
Copyright © June 2012 Lattice Semiconductor Corporation.

LatticeMico Support for

OpenCores I2C Master

This document describes Lattice Semiconductor support for the OpenCores
I2C master component included in the Mico System Builder (MSB).

Version
This document describes the 3.1 version of the OpenCores I2C master
component modified for integration in MSB.

Features
Refer to the OpenCores I2C master component data sheet for the component
features.

Functional Description
Refer to the OpenCores I2C master component data sheet for a functional
description of the component.

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the OpenCores I2C master component
from MSB.

Configuration

2 LatticeMico Support for OpenCores I2C Master

UI Parameters
Table 1 shows the UI parameters available for configuring the OpenCores I2C
master component through the MSB interface.

HDL Parameters
Table 2 describes the parameters that appear in the HDL.

I/O Ports
Table 3 describes the input and output ports of the OpenCores I2C master
component.

Table 1: OpenCores I2C Master Component UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the OpenCores
I2C master component instance.

Alphanumeric and underscores i2cm_oc

Base Address Specifies the base address for the
device. The minimum byte alignment is
0X80.

0X80000000 – 0XFFFFFF80

If other components are included
in the platform, the range of
allowable values will vary.

0X80000000

SCL Speed Specifies the serial clock-line speed. 400 or 200 KHz 400

Table 2: OpenCores I2C Master Component HDL Parameters

Parameter Name Description Allowable Values

SPEED Specifies the serial clock-line speed, in kilohertz. 400 or 200

SYSCLK Specifies the core clock frequency, in megahertz. Valid clock speed, for
example, 25

Table 3: OpenCores I2C Master Component I/O Ports

Port Name Active Direction Initial State Description

System Clock and Reset

CLK_I – I X System clock

RST_I High I X System reset

WISHBONE Interface

I2CM_ADR_I – I X Address input array, which is the address
generated by the master

I2CM_CYC_I High I X When asserted, the cycle input indicates that a
bus cycle is in progress.

Register Definitions

LatticeMico Support for OpenCores I2C Master 3

Register Definitions
The OpenCores I2C master component has byte-aligned and byte-wide
registers. For integration into the 32-bit LatticeMico environment, the
OpenCores I2C mster component’s top-level RTL has been modified to adapt
the byte-aligned, byte-wide registers to word-aligned (4-byte), byte-wide
registers. The functionality, meaning of the registers and the register-
contents, or both remain unmodified.

Table 4 shows the register map for the adapted OpenCores I2C master
component.

I2CM_DAT_I – I X Data input array, which is valid for a write request

I2CM_LOCK_I High I X If the lock input is asserted, the current cycle
becomes uninterruptible.

I2CM_SEL_I High I X Select input array, which indicates where the
valid data is expected on a data bus.

I2CM_STB_I High I X When asserted, the strobe input indicates that
the slave is selected.

I2CM_WE_I – I X Write signal. Value of 1 is used for a write and 0
for a read.

I2CM_ACK_O High O 0 When asserted, the acknowledge output
indicates normal cycle termination.

I2CM_ERR_0 High O 0 Error output, which is present to conform to the
WISHBONE interface but is never asserted by
this core.

I2CM_RTY_0 High O 0 Retry output, which is present to conform to the
WISHBONE interface but is never asserted by
this core.

I2CM_DAT_O – O 0 Data output array

I2CM_CTI_I High I X Slave CTI signal

I2CM_BTE_I High I X Slave BTE signal

I2CM_LOCK_I High I X Slave lock signal

I2C Interface Ports

SDA – I/O 0/X Bidirectional I2C serial data line

SCL – I/O 0/X Bidirectional I2C serial clock line

Other Auto-Connected Internal Signals

INTR_N High O 0 Interrupt request outputs

Table 3: OpenCores I2C Master Component I/O Ports (Continued)

Port Name Active Direction Initial State Description

Timing Diagrams

4 LatticeMico Support for OpenCores I2C Master

Refer to the OpenCores I2C master data sheet for a comprehensive
description on the component’s register interface.

The structure shown in Figure 1 depicts the register map layout for the
OpenCores I2C master component. The elements are self-explanatory and
are based on the register, as shown in Table 4. This structure, which is
defined in the OpencoresI2Cmaster.h header file, enables you to directly
access the registers, if desired. The device driver for manipulating the
component uses it internally.

Timing Diagrams
Refer to the OpenCores I2C master component data sheet for timing
diagrams.

This component does not support WISHBONE burst read/write transactions.

EBR Resource Utilization
The OpenCores I2C master component uses no EBRs.

Table 4: Register Map

Register Name Offset 7–0

Prescale register – low byte 0x00 PRERlo

Prescale register – high byte 0x04 PRERhi

Control register 0x08 CTR

Command/status register 0x10 CR/SR

Figure 1: OpenCores I2C Master Register Map Structure

typedef struct st_OCI2CMDev_t {
/* Read/Write=I2C SCL Prescale Low Byte */
 volatile unsigned int PrescaleLo;
/* Read/Write=I2C SCL Prescale High Byte */
 volatile unsigned int PrescaleHi;
/* Read/Write=Control; */
 volatile unsigned int Control;
/* Read=RxData,Write=TxData */
 volatile unsigned int Data;
/* Read=Status, Write=Command */
 volatile unsigned int StatusCommand;
 }OCI2CMDev_t;

Software Support

LatticeMico Support for OpenCores I2C Master 5

Software Support
This section describes the software support provided for the OpenCores I2C
master component.

The support routines for this component are for use in a single-threaded
environment. If they are used in a multi-tasking environment, you must
provide re-entrance protections.

Device Driver
This section describes the type definitions for instance-specific structures and
the device context structure.

Instance-Specific Structures
The MSB managed build process instantiates a unique structure per instance
of the OpenCores I2C master component in the platform. These instances are
defined in DDStructs.c. The information for these instance-specific structures
is filled in by the managed build process, which extracts OpenCores I2C
master component-specific information from the platform definition file. The
members should not be manipulated directly because the structure is used
exclusively by the device driver. You can retrieve a pointer to the instance-
specific OpenCores I2C master component device context structure by using
the MicoGetDevice function call of the LatticeMico device lookup service.
Refer to the LatticeMico32 Software Developer User Guide for more
information on the device lookup service.

OpenCores I2C Master Device Context Structure
This structure, shown in Figure 2, contains OpenCores I2C master
component-specific information and is dynamically generated in the
DDStructs.h header file. This information is largely filled in by the MSB
managed build process, which extracts the OpenCores I2C master

Software Support

6 LatticeMico Support for OpenCores I2C Master

component-specific information from the platform definition file. The members
should not be manipulated directly, because this structure is for exclusive use
by the device driver.

Table 5 describes the parameters of the OpenCores I2C master component
device context structure shown in Figure 2.

Functions
This section describes the application programming interface (API) for using
the OpenCores I2C master component.

Figure 2: OpenCores I2C Master Component Device Context Structure

typedef struct st_OpenCoresI2CMasterCtx_t {
 const char* name;
 unsigned int base;
 unsigned int intrLevel;
 unsigned int speed;
 DeviceReg_t lookupReg;
 unsigned int controlReg;
 void * userCtx;
 void * callback;
 void * prev;
 void * next;
} OpenCoresI2CMasterCtx_t;

Table 5: OpenCores I2C Master Component Device Context Structure Parameters

Parameter Data Type Description

name const char * OpenCores I2C master instance name

base unsigned int MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0–31.

intrLevel unsigned int MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0–31.

speed unsigned int I2C serial clock, in kilohertz, as specified in the GUI

lookupReg DeviceReg_t Used by the device driver to register the OpenCores I2C master
component instance with the LatticeMico lookup service. Refer to the
LatticeMico32 Software Developer User Guide for a description of
the DeviceReg_t data type.

prev void * Used internally by the lookup service

next void * Used internally by the lookup service

Software Support

LatticeMico Support for OpenCores I2C Master 7

OpenCoresI2CMasterInit Function
void OpenCoresI2CMasterInit (OpenCoresI2CMasterCtx_t *ctx);

This function initializes an OpenCores I2C master component instance. It is
called as part of the platform initialization for managed builds for each
instance of the component. This function sets the prescale register values and
enables the core for future use.

Table 6 describes the parameter in the OpenCoresI2CMasterInit function
syntax.

OpenCoresI2CMasterEnableFunction
void OpenCoresI2CMasterEnable (OpenCoresI2CMasterCtx_t *ctx
);

This function enables the OpenCores I2C master component instance
specified by the device context parameter (ctx).

Table 7 describes the parameter in the OpenCoresI2CMasterEnable function
syntax.

This function does not return any value.

OpenCoresI2CMasterDisable Function
void OpencoresI2CMasterDisable(OpenCoresI2CMasterCtx_t *ctx);

This function disables the OpenCores I2C master component instance
specified by the device context parameter (ctx). Subsequent OpenCores I2C
master operations will fail unless the core is explicitly enabled using the
OpencoresI2CMasterEnable function.

Table 6: OpenCoresI2CMasterInit Function Parameter

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Table 7: OpenCoresI2CMasterEnable Function Parameter

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Software Support

8 LatticeMico Support for OpenCores I2C Master

You must be careful when disabling the core, because it can hang the bus,
depending on the current state of the core (and any pending transactions).

Table 8 describes the parameter in the OpencoresI2CMasterDisable function
syntax.

This function does not return any value.

OpenCoresI2CMasterStart Function
int OpenCoresI2CMasterStart(OpenCoresI2CMasterCtx_t *ctx);

This function issues an I2C start on the I2C bus. While the read/write functions
issue a start before performing a read/write transaction, this function allows
you to arbitrate for the bus independently of the read/write.

As with any shared communication media, exercise care when arbitrating for
bus usage.

Table 9 describes the parameter in the OpenCoresI2CMasterStart function
syntax.

Table 10 shows the values returned by the OpenCoresI2CMasterStart
function.

Table 8: OpenCoresI2CMasterDisable Function Parameter

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Table 9: OpenCoresI2CMasterStart Function Parameter

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Table 10: OpenCoresI2CMasterStart Return Values

Return Value Description

0 Function successfully issued a start; that is, it did not
detect “arbitration lost” as part of issuing a start.

Non-zero Function issued a start but detected “arbitration lost.”

Software Support

LatticeMico Support for OpenCores I2C Master 9

OpenCoresI2CMasterStop Function
void OpenCoresI2CMasterStop(OpenCoresI2CMasterCtx_t *ctx);

This function issues a stop; that is, it relinquishes the bus. This must be done
once all relevant read/write operations are complete. Issuing a stop gives up
ownership of the bus that was acquired when issuing a start. This function
does not stop the core; that is, it does not disable the core but rather
relinquishes control of the bus to allow other masters to arbitrate for bus
access. As with any shared communication media, exercise care when
arbitrating for bus usage.

Table 11 describes the parameter in the OpenCoresI2CMasterStop function
syntax.

This function does not return a value.

Figure 3 illustrates a single-byte waveform.

OpenCoresI2CMasterWrite Function
int OpenCoresI2CMasterWrite(OpenCoresI2CMasterCtx_t *ctx,
 unsigned int address,
 unsigned int buffersize,
 unsigned char *data);

This function performs block write. It is contingent on a successful start, that
is, ownership of the bus. It issues a start before performing transactions but
does not issue a stop when done. The user application must explicitly issue a
stop (OpenCoresI2CMasterStop) when it is ready to relinquish the bus.

Table 11: OpenCoresI2CMasterStop Function Parameter

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

Note

The I2D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Software Support

10 LatticeMico Support for OpenCores I2C Master

Table 12 describes the parameters in the OpenCoresI2CMasterWrite function
syntax.

Table 13 shows the values returned by this function.

Table 12: OpenCoresI2CMasterWrite Function Parameters

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

unsigned int address 7-bit address of the I2C
slave device

unsigned int buffersize Number of bytes to write

unsigned char *data Pointer to data bytes to
write

Table 13: OpenCoresI2CMasterWrite Return Values

Return Value Description

0 Function successfully wrote the data

–1 Function failed because it did not receive an
acknowledgment during addressing

–2 Function failed because it did not receive an
acknowledgment for a write

–3 Function failed because the core detected loss of
arbitration

Note

After ACK, no stop is issued, allowing back-to-back writes, read, and reads following
writes.

Figure 3: Single-Byte Write Waveform

SCL

SDA
A7 A6 A5 A4 A3 A2 A1 W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACKS

Software Support

LatticeMico Support for OpenCores I2C Master 11

OpenCoresI2CMasterWriteByte Function
int OpenCoresI2CMasterWriteByte (OpenCoresI2CMasterCtx_t *ctx,
 unsigned int address,
 unsigned char data);

This function performs a single byte write. It is contingent on a successful
start, that is, ownership of the bus. This function issues a start before
performing transactions but does not issue a stop when done. The user
application must explicitly issue a stop (OpenCoresI2CMasterStop) when it is
ready to relinquish the bus.

Table 14 describes the parameters in the OpenCoresI2CMasterWriteByte
function syntax.

Table 15 shows the values returned by this function.

Figure 3 and Figure 4 illustrate write and read waveforms, respectively.

Note

The I2D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Table 14: OpenCoresI2CMasterWriteByte Function Parameters

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

unsigned int address 7-bit address of the I2C
slave device

unsigned char data Byte data to write

Table 15: OpenCoresI2CMasterWriteByte Return Values

Return Value Description

0 Function successfully wrote the data

–1 Function failed since it did not receive an ack during
addressing

–2 Function failed since it did not receive an ack for a
write

–3 Function failed as the core detected loss of arbitration

Software Support

12 LatticeMico Support for OpenCores I2C Master

OpenCoresI2CMasterRead Function
int OpenCoresI2CMasterRead (OpenCoresI2CMasterCtx_t *ctx,
 unsigned int address,
 unsigned int buffersize,
 unsigned char *data);

This function performs block read. It is contingent on a successful start, that
is, ownership of the bus. This function issues a start before performing
transactions but does not issue a stop when done. The user application must
explicitly issue a stop (OpenCoresI2CMasterStop) when it is ready to
relinquish the bus.

Table 16 describes the parameters in the OpenCoresI2CMasterRead function
syntax.

Table 17 shows the values returned by this function.

Note

The I2D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Table 16: OpenCoresI2CMasterRead Function Parameters

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

unsigned int address 7-bit address of the I2C
slave device

unsigned int buffersize Number of bytes to read

unsigned char *data Pointer to a location for
storing the bytes read.
The location must have
sufficient space to hold at
most the number of bytes
equivalent to the buffer
size.

Table 17: OpenCoresI2CMasterRead Return Values

Return Value Description

Buffersize Function successfully read the desired number of
bytes.

Software Support

LatticeMico Support for OpenCores I2C Master 13

OpenCoresI2CMasterReadByte Function
int OpenCoresI2CMasterReadByte (OpenCoresI2CMasterCtx_t *ctx,
 unsigned int address,
 unsigned char *data);

This function reads a single byte. It is contingent on a successful start, that is,
ownership of the bus. This function issues a start before performing
transactions but does not issue a stop when done. The user application must
explicitly issue a stop (OpenCoresI2CMasterStop) when it is ready to
relinquish the bus.

–1 Function failed because it did not receive an ack
during addressing

–3 Function failed because the core detected loss of
arbitration

Note

No stop is generated after reading the last byte, allowing back-to-back read/writes.

For multi-byte reads, NACK is generated only for the last byte read. All other bytes
prior to the last byte are signaled with an ACK to indicate that more data is expected. .

Table 17: OpenCoresI2CMasterRead Return Values (Continued)

Return Value Description

Figure 4: Single-Byte Read Waveform

SCL

SDA
A7 A6 A5 A4 A3 A2 A1 R ACK D7 D6 D5 D4 D3 D2 D1 D0 NACKS

Note

The I2D slave address is a 7-bit address expected by the functions. The 7-bit address
is internally shifted 1 bit left by this function.

Software Support

14 LatticeMico Support for OpenCores I2C Master

Table 18 describes the parameters in the OpenCoresI2CMasterReadByte
function syntax.

Table 19 shows the values returned by this function..

Services
The OpenCores I2C master device driver registers the OpenCores I2C master
instances with the LatticeMico lookup service, using their instance names for
device names and “OCI2CMDevice” as the device type. If you want to reduce
code size, you can disable this registration by defining the
“_OPENCORES_I2C_NOT_LOOKUPABLE_” preprocessor definition.

For more information about using the lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Figure 4 illustrates a single-byte read waveform.

Software Usage Examples
Refer to the “Opencores I2C test” software template for a software usage
example.

Table 18: OpenCoresI2CMasterReadByte Function Parameters

Parameter Description Notes

OpenCoresI2CMasterCtx_t * Pointer to an OpenCores
I2C master component
context

For a managed build, the
structure referenced is
located in the DDStructs.c
file.

unsigned int address 7-bit address of the I2C
slave device

unsigned char *data Pointer to a location for
storing the byte read.

Table 19: OpenCoresI2CMasterReadByte Return Values

Return Value Description

1 Function successfully read the byte.

–1 Function failed because it did not receive an ack
during addressing

–3 Function failed because the core detected loss of
arbitration

Software Support

LatticeMico Support for OpenCores I2C Master 15

Revision History
Component Version Description

1.0 Initial release.

3.0 (3.0 SP2) No RTL update.

3.1 Updated software drivers. Specifically, the read/write
transfer routines do not issue a stop. You must explicitly
call OpenCoresI2CMasterStop.

Added PlatformI and an Opencores_I2C_test software
template for a hardware/ software example using
OpenCores I2C master. Verified on HPE-MINI
LatticeECP2/ECP LatticeMico32 DSP boards.

3.1 Updated document with new corporate logo.

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE,
ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER,
ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA,
ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M,
LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2,
MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform
Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG,
SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple
Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are either registered
trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other
countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor
Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Software Support

16 LatticeMico Support for OpenCores I2C Master

	LatticeMico Support for OpenCores I2C Master
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Register Definitions
	Timing Diagrams
	EBR Resource Utilization
	Software Support
	Device Driver
	Functions
	Services
	Software Usage Examples

