= LATTICE

LatticeMico Support for

OpenCores I°C Master

This document describes Lattice Semiconductor support for the OpenCores
I°C master component included in the Mico System Builder (MSB).

Version

This document describes the 3.1 version of the OpenCores 1°C master
component modified for integration in MSB.

Features

Refer to the OpenCores I2C master component data sheet for the component
features.

Functional Description

Refer to the OpenCores 12C master component data sheet for a functional
description of the component.

Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the 1/O ports that
you can use to configure and operate the OpenCores 12C master component
from MSB.

Copyright © June 2012 Lattice Semiconductor Corporation.

Configuration

Ul Parameters

Table 1 shows the Ul parameters available for configuring the OpenCores 1’c
master component through the MSB interface.

Table 1: OpenCores 12C Master Component Ul Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the OpenCores Alphanumeric and underscores i2cm_oc
12C master component instance.

Base Address Specifies the base address for the 0X80000000 — OXFFFFFF80 0X80000000
gi\gge' The minimum byte alignment is If other components are included
: in the platform, the range of
allowable values will vary.
SCL Speed Specifies the serial clock-line speed. 400 or 200 KHz 400

HDL Parameters

Table 2 describes the parameters that appear in the HDL.

Table 2: OpenCores 1°C Master Component HDL Parameters

Parameter Name Description Allowable Values

SPEED Specifies the serial clock-line speed, in kilohertz. 400 or 200

SYSCLK Specifies the core clock frequency, in megahertz. Valid clock speed, for
example, 25

/O Ports

Table 3 describes the input and output ports of the OpenCores 12C master
component.

Table 3: OpenCores 1°C Master Component I/O Ports

Port Name Active Direction Initial State Description
System Clock and Reset

CLK_I - | X System clock
RST_I High I X System reset
WISHBONE Interface

12CM_ADR _| - X Address input array, which is the address
generated by the master

12CM_CYC_|I High | X When asserted, the cycle input indicates that a
bus cycle is in progress.

2 LatticeMico Support for OpenCores 12C Master

Register Definitions

Table 3: OpenCores 12C Master Component I/O Ports (Continued)

Port Name Active Direction Initial State Description

12CM_DAT _I - I X Data input array, which is valid for a write request

12CM_LOCK I High | X If the lock input is asserted, the current cycle
becomes uninterruptible.

12CM_SEL | High X Select input array, which indicates where the
valid data is expected on a data bus.

12CM_STB_|I High X When asserted, the strobe input indicates that
the slave is selected.

12CM_WE_|I - X Write signal. Value of 1 is used for a write and 0
for a read.

I2CM_ACK_O High (0] 0 When asserted, the acknowledge output
indicates normal cycle termination.

I2CM_ERR_O High 0] 0 Error output, which is present to conform to the
WISHBONE interface but is never asserted by
this core.

I2CM_RTY_O High 0] 0 Retry output, which is present to conform to the
WISHBONE interface but is never asserted by
this core.

12CM_DAT_O - (0] 0 Data output array

12CM_CTI_I High I X Slave CTI signal

12CM_BTE_| High I X Slave BTE signal

12CM_LOCK_I High | X Slave lock signal

I2C Interface Ports

SDA - I/0 0/X Bidirectional I°C serial data line
SCL - I/0 0/X Bidirectional IC serial clock line
Other Auto-Connected Internal Signals

INTR_N High (0] 0 Interrupt request outputs

Register Definitions

The OpenCores 12C master component has byte-aligned and byte-wide
registers. For integration into the 32-bit LatticeMico environment, the
OpenCores 1°C mster component’s top-level RTL has been modified to adapt
the byte-aligned, byte-wide registers to word-aligned (4-byte), byte-wide
registers. The functionality, meaning of the registers and the register-
contents, or both remain unmodified.

Table 4 shows the register map for the adapted OpenCores 12C master
component.

LatticeMico Support for OpenCores I2C Master 3

Timing Diagrams

Refer to the OpenCores I2C master data sheet for a comprehensive
description on the component’s register interface.

Table 4: Register Map

Register Name Offset 7-0
Prescale register — low byte 0x00 PRERIo
Prescale register — high byte | 0x04 PRERhi
Control register 0x08 CTR
Command/status register 0x10 CR/SR

The structure shown in Figure 1 depicts the register map layout for the
OpenCores 12C master component. The elements are self-explanatory and
are based on the register, as shown in Table 4. This structure, which is
defined in the Opencoresl2Cmaster.h header file, enables you to directly
access the registers, if desired. The device driver for manipulating the
component uses it internally.

Figure 1: OpenCores I°C Master Register Map Structure

typedef struct st OCI2CMDev t {
/* Read/Write=I2C SCL Prescale Low Byte */
volatile unsigned int Prescalelo;
/* Read/Write=I2C SCL Prescale High Byte */
volatile unsigned int PrescaleHi;
/* Read/Write=Control; */
volatile unsigned int Control;
/* Read=RxData,Write=TxData */
volatile unsigned int Data;
/* Read=Status, Write=Command */
volatile unsigned int StatusCommand;
}ocI2cMDev t;

Timing Diagrams

Refer to the OpenCores 12C master component data sheet for timing
diagrams.

This component does not support WISHBONE burst read/write transactions.

EBR Resource Utilization

The OpenCores 12C master component uses no EBRs.

4 LatticeMico Support for OpenCores 12C Master

Software Support

Software Support

This section describes the software support provided for the OpenCores 12c
master component.

The support routines for this component are for use in a single-threaded
environment. If they are used in a multi-tasking environment, you must
provide re-entrance protections.

Device Driver

This section describes the type definitions for instance-specific structures and
the device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the OpenCores 12C master component in the platform. These instances are
defined in DDStructs.c. The information for these instance-specific structures
is filled in by the managed build process, which extracts OpenCores 12c
master component-specific information from the platform definition file. The
members should not be manipulated directly because the structure is used
exclusively by the device driver. You can retrieve a pointer to the instance-
specific OpenCores 12C master component device context structure by using
the MicoGetDevice function call of the LatticeMico device lookup service.
Refer to the LatticeMico32 Software Developer User Guide for more
information on the device lookup service.

OpenCores I°C Master Device Context Structure

This structure, shown in Figure 2, contains OpenCores 1°C master
component-specific information and is dynamically generated in the
DDStructs.h header file. This information is largely filled in by the MSB
managed build process, which extracts the OpenCores 1°C master

LatticeMico Support for OpenCores I2C Master 5

Software Support

component-specific information from the platform definition file. The members
should not be manipulated directly, because this structure is for exclusive use
by the device driver.

Figure 2: OpenCores 12C Master Component Device Context Structure

typedef struct st OpenCoresI2CMasterCtx t {

const char* name;
unsigned int base;
unsigned int intrLevel;
unsigned int speed;
DeviceReg t lookupReg;
unsigned int controlReg;
void * userCtx;

void * callback;

void * prev;

void * next;

} OpenCoresI2CMasterCtx t;

Table 5 describes the parameters of the OpenCores 12C master component
device context structure shown in Figure 2.

Table 5: OpenCores 12C Master Component Device Context Structure Parameters

Parameter Data Type Description

name const char * OpenCores I2C master instance name

base unsigned int MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0-31.

intrLevel unsigned int MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0-31.

speed unsigned int 12C serial clock, in kilohertz, as specified in the GUI

lookupReg DeviceReg_t Used by the device driver to register the OpenCores I12C master

component instance with the LatticeMico lookup service. Refer to the
LatticeMico32 Software Developer User Guide for a description of
the DeviceReg_t data type.

prev void * Used internally by the lookup service
next void * Used internally by the lookup service
Functions

This section describes the application programming interface (API) for using
the OpenCores 12C master component.

6 LatticeMico Support for OpenCores 12C Master

Software Support

OpenCoresl2CMasterlnit Function
void OpenCoresI2CMasterInit (OpenCoresI2CMasterCtx t *ctx);

This function initializes an OpenCores 12C master component instance. It is
called as part of the platform initialization for managed builds for each
instance of the component. This function sets the prescale register values and
enables the core for future use.

Table 6 describes the parameter in the OpenCoresl2CMasterlnit function
syntax.

Table 6: OpenCoresl2CMasterlnit Function Parameter

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.

OpenCoresl2CMasterEnableFunction

void OpenCoresI2CMasterEnable (OpenCoresI2CMasterCtx_t *ctx
)

This function enables the OpenCores I°C master component instance
specified by the device context parameter (ctx).

Table 7 describes the parameter in the OpenCoresl2CMasterEnable function
syntax.

Table 7: OpenCoresl2CMasterEnable Function Parameter

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.

This function does not return any value.

OpenCoresl2CMasterDisable Function

void OpencoresI2CMasterDisable(OpenCoresI2CMasterCtx t *ctx);

This function disables the OpenCores 12C master component instance
specified by the device context parameter (ctx). Subsequent OpenCores 12C
master operations will fail unless the core is explicitly enabled using the
Opencoresl2CMasterEnable function.

LatticeMico Support for OpenCores I2C Master 7

Software Support

You must be careful when disabling the core, because it can hang the bus,
depending on the current state of the core (and any pending transactions).

Table 8 describes the parameter in the Opencoresl2CMasterDisable function
syntax.

Table 8: OpenCoresl2CMasterDisable Function Parameter

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.

This function does not return any value.

OpenCoresl2CMasterStart Function

int OpenCoresI2CMasterStart (OpenCoresI2CMasterCtx_t *ctx) ;
This function issues an I2C start on the EC bus. While the read/write functions
issue a start before performing a read/write transaction, this function allows
you to arbitrate for the bus independently of the read/write.

As with any shared communication media, exercise care when arbitrating for
bus usage.

Table 9 describes the parameter in the OpenCoresl2CMasterStart function
syntax.

Table 9: OpenCoresl2CMasterStart Function Parameter

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.

Table 10 shows the values returned by the OpenCoresl2CMasterStart
function.

Table 10: OpenCoresl2CMasterStart Return Values
Return Value Description

0 Function successfully issued a start; that is, it did not
detect “arbitration lost” as part of issuing a start.

Non-zero Function issued a start but detected “arbitration lost.”

LatticeMico Support for OpenCores 12C Master

Software Support

OpenCoresl2CMasterStop Function

void OpenCoresI2CMasterStop(OpenCoresI2CMasterCtx t *ctx);

This function issues a stop; that is, it relinquishes the bus. This must be done
once all relevant read/write operations are complete. Issuing a stop gives up
ownership of the bus that was acquired when issuing a start. This function
does not stop the core; that is, it does not disable the core but rather
relinquishes control of the bus to allow other masters to arbitrate for bus
access. As with any shared communication media, exercise care when
arbitrating for bus usage.

Table 11 describes the parameter in the OpenCoresl2CMasterStop function
syntax.

Table 11: OpenCoresl2CMasterStop Function Parameter

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.

This function does not return a value.

Figure 3 illustrates a single-byte waveform.

OpenCoresl2CMasterWrite Function

int OpenCoresI2CMasterWrite(OpenCoresI2CMasterCtx_t *ctx,
unsigned int address,
unsigned int buffersize,
unsigned char *data);

This function performs block write. It is contingent on a successful start, that
is, ownership of the bus. It issues a start before performing transactions but
does not issue a stop when done. The user application must explicitly issue a
stop (OpenCoresl2CMasterStop) when it is ready to relinquish the bus.

Note

The 12D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

LatticeMico Support for OpenCores I2C Master 9

Software Support

Table 12 describes the parameters in the OpenCoresl2CMasterWrite function
syntax.

Table 12: OpenCoresl2CMasterWrite Function Parameters

Parameter Description Notes
OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c
file.
unsigned int address 7-bit address of the 1°C
slave device
unsigned int buffersize Number of bytes to write
unsigned char *data Pointer to data bytes to
write

Table 13 shows the values returned by this function.

Table 13: OpenCoresl2CMasterWrite Return Values

Return Value Description
0 Function successfully wrote the data
-1 Function failed because it did not receive an

acknowledgment during addressing

-2 Function failed because it did not receive an
acknowledgment for a write

-3 Function failed because the core detected loss of
arbitration

Note

After ACK, no stop is issued, allowing back-to-back writes, read, and reads following
writes.

Figure 3: Single-Byte Write Waveform

e inininipinipinipipininpinininininEni

SDA

A‘S‘A7|A6‘A5‘A4|A3‘A2‘A1|W‘ACK‘D7|D6‘D5‘D4|D3‘D2‘D1|DO‘ACK‘

10 LatticeMico Support for OpenCores I2C Master

Software Support

OpenCoresl2CMasterWriteByte Function

int OpenCoresI2CMasterWriteByte (OpenCoresI2CMasterCtx t *ctx,
unsigned int address,
unsigned char data) ;

This function performs a single byte write. It is contingent on a successful
start, that is, ownership of the bus. This function issues a start before
performing transactions but does not issue a stop when done. The user
application must explicitly issue a stop (OpenCoresl2CMasterStop) when it is
ready to relinquish the bus.

Table 14 describes the parameters in the OpenCoresl2CMasterWriteByte
function syntax.

Note

The 12D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Table 14: OpenCoresl2CMasterWriteByte Function Parameters

Parameter Description Notes

OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c

file.

unsigned int address 7-bit address of the 1°C
slave device

unsigned char data Byte data to write

Table 15 shows the values returned by this function.

Table 15: OpenCoresl2CMasterWriteByte Return Values

Return Value Description

0 Function successfully wrote the data

-1 Function failed since it did not receive an ack during
addressing

-2 Function failed since it did not receive an ack for a
write

-3 Function failed as the core detected loss of arbitration

Figure 3 and Figure 4 illustrate write and read waveforms, respectively.

LatticeMico Support for OpenCores I°C Master 11

Software Support

OpenCoresl2CMasterRead Function

int OpenCoresI2CMasterRead (OpenCoresI2CMasterCtx_ t *ctx,
unsigned int address,
unsigned int buffersize,
unsigned char *data);

This function performs block read. It is contingent on a successful start, that
is, ownership of the bus. This function issues a start before performing
transactions but does not issue a stop when done. The user application must
explicitly issue a stop (OpenCoresl2CMasterStop) when it is ready to
relinquish the bus.

Note

The 12D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Table 16 describes the parameters in the OpenCoresl2CMasterRead function
syntax.

Table 16: OpenCoresl2CMasterRead Function Parameters

Parameter Description Notes

OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c

file.

unsigned int address 7-bit address of the 12C
slave device

unsigned int buffersize Number of bytes to read

unsigned char *data Pointer to a location for

storing the bytes read.
The location must have
sufficient space to hold at
most the number of bytes
equivalent to the buffer
size.

Table 17 shows the values returned by this function.

Table 17: OpenCoresl2CMasterRead Return Values

Return Value Description
Buffersize Function successfully read the desired number of
bytes.

12

LatticeMico Support for OpenCores 12C Master

Software Support

Table 17: OpenCoresl2CMasterRead Return Values (Continued)

Return Value Description

-1 Function failed because it did not receive an ack
during addressing

-3 Function failed because the core detected loss of
arbitration

Note

No stop is generated after reading the last byte, allowing back-to-back read/writes.

For multi-byte reads, NACK is generated only for the last byte read. All other bytes
prior to the last byte are signaled with an ACK to indicate that more data is expected. .

Figure 4: Single-Byte Read Waveform

SCL

L e e o A

SDA

—IS‘A7|A6‘A5‘A4|A3‘A2‘A1|R \ACK\D7|06\D5\D4|D3\D2\D1|D0\NACK

OpenCoresl2CMasterReadByte Function

int OpenCoresI2CMasterReadByte (OpenCoresI2CMasterCtx t *ctx,
unsigned int address,
unsigned char *data);

This function reads a single byte. It is contingent on a successful start, that is,
ownership of the bus. This function issues a start before performing
transactions but does not issue a stop when done. The user application must
explicitly issue a stop (OpenCoresl2CMasterStop) when it is ready to
relinquish the bus.

Note

The 12D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

LatticeMico Support for OpenCores I°C Master 13

Software Support

Table 18 describes the parameters in the OpenCoresl2CMasterReadByte
function syntax.

Table 18: OpenCoresl2CMasterReadByte Function Parameters

Parameter Description Notes

OpenCoresl2CMasterCtx_t * Pointer to an OpenCores For a managed build, the
12C master component structure referenced is
context located in the DDStructs.c

file.

unsigned int address 7-bit address of the 1°C
slave device

unsigned char *data Pointer to a location for

storing the byte read.

Table 19 shows the values returned by this function..

Table 19: OpenCoresl2CMasterReadByte Return Values

Return Value Description
1 Function successfully read the byte.
-1 Function failed because it did not receive an ack

during addressing

-3 Function failed because the core detected loss of
arbitration

Services

The OpenCores I2C master device driver registers the OpenCores 12C master
instances with the LatticeMico lookup service, using their instance names for
device names and “OCI2CMDevice” as the device type. If you want to reduce
code size, you can disable this registration by defining the

“ OPENCORES_ I2C NOT LOOKUPABLE ” preprocessor definition.

For more information about using the lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Figure 4 illustrates a single-byte read waveform.

Software Usage Examples

Refer to the “Opencores 12C test” software template for a software usage
example.

14 LatticeMico Support for OpenCores I2C Master

Software Support

Revision History

Component Version Description

1.0 Initial release.

3.0 (3.0 SP2) No RTL update.

3.1 Updated software drivers. Specifically, the read/write

transfer routines do not issue a stop. You must explicitly
call OpenCoresl2CMasterStop.

Added Platforml and an Opencores_12C_test software
template for a hardware/ software example using
OpenCores 12C master. Verified on HPE-MINI
LatticeECP2/ECP LatticeMico32 DSP boards.

3.1 Updated document with new corporate logo.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE,
ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA,
ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M,
LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2,
MACH, MachXO, MachX0O2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform
Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG,
SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysl/O, sysMEM, The Simple
Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other
countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

LatticeMico Support for OpenCores I°C Master 15

Software Support

16 LatticeMico Support for OpenCores I2C Master

	LatticeMico Support for OpenCores I2C Master
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Register Definitions
	Timing Diagrams
	EBR Resource Utilization
	Software Support
	Device Driver
	Functions
	Services
	Software Usage Examples

