
Lattice Synthesis Engine for
ispLEVER Classic User Guide

May 2015

ii Lattice Synthesis Engine for ispLEVER Classic User Guide

Copyright
Copyright © 2015 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Lattice Synthesis Engine for ispLEVER Classic User Guide iii

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

iv Lattice Synthesis Engine for ispLEVER Classic User Guide

Lattice Synthesis Engine for ispLEVER Classic User Guide v

Contents

Lattice Synthesis Engine for ispLEVER Classic 1
Selecting LSE as Synthesis Tool 1
Changing the LSE Tool Processes and Properties 2

Command Line Options 2
Frequency 2
FSM Encoding 2
Intermediate File Dump 2
Number of Critical Paths 2
Optimization Goal 3
Propagate Constants 3
Remove Duplicate Registers 3
Resolve Mixed Drivers 3
Resource Sharing 4
Use IO Insertion 4
Verilog Include Search Path 4
VHDL2008 4

Optimizing LSE for Area and Speed 4
Frequency 5
FSM Encoding Style 5
Optimization Goal 5
Remove Duplicate Registers 5
Resource Sharing 5
LSE Options versus Synplify Pro 6
Coding Tips for LSE 7
LSE Differences with Synplify Pro 7

About Verilog Blocking Assignments 8
Inferring I/O 9
Event Inside an Event 10
HDL Attributes and Directives 11

black_box_pad_pin 11
syn_black_box 12
syn_encoding 12
syn_hier 13

CONTENTS

vi Lattice Synthesis Engine for ispLEVER Classic User Guide

syn_keep 14
syn_maxfan 15
syn_noprune 15
syn_preserve 16
syn_use_carry_chain 17

Lattice Synthesis Engine for ispLEVER Classic User Guide 1

Lattice Synthesis Engine for
ispLEVER Classic

Lattice Synthesis Engine (LSE) is the integrated synthesis tool that comes
with ispLEVER Classic software.

This chapter describes:

 LSE tool options

 HDL coding tips

 Attributes and directives supported by LSE

LSE is a synthesis tool custom-built for Lattice products and fully integrated
with ispLEVER Classic software. Depending on the design, LSE may lead to
a more compact or faster placement of the design than another synthesis tool
would do.

Also, LSE offers the following advantages:

 More granular control through the tool options

 Post-synthesis Verilog netlist suitable for simulation

Selecting LSE as Synthesis Tool
Use the Select Synthesis or Simulator dialog box to select the synthesis tool.
Choose Options > Select RTL Synthesis or Simulator. In the Select
Synthesis or Simulator dialog box, choose Lattice LSE, and click OK.

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

2 Lattice Synthesis Engine for ispLEVER Classic User Guide

Changing the LSE Tool Processes and
Properties
The LSE processes and properties for current source can be changed in the
Properties dialog box. To open the Properties dialog box, in the Process pane
of the ispLEVER Project Navigator, right-click and choose Properties from
the pop-up menu. Refer to the Processes section of the Project Navigator
online help for more information about process and property descriptions.

This section lists all the tool options associated with LSE. The following
sections describe how to set the options to optimize synthesis for either area
or speed and some of the differences between LSE and Synplify Pro options.

Command Line Options
This text property enables additional command line options for the associated
process.

To enter a command line, type in the command line option and its value (if
any) in the text box.

Frequency
This number property specifies the global design frequency (in MHz). The
default value is 200.

This property is equivalent to the set_option -frequency command in
Synplify Pro.

FSM Encoding
Specifies the encoding style to use with the design.

This option is equivalent to the -fsm_encoding_style option in the
SYNTHESIS command. Valid options are Auto, One-Hot, Gray, and Binary.
The default value is Auto, meaning that the tool looks for the best
implementation.

Intermediate File Dump
If you set this to True, LSE will produce intermediate encrypted Verilog files. If
you supply Lattice with these files, they can be decrypted and analyzed for
problems. This option is good for analyzing simulation issues.

Number of Critical Paths
This number property specifies the number of critical timing paths to be
reported in the timing report. The default value is 3.

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 3

This property is equivalent to the set_option -num_critical_paths command
in Synplify Pro.

Optimization Goal
Enables LSE to optimize the design for area, speed, or both.

Valid options are:

 Area (default) – Optimizes the design for area by reducing the total
amount of logic used for design implementation.

When Optimization Goal is set to Area, LSE ignores the Target Frequency
setting and uses 1 MHz instead.

 Timing – Optimizes the design for speed by reducing the levels of logic.

 Balanced – Optimizes the design for both area and timing.

Propagate Constants
When set to True (default), enables constant propagation to reduce area,
where possible. LSE will then eliminate the logic used when constant inputs to
logic cause their outputs to be constant.

You can turn off the operation by setting this option to False.

Remove Duplicate Registers
Specifies the removal of duplicate registers.

When set to True (default), LSE removes a register if it is identical to another
register. If two registers generate the same logic, the second one will be
deleted and the first one will be made to fan out to the second one's
destinations. LSE will not remove duplicate registers if this option is set to
False.

Resolve Mixed Drivers
If a net is driven by a VCC or GND and active drivers, setting this option to
True connects the net to the VCC or GND driver.

Note

With the Area setting, LSE also ignores all SDC constraints. These constraints are not
used by LSE and are not added to an .lpf file for use by the later stages of
implementation.

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

4 Lattice Synthesis Engine for ispLEVER Classic User Guide

Resource Sharing
When this true/false property is set to True (default), the synthesis tool uses
resource sharing techniques to optimize area. With resource sharing,
synthesis uses the same arithmetic operators for mutually exclusive
statements; for example, with the branches of a case statement. Conversely,
you can improve timing by disabling resource sharing, but at the expense of
increased area.

This property is equivalent to the set_option -resource_sharing 1 | 0
command in Synplify Pro.

Use IO Insertion
When set to True, LSE uses I/O insertion.

Verilog Include Search Path
A project property. LSE will use the specified search paths to search for the
include files referenced in your design other than the directory of the file that
specifies the include directive.

VHDL2008
When this is set to True, VHDL 2008 is selected as the VHDL standard for the
project.

Optimizing LSE for Area and Speed
The following strategy settings for LSE can help reduce the amount of FPGA
resources that your design requires or increase the speed with which it runs.
Use these methods along with other, generic coding methods to optimize your
design.

Minimizing area often produces larger delays, making it more difficult to meet
timing requirements. Maximizing frequency often produces larger designs,
making it more difficult to meet area requirements. Either goal, pushed to an
extreme, may cause the place and route process to run longer or not
complete routing.

To control the global performance of LSE, modify the tool options. In the
Process pane of the ispLEVER Project Navigator, right-click and choose

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 5

Properties from the pop-up menu. See Table 1 for explanations and more
details.

Frequency
A lower frequency target means LSE can focus more on area. A higher
frequency target may force LSE to increase area. Try setting this value to
about 10% higher than your minimum requirement. However, if Optimization
Goal is set to Area, LSE will ignore the Target Frequency value, using a low 1
MHz target instead.

FSM Encoding Style
If your design includes large finite state machines, the Binary or Gray style
may use fewer resources than One-Hot. Which one is best depends on the
design. One-Hot is usually the fastest style. However, if the finite state
machine is followed by a large output decoder, the Gray style may be faster.

Optimization Goal
If set to Area, LSE will choose smaller design forms over faster whenever
possible. LSE will also ignore the Target Frequency option, using a low 1 MHz
target instead. If set to Timing, LSE will choose faster design forms over
smaller whenever possible. If you are having trouble meeting one requirement
(area or speed) while optimizing for the other, try setting this option to
Balanced.

Remove Duplicate Registers
Removing duplicate registers reduces area, but keeping duplicate registers
may reduce delays.

Resource Sharing
If set to True, LSE will share arithmetic components such as adders,
multipliers, and counters whenever possible.

Table 1: LSE Tool Options for Area and Speed

Option Area Speed

FSM Encoding Style Binary or Gray One-Hot

Optimization Goal Area Timing

Remove Duplicate
Registers

True False

Resource Sharing True False

Frequency <minimum>

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

6 Lattice Synthesis Engine for ispLEVER Classic User Guide

If the critical path includes such resources, turning this option off may reduce
delays. However, it may also increase delays elsewhere, possibly reducing
the overall frequency.

LSE Options versus Synplify Pro
If you are moving from Synplify Pro to LSE, there are differences in the
options to consider. Many of the Synplify Pro options have similar LSE
options. But many also do not. See Table 2. There are numerous LSE options
that have no Synplify Pro equivalents. For more information about the options,
see “Changing the LSE Tool Processes and Properties” on page 2.

Table 2: Synplify Pro Tool Options and LSE Equivalents

Synplify Pro Options LSE Equivalent Synplify Pro Default LSE Default

Allow Duplicate Modules None False

Area Optimization Goal False Balanced

Arrange VHDL Files None True

Clock Conversion None True

Command Line Options Command Line Options

Default Enum Encoding FSM Encoding Style Default Auto

Disable IO Insertion Use IO Insertion False True

Export Diamond Settings
to Synplify Pro GUI

None No

Force GSR None False

Frequency Target Frequency 200

FSM Encoding None True

Number of Critical Paths Number of Critical Paths 3

Number of Start/End Points None

Output Netlist Format None None

Output Preference File None True

Pipelining and Retiming None Pipelining Only

Push Tristates None True

Resolved Mixed Drivers Resolve Mixed Drivers False False

Resource Sharing Resource Sharing True True

Update Compile Point
Timing Data

None False

Use Clock Period for
Unconstrained I/O

None False

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 7

LSE has additional options that provide more granular control than Synplify
Pro, including:

 Carry Chain Length

Other LSE options without Synplify Pro equivalents:

 Intermediate File Dump

 Use Carry Chain

 Use IO Registers

 Propagate Constants

 Remove Duplicate Registers

Coding Tips for LSE
If you are going to use LSE to synthesize the design, the following coding tips
may help. Mostly the tips are about writing code so that blocks of memory are
“inferred”: that is, automatically implemented using logic cells or block RAM
(BRAM) instead of registers. There are also tips about inferring types of I/O
ports and about style differences with Synplify Pro.

LSE Differences with Synplify Pro
LSE tends to apply the Verilog and VHDL specifications strictly, sometimes
more strictly than other synthesis tools including Synplify Pro. Following are
some coding practices that can cause problems with LSE:

 Semicolons (;) to separate ports in a Verilog module statement. For
example:

module COUNTER (
input CLK ,
input RESET ; // LSE error on semicolon.
output TIMEOUT
);

 Spaces in the location path.

 Duplicate instantiation names (due to names in generate statements).

 Module instances without instance names.

 Multiple files with the same module names. Synplify Pro will error out but
LSE will not. This could cause designs in LSE to use the incorrect module.

 Global VHDL signals.

 Modules that have a port mismatch between instance and definition.

Verilog Input None Verilog 2001

VHDL 2008 None False

Table 2: Synplify Pro Tool Options and LSE Equivalents (Continued)

Synplify Pro Options LSE Equivalent Synplify Pro Default LSE Default

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

8 Lattice Synthesis Engine for ispLEVER Classic User Guide

 Both ieee.std_logic_signed and unsigned packages in VHDL. When
preparing VHDL code for LSE, you can include either:

USE ieee.std_logic_signed.ALL;

or:

USE ieee.std_logic_unsigned.ALL;

Code with both signed and unsigned packages could fail to synthesize
because operators would have multiple definitions.

 Mismatched variable types in VHDL. A std_logic_vector signal cannot be
assigned to a std_logic signal and an unsigned type cannot be assigned
to a std_logic_vector signal. For example:

din : in unsigned (data_width - 1 downto 0);
dout : out std_logic_vector (data_width - 1 downto 0));
...
dout <= din; // Illegal, mismatched assignment.

Such mismatched assignments generate errors that stop synthesis.

About Verilog Blocking Assignments
LSE support for Verilog blocking assignments to inferred RAM and ROM,
such as “ram[(addr)] = data;,” is limited to a single such assignment. Multiple
blocking assignments, such as you might use for dual-port RAM (see
Example of RAM with Multiple Blocking Assignments (Wrong)), or a mix of
blocking and non-blocking assignments are not supported. Instead, use non-
blocking assignments (<=). See Figure 2.

Figure 1: Example of RAM with Multiple Blocking Assignments (Wrong)

always @(posedge clka)
begin
 if (write_ena)
 ram[addra] = dina; // Blocking assignment A
 douta = ram[addra];
end
always @(posedge clkb)
begin
 if (write_enb)
 ram[addrb] = dinb; // Blocking assignment B
 doutb = ram[addrb];
end

Figure 2: Example Rewritten with Non-blocking Assignments (Right)

 always @(posedge clka)
begin
 if (write_ena)
 ram[addra] <= dina;
 douta <= ram[addra];
end
always @(posedge clkb)

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 9

begin
 if (write_enb)
 ram[addrb] <= dinb;
 doutb <= ram[addrb];
end

Inferring I/O
To specify types of I/O ports, follow these models.

Verilog

Open Drain:
output <port>;
wire <output_enable>;
assign <port> = <output_enable> ? 1'b0 : 1'bz;

Bidirectional:
inout <port>;
wire <output_enable>;
wire <output_driver>;
wire <input_signal>;
assign <port> = <output_enable> ? <output_driver> : 1'bz;
assign <input_signal> = <port>;

VHDL

Tristate:
library ieee;
use ieee.std_logic_1164.all;
entity <tbuf> is
port (
 <enable> : std_logic;
 <input_sig> : in std_logic_vector (1 downto 0);
 <output_sig> : out std_logic_vector (1 downto 0));
end tbuf2;
architecture <port> of <tbuf> is
begin
 <output_sig> <= <input_sig> when <enable> = '1' else "ZZ";
end;

Open Drain:
library ieee;
use ieee.std_logic_1164.all;
entity <od> is
port (
 <enable> : std_logic;
 <output_sig> : out std_logic_vector (1 downto 0));
end od2;
architecture <port> of <od> is
begin
 <output_sig> <= "00" when <enable> = '1' else "ZZ";
end;

Bidirectional:

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

10 Lattice Synthesis Engine for ispLEVER Classic User Guide

library ieee;
use ieee.std_logic_1164.all;
entity <bidir> is
port (
 <direction> : std_logic;
 <input_sig> : in std_logic_vector (1 downto 0);
 <output_sig> : out std_logic_vector (1 downto 0);
 <bidir_sig> : inout std_logic_vector (1 downto 0));
end bidir2;
architecture <port> of <bidir> is
begin
 <bidir_sig> <= <input_sig> when <direction> = '0' else "ZZ";
 <output_sig> <= <bidir_sig>;
end;

Event Inside an Event

Do not code an event within another event such as shown below:

Figure 3: Event within an Event (Wrong)
always begin :main
 guess = 0;
 @(posedge clk or posedge rst);
 if (rst) disable main;
 while(1) begin
 while(!result) begin
 guess = 0;
 while(!result) begin
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 while(result) begin
 guess = 1;
 while(result) begin
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 @(posedge clk or posedge rst);
 if (rst) disable main;
 end
 end
end

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 11

HDL Attributes and Directives
This section describes the Synplify Lattice attributes and directives that are
supported by LSE. These attributes and directives are directly interpreted by
the engine and influence the optimization or structure of the output netlist.
Traditional HDL attributes, such as UGROUP, are also compatible with LSE
and are passed into the netlist to direct place and route.

black_box_pad_pin
Directive. Specifies pins on a user-defined black-box component as I/O pads
that are visible to the environment outside of the black box. If there is more
than one port that is an I/O pad, list the ports inside double-quotes ("),
separated by commas (,), and without enclosed spaces.

Verilog Syntax
object /* synthesis syn_black_box black_box_pad_pin =
"portList" */ ;

where portList is a spaceless, comma-separated list of the names of the ports
on black boxes that are I/O pads.

Figure 4: Verilog Example
module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q" */;

VHDL Syntax
attribute black_box_pad_pin of object : objectType is
"portList" ;

where object is an architecture or component declaration of a black box. Data
type is string; portList is a spaceless, comma-separated list of the black-box
port names that are I/O pads.

Figure 5: VHDL Example
library ieee;
use ieee.std_logic_1164.all;
package my_components is
component BBDLHS
 port (D: in std_logic;
 E: in std_logic;
 GIN : in std_logic_vector(2 downto 0);
 Q : out std_logic);
end component;

attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of BBDLHS : component is
"GIN(2:0),Q";
end package my_components;

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

12 Lattice Synthesis Engine for ispLEVER Classic User Guide

syn_black_box
Directive. Specifies that a module or component is a black box with only its
interface defined for synthesis. The contents of a black box cannot be
optimized during synthesis. A module can be a black box whether it is empty
or not. This directive has an implicit Boolean value of 1 or true.

Verilog Syntax
object /* synthesis syn_black_box */ ;

where object is a module declaration.

Figure 6: Verilog Example
module bl_box(out,data,clk) /* synthesis syn_black_box */;

VHDL Syntax
attribute syn_black_box of object : objectType is true ;

where object is a component declaration, label of an instantiated
component to define as a black box, architecture, or component.
Data type is Boolean.

Figure 7: VHDL Example
architecture top of top-entity is
component ram4
 port (myclk : in bit;
 opcode : in bit_vector(2 downto 0);
 a, b : in bit_vector(7 downto 0);
 rambus : out bit_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of ram4: component is true;

syn_encoding
Directive for VHDL designs. Defines how enumerated data types are
implemented. The type of implementation affects the performance and device
utilization.

VHDL Syntax
attribute syn_encoding of object : objectType is "value" ;

Where object is an enumerated type and value is one of the following: default,
sequential, onehot, or gray.

Figure 8: VHDL Example
package testpkg is
type mytype is (red, yellow, blue, green, white,
 violet, indigo, orange);
attribute syn_encoding : string;
attribute syn_encoding of mytype : type is "sequential";
end package testpkg;
library IEEE;

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 13

use IEEE.std_logic_1164.all;
use work.testpkg.all;
entity decoder is
 port (sel : in std_logic_vector(2 downto 0);
 color : out mytype);
end decoder;
architecture rtl of decoder is
begin
 process(sel)
 begin
 case sel is
 when "000" => color <= red;
 when "001" => color <= yellow;
 when "010" => color <= blue;
 when "011" => color <= green;
 when "100" => color <= white;
 when "101" => color <= violet;
 when "110" => color <= indigo;
 when others => color <= orange;
 end case;
 end process;
end rtl;

syn_hier
Attribute. Allows you to control the amount of hierarchical transformation that
occurs across boundaries on module or component instances during
optimization.

syn_hier Values

The following value can be used for syn_hier:

hard – Preserves the interface of the design unit with no exceptions. This
attribute affects only the specified design units.

object /* synthesis syn_hier = "value" */ ;

where object can be a module declaration and value can be any of the values
described in syn_hier Values. Check the attribute values to determine where
to attach the attribute.

Figure 9: Verilog Example
module top1 (Q, CLK, RST, LD, CE, D)
 /* synthesis syn_hier = "hard" */;

VHDL Syntax
attribute syn_hier of object : architecture is "value" ;

where object is an architecture name and value can be any of the values
described in syn_hier Values. Check the attribute values to determine the
level at which to attach the attribute.

Figure 10: VHDL Example

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

14 Lattice Synthesis Engine for ispLEVER Classic User Guide

architecture struct of cpu is
attribute syn_hier : string;
attribute syn_hier of struct: architecture is "hard";

syn_keep
Directive. Keeps the specified net intact during optimization and synthesis.

Verilog Syntax
object /* synthesis syn_keep = 1 */ ;

where object is a wire or reg declaration. Make sure that there is a space
between the object name and the beginning of the comment slash (/).

Figure 11: Verilog Example
module example2(out1, out2, clk, in1, in2);
output out1, out2;
input clk;
input in1, in2;
wire and_out;
wire keep1 /* synthesis syn_keep=1 */;
wire keep2 /* synthesis syn_keep=1 */;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;
always @(posedge clk)begin;
 out1<=keep1;
 out2<=keep2;
end
endmodule

VHDL Syntax
attribute syn_keep of object : objectType is true ;

where object is a single or multiple-bit signal.

Figure 12: VHDL Example

entity example2 is
 port (in1, in2 : in bit;
 clk : in bit;
 out1, out2 : out bit);
end example2;
architecture rt1 of example2 is
attribute syn_keep : boolean;
signal and_out, keep1, keep2: bit;
attribute syn_keep of keep1, keep2 : signal is true;
begin
and_out <= in1 and in2;
keep1 <= and_out;
keep2 <= and_out;
 process(clk)
 begin

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 15

 if (clk'event and clk = '1') then
 out1 <= keep1;
 out2 <= keep2;
 end if;
 end process;
end rt1;

syn_maxfan
Attribute. Overrides the default (global) fan-out guide for an individual input
port, net, or register output.

Verilog Syntax
object /* synthesis syn_maxfan = "value" */ ;

Figure 13: Verilog Example
module test (registered_data_out, clock, data_in);
output [31:0] registered_data_out;
input clock;
input [31:0] data_in /* synthesis syn_maxfan=1000 */;
reg [31:0] registered_data_out /* synthesis syn_maxfan=1000 */;

VHDL Syntax
attribute syn_maxfan of object : objectType is "value" ;

Figure 14: VHDL Example
entity test is
 port (clock : in bit;
 data_in : in bit_vector(31 downto 0);
 registered_data_out: out bit_vector(31 downto 0));
attribute syn_maxfan : integer;
attribute syn_maxfan of data_in : signal is 1000;

syn_noprune
Directive. Prevents instance optimization for black-box modules (including
technology-specific primitives) with unused output ports.

Verilog Syntax
object /* synthesis syn_noprune = 1 */ ;

where object is a module declaration or an instance. The data type is
Boolean.

Figure 15: Verilog Example
module top(a1,b1,c1,d1,y1,clk);
output y1;
input a1,b1,c1,d1;
input clk;
wire x2,y2;
reg y1;

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

16 Lattice Synthesis Engine for ispLEVER Classic User Guide

syn_noprune u1(a1,b1,c1,d1,x2,y2) /* synthesis syn_noprune=1 */
;

always @(posedge clk)
 y1<= a1;

endmodule

VHDL Syntax
attribute syn_noprune of object : objectType is true ;

where the data type is boolean, and object is an architecture, a component, or
a label of an instantiated component.

Figure 16: VHDL Example
library ieee;
use ieee.std_logic_1164.all;
entity top is
 port (a1, b1 : in std_logic;
 c1,d1,clk : in std_logic;
 y1 :out std_logic);
end ;
architecture behave of top is
component noprune
port (a, b, c, d : in std_logic;
 x,y : out std_logic);
end component;
signal x2,y2 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is true;
begin
 u1: noprune port map(a1, b1, c1, d1, x2, y2);
 process begin
 wait until (clk = '1') and clk'event;
 y1 <= a1;
 end process;
end;

syn_preserve
Directive. Prevents sequential optimization such as constant propagation,
inverter push-through, and FSM extraction.

Verilog Syntax
object /* synthesis syn_preserve = 1 */ ;

where object is a register definition signal or a module.

Figure 17: Verilog Example
module syn_preserve (out1,out2,clk,in1,in2)/* synthesis
syn_preserve=1 */;
output out1, out2;
input clk;
input in1, in2;

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

Lattice Synthesis Engine for ispLEVER Classic User Guide 17

reg out1;
reg out2;
reg reg1;
reg reg2;
always@ (posedge clk)begin
reg1 <= in1 &in2;
reg2 <= in1&in2;
out1 <= !reg1;
out2 <= !reg1 & reg2;
end
endmodule

VHDL Syntax
attribute syn_preserve of object : objectType is true ;

where object is an output port or an internal signal that holds the value of a
state register or architecture.

Figure 18: VHDL Example
library ieee;
use ieee.std_logic_1164.all;
entity simpledff is
 port (q : out std_logic_vector(7 downto 0);
 d : in std_logic_vector(7 downto 0);
 clk : in std_logic);

-- Turn on flip-flop preservation for the q output
attribute syn_preserve : boolean;
attribute syn_preserve of q : signal is true;
end simpledff;
architecture behavior of simpledff is
begin
 process(clk)
 begin
 if rising_edge(clk) then
 -- Notice the continual assignment of "11111111" to q.
 q <= (others => '1');
 end if;
 end process;
end behavior;

syn_use_carry_chain
Attribute. Used to turn on or off the carry chain implementation for adders.

Verilog Syntax
object synthesis syn_use_carry_chain = {1 | 0} */ ;

Verilog Example

To use this attribute globally, apply it to the module.

module test (a, b, clk, rst, d) /* synthesis
syn_use_carry_chain = 1 */;

VHDL Syntax

LATTICE SYNTHESIS ENGINE FOR ISPLEVER CLASSIC :

18 Lattice Synthesis Engine for ispLEVER Classic User Guide

attribute syn_use_carry_chain of object : objectType is true |
false ;

Figure 19: VHDL Example
architecture archtest of test is
signal temp : std_logic;
signal temp1 : std_logic;
signal temp2 : std_logic;
signal temp3 : std_logic;
attribute syn_use_carry_chain : boolean;
attribute syn_use_carry_chain of archtest : architecture is
true;

	Lattice Synthesis Engine for ispLEVER Classic
	Selecting LSE as Synthesis Tool
	Changing the LSE Tool Processes and Properties
	Optimizing LSE for Area and Speed
	About Verilog Blocking Assignments
	Inferring I/O
	Event Inside an Event
	HDL Attributes and Directives

