
Copyright © December 2012 Lattice Semiconductor Corporation.

LatticeMico Parallel Flash
Controller

The LatticeMico parallel flash memory controller is a slave device for the
WISHBONE architecture. It is used to interface with a parallel flash device
that is compliant with the common flash memory interface (CFI).

Version
This document describes the 3.2 of the LatticeMico parallel flash controller.

Features
The LatticeMico parallel flash memory controller includes the following
features:

 WISHBONE B.3 interface

 Configurable data bus width up to 32 bits

 Configurable address bus width up to 32 bits

 Configurable read latency

 Configurable write latency

 Configurable extra flash signals: byte, write protect, reset

For additional details about the WISHBONE bus, refer to the LatticeMico32
Processor Reference Manual or LatticeMico8 Processor Reference Manual.

Functional Description

2 LatticeMico Parallel Flash Controller

Functional Description
The asynchronous flash memory controller translates the synchronous
WISHBONE bus signals into control strobes used to access an asynchronous
flash PROM. The controller decodes the WISHBONE cycle type and
generates asynchronous chip selects, byte enables, read enables, and write
enables, as required. The controller interacts with the WISHBONE master
port, using classic-mode registered-feedback bus cycle control strobes. For
further information on the WISHBONE registered feedback bus cycle, refer to
WISHBONE Specifications, Version B3, Chapter 4.

The memory controller has a configurable address bus and data bus width.
The address bus can be up to 32 bits long. The data bus can be configured for
8-, 16-, or 32-bit widths. You can instantiate multiple flash controllers to permit
access to memories of varying address and data bus sizes.

The controller also provides the ability to statically assert reset, write protect,
and byte/word inputs for flash PROM devices with these controls.

When in operation, the controller monitors the address bus, STB_I, and
CYC_I to determine when a memory transaction is in progress. The address,
STB_I, and CYC_I control signals are asserted or deasserted at the CLK_I
rising edge. CLK_I may be transitioning at a rate much too high for the flash
device to accept, so the memory controller must control and hold off the
ACK_O control signal that indicates that the WISHBONE bus transaction is
complete.

Since flash devices do not have a cycle acknowledge signal, the memory
controller provides one. The ACK_O signal is controlled with a fixed read/write
latency value. The read latency is independent of the write latency. Each
increment in latency value represents an increase in the length of the bus
transaction by one CLK_I time period. The read/write latency permits the
controller to work with slower flash devices. The controller counts CLK_I
cycles until the read/write latency value has been reached. When the latency
period expires, ACK_O is asserted, and the WISHBONE cycle is terminated.

The memory controller does not implement dynamic or region-based latency.
The read and write latency values are fixed during module generation. If
different regions of the asynchronous memory space require different read/
write latency values, you must generate one flash controller for each region. If
the latency values cannot be set high enough to permit the flash to operate, it
is necessary to obtain faster flash, reduce the CLK_I time period, or modify
the HDL source for the controller.

Figure 1 shows how an application uses the flash memory controller.

Configuration

LatticeMico Parallel Flash Controller 3

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico parallel flash memory
controller. The parallel flash shares the data and address buses with the on-
board SRAM.

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico
parallel flash controller through the Mico System Builder (MSB) interface.

Figure 1: Parallel Flash Usage

W
I
S
H
B
O
N
E

b
u
s

Control signals

DATA_O

DATA_I
External
memory

Parallel flash
memory

controller

SRAM_addr[sram_addr_width-1:0]

SRAM_DATA[sram_addr_width-1:0]

SRAM_CSN

SRAM_WEN

SRAM_OEN

SRAM_BYTEN

SRAM_WPN

SRAM_RSTN

Table 1: Parallel Flash Controller UI Parameters

Dialog Box Option Description Allowable
Values

Default
Values

Instance Name Specifies the name of the parallel flash controller
instance.

Alphanumeric
and underscores

flash

Base Address Specifies the base address for the device. The minimum
boundary alignment is 0x4.

0X00000000–
0XFFFFFFFF

0X00000000

Size Specifies the size of the external memory, in bytes. 0 – 4294967296 1048576

Share External Ports
(for HPE_mini Board)

Enables a common address and data bus for flash and
SRAM components created for the platform.

When this option is selected, each flash and SRAM
component adds its instance name to the address or data
bus port name.

1, 0 1

Configuration

4 LatticeMico Parallel Flash Controller

Enable Extra Flash
Signals

Enables the extra flash signals Byte, Write Protect, and
Reset. Selecting this option allows the memory controller
to drive these controls to a static logic level. These
signals should all be set to Hold High for the LatticeMico
System flash. If you are using a flash other than the one
provided with LatticeMico System, consult the flash data
sheet.

1, 0 1

Byte signal Statically asserts an output that can be connected to a
flash PROM’s byte/word data bus control. Setting this
control to 1 drives the output to Voh. This signal should be
set to 1 (FLASH_BYTE = 1) for the LatticeMico System
flash.

1, 0 1

Write Protect signal Statically asserts an output that can be connected to a
flash PROM’s write protect control. Setting this control to
1 drives the output to Voh. This signal should be set to 1
(FLASH_WP = 1) for the LatticeMico System flash.

1, 0 1

Reset signal Statically asserts an output that can be connected to a
flash PROM’s reset control. Setting this control to 1 drives
the output to Voh. This signal should be set to 1
(FLASH_RST = 1) for the LatticeMico System flash.

1, 0 1

Settings

Read Latency Specifies the latency for reading the asynchronous
memory, in clock cycles. The OE strobe is increased by
one CLK_I cycle for each increment in the latency value.

1 – 15 7

Write Latency Specifies the latency for writing the asynchronous
memory, in clock cycles. The WE strobe is increased one
CLK_I period for each increment in the latency value.

1 – 15 7

FLASH Address Width Specifies the width of the flash address, in bits. 1 – 32 25

Table 1: Parallel Flash Controller UI Parameters (Continued)

Dialog Box Option Description Allowable
Values

Default
Values

Configuration

LatticeMico Parallel Flash Controller 5

HDL Parameters
Table 2 lists the parameters that appear in the HDL.

FLASH Data Width Specifies the width of the data bus of flash memory, in
bits.

1 – 32 32

FLASH Byte Enable
Width

Specifies the width of the byte enable, or control strobe,
for each of the 8-bit pieces of logic that constitute the data
bus in the asynchronous RAM. The byte enable indicates
that the LatticeMico32 microprocessor is accessing the 8-
bit sub-element of the larger combined data bus.

The SRAM Byte Enable width must be assigned a value
that is the data bus width modulo 8. For example, if the
default value of the data bus width is 32, the SRAM BE
width should be 4. Legal values for this field are 4, 2, and
1.

The byte enables (BE[n], n= 3..0) are activated as follows:

32-bit bus:

D31-24/BE3

D23-16/BE2

D15-8/BE1

D7-0/BE0

16-bit bus:

D15-8/BE1

D7-0/BE0

8-bit bus:

D7-0/BE0

Therefore, you use SRAM_BE_WIDTH to define the
upper limit of the Verilog bus:

output [SRAM_BE_WIDTH-1:0] sram_be;

4, 2, 1 4

Table 1: Parallel Flash Controller UI Parameters (Continued)

Dialog Box Option Description Allowable
Values

Default
Values

Table 2: Parallel Flash Controller HDL Parameters

Parameter Name Description Allowable Values

SRAM_DATA_WIDTH Defines the width of data bus of the memory 8, 16, 32

SRAM_ADDR_WIDTH Defines the width of the address 1 – 32

READ_LATENCY Defines the latency for reading the flash 1 – 15

WRITE_LATENCY Defines the latency for writing the flash 1 – 15

FLASH_BYTEN Selects 8-bit or 16-bit mode 1, 0

Configuration

6 LatticeMico Parallel Flash Controller

I/O Ports
Table 3 describes the input and output ports of the LatticeMico parallel flash
controller. The parallel flash controller shares the data and address buses
with the on-board SRAM. The WEN and OEN common control signals are
also shared, although each of these types of memory has its own chip select.

FLASH_WPN Hardware write protect pin, active low 1, 0

FLASH_RSTN Hardware reset pin, active low 1, 0

Table 2: Parallel Flash Controller HDL Parameters (Continued)

Parameter Name Description Allowable Values

Table 3: Parallel Flash Controller I/O Ports

I/O Port Active Direction Initial State Description Correlated
Dialog Box
Option

WISHBONE Side signals

CLK_I — I X System clock signal

RST_I High I X System reset signal

CTI_I — I X Cycle-type identifier signal.

BTE_I — I X Burst-type extension signal
(only linear incremental burst
is supported)

ADR_I [31:0] — I X WISHBONE address bus
signal

DAT_I [31:0] — I X WISHBONE data bus input
signal

SEL_I [3:0] High I X Select output array signal,
one bit for every byte

WE_I High I X Write enable signal

STB_I High I X Strobe signal indicating a
valid data transfer

CYC_I High I X Signal indicating a valid bus
cycle in progress

ACK_O High O 0 Signal indicating the normal
termination of a bus

DAT_O — O 0 WISHBONE data bus output

Asynchronous Memory Interface Signals

SRAM_addr [sram_
addr_width-1:0]

— O 0 Flash address output signal Flash Data
Width

Timing Diagrams

LatticeMico Parallel Flash Controller 7

Timing Diagrams
The timing diagrams featured in Figure 2 and Figure 3 show the timing of the
parallel flash controller’s WISHBONE and external signals.

Parallel Flash Read Logic
A read memory transaction begins with CYC_I and STB_I being asserted
following a CLK_I rising edge, as shown in CLK_I Cycle 2 in Figure 2. The
memory controller passes the address asserted on ADR_I to the
SRAM_ADDR bus when CYC_I and STB_I are asserted. The memory
controller counts CLK_I cycles until the read latency counter reaches its
terminal count, causing the ACK_O strobe to be asserted. This is shown in
clock cycle 3 and 6 in Figure 2.

The memory controller latches the data driven by the FLASH and drives it
onto the DAT_O bus, starting on the CLK_I rising edge on which ACK_O is
asserted. DAT_O is therefore valid in CLK_I Cycle 4, as shown in Figure 2.

SRAM_DATA
[sram_data_width-1:0]

— Bi 0 Flash data input/output signal Flash Address
Width

SRAM_CSN Low O 0 Flash chip select signal

SRAM_WEN Low O 0 Flash write enable signal

SRAM_OEN Low O 0 Flash output enable signal

Flash Interface Signals

SRAM_BYTEN O 0 Flash byte/word select Byte signal

SRAM_WPN O 0 Flash write protect enable
signal

Write protect
signal

SRAM_RSTN O 0 Flash reset enable signal Reset signal

Table 3: Parallel Flash Controller I/O Ports (Continued)

I/O Port Active Direction Initial State Description Correlated
Dialog Box
Option

Timing Diagrams

8 LatticeMico Parallel Flash Controller

Parallel Write Logic
A write memory transaction begins with CYC_I and STB_I being asserted
following a CLK_I rising edge, as shown in CLK_I Cycle 2 in Figure 3. The
memory controller passes the address asserted on ADR_I to the RAM_ADDR
bus when CYC_I and STB_I are asserted. The SRAM_DATA bus follows the
DAT_I bus.

Once the WISHBONE cycle has started (that is, when CYC_I and STB_I are
asserted) and the WE_I signal indicates a write cycle is in progress, the
controller can assert the RAM_WEN strobe. The soonest that RAM_WEN
can be asserted is in cycle 3.

Figure 2: Parallel Flash Read

1 2 3 4 5 6 7 8

CLK_I

CTI_I() 000

ADR_I() ADR0

SEL_I() Valid

STB_I

CYC_I

ACK_O

WE_I

ADR0

SRAM_OEN

SRAM_CSN

SRAM_ADDR()

ValidSRAM_BYTEN

DATA0SRAM_DATA

DATA0DAT_O

DATA1

DATA1

ADR1

ADR1

Read Latency=1 Read Latency=2

Timing Diagrams

LatticeMico Parallel Flash Controller 9

The memory controller counts CLK_I cycles until the write latency counter
reaches its terminal count, when the ACK_O strobe is asserted. The
SRAM_WEN strobe is deasserted at the same time that ACK_O is asserted,
as shown in clock cycle 4 and 7 in Figure 3.

The SRAM memory latches the data driven by the LatticeMico32
microprocessor controller at the rising edge of the SRAM_WEN strobe. The
rising edge of SRAM_WEN signals the completion of a single SRAM memory
write transaction.

The asynchronous SRAM controller never uses the chip select to terminate a
memory transaction.

Figure 3: Parallel Flash Write

1 2 3 4 5 6 7 8 9

CLK_I

CTI_I() 000

ADR_I() ADR0

SEL_I() Valid

STB_I

CYC_I

ACK_O

WE_I

ADR0

SRAM_WEN

SRAM_CSN

AM_ADDR()

RAM_BYTEN

DATA1SRAM_DATA

DATA0DAT_I DATA1

ADR1

ADR1

DATA0

Write Latency=2

DATA0

Write Latency=2

EBR Resource Utilization

10 LatticeMico Parallel Flash Controller

EBR Resource Utilization
The LatticeMico parallel flash controller uses no EBRs.

Software Support
Software support for the LatticeMico parallel flash controller is relevant only if
the component interfaces to a CFI-compliant parallel flash device.

For a read operation, this component behaves as a memory device, and no
explicit driver support required. However, modifying the contents of the flash
component requires a software implementation for erasing and writing
locations within it. A set of SW services are provided with the component to
assist with erasing and writing flash devices.

For detailed information on the CFI flash service, refer to the LatticeMico32
Software Developer User Guide.

Device Driver
This section describes the type definitions for the parallel flash controller
device context structure.

This structure, shown in shown in Figure 4, contains parallel flash controller
component-specific information and is dynamically generated in the
DDStructs.h header file. This information is largely filled in by the MSB
managed build process, which extracts the parallel flash controller
component-specific information from the platform definition file. The members
should not be manipulated directly, because this structure is for exclusive use
by the device driver.

Figure 4: Parallel Flash Controller Device Context Structure

typedef struct st_CFIFlashDevCtx_t {
const char* name;
unsigned int base;
unsigned int byteSize;
DeviceReg_t lookupReg;
unsigned int end;
void * cfgFnTbl;
CFIInfo_t CFIInfo;
void * prev;
void * next;
} CFIFlashDevCtx_t;

Software Support

LatticeMico Parallel Flash Controller 11

Table 4 describes the parameters of the parallel flash memory device context
structure shown in Figure 4.

Functions
This section describes the implemented device-driver-specific functions.

LatticeMico32InitCFIFlashDriver Function
void LatticeMico32InitCFIFlashDriver (struct
st_CFIFlashDevCtx_t*);

Table 4: Parallel Flash Memory Device Context Structure

Parameter Data Type Description

name const char * Specifies the name of the instance. It is
given by the managed build process.

base unsigned int Specifies the base address of the
LatticeMico flash component. It is given
by the managed build process.

bytesize unsigned int Specifies the size of the LatticeMico flash
instance, in bytes. It is given by the
managed build process.

lookupReg DeviceReg_t Used by the device driver to register the
parallel flash controller component
instance with the LatticeMico32 lookup
service. Refer to the LatticeMico32
Software Developer User Guide for a
description of the DeviceReg_t data type.

end unsigned int Specifies the end address of the
LatticeMico flash component instance. It
is given by the LatticeMico flash
component initialization routine.

cfgFnTbl void * Is a pointer to the configuration’s
function-table structure, as described in
the LatticeMico32 Software Developer
User Guide. It is given by the CFI flash
service on successfully identifying the
underlying flash configuration. It is
declared in the LatticeMico32CFI.h
header file.

CFIInfo CFIInfo_t Is a CFI parameter table populated by the
CFI flash service. It is used by
configuration-specific functional
implementation. It is declared in the
CFIInfo_t.h and CFIRoutines.h header
files.

Software Support

12 LatticeMico Parallel Flash Controller

This function initializes a LatticeMico parallel flash memory component. It is
called as a part of platform initialization and is responsible for identifying and
populating appropriate flash configuration function-handler routines, as well
as for reading the CFI parameters from the flash device.

Table 5 describes the parameter in the LatticeMico32InitCFIFlashDriver
function syntax.

For detailed information on the CFI flash service and associated functions,
refer to the LatticeMico32 Software Developer User Guide.

Service
The CFI flash device driver registers flash component instances with the
LatticeMico32 lookup service, using their instance names for device names
and “CFIFlash Device” as the device type.

For detailed information on services provided for LatticeMico flash
components, refer to the LatticeMico32 Software Developer User Guide.

Software Usage Example
For a software usage example, see the application template located in the
following folder:

<install_dir>\micosystem\utilities\templates\CFIFlashProgrammer

Table 5: LatticeMico32InitCFIFlashDriver Function Parameter

Parameter Description

struct st_CFIFlashDevCtx_t * Pointer to a valid flash device context

Note: For a managed build, the instance-specific structure is located in DDStructs.c.

Revision History
Component Version Description

1.0 Initial Release.

3.0 (7.0 SP2) Corrected endianness.

Added support for 8- and 16-bit operational modes.

3.1 Source RTL separated from Asynchronous SRAM RTL.

Software Support

LatticeMico Parallel Flash Controller 13

3.1 Updated document with new corporate logo.

3.2  Added support for LatticeMico8-based designs in
addition to LatticeMico32-based designs.

 Component can be used in designs that do not include
a processor.

Revision History
Component Version Description

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Software Support

14 LatticeMico Parallel Flash Controller

	LatticeMico Parallel Flash Controller
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Timing Diagrams
	Parallel Flash Read Logic
	Parallel Write Logic

	EBR Resource Utilization
	Software Support
	Device Driver
	Functions
	Service
	Software Usage Example

