
Copyright © October 2014 Lattice Semiconductor Corporation.

LatticeMico EFB

The LatticeMico EFB Is a hard architectural block that is known as the
Embedded Function Block (EFB). The EFB includes a Serial Peripheral
Interface (SPI), two I2Cs, and a timer/counter peripheral. All of these hard IP
peripherals are contained in the EFB block, will connect to the WISHBONE
bus in slave mode, and share a common Serial Communications Interface
(SCI) block.

Support for LatticeMico EFB is provided for MachXO2, Platform Manager 2,
and MachXO3L devices.

MachXO2/Platform Manger 2 only: The User Flash Memory (UFM) and
phase-locked loopse (PLLs) may also be addressed as WISHBONE elements
via the EFB, but they are not physically located in the EFB.

Version

This document describes the 1.6 version of the LatticeMico EFB.

Note

Some differences exist between EFB for MachXO2/Platform Manager 2 and EFB for
MachXO3L. This document will indicate wherever there is a difference between
MachXO2/Platform Manger 2 and MachXO3L.

Features

2 LatticeMico EFB

Features

The EFB includes a SPI, two I2C’s, and a timer/counter peripheral. MachXO2/
Platform Manager 2 also includes User Flash Memory (UFM).

SPI Features
SPI provides standard, fully configurable SPI ports including:

 Configurable master and slave mode

 Mode fault error flag with CPU interrupt capability

 Double-buffered data register

 Serial clock with programmable polarity and phase

 LSB First or MSB First data transfer

I2C Features
MachXO2/Platform Manager and MachXO3L devices contain two hardened
I2C IP cores designated as the “Primary” and “Secondary” 2C IP core. Either
of the two cores can be configured as an I2C master or as an I2C slave. The
difference between the two cores is that the primary core has pre-assigned I/
O pins, while the ports of the secondary core can be assigned by designers to
any general purpose I/O. In addition, the primary core has access to the
configuration logic of the MachXO2 device.

When an I2C core is a master, it can control other devices on the I2C bus
through the physical interface. When a core is the slave, the device can
provide I/O expansion to an I2C master. The cores support the following I2C
functionality:

 Master/Slave mode support

 7-bit and 10-bit addressing

 Clock stretching

 Supports 50KHz, 100KHz, and 400KHz data transfer speed

 General call support

 Interface to custom logic through 8-bit WISHBONE interface

Timer/Counter Features

The timer counter has four modes of operation:

 Clear Timer on Compare (CTC) match. (This mode includes the normal
mode.)

 Watchdog

Functional Description

LatticeMico EFB 3

 Fast pulse-width modulation (PWM)

 Phase and frequency correct PWM

UFM Features (MachXO2/Platform
Manager 2 Only)
The devices listed in Table 1 provide one sector of User Flash Memory
(UFM). The UFM is a Flash sector that is organized in pages. The UFM is not
byte addressable. Each page has 128 bits (16 bytes). Table 1 shows the UFM
resources in each device, represented in bits, bytes and pages.

The UFM is a general purpose Flash memory. Common usages of UFM are
for storing system level non-volatile data, initialization data for the on-chip
Embedded Block RAM (EBR) blocks, and executable codes for
microcontroller or embedded state machines.

Functional Description

The EFB includes a SPI, two I2C’s (primary and secondary), and a timer/
counter peripheral.

MachXO2/Platform Manger 2 only: The EFB includes User Flash Memory
(UFM).

Figure 1 shows the blocks in the EFB.

Configuration

The following sections describe the graphical user interface (UI) parameters,
the hardware description language (HDL) parameters, and the I/O ports that
you can use to configure and operate the LatticeMico EFB.

Table 1: UFM Resources in MachXO2 and Platform Manager 2 Devices

Mach
XO2 -
256

Mach
XO2 -
640

Mach
XO2 -
640U

Mach
XO2 -
1200

Mach
XO2 -
1200U

Mach
XO2 -
2000

Mach
XO2 -
2000U

Mach
XO2 -
4000

Mach
XO2 -
7000

LPTM20 LPTM21

UFM bits 0 24448 65408 65408 81792 81792 98176 98176 261888 24448 65408

UFM
Bytes

0 3056 8176 8176 10224 10224 12272 12272 32736 3056 8176

UFM
Pages

0 191 511 511 639 639 767 767 2046 191 511

Configuration

4 LatticeMico EFB

UI Parameters

Table 2 shows the UI parameters available for configuring the LatticeMico
EFB through the Mico System Builder (MSB) interface.

Figure 1: WISHBONE/EFB Block Diagram

Device Fabric EFB Block

i2C Primary

SPI

Timer/Counter

UFM (MachXO2/

i2C Secondary
WB

Master
Interface

WB
Slave

Interface

PLL
0

PLL
1

WISHBONEUser
Soft

Logic
SCI

Platform Manager 2 Only)

Table 2: EFB UI Parameters

Dialog Box Option Description Allowable Values Default Value

Instance Name Specifies the name of the EFB instance. Alphanumeric and
underscores

machxo2_efb

Base Address Specifies the base address for configuring the
EFB. The minimum boundary alignment is
0x80.

0X80000000–0XFFFFFFFF 0X80000000

Diamond Project Specifies the name of the Diamond Project

Generated efb.v <Instance Name>.v will be generated in
<platform direcory> \components\efb\ipexpress

User-Managed
Timer Reset

Specifies the EFB Timer Reset as User
Managed mode.

Selected | Not Selected Not Selected

Configuration

LatticeMico EFB 5

I/O Ports

Table 3 through Table 8 describe the input and output ports of the LatticeMico
EFB.

.

Table 3: EFB WISHBONE I/O Ports

I/O Port Active Direction Description

wb_clk_i High I Positive edge clock used by all WISHBONE Interface logic blocks.

wb_rst_i High I Synchronous reset signal that will only reset the WISHBONE interface logic.
This signal will not affect the contents of any registers. It will only affect
ongoing bus transactions.

wb_cyc_i High I Cycle input indicates the WB slave a valid bus cycle is present on the bus. In
a multiple-master configuration, this signal serves as a bus request. Active
high signal.

wb_stb_i High I Strobe input indicating the WB slave is the target for the current transaction
on the WB bus. The WB slave can only drive non-zero values on its outputs
(wb_dat_o, wb_ack_o, etc.) while this signal is active. The WB slave asserts
some form of an acknowledgment in response to the assertion of this signal.

wb_we_i High I Write/Read indicator. 0 = Read transaction 1 = Write transaction

wb_adr_i [7:0] I Address input to the WB slave logic.

wb_dat_i [7:0] I Write data input.

wb_dat_o[7:0] O Read Data Output.

wb_ack_o High O Transfer Acknowledge asserted by the WB slave to the master, indicating the
requested transfer has been completed. This signal is qualified by wb_stb_i.

Table 4: EFB I2C I/O Ports

I/O Port Active Direction Description

i2c1_irqo High O Primary I2C interrupt request.

i2c2_irqo High O Secondary I2C interrupt request.

i2c1_scl I/O Primary I2C bi-directional clock line. The signal is an output if the I2C core is
in master mode. The signal is an input if the I2C core is in slave mode.

i2c1_sda I/O Primary I2C bidirectional data line. The signal is an output when data is
transmitted from the I2C core. The signal is an input when the I2C core
receives data.

i2c2_scl I/O Secondary I2C bi-directional clock line. The signal is an output if the I2C core
is in master mode. The signal is an input if the I2C core is in slave mode.

i2c2_sda I/O Secondary I2C bidirectional data line. TThe signal is an output when data is
transmitted from the I2C core. The signal is an input when the I2C core
receives data.

Configuration

6 LatticeMico EFB

Table 5: EFB SPI I/O Ports

I/O Port Active Direction Description

spi_csn[7:0] O SPI chip select.

spi_scsn Low I Slave chip select. An external SPI master controller can assert this signal for
selecting the slave SPI core of the device.

spi_clk I/O Bi-directional clock line of the SPI core. The signal is an output if the SPI core
is in master mode. The signal is an input if the SPI core is in slave mode. t

spi_miso I/O Bi-directional data line of the SPI core. The signal is an input if the SPI core is
in master mode. The signal is an output if the SPI core is in slave mode.

spi_mosi I/O Bi-directional data line of the SPI core. The signal is an output if the SPI core
is in master mode. The signal is an input if the SPI core is in slave mode.

Table 6: EFB Timer/Counter I/O Ports

I/O Port Active Direction Description

tc_clki High I Timer/Counter clock input.

tc_rstn Low I Timer/Counter reset input.

tc_int High O Timer/Counter interrupt line.

tc_oc High O Timer Counter output signal.

tc_ic High I Timer/Counter input capture trigger event, applicable for non-PWM modes
with WISHBONE interface.

Note: Timer/counter signal TC_IC will be brought to the top level if the TC is enabled in the “Dynamic register
changes...” mode.

Table 7: PLL Ports

I/O Port Direction Description

pll0_bus_0[8:0] I Pll 0 bus input.

pll0_bus_o[16:0] O Pll 0 bus output.

pll1_bus_i[8:0] I Pll 1 bus input.

pll1_bus_o[16:0] O Pll 1 bus output.

Configuration

LatticeMico EFB 7

For MachXO2/Platform Manager 2, the I/O ports will appear with the port
enable selections listed in Table 9.

For MachXO3L, the I/O ports will appear with the port enable selections listed
in Table 10.

Table 8: UFM I/O Port (MachXO2/Platform Manager 2 Only)

I/O Port Direction Description

wbc_ufm_irq O UFM irq signal.

ufm_sn I Select signal that must be asserted (driven low) when SPI is enabled and accesses to
UFM are performed via SPI port.

Table 9: I/O Port Enable Selections (MachXO2/Platform Manager 2)

I/O Port WISHBONE I2C
Primary

I2C
Secondary

SPI Timer/
Counter

PLL0 PLL1 UFM

I2C Primary X X

I2C Secondary X X

SPI X X

Timer/Counter (“User
Static Settings...”)

X

Timer/Counter (“Dynamic
Register Changes...”)

X X

PLL (w/ 1 PLL) X X

PLL (w/ 1 PLLS) X X

UFM X X

Example 1: If the user selects the I2C Primary, the UFM port, one PLL and the SPI port to be enabled, the
WISHBONE, I2C Primary, PLL0, UFM and SPI ports appear in the graphic. The “Primary” selections under the I2C
tab are enabled along with the selections under the UFM and SPI tabs.

Example 2: If the user selects only the Timer/Counter (“static settings”) to be enabled, then the only timer/counter
port will appear in the graphic. Likewise, only the selections under the T/C tab are enabled. (Note that the WB bus
does not appear in this case.)

Example 3: User selects I2C Primary, I2C Secondary, UFM, and two PLL’s. In this case, both I2C’s, the UFM, and
both PLL0 and PLL1 are enabled. Selections under the tabs under the I2C and UFM are enabled.

Table 10: I/O Port Enable Selections (MachXO3L)

I/O Port WISHBONE I2C
Primary

I2C
Secondary

SPI Timer/
Counter

PLL0 PLL1 UFM

I2C Primary X X

I2C Secondary X X

Configuration

8 LatticeMico EFB

Register Descriptions

EFB Regsiter Map
The EFB module has a register map to allow the service of the hardened
functions through the WISHBONE bus interface read/write operations. Refer
to TN1205, Using User Flash Memory and Hardened Control Functions in
MachXO2 Devices, for more information.

WISHBONE Addressable Registers for I2Cs

SPI X X

Timer/Counter (“User
Static Settings...”)

X

Timer/Counter (“Dynamic
Register Changes...”)

X X

PLL (w/ 1 PLL) X X

PLL (w/ 1 PLLS) X X

Example 1: If the user selects the I2C Primary, one PLL and the SPI port to be enabled, the WISHBONE, I2C
Primary, PLL0 and SPI ports appear in the graphic. The “Primary” selections under the I2C tab are enabled along with
the selections under the SPI tabs.

Example 2: If the user selects only the Timer/Counter (“static settings”) to be enabled, then the only timer/counter
port will appear in the graphic. Likewise, only the selections under the T/C tab are enabled. (Note that the WB bus
does not appear in this case.)

Example 3: User selects I2C Primary, I2C Secondary, UFM, and two PLL’s. In this case, both I2C’s, and both PLL0
and PLL1 are enabled. Selections under the tabs under the I2C are enabled.

Table 10: I/O Port Enable Selections (MachXO3L) (Continued)

I/O Port WISHBONE I2C
Primary

I2C
Secondary

SPI Timer/
Counter

PLL0 PLL1 UFM

Table 11: WISHBONE Addressable Registers for I2C

Primary Register

Name
I2C Secondary
Register Name

Register Function Address I2C
Primary

Address I2C
Secondary

Access

I2C_1_CR I2C_2_CR Control 0x40 0x4A Read/Write

I2C_1_CMDR I2C_2_CMDR Command 0x41 0x4B Read/Write

I2C_1_BR0 I2C_2_BR0 Clock Pre-scale 0x42 0x4C Read/Write

I2C_1_BR1 I2C_2_BR1 Clock Pre-scale 0x43 0x4D Read/Write

I2C_1_TXDR I2C_2_TXDR Transmit Data 0x44 0x4E Write

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

Configuration

LatticeMico EFB 9

I2C Register Definition I2C_1_BR1/0 and
I2C_2_BR1/0

The I2C cores have a 10-bit pre-scale register, which is used to divide the
WISHBONE clock to the clock frequencies supported by the I2C bus (50KHz,
100KHz and 400KHz). I2C_1_BR0[7:0] and I2C_2_BR0[7:0] hold the lower
eight pre-scale register bits (7:0). I2C_1_BR1[1:0] and I2C_2_BR1[1:0] hold
the upper two pre-scale register bits (9:8).

I2C_1_SR I2C_2_SR Status 0x45 0x4F Read

I2C_1_GCDR I2C_2_GCDR General Call 0x46 0x50 Read

I2C_1_RXDR I2C_2_RXDR Receive Data 0x47 0x51 Read

I2C_1_IRQ I2C_2_IRQ IRQ 0x48 0x52 Read/Write

I2C_1_IRQEN I2C_2_IRQEN IRQ Enable 0x49 0x53 Read/Write

Table 11: WISHBONE Addressable Registers for I2C (Continued)

Primary Register

Name
I2C Secondary
Register Name

Register Function Address I2C
Primary

Address I2C
Secondary

Access

Table 12: Command Register – I2C_1_CMDR and I2C_2_CMDR

Bit Field Description

7 STA Generate (Repeated) start Condition

6 STO Generate STOP Condition

5 RD Read from Slave

4 WR Write to Slave

3 ACK Acknowledge Option — When receive, ACK transmission selection

0 = Send ACK

1 = Send NACK

2 CKSDIS Clock Stretching Disable Option — Disable the clock stretching if desired by the user. Then
overflow error

flag must be monitored.

0 = Clock Stretching is Enabled

1 = Clock Stretching is Disabled

1 RSVD Reserved bit.

0 RSVD Reserved bit.

Configuration

10 LatticeMico EFB

Table 13: Status Register – I2C_1_SR and I2C_2_SR

Bit Field Description

7 TIP Transmitting In Progress — This bit indicates that one byte of data is being transferred. This bit
will be set at rising edge of acknowledge cycle.

1 = Byte transfer completed.

0 = Byte transfer in progress.

6 BUSY Bus busy --- This bit indicates the bus is involved in transaction. This will be set at start condition
and cleared at stop.

5 RARC Received Acknowledge — This flag represents acknowledge from the addressed slave

1 = No acknowledge received

0 = Acknowledge received

4 SRW Slave RW:

1 = master receiving / Slave transmitting

0 = master transmitting / Slave receiving

3 ARBL Arbitration Lost — This bit will go high if master has lost its arbitration in Master mode, It will cause
an interrupt to WISHBONE Host if SCI set up allowed.

1 = Arbitration Lost

0 = Normal

2 TRRDY Transmitter or Receiver Ready Bit --- This flag indicate that a Transmit Register ready to receive
data or Receiver Register if ready for read depend on the mode (master or slave) and SRWbit. It
will cause an interrupt to WISHBONE Host if SCI set up allowed.

1 = Transmitter or Receiver is ready

0 = Transmitter or Receiver is not ready

1 TROE Transmitter or Receiver Overrun Bit --- This flag indicate that a Transmit or Receive Overrun
Errors happened depend on the mode (master or slave) and SRW bit. It will cause an interrupt to
WISHBONE Host if SCI set up allowed.

1 = Transmitter or Receiver Overrun

0 = Transmitter or Receiver Normal

0 HGC Hardware General Call Received: --- This flag indicate that a hardware general call is received
from the slave port. It will cause an interrupt to WISHBONE Host if SCI set up allowed.

1 = Hardware General Call Received in Slave Mode

0 = NO Hardware General Call Received in Slave Mode

Configuration

LatticeMico EFB 11

Table 14: Transmitting Data Register – I2C_1_TXDR and I2C_2_TXDR

Bit Field Description

7:1 W Next byte to transmit via I2C

0 W In case of a data transfer, this bit represents the data’s LSB.

In case of a slave address transfer this bit represents the RW bit

1 = Reading from slave

0 = Writing to Slave

Table 15: Register Definition I2C_1_IRQ and I2C_2_IRQ

Bit Field Description

7:4 RSVD Reserved bits.

3 IRQARBL Interrupt Request for Arbitration Lost status bit – This bit will go high if the master has
lost its arbitration in Master mode. It will cause an interrupt to WISHBONE Host if the
interrupt signal is utilized in the design.

1 = Arbitration Lost

0 = Normal

2 IRQTRRDY Interrupt Request for Transmitter or Receiver Ready status bit – This flag indicates
that the Transmit Register is ready to receive data or Receiver Register is ready for
read, depending on the mode (master or slave). It will cause an interrupt to
WISHBONE Host if the interrupt signal is utilized in the design.

1 = Transmitter or Receiver is ready

0 = Transmitter or Receiver is not ready

1 IRQTROE Interrupt Request for Transmitter or Receiver Overrun status bit – This bit indicates
that a Transmit or Receive Overrun Error occurred, depending on the mode (master or
slave). It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in
the design.

1 = Transmitter or Receiver Overrun

0 = Transmitter or Receiver Normal

0 IRQHGC Interrupt Request for Hardware General Call Received status bit – This bit indicates
that a hardware general call was received. It will cause an interrupt to the WISHBONE
Host if the interrupt signal is utilized in the design. 1 = Hardware General Call
Received in Slave Mode,

0 = No Hardware General Call Received in Slave Mode.

Configuration

12 LatticeMico EFB

I2C Register Definition I2C_1_IRQEN and
I2C_2_IRQEN

Registers I2C_1_IRQEN and I2C_2_IRQEN are used to enable the interrupt
features of the I2C cores. The WISHBONE Host has Read/Write access to
these registers.

WISHBONE Addressable Registers for SPI Module

Table 16: Register Definition I2C_1_IRQEN and I2C_2_IRQEN

Bit Field Description

7:4 RSVD Reserved bits.

3 IRQARBLEN Enable Interrupt Request for Arbitration Lost status bit.

1 = Enabled

0 = Disabled

2 IRQTRRDYEN Enable Interrupt Request for Transmitter or Receiver Ready status bit.

1 = Enabled

0 = Disabled

1 IRQTROEEN Enable Interrupt Request for Transmitter or Receiver Overrun status bit.

1 = Enabled

0 = Disabled

0 IRQHGCEN Enable Interrupt Request for Hardware General Call Received status bit.

1 = Enabled

0 = Disabled

Table 17: WISHBONE Addressable Registers for SPI Module

SPI Register Name Register Function Address Access

SPICR0 Control Register 0 0x54 Read/Write

SPICR1 Control Register 1 0x55 Read/Write

SPICR2 Control Register 2 0x56 Read/Write

SPIBR Clock Pre-scale 0x57 Read/Write

SPICSR Master Chip Select 0x58 Read/Write

SPITXDR Transmit Data 0x59 Write

SPISR Status 0x5A Read

SPIRXDR Receive Data 0x5B Read

SPIIRQ Interrupt Request 0x5C Read/Write

SPIIRQEN Interrupt Request Enable 0x5D Read/Write

Configuration

LatticeMico EFB 13

Table 18: SPI Control Register – SPICR0

Bit Field Description

7:6 TIdle XCNT Tidle Extra Delay Count — These bits specify the extra system clock count for the interval
time for mcsn goes active (low) in master mode. Default (00) for half mclk clock cycle.

5:3 TTrail XCNT TTrail Extra Delay Count — These bits specify the extra system clock count for the timing
between last mclk edge and mcsn goes high in master mode. Default (000) for half mclk
clock cycle.

2:0 TLead XCNT TLead Extra Delay Count — These bits specify the extra system clock count for the timing
between mcsn goes low and first clock edge in master mode. Default (000) for half mclk
clock cycle.

Table 19: SPI Control Register – SPICR1

Bit Field Description

7 SPE SPI System Enable Bit — This bit enables the SPI system functions. If SPE is cleared, SPI
is disabled andforced into idle state, status bits in SPISR register are reset.

0 = SPI disabled

1 = SPI enabled, port pins are dedicated to SPI functions.

6 WKUPEN

USR

Wakeup from Standby/Sleep (by SCSN Active) Enable Bit — This bit is enabled the SPI
core to send a wakeup signal to the on chip power manager to wakeup the part from
standby/sleep mode when the User SCSN goes low.

5 WKUPEN

CFG

Wakeup from Standby/Sleep (by SCSN Active) Enable Bit — This bit is enabled the SPI
core to send a wakeup signal to the on chip power manager to wakeup the part from
standby/sleep mode when the CFG SCSN goes low.

4 TX EDGE Data Transmitting selection bit --- This bit give user capability to select which clock edge to
transmit data.

0 = Transmit data on the different clock edge of data receiving (receiving on rising / transmit
on falling)

1 = Transmit data on the same clock edge of data receiving (receiving on rising / transmit on
rising)

3:0 RSVD Reserved bits.

Configuration

14 LatticeMico EFB

Table 20: SPI Control Register – SPICR2

Bit Field Description

7 MSTR SPI Master/Slave Mode Select Bit — This bit selects, if the SPI operates in master or slave
mode.

Changing this bit forces the SPI system into idle state.

0 = SPI is in slave mode

1 = SPI is in master mode

6 MCSH SPI Master CSN Hold Bit --- This bit will hold the Master chip select active when the host is
busy which will halt the data transmission without pulling the chip select high. Critical for
configuration boot from external SPI boot PROM.

0 = Master running as normal

1 = Master hold chip select low even host Halt the data transmission

5 SRME SPI Slave Slow Respond Mode Enable --- This bit enable the automatic insertion of the
Lattice specific protocol to handle the issue caused by the slow respond time of the
WISHBONE host at high SPI clock rate.

0 = Slave running as normal

1 = Slave automatically deploy the Lattice specific protocol.

4:3 SFSEL SPI Special Feature Select --- This two bits select the special features for SPI port

00 = SPI port running as normal

01 = Send out 0h00 byte instead of 0hFF byte during slave write to indicate receiving
register is full.

10 = Reserved

11 = Reserved

2 CPOL SPI Clock Polarity Bit — This bit selects an inverted or non-inverted SPI clock. To transmit
data between SPI modules, the SPI modules must have identical CPOL values. In master
mode, a change of this bit will abort a transmission in progress and force the SPI system
into idle state.

0 = Active-high clocks selected. In idle state SCK is low.

1 = Active-low clocks selected. In idle state SCK is high.

1 CPHA SPI Clock Phase Bit — This bit is used to select the SPI clock format. In master mode, a
change of this bit will abort a transmission in progress and force the SPI system into idle
state.

0 = Sampling of data occurs at odd edges (1,3,5,...,15) of the SCK clock

1 = Sampling of data occurs at even edges (2,4,6,...,16) of the SCK clock

0 CPHA LSB-First Enable — This bit does not affect the position of the MSB and LSB in the data
register. Reads and writes of the data register always have the MSB in bit 7. In master
mode, a change of this bit will abort a Transmission in progress and force the SPI system
into idle state.

0 = Data is transferred most significant bit first.

1 = Data is transferred least significant bit first.

Configuration

LatticeMico EFB 15

Table 21: SPI Baud Rate Register – SPIBR

Bit Field Description

7 RSVD Reserved bit.

6 RSVD Reserved bit.

5:0 DIVIDER SPI Master SCK Frequency Divisor — Clock frequency divisor from the source clock for baud
rate selection.

Fmsck = Fsource / DIVIDER

Table 22: SPI Status Register – SPISR

Bit Field Description

7 TIP SPI Transmitting In Progress — This bit indicate that the SPI port in the middle of
transmitting/receiving data.

0 = SPI Transmitting is finished

1 = SPI Transmitting is in progress

6:5 RSVD Reserved bits.

4 TRDY SPI Transmit Ready Flag - Indicates the SPI transmit data register (SPITXDR) is empty. This bit
is cleared by a write to SPITXDR. It will cause an interrupt to WISHBONE Host if SCI set up
allowed.

0 = SPI Data register not empty

1 = SPI Data register empty

3 RRDY SPI Receive Ready Flag - Indicates the receive data register (SPIRXDR) contains valid receive
data. This bit is cleared by a read access to SPIRXDR. It will cause an interrupt to WISHBONE
Host if SCI set up allowed.

Host if SCI set up allowed.

0 = Transfer not yet complete

1 = New data copied to SPIRXDR

2 TOE Transmit Overrun Error Flag — This bit indicates that the SPITXDR received new data before
the previous data was moved to the shift register. The new data is discarded if occurs. It will
cause an interrupt to WISHBONE.

Host if SCI set up allowed.

1 ROE Receive Overrun Error Flag — This bit indicates that the SPIRXDR received new data before
the previous data was read. The previous data will be lost if occurs. It will cause an interrupt to
WISHBONE Host if SCI set up allowed.

0 MDF Mode Fault Flag — This bit is set if the SS input becomes low while the SPI is configured as a
master and mode fault detection is enabled. The flag is cleared automatically by a write to the
SPI Control Register.

0 = Mode fault has not occurred.

1 = Mode fault has occurred. It will cause an interrupt to WISHBONE Host if SCI set up allowed.

Configuration

16 LatticeMico EFB

SPI Register Definition SPIIRQ
Interrupt register SPIIRQ supports the status bits of the SPISR register. The
WISHBONE Host can query these bits when an interrupt request is received.

Table 23: Register Definition SPICSR

Bit Field Description

7 CSN_7 Active-Low, master chip select (MCSN[7])

6 CSN_6 Active-Low, master chip select (MCSN[6])

5 CSN_5 Active-Low, master chip select (MCSN[5])

4 CSN_4 Active-Low, master chip select (MCSN[4])

3 CSN_3 Active-Low, master chip select (MCSN[3])

2 CSN_2 Active-Low, master chip select (MCSN[2])

1 CSN_1 Active-Low, master chip select (MCSN[1])

0 CSN_0 Active-Low, master chip select (MCSN[0], has pre-assigned pin location)

Table 24: Register Definition SPIIRQ

Bit Field Description

7:5 RSVD Reserved bits.

4 IRQTRDY Interrupt request for SPI Transmit Empty Interrupt Flag – If set, this bit indicates
that the transmit data register is empty. This bit is cleared by a write to SPITXDR
register. It will cause an interrupt to WISHBONE Host if the interrupt signal is
utilized in the design.

0 = SPI Data register not empty

1 = SPI Data register empty

3 IRQRRDY Interrupt request for SPI Receive Interrupt Flag – This bit is set after a received
data byte has been transferred into the SPIRXDR register. This bit is cleared after
a read operation from the WISHBONE interface is performed. It will cause an
interrupt to the WISHBONE Host if the interrupt signal is utilized in the design.

0 = Transfer not yet complete

1 = New data copied to SPIRXDR

2 IRQTOE Interrupt request for Transmit Overrun Error Flag – This bit indicates that the
SPITXDR received new data before the previous data was moved to the shift
register for serial transfer over the SPI bus. The new data is discarded if the error
occurs. It will cause an interrupt to the WISHBONE Host if the interrupt signal is
utilized in the design.

0 = No Error

1 = Transmit Overrun Error has occurred

Configuration

LatticeMico EFB 17

SPI Register Definition SPIIRQEN
Register SPIIRQEN is used to enable the interrupt features of the SPI core.
The WISHBONE Host has Read/Write access to this register.

1 IRQROE Interrupt request for Receive Overrun Error Flag – This bit indicates that the
SPIRXDR received new data before the previous data was read by the
WISHBONE host. The previous data will be lost if the overrun occurs. It will cause
an interrupt to the WISHBONE Host if the interrupt signal is utilized in the design.

0 = Error has not occurred

1 = Transmit Overrun Error has occurred

0 IRQMDF Interrupt request for Mode Fault Flag – This bit is set if the SSCN input becomes
low while the SPI is configured as a master controller. The flag is cleared
automatically by a write to the SPICR2, which controls the mode of the core. It will
cause an interrupt to the WISHBONE Host if the interrupt signal is utilized in the
design.

0 = Mode Fault has not occurred

1 = Mode Fault has occurred

Table 24: Register Definition SPIIRQ (Continued)

Bit Field Description

Table 25: Register Definition SPIIRQEN

Bit Field Description

7:5 RSVD Reserved bits.

4 IRQTRDYEN Enabled interrupt request for SPI Transmit Empty Interrupt Flag.

1 = Enabled

0 = Disabled

3 IRQRRDYEN Enabled interrupt request for SPI Receive Interrupt Flag.

1 = Enabled

0 = Disabled

2 IRQTOEEN Enabled interrupt request for Transmit Overrun Error Flag.

1 = Enabled

0 = Disabled

1 IRQROEEN Enabled interrupt request for Receive Overrun Error Flag.

1 = Enabled

0 = Disabled

0 IRQMDFEN Enabled interrupt request for Mode Fault Flag.

1 = Enabled

0 = Disabled

Configuration

18 LatticeMico EFB

WISHBONE Addressable Registers for Timer/
Counter Module

This section lists the internal registers of the Timer/Counter hard IP. Software
will be able to write some of registers based on attributes set by the users.

Timer/Counter Registers

The Timer/Counter communicates with the PLD logic through the WISHBONE
interface, by utilizing a set of control, status and data registers. Table shows
the register names and their functions. These registers are a subset of the
EFB register map. Refer to the EFB register map for specific addresses of
each register.

Table 26: WISHBONE Addressable Registers for Timer/Counter Module

Signal Name I/O Width Description

tc_clki Input 1 Timer/Counter input clock signal. Can be connected to the on-chip oscillator.

tc_rstn Input 1 This is an active-low reset signal, which resets the 16-bit counter.

tc_ic Input 1 This is an active-high input capture trigger event, applicable for non-PWM
modes with WISHBONE interface. If enabled, a rising edge of this signal will
be detected and synchronized to capture the counter value (TCCNT
Register) and make the value accessible to the WISHBONE interface by
loading it into TCICR register. The common usage is to perform a time-stamp
operation with the counter.

tc_int Output 1 This is an interrupt signal, indicating the occurrence of a specific event such
as Overflow, Output Compare Match, or Input Capture.

tc_oc Output 1 Timer/Counter output signal

Table 27: Timer/Counter Registers

Timer/Counter
Register Name

Register Function Address Access

TCCR0 Control Register 0 0x5E Read/Write

TCCR1 Control Register 1 0x5F Read/Write

TCTOPSET0 Set Top Counter Value [7:0] 0x60 Write

TCTOPSET1 Set Top Counter Value [15:8] 0x61 Write

TCOCRSET0 Set Compare Counter Value [7:0] 0x62 Write

TCOCRSET1 Set Compare Counter Value [15:8] 0x63 Write

TCCR2 Control Register 2 0x64 Read/Write

TCCNT0 Counter Value [7:0] 0x65 Read

TCCNT1 Counter Value [15:8] 0x66 Read

Configuration

LatticeMico EFB 19

Timer/Counter Register Definition TCCR0

Register TCCR0 is used to control the reset and the clock into the timer/
counter. The WISHBONE host has full read/write access to the register. The
register values can be updated dynamically during device operation.

TCTOP0 Current Top Counter Value [7:0] 0x67 Read

TCTOP1 Current Top Counter Value [15:8] 0x68 Read

TCOCR0 Current Compare Counter Value [7:0] 0x69 Read

TCOCR1 Current Compare Top Counter Value [15:8] 0x6A Read

TCICR0 Current Capture Counter Value [7:0] 0x6B Read

TCICR1 Current Capture Counter Value [15:8] 0x6C Read

TCSR0 Status Register 0x6D Read

TCIRQ Interrupt Request 0x6E Read/Write

TCIRQEN Interrupt Request Enable 0x6F Read/Write

Table 27: Timer/Counter Registers (Continued)

Timer/Counter
Register Name

Register Function Address Access

Table 28: Register Definition TCCR0

Bit Field Description

7 RSTEN The bit enables the reset signal (tc_rstn) to enter the Timer/Counter core from the
PLD logic.

0 = Reset is disabled

1 = Reset is enabled

6 RSVD Reserved bit.

5:3 PRESCALE These three bits are used to divide the clock input to the Timer/Counter.

000 = Static

001 = Divide by 1

010 = Divide by 8

011 = Divide by 64

100 = Divide by 256

101 = Divide by 1024

Configuration

20 LatticeMico EFB

Timer/Counter Register Definition TCCR1

Register TCCR1 is used to control the reset and the clock into the timer/
counter. The WISHBONE host has full Read/Write access to the register. The
register values can be updated dynamically during device operation.

2 CLKEDGE This bit is used to select the edge of the input clock source. The Timer/Counter will
update states on the edge of the input clock source. 0 = Rising Edge, 1 = Falling
Edge.

1:0 CLKSEL These two bits define the source of the input clock source. The clock can arrive from
the clock tree or directly from the on-chip oscillator.

00 = Clock Tree

10 = On-Chip Oscillator

States 01 and 11 are reserved

Table 28: Register Definition TCCR0 (Continued)

Bit Field Description

Table 29: Register Definition TCCR1

Bit Field Description

7 RSVD Reserved bit.

6 SOVFEN This bit enables the overflow flag to be used with the interrupt output signal. It is set
when the Timer/Counter is standalone, with no WISHBONE interface. 0 = Disabled, 1
= Enabled.

When this bit is set, other flags such as the OCRF and ICRF will not be routed to the
interrupt output signal.

5 ICEN This bit enables the ability to perform a capture operation of the counter value. Users
can assert the “tc_ic” signal and load the counter value onto the TCICR0/1 registers.
The captured value can serve as a timer stamp for a specific event. 0 = Disabled, 1 =
Enabled.

4 TSEL This bit enables the auto-load of the counter with a value that is presented through the
WISHBONE bus. 0 = Disabled, 1 = Enabled.

TCTOPSET0/1 registers are written into TCTOP0/1 registers (register update)
automatically.

Configuration

LatticeMico EFB 21

Timer/Counter Register Definition TCCR2

Register TCCR2 is used to control for additional control functions such as
resetting the counter with a Write command from the WISHBONE interface,
pausing the counter and forcing the output of the Timer/Counter to update
even if the update conditions have not been met. The WISHBONE host has
full Read/Write access to the register. The register values can be updated
dynamically during device operation.

3:2 OCM These bits select the function of the output signal of the Timer/Counter. The available
functions are Static, Toggle, Set/Clear and Clear/Set.

All Timer/Counter modes:

00 = The output is static low

In non-PWM modes:

01 = Toggle on TOP match

In Fast PWM mode:

10 = Clear on TOP match, Set on OCR match

11 = Set on TOP match, Clear on OCR match

In Phase and Frequency Correct PWM mode:

10 = Clear on OCR match when the counter is incrementing, Set on OCR match when
counter is decrementing

11 = Set on OCR match when the counter is incrementing, Clear on OCR match when
the counter is decrementing

1:0 TCM These bits define the mode of operation for the Timer/Counter.

00 = Watchdog Timer Mode

01 = Clear Timer on Compare Match Mode

10 = Fast PWM Mode

11 = Phase and Frequency Correct PWM Mode

Table 29: Register Definition TCCR1 (Continued)

Bit Field Description

Table 30: Register Definition TCCR2

Bit Field Description

7:3 RSVD Reserved bits.

2 WBFORCE In non-PWM modes, this bit forces the output of the counter, as if the counter value
matched the compare (TCOCR) value or it matched the top value (TCTOP).

0 = Disabled

1 = Enabled

Configuration

22 LatticeMico EFB

Timer/Counter Register Definition

TCTOPSET0/1 Registers TCTOPSET0 and TCTOPSET1 are 8-bit registers,
which combined, receive a 16-bit value from the WISHBONE host. They
serve for double-registering the loading of the top value for the counter. The
value is loaded from TCTOPSET0/1 to the TCTOP0/1 registers once the
counter has completed the current counting cycle. Refer to the Timer/Counter
Modes of Operation for usage details.

TCTOPSET0 register holds the lower 8-bit value [7:0] of the top value.
TCTOPSET1 register holds the upper 8-bit value [15:8] of the top value.

Timer/Counter Register Definition TCOCRSET0/1

Registers TCOCRSET0 and TCOCRSET1 are 8-bit registers, which
combined, receive a 16-bit value from the WISHBONE host. They serve for
double-registering the loading of the compare value for the counter. The value
is loaded from TCOCRSET0/1 to the TCOCR0/1 registers once the counter
has completed the current counting cycle. Refer to the Timer/Counter Modes
of Operation for usage details.

TCOCRSET0 register holds the lower 8-bit value [7:0] of the compare value.
TCOCRSET1 register holds the upper 8-bit value [15:8] of the compare value.

Timer/Counter Register Definition TCCNT0/1

Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold
the counter value. The WISHBONE host has Read-Only access to these
registers.

TCCNT0 register holds the lower 8-bit value [7:0] of the counter value.
TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

1 WBRESET Reset the counter from the WISHBONE interface by writing a ‘1’ to this register
location. It is a one cycle assertion in WISHBONE clock domain once a ‘1’ is written to
this register location.

0 = Disabled

1 = Enabled

This bit has higher priority then WBPAUSE.

0 WBPAUSE Writing a ‘1’ to this register bit will pause counting of the 16-bit counter.

Table 30: Register Definition TCCR2 (Continued)

Bit Field Description

Configuration

LatticeMico EFB 23

Timer/Counter Register Definition TCTOP0/1

Registers TCTOP0 and TCTOP1 are 8-bit registers, which combined, receive
a 16-bit value from the TCTOPSET0/1. The data stored in these registers
represents the top value of the counter. The registers update once the counter
has completed the current counting cycle. Refer to the Timer/Counter Modes
of Operation for usage details.

TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1
register holds the upper 8-bit value [15:8] of the top value.

Timer/Counter Register Definition TCOCR0/1

Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined,
receive a 16-bit value from the TCOCRSET0/1. The data stored in these
registers represents the compare value of the counter. The registers update
once the counter has completed the current counting cycle. Refer to the
Timer/Counter Modes of Operation for usage details.

TCOCR0 register holds the lower 8-bit value [7:0] of the compare value.
TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Timer/Counter Register Definition TCICR0/1

Registers TCICR0 and TCICR1 are 8-bit registers, which combined, can hold
the counter value. The counter value is loaded onto these registers once a
trigger event, tc_ic IP signal, is asserted. The capture value is commonly used
as a time-stamp for a specific system event.

The WISHBONE host has Read-Only access to these registers.

TCICR0 register holds the lower 8-bit value [7:0] of the counter value.
TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Timer/Counter Register Definition TCSR0

TCSR0 is a status register, used for setting or clearing operation flags. The
four flags that are used with the Timer/Counter represent statuses such as
overflow, compare match, bottom state and capture counter value.

Configuration

24 LatticeMico EFB

The WISHBONE host has Read/Write access to register TCSR0.

Timer/Counter Register Definition TCIRQ

Register TCIRQ holds the interrupt bits caused by the status flags in the
status register. Timer/Counter supports interrupt requests for events such as
counter overflow, compare match, and capture counter value.

The WISHBONE host has Read/Write access to register TCSR0.

Table 31: Register Definition TCSR0

Bit Field Description

7:4 RSVD Reserved bits.

3 BTF Bottom flag when the counter reaches value zero. The bit is cleared after a Write
operation from the WISHBONE interface.

2 ICRF Capture Counter flag when the user asserts the trigger event tc_ic IP signal. The
counter value is captured into the TCICR0/1 registers. The bit is cleared after a Write
operation from the WISHBONE interface. It will cause an interrupt to WISHBONE Host
if the interrupt signal is utilized in the design.

1 OCRF Compare match flag when counter matches the value loaded in the TCOCR0/1
registers. The bit is cleared after a Write operation from the WISHBONE interface. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design. The interrupt line is asserted for one clock cycle.

0 OVF Overflow flag when the counter matches the top value of the counter loaded onto the
TCTOP0/1 registers. The bit is cleared after a Write operation from the WISHBONE
interface. It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized
in the design. The interrupt line is asserted for one clock cycle.

Table 32: Register Definition TCIRQ

Bit Field Description

7:3 RSVD Reserved bits.

2 IRQICRF Interrupt caused by the Capture Counter flag when the user asserts the trigger event
tc_ic IP signal. The counter value is captured into the TCICR0/1 registers. It will cause
an interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

1 IRQOCRF Interrupt caused Compare match flag when counter matches the value loaded in the
TCOCR0/1 registers. It will cause an interrupt to WISHBONE Host if the interrupt
signal is utilized in the design. The interrupt line is asserted for one clock cycle.

0 IRQOVF Interrupt caused Overflow flag when the counter matches the top value of the counter
loaded onto the TCTOP0/1 registers. It will cause an interrupt to WISHBONE Host if
the interrupt signal is utilized in the design. The interrupt line is asserted for one clock
cycle.

Configuration

LatticeMico EFB 25

Timer/Counter Register Definition TCIRQEN

Register TCIRQEN holds the enable/disable bits for the available interrupt
support of the Timer/Counter IP.

Table 33: Register Definition TCIRQEN

Register Field Description

7:3 RSVD Reserved bits.

2 IRQICRFEN Enabled interrupt request for
Capture counter flag.

1 = Enabled

0 = Disabled

1 IRQOCRFEN Enabled interrupt request for
Compare match flag.

1 = Enabled

0 = Disabled

0 IRQOVFEN Enabled interrupt request for
overflow flag.

1 = Enabled

0 = Disabled

Configuration

26 LatticeMico EFB

WISHBONE Addressable Registers for
UFM Module (MachXO2/Platform
Manager 2 Only)

Table 34: WISHBONE Addressable Registers for UFM Module

Register Name Register Function Address Access

CFGCR Control 0x70 Read/Write

CFGTXDR Transmit Data 0x71 Write

CFGSR Status 0x72 Read

CFGRXDR Receive Data 0x73 Read

CFGIRQ Interrupt Request 0x74 Read/Write

CFGIRQEN Interrupt Request
Enable

0x75 Read/Write

Table 35: UFM Control Register - CFGCR

Bit Field Description

7 WBCE WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write
connection to the UFM/Configuration logic. This bit must be set prior to executing any
command through the WISHBONE port. Likewise, this bit must be cleared to
terminate the command.

1 = Enabled

0 = Disabled

6 RSTE WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is
level sensitive. After setting this bit to '1' it must be cleared to '0' for normal operation.

1 = Reset

0 = Normal operation

5:0 RSVD Reserved bits.

Table 36: UFM Transmit Data Register - CFGTXDR

Bit Field Description

7:0 W This register holds the byte that will be written to the UFM logic.

Configuration

LatticeMico EFB 27

Table 37: UFM Status Register - CFGSR

Bit Field Description

7 WBCACT Indicates that the WISHBONE to UFM interface is active and the connection is
established.

6 RSVD Reserved bit.

5 TXFE Indicates that the Transmit FIFO register is empty

1 = FIFO empty

0 = FIFO not empty

4 TXFF Indicates that the Transmit FIFO register is full

1 = FIFO full

0 = FIFO not full

3 RXFE Indicates that the Receive FIFO register is empty

1 = FIFO empty

0 = FIFO not empty

2 RXFF Indicates that the Receive FIFO register is full

1 = FIFO full

0 = FIFO not full

1 SSPIACT Indicates the Slave SPI port has started actively communicating with the UFM Logic
while WBCE was enabled.

1 = Slave SPI port active

0 = Slave SPI port not active

0 I2CACT Indicates the I2C port has started actively communicating with the UFM Logic while
WBCE was enabled.

1 = I2C port active

0 = 2C port not active

Table 38: UFM Receive Data Register - CFGRXDR

Bit Field Description

7:0 R This register holds the byte that will be read to the UFM logic.

Configuration

28 LatticeMico EFB

UFM Register Definition CFGIRQ
Interrupt register CFGIRQ supports the status bits of the CFGSR register. The
WISHBONE Host can query these bits when an interrupt request is received.

UFM Register Definition CFGIRQEN
Register CFGIRQEN is used to enable the interrupt features of the UFM core.
The WISHBONE Host has Read/Write access to this register.

Table 39: UFM Interrupt Status Register – CFGIRQ

Bit Field Description

7:6 RSVD Reserved bits.

5 IRQTXFE Interrupt request for UFM Transmit FIFO Empty Interrupt Flag – If set, this bit
indicates that the transmit data register is empty. This bit is cleared by write a "1" to
this register. It will cause an interrupt to WISHBONE Host if the interrupt signal is
utilized in the design.

4 IRQTXFF Interrupt request for UFM Transmit FIFO Full Interrupt Flag – If set, this bit indicates
that the transmit data register is full. This bit is cleared by write a "1" to this register. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

3 IRQRXFE Interrupt request for UFM Receive FIFO Empty Interrupt Flag – If set, this bit indicates
that the receive data register is empty. This bit is cleared by write a "1" to this register.
It will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

2 IRQRXFF Interrupt request for UFM Receive FIFO Full Interrupt Flag – If set, this bit indicates
that the receive data register is full. This bit is cleared by write a "1" to this register. It
will cause an interrupt to WISHBONE Host if the interrupt signal is utilized in the
design.

1 IRQSSPIACT Interrupt request for UFM Slave SPI Active Interrupt Flag – If set, this bit indicates that
the Slave SPI is asserted. This bit is cleared by write a "1" to this register. It will cause
an interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

0 IRQI2CACT Interrupt request for UFM I2C Active Interrupt Flag – If set, this bit indicates that the
I2C is asserted. This bit is cleared by write a "1" to this register. It will cause an
interrupt to WISHBONE Host if the interrupt signal is utilized in the design.

Table 40: UFM Interrupt Enable Register – CFGIRQEN

Bit Field Description

7:6 RSVD Reserved bits.

5 IRQTXFEEN Interrupt Enable for Transmit FIFO Empty

1 = Enabled

0 = Disabled

Usage Model

LatticeMico EFB 29

Usage Model

For more information about EFB usage in Lattice MachXO2 devices, refer to
TN1205, Using User Flash Memory and Hardened Control Functions in
MachXO2 Devices.

LatticeMico32 Microprocessor Software Support
This section describes the LatticeMico32 software support provided for the
LatticeMico EFB component.

Device Driver
The EFB device driver interacts directly with the EFB for instance. This
section describes the limitations, type definitions, structure, and functions of
the EFB for device driver.

4 IRQTXFFEN Interrupt Enable for Transmit FIFO Full

1 = Enabled

0 = Disabled

3 IRQRXFEEN Interrupt Enable for Receive FIFO Empty

1 = Enabled

0 = Disabled

2 IRQRXFFEN Interrupt Enable for Receive FIFO Full

1 = Enabled

0 = Disabled

1 IRQSSPIACTEN Interrupt Enable for Slave SPI Active

1 = Enabled

0 = Disabled

0 IRQI2CACTEN Interrupt Enable for I2C Active

1 = Enabled

0 = Disabled

Table 40: UFM Interrupt Enable Register – CFGIRQEN (Continued)

Bit Field Description

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

LatticeMico32 Microprocessor Software Support

30 LatticeMico EFB

Device Context Structure
This section describes the type definitions for the LatticeMico EFB device
context structure. This structure, shown in Figure 2, contains the EFB
component instance-specific information and is dynamically generated in the
DDStructs.h header file. This information is largely filled in by the managed
build process by extracting the EFB for component-specific information from
the platform specification file. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.

Table 41 describes the parameters of the LatticeMico EFB device context
structure for MachXO2/Platform Manager 2 shown in Figure 2.

Figure 2: LatticeMico EFB Device Context Structure (MachXO2/Platform

Manager 2)
struct st_MicoEFBCtx_t {

const char *name ;
unsigned int base ;
unsigned int intrLevel ;
void *desc_i2c1 ;
unsigned int user_i2c1 ;
void *desc_i2c2 ;
unsigned int user_i2c2 ;
void *desc_spi ;
unsigned int user_spi ;
void *desc_tc ;
void *desc_wbcfg ;
void *desc_pcs0 ;
void *desc_pcs1 ;
void *desc_pcs2 ;
void *desc_pcs3 ;
void *desc_pcs4 ;
DeviceReg_t loopupReg ;
void *prev ;
void *next ;

} MicoEFBCtx_t;

Table 41 describes the parameters of the LatticeMico EFB device context
structure for MachXO3L, shown in Figure 3.

Figure 3: LatticeMico EFB Device Context Structure (MachXO3L
struct st_MicoEFBCtx_t {

const char *name ;
unsigned int base ;
unsigned int intrLevel ;
void *desc_i2c1 ;
unsigned int user_i2c1 ;
void *desc_i2c2 ;
unsigned int user_i2c2 ;
void *desc_spi ;
unsigned int user_spi ;
void *desc_tc ;
void *desc_pcs0 ;
void *desc_pcs1 ;
void *desc_pcs2 ;
void *desc_pcs3 ;

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 31

void *desc_pcs4 ;
DeviceReg_t loopupReg ;
void *prev ;
void *next ;

} MicoEFBCtx_t;

Table 41: LatticeMico EFB Device Context Structure Parameters

Parameter Data Type Description

name const char * Instance name, as specified by the
customer in MSB when instantiating it.

base unsigned int MSB-assigned base address for this
instance.

intrLevel unsigned int LatticeMico32 interrupt line to which
this instance is connected.

desc_i2c1 void * I2C 1 interrupt descriptor structure.

user_i2c1 unsigned int I2C 1 interrupt routine implemented by
the customer.

desc_i2c2 void * I2C 2 interrupt descriptor structure.

user_i2c2 unsigned int I2C 2 interrupt routine implemented by
the customer.

desc_spi void * SPI interrupt descriptor structure.

user_spi unsigned int SPI interrupt routine is implemented by
the customer.

desc_tc void * Timer/counter interrupt descriptor
structure.

desc_wbcfg void * Configuration interrupt descriptor
structure. (MachXO2/Platform
Manager 2 only)

desc_pcs0 void * PCS 0 interrupt descriptor structure.

desc_pcs1 void * PCS 1 interrupt descriptor structure.

desc_pcs2 void * PCS 2 interrupt descriptor structure.

desc_pcs3 void * PCS 3 interrupt descriptor structure.

desc_pcs4 void * PCS 4 interrupt descriptor structure.

lookupReg DeviceReg_t Used by the device driver to register
the LatticeMico EFB instance with the
LatticeMico32 lookup service. Refer to
LatticeMico32 Software Developer
User Guide for a description of the
DeviceReg_t data type.

LatticeMico32 Microprocessor Software Support

32 LatticeMico EFB

Interrupt Management
The EFB silicon has 10 individual interrupt sources. The LatticeMico EFB
component ORs all these interrupts in to a single interrupt source to be
connected to one of the interrupt lines of LatticeMico32. When an interrupt
event occurs from any of the 10 sources, it is seen as an interrupt event from
the LatticeMico EFB as far as LatticeMico32 is concerned. At this point of
time, LatticeMico32 interrupt management software will transfer program
control to the global interrupt servicing routine within LatticeMico EFB. This
routine is responsible for identifying which of the 10 sources caused the
interrupt event, and then transfers control to the servicing routine associated
with this source. The LatticeMico32 software device driver provides sample
implementations of the interrupt servicing routines for I2C and SPI interfaces.
All the remaining interrupt servicing routines must be implemented by the
customer in the user application. The LatticeMico32 software device driver
also provides a mechanism to override the Lattice-implemented I2C and SPI
interrupt servicing routines with user-optimized versions. To register a user-
implemented servicing routine, the customer must set up the corresponding
interrupt source’s interrupt descriptor structure via Lattice-provided API.
Table 42 through Table 50 describe the interrupt descriptors for each interrupt
source, as shown in Figure 4 through Figure 12.

Figure 4: I2C 1 and 2 Interrupt Descriptor
typedef void (*I2CCallback_t)(MicoEFBCtx_t *ctx) ;
struct st_I2CDesc_t {

void *data ;
I2CCallback_t onCompletion ;

}

Figure 5: SPI Interrupt Descriptor
typedef void (*SPICallback_t)(MicoEFBCtx_t *ctx) ;

prev void * Used internally by the lookup service
for tracking multiple registered
instances of EFB.

next Used internally by the lookup service
for tracking multiple registered
instances of EFB.

Table 41: LatticeMico EFB Device Context Structure Parameters (Continued)

Table 42: I2C 1 and 2 Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to I2C descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*I2CCallback_t) Pointer to the interrupt servicing
routine.

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 33

struct st_SPIDesc_t {
void *data ;
SPICallback_t onCompletion ;

}

Figure 6: Timer/Counter Interrupt Descriptor
typedef void (*TCCallback_t)(MicoEFBCtx_t *ctx) ;
struct st_TCDesc_t {

void *data ;
TCCallback_t onCompletion ;

}

Figure 7: Configuration Interrupt Descriptor (MachXO2/Platform

Manager 2 only)
typedef void (*WBCFGCallback_t)(MicoEFBCtx_t *ctx) ;
struct st_WBCFGDesc_t {

void *data ;
WBCFGCallback_t onCompletion ;

}

Table 43: SPI Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to SPI descriptor used to hold
data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*SPICallback_t) Pointer to the interrupt servicing
routine.

Table 44: Timer/Counter Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to Timer/Counter descriptor
used to hold data that is passed
between applications and interrupt
servicing routine and vice-versa.

onCompletion void (*TCCallback_t) Pointer to the interrupt servicing
routine.

Table 45: Configuration Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to Configuration descriptor
used to hold data that is passed
between applications and interrupt
servicing routine and vice-versa.

onCompletion void (*WBCFGCallback_t) Pointer to the interrupt servicing
routine.

LatticeMico32 Microprocessor Software Support

34 LatticeMico EFB

Figure 8: PCS 0 Interrupt Descriptor
typedef void (*PCS0Callback_t)(MicoEFBCtx_t *ctx) ;
struct st_PCS0Desc_t {

void *data ;
PCS0Callback_t onCompletion ;

}

Figure 9: PCS 1 Interrupt Descriptor
typedef void (*PCS1Callback_t)(MicoEFBCtx_t *ctx) ;
struct st_PCS1Desc_t {

void *data ;
PCS1Callback_t onCompletion ;

}

Figure 10: PCS 2 Interrupt Descriptor
typedef void (*PCS2Callback_t)(MicoEFBCtx_t *ctx) ;
struct st_PCS2Desc_t {

void *data ;
PCS2Callback_t onCompletion ;

}

Table 46: PCS 0 Interrupt Descriptor Parameters

Parameter Data Type Description

data void * Pointer to PCS 0 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*PCS0Callback_t) Pointer to the interrupt servicing
routine.

Table 47: PCS 1 Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to PCS 1 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*PCS1Callback_t) Pointer to the interrupt servicing
routine.

Table 48: PCS 2 Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to PCS 2 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*PCS2Callback_t) Pointer to the interrupt servicing
routine.

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 35

Figure 11: PCS 3 Interrupt Descriptor
typedef void (*PCS3Callback_t)(MicoEFBCtx_t *ctx) ;
struct st_PCS3Desc_t {

void *data ;
PCS3Callback_t onCompletion ;

}

Figure 12: PCS 4 Interrupt Descriptor
typedef void (*PCS4Callback_t)(MicoEFBCtx_t *ctx) ;
struct st_PCS4Desc_t {

void *data ;
PCS4Callback_t onCompletion ;

}

Functions
This section describes the implemented device driver-specific functions.

MicoEFBInit Function
void MicoEFBInit (MicoEFBCtx_t *ctx) ;

This function initializes a LatticeMico EFB instance according to the passed
EFB for context structure. This initialization function is responsible for re-
initializing the EFB for, clearing all pending interrupts, and initializing
members of the passed EFB context. As part of the managed build process,
the LatticeDDInit function calls this initialization routine for each EFB instance
in the platform.

Table 49: PCS 3 Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to PCS 3 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*PCS3Callback_t) Pointer to the interrupt servicing
routine.

Table 50: PCS 4 Interrupt Descriptor Parameters

Parameter Data Type Description

Data void * Pointer to PCS 4 descriptor used to
hold data that is passed between
applications and interrupt servicing
routine and vice-versa.

onCompletion void (*PCS4Callback_t) Pointer to the interrupt servicing
routine.

LatticeMico32 Microprocessor Software Support

36 LatticeMico EFB

Table 51 describes the parameter in the MicoEFBInit function syntax.

MicoEFB_ISR Function
void MicoEFB_ISR (unsigned int intrLevel, void *ctx) ;

This function implements the global interrupt servicing routine of LatticeMico
EFB. It is responsible for identifying the interrupt source and transferring
control to the corresponding source’s interrupt handler. It clears the source’s
interrupt request flag in the global interrupt request registers (IRQ0 and IRQ1)
of the EFB. If two or more sources request an interrupt simultaneously, then
this routine will call the interrupt handlers based on the priority shown in
Table 52 (MachXO2/Platform Manager 2) and Table 53 (MachXO3L).

Table 51: Parameter in the MicoEFBInit Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

Table 52: Priority of Interrupt Sources in LatticeMico EFB (MachXO2/Platform Manager 2)

Interrupt Source Priority

I2C 1 (Primary) 0 (Highest)

I2C 2 (Secondary) 1

SPI 2

Timer/Counter 3

Configuration 4

PCS 0 5

PCS 1 6

PCS 2 7

PCS 3 8

PCS 4 9 (Lowest)

Table 53: Priority of Interrupt Sources in LatticeMico EFB (MachXO3L)

Interrupt Source Priority

I2C 1 (Primary) 0 (Highest)

I2C 2 (Secondary) 1

SPI 2

Timer/Counter 3

PCS 0 4

PCS 1 5

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 37

Table 54 describes the parameter in the MicoEFB_ISR function syntax.

MicoEFB_SPITransfer Function
char MicoEFB_SPITransfer (MicoEFBCtx_t *ctx,

unsigned char isMaster,
unsigned char slvIndex,
unsigned char insertStart,
unsigned char insertStop,
unsigned char *txBuffer,
unsigned char *rxBuffer,
unsigned int bufferSize,
unsigned int irqmode) ;

This function is used to transfer data over the SPI interface in theEFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see function MicoEFB_RegisterSPIISR).
Table 55 describes the parameter in the MicoEFB_SPITransfer function
syntax.

PCS 2 6

PCS 3 7

PCS 4 8 (Lowest)

Table 53: Priority of Interrupt Sources in LatticeMico EFB (MachXO3L) (Continued)

Table 54: Description of Parameters in MicoEFB_ISR Function Syntax

Parameter Data Type Description

intrLevel unsigned int The interrupt line of LatticeMico32 in to which the EFB
interrupt sinks.

Ctx void * Pointer to the EFB context representing a valid EFB context.

Table 55: Description of Parameters of MicoEFB_SPITransfer Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

isMaster unsigned char Is SPI configured to be a Master (1) or a Slave (0).

slvIndex unsigned char The device SPI can communicate with up to 8 external SPI
slave devices. This argument identifies which slave device the
transfer is intended for.

NOTE: Only useful when SPI is configured to be a Master.

LatticeMico32 Microprocessor Software Support

38 LatticeMico EFB

MicoEFB_SPIISR Function
void MicoEFB_SPIISR (MicoEFBCtx_t *ctx) ;

This function implements the interrupt handler for the SPI interface in the
EFB. It is the default implementation. Table 56 describes the parameters in
the MicoEFB_SPITransfer function syntax..

unsigned int MicoEFB_SPIXferDone (MicoEFBCtx_t, *ctx) ;

This function is used to query whether the interrupt-driven (i.e., non-blocking
mode) SPI transfer has been completed or still in progress. Table 57
describes the parameters in the MicoEFB_SPIXferDone function syntax and
Table 58 describes the return values..

insertStart unsigned char Is the transfer a new transfer (1), or the continuation of an
existing transfer (0).

NOTE: Only useful when SPI is configured to be a Master.

insertStop unsigned char Should the slave chip select line be de-asserted (1) or left
asserted (0) at the end of transfer.

NOTE: Only useful when SPI is configured to be a Master.

txBuffer unsigned char * Pointer to the array that contains the data to be transmitted.

rxBuffer unsigned char * Pointer to the array that will store the data that is received.
The application is responsible for allocating memory for this
array.

bufferSize unsigned int The number of byte-pairs to be transferred in the current
transaction. For every byte that is transmitted, a byte is
received (note that SPI is a full duplex protocol).

irqmode unsigned int Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

Table 55: Description of Parameters of MicoEFB_SPITransfer Function Syntax (Continued)

Table 56: Description of Parameters of MicoEFB_SPIISR Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

Table 57: Description of Parameters of MicoEFB_SPIXferDone Function Syntax

Parameter Data Type Description

Ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 39

.

MicoEFB_RegisterSPIISR Function
void MicoEFB_RegisterSPIISR (MicoEFBCtx_t *ctx, SPIDesc_t *spi)
;

This function can be used by the customer to register a user-implemented
interrupt handler for the SPI. Once the customer defines own interrupt
handler, the functions MicoEFB_SPIISR and MicoEFB_SPIXferDone are no
longer useful. Table 59 describes the parameters in the
MicoEFB_RegisterSPIISR function syntax..

MicoEFB_I2CRead Function
char MicoEFB_I2CRead (MicoEFBCtx_t *ctx,

unsigned char i2c_idx,
unsigned char isMaster,
unsigned char buffersize,
unsigned char *buffer,
unsigned char insert_start,
unsigned char insert_stop,
unsigned char address,
unsigned int irqmode) ;

This function is used to read data over the I2C interface in the EFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see functions MicoEFB_RegisterI2C1ISR

Table 58: Description of the Return Values of MicoEFB_SPIXferDone Function

Value Description

1 The SPI transfer is complete.

0 The SPI transfer is still in progress.

Table 59: Description of the Parameters in the MicoEFB_RegisterSPIISr Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

spi SPIDesc_t * Pointer to the user-implemented SPI interrupt descriptor. It
contains a pointer to the user-implemented SPI interrupt
handler and a user-defined and implemented data structure
that is shared by the program and interrupt handler.

LatticeMico32 Microprocessor Software Support

40 LatticeMico EFB

and MicoEFB_RegisterI2C2ISR). Table 60 describes the parameter in the
MicoEFB_I2CRead function syntax..

MicoEFB_I2CWrite Function
char MicoEFB_I2CWrite (MicoEFBCtx_t *ctx,

unsigned char i2c_idx,

Table 60: Description of Parameters of MicoEFB_I2CRead Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context

isMaster unsigned char Is I2C configured to be a Master (1) or a Slave (0)

i2c_idx unsigned char Use Primary (1) I2C or Secondary (2) I2C

address unsigned char The I2C address of the slave from which data is to be read.

NOTE: Only useful when I2C is configured as a slave.

insert_start unsigned char Insert START at the start of the current transaction. 1 means
insert START, 0 means otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a REPEATED START condition.

insert_restart unsigned char Insert REPEATED START at the start of the current
transaction. 1 means insert REPEATED START, 0 means
otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a REPEATED START condition.

insert_stop unsigned char Insert STOP at the end of current transaction. 1 means insert
STOP, 0 means otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a STOP condition.

Buffer unsigned char * Pointer to the array that will store the data that is received.
The application is responsible for allocating memory for this
array.

buffersize unsigned int The number of bytes to be read in the current transaction.

Irqmode unsigned int Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 41

unsigned char isMaster,
unsigned char buffersize,
unsigned char *buffer,
unsigned char insert_start,
unsigned char insert_stop,
unsigned char address,
unsigned int irqmode) ;

This function is used to write data over the I2C interface in the EFB. The
transfer can be performed in a polling (i.e., blocking) mode or an interrupt-
driven (i.e., non-blocking) mode. In case of polling mode, control is transferred
to the application upon completion (successful or otherwise) of the transfer. In
case of interrupt-driven mode, control is transferred to the application
immediately after setting up the transfer. By default, the interrupt-driven mode
uses Lattice-provided interrupt handler. The customer can override this
handler by implementing a handler in application code and then registering it
with the LatticeMico EFB context (see functions MicoEFB_RegisterI2C1ISR
and MicoEFB_RegisterI2C2ISR). Table 61 describes the parameter in the
MicoEFB_I2CWrite function syntax..

Table 61: Description of Parameters of MicoEFB_I2CWrite Function Syntax

Parameter Data Type Description

Ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context

isMaster unsigned char Is I2C configured to be a Master (1) or a Slave (0)

i2c_idx unsigned char Use Primary (1) I2C or Secondary (2) I2C

Address unsigned char The I2C address of the slave from which data is to be read.

NOTE: Only useful when I2C is configured as a slave.

insert_start unsigned char Insert START at the start of the current transaction. 1 means
insert START, 0 means otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a REPEATED START condition.

insert_restart unsigned char Insert REPEATED START at the start of the current
transaction. 1 means insert REPEATED START, 0 means
otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a REPEATED START condition.

LatticeMico32 Microprocessor Software Support

42 LatticeMico EFB

MicoEFB_I2C1ISR and MicoEFB_I2C2ISR Functions
void MicoEFB_I2C1ISR (MicoEFBCtx_t *ctx) ;
void MicoEFB_I2C2ISR (MicoEFBCtx_t *ctx) ;

These functions implement the interrupt handler for the I2C 1 and 2 interface
in the EFB. These are the default implementation. Table 62 describes the
parameters in the MicoEFB_I2CISR function syntax..

MicoEFB_I2C1XferDone and MicoEFB_I2C2XferDone Functions
char MicoEFB_I2C1XferDone (MicoEFBCtx_t, *ctx) ;
char MicoEFB_I2C2XferDone (MicoEFBCtx_t, *ctx) ;

This function is used to query whether the interrupt-driven (i.e., non-blocking
mode) I2C transfer has been completed or still in progress. Table 63 describes
the parameters in the MicoEFB_I2C1XferDone and MicoEFB_I2C2XferDone
function syntax and Table 64 describes the return values.

insert_stop unsigned char Insert STOP at the end of current transaction. 1 means insert
STOP, 0 means otherwise.

NOTE: Only useful when I2C is configured as a master.

NOTE: Refer to I2C protocol specifications for more details on
a STOP condition.

Buffer unsigned char * Pointer to the array that contains the data to be transmitted.

buffersize unsigned int The extra number of bytes to be transferred in the current
transaction.

NOTE: If user input is N, EFB will transfer N+1 bytes of data.

Irqmode unsigned int Is the transfer to be performed in polling (i.e., blocking) or
interrupt-driven (non-blocking) mode.

Table 61: Description of Parameters of MicoEFB_I2CWrite Function Syntax (Continued)

Table 62: Description of Parameters of MicoEFB_I2C1ISR Function Syntax

Parameter Data Type Description

Ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

Table 63: Description of Parameters of MicoEFB_I2C1XferDone Function Syntax

Parameter Data Type Description

Ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

LatticeMico32 Microprocessor Software Support

LatticeMico EFB 43

MicoEFB_RegisterI2CISR and MicoEFB_RegisterI2C2ISR Functions
void MicoEFB_RegisterI2C1ISR (MicoEFBCtx_t *ctx, I2CDesc_t
*i2c) ;
void MicoEFB_RegisterI2C2ISR (MicoEFBCtx_t *ctx, I2CDesc_t
*i2c) ;

These functions can be used by the customer to register a user-implemented
interrupt handler for the I2C 1 and 2. Once the customer defines own interrupt
handler, the functions MicoEFB_I2C1ISR, MicoEFB_I2C1XferDone,
MicoEFB_I2C2ISR, and MicoEFB_I2C2XferDone are no longer useful.
Table 65 describes the parameters in the MicoEFB_RegisterI2C1ISR and
MicoEFB_RegisterI2C2ISR function syntax..

MicoEFB_RegisterPCSxISR Functions
void MicoEFB_RegisterPCS0ISR (MicoEFBCtx_t *ctx, PCS0Desc_t
*pcs) ;
void MicoEFB_RegisterPCS1ISR (MicoEFBCtx_t *ctx, PCS1Desc_t
*pcs) ;
void MicoEFB_RegisterPCS2ISR (MicoEFBCtx_t *ctx, PCS2Desc_t
*pcs) ;
void MicoEFB_RegisterPCS3ISR (MicoEFBCtx_t *ctx, PCS3Desc_t
*pcs) ;
void MicoEFB_RegisterPCS4ISR (MicoEFBCtx_t *ctx, PCS4Desc_t
*pcs) ;

These functions can be used by the customer to register a user-implemented
interrupt handler for PCS 0, PCS 1, PCS 2, PCS 3 and PCS 4 respectively.

Table 64: Description of the Return Values of MicoEFB_I2C1XferDone and MicoEFB_I2C2XferDone
Function.

Value Description

1 The I2C transfer is complete.

0 The I2C transfer is still in progress.

Table 65: Description of the Parameters in the MicoEFB_RegisterI2C1ISR and
MicoEFB_RegisterI2C2ISR Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

i2c I2CDesc_t * Pointer to the user-implemented I2C interrupt descriptor. It
contains a pointer to the user-implemented I2C interrupt
handler and a user-defined and implemented data structure
that is shared by the program and interrupt handler.

LatticeMico8 Microcontroller Software Support

44 LatticeMico EFB

Table 66 describes the parameters in the MicoEFB_RegisterPCSxISR
function syntax, where x is numbers 0 through 4.

LatticeMico8 Microcontroller Software Support

This section describes the LatticeMico8 microcontroller software support
provided for the LatticeMico EFB component.

Device Driver

The EFB device driver interacts directly with the EFB instance. This section
describes the limitations, type definitions, structure, and functions of the EFB
device driver.

Type Definitions

This section describes the type definitions for the EFB device context
structure. This structure, shown in Figure 13, contains the EFB component
instance-specific information and is dynamically generated in the DDStructs.h
header file. This information is largely filled in by the managed build process
by extracting the EFB component-specific information from the platform
specification file. As part of the managed build process, designers can choose
to control the size of the generated structure, and hence the software
executable, by selectively enabling some of the elements in this structure via
C preprocessor macro definitions. These C preprocessor macro definitions
are explained later in this document. You should not manipulate the members
directly, because this structure is for exclusive use by the device driver.
Table 67 describes the parameters of the EFB device context structure shown
in Figure 13

Device Context Structure

Figure 13 shows the EFB device context structure for MachXO2/Platform
Manager 2.

Table 66: Description of Parameters in the MicoEFB_RegisterPCSxISR Function Syntax

Parameter Data Type Description

ctx MicoEFBCtx_t * Pointer to the EFB context representing a valid EFB context.

pcs PCSxDesc_t * Pointer to the user-implemented PCSx (where x is from 0
through 4) interrupt descriptor. It contains a pointer to the
user-implemented PCSx interrupt handler and a user-defined
and implemented data structure that is shared by the program
and interrupt handler.

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 45

Figure 14 shows the EFB device context structure for MachXO3L.

Table 67 describes the EFB device context parameters for MachXO2/Platform
Manager 2.

Figure 13: EFB Device Context Structure (MachXO2/Platform Manager 2)

struct st_MicoEFBCtx_t {
 const char * name;
 size_t base;
 unsigned char intrLevel;
 unsigned char i2c1_en;
 unsigned char i2c2_en;
 unsigned char spi_en;
 unsigned char spi_irqen;
 unsigned char timer_en;
 unsigned char ufm_en;
 unsigned int ufm_addr;
 unsigned int ufm_mem;
} MicoEFBCtx_t;

Figure 14: EFB Device Context Structure (MachXO3L)

struct st_MicoEFBCtx_t {
 const char * name;
 size_t base;
 unsigned char intrLevel;
 unsigned char i2c1_en;
 unsigned char i2c2_en;
 unsigned char spi_en;
 unsigned char spi_irqen;
 unsigned char timer_en;
} MicoEFBCtx_t;

Table 67: EFB Device Context Parameters (MachXO2/Platform Manager
2)

Parameter Data Type Description

name const char * component name (entered

in MSB)

base size_t MSB-assigned base
address for this instance

intrLevel unsigned char Processor interrupt line to
which this instance is
connected

i2c1_en unsigned char Primary I2C enabled

i2c2_en unsigned char Secondary I2C enabled

spi_en unsigned char SPI enabled

spi_irqen unsigned char SPI interrupt enabled

timer_en unsigned char Timer enabled

LatticeMico8 Microcontroller Software Support

46 LatticeMico EFB

Table 68 describes the EFB device context parameters for MachXO3L.

C Preprocessor Macro Definitions

This section describes the C preprocessor macro definitions that are available
to the software developer. There are two types of macro definitions: 'object-
like' and 'function-like'.

The 'object-like' macro definitions do not take any arguments and are used to
control the size of the generated application executable. There are three ways
an 'object-like' macro definition can be used by the software developer.

1. Manually adding the -D<macro name> option to the compiler's command
line in the application's 'Build Properties'. Refer to the LatticeMico8
Developer User Guide for more information on how to manually add the
macro definition in the the application's 'Build Properties' GUI.

2. Automatically adding the -D<macro name> option to the compiler's
command-line in the application's 'Build Properties' by enabling the
'check-box' associated with the macro definition. Refer to the LatticeMico8
Developer User Guide for more information on how to set up the check/
uncheck the macro definitions in the application's 'Build Properties' GUI.

ufm_en unsigned char UFM enabled

ufm_addr unsigned int UFM Start Address

ufm_mem unsigned int UFM memory size

Table 68: EFBDevice Context Parameters (MachXO3L)

Parameter Data Type Description

name const char * component name (entered

in MSB)

base size_t MSB-assigned base
address for this instance

intrLevel unsigned char Processor interrupt line to
which this instance is
connected

i2c1_en unsigned char Primary I2C enabled

i2c2_en unsigned char Secondary I2C enabled

spi_en unsigned char SPI enabled

spi_irqen unsigned char SPI interrupt enabled

timer_en unsigned char Timer enabled

Table 67: EFB Device Context Parameters (MachXO2/Platform Manager
2) (Continued)

Parameter Data Type Description

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 47

3. Manually adding the macro definition to the C code using the following
syntax:

#define <macro name>

It is recommended that the developer use options 1 or 2.

__MICO_NO_INTERRUPTS__

This preprocessor macro definition disables code and data structures within
the device driver that allow the EFB to be used in an interrupt driven mode. It
is not defined by default.

 __MICOEFB_NO_I2C_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the I2C to be used in an interrupt driven mode. It is
not defined by default.

 __MICOEFB_NO_SPI_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the SPI to be used in an interrupt driven mode. It is
not defined by default.

__MICOEFB_NO_TC_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the Timer/Counter to be used in an interrupt driven
mode. It is not defined by default.

__MICOEFB_NO_UFM_INTERRUPT__

This preprocessor macro definition disables code and data structures within
the device driver that allow the UFM to be used in an interrupt driven mode. It
is not defined by default.

__MICOEFB_NO_UFM_ADDR_CHECK__

MachXO2/Patform Manager 2 only. This preprocessor macro definition
disables code and data structures within the device driver that validate the
UFM Address when calling any UFM function. It is not defined by default.

The 'function-like' macro definitions are used in the LatticeMico8 software
drivers to access the component's Register Map in order to perform certain
operations. All 'function-like' macro definitions take input parameters that are
used in performing the operations encoded within the macro. Table 69
describes the 'function-like' macros available in the LatticeMico8 EFB driver

LatticeMico8 Microcontroller Software Support

48 LatticeMico EFB

header file 'MicoEFB.h'. Table 70 through Table 74 also show how each
macro can be used by the software developer in the application code.

Table 69: C Preprocessor Function-like Macros For EFB

Macro Name Second Argument to Macro Description

MICO_EFB_READ_IRQR The 8-bit value read from the IRQ
register.

This macro reads a character from the
Interrupt Register.

MICO_EFB_WR_IRQR The 8-bit value to be written to the
IRQ register.

This macro writes a character to the
Interrupt Register.

Note: The first argument to the macro is the EFB address.

Table 70: Preprocessor Function-like Macros For SPI

Macro Name Second Argument to Macro Description

MICO_EFB_SPI_READ_CR0 The 8-bit value read from the
Control Register 0.

This macro reads a character from the
Control Register 0.

MICO_EFB_SPI_WRITE_CR0 The 8-bit value to be written to
the Control Register 0.

This macro writes a character to the Control
Register 0.

MICO_EFB_SPI_READ_CR1 The 8-bit value read from the
Control Register 1.

This macro reads a character from the
Control Register 1.

MICO_EFB_SPI_WRITE_CR1 The 8-bit value to be written to
the Control Register 1.

This macro writes a character to the Control
Register 1.

MICO_EFB_SPI_READ_CR2 The 8-bit value read from the
Control Register 2.

This macro reads a character from the
Control Register 2.

MICO_EFB_SPI_WRITE_CR2 The 8-bit value to be written to
the Control Register 2.

This macro writes a character to the Control
Register 2.

MICO_EFB_SPI_READ_BR The 8-bit value read from the
Clock Pre-scale Register.

This macro reads a character from the
Clock Pre-scale Register.

MICO_EFB_SPI_WRITE_BR The 8-bit value to be written to
the Clock Pre-scale Register

This macro reads a character from the
Clock Pre-scale Register.

MICO_EFB_SPI_READ_CSR The 8-bit value read from the
Master Chip Select Register

This macro reads a character from the
Master Chip Select Register.

MICO_EFB_SPI_WRITE_CSR The 8-bit value to be written to
the Master Chip Select Register.

This macro writes a character to the Master
Chip Select Register.

MICO_EFB_SPI_READ_RXDR The 8-bit value read from the
Receive Data Buffer.

This macro reads a character from the
Receive Data Buffer.

MICO_EFB_SPI_WRITE_TXDR The 8-bit value to be written to
the Transmit Data Buffer.

This macro writes a character to the
Transmit Data Buffer.

MICO_EFB_SPI_READ_SR The 8-bit value read from the
Status Register.

This macro reads a character from the
Status Register.

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 49

MICO_EFB_SPI_READ_IRQSR The 8-bit value read from the
Interrupt Request Register.

This macro reads a character from the
Interrupt Request Register.

MICO_EFB_SPI_WRITE_IRQSR The 8-bit value to be written to
the Interrupt Request Register.

This macro writes a character to the
Interrupt Request Register.

MICO_EFB_SPI_READ_IRQENR The 8-bit value read from the
Interrupt Request Enable
Register.

This macro reads a character from the
Interrupt Request Enable Register.

MICO_EFB_SPI_WRITE_IRQENR The 8-bit value to be written to
the Interrupt Request Enable
Register.

This macro writes a character to the
Interrupt Request Enable Register.

Note: The first argument to the macro is the EFB address.

Table 70: Preprocessor Function-like Macros For SPI (Continued)

Macro Name Second Argument to Macro Description

Table 71: C Preprocessor Function-like Macros For I2C

Macro Name Second Argument to Macro Description

MICO_EFB_I2C_READ_CR The 8-bit value read from the
Control Register.

This macro reads a character from
the Control Register.

MICO_EFB_I2C_WRITE_CR The 8-bit value to be written to the
Control Register.

This macro writes a character to the
Control Register.

MICO_EFB_I2C_READ_CMDR The 8-bit value read from the
command Register.

This macro reads a character from
the command Register.

MICO_EFB_I2C_WRITE_CMDR The 8-bit value to be written to the
command Register.

This macro writes a character to the
command Register.

MICO_EFB_I2C_READ_PRESCALE_LO The 8-bit value read from the
lower byte of Clock Pre-scale
Register.

This macro reads a character from
the lower byte of Clock Pre-scale
Register.

MICO_EFB_I2C_WRITE_PRESCALE_LO The 8-bit value to be written to the
lower byte of Clock Pre-scale
Register.

This macro writes a character to the
lower byte of Clock Pre-scale
Register.

MICO_EFB_I2C_READ_PRESCALE_HI The 8-bit value read from the
upper byte of Clock Pre-scale
Register.

This macro reads a character from
the upper byte of Clock Pre-scale
Register.

MICO_EFB_I2C_WRITE_PRESCALE_HI The 8-bit value to be written to the
upper byte of Clock Pre-scale
Register.

This macro writes a character to the
upper byte of Clock Pre-scale
Register.

MICO_EFB_I2C_READ_RXDR The 8-bit value read from the
Receive Data Buffer.

This macro reads a character from
the Receive Data Buffer.

MICO_EFB_I2C_WRITE_TXDR The 8-bit value to be written to the
Transmit Data Buffer.

This macro writes a character to the
Transmit Data Buffer.

MICO_EFB_I2C_READ_SR The 8-bit value read from the
Status Register.

This macro reads a character from
the Status Register.

LatticeMico8 Microcontroller Software Support

50 LatticeMico EFB

MICO_EFB_I2C_READ_IRQSR The 8-bit value read from the
Interrupt Request Register.

This macro reads a character from
the Interrupt Request Register.

MICO_EFB_I2C_WRITE_IRQSR The 8-bit value to be written to the
Interrupt Request Register.

This macro writes a character to the
Interrupt Request Register.

MICO_EFB_I2C_READ_IRQENR The 8-bit value read from the
Interrupt Request Enable
Register.

This macro reads a character from
the Interrupt Request Enable
Register.

MICO_EFB_I2C_WRITE_IRQENR The 8-bit value to be written to the
Interrupt Request Enable
Register.

This macro writes a character to the
Interrupt Request Enable Register.

Note: For the primary I2C, the first argument to the macro is EFB address. For the secondary I2C, the first argument
to the macro is EFB address plus 0x0a.

Table 71: C Preprocessor Function-like Macros For I2C (Continued)

Macro Name Second Argument to Macro Description

Table 72: C Preprocessor Function-like Macros with Two Arguments for Timer/Counter

Macro Name Second Argument to Macro Description

MICO_EFB_TIMER_READ_CR0 The 8-bit value read from the
Control Register 0.

This macro reads a character from
the Control Register 0.

MICO_EFB_TIMER_WRITE_CR0 The 8-bit value to be written to the
Control Register 0.

This macro writes a character to the
Control Register 0.

MICO_EFB_TIMER_READ_CR1 The 8-bit value read from the
Control Register 1.

This macro reads a character from
the Control Register 1.

MICO_EFB_TIMER_WRITE_CR1 The 8-bit value to be written to the
Control Register 1.

This macro writes a character to the
Control Register 1.

MICO_EFB_TIMER_READ_CR2 The 8-bit value read from the
Control Register 2.

This macro reads a character from
the Control Register 2.

MICO_EFB_TIMER_WRITE_CR2 The 8-bit value to be written to the
Control Register 2.

This macro writes a character to the
Control Register 2.

MICO_EFB_TIMER_GET_CNT The 16-bit Counter Value. This macro gets the current counter
value.

MICO_EFB_TIMER_GET_TOP The 16-bit Current Top Counter
value .

This macro gets the current top
counter value.

MICO_EFB_TIMER_GET_OCR The 16-bit Current Compare
Counter Value

This macro gets the current top
compare counter value.

MICO_EFB_TIMER_GET_ICR The 16-bit Current Capture
Counter Value.

This macro gets the current capture
counter value.

MICO_EFB_TIMER_SET_TOP The 16-bit Top Counter Value to
be set .

This macro set the Top Counter
Value.

MICO_EFB_TIMER_SET_OCR The 16-bit Compare Counter
Value to be set .

This macro set the Compare
Counter Value.

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 51

MICO_EFB_TIMER_READ_SR The 8-bit value read from the
Status Register.

This macro reads a character from
the Status Register.

MICO_EFB_TIMER_READ_IRQSR The 8-bit value read from the
Interrupt Request Register.

This macro reads a character from
the Status Register.

MICO_EFB_TIMER_WRITE_IRQSR The 8-bit value to be written to the
Interrupt Request Register.

This macro writes a character to the
Interrupt Request Register.

MICO_EFB_TIMER_READ_IRQENR The 8-bit value read from the
Interrupt Request Enable
Register.

This macro reads a character from
the Interrupt Request Enable
Register.

MICO_EFB_TIMER_WRITE_IRQENR The 8-bit value to be written to the
Interrupt Request Enable
Register.

This macro writes a character to the
Interrupt Request Enable Register.

Note: The first argument to the macro is the EFB address.

Table 72: C Preprocessor Function-like Macros with Two Arguments for Timer/Counter (Continued)

Macro Name Second Argument to Macro Description

Table 73: C Preprocessor Function-like Macros with Two Arguments for UFM (MachXO2/Platform
Manager 2 only)

Macro Name Second Argument to Marco Description

MICO_EFB_UFM_WRITE_CR The 8-bit value to be written to the
Control Register.

This macro reads a character from the
Control Register.

MICO_EFB_UFM_READ_CR The 8-bit value read from the
Control Register.

This macro writes a character to the
Control Register

MICO_EFB_UFM_WRITE_TXDR The 8-bit value to be written to the
Transmit FIFO Data Buffer.

This macro writes a character to the
Transmit FIFO Data Buffer

MICO_EFB_UFM_READ_SR The 8-bit value read from the
Status Register.

This macro reads a character from the
Status Register.

MICO_EFB_UFM_READ_RXDR The 8-bit value read from the
Receive FIFO Data Buffer.

This macro reads a character from the
Receive FIFO Data Buffer.

MICO_EFB_UFM_WRITE_IRQSR The 8-bit value to be written to the
Interrupt Request Register.

This macro writes a character to the
Interrupt Request Register.

MICO_EFB_UFM_READ_IRQSR The 8-bit value read from the
Interrupt Request Register.

This macro reads a character from the
Interrupt Request Register.

MICO_EFB_UFM_WRITE_IRQENR The 8-bit value to be written to the
Interrupt Request Enable Register.

This macro writes a character to the
Interrupt Request Enable Register.

MICO_EFB_UFM_READ_IRQENR The 8-bit value to be written to the
Interrupt Request Enable Register.

This macro writes a character to the
Interrupt Request Enable Register.

LatticeMico8 Microcontroller Software Support

52 LatticeMico EFB

Functions

This section describes the implemented device-driver-specific functions.

MicoEFBInit Function
void MicoEFBInit (MicoEFBCtx_t *ctx);

This is the EFB initialization function. It disable all interrupts (should be
enabled by user as required) and stops the timer.

Table 75 describes the parameter in the MicoEFBInit function syntax.

MicoEFBISR Function
void MicoEFBISR (MicoEFBCtx_t *ctx);

This is the EFB Interrupt handler. Each EFB component has it's own interrupt
handler and must be implemented by the developers in user code to reflect
their application behavior.

Table 76 describes the parameter in the MicoEFBISR function syntax.

This function and the following component interrupt handler will not be
declared if user specifies __MICO_NO_INTERRUPTS__ preprocessor.

Table 74: C Preprocessor Function-like Macros With One Argument for
Timer/Counter

Macro Name Description

MICO_EFB_TIMER_STOP This macro stops the timer.

MICO_EFB_TIMER_RESET This macro resets the timer

MICO_EFB_TIMER_START This macro starts the timer.

Table 75: MicoEFBInit Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

Table 76: MicoEFBISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 53

MicoEFB_I2C1ISR Function
void MicoEFB_I2C1ISR (MicoEFBCtx_t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO_I2C_INTERRUPT__ preprocessor. This is the primary I2C
Interrupt handler.

Table 77 describes the parameter in the MicoEFB_I2C1ISR function syntax.

MicoEFB_I2C2ISR Function
void MicoEFB_I2C2ISR (MicoEFBCtx_t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO_I2C_INTERRUPT__ preprocessor. This is the secondary
I2C Interrupt handler.

Table 78 describes the parameter in the MicoEFB_I2C2ISR function syntax.

MicoEFB_SPIISR Function
void MicoEFB_SPIISR (MicoEFBCtx_t *ctx);

This function will not be declared if user specifies
__MICOEFB_NO_SPI_INTERRUPT__ preprocessor. This is the SPI Interrupt
handler.

Table 79 describes the parameter in the MicoEFB_TimerISR function syntax.

MicoEFB_TimerISR Function
void MicoEFB_TimerISR (MicoEFBCtx_t *ctx);

Table 77: MicoEFB_I2C1ISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

Table 78: MicoEFB_I2C1ISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

Table 79: MicoEFB_TimerISR Function Parameter

Parameter Description

MicoEFBCtx_t* Pointer to a valid MicoEFBCtx_t structure
representing a valid EFB instance.

LatticeMico8 Microcontroller Software Support

54 LatticeMico EFB

This function will not be declared if user specifies
__MICOEFB_NO_TC_INTERRUPT__ preprocessor. This is the Timer
Interrupt handler.

MicoEFB_SPITransfer Function
char MicoEFB_SPITransfer (MicoEFBCtx_t *ctx,

unsigned char isMaster,
unsigned char slvIndex,
unsigned char insertStart,
unsigned char insertStop,
unsigned char *txBuffer,
unsigned char *rxBuffer,
unsigned char bufferSize);

This function initiates a SPI transfer that receives and transmits a configurable
number of bytes. Table 80 describes the parameters in the
MicoEFB_SPITransfer function syntax.

MicoEFB_SPITxData Function
char MicoEFB_SPITxData (MicoEFBCtx_t *ctx,

unsigned char data);

Table 80: MicoEFB_SPITransfer Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t*
structure representing a
valid EFB instance.

unsigned char master or slave master or slave

1 = master

0 = slave

unsigned char Assert chip select at start
of transfer

1 = insert

0 = do not insert

unsigned char Deassert chip select at end
of transfer

1 = insert

0 = do not insert

unsigned char Bytes to be transmitted min 1 and max 256

unsigned char Bytes to be received

unsigned char Number of bytes to transfer 0 refers to 1 byte. 255
refers to 256 bytes

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 55

This function initiates a byte transmission. Table 81 describes the parameters
in the MicoEFB_SPITxData function syntax.

Table 82 describes the values returned by the MicoEFB_SPIRxData Function.

MicoEFB_SPIRxData Function
char MicoEFB_SPIRxData (MicoEFBCtx_t *ctx,

unsigned char *data);

This function initiates a byte receive. Table 83 describes the parameters in the
MicoEFB_SPIRxData (MicoEFBCtx_t *ctx function syntax.

Table 84 describes the values returned by the MicoEFB_SPIRxData Function.

MicoEFB_I2CStart Functions
char MicoEFB_I2CStart (MicoEFBCtx_t *ctx,

unsigned char i2c_idx,
unsigned char read,
unsigned char address,

Table 81: MicoEFB_SPITxData (MicoEFBCtx_t *ctx Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char Data Bytes to be
transferred

Table 82: Values Returned by the MicoEFB_SPITxData Function

Return Value Description

0 Successful writes

Table 83: MicoEFB_SPITxData (MicoEFBCtx_t *ctx Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char Data Bytes received

Table 84: Values Returned by the MicoEFB_SPITxData Function

Return Value Description

0 Status register contents after receive of data.

LatticeMico8 Microcontroller Software Support

56 LatticeMico EFB

unsigned char restart);

This function initiates a START command provided the I2C master can get
control of the bus.

Table 85 describes the parameters in the MicoEFB_I2CStart function syntax.

Table 86 describes the values returned by the MicoEFB_I2CStart function.

MicoEFB_I2CWrite Function
char MicoEFB_I2CWrite (MicoEFBCtx_t *ctx,

unsigned char i2c_idx,
unsigned char slv_xfer,
unsigned char buffersize,
unsigned char *data,
unsigned char insert_start,
unsigned char insert_restart,
unsigned char insert_stop,
unsigned char address);

This function performs block writes. In addition it also allows the user to
optionally:

1. Initiate a START command prior to performing the block writes if the I2C is
an I2C master.

Table 85: MicoEFB_I2CStart Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char I2C index Value is 1 or 2

unsigned char Read or write operation 0 = Write
1 = Read

unsigned char Slave address

unsigned char Is this a 'repeated start'
event or a new 'start'
event?

1 = (repeated start)
0 = (new start)

Table 86: Values Returned by the MicoEFB_I2CStart Function

Return Value Description

0 Successful writes

-1 Failed to receive ack during addressing

-2 Failed to receive ack when writing data.

-3 Arbitration lost during operations

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 57

2. Initiate a STOP command after performing the block writes if the I2C is an
I2C master.

3. Hold the SCL line low (i.e. clock stretching) after performing the block
writes if the I2C is an I2C slave.

Table 87 describes the parameters in the MicoEFB_I2CWrite function syntax.

Table 88 describes the values returned by the MicoEFB_I2CWrite function.

MicoEFB_I2CRead Function
char MicoEFB_I2CRead (MicoEFBCtx_t *ctx,

Table 87: MicoEFB_I2CWrite Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char I2C index Value is 1 or 2

unsigned char I2C master or slave 0 = master

1 = slave

unsigned char Number of bytes to be
transferred

min 1 and max 256

unsigned char Buffer containing the data to
be transferred

unsigned char Master: Insert Start (or
repeated Start) prior to data
transfer

1 = insert

0 = do not insert

unsigned char Master: Insert Stop at end of
data transfer. Slave: Stretch
clock at end of transfer.

1 = insert

0 = do not insert

unsigned char Master: Repeated Start
inserted prior to data
transfer (this argument is
valid only is 'insert_start' is 1

1 = insert

0 = do not insert

unsigned char Slave address

Table 88: Values Returned by the MicoEFB_I2CWrite Function

Return Value Description

0 Successful writes

-1 Failed to receive ack during addressing

-2 Failed to receive ack when writing data.

-3 Arbitration lost during operations

LatticeMico8 Microcontroller Software Support

58 LatticeMico EFB

unsigned char i2c_idx,
unsigned char slv_xfer,
unsigned char buffersize,
unsigned char *data,
unsigned char insert_start,
unsigned char insert_restart,
unsigned char insert_stop,

 unsigned char address);

Table 89 describes the parameters in the MicoEFB_I2CRead function syntax.

Table 90 describes the values returned by the MicoEFB_I2CRead function.

Table 89: MicoEFB_I2CRead Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char I2C index Value is 1 or 2

unsigned char I2C master or slave 0 = master

1 = slave

unsigned char Number of bytes to be
transferred

min 1 and max 256

unsigned char Buffer to put received data
in to

unsigned char Master: Insert Start (or
repeated Start) prior to data
transfer

1 = insert

0 = do not insert

unsigned char Master: Repeated Start
inserted prior to data
transfer (this argument is
valid only is 'insert_start' is 1

1 = insert

0 = do not insert

unsigned char Master: Insert Stop at end of
data transfer. Slave: Stretch
clock at end of transfer.

1 = insert

0 = do not insert

unsigned char Slave address

Table 90: Values Returned by the MicoEFB_I2CRead Function

Return Value Description

0 Successful reads.

-1 Failed to receive ack during addressing

-2 Failed to receive ack when writing data.

-3 Arbitration lost during operations

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 59

MicoEFB_TimerStart Function
void MicoEFB_TimerStart (MicoEFBCtx_t *ctx,

unsigned char mode,
unsigned char ocmode,
unsigned char sclk,
unsigned char cclk,
unsigned char interrupt,
unsigned int timerCount,
unsigned int compareCount);

This function sets up timer configuration and starts timer. Table 91 describes
the parameters in the MicoEFB_TimerStart function syntax.

Table 91: MicoEFB_TimerStart Function Parameters

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t* structure
representing a valid EFB
instance.

unsigned char Timer mode 0 - Watchdog

1 - Clear Timer on Compare (CTC) Match

 2 - Fast PWM

 3 - Correct PWM

unsigned char Timer counter output
signal's mode

0 - Always zero

1 - Toggle on TOP match (non-PWM modes)

 Toggle on OCR match (Fast PWM mode)

 Toggle on OCR match (Correct PWM mode)

2 - Clear on TOP match (non-PWM modes)

 Clear on TOP match, set on OCR match (Fast PWM mode)

 Clear on OCR match when CNT incrementing, set on OCR
match when CNT decrementing (Correct PWM mode)

 3 - Set on TOP match (non-PWM modes)

 Set on TOP match, clear on OCR match (Fast PWM mode)

 Set on OCR match when CNT incrementing, clear on OCR
match when CNT decrementing (Correct PWM mode)

unsigned char Clock source selection 0 - WISHBONE clock (rising edge)

2 - On-chip oscillator (rising edge)

4 - WISHBONE clock (falling edge)

6 - On-chip oscillator (falling edge)

LatticeMico8 Microcontroller Software Support

60 LatticeMico EFB

MicoEFB_ UFMCmdCall Function
char MicoEFB_UFMCmdCall(MicoEFBCtx_t *ctx,

unsigned long opcode,
unsigned char enable);

Table 92 describes the parameter in the MicoEFB_ UFMCmdCall function
syntax.

MicoEFB_ UFMSetAddr Function
char MicoEFB_UFMSetAddr (MicoEFBCtx_t *ctx,

unsigned int address);

unsigned char Divider selection 0 - Static 0

1 - sclk/1

2- sclk/8

3 - sclk/64

4 - sclk/256

5 - sclk/1024

unsigned char interrupt 1 = Enable interrupts

0 = Disable interrupts

unsigned char Timer TOP value maximum 0xFFFF

unsigned char Timer OCR (compare) value maximum 0xFFFF

Table 91: MicoEFB_TimerStart Function Parameters (Continued)

Parameter Description Note

Note

The MicoEFB_ UFMCmdCall Function, MicoEFB_ UFMSetAddr Function, MicoEFB_
UFMErase Function. MicoEFB_ UFMRead Function, and MicoEFB_ UFMWrite
Function apply only to MachXO2/Platform Manager 2.

Table 92: MicoEFB_ UFMCmdCall Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

unsigned char UFM 4 bytes opcode

unsigned char Enable the close frame
signal

1: enable
0: disable

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 61

Table 93 describes the parameter in the MicoEFB_ UFMSetAddr function
syntax.

Table 94 describes the values returned by the MicoEFB_ UFMSetAddr
Function.

MicoEFB_ UFMErase Function
char MicoEFB_UFMErase (MicoEFBCtx_t *ctx);

Table 95 describes the parameter in the MicoEFB_ UFMErase function
syntax.

Table 96 describes the values returned by the MicoEFB_ UFMErase
Function.

Table 93: MicoEFB_ UFMSetAddr Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

unsigned int UFM 14 bits memory
address

Table 94: Values Returned by the MicoEFB_ UFMSetAddr Function
(MachXO2/Platform Manager 2 only)

Return Value Description

0 Sucess

-1 Invalid address

Table 95: MicoEFB_ UFMErase Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

Table 96: Values Returned by the MicoEFB_ UFMErase Function
(MachXO2/Platform Manager 2 only)

Return Value Description

0 Erase successfully

-1 Erase fails

LatticeMico8 Microcontroller Software Support

62 LatticeMico EFB

MicoEFB_ UFMRead Function
char MicoEFB_UFMRead (MicoEFBCtx_t *ctx,

unsigned char *data,
unsigned char pagesize);

Table 97 describes the parameter in the MicoEFB_ UFMRead function
syntax.

Table 98 describes the values returned by the MicoEFB_ UFMRead Function.

MicoEFB_ UFMWrite Function
char MicoEFB_UFMWrite (MicoEFBCtx_t *ctx,

unsigned char *data);

Table 99 describes the parameter in the MicoEFB_ UFMWrite function syntax.

Table 97: MicoEFB_ UFMRead Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

unsigned char Data Bytes received

unsigned char Number of Page to read Max Page is 16

Table 98: Values Returned by the MicoEFB_ UFMRead Function
(MachXO2/Platform Manager 2 only)

Return Value Description

0 read successfully

-1 invalid page size

-2 Read from invalid memory

Table 99: MicoEFB_ UFMWrite Function Parameters (MachXO2/Platform Manager 2 only)

Parameter Description Note

MicoEFBCtx_t* Pointer to a valid
MicoEFBCtx_t structure
representing a valid EFB
instance.

unsigned char Data Bytes transfer

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 63

Table 100 describes the values returned by the MicoEFB_ UFMWrite
Function.

Software Usage Example

This section provides an example of using the EFB. The example is shown in
Figure 15 and assumes the presence of an EFB component named “efb” and
a UART component named “uart”.

Table 100: Values Returned by the MicoEFB_ UFMWrite Function
(MachXO2/Platform Manager 2 only)

Return Value Description

0 Write successfully

-1 Write to invalid memory

LatticeMico8 Microcontroller Software Support

64 LatticeMico EFB

Figure 15: Example of Using EFB

#include "MicoUtils.h"
#include "DDStructs.h"
#include "MicoEFB.h"

void MicoEFB_I2C1ISR (MicoEFBCtx_t *ctx)
{

return;
}

void MicoEFB_I2C2ISR (MicoEFBCtx_t *ctx)
{

return;
}

void MicoEFB_SPIISR (MicoEFBCtx_t *ctx)
{

return;
}

void MicoEFB_TimerISR (MicoEFBCtx_t *ctx)
{

return;
}

static unsigned char GetCharacter(MicoUartCtx_t *pUart)
{

char c;
MicoUart_getC (pUart, &c);
return(c);

}

static void SendCharacter(MicoUartCtx_t *pUart, char c)
{

MicoUart_putC (pUart, c);
return;

}

/*************************************
 * main program *
 *************************************/
int main()
{

MicoEFBCtx_t *efb = &efb_machxo2_efb;
size_t efb_address = (size_t) efb->base;

MicoUartCtx_t *uart = &uart_core_uart;
size_t uart_address = (size_t) uart->base;

LatticeMico8 Microcontroller Software Support

LatticeMico EFB 65

Figure 15: Example of Using EFB (Continued)

.

unsigned char iter;
unsigned int snapshot;
for (iter = 0; iter < 2; iter++) {

MicoEFB_TimerStart (efb, 0, 0, 0, 2, 0, 0xFFFF, 0x0);
MicoSleepMicroSecs (100*(iter+1));
MICO_EFB_TIMER_GET_CNT (efb_address, snapshot);
MICO_EFB_TIMER_STOP (efb_address);

// Print snapshot
SendCharacter (uart, (char)(snapshot>>8));
SendCharacter (uart, (char)(snapshot));
SendCharacter (uart, '\n');

}

 return(0);
}

Revision History
Component
Version

Description

1.0 Initial release.

1.1  Support added for new UFM features: Read, Write, Command
Call, Set Address and Erase.

 Support added for I2C with repeated start command.

 Content added to optimize the I2C and SPI by inserting
assembly code.

 Fixed issues with I2C_Read in master mode.

 Updated document with new corporate logo.

1.2  Added support for User-Managed Timer Reset mode.

 Added I/O port ufm_sn to Table 8, UFM I/O Port (MachXO2/
Platform Manager 2 Only).

1.3  Added LatticeMico32 microprocessor software support.

1.4  Added support for a new preprocessor option,
"__MICOEFB_NO_UFM_ADDR_CHECK__", which allows the
UFM function to bypass the UFM address checking.

1.5  Fixed issues with EFB instance name.

1.6  Added support for Platform Manager 2 and MachXO3L
devices.

LatticeMico8 Microcontroller Software Support

66 LatticeMico EFB

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of
Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their
respective owners.

http://www.latticesemi.com/legal

	LatticeMico EFB
	Version
	Features
	SPI Features
	I2C Features
	Timer/Counter Features
	UFM Features (MachXO2/Platform Manager 2 Only)

	Functional Description
	Configuration
	UI Parameters
	I/O Ports
	Register Descriptions
	WISHBONE Addressable Registers for Timer/ Counter Module
	Timer/Counter Registers
	WISHBONE Addressable Registers for UFM Module (MachXO2/Platform Manager 2 Only)

	Usage Model
	LatticeMico32 Microprocessor Software Support
	Device Driver

	LatticeMico8 Microcontroller Software Support
	Device Driver
	Software Usage Example

