= LATTICE

Version

Features

LatticeMico Mutex

The LatticeMico Mutex allows Multi-master environments to coordinate
accesses to a shared resource using WISHBONE or JTAG interface. The
LatticeMico Mutex provides a protocol to ensure mutually exclusive ownership
of a shared resource. This removes the burden on the multiple masters
sharing the same resource to implement logic to arbitrate ownership or
shared resource between each other.

This document describes the 1.0 version of the LatticeMico Mutex.

The Mutex core has the following features:

A master can access the Mutex core via the WISHBONE Slave or JTAG
interfaces.

Provides a hardware-based atomic test-and-set operation.

Ability to be configured without the JTAG interface.

Ability to recognize up to 16 masters.

Ability to be configured to maintain ownership information for up to 256
shared resources.

The Mutex core can be instantiated in all types of designs generated by
LatticeMico System (i.e., with and without Lattice CPU cores). The number of
instantiations in a design will be limited to one.

Copyright © August 2013 Lattice Semiconductor Corporation.



Functional Description

Functional Description

The Mutex core consists of 8-bit Mutex registers that can be accessed via two
interfaces: WISHBONE and JTAG. The core can support up to 16 Mutex
registers, one for each shared resource in the system that requires access
control. The data written to and read from the Mutex core is the 8-bit value of
the Mutex register.

Basic Operation

The basic operation of the core per Mutex (i.e., shared resource or Mutex
register) is:

1. Every master has a unique identifier. IDs 0 through 3 are reserved. IDs 4
through 15 are available for assignment. The current owner of the Mutex
can be identified by the 4-bit ID field in the Mutex register.

2. The Mutex is unlocked and available if the VALUE field in the Mutex
register are zero. Otherwise the Mutex is locked and unavailable. All
masters, regardless of the current ownership, can poll the Mutex register
to check whether it is currently available.

3. A master can write to the Mutex register only if one of the following
conditions is true.

a. The ID field in the Mutex register matches the ID of the master
(encoded within the data being written) performing the write.

b. The VALUE field in the Mutex register is zero.

4. A master that wants to take ownership of the Mutex should perform a write
to the Mutex register with its ID and a nhon-zero VALUE. It should follow up
with a read of the Mutex register to check if it was able to successfully
take ownership of the Mutex; the master has taken ownership if the value
read from the Mutex register is the same value that was written to by the
master.

From an implementation perspective, a ‘same-cycle’ ownership request from
JTAG has higher priority than an ownership request from WISHBONE. For
more information regarding Mutex Register, see “Register Descriptions” on
page 5.

JTAG Interface

The Mutex core uses Lattice's JTAG Controller FPGA Fabric Interface to
enable masters take control of a Mutex via JTAG. The Mutex registers can be
read from (or written to) via a JTAG-accessible 18-bit register shown in
Figure 1. The Mutex register is visible via Lattice's JTAG Controller FPGA
Fabric Interface when the design contains the Mutex core. The process of
accessing this interface is beyond the scope of this document. The master
should adhere to the aforementioned basic operation when it wants to take
ownership of the Mutex via JTAG. The examples show how a JTAG-based

LatticeMico Mutex



Configuration

access to the 16-bit register in Figure 1 translates to a read from (or write to) a
Mutex register.

Figure 1: Register accessible via JTAG

7] 16 [15 [14[13[12[1M[10] 9 [ 8 [7[6 5 [a][3][2][1]0

1 Read Reserved Mutex Register # ID VALUE

Example 1: Write Mutex 2 - ID = 0x1, VALUE = OxF

1. Write 0x2021F to JTAG register

Example 2: Read Mutex 15

1. Write 0x30F00 to JTAG register (note that this will initiate a read process
in the Mutex core and the JTAG register will be updated with the value in
the requested Mutex register)

2. Read JTAG register (this command will return the contents of the
requested Mutex register)

WISHBONE Interface

All the Mutex registers are visible via the WISHBONE slave interface of the

Mutex core at offset from base address 0x0 through OxF. The WISHBONE

slave interface has an 8-bit data bus. The Mutex core only accepts

WISHBONE Classic read and write cycles and all other types of accesses are

ignored.

Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
user can use to configure and operate the LatticeMico Mutex.

LatticeMico Mutex



Configuration

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico
Mutex through the Mico System Builder (MSB) interface.

Table 1: Mutex Ul Parameters

Dialog Box Options Description Allowable Values Default Value

Instance Name Specifies the name of the Mutex Alphanumeric and underscores  mutex
instance.

Base Address Specifies the base address for ~ 0X80000000-0XFFFFFFFF 0X80000000

configuring the Mutex. The
minimum boundary alignment is

0x80.

Mutex Core Configuration

JTAG Access Indicates if the JTAG Interface is selected | not selected not selected
enabled.

Mutex Count Specifies the number of ASC 0-16 1
Log

HDL Parameters

Table 2 lists the parameters that appear in the HDL.

Table 2: Mutex HDL Parameter

Parameter Name Description Allowable Values
MUTEX_COUNT Indicates the number of Mutexes (i.e., Mutex registers) in 0 to 15

the core.
MUTEX_JTAG Indicates that the JTAG Interface is enabled. 01

Indicates the owner of the Mutex N at power-up or asser- 01015

MUTEX_ INIT OWNER N .
- - —  tion of Mutex core reset.

Indicates the contents of VALUE field of Mutex register N 010 15

MUTEX_INIT_VALUE_N .
- - —  at power-up or assertion of Mutex core reset.

4 LatticeMico Mutex



Register Descriptions

/O Ports

Table 3 describes the input and output ports of the LatticeMico Mutex.

Table 3: Mutex I/O Ports

1/0 Port Direction  Active Description

System Clock and Reset

CLK I — WISHBONE System Clock

RESET | Low System Reset

WISHBONE Slave Signal

S _CYC_l | High Indicates a valid bus cycle is present on the bus.

S STB_| | High Asserts an acknowledgment in response to
the assertion of the WISHBONE Master strobe.

S WE_I | — Level sensitive Write/Read control signal.

Low - Read operation, High - Write operation

S _ADR_I | — 32-bit wide address used to select a specific register

S_DAT_I | — 8-bit data used to read a byte of data from a specific
register

S CTLI | — Not used, always tied to O

S_BTE_I | — Not used, always tied to O

S LOCK | | — Not used, always tied to 0

S SEL | | — Not used, always tied to O

S DAT_O O — 8-bit data used to read a byte of data from a specific
register

S ACK_O O High Indicates the requested transfer is acknowledged.

S ERR_O (0] — Indicates the address is incorrect

S_RTY_O o — Not used, always tied to O

Register Descriptions

The LatticeMico Mutex WISHBONE module has a register map to allow the
service of the hardened functions through the WISHBONE bus interface read/
write operations. Table 4 describe the register map of the Mutex module.

Table 4. WISHBONE Addressable Registers for Mutex Module

Register Name Register Function Address Access

Mutex_N Holds the info of the Mutex of Register N 0x0 — OxF Read/Write

LatticeMico Mutex 5



LatticeMico8 Microprocessor Software Support

Mutex Register Definition — Mutex_N
The WISHBONE host has Read and Write access to these registers.

Table 5: Control Register Bit Definition

Bit Field Description
3.0 Mutex Value Identify if this Mutex is locked by a Master Component
7:4 Mutex 1D Identify the ownership of this Mutex Register

LatticeMico8 Microprocessor Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico Mutex component.

Device Driver

The Mutex device driver interacts directly with the Mutex instance. This
section describes the limitations, type definitions, structure, and functions of
the Mutex device driver.

Type Definitions

This section describes the type definitions for the Mutex device context
structure. This structure, shown in Figure 2, contains the Mutex component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the Mutex component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions
are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.
Figure 6 describes the parameters of the Mutex device context structure
shown in Figure 2.

Device Context Structure
Figure 2 shows the Mutex device context structure.

6 LatticeMico Mutex



LatticeMico8 Microprocessor Software Support

Figure 2: Mutex Device Context Structure

struct st_MicoMutexCtx_t{

const char * name;

size_t base;

unsigned char mutex_count;
} MicoMutexCtx_t;

Table 6 describes the Mutex device context parameters.

Table 6: Mutex Device Context Parameters

Parameter Data Type
name const char*
base size t

mutex_count  unsigned char

Description
Mutex instance name (entered in MSB)
MSB-assigned base address for this instance

Processor interrupt line to which this instance is connected

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and ‘function-like'.

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command
line in the application's 'Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the application's '‘Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
‘check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

LatticeMico Mutex



LatticeMico8 Microprocessor Software Support

Table 7: C Preprocessor Function-like Macros For Mutex

Macro Name

Second Argument to Macro / Description
Third Argument to Macro (if
exist.

MICO_MUTEX_READ_REGISTER The 8-bit value reads from the This macro reads a character from the

Mutex Register content / address ~ Mutex content register with a specific
offset address offset

MICO_MUTEX_WRITE_REGISTER The 8-bit value write to the Mutex  This macro writes a character to the

Register content / address offset ~ Mutex content register with a specific
address offset

Note: The first argument to the macro is the Mutex address.

Functions
This section describes the implemented device-driver-specific functions.

MicoMutexInit Function
void MicoMutexInit (MicoMutexCtx_t *ctx);

This is the Mutex initialization function. Table 8 describes the parameter in the
MicoMutexInit function syntax.

Table 8: MicoMutexInit Function Parameter

Parameter Description

MicoMutexCtx_t Pointer to a valid MicoMutexCtx _t structure representing a valid
Mutex instance.

MicoMutex_Lock Function

void MicoMutex_Lock (MicoMutexCtx_t *ctx,
unsigned char mutex_number,
unsigned char mutex_owner,
unsigned char mutex value);

This function allows the calling function to lock, and take ownership of, a
Mutex. The Mutex will be locked only if the current VALUE field is zero, or the
OWNER ID is the same as the one provided as an argument to the function.
Once the Mutex is locked, the corresponding Mutex register will contain the
OWNER ID and VALUE provided to the function. This function will not return
control to the calling function until it has locked the Mutex.

LatticeMico Mutex



LatticeMico8 Microprocessor Software Support

Table 9 describes the parameter in the MicoMutex_Lock function syntax.

Table 9: MicoMutex_Lock Function Parameter

Parameter Description

MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure representing a valid
Mutex instance.

unsigned char Specific which Mutex Register to be locked
unsigned char Specific the Mutex OWNER 1D

unsigned char Specific Mutex VALUE

MicoMutex_Unlock Function

void MicoMutex_Unlock (MicoMutexCtx_t *ctx,
unsigned char mutex_number,
unsigned char mutex_owner);

The Mutex unlock function that allows the calling function to unlock, release
ownership of, a Mutex. The Mutex will be unlocked only if the OWNER ID is
the same as the one provided as an argument to the function. Once the Mutex
is locked, the corresponding Mutex register will reset the VALUE to 0.

Table 10 describes the parameter in the MicoMutex_Unlock function syntax.

Table 10: MicoMutex_Unlock Function Parameter

Parameter Description

MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure representing a valid
Mutex instance.

unsigned char Specific which Mutex Register to be unlocked

unsigned char Specific the Mutex OWNER 1D

MicoMutex_GetOwner Function
unsigned char MicoMutex_ GetOwner (MicoMutexCtx t *ctx,
unsigned char mutex_number);

The Mutex GetOwner function that allows the calling function to get the
OWNER ID of the corresponding Mutex register number provided to this
function.

LatticeMico Mutex



LatticeMico8 Microprocessor Software Support

Table 11 describes the parameter in the MicoMutex_GetOwner function
syntax.

Table 11: MicoMutex_GetOwner Function Parameter

Parameter Description

MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure representing a valid
Mutex instance.

unsigned char Specific which Mutex Register number

Table 12 describes the values returned by the MicoMutex_GetOwner
Function

Table 12: Values Returned by the MicoMutex_GetOwner Function

Return Value Description

0-15 OWNER ID of the given Mutex Register

MicoMutex_GetValue Function
unsigned char MicoMutex_GetValue (MicoMutexCtx_ t *ctx,
unsigned char mutex_number);

The Mutex GetValue function that allows the calling function to get the Mutex
VALUE of the corresponding Mutex register number provided to this function.

Table 13 describes the parameter in the MicoMutex_GetValue function
syntax.

Table 13: MicoMutex_GetValue Function Parameter

Parameter Description

MicoMutexCtx Pointer to a valid MicoMutexCtx_t structure representing a valid
Mutex instance.

unsigned char Specific which Mutex Register number

Table 14 describes the values returned by the MicoMutex_GetValue Function.

Table 14: Values Returned by the MicoMutex_GetValue Function

Return Value Description

0-15 Mutex VALUE of the given Mutex Register

10

LatticeMico Mutex



LatticeMico8 Microprocessor Software Support

Software Usage Example

This section provides an example of using the Mutex. The example is shown
in Figure 3 and assumes the presence of a Mutex component named “mutex”,
and a EFB component named “efb”.

Figure 3: Mutex Software Example
#include "MicoUtils.h"
#include "DDStructs.h"
#include "MicoEFB.h"

#include "MicoMutex.h"

int main(void){
MicoMutexCtx _t * mutex = & mutex_mutex;
MicoEFBCtx_t *efb = &efb efb;

unsigned char tx_data[3];
unsigned char i2c_slave_addr = 0x60;

unsigned char i2c_mutex = 0x0;

unsigned char owner_ID = 0x5; // Default Owner 1D for LM8
unsigned char mutex_ VALUE = 0x1;

// Lock the Mutex for the shared resource - 12C
MicoMutex_Lock (mutex, i2c_mutex, owner_ID, mutex_ VALUE);

// Perform the 12C communication via EFB
MicoEFB_I2CWrite (efb, Ox1, OxO0, 0x2, (unsigned char *)
&tx_data, Ox1l, 0x0, Ox1, i2c_slave_addr);

// Unlock the Mutex

MicoMutex_Unlock (mutex, i2c_mutex, owner_ID);
return(0);

LatticeMico Mutex

11



LatticeMico8 Microprocessor Software Support

Revision History
Component Version  Description

1.0 Initial Release.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
ICEG65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ISPATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXYV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
iSpXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

12 LatticeMico Mutex



	LatticeMico Mutex
	Version
	Features
	Functional Description
	Basic Operation
	JTAG Interface
	WISHBONE Interface

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Register Descriptions
	Mutex Register Definition – Mutex_N

	LatticeMico8 Microprocessor Software Support
	Device Driver
	Software Usage Example



