= LATTICE

Version

Features

LatticeMico GPIO

The LatticeMico GPIO is a general-purpose input/output core that provides a
memory-mapped interface between a WISHBONE slave port and general-
purpose I/O ports. The I/O ports can connect to either on-chip or off-chip logic.

This document describes the 3.5 version of the LatticeMico GPIO.

The LatticeMico GPIO includes the following features:
WISHBONE B.3 interface
WISHBONE data base size configurable to 8 or 32 bits wide
Four transfer port types: tristate, input, output, independent input/output

Interrupt request (IRQ) generation on level-sensitive or edge-sensitive
input

Hardware interrupt mask register

Figure 1 shows the deployment of the LatticeMico GPIO within the FPGA and
its input and output ports.

For additional details about the WISHBONE bus, refer to the LatticeMico8
Processor Reference Manual or the LatticeMico32 Processor Reference
Manual.

Copyright © January 2014 Lattice Semiconductor Corporation.

Functional Description

Figure 1: Using GPIO to Connect LatticeMico to FPGA 1/O Pins

FPGA
LM8/LM32 <

I 1

Arbiter

Il

WISHBONE bus

IRQ

I
, cro 1

Output Input
register register

| i
v

Functional Description

The LatticeMico GPIO creates an interface between the LatticeMico RISC
processor and a simple bit-level control interface. The control bits can be
connected to either internal or external logic. Control of the input or output
pins is managed using four memory-mapped registers. The memory-mapped
registers control reading and writing the input/output bits, tristating the I/O
bits, interrupt masking, and an “edge event” status register.

The number, width, and behavior of the control registers change on the basis
of the configuration of the GPIO block. The GPIO block can be configured
with inputs only, outputs only, or both inputs and outputs. A bidirectional mode
with tristate control is also provided for bidirectional I/O pins that are available
on the device. Bidirectional mode 1/O can only be connected to FPGA 1/O
pins. They are not available for use with on-chip logic.

Reading the data register returns the value that is present on the input ports.
See “EBR Resource Utilization” on page 14 for details. Writing the PIO_DATA
register (see Table 4 on page 10) affects the value that is driven to the output
ports. Because these ports are independent, reading the data register does
not return the previously written data. Bidirectional ports, which are tristate,
are the exception to this behavior.

2 LatticeMico GPIO

Functional Description

Figure 2 is an internal block diagram of the GPIO showing its bidirectional
ports. It shows how the PIO_TRI register (see Table 4) determines whether
the PIO_DATA register is used to transfer data in or out.

Figure 2: LatticeMico GPIO Core Usage with Bidirectional Ports

w
I Read <
3 Data PIO_DATA
A Write | —< >
0 | Address PIO_IO [n - 1:0]
N
E
Direction
5 Control PIO_TRI
u
S

Input Data Path

Figure 6 on page 13 shows how the GPIO’s master ports read the data in the
internal register. The input port is connected to a D flip-flop that has an
asynchronous reset controlled by RST_I. The flip-flop is continuously clocked
by CLK_I. The output is connected directly to the PIO_DATA read register, as
shown in Figure 2. The value read from the PIO_DATA register is always
delayed one CLK_I cycle from the current state of the PIO_IN port. The
P10_DATA read cycle does not prevent the input flip-flop from changing state.

Output Data Path

The PIO_OUT is driven by D-type flip-flops. The D-type flip-flops are updated
when the processor writes to the PIO_DATA register. The data appears on the
output pins when the WISHBONE acknowledge signal (GPIO_ACK_O) goes
high.

Tristate Control

After the microprocessor writes to the PIO_TRI register, the pins are tristated
when the WISHBONE acknowledge signal (GPIO_ACK_O) goes high. The
data becomes valid in the same cycle as the GPIO_ACK_O.

LatticeMico GPIO

Functional Description

Edge Capture

The edge capture register is used to produce an interrupt, which corresponds
to the input bit where the edge was detected. The edge capture register is
read to identify which input bit caused the interrupt. If an edge capture
interrupt is not cleared, subsequent edge events on the same input bit will be
ignored. See “IRQ Generation” on page 5 for more information on interrupt
request priorities.

You can configure the GPIO to capture edges on the input ports. The type of
edges—which can include low-to-high transitions, high-to-low transitions, or
both—are defined and configured at the time that the processor platform is
generated. It is not possible to change the edge capture behavior at run time.
When an edge is detected by the input, the condition is indicated in the edge
capture register. The bit position corresponding to the input pin transitions
from 0 to 1.

The edge is detected when the input signal transitions between two
WISHBONE clock cycles (CLK_I).

Clearing a bit—that is, setting it to zero in the edge capture register—clears
the corresponding bit in the edge capture register. Setting a bit in the interrupt
mask register resets the corresponding bit in the edge capture register if it
was set.

Port Width and Port Type Settings

The Width and Port Type settings define the basic functionality of the GPIO
instance.

Port Width

The number of 1/O pins that can be controlled by the GPIO block ranges from
a minimum of one to a maximum of thirty-two. In the case of the mixed
independent input/output ports, the number of input ports can be different
than the number of output ports.

Port Type

The GPIO instance can be configured for output only, input only, mixed
independent input/output, and shared bidirectional input/output.

Output Port Type For the output port type, the PIO ports can drive output
only (PIO_OUT).

Input Port Type For the input port type, the PIO ports can capture input
only (PIO_IN).

LatticeMico GPIO

Functional Description

Independent Input and Output Port Type For the independent input and
output port type, the input and output ports are separate unidirectional
buses.The number of input pins can be set independently of the number of
output ports. The PIO_DATA register is wide enough to manage the larger of
the “Input Width” or “Output Width.” The input and output bits overlap in the
PI1O_DATA register, starting at the least-significant bit. The “Input Width”
P1O_IN ports and “Output Width” PIO_OUT ports are created for connection
to logic external to the GPIO block.

Tristate Port Type For the tristate port type, each PIO bit shares one device
pin for driving and capturing data. The direction of each pin is individually
selectable. An I/O pin becomes an input when the corresponding PIO_TRI
register bit is cleared, that is, 0. Whenever the WISHBONE RST_| signal is
asserted, the PIO_TRI register is cleared, forcing all PIO_IO pins to be inputs.

IRQ Generation

You can configure the LatticeMico GPIO to generate an interrupt request
(IRQ) on level-sensitive or edge-sensitive input conditions.

Level-sensitive — An IRQ is generated whenever a specific input is high
and interrupt requests are enabled for that input in the IRQ_MASK
register. The input pin should be held high until the interrupt condition is
cleared.

Edge-sensitive — An IRQ is generated whenever a specific bit in the edge
capture register is high and interrupt requests are enabled for that bit in
the IRQ_MASK register. The type of edge must be specified at platform
generation: positive edge, negative edge, or either edge. Clearing a bit—
that is, setting it to zero in the edge capture register—clears the
corresponding bit in the edge capture register. Setting a bit in the interrupt
mask register resets the corresponding bit in the edge capture register if it
was set.

Any /O in a GPIO can cause an interrupt request. The IRQ_MASK register of
the GPIO defines which I/Os can cause an interrupt request.

When the IRQ mode is turned off, the IRQ_MASK register does not exist.

Figure 3 shows a bidirectional LatticeMico GPIO similar to that shown in
Figure 2 but with the ability to generate interrupt requests. The GPIO in
Figure 3 can generate interrupt requests as a signal switches from 0 to 1 or 1
to 0 (edge capture).

Note

The GPIO interrupt generation logic is synchronized to the WISHBONE clock.
In order to ensure that the interrupt generation logic can capture a 0 to 1 or 1
to 0 transition, the external logic driving the GPIO line must ensure that the 1
to 0 or 0 to 1 transition is valid for at least one WISHBONE clock. If the GPIO
line transitions, for example, from 1 to 0 and back to 1 before a WISHBONE
clock edge, then the interrupt will not be generated because the 1 to 0 edge
was not captured.

LatticeMico GPIO

Configuration

Figure 3: LatticeMico GPIO Usage with IRQ (Edge Capture)

PN

Dat Read
ata
VIV .| | PIO_DATA
i < Z
S Address Write 4" ~ 7 >
g «—> P1O_10 [n - 1:0]
o Control Directi
N PIO_TRI irection
E &>
: .
u
S
R Interrupt Edge P
Q < mask capture M

For level-sensitive input, as shown in Figure 4, only active high is directly
supported.

Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico GPIO.

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico
GPIO through the Mico System Builder (MSB) interface.

HDL Parameters

Table 2 describes the parameters that appear in the HDL.
I/O Ports

Table 3 describes the input and output ports of the LatticeMico GPIO.
User Impact of Initial State

For the output port, the initial state is low after reset.

6 LatticeMico GPIO

Configuration

Figure 4: LatticeMico GPIO Usage with IRQ (Level Triggered)

PN

>

Read €
W Data
| > PIO_DATA
S Address Write
g [
9 Control Directi
N PIO_TRI irection
E &——»
y v
u
[
Interrupt Level
IRQ < mask detection

Table 1: GPIO Ul Parameters

Dialog Box Option
Instance Name

Base Address

Port Types
Output Ports Only

Input Ports Only

Tristate Ports

Both Input and Output

Port Width
Data Width

Description

Specifies the name of the GPIO instance.

Specifies the base address for the
device. The minimum byte alignment is

0X80.

Specifies the transfer mode of PIO ports

as output only.

Specifies the transfer mode of PIO ports

as input only.

Specifies the transfer mode of PIO ports
as tristate only.

Specifies the transfer mode of PIO ports

as input and output.

Allowable Values

0X80000000 — OXFFFFFF80

If other components are included
in the platform, the range of
allowable values will vary.

Specifies the width of the I/O port, in bits. 1 to 32

Alphanumeric and underscores

selected|not selected

selected|not selected

selected|not selected

selected|not selected

PIO_IO [n - 1:0]

Default Value
gpio
0X80000000

selected

not selected

not selected

not selected

LatticeMico GPIO

Configuration

Table 1: GPIO Ul Parameters (Continued)

Dialog Box Option Description Allowable Values
Input Width Specifies the input data bus width foran 1 to 32
independent input/output GPIO, in bits.
Output Width Specifies the output data bus width foran 1 to 32
independent input/output GPIO, in bits.
IRQ Mode
IRQ Mode When selected, provides IRQ signal selected|not selected
output when a specified event occurs on
input ports
Level When selected, generates an IRQ selected|not selected
whenever a specific input is high and
interrupts have been enabled for that
input in the IRQ-MASK register.
Edge When selected, generates an IRQ selected|not selected

whenever a specific bit in the edge
capture register is high and interrupts
have been enabled for that bit in the IRQ-

MASK register.

Edge Response

Either Edge When selected, generates an IRQ on selected|not selected
either low-to-high or high-to-low
transitions.

Positive Edge When selected, generates an IRQ on selected|not selected

low-to-high transitions.

Negative Edge When selected, generates an IRQ on selected|not selected
high-to-low transitions.

WISHBONE Configuration

WISHBONE Data Bus Specifies the WISHBONE data bus width 8, 32
Width in bits

Table 2: GPIO HDL Parameters

Parameter Name Description

GPIO_WB_ADR_WIDTH Defines the width of WISHBONE Address
Bus

GPIO_WB_DAT WIDTH Defines the width of WISHBONE Data Bus

INPUT_PORTS_ONLY A value of 1 defines the transfer mode for PIO

ports as input only.

OUTPUT_PORTS_ONLY A value of 1 defines the transfer mode for PIO
ports as output only.

TRISTATE_PORTS A value of 1 defines the transfer mode for PIO
ports as tristate only.

Default Value
1

not selected

not selected

selected

not selected

selected

not selected

32

Allowable Values

8|32

8|32
01

01

01

LatticeMico GPIO

Configuration

Table 2: GPIO HDL Parameters (Continued)

Parameter Name

BOTH_INPUT_AND_OUTPUT

DATA_WIDTH
INPUT_WIDTH

OUTPUT_WIDTH

IRQ_MODE

LEVEL

EDGE

EITHER_EDGE_IRQ

POSE_EDGE_IRQ

NEGE_EDGE_IRQ

Description

A value of 1 defines the transfer mode for PIO
ports as input and output.

Defines the width of the I/O port.

Defines the input data bus width for an
independent input/output GPIO.

Defines the output data bus width for an
independent input/output GPIO.

A value of 1 establishes IRQ_MODE, providing
IRQ signal output when a specified event occurs
on input ports.

With a value of 1, an IRQ is generated whenever
a specific input is high and interrupts have been
enabled for that input in the IRQ MASK register.

With a value of 1, an IRQ is generated whenever
a specific bit in the edge capture register is high
and interrupts have been enabled for that bit in the
IRQ MASK register.

With a value of 1, an IRQ is generated on either
low-to-high or high-to-low transitions.

With a value of 1, an IRQ is generated on low-to-
high transitions.

Allowable Values

01

1to 32
11032

11032

01

01

01

01

0|1

With a value of 1, an IRQ is generated on high-to- 0 |1

low transitions.

Table 3: GPIO I/O Ports

Port Name Active Direction
System Clock and Reset

CLK | — |

RST_|I High I

WISHBONE Interface

GPIO_ADR_I — X
GPIO_CYC._I High X
GPIO_DAT | — I X
GPIO_LOCK | High I X
GPIO_SEL_| High X

Initial State

Description

System clock

System reset

Address input array, the address generated by
the master

Cycle input. When asserted, it indicates that a
bus cycle is in progress.

Data input array, valid for a write request

Lock input. If asserted, the current cycle
becomes uninterruptible.

Select input array, which indicates where the
valid data is expected on a data bus.

LatticeMico GPIO

Register Definitions

Table 3: GPIO /O Ports (Continued)

Port Name Active Direction Initial State Description

GPIO_STB_|I High I X Strobe input. When asserted, indicates that the
SLAVE is selected.

GPIO_WE_| — X Write signal. Value of 1 is used for a write and 0
for a read.

GPIO_ACK_O High (0] 0 Acknowledge output. When asserted, indicates

normal cycle termination.
GPIO_DAT_O — (0] 0 Data output array
PIO Interface Ports

PIO_IN — X Appears in input mode or both input and output
mode. The GPIO’s number of input bits is
configurable.

PIO_OUT — 0] 0 Appears in output mode or both input and output
mode. The GPIO’s number of output bits is
configurable.

PIO_IO — I/0 0/X Appears in tristate mode only. Each GPIO bit
shares one device pin for driving and capturing
data. The direction of each pin is individually
selectable. The PIO_IO is an input when the
corresponding PIO_TRI register bit is cleared (0).

Other Auto-connected Internal Signals

IRQ_O High (0] 0 Interrupt request outputs. The GPIO can be
configured to generate an IRQ on certain input
conditions.

Register Definitions

The LatticeMico GPIO includes the registers shown in Table 4. See “Software
Usage Examples” on page 21 for examples that show how to access these
registers in order to access the programmable 1/O pins.

Table 4: Register Map
Address Offset within Register Word

Register Name Offset Description
0x0 0x1 0x2 0x3
PIO_DATA 0x00 PIO_IN/OUT/ | PIO_IN/OUT/ | PIO_IN/OUT/ | PIO_IN/OUT/ | I/O Data
10[7:0] 10[15:8] 10[23:16] 10[31:24]
PIO_TRI 0x04 [7:0] [15:8] [23:16] [31:24] Tristate control
IRQ_MASK 0x08 [7:0] [15:8] [23:16] [31:24] IRQ Mask
EDGE_CAPTURE | 0x0C [7:0] [15:8] [23:16] [31:24] Edge Capture

10 LatticeMico GPIO

Register Definitions

Table 5 through Table 8 provide details about each register in the LatticeMico
GPIO.

Table 5: PIO_DATA Register Bit Definition

Register Name Bit Access Mode Description

PIO_DATA DATA WIDTH-1:0 Read/Write R — Input and I/O data latched and read
W — Output and I/O data asserted
R/W — Bidirectional I/O data read/written

Example: Reading a byte from address offset 0 will latch
and read in value from PIO_IN[7:0] or PIO_IO[7:0]

Example: Reading a word from address offset 0 will latch
and read in a value from {PIO_IN[31:24],PIO_IN[23:16],
PIO_IN[15:8],PIO_IN[7:0]} or {P1O_IO[31:24],
P1O_l10[23:16],PIO_lO[15:8],PIO_IO[7:0]}

Table 6: PIO_TRI Register Bit Definition

Register Name Bit Access Mode Description

PIO_TRI DATA_WIDTH -1:0 Read/Write This is the PIO read/write tristate enable mask.

Setting a bit to 1 puts the corresponding PIO_IO pin in
output mode.

Setting a bit to 0 puts the corresponding PIO_IO pin in
input mode.

Example: Writing a byte OxFF to address offset 3 will put
PIO_I0[31:24] pins in output mode.

Table 7: IRQ_MASK Register Bit Definition

Register Name Bit Access Mode Description

IRQ_MASK DATA_WIDTH -1:0 Read/Write This enables/disables interrupt generation and clears the
EDGE_CAPTURE register.

Setting a bit to 1 enables interrupt generation for the
corresponding PIO_IN/IO pin.

Setting a bit to 0 disables interrupt generation for the
corresponding PIO_IN/IO pin.

A change from 0 to 1 clears the corresponding
EDGE_CAPTURE register.

Example: Writing a word OxFF000000 to address offset 0
will enable interrupt generation for PIO_IN/IO[7:0] and
disable it for PIO_IN/IO[31:8]

LatticeMico GPIO 11

Timing Diagrams

Table 8: EDGE_CAPTURE Register Bit Definition

Register Name Bit Access Mode

EDGE_CAPTURE DATA_WIDTH-1:0 Read/\Write

Timing Diagrams

Description

A bit that is set to 1

indicates that an edge capture event

has occurred for that input port.

The bit is cleared by writing a 0 to the corresponding bit
in the EDGE_CAPTURE register or by disabling and then
enabling the corresponding bit in the IRQ_MASK register.

After an edge is detected, the EDGE_CAPTURE bit is
held at 1 until explicitly cleared.

Example: If a byte read from address offset 0 returns
0x01, then an edge capture event occurred for PIO_IN/

10[0]

The timing diagrams featured in Figure 5 through Figure 9 show the timing of
the GPIO’s WISHBONE and external signals.

Figure 5 shows how the GPIO’s master ports update the data in the internal

register.

Figure 5: WISHBONE Master Writes Data in the Internal Register

o | L L LU

GPIO_STB_|

GPIO_ACK_O

GPIO_CYC_|

GPIO_WE_|

GPIO_ADR_|

X valid

GPIO_DAT_|

X valid

Internal_REG

valid

12

LatticeMico GPIO

Timing Diagrams

Figure 6 shows how the GPIO’s master ports read the data in the internal
register.

Figure 6: WISHBONE Master Reads Data in the Internal Register

o | L L L UL
e

GPIO_STB_|

GPIO_ACK_O

GPIO CYC | ‘

GPIO_WE_|

GPIO_ADR_| X vaplid

ils)

Internal REG X v

GPIO_DAT_O { valid

Figure 7 shows how the GPIO generates interrupt requests when a signal is
high or low.

Figure 7: IRQ Generation (Level)

o LU HOOUULHLOULL

PIO_TRI(Cptional)

FIO_10(n) |

PIO_DATA(N)

IRG_MASK

| R

IRC (LEVEL)

Figure 8 shows how the GPIO generates interrupt requests when the
P1O_DATA signal transitions from low to high. After an edge is detected, the
Edge_Capture bit is held at a 1 until cleared in the IRQ_MASK register.

LatticeMico GPIO 13

EBR Resource Utilization

Figure 8: IRQ Generation (Rising Edge)

ewo [T

’_I
-

PIO_IO () //A

PIO_DATALR) %‘%

PIO_DATA_DLY(r)

Edge_Capture

IRQ_MASK W%

IR %H

IR (rising edge)

AWAY AVAVN N

Figure 9 shows how the GPIO generates interrupt requests when the

P10O_DATA signal transitions from high to low.

Figure 9: IRQ Generation (Falling Edge)

o JUUULUUULLL
PIO_TRI(Optional)
PIC_IO(n) /)
PIO_DATA(N) %%
PIO_DATA_DLY(n) W

H
—

Edge Capture

IRQ //%

IRQ (falling edge)

EBR Resource Utilization
The LatticeMico GPIO uses no EBRs.

14

LatticeMico GPIO

LatticeMico32 Microprocessor Software Support

LatticeMico32 Microprocessor Software Support

This section describes the software support provided for the LatticeMico
GPIO component, including the GPIO usage model, its relationship with the
LatticeMico32 microprocessor, the device driver, and services. It also
provides software usage examples.

The support routines for the GPIO component are for use in a single-threaded
environment. If used in a multi-tasking environment, re-entrance protections
must be provided.

Usage Model

The GPIO component, as the name suggests, is general-purpose. This
component can be used for the following:

An output device (output mode only)
An input device (input mode only)

An output and input device (output and input mode), which means using
separate input and output pins

A bidirectional device, which means that the same sets of pins are used
for input and output by controlling the direction of the pins

Additionally, this device is capable of generating interrupt requests when the
following are detected on an input port:

High level
Positive edge

Negative edge

The usage scenario depends on the end-user application and does not fit
within a well-known usage model. To handle interrupt from a GPIO that is
configured to trigger interrupts on edge detection, you can disable the
interrupt and perform processing later, since the edge-capture register
remains set on detecting the appropriate condition. Or, you can perform the
processing in the ISR and write a zero to the corresponding bit of the edge-
capture register to clear the condition. In the former case, the edge-capture
register is cleared when the interrupt is enabled again; in the latter case, the
edge-capture register is explicitly cleared by writing a zero to the
corresponding bit of the edge-capture register.

Effect of Endianness

LatticeMico32 is a big-endian microprocessor. Therefore, it is important to
understand the impact of endianness when the microprocessor interacts with
the component's registers. In a big-endian architecture, the most-significant
byte of a multi-byte object is stored at the lowest address, and the least-
significant byte of that object is stored at the highest address.

LatticeMico GPIO

15

LatticeMico32 Microprocessor Software Support

Assume that you have a design that contains a 32-bit GPIO that has been
assigned a base address of 0x80000100. The GPIO data register for input
and output of data is located at offset O from the base address. Byte 0 (bits 7-
0) of this GPIO data register is located at byte offset 0 (address 0x80000100),
while byte 3 (bits 31-24) is located at byte offset 3 from the base address
(0x800001003). Lets assume that the GPIO has received a value [31:0] =
32'h12345678 and the programmer is writing C code to read the 32-bit GPIO.

Figure 10 shows a sample code to read the 32-bit GPIO using byte reads (i.e.,
"unsigned char" or "signed char").

Figure 10: Access to a 32-bit GPIO using byte reads

unsigned char byte0O, bytel, byte2, byte3;

byte0 = *(volatile unsigned char *)0x80000100;
bytel = *(volatile unsigned char *)0x80000101;
byte2 = *(volatile unsigned char *)0x80000102;
byte3 *(volatile unsigned char *)0x80000103;

The execution of the code in Figure 10 will result in byte0 = 0x78, byte1 =
0x56, byte2 = 0x34, and byte3 = 0x12.

Now consider the sample code of Figure 11 in which the programmer is
reading the same 32-bit GPIO using word reads ("unsigned int" or "signed
int").

Figure 11: Access to a 32-bit GPIO using word reads

unsigned int word;
word = *(volatile unsigned int *)0x80000100;

As mentioned, LatticeMico32 is a big-endian microprocessor. Therefore, from
the programmer's perspective, the least-significant byte of the GPIO will
appear in the most-significant location. The execution of the code in Figure 11
will result in 'word' being loaded with a value of 0x78563412.

Register Map Structure

The structure shown in Figure 5 depicts the register map layout for the GPIO
component. The elements are self-explanatory and are based on the register,
as shown in Table 4 on page 10. This structure, which is defined in the
MicoGPIO.h header file, enables you to directly access the GPIO registers, if
desired. It is used internally by the device driver for manipulating the GPIO.

16 LatticeMico GPIO

LatticeMico32 Microprocessor Software Support

Figure 12: GPIO Register Map Structure

/*

* GPIO REGISTER MAPPING

*/

typedef struct st MicoGPIO t({

/* read/write: r-only for in-only GPIO, w-only for out-only
GPIO, r/w for tristates */

volatile unsigned int data;

/* read/write: tristate enable register for tristate GPIOs
*/

volatile unsigned int tristate;

/* read/write: sets irgq mask for interrupt-enabled GPIOs */
volatile unsigned int irgMask;

/* read/write: applicable to GPIOs with edge-capture
capability */

volatile unsigned int edgeCapture;

}MicoGPIO_ t;

Device Driver

This section describes the type definitions for instance-specific structures and
the GPIO device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the GPIO in the platform. These instances are defined in DDStructs.c. The
information for these instance-specific structures is filled in by the managed
build process, which extracts GPIO component-specific information from the
platform definition file. The members should not be manipulated directly
because the structure is used exclusively by the device driver. You can
retrieve a pointer to the instance-specific GPIO device context structure by
using the MicoGetDevice function call of the LatticeMico32 device lookup
service. Refer to the LatticeMico32 Software Developer User Guide for more
information on the device lookup service.

GPIO Device Context Structure

This structure, shown in Figure 13, contains GPIO component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the GPIO component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

LatticeMico GPIO

17

LatticeMico32 Microprocessor Software Support

Figure 13: GPIO Device Context Structure

typedef struct st MicoGPIOCtx t ({

const char* name;
unsigned int base;
unsigned int intrLevel;
unsigned int output only;
unsigned int input only;
unsigned int in_and out;
unsigned int tristate;
unsigned int data width;
unsigned int input width;
unsigned int output width;
unsigned int intr enable;
unsigned int wb data size;
DeviceReg t lookupReg
void * prev;

void * next;

} MicoGPIOCtx t;

Table 9 describes the parameters of the GPIO device context structure shown
in Figure 13.

Table 9: GPIO Device Context Structure Parameters

Parameter

name

base

intrLevel

output_only

input_only

in_and_out

tristate

data_width

input_width

output_width

Data Type

const char *

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

Description
GPIO instance name
MSB-assigned base address

MSB-assigned interrupt, if interrupts are used. If interrupts are not
used, this value is greater than 31. If interrupts are used, the value is
0-31.

This value is 1 if the GPIO is configured as output only. Otherwise, it
is 0.

This value is 1 if the GPIO is configured as input only. Otherwise, it is
0.

This value is 1 if the GPIO is configured as input and output.
Otherwise, it is 0.

This value is 1 if the GPIO is configured as a tristate device. Itis O if
the GPIO is not configured as a tristate device.

This value represents the instance-configured data width. It should
be treated as a valid value only if the GPIO is configured as input
only, output only, or tristate only.

This value represents the input width if the GPIO is configured for
input and output mode.

This value represents the output width if the GPIO is configured for
input and output mode.

18

LatticeMico GPIO

LatticeMico32 Microprocessor Software Support

Table 9: GPIO Device Context Structure Parameters (Continued)

Parameter Data Type Description

intr_enable unsigned int This value is set to 0 if the GPIO is not configured to generate
interrupts. Otherwise, the value is 1.

wb_data_size unsigned int This value determines the width of the WISHBONE data bus.
Allowed values are 8 or 32.

lookupReg DeviceReg_t Used by the device driver to register the GPIO component instance
with the LatticeMico32 lookup service. Refer to the LatticeMico32
Software Developer User Guide for a description of the DeviceReg_t

data type.
prev void * Used internally by the lookup service
next void * Used internally by the lookup service

Note

You may need to access the GPIO device registers directly, but some of these
registers are write-only. Implementing shadow registers in RAM can be an effective
way to replace this missing capability. Figure 14 provides an example of “shadow”
register code for handling write-only registers in LatticeMico System.

Figure 14: Example Shadow Register Code Fragment

MicoGPIOCtx t *pGPIO context;
MicoGPIO t gpioState, *pGPIO;

// The GPIO is an OUTPUT only instance

pGPIO = (pMicoGPIO_t *) (PGPIO context->base);

// initialize the "shadow" copy in RAM
gpioState.gpioData = 0x1ff;

// write the "shadow" values out to the I/O pins
pGPIO->gpioData = gpioState.gpioData;

// do a read of the "shadow" value and then clear the 1lsb
gpioState->gpioData &= OxFE;

// write the new value to the I/0 pins

pGPIO->gpioData = pGpioState->gpioData;

//

LatticeMico GPIO 19

LatticeMico32 Microprocessor Software Support

Functions

Since the GPIO is a general-purpose device and does not fit a well-defined
usage scenario, there are no predefined functions. However, there are
numerous macros provided in the MicoGPIO.h file that allow easy access to
the various GPIO registers using the GPIO context structure. These macros
are listed here, and their usage is illustrated in “Software Usage Examples” on
page 21.

Figure 15: Macros for Accessing GPIO Registers

MACROS FOR ACCESSING GPIO REGISTERS

NOTE: For the macros, the following rules apply:
X is a pointer to a valid MicoGPIOCtx t structure.
Y is an unsigned int variable.

/

/* reads data register */
#define MICO GPIO READ DATA (X, Y) \
(Y)=((volatile MicoGPIO t *) ((X)->base))->data

/* writes data-register */
#define MICO GPIO WRITE DATA (X,Y) \
((volatile MicoGPIO_t *) ((X)->base))->data=(Y)

/* reads tristate register */
#define MICO GPIO READ TRISTATE (X,Y) \
(Y) = ((volatile MicoGPIO t *) ((X)->base))->tristate

/* writes tristate register */
#define MICO GPIO WRITE TRISTATE (X,Y) \
((volatile MicoGPIO_t *) ((X)->base))->tristate = (Y)

/* reads irg-mask register */
#define MICO GPIO READ IRQ MASK (X,Y) \
(Y) = ((volatile MicoGPIO t *) ((X)->base))->irgMask

/* writes irg-mask register */
#define MICO GPIO WRITE IRQ MASK (X,Y) \
((volatile MicoGPIO t *) ((X)->base))->irgMask = (Y)

/* reads edge-capture register */
#define MICO GPIO READ EDGE CAPTURE (X,Y) \
(Y) = ((volatile MicoGPIO t *) ((X)->base))->edgeCapture

/* writes to the edge-capture register */
#define MICO GPIO WRITE EDGE CAPTURE (X,Y) \
((volatile MicoGPIO_t *) ((X)->base))->edgeCapture = (Y)

20 LatticeMico GPIO

LatticeMico32 Microprocessor Software Support

Services

The GPIO device driver registers GPIO instances with the LatticeMico32
lookup service, using their instance names for device names and
“GPIODevice” as the device type.

For more information about using the lookup service, refer to the
LatticeMico32 Software Developer User Guide.

Software Usage Examples

This section provides two code examples that demonstrate how to access the
GPIO registers.

Using the GPIO Register Structure

The code example shown in Figure 16 shows how to locate a GPIO device,
with 32 programmable 1/Os, that is instantiated in the platform and how to
directly access the registers using the GPIO register structure.

Figure 16: Locating a GPIO and Accessing Its Registers

/* Fetch GPIO instance named "LED" */
volatile MicoGPIO t *pGPIO;
MicoGPIOCtx t *leds = (MicoGPIOCtx t *)MicoGetDevice ("led");
if(leds == 0) {
/* failed to find a component named "leds" */
return(-1);

}

/* get access to the GPIO registers */
PGPIO = (volatile MicoGPIO t *) (leds->base);

/* write 0x80 to programmable I/O pins 7 through 0 via the data
register. */
pGPIO->data = 0x80000000;

Using Provided Macros

The code example shown in Figure 17 shows how to locate a GPIO device
that is instantiated in the platform and how to directly access the data register
using the macros provided in MicoGPIO.h header file.

Figure 17: Locating a GPIO and Accessing Its Data Register

/* Fetch GPIO instance named "LED" */

unsigned int iValue;

MicoGPIOCtx t *leds = (MicoGPIOCtx t *)MicoGetDevice ("led");
if (leds == 0) {

/* failed to find a component named "leds" */

return (-1);

}

LatticeMico GPIO

21

LatticeMico8 Microcontroller Software Support

Figure 17: Locating a GPIO and Accessing Its Data Register

/* write 0x80 to programmable I/O pins 7 through 0 via the data
register. */
MICO GPIO WRITE DATA (leds, 0x80000000) ;

/* read back the value in the data register */
MICO GPIO READ DATA (leds, iValue);

LatticeMico8 Microcontroller Software Support

This section describes the software support provided for the LatticeMico
GPIO component, its relationship with the LatticeMico8 microcontroller, the
device driver, and services. It also provides software usage examples.

The support routines for the GPIO component are for use in a single-threaded
environment. If used in a multi-tasking environment, re-entrance protections
must be provided.

Device Driver

This section describes the type definitions for instance-specific structures and
the GPIO device context structure.

Instance-Specific Structures

The MSB managed build process instantiates a unique structure per instance
of the GPIO in the platform. These instances are defined in DDStructs.c. The
information for these instance-specific structures is filled in by the managed
build process, which extracts GPIO component-specific information from the
platform definition file. The members should not be manipulated directly
because the structure is used exclusively by the device driver.

GPIO Device Context Structure

This structure, shown in Figure 13, contains GPIO component-specific
information and is dynamically generated in the DDStructs.h header file. This
information is largely filled in by the MSB managed build process, which
extracts the GPIO component-specific information from the platform definition
file. The members should not be manipulated directly, because this structure
is for exclusive use by the device driver.

Figure 18 shows the GPIO device context structure. Figure 10 describes the
parameters of the GPIO device context structure shown in Figure 18.

22

LatticeMico GPIO

LatticeMico8 Microcontroller Software Support

Figure 18: GPIO Device Context Structure

const char*
size t
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

name;

base;
char
char
char
char
char
char
char
char
char

intrLevel;
output only;

input only;

in and out;
tristate;

data width;
input width;
output width;
intr enable;

Table 10: GPIO Device Context Structure Parameter

Parameter

name

base

intrLevel

output_only

input_only

in_and_out

tristate

data_width

input_width

output_width

intr_enable

Data Type

const char *

size t

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

Functions

Description
GPIO instance name
MSB-assigned base address

MSB-assigned interrupt, if interrupts are used. If interrupts
are not used, this value is greater than 7. If interrupts are
used, the value is 0-7.

This value is 1 if the GPIO is configured as output only.
Otherwise, it is 0.

This value is 1 if the GPIO is configured as input only.
Otherwise, it is 0.

This value is 1 if the GPIO is configured as input and
output. Otherwise, it is 0.

This value is 1 if the GPIO is configured as a tristate device.
Itis 0 if the GPIO is not configured as a tristate device.

This value represents the instance-configured data width. It
should be treated as a valid value only if the GPIO is
configured as input only, output only, or tristate only.

This value represents the input width if the GPIO is
configured for input and output mode.

This value represents the output width if the GPIO is
configured for input and output mode.

This value is set to 0 if the GPIO is not configured to
generate interrupts. Otherwise, the value is 1.

Since the GPIO is a general-purpose device and does not fit a well-defined
usage scenario, there are no predefined functions. However, there are

LatticeMico GPIO

23

LatticeMico8 Microcontroller Software Support

numerous macros provided in the MicoGPIO.h file that allow easy access to
the various GPIO registers using the GPIO context structure. These macros

are listed in Figure 19.

Figure 19: Macros for Accessing Each Byte of the Data Register

#define MICO GPIO READ DATA BYTEO (X, Y) \

(Y) = (__builtin import((size t) (X+GPIO DATA OFFSET+0)))

#define MICO GPIO READ DATA BYTEL (X, Y) \

(Y) = (_builtin import ((size t) (X+GPIO DATA OFFSET+1)))

#define MICO GPIO READ DATA BYTE2 (X, Y) \

(Y) = (__builtin import ((size t) (X+GPIO DATA OFFSET+2)))

#define MICO GPIO READ DATA BYTE3 (X, Y) \

(Y) = (_builtin import ((size t) (X+GPIO DATA OFFSET+3)))

/* Macros for writing each byte of the Data Register */

#define MICO GPIO WRITE DATA BYTEO (X, Y) \
(_builtin export ((char) (Y),
(size_t) (X+GPTO_DATA OFFSET+0)))

#define MICO GPIO WRITE DATA BYTEL (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO DATA OFFSET+1)))

#define MICO GPIO WRITE DATA BYTE2 (X, Y) \
(_builtin export ((char) (Y),
(size t) (X+GPIO DATA OFFSET+2)))

#define MICO GPIO WRITE DATA BYTE3 (X, Y) \
(_builtin export ((char) (Y),
(size_t) (X+GPTO_DATA OFFSET+3)))

/* Macros for accessing each byte of the Tristate Register */

#define MICO GPIO READ TRISTATE BYTEO (X, Y) \
(Y) =

(_builtin import ((size t) (X+GPIO TRISTATE OFFSET+0)))

24

LatticeMico GPIO

LatticeMico8 Microcontroller Software Support

Figure 19: Macros for Accessing Each Byte of the Data Register (Cont.)
#define MICO GPIO READ TRISTATE BYTEL (X, Y) \
(Y) =
(__builtin import((size t) (X+GPIO TRISTATE OFFSET+1)))

#define MICO GPIO READ TRISTATE BYTE2 (X, Y) \
(Y) =
(__builtin import((size t) (X+GPIO_ TRISTATE OFFSET+2)))

#define MICO_GPIO_READ_TRISTATE_BYTE3(X, Y) \
(Y) =
(__builtin import((size t) (X+GPIO TRISTATE OFFSET+3)))

/* Macros for writing each byte of the Tristate Register */
#define MICO GPIO WRITE TRISTATE BYTEO (X, Y) \

(__builtin export ((char) (Y),
(size t) (X+GPIO TRISTATE OFFSET+0)))

#define MICO GPIO WRITE TRISTATE BYTEL (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPTO_TRISTATE OFFSET+1)))

#define MICO_GPIO_WRITE_TRISTATE_BYTEZ(X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO TRISTATE OFFSET+2)))

#define MICO GPIO WRITE TRISTATE BYTE3 (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO TRISTATE OFFSET+3)))

/* Macros for accessing each byte of the IRQ Mask Register */
#define MICO GPIO READ IRQ MASK BYTEO (X, Y) \

(Y) =
(__builtin import ((size t) (X+GPIO IRQ MASK OFFSET+0)))

#define MICO GPIO READ IRQ MASK BYTEL (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO_IRQ MASK OFFSET+1)))

#define MICO GPIO READ IRQ MASK BYTE2 (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO TRQ MASK OFFSET+2)))

#define MICO GPIO READ IRQ MASK BYTE3 (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO IRQ MASK OFFSET+3)))

/* Macros for writing each byte of the IRQ Mask Register */

#define MICO GPIO WRITE IRQ MASK BYTEO (X, Y) \
(__builtin export ((char) (Y),

(size t) (X+GPIO IRQ MASK OFFSET+0)))

#define MICO GPIO WRITE IRQ MASK BYTEL (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO_ IRQ MASK OFFSET+1)))

LatticeMico GPIO 25

LatticeMico8 Microcontroller Software Support

Figure 19: Macros for Accessing Each Byte of the Data Register (Cont.)
#define MICO GPIO WRITE IRQ MASK BYTE2 (X, Y) \
(__builtin export((char) (Y),
(size t) (X+GPIO IRQ MASK OFFSET+2)))

#define MICO GPIO WRITE IRQ MASK BYTE3 (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO IRQ MASK OFFSET+3)))

/* Macros for accessing each byte of the Edge Capture
Register */
#define MICO GPIO READ EDGE CAPTURE BYTEO (X, Y) \
(Y) =
(_builtin import ((size t) (X+GPIO EDGE CAPTURE OFFSET+0)))

#define MICO GPIO READ EDGE CAPTURE BYTEL (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO EDGE_CAPTURE OFFSET+1)))

#define MICO GPIO READ EDGE CAPTURE BYTE2 (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO_EDGE CAPTURE OFFSET+2)))

#define MICO GPIO READ EDGE CAPTURE BYTE3 (X, Y) \
(Y) =
(__builtin import ((size t) (X+GPIO EDGE_CAPTURE OFFSET+3)))

/* Macros for writing each byte of the Edge Capture Register

*/

#define MICO GPIO WRITE EDGE CAPTURE BYTEO (X, Y) \
(__builtin export ((char) (Y),

(size_t) (X+GPIO EDGE_CAPTURE OFFSET+0)))

#define MICO GPIO WRITE EDGE CAPTURE BYTEL (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPTO EDGE_CAPTURE OFFSET+1)))

#define MICO GPIO WRITE EDGE CAPTURE BYTE2 (X, Y) \
(__builtin export((char) (Y),
(size t) (X+GPIO EDGE CAPTURE OFFSET+2)))

#define MICO GPIO WRITE EDGE CAPTURE BYTE3 (X, Y) \
(__builtin export ((char) (Y),
(size t) (X+GPIO EDGE CAPTURE OFFSET+3)))

Software Usage Examples

This section provides code example that demonstrate how to locate a GPIO
device that is instantiated in the platform and how to directly access the data
register using the macros provided in MicoGPIO.h header file.

26 LatticeMico GPIO

LatticeMico8 Microcontroller Software Support

Figure 20: Locating a GPIO and Accessing Its Data Register

include "DDStructs.h"
#include "MicoGPIO.h"

int main (void)

{
/* Fetch GPIO instance named 'LED' */
MicoGPIOCtx t *leds = &gpio LED;

if (leds == 0) {
/* failed to find a component named "LED" */
return (-1);

}

/* Write 0x1 to programmable I/O pins via the data register
*

/MICO_GPIO_WRITE_DATA_BYTEO (leds->base, 0x1);

/* Read back the value in the data register */

unsigned char iValue;

MICO GPIO READ DATA BYTEO (leds->base, iValue);

return O;

Revision History

Component Version Description

1.0 Initial release.
3.0 (7.0 SP2) Cleaned up code. No function change.
3.1 Updated the Edge Capture Register clean method.

Made IRQ Mask register readable.

3.2 (8.1 SP1) WISHBONE data bus size is configurable to 8 or 32 bits.
Register map is updated to accommodate 8/32-bit
WISHBONE data bus.

3.3 Added LatticeMico8 software support.

3.4 Fixed issues with synthesis when component is configured
for both input and output ports and the widths of each are
different.

3.4 Updated document with new corporate logo.

3.5 Improved modules naming system to support component

scanning function.

LatticeMico GPIO 27

LatticeMico8 Microcontroller Software Support

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCEB5, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

28 LatticeMico GPIO

	LatticeMico GPIO
	Version
	Features
	Functional Description
	Input Data Path
	Output Data Path
	Tristate Control
	Edge Capture
	Port Width and Port Type Settings
	IRQ Generation

	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports
	User Impact of Initial State

	Register Definitions
	Timing Diagrams
	EBR Resource Utilization
	LatticeMico32 Microprocessor Software Support
	Usage Model
	Effect of Endianness
	Register Map Structure
	Device Driver
	Functions
	Services
	Software Usage Examples

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Functions
	Software Usage Examples

