= LATTICE

Version

Features

LatticeMico Asynchronous
SRAM Controller

The LatticeMico asynchronous SRAM controller is a slave device for the
WISHBONE architecture. It interfaces to an industry-standard asynchronous
SRAM device.

This document describes the 3.3 version of the LatticeMico asynchronous
SRAM controller.

The LatticeMico asynchronous SRAM controller includes the following
features:

WISHBONE B.3 interface:
Data bus width configurable as 8 or 32 bits
Support for Classic and Linear Incrementing Burst WISHBONE cycles

Support for byte, halfword, and word transfers on 32-bit WISHBONE
data bus

Configurable SRAM data bus width up to 32 bits
Configurable SRAM address bus width up to 32 bits
Configurable read latency

Configurable write latency

Optional capability for registering data from asynchronous SRAM before
sending to WISHBONE master on reads

Copyright © December 2012 Lattice Semiconductor Corporation.

Functional Description

For additional details about the WISHBONE bus, refer to the LatticeMico32
Processor Reference Manual or LatticeMico8 Processor Reference Manual.

Functional Description

The asynchronous SRAM controller translates the synchronous WISHBONE
bus signals into control strobes used to access an asynchronous SRAM. The
controller decodes the WISHBONE cycle type and generates asynchronous

chip selects, byte enables, read enables, and write enables, as required. For
further information on the WISHBONE registered feedback bus cycle, refer to
WISHBONE Specifications, Version B3, Chapter 4.

The memory controller can be configured for any combination of address and
data bus widths of the asynchronous SRAM. The address bus can be up to 32
bits. The data bus can be configured to be 8, 16, or 32 bits.

When in operation, the controller monitors the address bus and STB_| and
CYC_I to determine when an asynchronous memory transaction is in
progress. The address, STB_I, and CYC_I control signals are asserted or
deasserted at the CLK_| rising edge. CLK_| may be transitioning at a rate
much too high for the asynchronous RAM to accept, so the memory controller
must control and hold off the ACK_O control signal that indicates that the
WISHBONE bus transaction is complete. Since asynchronous RAM devices
do not have a cycle acknowledge signal, the memory controller provides one.
The ACK_O signal is controlled with a fixed read/write latency value. The read
latency is independent of the write latency. Each increment in latency value
represents an increase in the length of the bus transaction by one CLK_| time
period. The read/write latency permits the controller to work with slower
SRAM devices. The controller counts CLK | cycles until the read/write latency
value has been reached. At this point, ACK_O is asserted, and the
WISHBONE cycle is terminated.

The memory controller does not implement dynamic or region-based latency.
The read and write latency values are fixed during module generation. If
different regions of the asynchronous memory space require different read/
write latency values, you must generate one asynchronous RAM controller for
each region. If the latency values cannot be set high enough to permit the
SRAM to operate, it is necessary to obtain faster SRAM, reduce the CLK |
time period, or modify the HDL source for the controller.

2 LatticeMico Asynchronous SRAM Controller

http://www.opencore.org/projects.cgi/web/wishbone/wbspec_b3.pdf

Configuration

Figure 1 shows how an application uses the memory controller.

Figure 1: Asynchronous SRAM Usage

W
é _ DATAO SRAM_ADDR [SRAM_ADDR_WIDTH-1:0]
H SRAM_DATA_OUT [SRAM_DATA_WIDTH-1:0]
(B) Control signals | ~ Asynchronous |SRAM_DATA_IN [SRAM_DATA_WIDTH-1:0]
”| SRAM memory o
N controller SRAM CSN >
E SRAM_BE [SRAN _DATA_WIDTH/8-1:0]
DATA_| g
b - > SRAM_WEN |
u SRAM_OEN
E > External
memory
Configuration

The following sections describe the graphical user interface (Ul) parameters,
the hardware description language (HDL) parameters, and the 1/O ports that
you can use to configure and operate the LatticeMico asynchronous SRAM

controller.

Ul Parameters

Table 1 shows the Ul parameters available for configuring the LatticeMico
asynchronous SRAM controller through the Mico System Builder (MSB)

interface.

Table 1: Asynchronous SRAM Controller Ul Parameters

Dialog Box Option

Instance Name

Base Address

Size

Share External Ports
(for HPE_mini Board)

Settings

Description

Specifies the name of the asynchronous SRAM
controller instance.

Specifies the base address for the device. The
minimum boundary alignment is 0x4.

Specifies the size of the external memory, in bytes.

Enables a common address and data bus for flash
and SRAM components created for the platform.

When this option is selected, each flash and SRAM
component adds its instance name to the address or
data bus port name.

Allowable Values

Alphanumeric and
underscores

0X00000000—
OXFFFFFFFF

0—-4294967296
1,0

Default Values

sSram

0X00000000

1048576
1

LatticeMico Asynchronous SRAM Controller

Configuration

Table 1: Asynchronous SRAM Controller Ul Parameters (Continued)

Dialog Box Option

Read Latency

Write Latency

SRAM Address Width?2
SRAM Data Width'

SRAM Byte Enable
Width

Performance Settings

Registered Data
Output

Description Allowable Values

Specifies the latency for reading the SRAM 1-15
(measured in CLK_| cycles).

Specifies the latency for writing the SRAM 1-15
(measured in CLK_| cycles).

Specifies the width of the address, in bits. 1-32
Specifies the width of the memory’s data bus, in bits. 8, 16, 32

Specifies the width of the byte enable, or control 4,21
strobe, for each of the 8-bit pieces of logic that

constitute the data bus in the asynchronous RAM.

The byte enable indicates that the LatticeMico32
microprocessor is accessing the 8-bit sub-element of

the larger combined data bus.

The SRAM BE width must be assigned a value that
is the data bus width modulo 8. For example, if the

default value of the data bus width is 32, the SRAM
BE width should be 4. Legal values for this field are
4,2,and 1.

The byte enables (BE[n], n= 3..0) are activated as
follows:

32-bit bus:
D31-24/BE3
D23-16/BE2
D15-8/BE1
D7-0/BEO
16-bit bus:
D15-8/BE1
D7-0/BEO
8-bit bus:
D7-0/BEOQ

Therefore, you use SRAM_BE_WIDTH to define the
upper limit of the Verilog bus:

output [SRAM_BE_WIDTH-1:0] sram_be;

Specifies whether the data from asynchronous 0,1
SRAM must be latched before sending on
WISHBONE data bus.

WISHBONE Configuration

WISHBONE Data Bus
Width

Specifies the size of the WISHBONE data bus. 8,32

Default Values

1

23*
32

32

12 On the LatticeMico32/DSP development board, the address and data bus of the

SRAM is shared with that of the parallel flash.

LatticeMico Asynchronous SRAM Controller

Configuration

* The default value is 23 because the two lower-order bits are not used, since the
SRAM on the board is configured as 32 bits wide.

HDL Parameters
Table 2 lists the parameters that appear in the HDL.

Table 2: Asynchronous SRAM Controller HDL Parameters

Parameter Name
SRAM_DATA_WIDTH
SRAM_ADDR_WIDTH
READ_LATENCY
WRITE_LATENCY
DATA_OUTPUT_REG

ASRAM_WB_DAT_WIDTH

Description

Defines the width of the memory’s data bus.

Defines the width of the address.

Defines the latency for reading the SRAM.
Defines the latency for writing the SRAM.

Determines whether data from asynchronous SRAM

Allowable Values
8,16, 32

1-32

1-15

1-15

0,1

is registered before sending on WISHBONE data

bus.

Specifies the width of the WISHBONE data bus.

1/0 Ports

Table 3 describes the input and output ports of the LatticeMico asynchronous
SRAM controller.

Table 3: Asynchronous SRAM Controller I/0 Ports

1/0 Port

WISHBONE Side Ports
CLK_I

RST_I

CTI_I

BTE_I

ADR_I[31:0]

DAT |
[ASRAM_WB_DAT_WIDTH-1:0]

SEL_|
[ASRAM_WB_DAT_WIDTH/8-1:0]

WE._|
STB_|
cYC |

Active Direction

High |

High |

High |
High |
High |

ol ol o o o o

8,32

Initial State Description

System clock

System reset

Cycle-type identifier. Only “000” is valid.
Burst-type extension.

WISHBONE address bus

WISHBONE data bus input (for write)

Select output array, one bit for every
byte

Write enable
Strobe indicating a valid data transfer

A valid bus cycle in progress

LatticeMico Asynchronous SRAM Controller

Timing Diagrams

Table 3: Asynchronous SRAM Controller I/O Ports

1/10 Port
LOCK I
ACK_O

DAT O
[ASRAM_WB_DAT_WIDTH-1:0]

ERR_O
RTY_O

Active
High
High

High
High

Asynchronous SRAM Interface Ports

SRAM_ADDR
[SRAM_ADDR_WIDTH-1:0]

SRAM_DATA_OUT
[SRAM_DATA_WIDTH-1:0]

SRAM_DATA_IN
[SRAM_DATA_WIDTH-1:0]

SRAM_CSN

SRAM_BE
[SRAM_BE_WIDTH-1:0]

SRAM_WEN
SRAM_OEN

Timing Diagrams

Low

Low

Low

Low

Direction

I
O

X

0

Initial State Description

WISHBONE lock signal

Indicates the normal termination of a
bus

WISHBONE data bus output (for read)

WISHBONE error signal
WISHBONE retry signal

SRAM address output

SRAM data output

SRAM data input

SRAM chip select

SRAM byte enable

Note: SRAM_BE_WIDTH is equivalent
to SRAM_DATA_WIDTH/8.

SRAM write enable
SRAM output enable

Figure 2 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Classic Read and a asynchronous SRAM with a read latency of 1 and a
data bus width of 32 bits. The read transaction begins with SRAM_CYC_I| and
SRAM_STB_| being asserted following a clock rising edge. The memory

controller passes the address asserted on the SRAM_ADR_| bus on the next

LatticeMico Asynchronous SRAM Controller

Timing Diagrams

clock rising edge. Since the latency is 1, data is expected from the
asynchronous SRAM in the same cycle. The memory controller drives the
data on to the SRAM_DAT_O bus.

Figure 2: WISHBONE 32-Bit Classic Read (non-registered read)

ASRAM_CYC_]
ASRAM_STB_I
ASRAM_CTLI
ASRAM_ADR_|
ASRAM_WE_I
ASEAM_DAT_I
ASRAM_ACK_O

ASRAM_DAT_O

sram_addr
srm_data
sraim_be
SFELTI_CS0
Srm_wen

Sem_oen

1 oo
I |
|_'|
|I .',
: Mo ::
(oY
I]JJI:JI::'
T —"
1
J 000} :
N
L I|
i I
|I {

Figure 3 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Classic Read and a asynchronous SRAM with a read latency of 1 and a
data bus width of 32 bits. The read transaction begins with SRAM_CYC_| and
SRAM_STB | being asserted following a clock rising edge. The memory
controller passes the address asserted on SRAM_ADR | bus on the next
clock rising edge. Since the latency is 1, data is expected from the
asynchronous SRAM in the same cycle. Since the memory controller is
configured to register the data from asynchronous SRAM controller, it drives
the data on to the SRAM_DAT _O bus on the next clock rising edge.

Figure 4 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Classic Write and an asynchronous SRAM with a write latency of 1 and
a data bus width of 32 bits. The write transaction begins with SRAM_CYC |

LatticeMico Asynchronous SRAM Controller

Timing Diagrams

Figure 3: WISHBONE 32-Bit Classic Read (registered read)

ASRAM_CYCL : | |

ASEAM_STB_I { |

ASRAM_CTILI X oo)
ASRAM_ADR_I \I : 0 ¢ X
ASRAM_WE_I

ASRAM_DAT_I (

ASRAM_ACK_O ‘4' ",t IR
E(Hi I':;F
ASEAM_DAT_O | Iqa] A
\
sram_addr 0
sram_data ‘II'_-.E‘I H_I‘I'
sram_be [:I (e |
: : ;
SEAM_CSn : \ ||'
SERIT_Wen
!II f
AFAIM_0en : | {

and SRAM_STB_| being asserted following a clock rising edge. The memory
controller passes the address, asserted on SRAM_ADR | bus, and data,
asserted on SRAM_DAT | bus, on the next clock rising edge. Since the
latency is 1, the asynchronous SRAM is expected to complete the write in the
same cycle; therefore, the memory controller asserts SRAM_ACK O in the
same cycle.

8 LatticeMico Asynchronous SRAM Controller

Timing Diagrams

Figure 4: WISHBONE 32-Bit Classic Write

Judududududuuue

ASRAM_CYC_I

ASRAM_STE_I

g
2

ASRAM_CTI_I

ASREAM_ADE_I

ASRAM_WE_I

ASRAM_DAT I 10}

ASRAM_ACK_OD

ASRAM_DAT_O

X
X

sram_addr

=

bt

|CCEG

sram_clata

sram_be

SCAIT_Cs0

Sram_wen

Aram_oen

LatticeMico Asynchronous SRAM Controller 9

Timing Diagrams

Figure 5 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Burst Read and an asynchronous SRAM with a read latency of 1 and a
data bus width of 32 bits. The read transaction begins with SRAM_CYC_I| and
SRAM_STB_| being asserted following a clock rising edge. The memory
controller passes the address asserted on SRAM_ADR | bus on the next
clock rising edge. Since the latency is 1, data is expected from the
asynchronous SRAM in the same cycle. The memory controller drives the
data on to the SRAM_DAT_O bus and asserts the SRAM_ACK_O signal. The
memory controller waits for the SRAM_STB_| to be asserted following the
next clock rising edge before commencing another read from the
asynchronous SRAM. This process is repeated until it detects the end of the
burst read.

Figure 5: WISHBONE 32-Bit Burst Read (non-registered read)

ASRAM CYC_I (\

ASRAM STB_I i L | 1 L \

ASRAM CTLI _ ;I: : oo . | I I \gl

,.L
L]
- g
R
e

ASRAM_ADRI ko 4 4 g8

ASEAM_WE_I

ASRAM_DAT_I

ASRAM_ACK_O /I W B N R T

\ W/ LY W) oy
ASRAM_DAT_O A D f opE bops fopie)
Wi o if Vi Vil
sram_addr .I-. 0 .-I.L 4 .:I'-. 8 .-:I:-. i I
,-—»II .'ﬁ. — —
sram_data "‘I_J]ﬂ "-H-I'_I." \'.l_JrK_l."' tﬂﬂ;
W T Yo T i T Vi T L0
sram_be . : .'I'l. 0000 :!' 0000 ;II_ 0000 'l: 0000 J,;:
I1. f 1 { i | ! f .
SEMTI_CSN | | |] \ | 1 i
SEAM_Wen
1 I" 'II | i f y (I
STET_O0en '._ | 1 i i i’ I'.]

Figure 6 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Burst Write and an asynchronous SRAM with a write latency of 1 and a
data bus width of 32 bits. The write transaction begins with SRAM_CYC_I| and
SRAM_STB | being asserted following a clock rising edge. The memory
controller passes the address, asserted on SRAM_ADR | bus, and data,

10 LatticeMico Asynchronous SRAM Controller

Timing Diagrams

asserted on SRAM_DAT _| bus, on the next clock rising edge. Since the
latency is 1, the asynchronous SRAM is expected to complete the write in the
same cycle; therefore, the memory controller asserts SRAM_ACK_O in the
same cycle. The memory controller waits for the SRAM_STB_| to be asserted
following the next clock rising edge before commencing another write to the
asynchronous SRAM. This process is repeated until it detects the end of the
burst write.

Figure 6: WISHBONE 32-Bit Burst Write

ASRAM_CYC_I
ASRAM_STB_I
ASRAM_CTII
ASRAM_ADR_I
ASRAM_WE_I
ASRAM_DAT_I
ASRAM_ACK_O

ASRAM_DAT_O

sram_acdr
sram_data
sram_be
AEAM_Csn
SEEm_wen

Aram_oen

\ o 1 T] \
_);I Dol Dl 'I» D8] k DIc] .f

[1 L | |1 | 1
i L T |- '

o Joa s e

—— D]j\ D4 f D) :t" DIC] J}

Y] 1 Yo \
Loomo) o000 [00 {0000 .-'{

Figure 7 shows the asynchronous SRAM controller's timing for a WISHBONE
32-bit Burst Write and an asynchronous SRAM with a write latency of 1 and a
data bus width of 16 bits. Each 32-bit WISHBONE write is translated into two
16-bit write transactions to the asynchronous SRAM. The write transaction
begins with SRAM_CYC _| and SRAM_STB_| being asserted following a
clock rising edge. The memory controller passes the address, asserted on
SRAM_ADR | bus, and data bits 31-16, asserted on SRAM_DAT | bus, to
the asynchronous SRAM on the next clock rising edge. Since the latency is 1,
the asynchronous SRAM is expected to complete the write in the same cycle.
The memory controller deasserts SRAM_CSN and SRAM_WEN on the next

LatticeMico Asynchronous SRAM Controller 1

EBR Resource Utilization

clock rising edge. On the following clock edge, the memory controller asserts
SRAM_CSN and SRAM_WEN again and increments the address to the next
memory location. Since the latency is 1, the memory controller asserts
SRAM_ACK_O in the same cycle indicating, that it can accept another write
in the following cycle.

Figure 7: WISHBONE 32-Bit Burst Write (Asynchronous SRAM with 16-Bit Data Bus)

ASRAM_CYC_I | \
1 — — —
ASRAMSTBT [| i1 i 1 o ¢+t § 3
ASHAM_CTI_I A ol 1 i
ASRAM_ADR_I pooo i 4 A 8 1§ ¢ i
ASRAM_WEI 1
ASHAM_DAT I A 1%0] A D) A D8] L D)
.l'_!' |'_.| 1 "_!I
ASRAM_ACK_O [i i 1 1A
ASRAM _DAT O
srm _addr Ioo [I 4 3: b 4 A e bE)
i il { o oo koo f o 1 D) DAl § DT L D)
wram e S T N T R R Y m o w1 m)
1'| ; 1 .l] -Il !I -I. { .| II -Il |I -I.] .I'
SFN_£50 | | | i 1 | 1 i L] i 1 | 1 i] i
— 1 1 | — 1 1 | — 1 1 I'_
Sram_wen L | \ | | ' | \ | [I
s _acn

EBR Resource Utilization

The asynchronous SRAM controller uses no EBRs.

Software Support

The asynchronous SRAM controller does not require associated software
support. It can access the memory's location by treating it as a general-
purpose read/write memory.

12 LatticeMico Asynchronous SRAM Controller

Software Support

Revision History
Component Version Description
1.0 Initial release.

3.0 (7.0 SP2) Corrected endianness.
Added support for 8- and 16-bit operational modes.

3.1 Support added for 8 and 32-bit WISHBONE Data Bus.
Corrected burst writes.

3.2 Fixed bug that incorrectly set up the data bus width.

Updated document with new corporate logo.

3.3 Added support for LatticeMico8-based designs in
addition to LatticeMico32-based designs.

Component can be used in designs that do not include
a processor.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice
(design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock,
flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40,
iCEB5, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP,
ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG,
ispLEVER, ispLeverCORE, ispLSl, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP,
ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2,
LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM,
LatticeXP, LatticeXP2, MACH, MachXO, MachX02, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL,
Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SiliconBlue, Silicon Forest,
Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP,
sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design, TracelD, TransFR, UltraMOS, and specific
product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its
subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are
service marks of Lattice Semiconductor Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

LatticeMico Asynchronous SRAM Controller 13

Software Support

14 LatticeMico Asynchronous SRAM Controller

	LatticeMico Asynchronous SRAM Controller
	Version
	Features
	Functional Description
	Configuration
	UI Parameters
	HDL Parameters
	I/O Ports

	Timing Diagrams
	EBR Resource Utilization
	Software Support

