
Copyright © January 2014 Lattice Semiconductor Corporation.

LatticeMico GPIO

The LatticeMico GPIO is a general-purpose input/output core that provides a
memory-mapped interface between a WISHBONE slave port and general-
purpose I/O ports. The I/O ports can connect to either on-chip or off-chip logic.

Version
This document describes the 3.5 version of the LatticeMico GPIO.

Features

The LatticeMico GPIO includes the following features:

 WISHBONE B.3 interface

 WISHBONE data base size configurable to 8 or 32 bits wide

 Four transfer port types: tristate, input, output, independent input/output

 Interrupt request (IRQ) generation on level-sensitive or edge-sensitive
input

 Hardware interrupt mask register

Figure 1 shows the deployment of the LatticeMico GPIO within the FPGA and
its input and output ports.

For additional details about the WISHBONE bus, refer to the LatticeMico8
Processor Reference Manual or the LatticeMico32 Processor Reference
Manual.

Functional Description

2 LatticeMico GPIO

Functional Description

The LatticeMico GPIO creates an interface between the LatticeMico RISC
processor and a simple bit-level control interface. The control bits can be
connected to either internal or external logic. Control of the input or output
pins is managed using four memory-mapped registers. The memory-mapped
registers control reading and writing the input/output bits, tristating the I/O
bits, interrupt masking, and an “edge event” status register.

The number, width, and behavior of the control registers change on the basis
of the configuration of the GPIO block. The GPIO block can be configured
with inputs only, outputs only, or both inputs and outputs. A bidirectional mode
with tristate control is also provided for bidirectional I/O pins that are available
on the device. Bidirectional mode I/O can only be connected to FPGA I/O
pins. They are not available for use with on-chip logic.

Reading the data register returns the value that is present on the input ports.
See “EBR Resource Utilization” on page 14 for details. Writing the PIO_DATA
register (see Table 4 on page 10) affects the value that is driven to the output
ports. Because these ports are independent, reading the data register does
not return the previously written data. Bidirectional ports, which are tristate,
are the exception to this behavior.

Figure 1: Using GPIO to Connect LatticeMico to FPGA I/O Pins

LM8/LM32

Arbiter

WISHBONE bus

FPGA

Output
register register

Input

GPIO

IR
Q

Functional Description

LatticeMico GPIO 3

Figure 2 is an internal block diagram of the GPIO showing its bidirectional
ports. It shows how the PIO_TRI register (see Table 4) determines whether
the PIO_DATA register is used to transfer data in or out.

Input Data Path
Figure 6 on page 13 shows how the GPIO’s master ports read the data in the
internal register. The input port is connected to a D flip-flop that has an
asynchronous reset controlled by RST_I. The flip-flop is continuously clocked
by CLK_I. The output is connected directly to the PIO_DATA read register, as
shown in Figure 2. The value read from the PIO_DATA register is always
delayed one CLK_I cycle from the current state of the PIO_IN port. The
PIO_DATA read cycle does not prevent the input flip-flop from changing state.

Output Data Path
The PIO_OUT is driven by D-type flip-flops. The D-type flip-flops are updated
when the processor writes to the PIO_DATA register. The data appears on the
output pins when the WISHBONE acknowledge signal (GPIO_ACK_O) goes
high.

Tristate Control
After the microprocessor writes to the PIO_TRI register, the pins are tristated
when the WISHBONE acknowledge signal (GPIO_ACK_O) goes high. The
data becomes valid in the same cycle as the GPIO_ACK_O.

Figure 2: LatticeMico GPIO Core Usage with Bidirectional Ports

Data

Address

Control

PIO_IO [n - 1:0]

W
I
S
H
B
O
N
E

b
u
s

PIO_DATA

Read

Write

PIO_TRI
Direction

Functional Description

4 LatticeMico GPIO

Edge Capture
The edge capture register is used to produce an interrupt, which corresponds
to the input bit where the edge was detected. The edge capture register is
read to identify which input bit caused the interrupt. If an edge capture
interrupt is not cleared, subsequent edge events on the same input bit will be
ignored. See “IRQ Generation” on page 5 for more information on interrupt
request priorities.

You can configure the GPIO to capture edges on the input ports. The type of
edges—which can include low-to-high transitions, high-to-low transitions, or
both—are defined and configured at the time that the processor platform is
generated. It is not possible to change the edge capture behavior at run time.
When an edge is detected by the input, the condition is indicated in the edge
capture register. The bit position corresponding to the input pin transitions
from 0 to 1.

The edge is detected when the input signal transitions between two
WISHBONE clock cycles (CLK_I).

Clearing a bit—that is, setting it to zero in the edge capture register—clears
the corresponding bit in the edge capture register. Setting a bit in the interrupt
mask register resets the corresponding bit in the edge capture register if it
was set.

Port Width and Port Type Settings
The Width and Port Type settings define the basic functionality of the GPIO
instance.

Port Width
The number of I/O pins that can be controlled by the GPIO block ranges from
a minimum of one to a maximum of thirty-two. In the case of the mixed
independent input/output ports, the number of input ports can be different
than the number of output ports.

Port Type
The GPIO instance can be configured for output only, input only, mixed
independent input/output, and shared bidirectional input/output.

Output Port Type For the output port type, the PIO ports can drive output
only (PIO_OUT).

Input Port Type For the input port type, the PIO ports can capture input
only (PIO_IN).

Functional Description

LatticeMico GPIO 5

Independent Input and Output Port Type For the independent input and
output port type, the input and output ports are separate unidirectional
buses.The number of input pins can be set independently of the number of
output ports. The PIO_DATA register is wide enough to manage the larger of
the “Input Width” or “Output Width.” The input and output bits overlap in the
PIO_DATA register, starting at the least-significant bit. The “Input Width”
PIO_IN ports and “Output Width” PIO_OUT ports are created for connection
to logic external to the GPIO block.

Tristate Port Type For the tristate port type, each PIO bit shares one device
pin for driving and capturing data. The direction of each pin is individually
selectable. An I/O pin becomes an input when the corresponding PIO_TRI
register bit is cleared, that is, 0. Whenever the WISHBONE RST_I signal is
asserted, the PIO_TRI register is cleared, forcing all PIO_IO pins to be inputs.

IRQ Generation
You can configure the LatticeMico GPIO to generate an interrupt request
(IRQ) on level-sensitive or edge-sensitive input conditions.

 Level-sensitive – An IRQ is generated whenever a specific input is high
and interrupt requests are enabled for that input in the IRQ_MASK
register. The input pin should be held high until the interrupt condition is
cleared.

 Edge-sensitive – An IRQ is generated whenever a specific bit in the edge
capture register is high and interrupt requests are enabled for that bit in
the IRQ_MASK register. The type of edge must be specified at platform
generation: positive edge, negative edge, or either edge. Clearing a bit—
that is, setting it to zero in the edge capture register—clears the
corresponding bit in the edge capture register. Setting a bit in the interrupt
mask register resets the corresponding bit in the edge capture register if it
was set.

Any I/O in a GPIO can cause an interrupt request. The IRQ_MASK register of
the GPIO defines which I/Os can cause an interrupt request.

When the IRQ mode is turned off, the IRQ_MASK register does not exist.

Figure 3 shows a bidirectional LatticeMico GPIO similar to that shown in
Figure 2 but with the ability to generate interrupt requests. The GPIO in
Figure 3 can generate interrupt requests as a signal switches from 0 to 1 or 1
to 0 (edge capture).

Note

The GPIO interrupt generation logic is synchronized to the WISHBONE clock.
In order to ensure that the interrupt generation logic can capture a 0 to 1 or 1
to 0 transition, the external logic driving the GPIO line must ensure that the 1
to 0 or 0 to 1 transition is valid for at least one WISHBONE clock. If the GPIO
line transitions, for example, from 1 to 0 and back to 1 before a WISHBONE
clock edge, then the interrupt will not be generated because the 1 to 0 edge
was not captured.

Configuration

6 LatticeMico GPIO

For level-sensitive input, as shown in Figure 4, only active high is directly
supported.

Configuration
The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico GPIO.

UI Parameters
Table 1 shows the UI parameters available for configuring the LatticeMico
GPIO through the Mico System Builder (MSB) interface.

HDL Parameters
Table 2 describes the parameters that appear in the HDL.

I/O Ports
Table 3 describes the input and output ports of the LatticeMico GPIO.

User Impact of Initial State
For the output port, the initial state is low after reset.

Figure 3: LatticeMico GPIO Usage with IRQ (Edge Capture)

PIO_DATA

Read

Write

PIO_TRI

PIO_IO [n - 1:0]

IRQ

Control

Address

Data

Direction

W
 I
S
H
B
O
N
E

b
u
s

Interrupt
 mask

 Edge
capture

Configuration

LatticeMico GPIO 7

Figure 4: LatticeMico GPIO Usage with IRQ (Level Triggered)

Table 1: GPIO UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the GPIO instance. Alphanumeric and underscores gpio

Base Address Specifies the base address for the
device. The minimum byte alignment is
0X80.

0X80000000 – 0XFFFFFF80

If other components are included
in the platform, the range of
allowable values will vary.

0X80000000

Port Types

Output Ports Only Specifies the transfer mode of PIO ports
as output only.

selected|not selected selected

Input Ports Only Specifies the transfer mode of PIO ports
as input only.

selected|not selected not selected

Tristate Ports Specifies the transfer mode of PIO ports
as tristate only.

selected|not selected not selected

Both Input and Output Specifies the transfer mode of PIO ports
as input and output.

selected|not selected not selected

Port Width

Data Width Specifies the width of the I/O port, in bits. 1 to 32 1

PIO_DATA

Read

Write

PIO_TRI

PIO_IO [n - 1:0]

IRQ

Control

Address

Data

Direction

W
 I
S
H
B
O
N
E

b
u
s

Interrupt
 mask

 Level
detection

Configuration

8 LatticeMico GPIO

Input Width Specifies the input data bus width for an
independent input/output GPIO, in bits.

1 to 32 1

Output Width Specifies the output data bus width for an
independent input/output GPIO, in bits.

1 to 32 1

IRQ Mode

IRQ Mode When selected, provides IRQ signal
output when a specified event occurs on
input ports

selected|not selected not selected

Level When selected, generates an IRQ
whenever a specific input is high and
interrupts have been enabled for that
input in the IRQ-MASK register.

selected|not selected not selected

Edge When selected, generates an IRQ
whenever a specific bit in the edge
capture register is high and interrupts
have been enabled for that bit in the IRQ-
MASK register.

selected|not selected selected

Edge Response

Either Edge When selected, generates an IRQ on
either low-to-high or high-to-low
transitions.

selected|not selected not selected

Positive Edge When selected, generates an IRQ on
low-to-high transitions.

selected|not selected selected

Negative Edge When selected, generates an IRQ on
high-to-low transitions.

selected|not selected not selected

WISHBONE Configuration

WISHBONE Data Bus
Width

Specifies the WISHBONE data bus width
in bits

8, 32 32

Table 2: GPIO HDL Parameters

Parameter Name Description Allowable Values

GPIO_WB_ADR_WIDTH Defines the width of WISHBONE Address
Bus

8 | 32

GPIO_WB_DAT_WIDTH Defines the width of WISHBONE Data Bus 8 | 32

INPUT_PORTS_ONLY A value of 1 defines the transfer mode for PIO
ports as input only.

0 | 1

OUTPUT_PORTS_ONLY A value of 1 defines the transfer mode for PIO
ports as output only.

0 | 1

TRISTATE_PORTS A value of 1 defines the transfer mode for PIO
ports as tristate only.

0 | 1

Table 1: GPIO UI Parameters (Continued)

Dialog Box Option Description Allowable Values Default Value

Configuration

LatticeMico GPIO 9

BOTH_INPUT_AND_OUTPUT A value of 1 defines the transfer mode for PIO
ports as input and output.

0 | 1

DATA_WIDTH Defines the width of the I/O port. 1 to 32

INPUT_WIDTH Defines the input data bus width for an
independent input/output GPIO.

1 to 32

OUTPUT_WIDTH Defines the output data bus width for an
independent input/output GPIO.

1 to 32

IRQ_MODE A value of 1 establishes IRQ_MODE, providing
IRQ signal output when a specified event occurs
on input ports.

0 | 1

LEVEL With a value of 1, an IRQ is generated whenever
a specific input is high and interrupts have been
enabled for that input in the IRQ MASK register.

0 | 1

EDGE With a value of 1, an IRQ is generated whenever
a specific bit in the edge capture register is high
and interrupts have been enabled for that bit in the
IRQ MASK register.

0 | 1

EITHER_EDGE_IRQ With a value of 1, an IRQ is generated on either
low-to-high or high-to-low transitions.

0 |1

POSE_EDGE_IRQ With a value of 1, an IRQ is generated on low-to-
high transitions.

0 |1

NEGE_EDGE_IRQ With a value of 1, an IRQ is generated on high-to-
low transitions.

0 |1

Table 3: GPIO I/O Ports

Port Name Active Direction Initial State Description

System Clock and Reset

CLK_I — I X System clock

RST_I High I X System reset

WISHBONE Interface

GPIO_ADR_I — I X Address input array, the address generated by
the master

GPIO_CYC_I High I X Cycle input. When asserted, it indicates that a
bus cycle is in progress.

GPIO_DAT_I — I X Data input array, valid for a write request

GPIO_LOCK_I High I X Lock input. If asserted, the current cycle
becomes uninterruptible.

GPIO_SEL_I High I X Select input array, which indicates where the
valid data is expected on a data bus.

Table 2: GPIO HDL Parameters (Continued)

Parameter Name Description Allowable Values

Register Definitions

10 LatticeMico GPIO

Register Definitions
The LatticeMico GPIO includes the registers shown in Table 4. See “Software
Usage Examples” on page 21 for examples that show how to access these
registers in order to access the programmable I/O pins.

GPIO_STB_I High I X Strobe input. When asserted, indicates that the
SLAVE is selected.

GPIO_WE_I — I X Write signal. Value of 1 is used for a write and 0
for a read.

GPIO_ACK_O High O 0 Acknowledge output. When asserted, indicates
normal cycle termination.

GPIO_DAT_O — O 0 Data output array

PIO Interface Ports

PIO_IN — I X Appears in input mode or both input and output
mode. The GPIO’s number of input bits is
configurable.

PIO_OUT — O 0 Appears in output mode or both input and output
mode. The GPIO’s number of output bits is
configurable.

PIO_IO — I/O 0/X Appears in tristate mode only. Each GPIO bit
shares one device pin for driving and capturing
data. The direction of each pin is individually
selectable. The PIO_IO is an input when the
corresponding PIO_TRI register bit is cleared (0).

Other Auto-connected Internal Signals

IRQ_O High O 0 Interrupt request outputs. The GPIO can be
configured to generate an IRQ on certain input
conditions.

Table 3: GPIO I/O Ports (Continued)

Port Name Active Direction Initial State Description

Table 4: Register Map

Register Name Offset
Address Offset within Register Word

Description
0x0 0x1 0x2 0x3

PIO_DATA 0x00 PIO_IN/OUT/
IO[7:0]

PIO_IN/OUT/
IO[15:8]

PIO_IN/OUT/
IO[23:16]

PIO_IN/OUT/
IO[31:24]

I/O Data

PIO_TRI 0x04 [7:0] [15:8] [23:16] [31:24] Tristate control

IRQ_MASK 0x08 [7:0] [15:8] [23:16] [31:24] IRQ Mask

EDGE_CAPTURE 0x0C [7:0] [15:8] [23:16] [31:24] Edge Capture

Register Definitions

LatticeMico GPIO 11

Table 5 through Table 8 provide details about each register in the LatticeMico
GPIO.

Table 5: PIO_DATA Register Bit Definition

Register Name Bit Access Mode Description

PIO_DATA DATA_WIDTH -1:0 Read/Write R – Input and I/O data latched and read

W – Output and I/O data asserted

R/W – Bidirectional I/O data read/written

Example: Reading a byte from address offset 0 will latch
and read in value from PIO_IN[7:0] or PIO_IO[7:0]

Example: Reading a word from address offset 0 will latch
and read in a value from {PIO_IN[31:24],PIO_IN[23:16],
PIO_IN[15:8],PIO_IN[7:0]} or {PIO_IO[31:24],
PIO_IO[23:16],PIO_IO[15:8],PIO_IO[7:0]}

Table 6: PIO_TRI Register Bit Definition

Register Name Bit Access Mode Description

PIO_TRI DATA_WIDTH -1:0 Read/Write This is the PIO read/write tristate enable mask.

Setting a bit to 1 puts the corresponding PIO_IO pin in
output mode.

Setting a bit to 0 puts the corresponding PIO_IO pin in
input mode.

Example: Writing a byte 0xFF to address offset 3 will put
PIO_IO[31:24] pins in output mode.

Table 7: IRQ_MASK Register Bit Definition

Register Name Bit Access Mode Description

IRQ_MASK DATA_WIDTH -1:0 Read/Write This enables/disables interrupt generation and clears the
EDGE_CAPTURE register.

Setting a bit to 1 enables interrupt generation for the
corresponding PIO_IN/IO pin.

Setting a bit to 0 disables interrupt generation for the
corresponding PIO_IN/IO pin.

A change from 0 to 1 clears the corresponding
EDGE_CAPTURE register.

Example: Writing a word 0xFF000000 to address offset 0
will enable interrupt generation for PIO_IN/IO[7:0] and
disable it for PIO_IN/IO[31:8]

Timing Diagrams

12 LatticeMico GPIO

Timing Diagrams
The timing diagrams featured in Figure 5 through Figure 9 show the timing of
the GPIO’s WISHBONE and external signals.

Figure 5 shows how the GPIO’s master ports update the data in the internal
register.

Table 8: EDGE_CAPTURE Register Bit Definition

Register Name Bit Access Mode Description

EDGE_CAPTURE DATA_WIDTH -1:0 Read/Write A bit that is set to 1 indicates that an edge capture event
has occurred for that input port.

The bit is cleared by writing a 0 to the corresponding bit
in the EDGE_CAPTURE register or by disabling and then
enabling the corresponding bit in the IRQ_MASK register.

After an edge is detected, the EDGE_CAPTURE bit is
held at 1 until explicitly cleared.

Example: If a byte read from address offset 0 returns
0x01, then an edge capture event occurred for PIO_IN/
IO[0]

Figure 5: WISHBONE Master Writes Data in the Internal Register

Timing Diagrams

LatticeMico GPIO 13

Figure 6 shows how the GPIO’s master ports read the data in the internal
register.

Figure 7 shows how the GPIO generates interrupt requests when a signal is
high or low.

Figure 8 shows how the GPIO generates interrupt requests when the
PIO_DATA signal transitions from low to high. After an edge is detected, the
Edge_Capture bit is held at a 1 until cleared in the IRQ_MASK register.

Figure 6: WISHBONE Master Reads Data in the Internal Register

Figure 7: IRQ Generation (Level)

EBR Resource Utilization

14 LatticeMico GPIO

Figure 9 shows how the GPIO generates interrupt requests when the
PIO_DATA signal transitions from high to low.

EBR Resource Utilization
The LatticeMico GPIO uses no EBRs.

Figure 8: IRQ Generation (Rising Edge)

Figure 9: IRQ Generation (Falling Edge)

LatticeMico32 Microprocessor Software Support

LatticeMico GPIO 15

LatticeMico32 Microprocessor Software Support
This section describes the software support provided for the LatticeMico
GPIO component, including the GPIO usage model, its relationship with the
LatticeMico32 microprocessor, the device driver, and services. It also
provides software usage examples.

The support routines for the GPIO component are for use in a single-threaded
environment. If used in a multi-tasking environment, re-entrance protections
must be provided.

Usage Model

The GPIO component, as the name suggests, is general-purpose. This
component can be used for the following:

 An output device (output mode only)

 An input device (input mode only)

 An output and input device (output and input mode), which means using
separate input and output pins

 A bidirectional device, which means that the same sets of pins are used
for input and output by controlling the direction of the pins

Additionally, this device is capable of generating interrupt requests when the
following are detected on an input port:

 High level

 Positive edge

 Negative edge

The usage scenario depends on the end-user application and does not fit
within a well-known usage model. To handle interrupt from a GPIO that is
configured to trigger interrupts on edge detection, you can disable the
interrupt and perform processing later, since the edge-capture register
remains set on detecting the appropriate condition. Or, you can perform the
processing in the ISR and write a zero to the corresponding bit of the edge-
capture register to clear the condition. In the former case, the edge-capture
register is cleared when the interrupt is enabled again; in the latter case, the
edge-capture register is explicitly cleared by writing a zero to the
corresponding bit of the edge-capture register.

Effect of Endianness
LatticeMico32 is a big-endian microprocessor. Therefore, it is important to
understand the impact of endianness when the microprocessor interacts with
the component's registers. In a big-endian architecture, the most-significant
byte of a multi-byte object is stored at the lowest address, and the least-
significant byte of that object is stored at the highest address.

LatticeMico32 Microprocessor Software Support

16 LatticeMico GPIO

Assume that you have a design that contains a 32-bit GPIO that has been
assigned a base address of 0x80000100. The GPIO data register for input
and output of data is located at offset 0 from the base address. Byte 0 (bits 7-
0) of this GPIO data register is located at byte offset 0 (address 0x80000100),
while byte 3 (bits 31-24) is located at byte offset 3 from the base address
(0x800001003). Lets assume that the GPIO has received a value [31:0] =
32'h12345678 and the programmer is writing C code to read the 32-bit GPIO.

Figure 10 shows a sample code to read the 32-bit GPIO using byte reads (i.e.,
"unsigned char" or "signed char").

The execution of the code in Figure 10 will result in byte0 = 0x78, byte1 =
0x56, byte2 = 0x34, and byte3 = 0x12.

Now consider the sample code of Figure 11 in which the programmer is
reading the same 32-bit GPIO using word reads ("unsigned int" or "signed
int").

As mentioned, LatticeMico32 is a big-endian microprocessor. Therefore, from
the programmer's perspective, the least-significant byte of the GPIO will
appear in the most-significant location. The execution of the code in Figure 11
will result in 'word' being loaded with a value of 0x78563412.

Register Map Structure

The structure shown in Figure 5 depicts the register map layout for the GPIO
component. The elements are self-explanatory and are based on the register,
as shown in Table 4 on page 10. This structure, which is defined in the
MicoGPIO.h header file, enables you to directly access the GPIO registers, if
desired. It is used internally by the device driver for manipulating the GPIO.

Figure 10: Access to a 32-bit GPIO using byte reads

unsigned char byte0, byte1, byte2, byte3;
byte0 = *(volatile unsigned char *)0x80000100;
byte1 = *(volatile unsigned char *)0x80000101;
byte2 = *(volatile unsigned char *)0x80000102;
byte3 = *(volatile unsigned char *)0x80000103;

Figure 11: Access to a 32-bit GPIO using word reads

unsigned int word;
word = *(volatile unsigned int *)0x80000100;

LatticeMico32 Microprocessor Software Support

LatticeMico GPIO 17

Device Driver

This section describes the type definitions for instance-specific structures and
the GPIO device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the GPIO in the platform. These instances are defined in DDStructs.c. The
information for these instance-specific structures is filled in by the managed
build process, which extracts GPIO component-specific information from the
platform definition file. The members should not be manipulated directly
because the structure is used exclusively by the device driver. You can
retrieve a pointer to the instance-specific GPIO device context structure by
using the MicoGetDevice function call of the LatticeMico32 device lookup
service. Refer to the LatticeMico32 Software Developer User Guide for more
information on the device lookup service.

GPIO Device Context Structure

This structure, shown in Figure 13, contains GPIO component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the GPIO component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Figure 12: GPIO Register Map Structure

/*
* GPIO REGISTER MAPPING
*/
typedef struct st_MicoGPIO_t{
/* read/write: r-only for in-only GPIO, w-only for out-only
GPIO, r/w for tristates */
volatile unsigned int data;
/* read/write: tristate enable register for tristate GPIOs
*/
volatile unsigned int tristate;
/* read/write: sets irq mask for interrupt-enabled GPIOs */
volatile unsigned int irqMask;
/* read/write: applicable to GPIOs with edge-capture
capability */
volatile unsigned int edgeCapture;
}MicoGPIO_t;

LatticeMico32 Microprocessor Software Support

18 LatticeMico GPIO

Table 9 describes the parameters of the GPIO device context structure shown
in Figure 13.

Figure 13: GPIO Device Context Structure

typedef struct st_MicoGPIOCtx_t {
const char* name;
unsigned int base;
unsigned int intrLevel;
unsigned int output_only;
unsigned int input_only;
unsigned int in_and_out;
unsigned int tristate;
unsigned int data_width;
unsigned int input_width;
unsigned int output_width;
unsigned int intr_enable;
unsigned int wb_data_size;
DeviceReg_t lookupReg
void * prev;
void * next;

} MicoGPIOCtx_t;

Table 9: GPIO Device Context Structure Parameters

Parameter Data Type Description

name const char * GPIO instance name

base unsigned int MSB-assigned base address

intrLevel unsigned int MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0-31.

output_only unsigned int This value is 1 if the GPIO is configured as output only. Otherwise, it
is 0.

input_only unsigned int This value is 1 if the GPIO is configured as input only. Otherwise, it is
0.

in_and_out unsigned int This value is 1 if the GPIO is configured as input and output.
Otherwise, it is 0.

tristate unsigned int This value is 1 if the GPIO is configured as a tristate device. It is 0 if
the GPIO is not configured as a tristate device.

data_width unsigned int This value represents the instance-configured data width. It should
be treated as a valid value only if the GPIO is configured as input
only, output only, or tristate only.

input_width unsigned int This value represents the input width if the GPIO is configured for
input and output mode.

output_width unsigned int This value represents the output width if the GPIO is configured for
input and output mode.

LatticeMico32 Microprocessor Software Support

LatticeMico GPIO 19

intr_enable unsigned int This value is set to 0 if the GPIO is not configured to generate
interrupts. Otherwise, the value is 1.

wb_data_size unsigned int This value determines the width of the WISHBONE data bus.
Allowed values are 8 or 32.

lookupReg DeviceReg_t Used by the device driver to register the GPIO component instance
with the LatticeMico32 lookup service. Refer to the LatticeMico32
Software Developer User Guide for a description of the DeviceReg_t
data type.

prev void * Used internally by the lookup service

next void * Used internally by the lookup service

Table 9: GPIO Device Context Structure Parameters (Continued)

Parameter Data Type Description

Note

You may need to access the GPIO device registers directly, but some of these
registers are write-only. Implementing shadow registers in RAM can be an effective
way to replace this missing capability. Figure 14 provides an example of “shadow”
register code for handling write-only registers in LatticeMico System.

Figure 14: Example Shadow Register Code Fragment

MicoGPIOCtx_t *pGPIO_context;
 MicoGPIO_t gpioState, *pGPIO;

 // The GPIO is an OUTPUT only instance
 pGPIO = (pMicoGPIO_t *)(pGPIO_context->base);
 // initialize the "shadow" copy in RAM
 gpioState.gpioData = 0x1ff;
 // write the "shadow" values out to the I/O pins
 pGPIO->gpioData = gpioState.gpioData;

 // do a read of the "shadow" value and then clear the lsb
 gpioState->gpioData &= 0xFE;
 // write the new value to the I/O pins
 pGPIO->gpioData = pGpioState->gpioData;

 // ...

LatticeMico32 Microprocessor Software Support

20 LatticeMico GPIO

Functions
Since the GPIO is a general-purpose device and does not fit a well-defined
usage scenario, there are no predefined functions. However, there are
numerous macros provided in the MicoGPIO.h file that allow easy access to
the various GPIO registers using the GPIO context structure. These macros
are listed here, and their usage is illustrated in “Software Usage Examples” on
page 21.

Figure 15: Macros for Accessing GPIO Registers

/*
 * MACROS FOR ACCESSING GPIO REGISTERS
 *
 * NOTE: For the macros, the following rules apply:
 * X is a pointer to a valid MicoGPIOCtx_t structure.
 * Y is an unsigned int variable.
 */

/* reads data register */
#define MICO_GPIO_READ_DATA(X,Y) \

(Y)=((volatile MicoGPIO_t *)((X)->base))->data

/* writes data-register */
#define MICO_GPIO_WRITE_DATA(X,Y) \

((volatile MicoGPIO_t *)((X)->base))->data=(Y)

/* reads tristate register */
#define MICO_GPIO_READ_TRISTATE(X,Y) \

(Y) = ((volatile MicoGPIO_t *)((X)->base))->tristate

/* writes tristate register */
#define MICO_GPIO_WRITE_TRISTATE(X,Y) \

((volatile MicoGPIO_t *)((X)->base))->tristate = (Y)

/* reads irq-mask register */
#define MICO_GPIO_READ_IRQ_MASK(X,Y) \

(Y) = ((volatile MicoGPIO_t *)((X)->base))->irqMask

/* writes irq-mask register */
#define MICO_GPIO_WRITE_IRQ_MASK(X,Y) \

((volatile MicoGPIO_t *)((X)->base))->irqMask = (Y)

/* reads edge-capture register */
#define MICO_GPIO_READ_EDGE_CAPTURE(X,Y) \

(Y) = ((volatile MicoGPIO_t *)((X)->base))->edgeCapture

/* writes to the edge-capture register */
#define MICO_GPIO_WRITE_EDGE_CAPTURE(X,Y) \

((volatile MicoGPIO_t *)((X)->base))->edgeCapture = (Y)

LatticeMico32 Microprocessor Software Support

LatticeMico GPIO 21

Services
The GPIO device driver registers GPIO instances with the LatticeMico32
lookup service, using their instance names for device names and
“GPIODevice” as the device type.

For more information about using the lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Software Usage Examples
This section provides two code examples that demonstrate how to access the
GPIO registers.

Using the GPIO Register Structure
The code example shown in Figure 16 shows how to locate a GPIO device,
with 32 programmable I/Os, that is instantiated in the platform and how to
directly access the registers using the GPIO register structure.

Using Provided Macros
The code example shown in Figure 17 shows how to locate a GPIO device
that is instantiated in the platform and how to directly access the data register
using the macros provided in MicoGPIO.h header file.

Figure 16: Locating a GPIO and Accessing Its Registers

/* Fetch GPIO instance named "LED" */
volatile MicoGPIO_t *pGPIO;
MicoGPIOCtx_t *leds = (MicoGPIOCtx_t *)MicoGetDevice("led");
if(leds == 0) {

/* failed to find a component named "leds" */
return(-1);

}

/* get access to the GPIO registers */
pGPIO = (volatile MicoGPIO_t *)(leds->base);

/* write 0x80 to programmable I/O pins 7 through 0 via the data
register. */
pGPIO->data = 0x80000000;

Figure 17: Locating a GPIO and Accessing Its Data Register

/* Fetch GPIO instance named "LED" */
unsigned int iValue;
MicoGPIOCtx_t *leds = (MicoGPIOCtx_t *)MicoGetDevice("led");
if (leds == 0) {
/* failed to find a component named "leds" */
return(-1);
}

LatticeMico8 Microcontroller Software Support

22 LatticeMico GPIO

LatticeMico8 Microcontroller Software Support

This section describes the software support provided for the LatticeMico
GPIO component, its relationship with the LatticeMico8 microcontroller, the
device driver, and services. It also provides software usage examples.

The support routines for the GPIO component are for use in a single-threaded
environment. If used in a multi-tasking environment, re-entrance protections
must be provided.

Device Driver

This section describes the type definitions for instance-specific structures and
the GPIO device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the GPIO in the platform. These instances are defined in DDStructs.c. The
information for these instance-specific structures is filled in by the managed
build process, which extracts GPIO component-specific information from the
platform definition file. The members should not be manipulated directly
because the structure is used exclusively by the device driver.

GPIO Device Context Structure

This structure, shown in Figure 13, contains GPIO component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the GPIO component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Figure 18 shows the GPIO device context structure. Figure 10 describes the
parameters of the GPIO device context structure shown in Figure 18.

/* write 0x80 to programmable I/O pins 7 through 0 via the data
register. */
MICO_GPIO_WRITE_DATA(leds, 0x80000000);

/* read back the value in the data register */
MICO_GPIO_READ_DATA(leds, iValue);

Figure 17: Locating a GPIO and Accessing Its Data Register

LatticeMico8 Microcontroller Software Support

LatticeMico GPIO 23

Functions

Since the GPIO is a general-purpose device and does not fit a well-defined
usage scenario, there are no predefined functions. However, there are

Figure 18: GPIO Device Context Structure

const char* name;
 size_t base;
 unsigned char intrLevel;
 unsigned char output_only;
 unsigned char input_only;
 unsigned char in_and_out;
 unsigned char tristate;
 unsigned char data_width;
 unsigned char input_width;
 unsigned char output_width;
 unsigned char intr_enable;

Table 10: GPIO Device Context Structure Parameter

Parameter Data Type Description

name const char * GPIO instance name

base size_t MSB-assigned base address

intrLevel unsigned char MSB-assigned interrupt, if interrupts are used. If interrupts
are not used, this value is greater than 7. If interrupts are
used, the value is 0-7.

output_only unsigned char This value is 1 if the GPIO is configured as output only.
Otherwise, it is 0.

input_only unsigned char This value is 1 if the GPIO is configured as input only.
Otherwise, it is 0.

in_and_out unsigned char This value is 1 if the GPIO is configured as input and
output. Otherwise, it is 0.

tristate unsigned char This value is 1 if the GPIO is configured as a tristate device.
It is 0 if the GPIO is not configured as a tristate device.

data_width unsigned char This value represents the instance-configured data width. It
should be treated as a valid value only if the GPIO is
configured as input only, output only, or tristate only.

input_width unsigned char This value represents the input width if the GPIO is
configured for input and output mode.

output_width unsigned char This value represents the output width if the GPIO is
configured for input and output mode.

intr_enable unsigned char This value is set to 0 if the GPIO is not configured to
generate interrupts. Otherwise, the value is 1.

LatticeMico8 Microcontroller Software Support

24 LatticeMico GPIO

numerous macros provided in the MicoGPIO.h file that allow easy access to
the various GPIO registers using the GPIO context structure. These macros
are listed in Figure 19.

Figure 19: Macros for Accessing Each Byte of the Data Register
#define MICO_GPIO_READ_DATA_BYTE0(X, Y) \

(Y) = (__builtin_import((size_t)(X+GPIO_DATA_OFFSET+0)))

#define MICO_GPIO_READ_DATA_BYTE1(X, Y) \
(Y) = (__builtin_import((size_t)(X+GPIO_DATA_OFFSET+1)))

#define MICO_GPIO_READ_DATA_BYTE2(X, Y) \
(Y) = (__builtin_import((size_t)(X+GPIO_DATA_OFFSET+2)))

#define MICO_GPIO_READ_DATA_BYTE3(X, Y) \
(Y) = (__builtin_import((size_t)(X+GPIO_DATA_OFFSET+3)))

/* Macros for writing each byte of the Data Register */
#define MICO_GPIO_WRITE_DATA_BYTE0(X, Y) \

(__builtin_export((char)(Y),
(size_t)(X+GPIO_DATA_OFFSET+0)))

#define MICO_GPIO_WRITE_DATA_BYTE1(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_DATA_OFFSET+1)))

#define MICO_GPIO_WRITE_DATA_BYTE2(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_DATA_OFFSET+2)))

#define MICO_GPIO_WRITE_DATA_BYTE3(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_DATA_OFFSET+3)))

/* Macros for accessing each byte of the Tristate Register */
#define MICO_GPIO_READ_TRISTATE_BYTE0(X, Y) \

(Y) =
(__builtin_import((size_t)(X+GPIO_TRISTATE_OFFSET+0)))

LatticeMico8 Microcontroller Software Support

LatticeMico GPIO 25

Figure 19: Macros for Accessing Each Byte of the Data Register (Cont.)
#define MICO_GPIO_READ_TRISTATE_BYTE1(X, Y) \

(Y) =
(__builtin_import((size_t)(X+GPIO_TRISTATE_OFFSET+1)))

#define MICO_GPIO_READ_TRISTATE_BYTE2(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_TRISTATE_OFFSET+2)))

#define MICO_GPIO_READ_TRISTATE_BYTE3(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_TRISTATE_OFFSET+3)))

/* Macros for writing each byte of the Tristate Register */
#define MICO_GPIO_WRITE_TRISTATE_BYTE0(X, Y) \

(__builtin_export((char)(Y),
(size_t)(X+GPIO_TRISTATE_OFFSET+0)))

#define MICO_GPIO_WRITE_TRISTATE_BYTE1(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_TRISTATE_OFFSET+1)))

#define MICO_GPIO_WRITE_TRISTATE_BYTE2(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_TRISTATE_OFFSET+2)))

#define MICO_GPIO_WRITE_TRISTATE_BYTE3(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_TRISTATE_OFFSET+3)))

/* Macros for accessing each byte of the IRQ Mask Register */
#define MICO_GPIO_READ_IRQ_MASK_BYTE0(X, Y) \

(Y) =
(__builtin_import((size_t)(X+GPIO_IRQ_MASK_OFFSET+0)))

#define MICO_GPIO_READ_IRQ_MASK_BYTE1(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_IRQ_MASK_OFFSET+1)))

#define MICO_GPIO_READ_IRQ_MASK_BYTE2(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_IRQ_MASK_OFFSET+2)))

#define MICO_GPIO_READ_IRQ_MASK_BYTE3(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_IRQ_MASK_OFFSET+3)))

/* Macros for writing each byte of the IRQ Mask Register */
#define MICO_GPIO_WRITE_IRQ_MASK_BYTE0(X, Y) \

(__builtin_export((char)(Y),
(size_t)(X+GPIO_IRQ_MASK_OFFSET+0)))

#define MICO_GPIO_WRITE_IRQ_MASK_BYTE1(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_IRQ_MASK_OFFSET+1)))

LatticeMico8 Microcontroller Software Support

26 LatticeMico GPIO

Figure 19: Macros for Accessing Each Byte of the Data Register (Cont.)

Software Usage Examples

This section provides code example that demonstrate how to locate a GPIO
device that is instantiated in the platform and how to directly access the data
register using the macros provided in MicoGPIO.h header file.

#define MICO_GPIO_WRITE_IRQ_MASK_BYTE2(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_IRQ_MASK_OFFSET+2)))

#define MICO_GPIO_WRITE_IRQ_MASK_BYTE3(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_IRQ_MASK_OFFSET+3)))

/* Macros for accessing each byte of the Edge Capture
Register */
#define MICO_GPIO_READ_EDGE_CAPTURE_BYTE0(X, Y) \

(Y) =
(__builtin_import((size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+0)))

#define MICO_GPIO_READ_EDGE_CAPTURE_BYTE1(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+1)))

#define MICO_GPIO_READ_EDGE_CAPTURE_BYTE2(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+2)))

#define MICO_GPIO_READ_EDGE_CAPTURE_BYTE3(X, Y) \
(Y) =

(__builtin_import((size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+3)))

/* Macros for writing each byte of the Edge Capture Register
*/
#define MICO_GPIO_WRITE_EDGE_CAPTURE_BYTE0(X, Y) \

(__builtin_export((char)(Y),
(size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+0)))

#define MICO_GPIO_WRITE_EDGE_CAPTURE_BYTE1(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+1)))

#define MICO_GPIO_WRITE_EDGE_CAPTURE_BYTE2(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+2)))

#define MICO_GPIO_WRITE_EDGE_CAPTURE_BYTE3(X, Y) \
(__builtin_export((char)(Y),

(size_t)(X+GPIO_EDGE_CAPTURE_OFFSET+3)))

LatticeMico8 Microcontroller Software Support

LatticeMico GPIO 27

.

Figure 20: Locating a GPIO and Accessing Its Data Register

include "DDStructs.h"
#include "MicoGPIO.h"

int main (void)
{

/* Fetch GPIO instance named 'LED' */
MicoGPIOCtx_t *leds = &gpio_LED;
if (leds == 0) {

/* failed to find a component named "LED" */
return (-1);

}

/* Write 0x1 to programmable I/O pins via the data register
*/

MICO_GPIO_WRITE_DATA_BYTE0 (leds->base, 0x1);

/* Read back the value in the data register */
unsigned char iValue;
MICO_GPIO_READ_DATA_BYTE0 (leds->base, iValue);

return 0;
}

Revision History
Component Version Description

1.0 Initial release.

3.0 (7.0 SP2) Cleaned up code. No function change.

3.1 Updated the Edge Capture Register clean method.

Made IRQ Mask register readable.

3.2 (8.1 SP1) WISHBONE data bus size is configurable to 8 or 32 bits.
Register map is updated to accommodate 8/32-bit
WISHBONE data bus.

3.3 Added LatticeMico8 software support.

3.4 Fixed issues with synthesis when component is configured
for both input and output ports and the widths of each are
different.

3.4 Updated document with new corporate logo.

3.5 Improved modules naming system to support component
scanning function.

LatticeMico8 Microcontroller Software Support

28 LatticeMico GPIO

Trademarks
Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

	LatticeMico GPIO
	Version
	Features
	Functional Description
	Input Data Path
	Output Data Path
	Tristate Control
	Edge Capture
	Port Width and Port Type Settings
	IRQ Generation

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Definitions
	Timing Diagrams
	EBR Resource Utilization
	LatticeMico32 Microprocessor Software Support
	Usage Model
	Effect of Endianness
	Register Map Structure
	Device Driver
	Functions
	Services
	Software Usage Examples

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Functions
	Software Usage Examples

