | NONE OF THE ABOVE |
|     |                   |

**Note**: The CML bit is controlled by the PMBus Adapter only. The user cannot control this bit through LogiBuilder or any other input signal.

## Status\_Word Command

The Status\_Word command returns two byte of information with a summary of the unit's faults/warnings. Based on this information, the PMBus host can get more information by reading the appropriate Status Registers. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_Word command is requested.

Table 6: Status\_Word Summary - Byte0

| Bit | Status      |
|-----|-------------|
| 7   | BUSY        |
| 6   | OFF         |
| 5   | VOUT_OV     |
| 4   | IOUT_OC     |
| 3   | VIN_UV      |
| 2   | TEMPERATURE |
| 1   | CML         |

8

Table 6: Status\_Word Summary - Byte0 (Continued)

| Bit   | Status                                 |
|-------|----------------------------------------|
| 0     | NONE OF THE ABOVE                      |
| Note: | The CML bit is controlled by the PMBus |

**Note**: The CML bit is controlled by the PMBus Adapter only. The user cannot control this bit through LogiBuilder or any other input signal.

Table 7: Status\_Word Summary - Byte1

| Bit | Status      |
|-----|-------------|
| 7   | VOUT        |
| 6   | IOUT/POUT   |
| 5   | MFR         |
| 4   | POWER_GOOD  |
| 3   | POWER_GOOD# |
| 2   | FANS        |
| 1   | OTHERS      |
| 0   | UNKNOWN     |
|     |             |

## Status\_VOUT

The Status\_VOUT command returns one byte of information with content as follows. LogiBuilder is responsible for setting these ports/nodes and LatticeMico PMBus Adapter will return these bits when the Status\_VOUT command is requested.

Table 8: Status\_VOUT Summary

|     | <del>_</del>            |
|-----|-------------------------|
| Bit | Status                  |
| 7   | VOUT_OV_Fault           |
| 6   | VOUT_OV_Warning         |
| 5   | VOUT_UV_Fault           |
| 4   | VOUT_UV_Warning         |
| 3   | VOUT_MAX_Warning        |
| 2   | TON MAX Fault           |
| 1   | TOFF MAX Warning        |
| 0   | Power On Tracking Error |
|     |                         |

#### Status\_IOUT

The Status\_IOUT command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_IOUT command is requested.

Table 9: Status\_IOUT Summary

| Bit | Status                       |
|-----|------------------------------|
| 7   | IOUT_OC_Fault                |
| 6   | IOUT_OC_Fault w/ LV Shutdown |
| 5   | IOUT_OC_Warning              |
| 4   | IOUT_UC_Fault                |
| 3   | Current Share Fault          |
| 2   | In Power Limiting Mode       |
| 1   | POUT OP Fault                |
| 0   | POUT OP Warning              |
|     |                              |

### Status\_Temperature

The Status Temperature command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and PMBus will return these bits when the Status\_Temperature command is requested.

Table 10: Status\_Temperature Summary

| Bit | Status     |
|-----|------------|
| 7   | OT_Fault   |
| 6   | OT_Warning |
| 5   | UT_Warning |
| 4   | UT_Fault   |
| 3   | Reserved   |
| 2   | Reserved   |
| 1   | Reserved   |
| 0   | Reserved   |
|     |            |

#### Status CML

The Status\_CML command returns one byte of information with content as follows. LatticeMico PMBus Adapter will return these bits when the Status\_CML command is requested. The Status\_CML byte is controlled by the PMBus Adapter only. The user cannot control this bit through LogiBuilder or any other input signal.

Table 11: Status\_CML Summary

| Bit | Status                      |
|-----|-----------------------------|
| 7   | Invalid/Unsupported Command |
| 6   | Invalid/Unsupported Data    |
| 5   | Packet Error Check Failed   |
| 4   | Memory Fault Detected       |
| 3   | Processor Fault Detected    |
| 2   | Reserved                    |
| 1   | Other Communication Fault   |
| 0   | Other Memory or Logic Fault |
|     |                             |

#### Status\_Other

The Status Other command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_Other command is requested.

**Table 12: Status Other Summary** 

| Bit | Status                     |  |
|-----|----------------------------|--|
| 7   | Reserved                   |  |
| 6   | Reserved                   |  |
| 5   | Input A Fuse/Breaker Fault |  |
| 4   | Input B Fuse/Breaker Fault |  |
| 3   | Input A OR-ing DeviceFault |  |
| 2   | Input B OR-ing DeviceFault |  |
| 1   | Output OR-ing DeviceFault  |  |
| 0   | Reserved                   |  |
|     |                            |  |

#### Status\_Input

The Status Input command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_Input command is requested.

Table 13: Status\_Input Summary

| Bit | Status                         |
|-----|--------------------------------|
| 7   | VIN OV Fault                   |
| 6   | VIN OV Warning                 |
| 5   | VIN UV Fault                   |
| 4   | VIN UV Warning                 |
| 3   | Unit Off for Low Input Voltage |
| 2   | IN OC Fault                    |
| 1   | IN OC Warning                  |
| 0   | PIN OP Warning                 |
|     |                                |

## Status\_MFR\_Specific

The Status\_MFR\_Specific command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_MFR\_Specific command is requested.

Table 14: Status\_MFR\_Specific Summary

| Bit | Status               |
|-----|----------------------|
| 7   | Manufacturer Defined |
| 6   | Manufacturer Defined |
| 5   | Manufacturer Defined |
| 4   | Manufacturer Defined |
| 3   | Manufacturer Defined |
| 2   | Manufacturer Defined |
| 1   | Manufacturer Defined |
| 0   | Manufacturer Defined |
|     |                      |

#### Status\_FANs\_1\_2

The Status Fans\_1\_2 command returns one byte of information with content as follows. LogiBuilder is responsible for setting these ports/nodes and LatticeMico PMBus Adapter will return these bits when the Status\_FANs\_1\_2 command is requested.

Table 15: Status\_FANs\_1\_2 Summary

| Bit | Status               |
|-----|----------------------|
| 7   | Fan 1 Fault          |
| 6   | Fan 2 Fault          |
| 5   | Fan 1 Warning        |
| 4   | Fan 2 Warning        |
| 3   | Fan 1 Speed Override |
| 2   | Fan 2 Speed Override |
| 1   | Air Flow Fault       |
| 0   | Air Flow Warning     |
|     |                      |

## Status\_FANs\_3\_4

The Status\_Fans\_3\_4 command returns one byte of information with content as follows. LogiBuilder is responsible for setting these Ports/Nodes and LatticeMico PMBus Adapter will return these bits when the Status\_Fans\_3\_4 command is requested.

Table 16: Status\_Fans\_3\_4 Summary

| Bit | Status               |
|-----|----------------------|
| 7   | Fan 3 Fault          |
| 6   | Fan 4 Fault          |
| 5   | Fan 3 Warning        |
| 4   | Fan 4 Warning        |
| 3   | Fan 3 Speed Override |
| 2   | Fan 4 Speed Override |
| 1   | Reserved             |
| 0   | Reserved             |
|     |                      |

## Clear\_Fault Command

The Clear\_Fault command uses the Send Byte Protocol with one data byte. This PMBus command will be translated to the "PMBUS\_CLEAR\_FAULT" Nodes in the LogiBuilder.

This command is used to clear fault bits that have been set in both the LatticeMico8 microcontroller and LogiBuilder. At the same time, the LogiBuilder should negates the SMBALLERT signal if asserted.

If the fault is still present when the bit is clear, it is recommended to set the fault again immediately and notify the host.

## MFR\_Interleave\_On/Off Command

The MFR\_Interleave\_Fault command uses the Send Byte Protocol with one data byte. This PMBus command will be translated to the "PMBUS\_MFR\_INTERLEAVE" in the LogiBuilder.

## **Fault limit Command**

The Fault command uses the Read/Write Word Protocol with two data bytes. The PMBus Host can only use the corresponding Fault Limit on specific page The user can modify the page information using the PMBus PAGE command.

If the VMON/TMON data does not match any valid values, the LatticeMico8 microcontroller will set the data to the closest value.

If the IMON data does not match to any valid value, the LatticeMico8 microcontroller will throw an error and set the CML status Bit 6 – Invalid Data and send the SMBAlert to the PMBus Host.

If the page does not support the command, the LatticeMico8 microcontroller will set the CML status Bit 7 – Invalid command, will be set and send the SMBAlert to the PMBus Host.

Table 17: Page number v.s. Fault limit type

| Page Number | Function            |
|-------------|---------------------|
| 0x00-0x2F   | Voltage Fault Limit |
| 0x30-0x3F   | Current Fault Limit |
| 0x40-0x5F   | Temp Fault Limit    |

The host system uses the following equation to convert the value received from the PMBus device into a reading of volts, amperes, degree Celsius or other units as appropriate.

$$X = \frac{1}{m} \cdot (Y \cdot 10^{-R} - b)$$

14

- **X** is the calculated, real world value.
- **Y** is a 2 bytes two's complement integer received from PMBus device.
- **m** is the slope, a 2 bytes two's complement integer.
- **R** is the exponent, a 2 bytes two's complement integer always.
- **b** is the offset, a 2 bytes two's complement integer.

Sending a data to the LatticeMico PMBus Adapter

$$Y = (mX + b) \cdot 10^R$$

- X is real world value.
- Y is a 2 bytes two's complement integer to be sent to the LatticeMico PMBus Adapter.
- **m** is the slope, a 2 bytes two's complement integer.
- **R** is the exponent, a 2 bytes two's complement integer always.
- **b** is the offset, a 2 bytes two's complement integer

These values should reference to following Fault Limit configuration.

#### ASC VMON Fault\_limit Configuration

The voltage monitor (VMON1-VMON9 and HVMON) are configurable over  $I^2C$ . Each voltage monitor includes programmable trip points A and B, corresponding to the two comparators for each voltage monitor input pin. The A and B trip point settings should reference the ASC configuration data sheet. Any settings outside of the table range are prohibited.

When the LatticeMico8 microcontroller reads/writes the voltage threshold value, the LatticeMico8 microcontroller sets the fault limit values with a resolution of 2mV.

- $\mathbf{m} = 500$ , a 2 bytes two's complement integer.
- ▶ R = 0, a 2 bytes two's complement integer
- b = 0, a 2 bytes two's complement integer

Reading a VMON threshold/measurement value:

$$X = \frac{Y}{500}$$

- **X** is the calculated, real world value in volts;
- Y is a 2 bytes two's complement integer received from PMBus Adapter

Sending a VMON Threshold data to the PMBus Slave Adapter:

$$Y = (500X)$$

- X is real world value in volts;
- **Y** is a 2 bytes two's complement integer send to LatticeMico PMBus Adapter

#### **ASC IMON Fault\_limit Configuration**

When the LatticeMico8 microcontroller reads/writes the voltage threshold value, the LatticeMico8 microcontroller sets the Coefficient values to R(sense) / IMON resolution.

- $m = R_{sense}$  / IMON resolution, a 2 bytes two's complement integer.
- ▶ **R = 0**, a 2 bytes two's complement integer
- **b = 0**, a 2 bytes two's complement integer

Reading an IMON threshold/measurement value:

$$X = \frac{Y* \text{ IMON resolution}}{Rsense}$$

- X is the calculated, real world value in amps;
- **Y** is a 2 bytes two's complement integer received from the PMBus Adapter.

Sending an IMON threshold data:

$$Y = \frac{x * Rsense}{IMON resolution}$$

- **X** is the real world value in Amps;
- Y is a 2 bytes two's complement integer sent to the PMBus Adapter

#### Note

The user provides the voltage value. No conversion will be done in the LatticeMico8 microcontroller.

|      | Resolution | 1/ Resolution |
|------|------------|---------------|
| IMON | 0.25 mA    | 4000          |

The current value can be calculated by this formula:

V = IR, where:

- V is the voltage threshold.
- R is the resistance value defined by the user.

For example, if trying to set 5 mA as the fault limit value and the resistance value is 2 ohms:

2 bytes two's complement integer data Y =  $\frac{5m * 2}{0.25m}$  = 40 mV

Table 18 shows the valid voltage threshold values for IMON.

Table 18: Valid Voltage Threshold Values to Set IMON Fault Limit

| A_TH/B_TH[1:0] | Gain [1:0]         |                   |                   |                   |
|----------------|--------------------|-------------------|-------------------|-------------------|
|                | 00 (Gain = 100V/V) | 01 (Gain = 50V/V) | 10 (Gain = 25V/V) | 11 (Gain = 10V/V) |
| 00             | 8 mV               | 15.5 mV           | 30.5 mV           | 75 mV             |
| 01             | 10.5 mV            | 20.5 mV           | 40.5 mV           | 100 mV            |
| 10             | 14.5 mV            | 28.5 mV           | 56.5 mV           | 140 mV            |
| 11             | 20 mV              | 39 mV             | 77 mV             | 190 mV            |

### **ASC TMON Fault\_limit Configuration**

The TMON includes two individually programmable comparators, TMONA and TMONB with thresholds range for each of these monitors is -64 °C to 155 °C, with a resolution of 1 °C. Values above 155 °C or below -64 °C are not valid threshold settings.

- m = 4, a 2 bytes two's complement integer.
- R = 0, a 2 bytes two's complement integer
- **b = 0**, a 2 bytes two's complement integer

Reading a TMON threshold/measurement value:

$$X = \frac{Y}{4}$$

- **X** is the calculated, real world value in degrees C;
- **Y** is a 2 bytes two's complement integer received from LatticeMico PMBus Adapter

Sending a TMON threshold value:

$$Y = (4X)$$

- X is real world value in degrees C;
- ▶ Y is a 2 bytes two's complement integer send to LatticeMico PMBus
  Adapter

## **Read Value Command**

The Read\_Value command uses the Read\_Word protocol with two data bytes. Similar to the Fault\_Limit command, the PMBus Master can only use the corresponding Fault Limit on specific page. Beware that reading the measurement is read at the time when the Page command is issued. To achieve a better result, it is recommended to send a Page command to the LatticeMico PMBus Adapter before reading the value.

#### VMON read value:

VMON measurement value = 2 bytes two's complement integer with 2 mV resolution.

#### IMON read value:

IMON measurement value = 2 bytes two's complement integer \*Coefficient in amps.

#### IMON read value:

IMON measurement value = 2 bytes two's complement integer with one degree C resolution.

If the page does not support the command, the CML status Bit 7 – Invalid command, will be set. The SMBAlert will be sent out to the Host if this signal is enabled.

Table 19: Page number v.s. Read measurement

| Page Numbers | Function     |
|--------------|--------------|
| 0x00-0x2F    | Read Voltage |
| 0x30-0x3F    | Read Current |
| 0x40-0x5F    | Read Temp    |

## PMBus\_Revision Command

The PMBUS\_Revision command uses the Read Byte protocol with one data byte.

## Write\_Protect Command

The Write\_Protect command uses the Read Byte protocol with one data byte. This command prevents the external PMBus master from updating the threshold and margining. Table 20 describes the Write\_Protect operation.

Table 20: Write\_Protect Summary

| Value    | Description                                                        |  |
|----------|--------------------------------------------------------------------|--|
| 10000000 | Disable All Write Command except Write_Protect                     |  |
| 01000000 | Disable All Write Command except Write Protect, Operation and Page |  |
| 00000000 | Enable All Write Command                                           |  |
| Others   | Reserved                                                           |  |

## **Configuration**

The following sections describe the graphical user interface (UI) parameters, the hardware description language (HDL) parameters, and the I/O ports that user can use to configure and operate the LatticeMico PMBus Adapter.

## **User Interface Parameters**

Table 21 shows the User Interface (UI) parameters available for configuring the LatticeMico PMBus Adapter through the Mico System Builder (MSB) interface. For more information, refer to the Platform Manager 2 PMBus Adapter documentation in the Diamond software online help.

**Table 21: PMBus Adapter UI Parameters** 

| Dialog Box Option                      | Description                                                                                           | Allowable Values             | Default Value |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|---------------|
| Instance Name                          | Specifies the name of the PMBus Adapter instance.                                                     | Alphanumeric and underscores | pmbus         |
| PMBus Address Settings                 | 3                                                                                                     |                              |               |
| Adapter Base Address                   | Specifies the base address for configuring the PMBus Adapter. The minimum boundary alignment is 0x80. | 0X80000000 –<br>0XFFFFFFF    | 0X80000000    |
| PMBus Slave Address                    | Specifies the PMBus Adapter slave address.                                                            | 0x00 – 0x7F                  | 0x60          |
| PMBus Slave Interface S                | ettings                                                                                               |                              |               |
| Enable support for SMBALERT Signal     | When selected, PMBus will enable SMBALERT support.                                                    | selected not<br>selected     | selected      |
| Enable Package Error<br>Checking (PEC) | When selected, PMBus will be enable Package Error Checking support.                                   | selected not<br>selected     | selected      |
| Enable PMBus Slave<br>Stretching       | When selected, PMBus will enable PMBus Slave Clock Stretching support.                                | selected not<br>selected     | selected      |
| PMBus Bus Speed (kHz)                  | Specifies the PMBus Bus speed.                                                                        | 100kHz 400kHz                | 400kHz        |
| LogiBuilder Interface Set              | ttings                                                                                                |                              |               |
| Enable LgB Interface                   | When selected, PMBus will enable SMBALERT support.                                                    | selected not<br>selected     | selected      |
| LgB Base Address                       | Specifies the base address for configuring the LogiBuilder (LMI).                                     | 0x00000000 –<br>0XFFFFFFF    | 0x00000000    |
|                                        |                                                                                                       |                              |               |

## **HDL Parameters**

Table 22 lists the parameters that appear in the LatticeMico PMBus HDL.

Table 22: LatticeMico PMBus Adapter HDL Parameter

| Parameter Name            | Description                                                           | Allowable Value         |
|---------------------------|-----------------------------------------------------------------------|-------------------------|
| PSMBALERT                 | Define enable/disable SMBALERT Signal support                         | 0 1                     |
| PPEC_SUPPORT              | Define enable/disable Package Error Checking support                  | 0 1                     |
| PMAX_BUS_SPEED            | Define MAX_BUS_SPEED. 1 is 400kHz; 0 is 100kHz                        | 0 1                     |
| PSLAVE_ADDRESS            | Define PMBus Adapter Slave Address                                    | 0x00 to 0x7F            |
| PSMBUS_TIMEOUT            | Define PMBus Timeout (for clock stretching)                           | 0 to 2 <sup>10</sup> -1 |
| PCLK_STRETCH              | Define enable/disable PMBus Adapter Slave Clock<br>Stretching support | 0 1                     |
| ASC_S_ADDR                | Define the Base ASC Address on I <sup>2</sup> C Bus                   | 0 to 0x70               |
| Page_00_MAP - Page_2F_MAP | Store the ASC and Voltage Monitor (VMON) Mapping                      | 0x00 to 0xFF            |
| Page_30_MAP - Page_3F_MAP | Store the ASC and Current Monitor (IMON) Mapping                      | 0x00 to 0xFF            |
| Page_40_MAP - Page_5F_MAP | Store the ASC and Temperature Monitor (TMON) Mapping                  | 0x00 to 0xFF            |
|                           |                                                                       |                         |

## **I/O Ports**

Table 23 describes the input and output ports of the LatticeMico PMBus Adapter.

Table 23: PMBus Adapter I/O Ports

| I/O Port               | Direction | Active | Description                                                                   |
|------------------------|-----------|--------|-------------------------------------------------------------------------------|
| System Clock and Reset |           |        |                                                                               |
| CLK_I                  | I         | _      | WISHBONE System Clock                                                         |
| LGB_3WI_CLK_I          | I         | _      | LogiBuilder 3Wire Clock (8 MHz)                                               |
| LGB_INT_CLK_I          | I         | _      | Logibuilder Clock (62.5 kHz)                                                  |
| RST_I                  | I         | High   | System Reset                                                                  |
| IRQ_O                  | 0         | _      | Interrupt Signal                                                              |
| PMBus                  |           |        |                                                                               |
| SMBCLK                 | I/O       | _      | PMBus clock signal                                                            |
| SMBDAT                 | I/O       | _      | PMBus data signal                                                             |
| SMBALERT               | 0         | Low    | Indicated error happened in the system or user defined error from LogiBuilder |
|                        |           |        |                                                                               |

20

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port                  | Direction | Active | Description                                                                           |
|---------------------------|-----------|--------|---------------------------------------------------------------------------------------|
| PSI WISHBONE Slave Signal |           |        |                                                                                       |
| PSI_CYC_I                 | 1         | High   | Indicates a valid bus cycle is present on the bus.                                    |
| PSI_STB_I                 | I         | High   | Asserts an acknowledgment in response to the assertion of the WISHBONE Master strobe. |
| PSI_WE_I                  | 1         | _      | Level sensitive Write/Read control signal.                                            |
|                           |           |        | Low - Read operation, High - Write operation                                          |
| PSI_ADR_I                 | I         | _      | 32-bit wide address used to select a specific register                                |
| PSI_DAT_I                 | ı         | _      | 8-bit data used to read a byte of data from a specific register                       |
| PSI_CTI_I                 | 1         | _      | Not used, always tied to 0                                                            |
| PSI_BTE_I                 | I         | _      | Not used, always tied to 0                                                            |
| PSI_LOCK_I                | 1         | _      | Not used, always tied to 0                                                            |
| PSI_SEL_I                 | 1         | _      | Not used, always tied to 0                                                            |
| PSI_DAT_O                 | 0         | _      | 8-bit data used to read a byte of data from a specific register                       |
| PSI_ACK_O                 | 0         | High   | Indicates the requested transfer is acknowledged.                                     |
| PSI_ERR_O                 | 0         | _      | Indicates the address is incorrect                                                    |
| PSI_RTY_O                 | 0         | _      | Not used, always tied to 0                                                            |
| LMI WISHBONE Slave Signal |           |        |                                                                                       |
| LMI_CYC_I                 | 1         | High   | Indicates a valid bus cycle is present on the bus.                                    |
| LMI_STB_I                 | 1         | High   | Asserts an acknowledgment in response to                                              |
|                           |           |        | the assertion of the WISHBONE Master strobe.                                          |
| LMI _WE_I                 | 1         | _      | Level sensitive Write/Read control signal.                                            |
|                           |           |        | Low - Read operation, High - Write operation                                          |
| LMI _ADR_I                | 1         | _      | 32-bit wide address used to select a specific register                                |
| LMI _DAT_I                | 1         | _      | 8-bit data used to read a byte of data from a specific register                       |

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port                        | Direction | Active | Description                                                                            |
|---------------------------------|-----------|--------|----------------------------------------------------------------------------------------|
| LMI _CTI_I                      | I         | _      | Not used, always tied to 0                                                             |
| LMI_BTE_I                       | 1         | _      | Not used, always tied to 0                                                             |
| LMI_LOCK_I                      | 1         | _      | Not used, always tied to 0                                                             |
| LMI_SEL_I                       | I         | _      | Not used, always tied to 0                                                             |
| LMI _DAT_O                      | 0         | _      | 8-bit data used to read a byte of data from a specific register                        |
| LMI_ACK_O                       | 0         | High   | Indicates the requested transfer is acknowledged.                                      |
| LMI_ERR_O                       | 0         | _      | Indicates the address is incorrect                                                     |
| LMI _RTY_O                      | 0         | _      | Not used, always tied to 0                                                             |
| LogiBuilder Ports               |           |        |                                                                                        |
| PMBUS_STATUS_BYTE_BUSY          | I         | High   | This is the bit7 of Status Word – Byte0 and also bit7 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_OFF           | I         | High   | This is the bit6 of Status Word – Byte0 and also bit6 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_VOUT_OV       | 1         | High   | This is the bit5 of Status Word – Byte0 and also bit5 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_IOUT_OC       | 1         | High   | This is the bit4 of Status Word – Byte0 and also bit4 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_VIN_UV        | 1         | High   | This is the bit3 of Status Word – Byte0 and also bit3 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_TEMPERATURE   | I         | High   | This is the bit2 of Status Word – Byte0 and also bit2 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_CML           | I         | High   | This is the bit1 of Status Word – Byte0 and also bit1 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_BYTE_NONE_OF_ABOVE | I         | High   | This is the bit0 of Status Word – Byte0 and also bit0 of Status Byte from LogiBuilder. |
| PMBUS_STATUS_WORD_VOUT_OV       | I         | High   | This is the bit7 of Status Word – Byte1 from LogiBuilder.                              |
| PMBUS_STATUS_WORD_IOUT_POUT     | I         | High   | This is the bit6 of Status Word – Byte1 from LogiBuilder.                              |
| PMBUS_STATUS_WORD_INPUT         | I         | High   | This is the bit5 of Status Word – Byte1 from LogiBuilder.                              |

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port                                      | Direction | Active | Description                                               |
|-----------------------------------------------|-----------|--------|-----------------------------------------------------------|
| PMBUS_STATUS_WORD_MFR                         | I         | High   | This is the bit4 of Status Word – Byte1 from LogiBuilder. |
| PMBUS_STATUS_WORD_POWER_GOOD                  | I         | High   | This is the bit3 of Status Word – Byte1 from LogiBuilder. |
| PMBUS_STATUS_WORD_FANS                        | I         | High   | This is the bit2 of Status Word – Byte1 from LogiBuilder. |
| PMBUS_STATUS_WORD_OTHER                       | I         | High   | This is the bit1 of Status Word – Byte1 from LogiBuilder. |
| PMBUS_STATUS_WORD_UNKNOWN                     | I         | High   | This is the bit0 of Status Word – Byte1 from LogiBuilder. |
| PMBUS_STATUS_VOUT_OV_FAULT                    | I         | High   | This is the bit7 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_OV_WARNING                  | I         | High   | This is the bit6 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_UV_WARNING                  | I         | High   | This is the bit5 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_UV_FAULT                    | I         | High   | This is the bit4 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_MAX_WARNING                 | I         | High   | This is the bit3 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_TON_MAX_FAULT               | I         | High   | This is the bit2 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_TOFF_MAX_WARNING            | I         | High   | This is the bit1 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_VOUT_POWER_ON_TRACKIN<br>G_ERROR | I         | High   | This is the bit0 of Status VOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_OC_FAULT                    | I         | High   | This is the bit7 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_OC_FAULT_LV_SHUTD OWN       | I         | High   | This is the bit6 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_OC_WARNING                  | I         | High   | This is the bit5 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_UC_FAULT                    | I         | High   | This is the bit4 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_CURRENT_SHARE_FAU<br>LT     | I         | High   | This is the bit3 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_IN_POWER_LIMITING_<br>MODE  | I         | High   | This is the bit2 of Status IOUT Byte from LogiBuilder.    |
| PMBUS_STATUS_IOUT_POUT_OP_FAULT               | I         | High   | This is the bit1 of Status IOUT Byte from LogiBuilder.    |

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port                                           | Direction | Active | Description                                                           |
|----------------------------------------------------|-----------|--------|-----------------------------------------------------------------------|
| PMBUS_STATUS_IOUT_POUT_OP_WARNING                  | I         | High   | This is the bit0 of Status IOUT Byte from LogiBuilder.                |
| PMBUS_STATUS_TEMP_OT_FAULT                         | I         | High   | This is the bit7 of Status Temperature Byte from LogiBuilder.         |
| PMBUS_STATUS_TEMP_OT_WARNING                       | I         | High   | This is the bit6 of Status Temperature Byte from LogiBuilder.         |
| PMBUS_STATUS_TEMP_UT_WARNING                       | I         | High   | This is the bit5 of Status Temperature Byte from LogiBuilder.         |
| PMBUS_STATUS_TEMP_UT_FAULT                         | I         | High   | This is the bit4 of Status Temperature Byte from LogiBuilder.         |
| PMBUS_STATUS_TEMP_RESERVED_3                       | I         | High   | This is the Reserved bit of Status Temperature Byte from LogiBuilder. |
| PMBUS_STATUS_TEMP_RESERVED_2                       | I         | High   | This is the Reserved bit of Status Temperature Byte from LogiBuilder. |
| PMBUS_STATUS_TEMP_RESERVED_1                       | I         | High   | This is the Reserved bit of Status Temperature Byte from LogiBuilder. |
| PMBUS_STATUS_TEMP_RESERVED_0                       | I         | High   | This is the Reserved bit of Status Temperature Byte from LogiBuilder. |
| PMBUS_STATUS_OTHER_RESERVED_7                      | I         | High   | This is the Reserved bit of Status Other Byte from LogiBuilder.       |
| PMBUS_STATUS_OTHER_RESERVED_6                      | I         | High   | This is the Reserved bit of Status Other Byte from LogiBuilder.       |
| PMBUS_STATUS_OTHER_INPUT_A_FUSEBREA<br>KER_FAULT   | I         | High   | This is the bit5 of Status Other Byte from LogiBuilder.               |
| PMBUS_STATUS_OTHER_INPUT_B_FUSEBREA<br>KER_FAULT   | I         | High   | This is the bit4 of Status Other Byte from LogiBuilder.               |
| PMBUS_STATUS_OTHER_INPUT_A_OR_ING_D<br>EVICE_FAULT | I         | High   | This is the bit3 of Status Other Byte from LogiBuilder.               |
| PMBUS_STATUS_OTHER_INPUT_B_OR_ING_D<br>EVICE_FAULT | I         | High   | This is the bit2 of Status Other Byte from LogiBuilder.               |
| PMBUS_STATUS_OTHER_OUTPUT_OR_ING_D<br>EVICE_FAULT  | I         | High   | This is the bit1 of Status Other Byte from LogiBuilder.               |
| PMBUS_STATUS_OTHER_RESERVED_0                      | I         | High   | This is the Reserved bit of Status Other Byte from LogiBuilder.       |
| PMBUS_STATUS_INPUT_VIN_OV_FAULT                    | 1         | High   | This is the bit7 of Status Inputs Byte from LogiBuilder.              |
| PMBUS_STATUS_INPUT_VIN_OV_WARNING                  | I         | High   | This is the bit6 of Status Inputs Byte from LogiBuilder.              |
| PMBUS_STATUS_INPUT_VIN_UV_FAULT                    | I         | High   | This is the bit5 of Status Inputs Byte from LogiBuilder.              |

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port                                              | Direction | Active | Description                                                              |
|-------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------|
| PMBUS_STATUS_INPUT_VIN_UV_WARNING                     | I         | High   | This is the bit4 of Status Inputs Byte from LogiBuilder.                 |
| PMBUS_STATUS_INPUT_UNIT_OFF_FOR_LOW<br>_INPUT_VOLTAGE | 1         | High   | This is the bit3 of Status Inputs Byte from LogiBuilder.                 |
| PMBUS_STATUS_INPUT_IN_OC_FAULT                        | I         | High   | This is the bit2 of Status Inputs Byte from LogiBuilder.                 |
| PMBUS_STATUS_INPUT_IN_OC_WARNING                      | I         | High   | This is the bit1 of Status Inputs Byte from LogiBuilder.                 |
| PMBUS_STATUS_INPUT_PIN_OP_WARNING                     | I         | High   | This is the bit0 of Status Inputs Byte from LogiBuilder.                 |
| PMBUS_STATUS_MFR_SPECIFIC_7                           | I         | High   | This is the bit7 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_6                           | I         | High   | This is the bit6 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_5                           | 1         | High   | This is the bit5 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_4                           | 1         | High   | This is the bit4 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_3                           | I         | High   | This is the bit3 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_2                           | I         | High   | This is the bit2 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_1                           | I         | High   | This is the bit1 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_MFR_SPECIFIC_0                           | I         | High   | This is the bit0 of Status Manufacturer Specifics Byte from LogiBuilder. |
| PMBUS_STATUS_FANS_1_2_FAN_1_FAULT                     | 1         | High   | This is the bit7 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_FAN_2_FAULT                     | 1         | High   | This is the bit6 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_FAN_1_WARNING                   | 1         | High   | This is the bit5 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_FAN_2_WARNING                   | 1         | High   | This is the bit4 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_FAN_1_SPEED_OV<br>ERRIDE        | I         | High   | This is the bit3 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_FAN_2_SPEED_OV<br>ERRIDE        | I         | High   | This is the bit2 of Status Fans 1-2 Byte from LogiBuilder.               |
| PMBUS_STATUS_FANS_1_2_AIR_FLOW_FAULT                  | I         | High   | This is the bit1 of Status Fans 1-2 Byte from LogiBuilder.               |

Table 23: PMBus Adapter I/O Ports (Continued)

| /O Port                                        | Direction | Active | Description                                                                                                                                      |
|------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| PMBUS_STATUS_FANS_1_2_AIR_FLOW_WARNI<br>NG     | I         | High   | This is the bit0 of Status Fans 1-2 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_3_FAULT              | 1         | High   | This is the bit7 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_4_FAULT              | 1         | High   | This is the bit6 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_3_WARNING            | 1         | High   | This is the bit5 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_4_WARNING            | I         | High   | This is the bit4 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_3_SPEED_OV<br>ERRIDE | I         | High   | This is the bit3 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_1_2_FAN_4_SPEED_OV<br>ERRIDE | I         | High   | This is the bit2 of Status Fans 3-4 Byte from LogiBuilder.                                                                                       |
| PMBUS_STATUS_FANS_3_4_RESERVED_1               | I         | High   | This is the Reserved bit of Status Fans 3-4 Byte from LogiBuilder.                                                                               |
| PMBUS_STATUS_FANS_3_4_RESERVED_0               | I         | High   | This is the Reserved bit of Status Fans 3-4 Byte from LogiBuilder.                                                                               |
| PMBUS_IMMED_OFF                                | 0         | High   | Active when PMBus adapter receives OPERATION IMMED_OFF command                                                                                   |
| PMBUS_SOFT_OFF                                 | 0         | High   | Active when PMBus adapter receives OPERATION SOFT_OFF command                                                                                    |
| PMBUS_MARGIN_OFF                               | 0         | High   | Active when PMBus adapter receives OPERATION MARGIN_OFF command                                                                                  |
| PMBUS_MARGIN_LOW_IF                            | 0         | High   | Active when PMBus adapter receives OPERATION MARGIN_LOW_IF command                                                                               |
| PMBUS_MARGIN_LOW_IF                            | 0         | High   | Active when PMBus adapter receives OPERATION MARGIN_LOW_IF command                                                                               |
| PMBUS_MARGIN_LOW_IF                            | 0         | High   | Active when PMBus adapter receives OPERATION MARGIN_LOW_IF command                                                                               |
| PMBUS_MARGIN_LOW_IF                            | 0         | High   | Active when PMBus adapter receives OPERATION MARGIN_LOW_IF command                                                                               |
| PMBUS_CLEAR_FAULTS                             | 0         | High   | Active when PMBus adapter receives CLEAR FAULTS command                                                                                          |
| PMBUS_INTERLEAVE_ON_OFF                        | 0         | _      | Identify the MFR_INTERLEAVE_ON or MFR_INTERLEAVE_OFF command. When this bit is High, the interleave is on; when it is Low, the interleave is off |

26

Table 23: PMBus Adapter I/O Ports (Continued)

| I/O Port          | Direction | Active | Description                                                                                                                                          |
|-------------------|-----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMBUS_PAGE_BYTE_7 | 0         | High   | The bit7 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_6 | 0         | High   | The bit6 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_5 | 0         | High   | The bit5 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_4 | 0         | High   | The bit4 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_3 | 0         | High   | The bit3 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_2 | 0         | High   | The bit2 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_1 | 0         | High   | The bit1 of Page Byte showing the current page number.                                                                                               |
| PMBUS_PAGE_BYTE_0 | 0         | High   | The bit0 of Page Byte showing the current page number.                                                                                               |
| Other signals     |           |        |                                                                                                                                                      |
| PMBUS_SMBALERT    | i         | High   | This edge-sensitive signal is from LogiBuilder to the LatticeMico8 microcontroller. Users can trigger this signal to pull low the SMBALERT on PMBus. |

# **Register Descriptions**

The LatticeMico PMBus Adapter WISHBONE module has a register map to allow the service of the hardened functions through the WISHBONE bus interface read/write operations. Table 24 describes the register map of the PMBus module.

Table 24: WISHBONE Addressable Registers for PMBus Adapter Module

| Register Name | Register Function                                                                    | Address | Access     |
|---------------|--------------------------------------------------------------------------------------|---------|------------|
| PSI           |                                                                                      |         |            |
| RDAT          | 3-byte-deep FIFO contains data bytes received over the SMBus to be delivered to Mico | 0x00    | Read       |
| TDAT          | 2-byte-deep FIFO contains data to be transmitted to the PMBus Master                 | 0x01    | Write      |
| CTL0          | Configure or control resigster0 of PSI logic                                         | 0x02    | Read/Write |
| CTL1          | Configure or control resigster1 of PSI logic                                         | 0x03    | Read/Write |
| STA0          | Status resigster0 of PSI                                                             | 0x04    | Read       |

Table 24: WISHBONE Addressable Registers for PMBus Adapter Module (Continued)

| Register Name | Register Function                                                                    | Address       | Access |
|---------------|--------------------------------------------------------------------------------------|---------------|--------|
| STA1          | Status resigster1 of PSI                                                             | 0x05          | Read   |
| CAP           | capability information register                                                      | 0x06          | Read   |
| ERRS          | detailed error status information register                                           | 0x07          | Read   |
| LMI           |                                                                                      |               |        |
| PAGE_BYTE     | Current PAGE number                                                                  | 0x000         | Write  |
| OPERATION     | Operation command control register                                                   | 0x001         | Write  |
| CLR_FAULTS    | Clean fault command control register                                                 | 0x003         | Write  |
| STATUS_WORD_0 | Information of Status_Byte/Status_Word_Byte0                                         | 0x078         | Read   |
| STATUS_WORD_1 | Information of Status_Word_Byte1                                                     | 0x079         | Read   |
| STATUS_VOUT   | Information of Status_VOUT                                                           | 0x07A         | Read   |
| STATUS_IOUT   | Information of Status_IOUT                                                           | 0x07B         | Read   |
| STATUS_INPUT  | Information of Status_INPUT                                                          | 0x07C         | Read   |
| STATUS_TEMP   | Information of Status_TEMP                                                           | 0x07D         | Read   |
| STATUS_OTHER  | Information of Status_OTHER                                                          | 0x07F         | Read   |
| STATUS_MFR    | Information of Status_MFR                                                            | 0x080         | Read   |
| STATUS_FAN_12 | Information of Status_FAN_12                                                         | 0x081         | Read   |
| STATUS_FAN_34 | Information of Status_FAN34                                                          | 0x082         | Read   |
| INTLV_ON_OFF  | MFR_Interleave_ON/OFF control                                                        | 0x0D0         | Write  |
| ASC_ADDR      | Base address of ASC0                                                                 | 0x0D4         | Read   |
| RDAT          | 3-byte-deep FIFO contains data bytes received over the SMBus to be delivered to Mico | 0x00          | Read   |
| TDAT          | 2-byte-deep FIFO contains data to be transmitted to the PMBus Master                 | 0x01          | Write  |
| Page_xx_MAP   | Page Mapping information registers                                                   | 0x100 - 0x15F | Read   |

**Note**: xx = 0x00 - 0x5F

Following section provides details about each register in the LatticeMico PMBus Adapter.

#### **RX Data FIFO - RDAT**

This 3-byte-deep FIFO contains data bytes received over the SMBus to be delivered to Mico. The first data byte of a transfer is a command code. The PSI logic checks if the command is supported by the IP before storing it into the FIFO. The PSI logic NACKs the transaction if the command is not supported and discards all data bytes associated with the transfer. The

PMBus IP MRD specifies the commands the IP is required to support. The FIFO's live empty and full flags can be read from the Status Register; the LatticeMico8 microcontroller needs to monitor these bits to determine when to read the FIFO. If interrupt is enabled then the PSI logic generates the interrupt output corresponding to each status bit. If the FIFO is not empty when a new transfer is started then the main FSM NACKs the transaction and waits for STOP.

The LatticeMico8 microcontroller can reset this FIFO by setting the bit "RDAT reset" in the Control Register.

#### TX Data FIFO - TDAT

This 2-byte-deep FIFO contains data to be transmitted to the SMBus Master. The FIFO's live empty and full flags can be read from the Status Register. The main FSM monitors these bits to determine when data is available for transmit. If the FIFO is empty when data needs to be put on the SMBDAT line then the FSM sends all ones until STOP is detected.

The LatticeMico8 microcontroller can reset this FIFO by setting the bit "TDAT reset" in the Control Register. The main FSM resets this FIFO when a START condition is detected.

### Control Register 0 - CTL0

This register contains the bits that the LatticeMico8 microcontroller can program to configure or control the PSI logic.

Table 25: CTL0 Register Bit Definition

| Bits  | Field             | Description                                       | Access     |
|-------|-------------------|---------------------------------------------------|------------|
| [7:3] | Reserved          | Reserved                                          | N/A        |
| [2]   | RDAT Reset (RRST) | 0 = no-op                                         | Read/Write |
|       |                   | 1 = reset RX Data FIFO                            |            |
|       |                   | This bit is set for one WB clock, i.e. not sticky |            |
| [1]   | TDAT Reset (TRST) | 0 = no-op                                         | Read/Write |
|       |                   | 1 = reset TX Data FIFO                            |            |
|       |                   | This bit is set for one WB clock, i.e. not sticky |            |
| [0]   | Sync Reset (SRST) | 1 = reset the entire PSI block                    | Read/Write |
|       |                   | This bit is set for one WB clock, i.e. not sticky |            |

#### Control Register 1 - CTL1

This register contains the bits that the LatticeMico8 microcontroller can program to configure or control the PSI logic.

**Table 26: CTL1 Register Bit Definition** 

| Field                   | Description                                                                                                                                                                                                                                              | Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved                | Reserved                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clock Low Extend (CKEX) | (X) The LatticeMico8 microcontroller sets this bit to 1 when it wants the PSI to hold the SMBCLK line low. The PSI stops holding the clock low when the LatticeMico8 microcontroller resets this bit or if an SMBus Timeout condition has been detected. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Send Alert (ALRT)       | The LatticeMico8 microcontroller sets this bit to 1 when it wants to notify the host of a fault. Refer to the section SMBALERT# and Alert Response Address for more details.                                                                             | Read/Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reserved                | Reserved                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Interrupt Enable (IEN)  | 0 = interrupt is disabled<br>1 = interrupt is enabled                                                                                                                                                                                                    | Read/Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | Reserved  Clock Low Extend (CKEX)  Send Alert (ALRT)  Reserved                                                                                                                                                                                           | Reserved  Clock Low Extend (CKEX)  The LatticeMico8 microcontroller sets this bit to 1 when it wants the PSI to hold the SMBCLK line low. The PSI stops holding the clock low when the LatticeMico8 microcontroller resets this bit or if an SMBus Timeout condition has been detected.  Send Alert (ALRT)  The LatticeMico8 microcontroller sets this bit to 1 when it wants to notify the host of a fault. Refer to the section SMBALERT# and Alert Response Address for more details.  Reserved  Reserved  Interrupt Enable (IEN)  O = interrupt is disabled |

#### Status Register 0 - STA0

This register contains the status of the PSI logic. All bits are read-only. The bits in this register can be cleared by the SRST. Some bits have additional specific reset conditions.

**Table 27: STA0 Register Bit Definition** 

| Bits  | Field                            | Description                                                                                                                                                                                                                                                                                         | Access |
|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| [7]   | SMBus Timeout (TOUT)             | This bit is set when the SCL line has been low for greater than the SMbus timeout duration and reset when a START condition is detected. The PSI logic resets the FIFOs and all status information associated with the data transfer when a timeout is detected.                                    | Read   |
| [6:5] | Data Transmission Error<br>(ERR) | This bit is set when a fault has been detected on a data transfer. The LatticeMico8 microcontroller needs to monitor this bit to validate the data in RDAT before processing. The bit is reset when a START condition is detected. Refer to the section "Data Transmission Fault" for more details. | Read   |
| [4]   | Master's NACK (MNAK)             | The PSI logic updates this bit every time it receives a NACK from the Master and clears it if the next response is an ACK or when a START condition is detected.                                                                                                                                    | Read   |
| [3]   | Master's ACK (MAK)               | The PSI logic updates this bit every time it receives an ACK from the Master and clears it if the next response is a NACK or when a START condition is detected.                                                                                                                                    | Read   |

**Table 27: STA0 Register Bit Definition (Continued)** 

| Bits | Field                          | Description                                                                                                                                                                                                                                                                                                                  | Access |
|------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| [2]  | Read Command Valid<br>(RC_VLD) | This is the Read command Valid status bit. It is set when the read command bit in STA1 register (STA1_RD_CMD) is set by the slave. The slave sets the read command as well as read command valid as soon as it knows the received command is a read or write command. This bit is cleared when a STOP condition is detected. | Read   |
|      |                                | 0 = Read command bit is not set.                                                                                                                                                                                                                                                                                             |        |
|      |                                | 1 = Read command bit has been set and valid.                                                                                                                                                                                                                                                                                 |        |
| [1]  | Group Command (GRP)            | This bit is set when START is received instead of a STOP at the end of a write command cycle signifying a GROUP command. This bit is reset when a STOP condition is detected. The LatticeMico8 microcontroller needs to monitor this bit so that it won't execute the received command until STOP is detected.               | Read   |
| [0]  | Bus Busy (BBS)                 | This bit indicates the status of the SMBus; it's set when a START condition is detected and reset when a STOP condition is detected.                                                                                                                                                                                         | Read   |
|      |                                | 0 = bus is idle                                                                                                                                                                                                                                                                                                              |        |
|      |                                | 1 = bus is busy                                                                                                                                                                                                                                                                                                              |        |

## Status Register 1 - STA1

This register contains the status of the PSI logic. All bits are read-only. The bits in this register can be cleared by the SRST. Some bits have additional specific reset conditions.

**Table 28: STA1 Register Bit Definition** 

| Bits | Field                                 | Description                                                                                                                                                                                                                              | Access |
|------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| [7]  | Read Command<br>(RD_CMD)              | This bit is set to 1 if the currently serviced command is a read command This is set when a START is received after the command code and reset at the following STOP condition.                                                          | Read   |
| [6]  | Read/ Write Word<br>Command (RW_WORD) | This bit is set if the currently serviced command is a write word or read word command This bit is assigned after the PMBus slave receives a command code and reset when a STOP is received or when the main state machine goes to IDLE. | Read   |
| [5]  | Read/ Write Byte<br>Command (RW_BYTE) | This bit is set if the currently serviced command is a write byte or read byte command This bit is assigned after the PMBus slave receives a command code and reset when a STOP is received or when the main state machine goes to IDLE. | Read   |

**Table 28: STA1 Register Bit Definition (Continued)** 

| Bits | Field                                    | Description                                                                                                                                                                                                                                | Access |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| [4]  | Receive / Send Byte<br>Command (RS_BYTE) | This bit is set if the currently serviced command is a send byte or receive byte command This bit is assigned after the PMBus slave receives a command code and reset when a STOP is received or when the main state machine goes to IDLE. | Read   |
| [3]  | TFIFO Full (TFUL)                        | This is the TXData FIFO's live full flag.  0 = not full  1 = full                                                                                                                                                                          | Read   |
| [2]  | RFIFO Full (RFUL)                        | This is the RXData FIFO's live full flag.  0 = not full  1 = full                                                                                                                                                                          | Read   |
| [1]  | TFIFO Empty (TMTY)                       | This is the TXData FIFO's live empty flag.  0 = not empty  1 = empty                                                                                                                                                                       | Read   |
| [0]  | RFIFO Empty (RMTY)                       | This is the RXData FIFO's live empty flag.  0 = not empty  1 = empty                                                                                                                                                                       | Read   |

## Capability Register - CAP

This register holds the capability information of the PMBus device. This register value can be returned as is when PMBus host issues a Capability Read command.

Table 29: Capability Register - CAP Bit Definition

| Bits  | Field                 | Description                                  | Access |
|-------|-----------------------|----------------------------------------------|--------|
| [7]   | Packet Error Checking | Packet Error Checking support.               | Read   |
|       |                       | 0 = Packet Error Checking not supported.     |        |
|       |                       | 1 = Packet Error Checking is supported.      |        |
| [6:5] | Maximum Bus Speed     | Maximum bus speed supported by the device.   | Read   |
|       |                       | 00 = Maximum supported bus speed is 100 kHz. |        |
|       |                       | 01 = Maximum supported bus speed is 400 kHz. |        |
|       |                       | 10 = Reserved.                               |        |
|       |                       | 11 = Reserved.                               |        |

Table 29: Capability Register - CAP Bit Definition (Continued)

| Bits | Field     | Description                                                                                             | Access |
|------|-----------|---------------------------------------------------------------------------------------------------------|--------|
| [4]  | SMBALERT# | SMBALERT support b y the device.                                                                        | Read   |
|      |           | 0 = The device does not have a SMBALERT# pin and<br>does not support the SMBus Alert Response protocol. |        |
|      |           | 1 = The device does have a SMBALERT# pin and does support the SMBus Alert Response protocol.            |        |
| 3:0] | Reserved  | Reserved                                                                                                | N/A    |

#### Error Status - ERRS

This register holds the detailed error status information from the PSI logic. All bits are read-only.

**Table 30: Error Status Register Bit Definition** 

| Bits | Field  | Description                                                                                                                                                                                                                                                                                                                                             | Access |  |  |
|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| [7]  | UCC    | Unsupported command code. This bit is set when the device receives a command code not supported by it. This bit is set as soon as an unsupported command is received and is reset at the following START condition.                                                                                                                                     | Read   |  |  |
| [6]  | IRB    | Improperly set read bit in the address byte. The slave address sent at the start of a transaction must have its Read/Write bit set to 0 for writing. This bit is set when the device receives its own slave address at the start of the transaction with the Read/Write bit set to 1 (for reading). This bit is reset at the following START condition. |        |  |  |
| [5]  | DEVBC  | <b>Device busy.</b> This bit is set when PSI logic is busy and cannot successfully receive or transmit data. This condition arises when (RFUL or TMTY) and clock stretching is not enabled or when PSI is stretching the clock waiting for the FIFO and meets a timeout. The bit is reset at the following START condition.                             | Read   |  |  |
| [4]  | RTMBY  | Host reading too many bytes. This bit is set when the PSI logic determines this condition and is reset at the following START condition.                                                                                                                                                                                                                |        |  |  |
| [3]  | STMBY  | <b>Host sending too many bytes.</b> This bit is set when the PSI logic determines this condition and is reset at the following START condition.                                                                                                                                                                                                         |        |  |  |
| [2]  | SRTFBY | Host sending or reading too few bytes. This bit is set when the PSI logic determines these conditions and is reset at the following START condition.                                                                                                                                                                                                    | Read   |  |  |

**Table 30: Error Status Register Bit Definition (Continued)** 

| Bits | Field | Description                                                                                                                                   | Access |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| [1]  | RTFBI | Host reading too few bits. This bit is set when the PSI logic determines this condition and is reset at the following START condition.        | Read   |
| [0]  | STFBI | <b>Host sending too few bits.</b> This bit is set when the PSI logic determines this condition and is reset at the following START condition. | Read   |

#### PAGE\_BYTE

PAGE BYTE is an 8-bit register that specifics the current page number.

#### **OPERATION**

OPERATION is an 8-bit register that specifics current operation information. Table 31 showing the corresponding operation and its value range. "Margin Low (Act on Fault)" means that if a under voltage/current/temperature is detected, the unit treats this as a fault and responds by a fault response command (or send a PMBALERT to the PMBus Master). Similarly, "Margin High (Act on Fault)" means if an over voltage/current/temperature is treated as a fault.

"Ignore Fault" means that any voltage/current/temperature fault is detected will be ignored and the unit ignores the condition and continues to operate.

**Table 31: Operation Register Definition** 

| Bit[5:4] | Bit[3:2]       | Bit[1:0]                      | Unit                                   | Margin                                                                                                                                                                                                                                                                                     |
|----------|----------------|-------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XX       | XX             | XX                            | Immediate Off                          | N/A                                                                                                                                                                                                                                                                                        |
| XX       | XX             | XX                            | Soft Off                               | N/A                                                                                                                                                                                                                                                                                        |
| 00       | XX             | XX                            | On                                     | Off                                                                                                                                                                                                                                                                                        |
| 01       | 01             | XX                            | On                                     | Margin Low (Ignore Fault)                                                                                                                                                                                                                                                                  |
| 01       | 10             | XX                            | On                                     | Margin Low (Act On Fault)                                                                                                                                                                                                                                                                  |
| 10       | 01             | XX                            | On                                     | Margin High (Ignore Fault)                                                                                                                                                                                                                                                                 |
| 10       | 10             | XX                            | On                                     | Margin High (Act On Fault)                                                                                                                                                                                                                                                                 |
|          | XX 00 01 01 10 | XX XX XX 00 XX 01 01 10 10 01 | XX | XX         XX         XX         Immediate Off           XX         XX         XX         Soft Off           00         XX         XX         On           01         01         XX         On           01         10         XX         On           10         01         XX         On |

#### **CLR FAULTS**

CLR\_FAULTS is an 8-bit register that specifics and controls the clean fault status and CML byte. When the LatticeMico PMBus Adapter acknowledges the LatticeMico8 microcontroller the clean fault command were delivered from PMBus host, the LatticeMico8 microcontroller will write 1 to CLR\_FAULTS register, then follow by 0 to trigger clean fault activity. Once the clear fault be trigger, the fault bits have been set in the LatticeMico8 microcontroller will be cleared and SMBAlert will be reset.

#### STATUS\_WORD\_0

STATUS\_WORD\_0 is an 8-bit register that specifics the current information with a summary of the most critical faults/warnings. This register also represents the information of STATUS\_BYTE.

Table 32: Status\_WORD\_0 Register Definition

| Bit | Status                                        |
|-----|-----------------------------------------------|
| 7   | Busy                                          |
| 6   | OFF                                           |
| 5   | VOUT_OV                                       |
| 4   | IOUT_OC                                       |
| 3   | VIN_UV                                        |
| 2   | TEMPERATURE                                   |
| 1   | CML (Handled by LatticeMico8 microcontroller) |
| 0   | NONE OF THE ABOVE                             |
|     |                                               |

## STATUS\_WORD\_1

STATUS\_WORD\_1 is an 8-bit register that specifics the other current information with a summary of the most critical faults/warnings.

Table 33: Status\_WORD\_1 Register Definition

| Bit | Status      |
|-----|-------------|
| 7   | VOUT        |
| 6   | IOUT/POUT   |
| 5   | MFR         |
| 4   | POWER_GOOD  |
| 3   | POWER_GOOD# |
| 2   | FANS        |

Table 33: Status\_WORD\_1 Register Definition

| Bit | Status  |
|-----|---------|
| 1   | OTHERS  |
| 0   | UNKNOWN |

#### STATUS\_VOUT

STATUS\_VOUT is an 8-bit register that specifics the currently VOUT-associated information with the content as follows.

Table 34: Status\_VOUT Register Definition

| Bit | Status                  |
|-----|-------------------------|
| 7   | VOUT_OV_Fault           |
| 6   | VOUT_OV_Warning         |
| 5   | VOUT_UV_Fault           |
| 4   | VOUT_UV_Warning         |
| 3   | VOUT_MAX_Warning        |
| 2   | TON MAX Fault           |
| 1   | TOff Max Warning        |
| 0   | Power On Tracking Error |
|     |                         |

## STATUS\_IOUT

STATUS\_IOUT is an 8-bit register that specifics the currently IOUT-associated information with the content as follows.

Table 35: Status\_IOUT Register Definition

| Bit | Status                       |
|-----|------------------------------|
| 7   | IOUT_OC_Fault                |
| 6   | IOUT_OC_Fault w/ LV Shutdown |
| 5   | IOUT_OC_Warning              |
| 4   | IOUT_UC_Fault                |
| 3   | Current Share Fault          |
| 2   | In Power Limiting Mode       |
| 1   | POUT OP Fault                |
| 0   | POUT OP Warning              |

# STATUS\_TEMPERATURE

STATUS\_TEMPERATURE is an 8-bit register that specifics the currently Temperature-associated information with the content as follows.

Table 36: Status\_Temperature Register Definition

| Bit | Status     |
|-----|------------|
| 7   | OT_Fault   |
| 6   | OT_Warning |
| 5   | UT_Warning |
| 4   | UT_Fault   |
| 3   | Reserved   |
| 2   | Reserved   |
| 1   | Reserved   |
| 0   | Reserved   |
|     |            |

# STATUS\_CML

STATUS\_CML is an 8-bit register that specifics the currently CML-associated information with the content as follows.

Table 37: Status\_CML Register Definition

| Bit | Status                      |  |  |
|-----|-----------------------------|--|--|
| 7   | Invalid/Unsupported Command |  |  |
| 6   | Invalid/Unsupported Data    |  |  |
| 5   | Packet Error Check Failed   |  |  |
| 4   | Memory Fault Detected       |  |  |
| 3   | Processor Fault Detected    |  |  |
| 2   | Reserved                    |  |  |
| 1   | Other Communication Fault   |  |  |
| 0   | Other Memory or Logic Fault |  |  |
|     |                             |  |  |

# STATUS\_OTHER

STATUS\_OTHER is an 8-bit register that specifics the currently other fault information with the content as follows.

Table 38: Status\_OTHER Register Definition

| Bit | Status                     |
|-----|----------------------------|
| 7   | Reserved                   |
| 6   | Reserved                   |
| 5   | Input A Fuse/Breaker Fault |
| 4   | Input B Fuse/Breaker Fault |
| 3   | Input A OR-ing DeviceFault |
| 2   | Input B OR-ing DeviceFault |
| 1   | Output OR-ing DeviceFault  |
| 0   | Reserved                   |
|     |                            |

# STATUS\_INPUT

STATUS\_INPUT is an 8-bit register that specifics the currently INPUT-associated information with the content as follows.

Table 39: Status\_INPUT Register Definition

| Bit | Status                         |
|-----|--------------------------------|
| 7   | VIN OV Fault                   |
| 6   | VIN OV Warning                 |
| 5   | VIN UV Fault                   |
| 4   | VIN UV Warning                 |
| 3   | Unit Off for Low Input Voltage |
| 2   | IN OC Fault                    |
| 1   | IN OC Warning                  |
| 0   | PIN OP Warning                 |
|     |                                |

# STATUS\_MFR

STATUS\_MFR is an 8-bit register that specifics the currently manufacture-associated information with the content as follows.

Table 40: Status\_MFR Register Definition

| Bit | Status               |  |  |  |
|-----|----------------------|--|--|--|
| 7   | Manufacturer Defined |  |  |  |
| 6   | Manufacturer Defined |  |  |  |
| 5   | Manufacturer Defined |  |  |  |
| 4   | Manufacturer Defined |  |  |  |
| 3   | Manufacturer Defined |  |  |  |
| 2   | Manufacturer Defined |  |  |  |
| 1   | Manufacturer Defined |  |  |  |
| 0   | Manufacturer Defined |  |  |  |
|     |                      |  |  |  |

# STATUS\_FAN\_12

STATUS\_FAN\_12 is an 8-bit register that specifics the currently fan12-associated information with the content as follows.

Table 41: Status\_FAN\_12 Register Definition

| Bit | Status               |  |
|-----|----------------------|--|
|     | - Cutuo              |  |
| 7   | Fan 1 Fault          |  |
| 6   | Fan 2 Fault          |  |
| 5   | Fan 1 Warning        |  |
| 4   | Fan 2 Warning        |  |
| 3   | Fan 1 Speed Override |  |
| 2   | Fan 2 Speed Override |  |
| 1   | Air Flow Fault       |  |
| 0   | Air Flow Warning     |  |
|     |                      |  |

## STATUS FAN 34

STATUS\_FAN\_34 is an 8-bit register that specifics the currently fan34-associated information with the content as follows.

Table 42: Status\_FAN\_34 Register Definition

| Bit | Status               |
|-----|----------------------|
| 7   | Fan 3 Fault          |
| 6   | Fan 4 Fault          |
| 5   | Fan 3 Warning        |
| 4   | Fan 4 Warning        |
| 3   | Fan 3 Speed Override |
| 2   | Fan 4 Speed Override |
| 1   | Reserved             |
| 0   | Reserved             |
|     |                      |

# INTLV\_ON\_OFF

INTLV\_ON\_OFF is an 8-bit register that specifics the current MFR\_Interleave\_ON/OFF information. The LatticeMico8 microcontroller can control interleave ON/OFF by write 1/0 to this register.

# ASC\_ADDR

ASC\_ADDR is an 8-bit register that specifics the current ASC0 slave address.

# Page\_xx\_Map

Page\_xx\_Map is a set of registers for Page 0x00 to Page 0x5F storing the page mapping for each VMON/IMON/TMON.

Table 43: Page\_xx\_Map Register Definition

| Bit   | Allowable Value | Description                                                    |
|-------|-----------------|----------------------------------------------------------------|
| [7]   | -               | Reserved                                                       |
| [6:4] | 0-7             | Specific which ASC is pointing to                              |
| [3:0] | 0-15            | Specific which the register is pointing to. (See table below.) |

Table 44: PAGE\_MAP Bit [t3:0] Definition

| Bit [3:0] | ASC<br>Register |
|-----------|-----------------|
| 0x0       | VMON1           |
| 0x1       | VMON2           |
| 0x2       | VMON3           |
| 0x3       | VMON4           |
| 0x4       | VMON5           |
| 0x5       | VMON6           |
| 0x6       | VMON7           |
| 0x7       | VMON8           |
| 0x8       | VMON9           |
| 0x9       | HVMON           |
| 0xA       | IMON            |
| 0xB       | HIMON           |
| 0xC       | TMON1           |
| 0xD       | TMON2           |
| 0xE       | TMONint         |
|           |                 |

#### For Example:

User set the ASC2 VMON3 to Page 0x00 Then the PAGE 00 MAP = 0x13

# LatticeMico8 Microcontroller Software Support

This section describes the LatticeMico8 microcontroller software support provided for the LatticeMico PMBus Adapter component.

# **Device Driver**

The PMBus Adapter device driver interacts directly with the PMBus Adapter instance. This section describes the limitations, type definitions, structure, and functions of the PMBus Adapter device driver.

## **Type Definitions**

This section describes the type definitions for the PMBus Adapter device context structure. This structure, shown in Figure 3, contains the PMBus Adapter component instance-specific information and is dynamically generated in the DDStructs.h header file. This information is largely filled in by the managed build process by extracting the PMBus Adapter component-specific information from the platform specification file. As part of the managed build process, designers can choose to control the size of the generated structure, and hence the software executable, by selectively enabling some of the elements in this structure via C preprocessor macro definitions. These C preprocessor macro definitions are explained later in this document. You should not manipulate the members directly, because this structure is for exclusive use by the device driver. Table 42 describes the parameters of the PMBus Adapter device context structure shown in Figure 3.

#### **Device Context Structure**

Figure 3 shows the PMBus Adapter device context structure.

Figure 3: PMBus Adapter Device Context Structure

```
struct st_MicoPMBUSCtx_t {
    const char * name;
    size_t psi_base;
    size_t lmi_base;
    unsigned char current_page;
    unsigned char current_mon;
    unsigned char current_asc_addr;
    unsigned char write_protect;
    unsigned char operation;
    unsigned char cml_status;
    void * p_efb;
    void * p_mutex;
    unsigned char i2c_mutex;
}
```

Table 45 describes the PMBus Adapter device context parameters.

**Table 45: PMBus Adapter Device Context Parameters** 

| Parameter        | Data Type     | Description                                                   |  |
|------------------|---------------|---------------------------------------------------------------|--|
| name             | const char*   | PMBus Adapter instance name (entered in MSB)                  |  |
| psi_base         | size_t        | MSB-assigned PSI base address for this instance               |  |
| lmi_base         | size_t        | MSB-assigned LMI base address for this instance               |  |
| current_page     | unsigned char | This value specific the current PAGE number                   |  |
| current_mon      | unsigned char | This value specific which VMON/IMON/TMON is pointed currently |  |
| current_asc_addr | unsigned char | This value specific current ASC slave address                 |  |
| write_protect    | unsigned char | This value specific current write protect setting             |  |
| operation        | unsigned char | This value specific current operation setting                 |  |
|                  |               |                                                               |  |

**Table 45: PMBus Adapter Device Context Parameters** 

| Parameter  | Data Type     | Description                                                                           |  |
|------------|---------------|---------------------------------------------------------------------------------------|--|
| cml_status | unsigned char | This value specific current CML_status information                                    |  |
| p_efb      | void *        | This value points to the EFB instance used by PMBus Adapter                           |  |
| p_mutex    | void *        | This value points to the Mutex instance used by PMBus Adapter                         |  |
| i2c_mutex  | unsigned char | This value specific to the Mutex owner ID for I <sup>2</sup> C communication protocol |  |

## **C Preprocessor Macro Definitions**

This section describes the C preprocessor macro definitions that are available to the software developer. There are two types of macro definitions: 'object-like' and 'function-like'.

The 'object-like' macro definitions do not take any arguments and are used to control the size of the generated application executable. There are three ways an 'object-like' macro definition can be used by the software developer.

- Manually adding the -D<macro name> option to the compiler's command line in the application's 'Build Properties'. Refer to the *LatticeMico8 Developer User Guide* for more information on how to manually add the macro definition in the application's 'Build Properties' GUI.
- Automatically adding the -D<macro name> option to the compiler's
  command-line in the application's 'Build Properties' by enabling the
  'check-box' associated with the macro definition. Refer to the LatticeMico8
  Developer User Guide for more information on how to set up the check/
  uncheck the macro definitions in the application's 'Build Properties' GUI.
- 3. Manually adding the macro definition to the C code using the following syntax:

#define <macro name>

It is recommended that the developer use option 1 or 2.

\_\_MICOFL\_NO\_SPI\_INIT\_VALIDATION\_\_

This preprocessor macro definition disables code and data structures within the device driver that disable the LatticeMico8 EFB SPI module in the software driver and application. In order words, LatticeMico8 assumes the connected SPI Flash is NOT shared with other SPI Master, and does not check whether the SPI is occupied by other SPI Master or not during the power cycle. It is not defined by default.

\_\_MICOFL\_USER\_IRQ\_HANDLER\_\_

This preprocessor macro definition disables code and data structures within the device driver that allow the user to define the custom interrupt routine, the default routine will be disabled. It is not defined by default.

Table 46: C Preprocessor Function-like Macros For PMBus Adapter

| Macro Name                  | Second Argument to Macro / Third Argument to Macro (if exist.            | Description                                                                       |
|-----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| PSI                         |                                                                          |                                                                                   |
| MICO_PMBUS_PSI_READ_RDAT    | The 8-bit value reads from the PSI RX Data FIFO register                 | This macro reads a character from the PSI RX Data FIFO register                   |
| MICO_PMBUS_PSI_READ_CTL0    | The 8-bit value reads from the PSI Control Register 0.                   | This macro reads a character from the PSI Control register 0                      |
| MICO_PMBUS_PSI_READ_CTL1    | The 8-bit value reads from the PSI Control Register 1.                   | This macro reads a character from the PSI Control register 1                      |
| MICO_PMBUS_PSI_READ_STA0    | The 8-bit value reads from the PSI Status Register 0.                    | This macro reads a character from the PSI Status register 0                       |
| MICO_PMBUS_PSI_READ_STA1    | The 8-bit value reads from the PSI Status Register 1.                    | This macro reads a character from the PSI Status register 1                       |
| MICO_PMBUS_PSI_READ_CAP     | The 8-bit value reads from the PSI Capability register.                  | This macro reads a character from the PSI Capability register                     |
| MICO_PMBUS_PSI_READ_ERRS    | The 8-bit value reads from the PSI Error Status register.                | This macro reads a character from the PSI Error Status register                   |
| MICO_PMBUS_PSI_WRITE_TDAT   | The 8-bit value writes to the PSI TX Data FIFO.                          | This macro writes a character to the PSI TX Data FIFO register.                   |
| MICO_PMBUS_PSI_WRITE_CTL0   | The 8-bit value writes to the PSI Control Register 0.                    | This macro writes a character to the PSI Control Register 0.                      |
| MICO_PMBUS_PSI_WRITE_CTL1   | The 8-bit value writes to the PSI Control Register 1.                    | This macro writes a character to the PSI Control Register 1.                      |
| LMI                         |                                                                          |                                                                                   |
| MICO_LMI_READ_REGISTER      | The 8-bit value reads from the LMI register/address.                     | This macro reads a character from the LMI register.                               |
| MICO_LMI_READ_STATUS_BYTE   | The 8-bit value reads from the LMI Status_Byte / Status_Word_0 register. | This macro reads a character from the LMI STATUS BYTE/STATUS_WORDSworld register. |
| MICO_LMI_READ_STATUS_WORD   | The 8-bit value reads from the LMI STATUS_WORD_1 register.               | This macro reads a character from the LMI STATUS _WORD_1 register.                |
| MICO_LMI_READ_ASC_BASE_ADDR | The 8-bit value reads from the LMI ASC_ADDR register.                    | This macro reads a character from the LMI ASC_ADDR register.                      |
| MICO_LMI_WRITE_REGISTER     | The 8-bit value writes to LMI register / address offset.                 | This macro writes a character to the LMI register with a specific address offset. |

Table 46: C Preprocessor Function-like Macros For PMBus Adapter (Continued)

| Macro Name                  | Second Argument to Macro / Third Argument to Macro (if exist.    | Description                                                                                                                   |
|-----------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| MICO_LMI_WRITE_PAGE         | The 8-bit value writes to LMI PAGE register.                     | This macro writes a character to the LMI PAGE register.                                                                       |
| MICO_LMI_WRITE_OPERATION    | The 8-bit value writes to LMI OPERATION register.                | This macro writes a character to LMI OPERATION register.                                                                      |
| MICO_LMI_WRITE_CLEAR_FAULTS | None                                                             | This macro writes a character value 1 to the LMI CLEAR FAULT register, then write a character value 0 to this register again. |
| MICO_LMI_READ_PAGE_MAP      | The 8-bit value read from LMI PAGE_MAP register / address offset | This macro read from LMI PAGE_MAP register with a specific address offset.                                                    |

Note: The first argument to the macro is the PMBus Adapter PSI or LMI address.

#### **Functions**

This section describes the implemented device-driver-specific functions.

#### **MicoPMBUSInit Function**

```
void MicoPMBUSInit (MicoPMBUSCtx t *ctx);
```

This is the PMBus Adapter initialization function.

Table 47 describes the parameter in the MicoPMBUSInit function syntax.

**Table 47: MicoPMBUSInit Function Parameter** 

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBUS Adapter instance. |

#### MicoPMBUSRegisterEFBnMutex Function

```
void MicoPMBUSRegisterEFBnMutex (MicoPMBUSCtx_t *ctx,
    MicoEFBCtx_t *p_efb,
    MicoMutexCtx_t *p_mutex,
    unsigned char i2c_mutex_id);
```

This function registers an EFB and Mutex instance into the PMBus Adapter instance. This EFB and Mutex will be used for the communication between PMBus Adapter control and ASCs.

Table 48 describes the parameter in the MicoPMBUSRegisterEFB function syntax.

Table 48: MicoPMBUSRegisterEFBnMutex Function Parameter

| Parameter      | Description                                                                              |
|----------------|------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx_t structure representing a valid PMBUS Adapter instance. |
| MicoEFBCtx_t   | Pointer to a valid MicoEFBCtx_t structure representing a valid EFB instance.             |
| MicoMutexCtx_t | Pointer to a valid MicoMutexCtx_t structure representing a valid Mutex instance.         |
| unsigned char  | Mutex owner ID for I <sup>2</sup> C communication protocol.                              |

#### MicoPMBUS\_ASCStart Function

This function starts the initial communication connection between the LatticeMico8 microcontroller and ASC through EFB I<sup>2</sup>C. Error code will return when the write process fails.

Table 49 describes the parameter in the MicoPMBUS\_ASCStart function syntax.

Table 49: MicoPMBUS\_ASCStart Function Parameter

| Parameter     | Description                                                                         |
|---------------|-------------------------------------------------------------------------------------|
| MicoEFBCtx_t  | Pointer to a valid MicoEFBCtx _t structure representing a valid EFB instance.       |
| unsigned char | This value identifies the communication is write or read I <sup>2</sup> C protocol. |
| unsigned char | This value identifies the slaver address of ASC.                                    |
| unsigned char | This value identifies if the communication need to insert restart/ start bit.       |

Table 50 describes the values returned by the MicoPMBUS\_ASCStart function.

Table 50: Values Returned by the MicoPMBUS\_ASCStart Function

| Return Value | Description                             |
|--------------|-----------------------------------------|
| 0            | successful writes                       |
| -1           | failed to receive ACK during addressing |

Table 50: Values Returned by the MicoPMBUS\_ASCStart Function

| Return Value | Description                             |
|--------------|-----------------------------------------|
| -2           | failed to receive ACK when writing data |
| -3           | arbitration lost during the operation   |

#### MicoPMBUS\_WriteASC Function

This function initiates a write I<sup>2</sup>C transaction protocol through EFB primary I<sup>2</sup>C channel. Error code will return when the write process is failed.

Table 51 describes the parameter in the MicoPMBUS\_WriteASC function syntax.

Table 51: MicoPMBUS\_WriteASC Function Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |
| unsigned char  | This value identifies the Number of bytes to be transferred. (min 1 and max 256)          |
| unsigned char  | This value identifies the Buffer containing the data to be transferred.                   |
| unsigned char  | This Value identifies if Insert Stop bit at end of data transfer.                         |

Table 52 describes the values returned by the MicoPMBUS\_WriteASC function. Error code will return when the write process is failed.

Table 52: Values Returned by the MicoPMBUS\_WriteASC Function

| Return Value | Description       |
|--------------|-------------------|
| 0            | Successful writes |
| -1           | Failed to write   |

## MicoPMBUS\_ReadASC Function

This function initiates a read I<sup>2</sup>C transaction protocol through EFB primary I<sup>2</sup>C channel. Error code will return when the write process is failed.

Table 53 describes the parameter in the MicoPMBUS\_ReadASC function syntax.

Table 53: MicoPMBUS\_ReadASC Function Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |
| unsigned char  | This value identifies the Number of bytes to be transferred. (min 1 and max 256)          |
| unsigned char  | This value identifies the Buffer containing the data to be transferred.                   |

Table 54 describes the values returned by the MicoPMBUS\_ReadASC function.

Table 54: Values Returned by the MicoPMBUS\_ReadASC Function

| Return Value | Description      |
|--------------|------------------|
| 0            | Successful reads |
| -1           | Failed to read   |

#### MicoPMBUS\_TxData Function

This function provide the communication channel for the LatticeMico8 microcontroller to write data to Tx FIFO of PMBus Adapter

Table 55 describes the parameter in the MicoPMBUS\_TxData function syntax.

Table 55: MicoPMBUS\_TxData Function Parameter

| Parameter      | Description                                                                      |
|----------------|----------------------------------------------------------------------------------|
| Size_t         | PSI port base address of PMBus Adapter.                                          |
| unsigned char* | This value identifies the Buffer containing the data to be transferred.          |
| unsigned char  | This value identifies the Number of bytes to be transferred. (min 0 and max 255) |

#### MicoPMBUS\_RxData Function

This function provide the communication channel for the LatticeMico8 microcontroller to read data from Rx FIFO of PMBus Adapter

Table 56 describes the parameter in the MicoPMBUS\_TxData function syntax.

Table 56: MicoPMBUS\_RxData Function Parameter

| Parameter      | Description                                                                   |
|----------------|-------------------------------------------------------------------------------|
| Size_t         | PSI port base address of PMBus Adapter.                                       |
| unsigned char* | This value identifies the Buffer containing the data to be transferred.       |
| unsigned char  | This value identifies the Number of bytes to be received. (min 0 and max 255) |

#### MicoPMBUS\_PageChecking Function

unsigned char MicoPMBUS\_PageChecking(MicoPMBUSCtx\_t \*ctx, unsigned char current\_cmd);

This function checks weather Read/Write fault limit and Read measurement command match to the current PAGE number. Current command has to match the associated type of monitor of current page. Error code will return when the checking result is failed.

Table 57 describes the parameter in the MicoPMBUS\_PageChecking function syntax.

Table 57: MicoPMBUS PageChecking Parameter

| Parameter      | Description                                                                                  |
|----------------|----------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | PSI port base address of PMBus Adapter.                                                      |
| unsigned char  | This value identifies the current PMBus command handling by the LatticeMico8 microcontroller |

Table 58 describes the values returned by the MicoPMBUS\_PageChecking function.

Table 58: Values Returned by the MicoPMBUS\_PageChecking Function

| Return Value | Description                                                      |
|--------------|------------------------------------------------------------------|
| 0x00         | Page checking is Successful                                      |
| 0x10         | Current PMBus command is not matching to the current page number |

#### MicoPMBUS\_ReadMeasurement Function

unsigned char MicoPMBUS\_ReadMeasurement(MicoPMBUSCtx\_t \*ctx, unsigned int \* p\_read\_data);

This function read the VMON/TMON/IMON measurement value from the ASC base on current page number. Error code will return when the read process is failed. It is user responsibility to modify the following variable before calling this function:

1) ctx->current\_page: The Current PMBus Page

2) ctx->current\_asc: The ASC to be read

3) ctx->current\_mon: The Monitor (ASC register) to be read

Table 59 describes the parameter in the MicoPMBUS\_ReadMeasurement function syntax.

Table 59: MicoPMBUS\_ReadMeasurement Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |
| unsigned int * | This value identifies the buffer containing read data from ASC.                           |

Table 60 describes the values returned by the MicoPMBUS\_ReadMeasurement function.

Table 60: Values Returned by the MicoPMBUS\_ReadMeasurement Function

| Return Value | Description                                   |
|--------------|-----------------------------------------------|
| 0x00         | Successful reading measurement value from ASC |

#### MicoPMBUS\_WriteThreshold Function

```
unsigned char MicoPMBUS_WriteThreshold (MicoPMBUSCtx_t *ctx,
unsigned int current_data,
unsigned char setting);
```

This function writes the Threshold Value into corresponding VMON/IMON/TMON of ASC base on current page number. Error code will return when the write process is failed. It is user responsibility to modify the following variable before calling this function:

1) ctx->current\_page: The Current PMBus Page

2) ctx->current\_asc: The ASC to be written

3) ctx->current mon: The Monitor (ASC register) to be written

Table 61 describes the parameter in the MicoPMBUS\_WriteThreshold function syntax.

Table 61: MicoPMBUS\_WriteThreshold Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |
| unsigned int   | This value identifies the Threshold Data to be written into ASC Register.                 |
| unsigned char  | This value identifies the Voltage/Current/Temperature Threshold Setting.                  |
|                | 0: Over Voltage/Current/Temperature Threshold Setting                                     |
|                | 1: Under Voltage/Current/Temperature Threshold Setting                                    |

Table 62 describes the values returned by the MicoPMBUS\_WriteThreshold function.

Table 62: Values Returned by the MicoPMBUS\_WriteThreshold Function

| Return Value | Description                               |
|--------------|-------------------------------------------|
| 0x00         | Successful writing threshold value to ASC |
| 0x40         | Invalid input data                        |

#### MicoPMBUS\_WPCheking Function

This function checks the write protecting setting for Write PMBus protocol type command. Error code will return when the result is failed. It is user responsibility to modify the following variable before calling this function:

1) ctx->write\_protect: Write Protect setting

Disable All (0x80)

Disable Most (0x40)

Enable All (0x00)

Table 63 describes the parameter in the MicoPMBUS\_WPChecking function syntax.

Table 63: MicoPMBUS\_WPCheking Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |
| unsigned char  | Current PMBus command handling by the LatticeMico8 microcontroller.                       |

Table 64 describes the values returned by the MicoPMBUS\_WPCheckingfunction.

Table 64: Values Returned by the MicoPMBUS\_WriteThreshold Function

| Return Value | Description                               |
|--------------|-------------------------------------------|
| 0x00         | Successful writing threshold value to ASC |
| 0x80         | Invalid PMBus Command                     |

#### MicoPMBUS\_Execute Function

unsigned char PMBUS Execute (MicoPMBUSCtx t \*ctx);

This function provide PMBus command decoding and executing. Error code will return when the process is failed. It is user responsibility to modify the following variable before calling this function:

- 1) ctx->write\_protect: Write Protect setting
- 2) ctx->current\_page: The Current PMBus Page
- 3) ctx->current asc: The ASC to be read
- 4) ctx->current\_mon: The Monitor (ASC register) to be read

Table 65 describes the parameter in the MicoPMBUS\_PMBUS\_Execute function syntax..

Table 65: MicoPMBUS\_ Execute Parameter

| Parameter      | Description                                                                               |
|----------------|-------------------------------------------------------------------------------------------|
| MicoPMBUSCtx_t | Pointer to a valid MicoPMBUSCtx _t structure representing a valid PMBus Adapter instance. |

Table 66 describes the values returned by the PMBUS\_Execute function.

Table 66: Values Returned by the MicoPMBUS\_ Execute Function

| Return Value | Description                               |
|--------------|-------------------------------------------|
| 0x00         | Successful writing threshold value to ASC |
| 0x01         | Other memory fault                        |
| 0x02         | Other communication fault                 |
| 0x08         | Process fault                             |
| 0x10         | Memory fault                              |
| 0x40         | Invalid PMBus Data                        |
| 0x80         | Invalid PMBus Command                     |

# Software Usage Example

This section provides an example of using the PMBus Adapter. The example is shown in Figure 4 and assumes the presence of a PMBus Adapter component named "pmb", an EFB component named "efb" and a Mutex component named "mutex".

#### Figure 4: PMBus Adapter Software Example

```
#include "DDStructs.h"
#include "MicoPMBUS.h"
#include "MicoEFB.h"
#include "MicoMUTEX.h"
int main(void){
      MicoEFBCtx t * efb = &efb machxo2 efb;
      MicoPMBUSCtx t * pmb = &pmbus pmbus;
      MicoMutexCtx t *mutex = &mutex mutex;
      unsigned char i2c mutex id = 0x00;
      MicoPMBUSInit(pmbus);
      MicoPMBUSRegisterEFBnMutex (pmb, efb, mutex,
i2c_mutex_id);
      unsigned char status;
      unsigned char cml_status = pmb->cml_status;
      size t psi address = pmb->psi base;
        status = MicoPMBUS Execute(pmb);
        if (status != MICO PMBUS RETURN SUCESSFULLY) {
              pmb->cml_status = status | cml_status;
              MICO PMBUS PSI WRITE CTL1 (psi address,
MICO PMBUS PSI CTL1 ALRT);
      } while (1);
      return 0;
```

# **Revision History**

| Component Version | Description      |
|-------------------|------------------|
| 1.0               | Initial release. |

## **Trademarks**

All Lattice trademarks are as listed at <a href="https://www.latticesemi.com/legal">www.latticesemi.com/legal</a>. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners.