= LATTICE

Version

LatticeMico EFB

The LatticeMico EFB |s a hard architectural block that is known as the
Embedded Function Block (EFB). The EFB includes a Serial Peripheral
Interface (SPI), two I1°Cs, and a timer/counter peripheral. All of these hard IP
peripherals are contained in the EFB block, will connect to the WISHBONE
bus in slave mode, and share a common Serial Communications Interface
(SCI) block.

Support for LatticeMico EFB is provided for MachXO2, Platform Manager 2,
and MachXO3L devices.

Note

Some differences exist between EFB for MachXO2/Platform Manager 2 and EFB for
MachXO3L. This document will indicate wherever there is a difference between
MachXO2/Platform Manger 2 and MachXO3L.

MachXO2/Platform Manger 2 only: The User Flash Memory (UFM) and
phase-locked loopse (PLLs) may also be addressed as WISHBONE elements
via the EFB, but they are not physically located in the EFB.

This document describes the 1.6 version of the LatticeMico EFB.

Copyright © October 2014 Lattice Semiconductor Corporation.

Features

Features

The EFB includes a SPI, two 12C’s, and a timer/counter peripheral. MachXO2/
Platform Manager 2 also includes User Flash Memory (UFM).

SPI Features

SPI provides standard, fully configurable SPI ports including:
Configurable master and slave mode
Mode fault error flag with CPU interrupt capability
Double-buffered data register
Serial clock with programmable polarity and phase
LSB First or MSB First data transfer

I2C Features

MachXO2/Platform Manager and MachXO3L devices contain two hardened
12C IP cores designated as the “Primary” and “Secondary” 2C IP core. Either
of the two cores can be configured as an I°C master or as an 12C slave. The
difference between the two cores is that the primary core has pre-assigned I/
O pins, while the ports of the secondary core can be assigned by designers to
any general purpose I/O. In addition, the primary core has access to the
configuration logic of the MachXO2 device.

When an I1°C core is a master, it can control other devices on the I°C bus
through the physical interface. When a core is the slave, the device can
provide /0 expansion to an 1°C master. The cores support the following 1°c
functionality:

Master/Slave mode support

7-bit and 10-bit addressing

Clock stretching

Supports 50KHz, 100KHz, and 400KHz data transfer speed
General call support

Interface to custom logic through 8-bit WISHBONE interface

Timer/Counter Features

The timer counter has four modes of operation:

Clear Timer on Compare (CTC) match. (This mode includes the normal
mode.)

Watchdog

LatticeMico EFB

Functional Description

Fast pulse-width modulation (PWM)

Phase and frequency correct PWM

UFM Features (MachXO2/Platform
Manager 2 Only)

The devices listed in Table 1 provide one sector of User Flash Memory
(UFM). The UFM is a Flash sector that is organized in pages. The UFM is not
byte addressable. Each page has 128 bits (16 bytes). Table 1 shows the UFM
resources in each device, represented in bits, bytes and pages.

The UFM is a general purpose Flash memory. Common usages of UFM are
for storing system level non-volatile data, initialization data for the on-chip
Embedded Block RAM (EBR) blocks, and executable codes for
microcontroller or embedded state machines.

Table 1: UFM Resources in MachX02 and Platform Manager 2 Devices

Mach Mach
X02 - XO2 -
256 640
UFM bits 0 24448
UFM 0 3056
Bytes
UFM 0 191
Pages

Mach Mach Mach Mach Mach Mach Mach LPTM20 LPTM21
X02- X02- X02- X02- XO02- X02- XO2-
640U 1200 1200U 2000 2000U 4000 7000

65408 65408 81792 81792 98176 98176 261888 24448 65408
8176 8176 10224 10224 12272 12272 32736 3056 8176

511 511 639 639 767 767 2046 191 511

Functional Description

Configuration

The EFB includes a SPI, two I1°C’s (primary and secondary), and a timer/
counter peripheral.

MachXO2/Platform Manger 2 only: The EFB includes User Flash Memory
(UFM).

Figure 1 shows the blocks in the EFB.

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the 1/O ports that
you can use to configure and operate the LatticeMico EFB.

LatticeMico EFB

Configuration

Figure 1: WISHBONE/EFB Block Diagram

User
Soft
Logic

Device Fabric

WB
Master
Interface

EFB Block
G Prmary Je——>
i°C Secondary |[¢———p
WISHBONE | | 8 sl
¢ Interface SPI >
Timer/Counter |[¢——»
> UFM (MachX02/
A A Platform Manager 2 Only)
v v
PLL PLL
0 1

Ul Parameters

Table 2 shows the Ul parameters available for configuring the LatticeMico
EFB through the Mico System Builder (MSB) interface.

Table 2: EFB Ul Parameters

Instance Name

Dialog Box Option Description Allowable Values Default Value
Specifies the name of the EFB instance. Alphanumeric and machxo2_efb
underscores

Base Address

Diamond Project

Generated efb.v

User-Managed
Timer Reset

Specifies the base address for configuring the 0X80000000-0XFFFFFFFF 0X80000000
EFB. The minimum boundary alignment is

0x80.

Specifies the name of the Diamond Project

<Instance Name>.v will be generated in
<platform direcory> \components\efb\ipexpress

Specifies the EFB Timer Reset as User Selected | Not Selected Not Selected
Managed mode.

LatticeMico EFB

Configuration

1/0 Ports

Table 3 through Table 8 describe the input and output ports of the LatticeMico
EFB.

Table 3: EFB WISHBONE 1/O Ports

/0 Port
wb_clk_i

wb_rst i

wb_cyc i

wb_stb_i

wb_we_i

wb_adr i[7:0]
wb_dat_i [7:0]
wb_dat_o[7:0]

wb_ack o

Table 4: EFB I2C /0 Ports

1/0 Port
i2c1_irqo
i2c2_irqo

i2c1_scl

i2c1_sda

i2c2_scl

i2c2_sda

Active Direction Description

High
High

High

High

High

High

| Positive edge clock used by all WISHBONE Interface logic blocks.

| Synchronous reset signal that will only reset the WISHBONE interface logic.
This signal will not affect the contents of any registers. It will only affect
ongoing bus transactions.

| Cycle input indicates the WB slave a valid bus cycle is present on the bus. In
a multiple-master configuration, this signal serves as a bus request. Active
high signal.

| Strobe input indicating the WB slave is the target for the current transaction
on the WB bus. The WB slave can only drive non-zero values on its outputs
(wb_dat_o, wb_ack_o, etc.) while this signal is active. The WB slave asserts
some form of an acknowledgment in response to the assertion of this signal.

I Write/Read indicator. 0 = Read transaction 1 = Write transaction
| Address input to the WB slave logic.
| Write data input.

Read Data Output.

Transfer Acknowledge asserted by the WB slave to the master, indicating the
requested transfer has been completed. This signal is qualified by wb_stb_i.

Active Direction Description

High
High

(0] Primary 12c interrupt request.
(0] Secondary 12c interrupt request.
I/O Primary I2C bi-directional clock line. The signal is an output if the 12C core is

in master mode. The signal is an input if the 1°C core is in slave mode.

I/O Primary I2C bidirectional data line. The signal is an output when data is
transmitted from the 12C core. The signal is an input when the 12C core
receives data.

I/0 Secondary I2C bi-directional clock line. The signal is an output if the 12C core
is in master mode. The signal is an input if the I2C core is in slave mode.

I/0 Secondary I2C bidirectional data line. TThe signal is an output when data is
transmitted from the 12C core. The signal is an input when the 12C core
receives data.

LatticeMico EFB

Configuration

Table 5: EFB SPI 1/O Ports

1/0 Port Active Direction
spi_csn[7:0] (0]
spi_scsn Low |
spi_clk 110
spi_miso I/0
spi_mosi I/0

Description
SPI chip select.

Slave chip select. An external SPI master controller can assert this signal for
selecting the slave SPI core of the device.

Bi-directional clock line of the SPI core. The signal is an output if the SPI core
is in master mode. The signal is an input if the SPI core is in slave mode. t

Bi-directional data line of the SPI core. The signal is an input if the SPI core is
in master mode. The signal is an output if the SPI core is in slave mode.

Bi-directional data line of the SPI core. The signal is an output if the SPI core
is in master mode. The signal is an input if the SPI core is in slave mode.

Table 6: EFB Timer/Counter I/O Ports

/0 Port Active Direction
tc_clki High I
tc_rstn Low I
tc_int High (0]
tc_oc High (0]
tc_ic High |

Description

Timer/Counter clock input.
Timer/Counter reset input.
Timer/Counter interrupt line.
Timer Counter output signal.

Timer/Counter input capture trigger event, applicable for non-PWM modes
with WISHBONE interface.

Note: Timer/counter signal TC_IC will be brought to the top level if the TC is enabled in the “Dynamic register

changes...” mode.

Table 7: PLL Ports

1/0 Port
pll0_bus_0[8:0]
pll0_bus_0[16:0]
pll1_bus_i[8:0]
pll1_bus_0[16:0]

Direction
|
(0]

Description

PIl 0 bus input.

PIl 0 bus output.

PIl 1 bus input.

PIl 1 bus output.

LatticeMico EFB

Configuration

Table 8: UFM 1/O Port (MachXO2/Platform Manager 2 Only)

/0 Port Direction Description
wbc_ufm_irgq (0] UFM irq signal.
ufm_sn | Select signal that must be asserted (driven low) when SPI is enabled and accesses to

UFM are performed via SPI port.

For MachXO2/Platform Manager 2, the 1/O ports will appear with the port
enable selections listed in Table 9.

Table 9: I/0 Port Enable Selections (MachXO2/Platform Manager 2)

/0 Port WISHBONE |2¢ 12c SPI Timer/ PLLO PLL1 UFM
Primary Secondary Counter

12C Primary X X

12C Secondary X X

SPI X X

Timer/Counter (“User X

Static Settings...”)

Timer/Counter (“Dynamic X X

Register Changes...”)

PLL (w/ 1 PLL) X

PLL (w/ 1 PLLS) X X

UFM X X

Example 1: If the user selects the 12c Primary, the UFM port, one PLL and the SPI port to be enabled, the
WISHBONE, 12C Primary, PLLO, UFM and SPI ports appear in the graphic. The “Primary” selections under the 12c
tab are enabled along with the selections under the UFM and SPI tabs.

Example 2: If the user selects only the Timer/Counter (“static settings”) to be enabled, then the only timer/counter
port will appear in the graphic. Likewise, only the selections under the T/C tab are enabled. (Note that the WB bus
does not appear in this case.)

Example 3: User selects 12C Primary, 12C Secondary, UFM, and two PLL’s. In this case, both I2C’s, the UFM, and
both PLLO and PLL1 are enabled. Selections under the tabs under the 1°C and UFM are enabled.

For MachXO3L, the I/O ports will appear with the port enable selections listed
in Table 10.

Table 10: I/O Port Enable Selections (MachXO3L)

1/0 Port WISHBONE |2¢ 12c SPI Timer/ PLLO PLL1 UFM
Primary Secondary Counter

12C Primary X X

12C Secondary X X

LatticeMico EFB 7

Configuration

Table 10: I/O Port Enable Selections (MachXO3L) (Continued)

/0 Port WISHBONE |2¢ 12c SPI Timer/ PLLO PLL1 UFM
Primary Secondary Counter

SPI X X

Timer/Counter (“User X

Static Settings...”)

Timer/Counter (“Dynamic X X

Register Changes...”)

PLL (w/ 1 PLL) X X

PLL (w/ 1 PLLS) X X

Example 1: If the user selects the 12c Primary, one PLL and the SPI port to be enabled, the WISHBONE, 12c
Primary, PLLO and SPI ports appear in the graphic. The “Primary” selections under the I2C tab are enabled along with
the selections under the SPI tabs.

Example 2: If the user selects only the Timer/Counter (“static settings”) to be enabled, then the only timer/counter
port will appear in the graphic. Likewise, only the selections under the T/C tab are enabled. (Note that the WB bus
does not appear in this case.)

Example 3: User selects 12C Primary, 12C Secondary, UFM, and two PLL's. In this case, both I2C’s, and both PLLO
and PLL1 are enabled. Selections under the tabs under the 12C are enabled.

Register Descriptions

EFB Regsiter Map

The EFB module has a register map to allow the service of the hardened
functions through the WISHBONE bus interface read/write operations. Refer
to TN1205, Using User Flash Memory and Hardened Control Functions in
MachXO2 Devices, for more information.

WISHBONE Addressable Registers for 12Cs

Table 11: WISHBONE Addressable Registers for 12C

Primary Register 12C Secondary Register Function Address I’C Address I°C Access

Name Register Name Primary Secondary

12C_ 1 CR 12C 2 CR Control 0x40 0x4A Read/Write
12C_1_CMDR [2C_2_CMDR Command 0x41 0x4B Read/Write
12C_1_BRO 12C_2_BRO Clock Pre-scale 0x42 0x4C Read/Write
12C_1_BR1 12C_2 BR1 Clock Pre-scale 0x43 0x4D Read/Write
12C_1_TXDR 12C_2 TXDR Transmit Data 0x44 Ox4E Write

8 LatticeMico EFB

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

Configuration

Table 11: WISHBONE Addressable Registers for I12C (Continued)

Primary Register 12c Secondary Register Function Address I2C Address I>°C Access
Name Register Name Primary Secondary

I2C_1_SR 2C_2_SR Status 0x45 Ox4F Read
12C_1_GCDR 12C_2_GCDR General Call 0x46 0x50 Read
12C_1_RXDR 12C_2 RXDR Receive Data 0x47 0x51 Read
12C_1_IRQ 12C_2_IRQ IRQ 0x48 0x52 Read/Write
12C_1_IRQEN 12C_2_IRQEN IRQ Enable 0x49 0x53 Read/Write

12C Register Definition 12C_1_BR1/0 and
12C_2 _BR1/0

The I2C cores have a 10-bit pre-scale register, which is used to divide the
WISHBONE clock to the clock frequencies supported by the 12C bus (50KHz,
100KHz and 400KHz). 12C_1_BRO0[7:0] and 12C_2_BRO0I[7:0] hold the lower
eight pre-scale register bits (7:0). 12C_1_BR1[1:0] and 12C_2_ BR1[1:0] hold
the upper two pre-scale register bits (9:8).

Table 12: Command Register —-12C_1_CMDR and 12C_2_CMDR
Bit Field Description

7 STA Generate (Repeated) start Condition

6 STO Generate STOP Condition

5 RD Read from Slave

4 WR Write to Slave

3 ACK Acknowledge Option — When receive, ACK transmission selection
0 =Send ACK
1 =Send NACK

2 CKSDIS Clock Stretching Disable Option — Disable the clock stretching if desired by the user. Then
overflow error
flag must be monitored.
0 = Clock Stretching is Enabled
1 = Clock Stretching is Disabled

1 RSVD Reserved bit.

0 RSVD Reserved bit.

LatticeMico EFB 9

Configuration

Table 13: Status Register —12C_1_SR and 12C_2_SR
Bit Field Description

7 TIP Transmitting In Progress — This bit indicates that one byte of data is being transferred. This bit
will be set at rising edge of acknowledge cycle.

1 = Byte transfer completed.

0 = Byte transfer in progress.

6 BUSY Bus busy --- This bit indicates the bus is involved in transaction. This will be set at start condition
and cleared at stop.

5 RARC Received Acknowledge — This flag represents acknowledge from the addressed slave
1 = No acknowledge received

0 = Acknowledge received

4 SRW Slave RW:
1 = master receiving / Slave transmitting

0 = master transmitting / Slave receiving

3 ARBL Arbitration Lost — This bit will go high if master has lost its arbitration in Master mode, It will cause
an interrupt to WISHBONE Host if SCI set up allowed.

1 = Arbitration Lost

0 = Normal

2 TRRDY Transmitter or Receiver Ready Bit --- This flag indicate that a Transmit Register ready to receive
data or Receiver Register if ready for read depend on the mode (master or slave) and SRWhbit. It
will cause an interrupt to WISHBONE Host if SCI set up allowed.

1 = Transmitter or Receiver is ready

0 = Transmitter or Receiver is not ready

1 TROE Transmitter or Receiver Overrun Bit --- This flag indicate that a Transmit or Receive Overrun
Errors happened depend on the mode (master or slave) and SRW bit. It will cause an interrupt to
WISHBONE Host if SCI set up allowed.

1 = Transmitter or Receiver Overrun

0 = Transmitter or Receiver Normal

0 HGC Hardware General Call Received: --- This flag indicate that a hardware general call is received
from the slave port. It will cause an interrupt to WISHBONE Host if SCI set up allowed.

1 = Hardware General Call Received in Slave Mode

0 = NO Hardware General Call Received in Slave Mode

10 LatticeMico EFB

Configuration

Table 14: Transmitting Data Register —-12C_1_TXDR and 12C_2_TXDR
Bit Field Description
71 w Next byte to transmit via 12c

0 W In case of a data transfer, this bit represents the data’s LSB.
In case of a slave address transfer this bit represents the RW bit
1 = Reading from slave

0 = Writing to Slave

Table 15: Register Definition 12C_1_IRQ and 12C_2_IRQ

Bit Field Description
74 RSVD Reserved bits.
3 IRQARBL Interrupt Request for Arbitration Lost status bit — This bit will go high if the master has

lost its arbitration in Master mode. It will cause an interrupt to WISHBONE Host if the
interrupt signal is utilized in the design.

1 = Arbitration Lost

0 = Normal

2 IRQTRRDY Interrupt Request for Transmitter or Receiver Ready status bit — This flag indicates
that the Transmit Register is ready to receive data or Receiver Register is ready for
read, depending on the mode (master or slave). It will cause an interrupt to
WISHBONE Host if the interrupt signal is utilized in the design.

1 = Transmitter or Receiver is ready

0 = Transmitter or Receiver is not ready

1 IRQTROE Interrupt Request for Transmitter or Receiver Overrun status bit — This bit indicates
that a Transmit or Receive Overrun Error occurred, depending on the mode (master or
slave). It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in
the design.

1 = Transmitter or Receiver Overrun

0 = Transmitter or Receiver Normal

0 IRQHGC Interrupt Request for Hardware General Call Received status bit — This bit indicates
that a hardware general call was received. It will cause an interrupt to the WISHBONE
Host if the interrupt signal is utilized in the design. 1 = Hardware General Call
Received in Slave Mode,

0 = No Hardware General Call Received in Slave Mode.

LatticeMico EFB 11

Configuration

I2C Register Definition 12C_1_IRQEN and
12C_2 IRQEN

Registers 12C_1 IRQEN and 12C_2_IRQEN are used to enable the interrupt
features of the 12C cores. The WISHBONE Host has Read/Write access to
these registers.

Table 16: Register Definition 12C_1_IRQEN and 12C_2_IRQEN
Bit Field Description
74 RSVD Reserved bits.
3 IRQARBLEN Enable Interrupt Request for Arbitration Lost status bit.
1 = Enabled
0 = Disabled
2 IRQTRRDYEN Enable Interrupt Request for Transmitter or Receiver Ready status bit.
1 = Enabled
0 = Disabled
1 IRQTROEEN Enable Interrupt Request for Transmitter or Receiver Overrun status bit.
1 = Enabled
0 = Disabled
0 IRQHGCEN Enable Interrupt Request for Hardware General Call Received status bit.
1 = Enabled
0 = Disabled

WISHBONE Addressable Registers for SPl Module

Table 17: WISHBONE Addressable Registers for SPI Module

SPI Register Name Register Function Address Access
SPICRO Control Register 0 0x54 Read/Write
SPICR1 Control Register 1 0x55 Read/Write
SPICR2 Control Register 2 0x56 Read/Write
SPIBR Clock Pre-scale 0x57 Read/Write
SPICSR Master Chip Select 0x58 Read/Write
SPITXDR Transmit Data 0x59 Write
SPISR Status O0x5A Read
SPIRXDR Receive Data 0x5B Read
SPIIRQ Interrupt Request 0x5C Read/Write
SPIIRQEN Interrupt Request Enable 0x5D Read/Write

12 LatticeMico EFB

Configuration

Table 18: SPI Control Register - SPICR0

Bit
76

5:3

2:0

Field

Tidle XCNT

TTrail XCNT

TLead XCNT

Description

Tidle Extra Delay Count — These bits specify the extra system clock count for the interval
time for mcsn goes active (low) in master mode. Default (00) for half mclk clock cycle.

TTrail Extra Delay Count — These bits specify the extra system clock count for the timing
between last mclk edge and mcsn goes high in master mode. Default (000) for half mclk
clock cycle.

TLead Extra Delay Count — These bits specify the extra system clock count for the timing
between mcsn goes low and first clock edge in master mode. Default (000) for half mclk
clock cycle.

Table 19: SPI Control Register - SPICR1

Bit
7

3.0

Field
SPE

WKUPEN
USR

WKUPEN
CFG

TX EDGE

RSVD

Description

SPI System Enable Bit — This bit enables the SPI system functions. If SPE is cleared, SPI
is disabled andforced into idle state, status bits in SPISR register are reset.

0 = SPI disabled

1 = SPI enabled, port pins are dedicated to SPI functions.

Wakeup from Standby/Sleep (by SCSN Active) Enable Bit — This bit is enabled the SPI

core to send a wakeup signal to the on chip power manager to wakeup the part from
standby/sleep mode when the User SCSN goes low.

Wakeup from Standby/Sleep (by SCSN Active) Enable Bit — This bit is enabled the SPI
core to send a wakeup signal to the on chip power manager to wakeup the part from
standby/sleep mode when the CFG SCSN goes low.

Data Transmitting selection bit --- This bit give user capability to select which clock edge to
transmit data.

0 = Transmit data on the different clock edge of data receiving (receiving on rising / transmit
on falling)

1 = Transmit data on the same clock edge of data receiving (receiving on rising / transmit on
rising)

Reserved bits.

LatticeMico EFB

13

Configuration

Table 20: SPI Control Register - SPICR2

Bit
7

4:3

Field
MSTR

MCSH

SRME

SFSEL

CPOL

CPHA

CPHA

Description

SPI Master/Slave Mode Select Bit — This bit selects, if the SPI operates in master or slave
mode.

Changing this bit forces the SPI system into idle state.
0 = SPlis in slave mode

1 = SPl is in master mode

SPI Master CSN Hold Bit --- This bit will hold the Master chip select active when the host is
busy which will halt the data transmission without pulling the chip select high. Critical for
configuration boot from external SPI boot PROM.

0 = Master running as normal

1 = Master hold chip select low even host Halt the data transmission

SPI Slave Slow Respond Mode Enable --- This bit enable the automatic insertion of the
Lattice specific protocol to handle the issue caused by the slow respond time of the
WISHBONE host at high SPI clock rate.

0 = Slave running as normal

1 = Slave automatically deploy the Lattice specific protocol.

SPI Special Feature Select --- This two bits select the special features for SPI port
00 = SPI port running as normal

01 = Send out 0h00 byte instead of OhFF byte during slave write to indicate receiving
register is full.

10 = Reserved

11 = Reserved

SPI Clock Polarity Bit — This bit selects an inverted or non-inverted SPI clock. To transmit
data between SPI modules, the SPI modules must have identical CPOL values. In master
mode, a change of this bit will abort a transmission in progress and force the SPI system
into idle state.

0 = Active-high clocks selected. In idle state SCK is low.

1 = Active-low clocks selected. In idle state SCK is high.

SPI Clock Phase Bit — This bit is used to select the SPI clock format. In master mode, a
change of this bit will abort a transmission in progress and force the SPI system into idle
state.

0 = Sampling of data occurs at odd edges (1,3,5,...,15) of the SCK clock
1 = Sampling of data occurs at even edges (2,4,6,...,16) of the SCK clock

LSB-First Enable — This bit does not affect the position of the MSB and LSB in the data
register. Reads and writes of the data register always have the MSB in bit 7. In master
mode, a change of this bit will abort a Transmission in progress and force the SPI system
into idle state.

0 = Data is transferred most significant bit first.

1 = Data is transferred least significant bit first.

14

LatticeMico EFB

Configuration

Table 21: SPI Baud Rate Register —- SPIBR

Bit
7
6
5:0

Field
RSVD
RSVD

DIVIDER

Description
Reserved bit.
Reserved bit.

SPI Master SCK Frequency Divisor — Clock frequency divisor from the source clock for baud
rate selection.

Fmsck = Fsource / DIVIDER

Table 22: SPI Status Register — SPISR

Bit
7

Field
TIP

RSVD
TRDY

RRDY

TOE

ROE

MDF

Description

SPI Transmitting In Progress — This bit indicate that the SPI port in the middle of
transmitting/receiving data.

0 = SPI Transmitting is finished

1 = SPI Transmitting is in progress

Reserved bits.

SPI Transmit Ready Flag - Indicates the SPI transmit data register (SPITXDR) is empty. This bit
is cleared by a write to SPITXDR. It will cause an interrupt to WISHBONE Host if SCI set up
allowed.

0 = SPI Data register not empty
1 = SPI Data register empty

SPI Receive Ready Flag - Indicates the receive data register (SPIRXDR) contains valid receive
data. This bit is cleared by a read access to SPIRXDR. It will cause an interrupt to WISHBONE
Host if SCI set up allowed.

Host if SCI set up allowed.
0 = Transfer not yet complete
1 = New data copied to SPIRXDR

Transmit Overrun Error Flag — This bit indicates that the SPITXDR received new data before
the previous data was moved to the shift register. The new data is discarded if occurs. It will
cause an interrupt to WISHBONE.

Host if SCI set up allowed.

Receive Overrun Error Flag — This bit indicates that the SPIRXDR received new data before
the previous data was read. The previous data will be lost if occurs. It will cause an interrupt to
WISHBONE Host if SCI set up allowed.

Mode Fault Flag — This bit is set if the SS input becomes low while the SPI is configured as a
master and mode fault detection is enabled. The flag is cleared automatically by a write to the
SPI Control Register.

0 = Mode fault has not occurred.

1 = Mode fault has occurred. It will cause an interrupt to WISHBONE Host if SCI set up allowed.

LatticeMico EFB

15

Configuration

Table 23: Register Definition SPICSR

Bit Field Description

7 CSN_7 Active-Low, master chip select (MCSNI[7])

6 CSN_6 Active-Low, master chip select (MCSNI[6])

5 CSN_5 Active-Low, master chip select (MCSNI[5])

4 CSN_4 Active-Low, master chip select (MCSNI[4])

3 CSN_3 Active-Low, master chip select (MCSNI[3])

2 CSN_2 Active-Low, master chip select (MCSNI[2])

1 CSN_1 Active-Low, master chip select (MCSNI[1])

0 CSN_O Active-Low, master chip select (MCSNIO0], has pre-assigned pin location)

SPI Register Definition SPIIRQ

Interrupt register SPIIRQ supports the status bits of the SPISR register. The
WISHBONE Host can query these bits when an interrupt request is received.

Table 24: Register Definition SPIIRQ

Bit Field Description
7:5 RSVD Reserved bits.
4 IRQTRDY Interrupt request for SPI Transmit Empty Interrupt Flag — If set, this bit indicates

that the transmit data register is empty. This bit is cleared by a write to SPITXDR
register. It will cause an interrupt to WISHBONE Host if the interrupt signal is
utilized in the design.

0 = SPI Data register not empty
1 = SPI Data register empty

3 IRQRRDY Interrupt request for SPI Receive Interrupt Flag — This bit is set after a received
data byte has been transferred into the SPIRXDR register. This bit is cleared after

a read operation from the WISHBONE interface is performed. It will cause an
interrupt to the WISHBONE Host if the interrupt signal is utilized in the design.

0 = Transfer not yet complete
1 = New data copied to SPIRXDR

2 IRQTOE Interrupt request for Transmit Overrun Error Flag — This bit indicates that the
SPITXDR received new data before the previous data was moved to the shift
register for serial transfer over the SPI bus. The new data is discarded if the error

occurs. It will cause an interrupt to the WISHBONE Host if the interrupt signal is
utilized in the design.

0 = No Error

1 = Transmit Overrun Error has occurred

16 LatticeMico EFB

Configuration

Table 24: Register Definition SPIIRQ (Continued)

Bit Field
1 IRQROE
0 IRQMDF

Description

Interrupt request for Receive Overrun Error Flag — This bit indicates that the
SPIRXDR received new data before the previous data was read by the
WISHBONE host. The previous data will be lost if the overrun occurs. It will cause
an interrupt to the WISHBONE Host if the interrupt signal is utilized in the design.

0 = Error has not occurred

1 = Transmit Overrun Error has occurred

Interrupt request for Mode Fault Flag — This bit is set if the SSCN input becomes
low while the SPI is configured as a master controller. The flag is cleared
automatically by a write to the SPICR2, which controls the mode of the core. It will
cause an interrupt to the WISHBONE Host if the interrupt signal is utilized in the
design.

0 = Mode Fault has not occurred

1 = Mode Fault has occurred

SPI Register Definition SPIIRQEN

Register SPIIRQEN is used to enable the interrupt features of the SPI core.
The WISHBONE Host has Read/Write access to this register.

Table 25: Register Definition SPIIRQEN

Bit Field

7:5 RSVD

4 IRQTRDYEN
3 IRQRRDYEN
2 IRQTOEEN

1 IRQROEEN
0 IRQMDFEN

Description
Reserved bits.

Enabled interrupt request for SPI Transmit Empty Interrupt Flag.
1 = Enabled
0 = Disabled

Enabled interrupt request for SPI Receive Interrupt Flag.
1 = Enabled
0 = Disabled

Enabled interrupt request for Transmit Overrun Error Flag.
1 = Enabled
0 = Disabled

Enabled interrupt request for Receive Overrun Error Flag.
1 = Enabled
0 = Disabled

Enabled interrupt request for Mode Fault Flag.
1 = Enabled
0 = Disabled

LatticeMico EFB

17

Configuration

WISHBONE Addressable Registers for Timer/

Counter Module

This section lists the internal registers of the Timer/Counter hard IP. Software
will be able to write some of registers based on attributes set by the users.

Table 26: WISHBONE Addressable Registers for Timer/Counter Module

Signal Name 1/0 Width Description

tc_clki Input 1 Timer/Counter input clock signal. Can be connected to the on-chip oscillator.
tc_rstn Input 1 This is an active-low reset signal, which resets the 16-bit counter.

tc_ic Input 1 This is an active-high input capture trigger event, applicable for non-PWM

modes with WISHBONE interface. If enabled, a rising edge of this signal will
be detected and synchronized to capture the counter value (TCCNT
Register) and make the value accessible to the WISHBONE interface by
loading it into TCICR register. The common usage is to perform a time-stamp

operation with the counter.

tc_int Output 1 This is an interrupt signal, indicating the occurrence of a specific event such

as Overflow, Output Compare Match, or Input Capture.

tc_oc Output 1 Timer/Counter output signal

Timer/Counter Registers

The Timer/Counter communicates with the PLD logic through the WISHBONE
interface, by utilizing a set of control, status and data registers. Table shows
the register names and their functions. These registers are a subset of the
EFB register map. Refer to the EFB register map for specific addresses of

each register.

Table 27: Timer/Counter Registers

Timer/Counter Register Function
Register Name

TCCRO Control Register 0

TCCR1 Control Register 1

TCTOPSETO Set Top Counter Value [7:0]
TCTOPSET1 Set Top Counter Value [15:8]
TCOCRSETO Set Compare Counter Value [7:0]
TCOCRSET1 Set Compare Counter Value [15:8]
TCCR2 Control Register 2

TCCNTO Counter Value [7:0]

TCCNTA1 Counter Value [15:8]

Address

Ox5E
Ox5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66

Access

Read/Write
Read/Write
Write
Write
Write
Write
Read/Write
Read
Read

18

LatticeMico EFB

Configuration

Table 27: Timer/Counter Registers (Continued)

Timer/Counter
Register Name

TCTOPO
TCTOP1
TCOCRO
TCOCR1
TCICRO
TCICR1
TCSRO
TCIRQ
TCIRQEN

Register Function

Current Top Counter Value [7:0]

Current Top Counter Value [15:8]

Current Compare Counter Value [7:0]
Current Compare Top Counter Value [15:8]
Current Capture Counter Value [7:0]
Current Capture Counter Value [15:8]
Status Register

Interrupt Request

Interrupt Request Enable

Address

0x67
0x68
0x69
O0x6A
0x6B
0x6C
0x6D
Ox6E
Ox6F

Access

Read
Read
Read
Read
Read
Read
Read
Read/Write
Read/Write

Timer/Counter Register Definition TCCRO

Register TCCRO is used to control the reset and the clock into the timer/
counter. The WISHBONE host has full read/write access to the register. The
register values can be updated dynamically during device operation.

Table 28: Register Definition TCCRO

Bit Field

7 RSTEN

6 RSVD

5:3 PRESCALE

Description

The bit enables the reset signal (tc_rstn) to enter the Timer/Counter core from the

PLD logic.
0 = Reset is disabled

1 = Reset is enabled

Reserved bit.

These three bits are used to divide the clock input to the Timer/Counter.

000 = Static

001 = Divide by 1
010 = Divide by 8
011 = Divide by 64
100 = Divide by 256
101 = Divide by 1024

LatticeMico EFB

19

Configuration

Table 28: Register Definition TCCRO (Continued)

Bit
2

1:0

Table 29:
Bit

7

6

Field
CLKEDGE

CLKSEL

Description

This bit is used to select the edge of the input clock source. The Timer/Counter will
update states on the edge of the input clock source. 0 = Rising Edge, 1 = Falling
Edge.

These two bits define the source of the input clock source. The clock can arrive from
the clock tree or directly from the on-chip oscillator.

00 = Clock Tree
10 = On-Chip Oscillator

States 01 and 11 are reserved

Timer/Counter Register Definition TCCR1

Register TCCR1 is used to control the reset and the clock into the timer/
counter. The WISHBONE host has full Read/Write access to the register. The
register values can be updated dynamically during device operation.

Register Definition TCCR1

Field
RSVD
SOVFEN

ICEN

TSEL

Description
Reserved bit.

This bit enables the overflow flag to be used with the interrupt output signal. It is set
when the Timer/Counter is standalone, with no WISHBONE interface. 0 = Disabled, 1
= Enabled.

When this bit is set, other flags such as the OCRF and ICRF will not be routed to the
interrupt output signal.

This bit enables the ability to perform a capture operation of the counter value. Users
can assert the “tc_ic” signal and load the counter value onto the TCICRO0/1 registers.
The captured value can serve as a timer stamp for a specific event. 0 = Disabled, 1 =
Enabled.

This bit enables the auto-load of the counter with a value that is presented through the
WISHBONE bus. 0 = Disabled, 1 = Enabled.

TCTOPSETO/1 registers are written into TCTOPO0/1 registers (register update)
automatically.

20

LatticeMico EFB

Configuration

Table 29: Register Definition TCCR1 (Continued)
Bit Field Description

3:2 OCM These bits select the function of the output signal of the Timer/Counter. The available
functions are Static, Toggle, Set/Clear and Clear/Set.

All Timer/Counter modes:

00 = The output is static low

In non-PWM modes:

01 = Toggle on TOP match

In Fast PWM mode:

10 = Clear on TOP match, Set on OCR match
11 = Set on TOP match, Clear on OCR match
In Phase and Frequency Correct PWM mode:

10 = Clear on OCR match when the counter is incrementing, Set on OCR match when
counter is decrementing

11 = Set on OCR match when the counter is incrementing, Clear on OCR match when
the counter is decrementing

1:0 TCM These bits define the mode of operation for the Timer/Counter.
00 = Watchdog Timer Mode
01 = Clear Timer on Compare Match Mode
10 = Fast PWM Mode
11 = Phase and Frequency Correct PWM Mode

Timer/Counter Register Definition TCCR2

Register TCCR2 is used to control for additional control functions such as
resetting the counter with a Write command from the WISHBONE interface,
pausing the counter and forcing the output of the Timer/Counter to update
even if the update conditions have not been met. The WISHBONE host has
full Read/Write access to the register. The register values can be updated
dynamically during device operation.

Table 30: Register Definition TCCR2

Bit Field Description

7:3 RSVD Reserved bits.

2 WBFORCE In non-PWM modes, this bit forces the output of the counter, as if the counter value
matched the compare (TCOCR) value or it matched the top value (TCTOP).
0 = Disabled
1 = Enabled

LatticeMico EFB 21

Configuration

Table 30: Register Definition TCCR2 (Continued)

Bit
1

Field
WBRESET

WBPAUSE

Description

Reset the counter from the WISHBONE interface by writing a ‘1’ to this register
location. It is a one cycle assertion in WISHBONE clock domain once a ‘1’ is written to
this register location.

0 = Disabled
1 = Enabled
This bit has higher priority then WBPAUSE.

Writing a ‘1’ to this register bit will pause counting of the 16-bit counter.

Timer/Counter Register Definition

TCTOPSETO0/1 Registers TCTOPSETO0 and TCTOPSET1 are 8-bit registers,
which combined, receive a 16-bit value from the WISHBONE host. They
serve for double-registering the loading of the top value for the counter. The
value is loaded from TCTOPSETO0/1 to the TCTOPO0/1 registers once the
counter has completed the current counting cycle. Refer to the Timer/Counter
Modes of Operation for usage details.

TCTOPSETO register holds the lower 8-bit value [7:0] of the top value.
TCTOPSET1 register holds the upper 8-bit value [15:8] of the top value.

Timer/Counter Register Definition TCOCRSETO0/1

Registers TCOCRSETO0 and TCOCRSET1 are 8-bit registers, which
combined, receive a 16-bit value from the WISHBONE host. They serve for
double-registering the loading of the compare value for the counter. The value
is loaded from TCOCRSETO0/1 to the TCOCRO/1 registers once the counter
has completed the current counting cycle. Refer to the Timer/Counter Modes
of Operation for usage details.

TCOCRSETO register holds the lower 8-bit value [7:0] of the compare value.
TCOCRSET1 register holds the upper 8-bit value [15:8] of the compare value.

Timer/Counter Register Definition TCCNTO0/1

Registers TCCNTO and TCCNT1 are 8-bit registers, which combined, hold
the counter value. The WISHBONE host has Read-Only access to these
registers.

TCCNTO register holds the lower 8-bit value [7:0] of the counter value.
TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

22

LatticeMico EFB

Configuration

Timer/Counter Register Definition TCTOPO0/1

Registers TCTOPO0 and TCTOP1 are 8-bit registers, which combined, receive
a 16-bit value from the TCTOPSETO/1. The data stored in these registers
represents the top value of the counter. The registers update once the counter
has completed the current counting cycle. Refer to the Timer/Counter Modes
of Operation for usage details.

TCTOPO register holds the lower 8-bit value [7:0] of the top value. TCTOP1
register holds the upper 8-bit value [15:8] of the top value.

Timer/Counter Register Definition TCOCRO0/1

Registers TCOCRO and TCOCR1 are 8-bit registers, which combined,
receive a 16-bit value from the TCOCRSETO0/1. The data stored in these
registers represents the compare value of the counter. The registers update
once the counter has completed the current counting cycle. Refer to the
Timer/Counter Modes of Operation for usage details.

TCOCRO register holds the lower 8-bit value [7:0] of the compare value.
TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Timer/Counter Register Definition TCICR0/1

Registers TCICRO and TCICR1 are 8-bit registers, which combined, can hold
the counter value. The counter value is loaded onto these registers once a
trigger event, tc_ic IP signal, is asserted. The capture value is commonly used
as a time-stamp for a specific system event.

The WISHBONE host has Read-Only access to these registers.

TCICRO register holds the lower 8-bit value [7:0] of the counter value.
TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Timer/Counter Register Definition TCSRO

TCSRO is a status register, used for setting or clearing operation flags. The
four flags that are used with the Timer/Counter represent statuses such as
overflow, compare match, bottom state and capture counter value.

LatticeMico EFB 23

Configuration

The WISHBONE host has Read/Write access to register TCSRO.

Table 31: Register Definition TCSR0O

Bit
74
3

Field
RSVD
BTF

ICRF

OCRF

OVF

Description
Reserved bits.

Bottom flag when the counter reaches value zero. The bit is cleared after a Write
operation from the WISHBONE interface.

Capture Counter flag when the user asserts the trigger event tc_ic IP signal. The
counter value is captured into the TCICRO/1 registers. The bit is cleared after a Write
operation from the WISHBONE interface. It will cause an interrupt to WISHBONE Host
if the interrupt signal is utilized in the design.

Compare match flag when counter matches the value loaded in the TCOCRO0/1
registers. The bit is cleared after a Write operation from the WISHBONE interface. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design. The interrupt line is asserted for one clock cycle.

Overflow flag when the counter matches the top value of the counter loaded onto the
TCTOPO/1 registers. The bit is cleared after a Write operation from the WISHBONE
interface. It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized
in the design. The interrupt line is asserted for one clock cycle.

Timer/Counter Register Definition TCIRQ

Register TCIRQ holds the interrupt bits caused by the status flags in the
status register. Timer/Counter supports interrupt requests for events such as
counter overflow, compare match, and capture counter value.

The WISHBONE host has Read/Write access to register TCSRO.

Table 32: Register Definition TCIRQ

Bit
7:3
2

Field
RSVD
IRQICRF

IRQOCRF

IRQOVF

Description
Reserved bits.

Interrupt caused by the Capture Counter flag when the user asserts the trigger event
tc_ic IP signal. The counter value is captured into the TCICRO/1 registers. It will cause
an interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

Interrupt caused Compare match flag when counter matches the value loaded in the
TCOCRO/1 registers. It will cause an interrupt to WISHBONE Host if the interrupt
signal is utilized in the design. The interrupt line is asserted for one clock cycle.

Interrupt caused Overflow flag when the counter matches the top value of the counter
loaded onto the TCTOPO/1 registers. It will cause an interrupt to WISHBONE Host if
the interrupt signal is utilized in the design. The interrupt line is asserted for one clock
cycle.

24

LatticeMico EFB

Configuration

Timer/Counter Register Definition TCIRQEN

Register TCIRQEN holds the enable/disable bits for the available interrupt
support of the Timer/Counter IP.

Table 33: Register Definition TCIRQEN

Register Field Description
7:3 RSVD Reserved bits.

2 IRQICRFEN Enabled interrupt request for
Capture counter flag.

1 = Enabled
0 = Disabled

1 IRQOCRFEN Enabled interrupt request for
Compare match flag.

1 = Enabled
0 = Disabled

0 IRQOVFEN Enabled interrupt request for
overflow flag.

1 = Enabled
0 = Disabled

LatticeMico EFB 25

Configuration

WISHBONE Addressable Registers for
UFM Module (MachXO2/Platform
Manager 2 Only)

Table 34: WISHBONE Addressable Registers for UFM Module

Register Name Register Function Address Access
CFGCR Control 0x70 Read/Write
CFGTXDR Transmit Data 0x71 Write
CFGSR Status 0x72 Read
CFGRXDR Receive Data 0x73 Read
CFGIRQ Interrupt Request 0x74 Read/Write
CFGIRQEN Interrupt Request 0x75 Read/Write
Enable

Table 35: UFM Control Register - CFGCR
Bit Field Description

7 WBCE WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write
connection to the UFM/Configuration logic. This bit must be set prior to executing any
command through the WISHBONE port. Likewise, this bit must be cleared to
terminate the command.

1 = Enabled
0 = Disabled

6 RSTE WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is
level sensitive. After setting this bit to '1" it must be cleared to '0' for normal operation.

1 = Reset

0 = Normal operation

5:0 RSVD Reserved bits.

Table 36: UFM Transmit Data Register - CFGTXDR
Bit Field Description

7:0 w This register holds the byte that will be written to the UFM logic.

26 LatticeMico EFB

Configuration

Table 37: UFM Status Register - CFGSR

Bit
7

Field
WBCACT

RSVD
TXFE

TXFF

RXFE

RXFF

SSPIACT

I2CACT

Description

Indicates that the WISHBONE to UFM interface is active and the connection is
established.

Reserved bit.

Indicates that the Transmit FIFO register is empty
1 = FIFO empty

0 = FIFO not empty

Indicates that the Transmit FIFO register is full

1 =FIFO full

0 = FIFO not full

Indicates that the Receive FIFO register is empty
1 = FIFO empty

0 = FIFO not empty

Indicates that the Receive FIFO register is full

1 =FIFO full

0 = FIFO not full

Indicates the Slave SPI port has started actively communicating with the UFM Logic
while WBCE was enabled.

1 = Slave SPI port active

0 = Slave SPI port not active

Indicates the 12C port has started actively communicating with the UFM Logic while
WBCE was enabled.

1 =12C port active
0 = 2C port not active

Table 38: UFM Receive Data Register - CFGRXDR

Bit
7:0

Field
R

Description

This register holds the byte that will be read to the UFM logic.

LatticeMico EFB

27

Configuration

UFM Register Definition CFGIRQ

Interrupt register CFGIRQ supports the status bits of the CFGSR register. The
WISHBONE Host can query these bits when an interrupt request is received.

Table 39: UFM Interrupt Status Register - CFGIRQ

Bit Field Description
7:6 RSVD Reserved bits.
5 IRQTXFE Interrupt request for UFM Transmit FIFO Empty Interrupt Flag — If set, this bit

indicates that the transmit data register is empty. This bit is cleared by write a "1" to
this register. It will cause an interrupt to WISHBONE Host if the interrupt signal is
utilized in the design.

4 IRQTXFF Interrupt request for UFM Transmit FIFO Full Interrupt Flag — If set, this bit indicates
that the transmit data register is full. This bit is cleared by write a "1" to this register. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

3 IRQRXFE Interrupt request for UFM Receive FIFO Empty Interrupt Flag — If set, this bit indicates
that the receive data register is empty. This bit is cleared by write a "1" to this register.
It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

2 IRQRXFF Interrupt request for UFM Receive FIFO Full Interrupt Flag — If set, this bit indicates
that the receive data register is full. This bit is cleared by write a "1" to this register. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

1 IRQSSPIACT Interrupt request for UFM Slave SPI Active Interrupt Flag — If set, this bit indicates that
the Slave SPI is asserted. This bit is cleared by write a "1" to this register. It will cause
an interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

0 IRQI2CACT Interrupt request for UFM 12C Active Interrupt Flag — If set, this bit indicates that the
12C is asserted. This bit is cleared by write a "1" to this register. It will cause an
interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

UFM Register Definition CFGIRQEN

Register CFGIRQEN is used to enable the interrupt features of the UFM core.
The WISHBONE Host has Read/Write access to this register.

Table 40: UFM Interrupt Enable Register - CFGIRQEN

Bit Field Description

7:6 RSVD Reserved bits.

5 IRQTXFEEN Interrupt Enable for Transmit FIFO Empty
1 = Enabled
0 = Disabled

28 LatticeMico EFB

Usage Model

Table 40: UFM Interrupt Enable Register - CFGIRQEN (Continued)

Bit Field

4 IRQTXFFEN

3 IRQRXFEEN

2 IRQRXFFEN

1 IRQSSPIACTEN
0 IRQI2CACTEN
Usage Model

Description

Interrupt Enable for Transmit FIFO Full
1 = Enabled
0 = Disabled

Interrupt Enable for Receive FIFO Empty
1 = Enabled
0 = Disabled

Interrupt Enable for Receive FIFO Full
1 = Enabled
0 = Disabled

Interrupt Enable for Slave SPI Active
1 = Enabled
0 = Disabled

Interrupt Enable for I°C Active
1 = Enabled
0 = Disabled

For more information about EFB usage in Lattice MachXO2 devices, refer to
TN1205, Using User Flash Memory and Hardened Control Functions in

MachXO2 Devices.

LatticeMico32 Microprocessor Software Support

This section describes the LatticeMico32 software support provided for the

LatticeMico EFB component.

Device Driver

The EFB device driver interacts directly with the EFB for instance. This
section describes the limitations, type definitions, structure, and functions of

the EFB for device driver.

LatticeMico EFB

29

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

LatticeMico32 Microprocessor Software Support

Device Context Structure

This section describes the type definitions for the LatticeMico EFB device
context structure. This structure, shown in Figure 2, contains the EFB
component instance-specific information and is dynamically generated in the
DDStructs.h header file. This information is largely filled in by the managed
build process by extracting the EFB for component-specific information from
the platform specification file. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.

Table 41 describes the parameters of the LatticeMico EFB device context
structure for MachXO2/Platform Manager 2 shown in Figure 2.

Figure 2: LatticeMico EFB Device Context Structure (MachXO2/Platform

Manager 2)

struct st MicoEFBCtx t ({
const char *name ;
unsigned int base ;
unsigned int intrLevel ;
void *desc _i2cl ;
unsigned int user i2cl ;
void *desc i2c2 ;
unsigned int user 12c2 ;
void *desc spi ;
unsigned int user spi ;
void *desc_tc ;
void *desc wbcfg ;
void *desc pcsO ;
void *desc pcsl ;
void *desc pcs2 ;
void *desc pcs3 ;
void *desc pcséd ;
DeviceReg t loopupReg ;
void *prev ;
void *next ;

} MicoEFBCtx t;

Table 41 describes the parameters of the LatticeMico EFB device context
structure for MachXO3L, shown in Figure 3.

Figure 3: LatticeMico EFB Device Context Structure (MachXO3L

struct st MicoEFBCtx t {
const char *name ;
unsigned int base ;
unsigned int intrLevel ;
void *desc _i2cl ;
unsigned int user i2cl ;
void *desc i2c2 ;
unsigned int user i2c2 ;
void *desc spi ;
unsigned int user spi ;
void *desc_tc ;
void *desc pcsO ;
void *desc pcsl ;
void *desc pcs2 ;
void *desc pcs3 ;

30

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

void *desc pcséd ;
DeviceReg t loopupReg ;
void *prev ;
void *next ;

} MicoEFBCtx t;

Table 41: LatticeMico EFB Device Context Structure Parameters

Parameter Data Type Description

name const char * Instance name, as specified by the
customer in MSB when instantiating it.

base unsigned int MSB-assigned base address for this
instance.

intrLevel unsigned int LatticeMico32 interrupt line to which
this instance is connected.

desc_i2c1 void * 12C 1 interrupt descriptor structure.

user_i2c1 unsigned int 12C 1 interrupt routine implemented by
the customer.

desc_i2c2 void * 12C 2 interrupt descriptor structure.

user_i2¢c2 unsigned int 12C 2 interrupt routine implemented by
the customer.

desc_spi void * SPI interrupt descriptor structure.

user_spi unsigned int SPl interrupt routine is implemented by
the customer.

desc_tc void * Timer/counter interrupt descriptor
structure.

desc_wbcfg void * Configuration interrupt descriptor
structure. (MachXO2/Platform
Manager 2 only)

desc_pcs0 void * PCS 0 interrupt descriptor structure.

desc_pcs1 void * PCS 1 interrupt descriptor structure.

desc_pcs2 void * PCS 2 interrupt descriptor structure.

desc_pcs3 void * PCS 3 interrupt descriptor structure.

desc_pcs4 void * PCS 4 interrupt descriptor structure.

lookupReg DeviceReg_t Used by the device driver to register

the LatticeMico EFB instance with the
LatticeMico32 lookup service. Refer to
LatticeMico32 Software Developer
User Guide for a description of the
DeviceReg_t data type.

LatticeMico EFB

31

LatticeMico32 Microprocessor Software Support

Table 41: LatticeMico EFB Device Context Structure Parameters (Continued)

prev

next

void * Used internally by the lookup service
for tracking multiple registered
instances of EFB.

Used internally by the lookup service
for tracking multiple registered
instances of EFB.

Interrupt Management

The EFB silicon has 10 individual interrupt sources. The LatticeMico EFB
component ORs all these interrupts in to a single interrupt source to be
connected to one of the interrupt lines of LatticeMico32. When an interrupt
event occurs from any of the 10 sources, it is seen as an interrupt event from
the LatticeMico EFB as far as LatticeMico32 is concerned. At this point of
time, LatticeMico32 interrupt management software will transfer program
control to the global interrupt servicing routine within LatticeMico EFB. This
routine is responsible for identifying which of the 10 sources caused the
interrupt event, and then transfers control to the servicing routine associated
with this source. The LatticeMico32 software device driver provides sample
implementations of the interrupt servicing routines for 12C and SPI interfaces.
All the remaining interrupt servicing routines must be implemented by the
customer in the user application. The LatticeMico32 software device driver
also provides a mechanism to override the Lattice-implemented 12C and SPI
interrupt servicing routines with user-optimized versions. To register a user-
implemented servicing routine, the customer must set up the corresponding
interrupt source’s interrupt descriptor structure via Lattice-provided API.
Table 42 through Table 50 describe the interrupt descriptors for each interrupt
source, as shown in Figure 4 through Figure 12.

Figure 4: I2C 1 and 2 Interrupt Descriptor
typedef void (*I2CCallback t) (MicoEFBCtx t *ctx) ;
struct st I2CDesc t {
void *data ;
I2CCallback t onCompletion ;
}

Table 42: IC 1 and 2 Interrupt Descriptor Parameters

Parameter

Data

onCompletion

Data Type Description

void * Pointer to 12C descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*I2CCallback _t) Pointer to the interrupt servicing
routine.

Figure 5: SPI Interrupt Descriptor
typedef void (*SPICallback t) (MicoEFBCtx t *ctx) ;

32

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

struct st SPIDesc t {

void *data ;

SPICallback t onCompletion ;
}

Table 43: SPI Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to SPI descriptor used to hold
data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*SPICallback_t) Pointer to the interrupt servicing
routine.

Figure 6: Timer/Counter Interrupt Descriptor
typedef void (*TCCallback t) (MicoEFBCtx t *ctx) ;
struct st TCDesc t {
void *data ;
TCCallback t onCompletion ;
}

Table 44: Timer/Counter Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to Timer/Counter descriptor
used to hold data that is passed
between applications and interrupt
servicing routine and vice-versa.

onCompletion void (*TCCallback_t) Pointer to the interrupt servicing
routine.

Figure 7: Configuration Interrupt Descriptor (MachXO2/Platform
Manager 2 only)
typedef void (*WBCFGCallback t) (MicoEFBCtx t *ctx) ;
struct st WBCFGDesc t {

void *data ;

WBCFGCallback t onCompletion ;

}

Table 45: Configuration Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to Configuration descriptor
used to hold data that is passed
between applications and interrupt
servicing routine and vice-versa.

onCompletion void (*WBCFGCallback _t) Pointer to the interrupt servicing
routine.

LatticeMico EFB 33

LatticeMico32 Microprocessor Software Support

Figure 8: PCS 0 Interrupt Descriptor
typedef void (*PCS0Callback t) (MicoEFBCtx t *ctx) ;
struct st PCSODesc t {

void *data ;

PCSOCallback t onCompletion ;

Table 46: PCS 0 Interrupt Descriptor Parameters

Parameter

data

onCompletion

Data Type Description

void * Pointer to PCS 0 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*PCSO0Callback_t) Pointer to the interrupt servicing
routine.

Figure 9: PCS 1 Interrupt Descriptor
typedef void (*PCSlCallback t) (MicoEFBCtx t *ctx) ;
struct st PCSlDesc t ({
void *data ;
PCS1lCallback t onCompletion ;
}

Table 47: PCS 1 Interrupt Descriptor Parameters

Parameter

Data

onCompletion

Data Type Description

void * Pointer to PCS 1 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*PCS1Callback_t) Pointer to the interrupt servicing
routine.

Figure 10: PCS 2 Interrupt Descriptor
typedef void (*PCS2Callback t) (MicoEFBCtx t *ctx) ;
struct st PCS2Desc t

void *data ;

PCS2Callback t onCompletion ;

Table 48: PCS 2 Interrupt Descriptor Parameters

Parameter

Data

onCompletion

Data Type Description

void * Pointer to PCS 2 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*PCS2Callback_t) Pointer to the interrupt servicing
routine.

34

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

Figure 11: PCS 3 Interrupt Descriptor
typedef void (*PCS3Callback t) (MicoEFBCtx t *ctx) ;
struct st PCS3Desc t {

void *data ;

PCS3Callback t onCompletion ;

}

Table 49: PCS 3 Interrupt Descriptor Parameters

Parameter

Data

onCompletion

Data Type Description

void * Pointer to PCS 3 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*PCS3Callback_t) Pointer to the interrupt servicing
routine.

Figure 12: PCS 4 Interrupt Descriptor
typedef void (*PCS4Callback t) (MicoEFBCtx t *ctx) ;
struct st PCS4Desc t {
void *data ;
PCS4Callback t onCompletion ;
}

Table 50: PCS 4 Interrupt Descriptor Parameters

Parameter

Data

onCompletion

Data Type Description

void * Pointer to PCS 4 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

void (*PCS4Callback_t) Pointer to the interrupt servicing
routine.

Functions
This section describes the implemented device driver-specific functions.

MicoEFBInit Function
void MicoEFBInit (MicoEFBCtx t *ctx) ;

This function initializes a LatticeMico EFB instance according to the passed
EFB for context structure. This initialization function is responsible for re-
initializing the EFB for, clearing all pending interrupts, and initializing
members of the passed EFB context. As part of the managed build process,
the LatticeDDInit function calls this initialization routine for each EFB instance
in the platform.

LatticeMico EFB

35

LatticeMico32 Microprocessor Software Support

Table 51 describes the parameter in the MicoEFBInit function syntax.

Table 51: Parameter in the MicoEFBInit Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

MicoEFB_ISR Function

void MicoEFB ISR (unsigned int intrLevel, void *ctx) ;

This function implements the global interrupt servicing routine of LatticeMico
EFB. It is responsible for identifying the interrupt source and transferring
control to the corresponding source’s interrupt handler. It clears the source’s
interrupt request flag in the global interrupt request registers (IRQO0 and IRQ1)
of the EFB. If two or more sources request an interrupt simultaneously, then
this routine will call the interrupt handlers based on the priority shown in
Table 52 (MachXO2/Platform Manager 2) and Table 53 (MachXO3L).

Table 52: Priority of Interrupt Sources in LatticeMico EFB (MachXO2/Platform Manager 2)

Interrupt Source Priority
12C 1 (Primary) 0 (Highest)
12C 2 (Secondary) 1

SPI

Timer/Counter

Configuration

PCS O

PCS 2

2
3
4
5
PCS 1 6
7
PCS 3 8

9

PCS 4 (Lowest)

Table 53: Priority of Interrupt Sources in LatticeMico EFB (MachXO3L)

Interrupt Source Priority
12C 1 (Primary) 0 (Highest)
12C 2 (Secondary) 1

SPI 2
Timer/Counter 3

PCS 0 4

PCS 1 5

36 LatticeMico EFB

LatticeMico32 Microprocessor Software Support

Table 53: Priority of Interrupt Sources in LatticeMico EFB (MachXO3L) (Continued)

PCS 2
PCS 3
PCS 4

6
7
8 (Lowest)

Table 54 describes the parameter in the MicoEFB_ISR function syntax.

Table 54: Description of Parameters in MicoEFB_ISR Function Syntax

Parameter

intrLevel

Ctx

Data Type Description

unsigned int The interrupt line of LatticeMico32 in to which the EFB

interrupt sinks.

void * Pointer to the EFB context representing a valid EFB context.

MicoEFB_SPITransfer Function
char MicoEFB SPITransfer (MicoEFBCtx t *ctx,
unsigned char isMaster,
unsigned char slvIndex,
unsigned char insertStart,
unsigned char insertStop,
unsigned char *txBuffer,
unsigned char *rxBuffer,
unsigned int bufferSize,
unsigned int irgmode) ;

This function is used to transfer data over the SPI interface in theEFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see function MicoEFB_RegisterSPIISR).
Table 55 describes the parameter in the MicoEFB_SPITransfer function
syntax.

Table 55: Description of Parameters of MicoEFB_SPITransfer Function Syntax

Parameter
ctx
isMaster

slvindex

Data Type Description

MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.
unsigned char Is SPI configured to be a Master (1) or a Slave (0).

unsigned char The device SPI can communicate with up to 8 external SPI

slave devices. This argument identifies which slave device the
transfer is intended for.

NOTE: Only useful when SPI is configured to be a Master.

LatticeMico EFB

37

LatticeMico32 Microprocessor Software Support

Table 55: Description of Parameters of MicoEFB_SPITransfer Function Syntax (Continued)

insertStart

insertStop

txBuffer

rxBuffer

bufferSize

irgmode

unsigned char

unsigned char

*

unsigned char

*

unsigned char

unsigned int

unsigned int

Is the transfer a new transfer (1), or the continuation of an
existing transfer (0).

NOTE: Only useful when SPI is configured to be a Master.

Should the slave chip select line be de-asserted (1) or left
asserted (0) at the end of transfer.

NOTE: Only useful when SPI is configured to be a Master.
Pointer to the array that contains the data to be transmitted.

Pointer to the array that will store the data that is received.
The application is responsible for allocating memory for this
array.

The number of byte-pairs to be transferred in the current
transaction. For every byte that is transmitted, a byte is
received (note that SPI is a full duplex protocol).

Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

MicoEFB_SPIISR Function
void MicoEFB SPIISR (MicoEFBCtx t *ctx) ;

This function implements the interrupt handler for the SPI interface in the
EFB. It is the default implementation. Table 56 describes the parameters in
the MicoEFB_SPITransfer function syntax..

Table 56: Description of Parameters of MicoEFB_SPIISR Function Syntax

Parameter

ctx

Data Type

MicoEFBCtx_t *

Description

Pointer to the EFB context representing a valid EFB context.

unsigned int MicoEFB SPIXferDone (MicoEFBCtx t, *ctx) ;

This function is used to query whether the interrupt-driven (i.e., non-blocking
mode) SPI transfer has been completed or still in progress. Table 57
describes the parameters in the MicoEFB_SPIXferDone function syntax and
Table 58 describes the return values..

Table 57: Description of Parameters of MicoEFB_SPIXferDone Function Syntax

Parameter

Ctx

Data Type

MicoEFBCtx_t *

Description

Pointer to the EFB context representing a valid EFB context.

38

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

Table 58: Description of the Return Values of MicoEFB_SPIXferDone Function

Value
1
0

Description
The SPI transfer is complete.

The SPI transfer is still in progress.

MicoEFB_RegisterSPIISR Function
void MicoEFB RegisterSPIISR (MicoEFBCtx t *ctx, SPIDesc t *spi)

’

This function can be used by the customer to register a user-implemented
interrupt handler for the SPI. Once the customer defines own interrupt
handler, the functions MicoEFB_SPIISR and MicoEFB_SPIXferDone are no
longer useful. Table 59 describes the parameters in the
MicoEFB_RegisterSPIISR function syntax..

Table 59: Description of the Parameters in the MicoEFB_RegisterSPIISr Function Syntax

Parameter

ctx

spi

Data Type Description
MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.
SPIDesc_t * Pointer to the user-implemented SPI interrupt descriptor. It

contains a pointer to the user-implemented SPI interrupt
handler and a user-defined and implemented data structure
that is shared by the program and interrupt handler.

MicoEFB_I2CRead Function

char MicoEFB I2CRead (MicoEFBCtx t *ctx,
unsigned char i2c idx,
unsigned char isMaster,
unsigned char buffersize,
unsigned char *buffer,
unsigned char insert start,
unsigned char insert stop,
unsigned char address,
unsigned int irgmode) ;

This function is used to read data over the I2C interface in the EFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see functions MicoEFB_Registerl2C1ISR

LatticeMico EFB

39

LatticeMico32 Microprocessor Software Support

and MicoEFB_Registerl2C2ISR). Table 60 describes the parameter in the
MicoEFB_I12CRead function syntax..

Table 60: Description of Parameters of MicoEFB_I2CRead Function Syntax

Parameter
ctx
isMaster
i2c_idx

address

insert_start

insert_restart

insert_stop

Buffer

buffersize

Irgmode

Data Type

MicoEFBCtx_t *

unsigned char
unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char *

unsigned int

unsigned int

Description

Pointer to the EFB context representing a valid EFB context
Is 12C configured to be a Master (1) or a Slave (0)

Use Primary (1) 12C or Secondary (2) 12C

The 12C address of the slave from which data is to be read.

NOTE: Only useful when 12Cis configured as a slave.

Insert START at the start of the current transaction. 1 means
insert START, 0 means otherwise.

NOTE: Only useful when 12C is configured as a master.

NOTE: Refer to 12C protocol specifications for more details on
a REPEATED START condition.

Insert REPEATED START at the start of the current
transaction. 1 means insert REPEATED START, 0 means
otherwise.

NOTE: Only useful when 12Cis configured as a master.

NOTE: Refer to 12C protocol specifications for more details on
a REPEATED START condition.

Insert STOP at the end of current transaction. 1 means insert
STOP, 0 means otherwise.

NOTE: Only useful when 12C is configured as a master.

NOTE: Refer to 1°C protocol specifications for more details on
a STOP condition.

Pointer to the array that will store the data that is received.
The application is responsible for allocating memory for this
array.

The number of bytes to be read in the current transaction.

Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

MicoEFB_I2CWrite Function
char MicoEFB I2CWrite (MicoEFBCtx t *ctx,

unsigned char i2c idx,

40

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

unsigned char isMaster,
unsigned char buffersize,
unsigned char *buffer,
unsigned char insert start,
unsigned char insert stop,
unsigned char address,
unsigned int irgmode) ;

This function is used to write data over the I2C interface in the EFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see functions MicoEFB_Registerl2C1ISR

and MicoEFB_Registerl2C2ISR). Table 61 describes the parameter in the
MicoEFB_I12CWrite function syntax..

Table 61: Description of Parameters of MicoEFB_I2CWrite Function Syntax

Parameter
Ctx
isMaster
i2c_idx
Address

insert_start

insert_restart

Data Type
MicoEFBCtx_t *
unsigned char
unsigned char

unsigned char

unsigned char

unsigned char

Description

Pointer to the EFB context representing a valid EFB context
Is 12C configured to be a Master (1) or a Slave (0)

Use Primary (1) 12C or Secondary (2) 12C

The 12C address of the slave from which data is to be read.

NOTE: Only useful when 12C is configured as a slave.

Insert START at the start of the current transaction. 1 means
insert START, 0 means otherwise.

NOTE: Only useful when 12C is configured as a master.

NOTE: Refer to 1°C protocol specifications for more details on
a REPEATED START condition.

Insert REPEATED START at the start of the current
transaction. 1 means insert REPEATED START, 0 means
otherwise.

NOTE: Only useful when 1°Cis configured as a master.

NOTE: Refer to 12C protocol specifications for more details on
a REPEATED START condition.

LatticeMico EFB

4

LatticeMico32 Microprocessor Software Support

Table 61: Description of Parameters of MicoEFB_I2CWrite Function Syntax (Continued)

insert_stop unsigned char
Buffer unsigned char *
buffersize unsigned int
Irgmode unsigned int

Insert STOP at the end of current transaction. 1 means insert
STOP, 0 means otherwise.

NOTE: Only useful when 1°Cis configured as a master.

NOTE: Refer to 12C protocol specifications for more details on
a STOP condition.

Pointer to the array that contains the data to be transmitted.

The extra number of bytes to be transferred in the current
transaction.

NOTE: If user input is N, EFB will transfer N+1 bytes of data.

Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

MicoEFB_I2C1ISR and MicoEFB_I2C2ISR Functions

void MiCOEFB_IZClISR (MiCOEFBCtX_t *ctx)
void MicoEFB I2C2ISR (MicoEFBCtx t *ctx) ;

These functions implement the interrupt handler for the 12C 1 and 2 interface
in the EFB. These are the default implementation. Table 62 describes the
parameters in the MicoEFB_I2CISR function syntax..

Table 62: Description of Parameters of MicoEFB_I2C1ISR Function Syntax

Parameter Data Type

Ctx MicoEFBCtx_t *

Description

Pointer to the EFB context representing a valid EFB context.

MicoEFB_l2C1XferDone and MicoEFB_l2C2XferDone Functions

char MicoEFB I2ClXferDone (MicoEFBCtx t, *ctx) ;
char MicoEFB I2C2XferDone (MicoEFBCtx t, *ctx) ;

This function is used to query whether the interrupt-driven (i.e., non-blocking
mode) I°C transfer has been completed or still in progress. Table 63 describes
the parameters in the MicoEFB_I2C1XferDone and MicoEFB_12C2XferDone
function syntax and Table 64 describes the return values.

Table 63: Description of Parameters of MicoEFB_I2C1XferDone Function Syntax

Parameter Data Type

Ctx MicoEFBCtx_t *

Description

Pointer to the EFB context representing a valid EFB context.

42

LatticeMico EFB

LatticeMico32 Microprocessor Software Support

Table 64: Description of the Return Values of MicoEFB_I2C1XferDone and MicoEFB_I2C2XferDone

Function.

Value
1
0

Description
The 12C transfer is complete.

The I2C transfer is still in progress.

MicoEFB_Registerl2CISR and MicoEFB_Registerl2C2ISR Functions
void MicoEFB RegisterI2ClISR (MicoEFBCtx t *ctx, I2CDesc_t
*i2c) ;

void MicoEFB RegisterI2C2ISR (MicoEFBCtx t *ctx, I2CDesc t
*i2c) ;

These functions can be used by the customer to register a user-implemented
interrupt handler for the 12C 1 and 2. Once the customer defines own interrupt
handler, the functions MicoEFB_12C1ISR, MicoEFB_12C1XferDone,
MicoEFB_I2C2ISR, and MicoEFB_|2C2XferDone are no longer useful.

Table 65 describes the parameters in the MicoEFB_Registerl2C1ISR and
MicoEFB_Registerl2C2ISR function syntax..

Table 65: Description of the Parameters in the MicoEFB_Registerl2C1ISR and
MicoEFB_Registerl2C2ISR Function Syntax

Parameter
ctx

i2c

Data Type Description
MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.
12CDesc_t * Pointer to the user-implemented 12C interrupt descriptor. It

contains a pointer to the user-implemented 12C interrupt
handler and a user-defined and implemented data structure
that is shared by the program and interrupt handler.

MicoEFB_RegisterPCSxISR Functions

void MicoEFB RegisterPCSOISR (MicoEFBCtx t *ctx, PCSODesc t
*pcs)

void MicoEFB RegisterPCS1ISR (MicoEFBCtx t *ctx, PCSlDesc t
*pcs) ;

void MicoEFB RegisterPCS2ISR (MicoEFBCtx t *ctx, PCS2Desc t
*pcs)

void MicoEFB RegisterPCS3ISR (MicoEFBCtx t *ctx, PCS3Desc t
*pcs)

void MicoEFB RegisterPCS4ISR (MicoEFBCtx t *ctx, PCS4Desc t
*pcs) ;

These functions can be used by the customer to register a user-implemented
interrupt handler for PCS 0, PCS 1, PCS 2, PCS 3 and PCS 4 respectively.

LatticeMico EFB

43

LatticeMico8 Microcontroller Software Support

Table 66 describes the parameters in the MicoEFB_RegisterPCSxISR
function syntax, where x is numbers 0 through 4.

Table 66: Description of Parameters in the MicoEFB_RegisterPCSxISR Function Syntax

Parameter
ctx

pcs

Data Type Description
MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.
PCSxDesc_t* Pointer to the user-implemented PCSx (where x is from 0

through 4) interrupt descriptor. It contains a pointer to the
user-implemented PCSx interrupt handler and a user-defined
and implemented data structure that is shared by the program
and interrupt handler.

LatticeMico8 Microcontroller Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico EFB component.

Device Driver

The EFB device driver interacts directly with the EFB instance. This section
describes the limitations, type definitions, structure, and functions of the EFB
device driver.

Type Definitions

This section describes the type definitions for the EFB device context
structure. This structure, shown in Figure 13, contains the EFB component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the EFB component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions
are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.
Table 67 describes the parameters of the EFB device context structure shown
in Figure 13

Device Context Structure

Figure 13 shows the EFB device context structure for MachXO2/Platform
Manager 2.

44

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Figure 13: EFB Device Context Structure (MachXO2/Platform Manager 2)

struct st MicoEFBCtx t ({

const char * name;

size t base;

unsigned char intrLevel;
unsigned char i2cl en;
unsigned char i2c2 en;
unsigned char spi_en;
unsigned char spi_irgen;

unsigned char timer en;
unsigned char ufm en;
unsigned int ufm addr;
unsigned int ufm mem;

} MicoEFBCtx t;

Figure 14 shows the EFB device context structure for MachXO3L.

Figure 14: EFB Device Context Structure (MachXO3L)

struct st MicoEFBCtx t {

const char * name;

size t base;

unsigned char intrLevel;
unsigned char i2cl _en;
unsigned char i2c2 en;
unsigned char spi_en;
unsigned char spi_irgen;

unsigned char timer en;
} MicoEFBCtx t;

Table 67 describes the EFB device context parameters for MachXO2/Platform

Manager 2.

Table 67: EFB Device Context Parameters (MachXO2/Platform Manager

2)

Parameter Data Type
name const char *
base size_t
intrLevel unsigned char
i2c1_en unsigned char
i2c2_en unsigned char
spi_en unsigned char
spi_irgen unsigned char
timer_en unsigned char

Description

component name (entered
in MSB)

MSB-assigned base
address for this instance

Processor interrupt line to
which this instance is
connected

Primary 12C enabled
Secondary I2C enabled
SPI enabled

SPl interrupt enabled

Timer enabled

LatticeMico EFB

45

LatticeMico8 Microcontroller Software Support

Table 67: EFB Device Context Parameters (MachXO2/Platform Manager
2) (Continued)

Parameter Data Type Description
ufm_en unsigned char UFM enabled
ufm_addr unsigned int UFM Start Address
ufm_mem unsigned int UFM memory size

Table 68 describes the EFB device context parameters for MachXO3L.

Table 68: EFBDevice Context Parameters (MachXO3L)

Parameter Data Type Description

name const char * component name (entered
in MSB)

base size_t MSB-assigned base

address for this instance

intrLevel unsigned char Processor interrupt line to
which this instance is
connected

i2c1_en unsigned char Primary I2C enabled

i2c2_en unsigned char Secondary I2C enabled

spi_en unsigned char SPI enabled

spi_irgen unsigned char SPl interrupt enabled

timer_en unsigned char Timer enabled

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-

like' and 'function-like'.

The 'object-like' macro definitions do not take any arguments and are used to

control the size of the generated application executable. There are three ways

an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command
line in the application's 'Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the the application's 'Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's

command-line in the application's 'Build Properties' by enabling the
‘check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

46

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>
It is recommended that the developer use options 1 or 2.
__MICO_NO_INTERRUPTS _

This preprocessor macro definition disables code and data structures within
the device driver that allow the EFB to be used in an interrupt driven mode. It
is not defined by default.

__MICOEFB_NO_I2C_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the 12C to be used in an interrupt driven mode. It is
not defined by default.

__MICOEFB_NO_SPI_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the SPI to be used in an interrupt driven mode. It is
not defined by default.

__MICOEFB_NO_TC_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the Timer/Counter to be used in an interrupt driven
mode. It is not defined by default.

__MICOEFB_NO_UFM_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the UFM to be used in an interrupt driven mode. It
is not defined by default.

__MICOEFB_NO_UFM_ADDR_CHECK__

MachXO2/Patform Manager 2 only. This preprocessor macro definition
disables code and data structures within the device driver that validate the
UFM Address when calling any UFM function. It is not defined by default.

The 'function-like' macro definitions are used in the LatticeMico8 software
drivers to access the component's Register Map in order to perform certain
operations. All 'function-like' macro definitions take input parameters that are
used in performing the operations encoded within the macro. Table 69
describes the 'function-like' macros available in the LatticeMico8 EFB driver

LatticeMico EFB

47

LatticeMico8 Microcontroller Software Support

header file 'MicoEFB.h'. Table 70 through Table 74 also show how each
macro can be used by the software developer in the application code.

Table 69: C Preprocessor Function-like Macros For EFB

Macro Name

MICO_EFB_READ_IRQR

MICO_EFB_WR_IRQR

Second Argument to Macro

The 8-bit value read from the IRQ

register.

The 8-bit value to be written to the

IRQ register.

Note: The first argument to the macro is the EFB address.

Table 70: Preprocessor Function-like Macros For SPI

Macro Name

MICO_EFB_SPI_READ_CRO

MICO_EFB_SPI_WRITE_CRO

MICO_EFB_SPI_READ_CR1

MICO_EFB_SPI_WRITE_CR1

MICO_EFB_SPI_READ_CR2

MICO_EFB_SPI_WRITE_CR2

MICO_EFB_SPI_READ_BR

MICO_EFB_SPI_WRITE_BR

MICO_EFB_SPI_READ_CSR

MICO_EFB_SPI_WRITE_CSR

MICO_EFB_SPI_READ_RXDR

MICO_EFB_SPI_WRITE_TXDR

MICO_EFB_SPI_READ_SR

Second Argument to Macro

The 8-bit value read from the
Control Register 0.

The 8-bit value to be written to
the Control Register 0.

The 8-bit value read from the
Control Register 1.

The 8-bit value to be written to
the Control Register 1.

The 8-bit value read from the
Control Register 2.

The 8-bit value to be written to
the Control Register 2.

The 8-bit value read from the
Clock Pre-scale Register.

The 8-bit value to be written to
the Clock Pre-scale Register

The 8-bit value read from the
Master Chip Select Register

The 8-bit value to be written to

the Master Chip Select Register.

The 8-bit value read from the
Receive Data Buffer.

The 8-bit value to be written to
the Transmit Data Buffer.

The 8-bit value read from the
Status Register.

Description

This macro reads a character from the
Interrupt Register.

This macro writes a character to the
Interrupt Register.

Description

This macro reads a character from the
Control Register 0.

This macro writes a character to the Control
Register 0.

This macro reads a character from the
Control Register 1.

This macro writes a character to the Control
Register 1.

This macro reads a character from the
Control Register 2.

This macro writes a character to the Control
Register 2.

This macro reads a character from the
Clock Pre-scale Register.

This macro reads a character from the
Clock Pre-scale Register.

This macro reads a character from the
Master Chip Select Register.

This macro writes a character to the Master
Chip Select Register.

This macro reads a character from the
Receive Data Buffer.

This macro writes a character to the
Transmit Data Buffer.

This macro reads a character from the
Status Register.

48

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Table 70: Preprocessor Function-like Macros For SPI (Continued)

Macro Name

MICO_EFB_SPI_READ_IRQSR

MICO_EFB_SPI_WRITE_IRQSR

MICO_EFB_SPI_READ_IRQENR

MICO_EFB_SPI_WRITE_IRQENR

Second Argument to Macro

The 8-bit value read from the
Interrupt Request Register.

The 8-bit value to be written to
the Interrupt Request Register.

The 8-bit value read from the
Interrupt Request Enable
Register.

The 8-bit value to be written to
the Interrupt Request Enable
Register.

Note: The first argument to the macro is the EFB address.

Table 71: C Preprocessor Function-like Macros For 12c

Macro Name

MICO_EFB_I2C_READ_CR

MICO_EFB_I2C_WRITE_CR

MICO_EFB_I2C_READ_CMDR

MICO_EFB_I2C_WRITE_CMDR

MICO_EFB_I2C_READ_PRESCALE_LO

MICO_EFB_I2C_WRITE_PRESCALE_LO

MICO_EFB_[2C_READ_PRESCALE_HI

MICO_EFB_I2C_WRITE_PRESCALE_HI

MICO_EFB_I2C_READ_RXDR

MICO_EFB_I2C_WRITE_TXDR

MICO_EFB_I2C_READ_SR

Second Argument to Macro

The 8-bit value read from the
Control Register.

The 8-bit value to be written to the

Control Register.

The 8-bit value read from the
command Register.

The 8-bit value to be written to the

command Register.

The 8-bit value read from the
lower byte of Clock Pre-scale
Register.

lower byte of Clock Pre-scale
Register.

The 8-bit value read from the
upper byte of Clock Pre-scale
Register.

upper byte of Clock Pre-scale
Register.

The 8-bit value read from the
Receive Data Buffer.

The 8-bit value to be written to the

Transmit Data Buffer.

The 8-bit value read from the
Status Register.

The 8-bit value to be written to the

The 8-bit value to be written to the

Description

This macro reads a character from the
Interrupt Request Register.

This macro writes a character to the
Interrupt Request Register.

This macro reads a character from the
Interrupt Request Enable Register.

This macro writes a character to the
Interrupt Request Enable Register.

Description

This macro reads a character from
the Control Register.

This macro writes a character to the
Control Register.

This macro reads a character from
the command Register.

This macro writes a character to the
command Register.

This macro reads a character from
the lower byte of Clock Pre-scale
Register.

This macro writes a character to the
lower byte of Clock Pre-scale
Register.

This macro reads a character from
the upper byte of Clock Pre-scale
Register.

This macro writes a character to the
upper byte of Clock Pre-scale
Register.

This macro reads a character from
the Receive Data Buffer.

This macro writes a character to the
Transmit Data Buffer.

This macro reads a character from
the Status Register.

LatticeMico EFB

49

LatticeMico8 Microcontroller Software Support

Table 71: C Preprocessor Function-like Macros For I2C (Continued)

Macro Name Second Argument to Macro Description

MICO_EFB_12C_READ_IRQSR The 8-bit value read from the This macro reads a character from
Interrupt Request Register. the Interrupt Request Register.

MICO_EFB_I2C_WRITE_IRQSR The 8-bit value to be written to the This macro writes a character to the
Interrupt Request Register. Interrupt Request Register.

MICO_EFB_12C_READ_IRQENR The 8-bit value read from the This macro reads a character from
Interrupt Request Enable the Interrupt Request Enable
Register. Register.

MICO_EFB_I2C_WRITE_IRQENR The 8-bit value to be written to the This macro writes a character to the
Interrupt Request Enable Interrupt Request Enable Register.
Register.

Note: For the primary 12C, the first argument to the macro is EFB address. For the secondary 12C, the first argument
to the macro is EFB address plus 0x0a.

Table 72: C Preprocessor Function-like Macros with Two Arguments for Timer/Counter

Macro Name Second Argument to Macro Description
MICO_EFB_TIMER_READ_CRO The 8-bit value read from the This macro reads a character from
Control Register 0. the Control Register 0.
MICO_EFB_TIMER_WRITE_CRO The 8-bit value to be written to the This macro writes a character to the
Control Register 0. Control Register 0.
MICO_EFB_TIMER_READ_CR1 The 8-bit value read from the This macro reads a character from
Control Register 1. the Control Register 1.
MICO_EFB_TIMER_WRITE_CR1 The 8-bit value to be written to the This macro writes a character to the
Control Register 1. Control Register 1.
MICO_EFB_TIMER_READ_CR2 The 8-bit value read from the This macro reads a character from
Control Register 2. the Control Register 2.
MICO_EFB_TIMER_WRITE_CR2 The 8-bit value to be written to the This macro writes a character to the
Control Register 2. Control Register 2.
MICO_EFB_TIMER_GET_CNT The 16-bit Counter Value. This macro gets the current counter
value.
MICO_EFB_TIMER_GET_TOP The 16-bit Current Top Counter This macro gets the current top
value . counter value.
MICO_EFB_TIMER_GET_OCR The 16-bit Current Compare This macro gets the current top
Counter Value compare counter value.
MICO_EFB_TIMER_GET_ICR The 16-bit Current Capture This macro gets the current capture
Counter Value. counter value.
MICO_EFB_TIMER_SET_TOP The 16-bit Top Counter Value to This macro set the Top Counter
be set . Value.
MICO_EFB_TIMER_SET_OCR The 16-bit Compare Counter This macro set the Compare
Value to be set . Counter Value.

50 LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Table 72: C Preprocessor Function-like Macros with Two Arguments for Timer/Counter (Continued)

Macro Name

MICO_EFB_TIMER_READ_SR

MICO_EFB_TIMER_READ_IRQSR

MICO_EFB_TIMER_WRITE_IRQSR

MICO_EFB_TIMER_READ_IRQENR

MICO_EFB_TIMER_WRITE_IRQENR

Second Argument to Macro

The 8-bit value read from the
Status Register.

The 8-bit value read from the
Interrupt Request Register.

The 8-bit value to be written to the

Interrupt Request Register.

The 8-bit value read from the
Interrupt Request Enable
Register.

The 8-bit value to be written to the

Interrupt Request Enable
Register.

Note: The first argument to the macro is the EFB address.

Description

This macro reads a character from
the Status Register.

This macro reads a character from
the Status Register.

Interrupt Request Register.

This macro reads a character from
the Interrupt Request Enable
Register.

Interrupt Request Enable Register.

This macro writes a character to the

This macro writes a character to the

Table 73: C Preprocessor Function-like Macros with Two Arguments for UFM (MachXO2/Platform

Manager 2 only)

Macro Name

MICO_EFB_UFM_WRITE_CR

MICO_EFB_UFM_READ_CR

MICO_EFB_UFM_WRITE_TXDR

MICO_EFB_UFM_READ_SR

MICO_EFB_UFM_READ_RXDR

MICO_EFB_UFM_WRITE_IRQSR

MICO_EFB_UFM_READ_IRQSR

MICO_EFB_UFM_WRITE_IRQENR

MICO_EFB_UFM_READ_IRQENR

Second Argument to Marco

The 8-bit value to be written to the
Control Register.

The 8-bit value read from the
Control Register.

The 8-bit value to be written to the
Transmit FIFO Data Buffer.

The 8-bit value read from the
Status Register.

The 8-bit value read from the
Receive FIFO Data Buffer.

The 8-bit value to be written to the
Interrupt Request Register.

The 8-bit value read from the
Interrupt Request Register.

The 8-bit value to be written to the
Interrupt Request Enable Register.

The 8-bit value to be written to the
Interrupt Request Enable Register.

Description

This macro reads a character from the
Control Register.

This macro writes a character to the
Control Register

This macro writes a character to the
Transmit FIFO Data Buffer

This macro reads a character from the
Status Register.

This macro reads a character from the
Receive FIFO Data Buffer.

This macro writes a character to the
Interrupt Request Register.

This macro reads a character from the
Interrupt Request Register.

This macro writes a character to the
Interrupt Request Enable Register.

This macro writes a character to the
Interrupt Request Enable Register.

LatticeMico EFB

51

LatticeMico8 Microcontroller Software Support

Table 74: C Preprocessor Function-like Macros With One Argument for
Timer/Counter

Macro Name Description
MICO_EFB_TIMER_STOP This macro stops the timer.
MICO_EFB_TIMER_RESET This macro resets the timer
MICO_EFB_TIMER_START This macro starts the timer.
Functions

This section describes the implemented device-driver-specific functions.

MicoEFBInit Function
void MicoEFBInit (MicoEFBCtx t *ctx);

This is the EFB initialization function. It disable all interrupts (should be
enabled by user as required) and stops the timer.

Table 75 describes the parameter in the MicoEFBInit function syntax.

Table 75: MicoEFBInit Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

MicoEFBISR Function
void MicoEFBISR (MicoEFBCtx t *ctx);

This is the EFB Interrupt handler. Each EFB component has it's own interrupt
handler and must be implemented by the developers in user code to reflect
their application behavior.

Table 76 describes the parameter in the MicoEFBISR function syntax.

Table 76: MicoEFBISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx _t structure
representing a valid EFB instance.

This function and the following component interrupt handler will not be
declared if user specifies _ MICO_NO_INTERRUPTS__ preprocessor.

52 LatticeMico EFB

LatticeMico8 Microcontroller Software Support

MicoEFB_I2C1ISR Function
void MicoEFB I2C1ISR (MicoEFBCtx t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO_12C_INTERRUPT __ preprocessor. This is the primary 12c
Interrupt handler.

Table 77 describes the parameter in the MicoEFB_12C1ISR function syntax.

Table 77: MicoEFB_I2C1ISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx _t structure
representing a valid EFB instance.

MicoEFB_I2C2ISR Function
void MicoEFB I2C2ISR (MicoEFBCtx t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO _12C_INTERRUPT __ preprocessor. This is the secondary
1°’C Interrupt handler.

Table 78 describes the parameter in the MicoEFB_I2C2ISR function syntax.

Table 78: MicoEFB_I2C1ISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

MicoEFB_SPIISR Function
void MicoEFB SPIISR (MicoEFBCtx t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO_SPI_INTERRUPT__ preprocessor. This is the SPI Interrupt
handler.

Table 79 describes the parameter in the MicoEFB_TimerlSR function syntax.

Table 79: MicoEFB_TimerlSR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx _t structure
representing a valid EFB instance.

MicoEFB_TimerISR Function
void MicoEFB TimerISR (MicoEFBCtx t *ctx);

LatticeMico EFB

53

LatticeMico8 Microcontroller Software Support

This function will not be declared if user specifies
__MICOEFB_NO_TC_INTERRUPT__ preprocessor. This is the Timer

Interrupt handler.

MicoEFB_SPITransfer Function
char MicoEFB SPITransfer

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char
char
char

(MicoEFBCtx t *ctx,

isMaster,
slvIndex,
insertStart,
insertStop,
*txBuffer,
*rxBuffer,
bufferSize);

This function initiates a SPI transfer that receives and transmits a configurable
number of bytes. Table 80 describes the parameters in the
MicoEFB_SPITransfer function syntax.

Table 80: MicoEFB_SPITransfer Function Parameters

Parameter

MicoEFBCtx_t*

unsigned char

unsigned char

unsigned char

unsigned char
unsigned char

unsigned char

Description Note

Pointer to a valid
MicoEFBCtx t*
structure representing a
valid EFB instance.

master or slave master or slave
1 = master
0 = slave

Assert chip select at start 1 =insert
of transfer

0 = do not insert

Deassert chip selectatend 1 =insert
of transfer

0 = do not insert

Bytes to be transmitted min 1 and max 256

Bytes to be received

Number of bytes to transfer 0 refers to 1 byte. 255

MicoEFB_SPITxData Function
char MicoEFB SPITxData

refers to 256 bytes

(MicoEFBCtx t *ctx,

unsigned char data);

54

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

This function initiates a byte transmission. Table 81 describes the parameters
in the MicoEFB_SPITxData function syntax.

Table 81: MicoEFB_SPITxData (MicoEFBCtx_t *ctx Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char Data Bytes to be
transferred

Table 82 describes the values returned by the MicoEFB_SPIRxData Function.

Table 82: Values Returned by the MicoEFB_SPITxData Function

Return Value Description

0 Successful writes

MicoEFB_SPIRxData Function

char MicoEFB SPIRxData (MicoEFBCtx t *ctx,
unsigned char *data);

This function initiates a byte receive. Table 83 describes the parameters in the
MicoEFB_SPIRxData (MicoEFBCtx_t *ctx function syntax.

Table 83: MicoEFB_SPITxData (MicoEFBCtx_t *ctx Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char Data Bytes received

Table 84 describes the values returned by the MicoEFB_SPIRxData Function.

Table 84: Values Returned by the MicoEFB_SPITxData Function

Return Value Description

0 Status register contents after receive of data.

MicoEFB_l2CStart Functions

char MicoEFB I2CStart (MicoEFBCtx t *ctx,
unsigned char i2c idx,
unsigned char read,
unsigned char address,

LatticeMico EFB

55

LatticeMico8 Microcontroller Software Support

unsigned char restart);

This function initiates a START command provided the 12C master can get
control of the bus.

Table 85 describes the parameters in the MicoEFB_12CStart function syntax.

Table 85: MicoEFB_l2CStart Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB

instance.
unsigned char 12C index Value is 1 or 2
unsigned char Read or write operation 0 = Write
1 =Read
unsigned char Slave address
unsigned char Is this a 'repeated start' 1 = (repeated start)
event or a new 'start’ 0 = (new start)
event?

Table 86 describes the values returned by the MicoEFB_12CStart function.

Table 86: Values Returned by the MicoEFB_I2CStart Function

Return Value Description

0 Successful writes

-1 Failed to receive ack during addressing
-2 Failed to receive ack when writing data.
-3 Arbitration lost during operations

MicoEFB_I2CWrite Function

char MicoEFB I2CWrite (MicoEFBCtx t *ctx,
unsigned char i2c idx,
unsigned char slv_ xfer,
unsigned char buffersize,
unsigned char *data,
unsigned char insert start,
unsigned char insert restart,
unsigned char insert stop,
unsigned char address);

This function performs block writes. In addition it also allows the user to
optionally:

1. Initiate a START command prior to performing the block writes if the 12C is
an 12C master.

56 LatticeMico EFB

LatticeMico8 Microcontroller Software Support

2. Initiate a STOP command after performing the block writes if the 12C is an
I°C master.

3. Hold the SCL line low (i.e. clock stretching) after performing the block
writes if the I1°C is an I°C slave.

Table 87 describes the parameters in the MicoEFB_12CWrite function syntax.

Table 87: MicoEFB_I2CWrite Function Parameters
Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB

instance.
unsigned char 12C index Value is 1 or 2
unsigned char 12C master or slave 0 = master
1 =slave
unsigned char Number of bytes to be min 1 and max 256
transferred
unsigned char Buffer containing the data to
be transferred
unsigned char Master: Insert Start (or 1 =insert
repeated Start) prior to data 0 = do not insert
transfer
unsigned char Master: Insert Stop atend of 1 = insert

data transfer. Slave: Stretch

clock at end of transfer. 0 = do not insert

unsigned char Master: Repeated Start 1 =insert
inserted prior to data
transfer (this argument is
valid only is 'insert_start' is 1

0 = do not insert

unsigned char Slave address

Table 88 describes the values returned by the MicoEFB_I2CWrite function.

Table 88: Values Returned by the MicoEFB_I2CWrite Function

Return Value Description

0 Successful writes

-1 Failed to receive ack during addressing
-2 Failed to receive ack when writing data.
-3 Arbitration lost during operations

MicoEFB_I2CRead Function
char MicoEFB I2CRead (MicoEFBCtx t *ctx,

LatticeMico EFB 57

LatticeMico8 Microcontroller Software Support

unsigned char i2c idx,
unsigned char slv_xfer,
unsigned char buffersize,
unsigned char *data,

unsigned char insert start,
unsigned char insert restart,
unsigned char insert stop,
unsigned char address);

Table 89 describes the parameters in the MicoEFB_|2CRead function syntax.

Table 89: MicoEFB_I2CRead Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB

instance.
unsigned char 1°C index Value is 1 or 2
unsigned char I2C master or slave 0 = master
1 = slave
unsigned char Number of bytes to be min 1 and max 256
transferred
unsigned char Buffer to put received data
in to
unsigned char Master: Insert Start (or 1 =insert
repeated Start) prior to data 0 = do not insert
transfer
unsigned char Master: Repeated Start 1 =insert

inserted prior to data
transfer (this argument is
valid only is 'insert_start' is 1

0 = do not insert

unsigned char Master: Insert Stop atend of 1 = insert
data transfer. Slave: Stretch

clock at end of transfer. 0 = do not insert

unsigned char Slave address

Table 90 describes the values returned by the MicoEFB_I2CRead function.

Table 90: Values Returned by the MicoEFB_I2CRead Function

Return Value Description

0 Successful reads.

-1 Failed to receive ack during addressing
-2 Failed to receive ack when writing data.
-3 Arbitration lost during operations

58 LatticeMico EFB

LatticeMico8 Microcontroller Software Support

MicoEFB_TimerStart Function

void MicoEFB TimerStart (MicoEFBCtx t *ctx,
unsigned char mode,
unsigned char ocmode,
unsigned char sclk,
unsigned char cclk,
unsigned char interrupt,
unsigned int timerCount,
unsigned int compareCount) ;

This function sets up timer configuration and starts timer. Table 91 describes
the parameters in the MicoEFB_ TimerStart function syntax.

Table 91: MicoEFB_TimerStart Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB

instance.
unsigned char Timer mode 0 - Watchdog
1 - Clear Timer on Compare (CTC) Match
2 - Fast PWM
3 - Correct PWM
unsigned char Timer counter output 0 - Always zero

signal’'s mode 1 - Toggle on TOP match (non-PWM modes)

Toggle on OCR match (Fast PWM mode)
Toggle on OCR match (Correct PWM mode)
2 - Clear on TOP match (non-PWM modes)
Clear on TOP match, set on OCR match (Fast PWM mode)

Clear on OCR match when CNT incrementing, set on OCR
match when CNT decrementing (Correct PWM mode)

3 - Set on TOP match (non-PWM modes)
Set on TOP match, clear on OCR match (Fast PWM mode)

Set on OCR match when CNT incrementing, clear on OCR
match when CNT decrementing (Correct PWM mode)

unsigned char Clock source selection 0 - WISHBONE clock (rising edge)
2 - On-chip oscillator (rising edge)
4 - WISHBONE clock (falling edge)
6 - On-chip oscillator (falling edge)

LatticeMico EFB 59

LatticeMico8 Microcontroller Software Support

Table 91: MicoEFB_TimerStart Function Parameters (Continued)

Parameter

unsigned char

unsigned char

unsigned char

unsigned char

Description Note

Divider selection 0 - Static 0
1 - sclk/1
2- sclk/8
3 - sclk/64
4 - sclk/256
5 - sclk/1024

interrupt 1 = Enable interrupts
0 = Disable interrupts
Timer TOP value maximum OxFFFF

Timer OCR (compare) value maximum OxFFFF

Note

The MicoEFB_ UFMCmdCall Function, MicoEFB_ UFMSetAddr Function, MicoEFB_
UFMErase Function. MicoEFB_ UFMRead Function, and MicoEFB_ UFMWrite
Function apply only to MachXO2/Platform Manager 2.

MicoEFB_ UFMCmdCall Function

char MicoEFB UFMCmdCall (MicoEFBCtx t *ctx,
unsigned long opcode,
unsigned char enable);

Table 92 describes the parameter in the MicoEFB_ UFMCmdCall function
syntax.

Table 92: MicoEFB_ UFMCmdCall Function Parameters (MachXO2/Platform Manager 2 only)

Parameter

MicoEFBCtx_t*

unsigned char

unsigned char

Description Note

Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

UFM 4 bytes opcode

Enable the close frame 1: enable
signal 0: disable

MicoEFB_ UFMSetAddr Function

char MicoEFB UFMSetAddr (MicoEFBCtx t *ctx,
unsigned int address);

60

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Table 93 describes the parameter in the MicoEFB_ UFMSetAddr function
syntax.

Table 93: MicoEFB_ UFMSetAddr Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx _t structure
representing a valid EFB
instance.

unsigned int UFM 14 bits memory
address

Table 94 describes the values returned by the MicoEFB_ UFMSetAddr
Function.

Table 94: Values Returned by the MicoEFB_ UFMSetAddr Function
(MachXO2/Platform Manager 2 only)

Return Value Description
0 Sucess
-1 Invalid address

MicoEFB_ UFMErase Function
char MicoEFB UFMErase (MicoEFBCtx t *ctx);

Table 95 describes the parameter in the MicoEFB_ UFMErase function
syntax.

Table 95: MicoEFB_ UFMErase Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

Table 96 describes the values returned by the MicoEFB_ UFMErase
Function.

Table 96: Values Returned by the MicoEFB_ UFMErase Function
(MachXO2/Platform Manager 2 only)

Return Value Description
0 Erase successfully
-1 Erase fails

LatticeMico EFB 61

LatticeMico8 Microcontroller Software Support

MicoEFB_ UFMRead Function

char MicoEFB UFMRead (MicoEFBCtx t *ctx,
unsigned char *data,
unsigned char pagesize);

Table 97 describes the parameter in the MicoEFB_ UFMRead function
syntax.

Table 97: MicoEFB_ UFMRead Function Parameters (MachXO2/Platform Manager 2 only)

Parameter

MicoEFBCtx_t*

unsigned char

unsigned char

Description

Note

Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB

Data Bytes received

Number of Page to read Max Page is 16

Table 98 describes the values returned by the MicoEFB_ UFMRead Function.

Table 98: Values Returned by the MicoEFB_ UFMRead Function
(MachXO2/Platform Manager 2 only)

Return Value Description

0 read successfully

-1 invalid page size

-2 Read from invalid memory

MicoEFB_ UFMWrite Function

char MicoEFB UFMWrite (MicoEFBCtx t *ctx,
unsigned char *data);

Table 99 describes the parameter in the MicoEFB_ UFMWrite function syntax.

Table 99: MicoEFB_ UFMWrite Function Parameters (MachXO2/Platform Manager 2 only)

Parameter

MicoEFBCtx_t*

unsigned char

Description

Note

Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB

Data Bytes transfer

62

LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Table 100 describes the values returned by the MicoEFB_ UFMWrite
Function.

Table 100: Values Returned by the MicoEFB_ UFMWrite Function
(MachXO2/Platform Manager 2 only)

Return Value Description
0 Write successfully
-1 Write to invalid memory

Software Usage Example

This section provides an example of using the EFB. The example is shown in
Figure 15 and assumes the presence of an EFB component named “efb” and
a UART component named “uart”.

LatticeMico EFB

63

LatticeMico8 Microcontroller Software Support

Figure 15: Example of Using EFB

#include "MicoUtils.h"
#include "DDStructs.h"
#include "MicoEFB.h"

void MicoEFB I2CI1ISR (MicoEFBCtx t *ctx)
{

return;

void MicoEFB I2C2ISR (MicoEFBCtx t *ctx)
{

return;

void MicoEFB SPIISR (MicoEFBCtx t *ctx)
{

return;

void MicoEFB TimerISR (MicoEFBCtx t *ctx)
{

return;

static unsigned char GetCharacter (MicoUartCtx t *pUart)

{
char c;
MicoUart getC (pUart, &c);
return (c) ;

static void SendCharacter (MicoUartCtx t *pUart, char c)
{

MicoUart putC (pUart, c);

return;

/*************************************
*] *
main program
‘k*‘k********‘k*************************/
int main ()

{
MicoEFBCtx t *efb = &efb machxo2 efb;
size t efb address = (size t) efb->base;

MicoUartCtx t *uart &uart core uart;
size t uart address = (size t) uart->base;

64 LatticeMico EFB

LatticeMico8 Microcontroller Software Support

Figure 15: Example of Using EFB (Continued)

unsigned char iter;
unsigned int snapshot;

for

(iter = 0; iter < 2; iter++) {
MicoEFB TimerStart (efb, 0, O, 0, 2, O,
MicoSleepMicroSecs (100* (iter+1l));
MICO EFB TIMER GET CNT (efb address,
MICO EFB _TIMER STOP (efb address);

OxFFFF, 0x0);

snapshot) ;

// Print snapshot

SendCharacter (uart,
SendCharacter (uart,
SendCharacter (uart,

(char) (snapshot>>8)) ;
(char) (snapshot));
"\n');

return(0) ;

Revision History

Component Description

Version

1.0 Initial release.

1.1 Support added for new UFM features: Read, Write, Command
Call, Set Address and Erase.
Support added for 12C with repeated start command.
Content added to optimize the 12C and SPI by inserting
assembly code.
Fixed issues with 12C_Read in master mode.
Updated document with new corporate logo.

1.2 Added support for User-Managed Timer Reset mode.
Added I/O port ufm_sn to Table 8, UFM I/O Port (MachXO2/
Platform Manager 2 Only).

1.3 Added LatticeMico32 microprocessor software support.

1.4 Added support for a new preprocessor option,
" _MICOEFB_NO_UFM_ADDR_CHECK__", which allows the
UFM function to bypass the UFM address checking.

1.5 Fixed issues with EFB instance name.

1.6 Added support for Platform Manager 2 and MachXO3L

devices.

LatticeMico EFB

65

LatticeMico8 Microcontroller Software Support

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of

Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their
respective owners.

66 LatticeMico EFB

http://www.latticesemi.com/legal

	LatticeMico EFB
	Version
	Features
	SPI Features
	I2C Features
	Timer/Counter Features
	UFM Features (MachXO2/Platform Manager 2 Only)

	Functional Description
	Configuration
	UI Parameters
	I/O Ports
	Register Descriptions
	WISHBONE Addressable Registers for Timer/ Counter Module
	Timer/Counter Registers
	WISHBONE Addressable Registers for UFM Module (MachXO2/Platform Manager 2 Only)

	Usage Model
	LatticeMico32 Microprocessor Software Support
	Device Driver

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example

