
www.latticesemi.com 1 rd1026_02.0

February 2014 Reference Design RD1026

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The LatticeMico8™ is an 8-bit microcontroller optimized for Field Programmable Gate Arrays (FPGAs) and Pro-
grammable Logic Device architectures from Lattice. Combining a full 18-bit wide instruction set with 16 or 32 gen-
eral purpose registers, the LatticeMico8 is a flexible Verilog and VHDL reference design suitable for a wide variety
of markets, including communications, consumer, computer, medical, industrial and automotive. The core con-
sumes minimal device resources, less than 200 Look Up Tables (LUTs) in the smallest configuration, while main-
taining a broad feature set.

Features
• 8-bit Data Path

• 18-bit Wide Instructions

• Configurable 16 or 32 General Purpose Registers

• Scratch Pad Memory

• Input/Output is Performed Using Paged “Ports” (256 Ports/Page)

• Two/Three Cycles per Instruction

• Lattice UART Reference Design Peripheral

Functional Description
Figure 1 shows the LatticeMico8 microcontroller block diagram.

Figure 1. LatticeMico8 Microcontroller Block Diagram

Optional External
Scratch Pad

(up to 4G Bytes)

Register File
32 8-bit

Registers

Program
Memory
(EBR)

Program Flow Control and PC

16 Deep Call Stack

Interrupt Ack

value

ALU Op

From I/O Port To I/O Port

op A

op B

Flags
CY, Z

rd

rb

instr
17:0

Interrupt

From Mem

Immediate
value

ALU

LatticeMico8 Microcontroller
User’s Guide

2

LatticeMico8 Microcontroller
User’s Guide

Exception Vectors
The LatticeMico8 provides two exception vectors. One vector address is used when the processor receives a reset,
the other when the processor receives an interrupt.

Address 0 should contain either an iret or unconditional branch instruction.

General Purpose Registers
The LatticeMico8 processor has either 16 or 32 8-bit general purpose registers. The registers are implemented
using a dual port distributed memory. The number of registers is configured prior to synthesizing the processor
core.

The LatticeMico8 opcode set permits the processor to access 32 registers. When the LatticeMico8 is configured
with 16 registers any opcode reference to R16 to R31 maps to R0 to R15 respectively.

Page Pointers
LatticeMico8 can directly access 256 memory locations. In order to increase the amount of memory it can address,
LatticeMico8 implements page pointers. General purpose registers R15, R14, and R13 have shadow registers. The
external address is the concatenation of R15, R14, R13 and the address generated as a result of a direct/indirect
memory opcode, where the output from these shadow registers becomes high-order address bits. This permits the
LatticeMico8 to address up to 4 GB of memory using 16M 256-byte pages.

The width of LatticeMico8 address is configurable from eight to 32 bits wide. When LatticeMico8 address bus size
is 8 bits wide, the address is generated directly from the opcode being executed. When LatticeMico8 address bus
size is from 9 to 16 bits wide, the address bus presents the concatenation of R13 and 8 bits from the opcode being
executed. When LatticeMico8 address bus size is from 17 to 32 bits wide, the address bus presents the concatena-
tion of R15, R14, R13 and 8 bits from the opcode being executed. The high-order address bits controlled by R15,
R14, and R13 become active when the respective register is updated. The low-order 8 bits of the address bus are
valid during the second clock of the instruction and remain valid until the cycle terminates.

Scratch Pad RAM
LatticeMico8 provides an independent memory space that is designed to be used for scratch pad memory. The
size of this scratch pad can be configured from 32 bytes to 4G bytes. Page pointers are used when the scratch pad
size is larger than 256 bytes.

The scratch pad memory is always external. Direct addressing is used to access the first 32 bytes in the scratch
pad regardless of which scratch pad page is active. Indirect addressing can access all 256 bytes of the current
active scratch pad page.

Hardware (Circular) Call Stack
When a call instruction is executed, the address of the next instruction is pushed onto the call stack, a ret
(return) instruction will pop the stack and continue execution from the location at the top of the stack.

During an interrupt, the address of the next instruction is pushed onto the call stack. The processor jumps to the
interrupt vector at address 00000. Following an iret (return from interrupt) instruction the top-most address in the
call stack is popped, and execution resumes from the address retrieved from the stack.

The stack is implemented as a 16-entry (default) circular buffer and any program execution will continue from an
undefined location in case of a stack overflow or underflow. A synthesis parameter is available to adjust the size of
the call stack.

Address Function

0 External Int

1 Reset

3

LatticeMico8 Microcontroller
User’s Guide

Interrupt Handling
The microcontroller has one interrupt source, which is level-sensitive. The interrupt can be enabled or disabled by
software (cli = clear interrupt, sti = set interrupt). When an interrupt is received, the address of the next instruc-
tion is pushed into the call stack and the microcontroller continues execution from the interrupt vector (address 0).
The flags (carry and zero) are pushed onto the stack along with the return address. The interrupt ack line is
set high and the acknowledge line is held high for the entire duration of interrupt handling. Once the interrupt has
been acknowledged the interrupt line should be set to 0.

An iret instruction will pop the call stack and transfer control to the address on top of the stack. The flags (carry
and zero) are also popped from the call stack and restored. The interrupt acknowledge line is set to low.

The microcontroller cannot handle nested interrupts.

Input/Output
The LatticeMico8 external and scratch pad memory transactions occur synchronously to the LatticeMico8’s input
clock frequency. The external and scratch pad memories share a single address bus and an output data bus. The
input data for each memory is supplied on independent data buses.

The first 32 memory addresses can be accessed using either direct or indirect memory modes. The remaining 224
memory locations can be accessed using only indirect addressing modes.

Figure 2 shows a v.2.4 memory transaction. The address and read/write strobe both appear in the second clock of
the processor's decode/execute cycle. The address and strobe only appear for a single clock pulse.

The scratch pad memory read and write strobes, ext_mem_rd/ext_mem_wr, go active as the result of the lsp, lspi,
ssp, and sspi opcodes.

The external port strobes, ext_io_rd/ext_io_wr, go active in response to the import, importi, export, exporti
opcodes.

The v.3.0 (and later) LatticeMico8 implementations modify the memory access times. Both the scratch pad and
external memory cycle times are increased by one clock cycle. Figure 3 shows an example of the v.3.0 bus cycle.
The v.3.0 bus cycle presents the address for a minimum of two clock cycles. Write data is also presented for a min-
imum of two clock cycles. Read data is captured at the rising clock edge of the third clock cycle.

The v.3.0 core also adds an external ready input. When driven LOW at the beginning of the third clock cycle a wait
state is inserted. Wait states continue to be asserted until the READY input is driven HIGH coincident to a rising
clock edge.

The transition to a three-clock cycle memory transaction in v.3.0 permits use of the FPGA’s EBR memory. The Lat-
tice EBR requires address be present for one clock prior to the data being read/written. The v.2.4 memory cycle
was incompatible with the EBR required behavior.

4

LatticeMico8 Microcontroller
User’s Guide

Figure 2. Version 2.4 Memory Transaction

Figure 3. Version 3.0 Bus Cycle Example

LatticeMico8 v.3.15 Enhancements
Version 3.15 of the LatticeMico8 adds some additional capabilities over earlier versions. (Note: Due to improve-
ments in the hardware, any code written for earlier versions of LatticeMico8 is not compatible).

• Increased the number of shadow registers used for extended external addressing. Previously, R14 and R15 had
shadow registers. Version 3.15 offers three shadow registers for R13, R14 and R15.

• Increased page pointers from 64K pages to 16M pages.

• Increased the total addressable data memory to 4G Bytes.

LatticeMico8 v.3.1 Enhancements
Version 3.1 of the LatticeMico8 adds some additional capabilities over earlier versions.

• The interrupt handling is fixed. C and Z are correctly pushed to the stack

• This version also fixes asynchronous assertion of RESET

• All the branch instructions now have +/- 2K range

• Opcode decode 0x3c000 is now part of the reserved opcode for future use

CLK

Data[7:0]

MEM_RD/IO_RD

Port Address

MEM_WR/IO_WR

VAVA

RD WD

Fetch

Execute

CLK

Data[7:0]

MEM_RD/IO_RD

Port Address

MEM_WR/IO_WR

Ready

VA VA

RD WD

Fetch Execute

Insert
wait -state

5

LatticeMico8 Microcontroller
User’s Guide

LatticeMico8 v.3.0 Enhancements
Version 3.0 of the LatticeMico8 adds some additional capabilities over earlier versions.

• Addition of a READY signal for memory transactions

• 3 clock cycle memory transactions to support EBR and READY

• As described in the previous section the LatticeMico8 memory cycle times have increased by one clock. This
gives decode logic time to determine if a memory transaction needs to be lengthened to accommodate slow
memory and peripheral devices.

Increase in Instruction PROM Memory from 512 Lines to User-Defined Depth
The instruction memory size is now configurable using a passed HDL parameter. Sizes from 512 to 4096 lines of
code have been tested.

Unconditional Branch/Call Instructions Increased to +/- 2K Instruction Range
The increase in instruction store makes having branch and call instructions with a greater range desirable. Uncon-
ditional branch and call opcodes can now be created with a +2047/-2048 range.

Family-Specific Modules Implemented Using PMI
The v.2.4 LatticeMico8 source code was written to support the MachXO™ and LatticeXP™ devices. Migrating
between Lattice FPGA families was a bit of effort. Version 3.0 permits any Lattice FPGA to be a LatticeMico8 host
by simply changing the device selected in ispLEVER®.

Flags Pushed Onto the Call Stack
The C and Z flags are pushed onto the stack following any call or interrupt.

LatticeMico8 Synthesis Parameters
The LatticeMico8 core is reconfigurable. There are many parameters available to allow you to tailor the core to your
design needs.

Table 1. LatticeMico8 Synthesis Parameters

Parameter Name Function

FAMILY_NAME

This is a text entry field that is only used during simulation. The value is used to determine the behav-
ioral model to use for instantiated Parameterized Module Instantiation (PMI) elements. Valid entries for
this parameter can be found in the ispLEVER Help. This field is not used during synthesis or place and
route. The target FPGA device can be changed in ispLEVER, and a new FPGA bitstream image gener-
ated without the need to update the FAMILY_NAME entry. ModelSim® can override the value in the
HDL using a command line switch when the HDL is compiled.

PROM_FILE
This is a text entry field that determines the opcode data to be loaded into the LatticeMico8 program
memory. This parameter can be explicitly entered in the HDL file, or can be updated as a synthesis
parameter from Synplify®, Precision® RTL, or ModelSim.

PORT_AW
This defines the number of low order address bits. The value must be less than or equal to 8. The
default value is 8, which permits the LatticeMico8 to address up to 256 external ports.

EXT_AW
This defines the size, in bits, of the external address bus. The parameter must be greater than or equal
to PORT_AW. The default value is 8, which permits the LatticeMico8 to address 256 ports.

PROM_AW
This defines the number of address bits assigned to the LatticeMico8 program memory. The default
value is 9, which permits up to 512 opcodes to be stored.

PROM_AD
This is the number of opcodes the program memory can store and must always be 2^PROM_AW. The
default value is 512 (i.e. 2^9).

REGISTERS_16

This parameter determines how many registers the LatticeMico8 core has. For VHDL the field is a text
entry that can be set to TRUE or FALSE. For Verilog the parameter is an integer field that can be either
0 or 1. When the REGISTERS_16 entry is FALSE/0 the LatticeMico8 will have 32 general purpose reg-
isters. When it is TRUE/1 it will have 16 general purpose registers.

PGM_STACK_AW
This defines the number of address bits assigned to the LatticeMico8 call stack. The default value is 4,
which permits the call stack to hold 16 elements.

PGM_STACK_AD
This defines the depth of the call stack and must always be 2^PGM_STACK_AW. The default value is
16 (i.e. 2^4).

6

LatticeMico8 Microcontroller
User’s Guide

Instruction Set Description and Encoding
Instruction Set Reference Card:

Operation Action Flags
add Rd, Rb Rd = Rd + Rb CZ
addc Rd, Rb Rd = Rd + Rb + Carry CZ
addi Rd, C Rd = Rd + Const CZ
addic Rd, Rb Rd = Rd + Const + Carry CZ
and Rd, Rb Rd = Rd & Rb Z
andi Rd, C Rd = Rd & Const Z
b label Branch unconditionally --
bc label Branch on carry flag = 1 --
bnc label Branch on carry flag = 0 --
bnz label Branch on zero flag = 0 --
bz label Branch on zero flag = 1 --
call label Call function --
callc label Call function on carry = 1 --
callnc label Call function on carry = 0 --
callnz label Call function on zero = 0 --
callz label Call function on zero = 1 --
clrc Carry flag = 0 C
clri Disable interrupts --
clrz Zero flag = 0 Z
cmp Rd, Rb Rd - Rb CZ
cmpi Rd, C Rd - Const CZ
export Rd, port# (Port#) = Rd --
exporti Rd, Rb (Rb), Rd --
import Rd, port# Rd = (Port#) --
importi Rd, Rb Rd = (Rb) --
iret Return from interrupt --
lsp Rd, sp# Rd = (sp#) --
lspi Rd, Rb Rd = (Rb) --
mov Rd, Rb Rd = Rb --
movi Rd, C Rd = Const --
or Rd, Rb Rd = Rd | Rb Z
ori Rd, C Rd = Rd | Const Z
ret Return from Call --
rol Rd, Rb Rd = Rb << 1, Rb(0) = Rb(7) Z
rolc Rd, Rb Rd = C:Rb << 1, Rb(0) = C CZ
ror Rd, Rb Rd = Rb >> 1, Rb(7) = Rb(0) Z
rorc Rd, Rb Rd = C:Rb >> 1, C = Rb(0) CZ
setc Carry flag = 1 C
seti Enable intterupts --
setz Zero flag = 1 Z
ssp Rd, sp# (sp#) = Rd --
sspi Rd, Rb (Rb) = Rd --
sub Rd, Rb Rd = Rd - Rb CZ
subc Rd, Rb Rd = Rd - Rb - Carry CZ
subi Rd, C Rd = Rd - Const CZ
subic Rd, C Rd = Rd - Const - Carry CZ
test Rd, Rb Rd & Rb Z
testi Rd, C Rd & Const Z
xor Rd, Rb Rd = Rd ^ Rb Z
xori Rd, C Rd = Rd ^ Const Z

Please note that for all Branch and Call instructions, the signed offset is represented as binary 2’s complement.

7

LatticeMico8 Microcontroller
User’s Guide

ADD Rd, Rb

Rd = Rd + Rb (add registers)

The carry flag is updated with the carry out from the addition. The zero flag is set to 1 if all the bits of the result are
0.

ADDI Rd, C

Rd = Rd + CCCCCCCC (add constant to register)

The carry flag is updated with the carry out from the addition. The zero flag is set to 1 if all the bits of the result are
0.

ADDC Rd, Rb

Rd = Rd + Rb + Carry Flag (add registers and carry flag)

The carry flag is updated with the carry out from the addition. The zero flag is set to 1 if all the bits of the result are
0.

ADDIC Rd, CC

Rd = Rd + CCCCCCCC + Carry Flag (add register, constant and carry flag)

The carry flag is updated with the carry out from the addition. The zero flag is set to 1 if all the bits of the result are
0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

8

LatticeMico8 Microcontroller
User’s Guide

SUB Rd, Rb

Rd = Rd - Rb (subtract register from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

SUBI Rd, C

Rd = Rd - CCCCCCCC (subtract constant from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

SUBC Rd, Rb

Rd = Rd - Rb - Carry Flag (subtract register with carry from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

SUBIC Rd, C

Rd = Rd - CCCCCCCC - Carry Flag (subtract constant with carry from register)

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

9

LatticeMico8 Microcontroller
User’s Guide

MOV Rd, Rb

Rd = Rb (move register to register)

MOVI Rd, C

Rd = CCCCCCCC (move constant into register)

AND Rd, Rb

Rd = Rd and Rb (bitwise AND registers)

The zero flag is set to 1 if all the bits of the result are 0.

ANDI Rd, C

Rd = Rd and CCCCCCCC (bitwise AND register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

No Yes

10

LatticeMico8 Microcontroller
User’s Guide

OR Rd, Rb

Rd = Rd | Rb (bitwise OR registers)

The zero flag is set to 1 if all the bits of the result are 0.

ORI Rd, C

Rd = Rd | CCCCCCCC (bitwise OR register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

XOR Rd, Rb

Rd = Rd and Rb (bitwise XOR registers)

The zero flag is set to 1 if all the bits of the result are 0.

XORI Rd, CC

Rd = Rd and CC (bitwise XOR register with constant)

The zero flag is set to 1 if all the bits of the result are 0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

No Yes

11

LatticeMico8 Microcontroller
User’s Guide

CMP Rd, Rb

Subtract Rb from Rd and update the flags. The result of the subtraction is not written back.

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

CMPI Rd, C

Subtract Constant from Rd and update the flags. The result of the subtraction is not written back.

The carry flag is set to 1 if the result is negative. The zero flag is set to 1 if all the bits of the result are 0.

TEST Rd, Rb

Perform a bitwise AND between Rd and Rb, update the zero flag. The result of the AND operation is not written
back.

The zero flag is set to 1 if all the bits of the result are 0.

TESTI Rd, CC

Perform a bitwise AND between Rd and Constant, update the zero flag. The result of the AND operation is not writ-
ten back.

The zero flag is set to 1 if all the bits of the result are 0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rd Rd Rd Rd Rd C C C C C C C C

CY Flag Updated Zero Flag Updated

No Yes

12

LatticeMico8 Microcontroller
User’s Guide

ROR Rd, Rb

Rotate right. Register Rb is shifted right one bit, the highest order bit is replaced with the lowest order bit. The
result is written back to Register Rd. The zero flag is set to 1 if all the bits of the result are 0.

RORC Rd, Rb

Rotate right through carry. The contents of Register Rb are shifted right one bit, the carry flag is shifted into the
highest order bit, the lowest order bit is shifted into the carry flag. The result is written back to Register Rd. The
zero flag is set to 1 if all the bits of the result are 0.

ROL Rd, Rb

Rotate left. Register Rb is shifted left by one bit. The highest order bit is shifted into the lowest order bit. The result
is written back to Register Rd. The zero flag is set to 1 if all the bits of the result are 0.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 0

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 1 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 0 1

CY Flag Updated Zero Flag Updated

No Yes

MSB

C MSB

MSB

13

LatticeMico8 Microcontroller
User’s Guide

ROLC Rd, Rb

Rotate left through carry. Register Rb is shifted left by one bit. The carry flag is shifted into the lowest order bit and
the highest order bit is shifted into the carry flag. The result is written back to Register Rd. The zero flag is set to 1
if all the bits of the result are 0.

CLRC

Carry Flag = 0

Clear carry flag.

SETC

Carry Flag = 1

Set carry flag.

CLRZ

Zero Flag = 0

Clear zero flag.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 1 1

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CY Flag Updated Zero Flag Updated

Yes No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CY Flag Updated Zero Flag Updated

Yes No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

CY Flag Updated Zero Flag Updated

No Yes

C MSB

14

LatticeMico8 Microcontroller
User’s Guide

SETZ

Zero Flag = 1

Set zero flag.

CLRI

Interrupt Enable Flag = 0

Clear interrupt enable flag. Disable interrupts.

SETI

Interrupt Enable Flag = 1

Set interrupt enable flag. Enable interrupt.

BZ Label

If Zero Flag = 1 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if 0. If zero flag is set, the PC is incremented by the signed offset of the label from the current PC. If zero
flag is 0, then execution continues with the following instruction. The offset can be +2047/-2048.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

CY Flag Updated Zero Flag Updated

No Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

15

LatticeMico8 Microcontroller
User’s Guide

BNZ Label

If Zero Flag = 0 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if not 0. If zero flag is not set, the PC is incremented by the signed offset of the label from the current PC. If
zero flag is set, then execution continues with the following instruction. The offset can be +2047/-2048.

BC Label

If Carry Flag = 1 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if carry. If carry flag is set, the PC is incremented by the signed offset of the label from the current PC. If
carry flag is not set, then execution continues with the following instruction. The offset can be +2047/-2048.

BNC Label

If Carry Flag = 0 then PC = PC + (Signed Offset of Label). Else PC = PC + 1.

Branch if not carry. If carry flag is not set, the PC is incremented by the signed offset of the label from the current
PC. If carry flag is set, then execution continues with the following instruction. The offset can be +2047/-2048.

B Label

Unconditional Branch. PC = PC + Signed Offset of Label

Unconditional branch. PC is incremented by the signed offset of the label from the current PC. The offset can be
+2047/-2048.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 1 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

16

LatticeMico8 Microcontroller
User’s Guide

CALLZ Label

If Zero Flag = 1, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL

Else, PC = PC + 1

CALL if 0. If the zero flag is set, the address of the next instruction (PC+1) is pushed into the call stack and the PC
is incremented by the signed offset (+2047/-2048) of the label from the current PC. If zero flag is not set, then exe-
cution continues from the following instruction.

CALLNZ Label

If Zero Flag = 0, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL.

Else PC = PC + 1

CALL if NOT 0. If the zero flag is not set, the address of the next instruction (PC+1) is pushed into the call stack,
and the PC is incremented by the signed offset (+2047/-2048) of the label from the current PC. If the zero flag is
set, then execution continues from the following instruction.

CALLC Label

If Carry Flag = 1, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL.

Else, PC = PC + 1

CALL if carry. If the carry flag is set, the address of the next instruction (PC+1) is pushed into the call stack, and the
PC is incremented by the signed offset (+2047/-2048) of the label from the current PC. If the carry flag is not set,
then execution continues from the following instruction.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17

LatticeMico8 Microcontroller
User’s Guide

CALLNC Label

If Carry Flag = 0, then
Push PC + 1/C/Z into Call Stack
PC = PC + Signed Offset of LABEL

Else, PC = PC + 1

CALL if not carry. If the carry flag is set, the address of the next instruction (PC+1) is pushed into the call stack, and
the PC is incremented by the signed offset (+2047/-2048) of the label from the current PC. If the carry flag is not
set, then execution continues from the following instruction.

CALL Label

Push PC + 1/C/Z into Call Stack
PC = PC + Signed offset of LABEL

Unconditional call. Address of the next instruction (PC+1) is pushed into the call stack, and the PC is incremented
by the signed offset (+2047/-2048) of the label from the current PC.

RET

PC = Top of Call Stack
Pop Call Stack
Restore Zero and Carry Flags from Call Stack

Unconditional return. PC is set to the value on the top of the call stack. The CY and Z flags are restored from the
call stack.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 L L L L L L L L L L L L

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

18

LatticeMico8 Microcontroller
User’s Guide

IRET

PC = Top of Call Stack
Pop Call Stack
Restore Zero and Carry Flags from Call Stack

Return from interrupt. In addition to popping the call stack, the carry and zero flags are restored from shadow loca-
tions.

IMPORT Rd, Port#
INP Rd, Port#

Rd = Value from Port (Port#)
Read value from port number (Port#) and write into register Rd. Port # can be 0-31.

IMPORTI Rd, Rb
INPI Rd, Rb

Rd = Value from Port # in Register Rb
Indirect read of port. Value is read from port number in register Rb. Port number can be 0-255 of active page.

EXPORT Rd, Port#
OUTP Rd, Port#

Port Value(Port#) = Rd
Output value of Register Rd to Port#. Port# can be 0-31.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

CY Flag Updated Zero Flag Updated

Yes Yes

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd P P P P P 0 0 1

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 1 1

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd P P P P P 0 0 0

CY Flag Updated Zero Flag Updated

No No

19

LatticeMico8 Microcontroller
User’s Guide

EXPORTI Rd, Rb
OUTPI Rd, Rb

Port Value(Rb) = Rd
Output value of Register Rd to Port# designated by Register Rb. Port# can be 0-255 of active page.

LSP Rd, SS

Rd = Scratch Pad(SS)

Load from scratch pad memory direct. Load the value from the scratch pad location designated by constant SS into
Register Rd. SS can be 0-31.

LSPI Rd, Rb

Rd = Scratch Pad (Rb)

Load from scratch pad memory indirect. Load the value from the scratch pad location designated by Register Rb
into Register Rd. The location address can be 0-255 of active page.

SSP Rd, SS

Scratch Pad (SS) = Rd

Store into scratch pad memory direct. Store value of Register Rd into scratch pad memory location designated by
constant SS. The location address can be 0-31.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 0 1 0

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd S S S S S 1 0 1

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 1 1 1

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd S S S S S 1 0 0

CY Flag Updated Zero Flag Updated

No No

20

LatticeMico8 Microcontroller
User’s Guide

SSPI Rd, Rb

Scratch Pad (Rb) = Rd

Store into scratch pad memory indirect. Store value of Register Rd, into scratch pad memory location designated
by Register Rb. The location address can be 0-255 of active page.

NOP

PC = PC + 1
No operation moves R0 to R0.

Assembler and Instruction Set Simulator
The software tools for the LatticeMico8 microcontroller include an Assembler and an Instruction Set Simulator, both
developed in C. The purpose of the Assembler is to generate an Embedded Block RAM (EBR) initialization file from
a text assembler input file. The purpose of the Simulator is to execute a program in the host environment. This sec-
tion describes the use of these tools.

Assembler
The Assembler reads in a text assembler source file (default extension .s) and creates one of the following as out-
put:

• Hexadecimal output file (can be used by Module Manager)

• Binary output file (can be used by Module Manager)

• Memory output file (can be used by Module Manager)

• Verilog initialization file (included in design before synthesis)

In addition to these outputs, the Assembler can also generate an Assembler listing file.

Command Line
isp8asm -option1 -option2 ... <input filename>

Command Line Options
Option Comment

-o <filename> Fully qualified name of the output file.

-s <Program Rom Size> Default 512 bytes

-l <filename> Fully qualified name of the listing file.

-vx Generate output in 18-bit hexadecimal (default)

-vb Generate output in binary

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 Rd Rd Rd Rd Rd Rb Rb Rb Rb Rb 1 1 0

CY Flag Updated Zero Flag Updated

No No

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CY Flag Updated Zero Flag Updated

No No

21

LatticeMico8 Microcontroller
User’s Guide

-ve Generate output in Verilog “INIT” format

-vm Generate output in MEM file format

-vr Generate output in 8-bit hexadecimal

-? Help message

Instructions
The Assembler supports all instructions as described in the Instruction Set section.

Pseudo-Ops
The Assembler supports the following pseudo-ops:

Option Comment

nop Expanded by the Assembler to mov R0,R0. An instruction without side effects.

Labels
Label definitions are any character sequences ending in a ‘:’. No other instruction or Assembler directives are
allowed in the same line as a label definition.

The Assembler allows both forward and backward references to a label (i.e. it is legal to reference a label before it
is defined). Both references in the following example are valid. Labels are case-sensitive.

BackLabel:
...
...
b BackLabel
...
...
b ForwardLabel
...
...

ForwardLabel:

Comments
The character ‘;’ is used as the start of a comment. Everything following the comment character until a new line is
ignored by the Assembler.

Constants
The Assembler accepts constants in various formats.

• Hexadecimal values: Hexadecimal constants must be prefixed with “0x” or “0X”. (e.g. 0xFF, 0x12, and 0XAB are
all valid hexadecimal constants).

• Octal values: Octal values must be prefixed with the numeric character ‘0’. (e.g. 077, 066, and 012 are valid
octal constants).

• Character constants: Single character constants must be enclosed in single quotation marks. (e.g. ‘A’, ‘v’, ‘9’
are all valid character constants).

• Decimal constants: Any sequence of decimal numbers can be a valid constant. (e.g. 123, 255, 231 are valid
decimal constants).

• Location counter: The special character $ (dollar sign) is used to give the current value of the location counter.

Note: The hexadecimal, octal, and decimal constants can be optionally prefixed with a ‘+’ or ‘-’ sign.

Assembler Directives
In addition to the instructions described in the Instruction Set section, the Assembler also supports the following
directives. An Assembler directive must be prefixed with a ‘.’ character.

22

LatticeMico8 Microcontroller
User’s Guide

• .org: This directive allows code to be placed at specific addresses. The syntax for this directive is:

.org <constant>

The constant can be of any form described in the previous section. The Assembler will terminate with an error, if
the .org directive is given a location which is less than the current “local counter” value.

• .equ: This directive can be used to assign symbolic names to constants. The syntax of the directive is:

.equ <symbolic name>,<constant>

.equ newline,’\n’

...
movi r2,newline

• .data: This directive can be used to embed arbitrary data in the Assembler. The syntax for this directive is:

.data <constant>

.data “<char><char><char>”

.data 0x0d

.data “Hello World”

• .ebr: The .ebr directive duplicates either the -vx or the -vr command line switch. Only a single .ebr directive can
be inserted into an assembly source file. This directive can be used to target the Assembler output for code
space (18 bits) or data space (8 bits). The syntax for this directive is:

.ebr 8 ; data type 8-bit hex output

.ebr 18 ; code type 18-bit hex output

• .prom: This directive sets the maximum number of opcodes the Assembler can generate without issuing an
error. The directive duplicates the “-s” command line switch. Only a single .prom directive can be applied to an
assembly source file. The syntax for this directive is:

.prom 512

Figure 4 is an example of the listing generated by the Assembler:

23

LatticeMico8 Microcontroller
User’s Guide

Figure 4. Example of Assembler Generated Listing

Loc Opcode Opcode
Counter (Hex) (Bin)
0x0000 0x33001 110011000000000001 b start
0x0001 start:
0x0001 0x10000 010000000000000000 nop
0x0002 add:
0x0002 0x12055 010010000001010101 movi R00,0x55
0x0003 0x12105 010010000100000101 movi R01,0x05
0x0004 0x12203 010010001000000011 movi R02,0x03
0x0005 0x08110 001000000100010000 add R01,R02
0x0006 0x0A101 001010000100000001 addi R01,0x01
0x0007 0x10308 010000001100001000 mov R03,R01
0x0008 0x10410 010000010000010000 mov R04,R02
0x0009 0x12535 010010010100110101 movi R05,0x35
0x000A 0x12643 010010011001000011 movi R06,0x43
0x000B 0x08628 001000011000101000 add R06,R05
0x000C 0x0A613 001010011000010011 addi R06,0x13
0x000D 0x10728 010000011100101000 mov R07,R05

•
•
•

Building Assembler from Source
Although Lattice provides precompiled binary files, the source is available for compilation. The following commands
should be used in the Unix and Windows environments.

• Unix and Cygwin Environments:
gcc -o isp8asm isp8asm.c

• Windows Environment:
cl -o isp8asm_win isp8asm.c

Instruction Set Simulator
The software tools for LatticeMico8 include an Instruction Set Simulator for the microcontroller which allows pro-
grams developed for the microcontroller to be run and debugged on a host platform. The Simulator can also be
used to generate a disassembly listing of a LatticeMico8 program. The Simulator takes as input the memory output
file of the Assembler. It emulates the instruction execution of the LatticeMico8 in software. Please note that the
Simulator does not handle interrupts.

Command Line
<executable filename> -option1 -option2 ... <prom filename> <scratch pad filename>

Command Line Options
Option Comment

-p <Program Rom Size> Default is 512 opcodes.

-ix Program file is in hexadecimal format (default). This is the file generated by the
Assembler with the -vx options (default).

-ib Program file is in binary format. This is the file generated by the Assembler with the
-vb option.

24

LatticeMico8 Microcontroller
User’s Guide

-t Trace the execution of the program. The Simulator will generate a trace as it exe-
cutes each instruction. It will also print the modified value of any register (if the
instruction modifies a register value).

-d Generate a disassembly of the program specified by the PROM file.

Simulator Interactions
The import, importi and export, exporti instructions can be used to interact with the simulator. When an
export, exporti instruction is executed, the simulator will print the value of the port number as well as the con-
tents of the exported register. If the port number is 0xFF, the simulator will terminate with an exit code identical to
the value of the exported register. When an import, importi instruction is executed, the simulator will issue a
prompt containing the port number and read in values from the standard input (stdin). The following figure shows
an example of a traced simulation. The v.3.0 simulator only implements an 8-bit external address bus.

Figure 5. Example of Trace Simulation

0x00001 0x10000 mov R00,R00
0x00002 0x12055 movi R00,0x55

R00 = 0x55
0x00003 0x12105 movi R01,0x05

R01 = 0x05
0x00004 0x12203 movi R02,0x03

R02 = 0x03
0x00005 0x08110 add R01,R02

R01 = 0x08
0x00006 0x0A101 addi R01,0x01

R01 = 0x09
0x00007 0x10308 mov R03,R01

R03 = 0x09
0x00008 0x10410 mov R04,R02

R04 = 0x03
0x00009 0x12535 movi R05,0x35

R05 = 0x35
0x0000A 0x12643 movi R06,0x43

R06 = 0x43
0x0000B 0x08628 add R06,R05

R06 = 0x78
0x0000C 0x0A613 addi R06,0x13

R06 = 0x8B
0x0000D 0x10728 mov R07,R05

R07 = 0x35
0x0000E 0x10830 mov R08,R06

R08 = 0x8B
0x0000F 0x12916 movi R09,0x16

R09 = 0x16
0x00010 0x12ADF movi R10,0xDF

R10 = 0xDF
•
•
•

25

LatticeMico8 Microcontroller
User’s Guide

Building Simulator from Source
Although Lattice provides precompiled binary files, the source is available for compilation. The following commands
should be used in the Unix and Windows environments.

• Unix and Cygwin Environments:
gcc -o isp8sim isp8sim.c

• Windows Environment:
cl -o isp8sim_win isp8sim.c

Example
To display the features and capabilities of the LatticeMico8, a demonstration example is also available. It demon-
strates the interaction between the timer and the controller and the interrupt capability.

This program will allow user to run a fibonacci number
generator and updown counter. This program responds to
the interrupt from the user (through Orcastra).
When there is an interrupt, the program will halt the current program,
and execute the int_handler function. When the intr_handler function
is done, the program will continue from its last position

b int_handler
nop
nop
seti # set the program to be able to receive interrupt
nop
nop
b start

start:

import r5, 5

mov r6, r5
andi r5, 0xf0 # masking r5 to decide type of program
mov r7, r5

mov r5, r6
andi r5, 0x0f # masking r5 to get the speed
mov r25, r5

cmpi r7, 0x10
bz phase2
cmpi r7, 0x20
bz phase2
b start

phase2:
cmpi r25, 0x01
bz phase3
cmpi r25, 0x02
bz phase3
cmpi r25, 0x03
bz phase3

26

LatticeMico8 Microcontroller
User’s Guide

cmpi r25, 0x04
bz phase3
b start

phase3:

cmpi r7, 0x10
bz fibo
cmpi r7, 0x20 # 1 = fibonacci, 2 = counter
bz counter
b start

Implementation
Table 2. Performance and Resource Utilization

Config.
Number Description Device Family Language LUTs Registers SLICEs fMAX(MHz)

1 16 registers, 32-byte Ext. SP,
512 PROM, 8-bit Ext. Address

MachXO3L™ 5
Verilog-LSE 263 62 137 66.1

Verilog-Syn 259 64 131 66.9

MachXO2™ 1 259 62 131 53.4

MachXO™ 2 246 62 123 64.1

LatticeXP2™ 3 266 63 152 87.6

LatticeECP2™ 4 267 63 155 90.2

2 32 registers, 32-byte Ext. SP,
512 PROM, 8-bit Ext. Address

MachXO3L5
Verilog-LSE 306 62 158 66.8

Verilog-Syn 306 64 155 64.8

MachXO21 305 62 154 50.8

MachXO2 301 62 151 69.9

LatticeXP23 356 64 203 80.5

LatticeECP24 351 65 200 88.0

3 16 registers, 32-byte ext. SP,
512 PROM, 16-bit ext. address

MachXO3L5
Verilog-LSE 274 70 143 71.1

Verilog-Syn 268 72 136 66.7

MachXO21 262 70 132 52.3

MachXO2 250 70 125 69.3

LatticeXP23 302 71 171 90.5

LatticeECP24 287 71 163 94.6

4 32 registers, 32-byte ext. SP,
512 PROM, 16-bit ext. address

MachXO3L5
Verilog-LSE 315 70 162 67.6

Verilog-Syn 309 72 157 58.6

MachXO21 313 70 158 51.7

MachXO2 308 70 154 68.6

LatticeXP23 343 71 194 80.5

LatticeECP24 342 73 195 90.5

1. Performance and utilization characteristics are generated using LCMXO2-1200HC-5MG132CES with Lattice Diamond® 3.1 design software.
2. Performance and utilization characteristics are generated using LCMXO1200C-4T100C with Lattice Diamond 3.1 design software.
3. Performance and utilization characteristics are generated using LFXP2-8E-6TN144C with Lattice Diamond 3.1 design software.
4. Performance and utilization characteristics are generated using LFE2-50E-5484C with Lattice Diamond 3.1 design software.
5. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C with Lattice Diamond 3.1 design software.

27

LatticeMico8 Microcontroller
User’s Guide

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History
Date Version Change Summary

— — Previous Lattice releases.

March 2007 01.3 Updated B Label, CALL Label, RET and IRET instruction sets.

April 2007 01.4 Corrected IRET instruction.

February 2008 01.5 Added version 3.0 information.

October 2009 01.6 Extended branch and call range to +2047/-2048 for all types.

June 2010 01.7 Added version 3.1 information.

Added LatticeXP2 FPGA support.

October 2010 01.8 Added LatticeMico8 version 3.15 information.

November 2010 01.9 Added support for MachXO2 device family.

February 2014 02.0 Updated Page Pointers text section.

Updated LatticeMico8 v.3.1.5 Enhancements text section.

Added support for MachXO3L device family.

Updated Technical Support Assistance information.

Updated corporate logo.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

	LatticeMico8 Microcontroller User’s Guide
	Introduction
	Features
	Functional Description
	Exception Vectors
	General Purpose Registers
	Page Pointers
	Scratch Pad RAM
	Hardware (Circular) Call Stack
	Interrupt Handling
	Input/Output
	LatticeMico8 v.3.15 Enhancements
	LatticeMico8 v.3.1 Enhancements
	LatticeMico8 v.3.0 Enhancements
	LatticeMico8 Synthesis Parameters
	Instruction Set Description and Encoding

	Assembler and Instruction Set Simulator
	Assembler
	Instruction Set Simulator

	Example
	Implementation
	Technical Support Assistance
	Revision History

