

MIPI CSI2-to-CMOS Parallel Sensor Bridge

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

1.	Introduction	4
2.	Key Features	4
3.	Functional Description	4
3	3.1. PHY Layer	5
3	3.2. Protocol Layer	5
4.	Reference Design Package	6
5.	Top Level Design Modules	
6.	Reference Design NGO	
7.	Important Design Considerations	
	7.1. Considerations for LP Mode on the CSI2 Clock Lane	
	7.2. Utilizing LP Mode Data with MachXO2 and MachXO3L	
8.	Simulation	
9.		
	Recommended MachXO2 Pinout	
	Design Utilization and Timing	
	CSI2 Bridge Design Request Page	
	CSI2 Bridge Development Platform	
	Tested Hardware	
	erences	
	hnical Support Assistance	
ĸev	rision History	19
	gures ure 1.1. CSI2 to CMOS Parallel Functional Block Diagram	4
Figu	ure 3.1. CSI2 Bridge System Block Diagram	5
Figu	ure 5.1. Top Level RTL Block Diagram	6
	ure 5.2. pixclk_adj Phase Adjustment in IPexpress	
	ure 6.1. NGO Block Diagram	
	ure 7.1. Top-Level RTL Block Diagram with lp_mode = "ON"	
_	ure 7.2. Block Diagram of HS and LP Mode Board Design Provisions	
_	ure 7.3. Calculation of Termination Resistor when Utilizing LP Mode	
_	ure 8.1. Simulation of CSI2 Input and Parallel Output with Included Test Bench	
	ure 13.1. Resistor Modifications to MachXO2 Dual Sensor Interface Board	
	ure 13.2. Lattice MIPI CSI2 Development Setup	
Figu	ure 14.1. CSI2 to Parallel Bridge Board with Sony IMX169 CSI2 Sensor	16
Ta	ıbles	
	le 5.1. Top Level NGO Descriptions	
	ole 5.2. Top Level Design I/O	
	ole 10.1. Recommended MachXO2 Pinout	
	ole 11.1. Design Performance	
	ole 11.2. I/O Timing Analysis of LVDS Input Bus	
Tab	ole 11.3. Resource Utilization	14

1. Introduction

The majority of image sensors in the consumer market use the MIPI CSI2 interface. The Mobile Industry Processor Interface (MIPI) has become the interface standard for the majority of components in consumer mobile devices. CSI2 (Camera Serial Interface 2) is the MIPI interface specification focused specifically on cameras. Because of the high volume and cost optimized design of these image sensors, many embedded application designers are interested in using these CSI2 image sensors. The challenge is that traditional ISPs (Image Signal Processors) do not have a CSI2 interface. Many have a traditional CMOS bus for camera interfaces. ISPs with a parallel CMOS interface bus must use an external bridge to convert from CSI2 to parallel CMOS. The Lattice MIPI CSI2-to-CMOS Parallel Sensor Bridge reference design performs this conversion in the ultra-low density MachXO2™-1200HC FPGA.

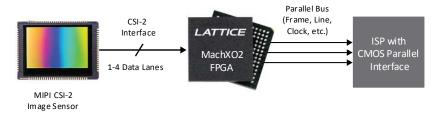


Figure 1.1. CSI2 to CMOS Parallel Functional Block Diagram

2. Key Features

- Supports CSI2 high-speed differential signaling
 - From one to four lanes, running at up to ~800 Mbps
 - Supports 200 mV common mode voltage in High-Speed (HS) mode
- Provides parallel sensor output
 - Output bus widths of 6 to 24 bits RAW, RGB and YUV
- Bridge device offered in space-saving 8x8 mm 132-ball csBGA package. TQFP packages also available.
- Requires no external PROM
- Tested using the Sony IMX169 image sensor device on the Lattice CSI2 to Parallel Bridge Board and the HDR-60 Base Board
 - 1080p30 2-lane and 4-lane configurations can be demonstrated
- Parallel interface can be configured for 1.8 V, 2.5 V or 3.3 V LVCMOS levels
- MachXO2 is available in commercial and industrial temperature grades

3. Functional Description

The CSI2 Bridge converts the CSI2 interface to a parallel sensor interface for an ISP. True LVDS input pads on the MachXO2 device handle the 200 mV common mode voltage of the MIPI DPHY high-speed interface. The CSI2 interface from the image sensor can be 1, 2 or 4 data lanes. To keep the FPGA density small, the CSI2 bridge is typically synthesized for a single CSI2 format. In most embedded applications the image sensor is typically configured for a single CSI2 output format at all times. However, multiple CSI2 formats can be supported for "on the fly" switching by adding multiple instantiations of the mipi_csi2_serial2parallel NGO in each desired format. This may increase the device density needed depending on the quantity and types of formats that must be supported. To request a CSI2 bridge meeting your specific design format, visit the CSI2 Bridge Request page on the Lattice website. See CSI2 Bridge Design Request Page section for details.

5

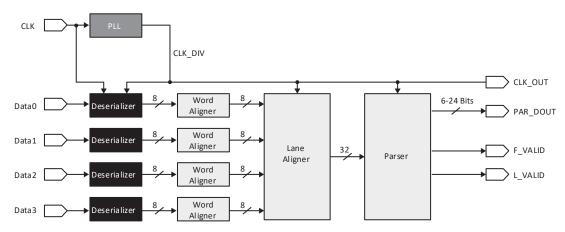


Figure 3.1. CSI2 Bridge System Block Diagram

The MIPI CSI2 to CMOS Parallel Sensor Bridge's design modules follow the PHY and Protocol layer definitions described in the MIPI Alliance Specification for CSI2 Version 1.01.00.

Note: It is advised to configure the lower clip value of the image sensor to 0x05 to ensure proper operation of the reference design.

The control capture module in the design may interpret the middle of the data payload as a sync code if byte values of 0x0 are transmitted. Using a lower clip value of 0x5 ensures that there will be a non-zero value for each byte of the payload during transmission of all data types.

3.1. **PHY Layer**

Each CSI2 serial data lane is sampled and converted into an 8-bit data bus using a dedicated IDDRx4 (Input Double Data Rate with x4 gearing) MachXO2 and MachXO3TM (specifically the L version of the family) fabric primitives. The word aligner module then performs the 8-bit word alignment so the SoT (Start of Transmission) leader sequence can easily be recognized on a single serial clk/4-clock cycle. The Lane Aligner synchronizes the SoT leader sequences on each data lane. The result is an 8-bit output for each data lane that is synchronized by word and lane.

3.2. **Protocol Layer**

The parser looks for the leader sequence on the first data lane. It then looks across the data lanes and extracts packetspecific information from the Packet Header. Information contained within the Packet Header includes the Virtual Channel Number (VC), Data Type (DT), Word Count (WC) and Error Correction Code (ECC). All four of these are optional outputs from the parser if they are desired for custom applications. The Data Type information is used to determine if the parser should utilize the data. The parser module can support any of the following data types:

- RAW6
- RAW7
- RAW8
- RAW10
- **RAW12**
- RAW14
- **RGB444**
- **RGB555**
- **RGB565 RGB666**
- **RGB888**
- YUV420 8-bit legacy
- YUV420 8-bit
- YUV420 10-bit
- YUV420 8-bit (CSPS)

- YUV420 10-bit (CSPS)
- YUV422 8-bit
- YUV422 10-bit

If the data type value matches the format and pixel size indicated in the parameters format and bus_width, the parser will utilize the data. The Word Count indicator is also used to determine the length of data being transmitted. The parser utilizes the "Data Formats" section of the MIPI Alliance Specification for CSI2 for the appropriate output format and pixel size to unpackage the pixels from across the data lanes. The unpackaged pixels are stored in a FIFO where they are then read out one by one using the converted pixel clock from the PLL. The speed of the pixel clock is dependent on the number of data lanes and the pixel bus width. See Top Level Design Modules for details.

4. Reference Design Package

The MIPI CSI2-to-CMOS Parallel Sensor Bridge reference design package is available free of charge. The design package contains everything you need to get started.

- ./doc/* This document and Readme file
- ./source/* Top evel design module, NGO black box modules and NGOs targeted to MachXO2 and MachXO3L devices for requested serial device mode. This folder also includes IPexpress™ modules for PLLs and IDDRx4 primitive wrappers.
- ./project/* Lattice Diamond® 3.1 project targeted to MachXO2, MachXO3L and Bitstream for demo
- ./simulation/* Aldec Active-HDL Simulation environment files, do files, simulation wizard script files and .vo files for simulation
- ./testbench/* Verilog simulation test bench

5. Top Level Design Modules

The top level design contains three modules:

- deser.v IDDRx4 IPexpress primitive wrappers for each lane
- pll_*bit_*lane.ipx PLL for conversion from serial_clk/4 to pixel clock
- mipi_csi2_serial2parallel.v NGO wrapper module

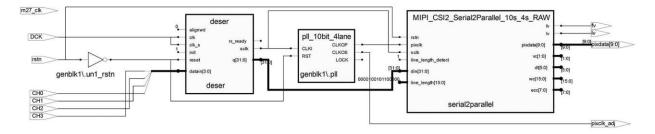


Figure 5.1. Top Level RTL Block Diagram

The deser.v module takes in the serial clock and up to four data lanes. It converts the 1-bit DDR (double data rate) input on each data lane to an 8-bit SDR (single data rate) output at a reduced clock speed. This sclk clock is available at the output of the deser.v module along with the 8-bit * 4 data bus.

$$sclk = DCK/4$$

Gearing the data in the FPGA allows the design to internally run at a much slower clock rate, which increases performance, decreases power and decreases cost.

The pll_*bit_*lane.ipx module is a PLL primitive wrapper module generated in IPexpress. It is used to convert the serial_clk/4 clock to the pixel clock. The PLL ratio used for this conversion is dependent on the number of data lanes used and the pixel bus width.

pixclk = (1/bus_width) * #_lanes * 2 * 4 * sclk

© 2016-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The proper PLL ratio is provided in the reference design for the requested configuration. Pixclk drives the bridge modules internally in the FPGA. However, it is often desirable to have the output clock center aligned with the data. As a result, a second output from the PLL pixclk_adj drives the output pin at the same frequency as pixclk, but with a default 180-degree phase shift by default. This phase shift can be adjusted in the Diamond design software by double-clicking the pll_*bit_*lane.ipx file. As seen in Figure 5.2, the phase can be adjusted within the encircled Static Phase shift - degrees drop-down box.

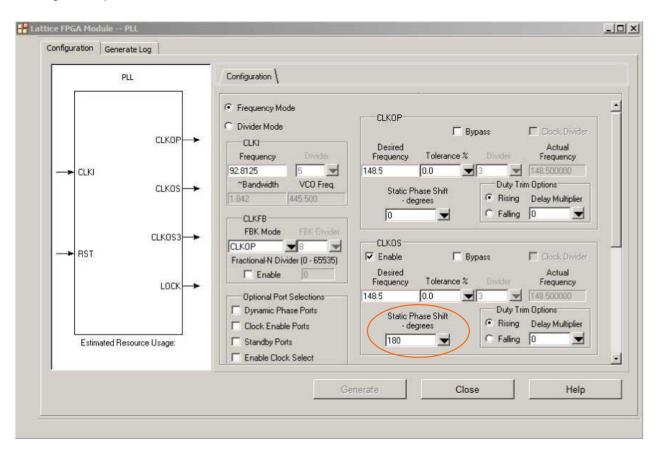


Figure 5.2. pixclk_adj Phase Adjustment in IPexpress

Parameters in the top level design module define the operation of the CSI2 bridge. After requesting a CSI2 bridge design, the bus_width, lane_width, and format parameters should remain unchanged. The line_length_detect and line_length parameters can be changed if the user desires to use the line_length_detect feature (see Important Design Considerations section).

Table 5.1. Top Level NGO Descriptions

Parameter	Configurations	Description
bus_width	6-24	Width of pixel data. Only bus widths supported by CSI2 specification are included.
lane_width	1, 2, 4	Number of lanes to be used.
format	"RAW," "RGB," "YUV"	Output format type.
lp_mode	"ON," "OFF"	Determines whether to base sclk, pixclk, and pixclk_adj off of DCK (the serial clock input) or sensor_clk (the sensor's base clock, typically 27 MHz). See Important Design Considerations section for more details.
line_length_detect	1	Allows line valid to go active only for lines of size line_length.
line_length	16'h0000 - 16'hFFFF	Expected line length to be recognized as a valid line from the word count (WC) in the CSI2 packet header (PH). Only valid if line_length_detect = 1.

Table 5.2. Top Level Design I/O

Signal	Direction	Description
Rstn	Input	Design reset
DCK	Input	Serial CSI2 input clock
CH0	Input	Serial CSI2 data input
CH1	Input	
CH2	Input	
CH3	Input	
sensor_clk	Input (optional)	Clock that drives the Image sensor. See Free Running Serial Clock in the Important Design Considerations section.
pixclk_adj	Output	Phase adjusted pixel clock
FV	Output	Frame valid
LV	Output	Line valid
pixdata[n-1:0]	Output	Pixel data; N = 6 to 24 bits. Pixels formatted MSB to LSB for RAW and YUV data types. RGB formatted as R, then G, then B from MSB to LSB respectively.

6. Reference Design NGO

The mipi_csi2_serial2parallel NGO contains the core of the bridge design. As described earlier, the word_aligner modules synchronize the 8-bit data words. The lane_aligner module synchronizes each data lane to the same clock cycle. The parser module takes the 8-bit data words across each of the lanes and parses the n width pixel bus based on the mode requested.

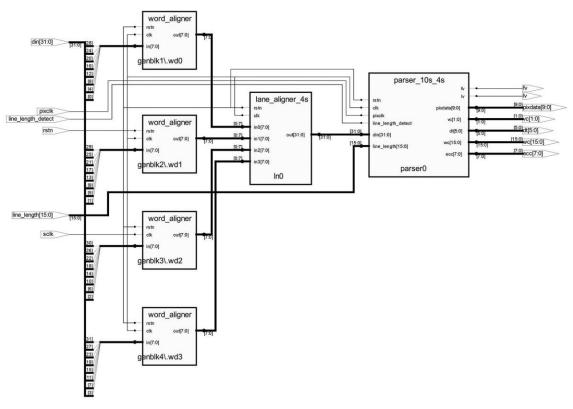


Figure 6.1. NGO Block Diagram

7. Important Design Considerations

The majority of embedded designs that use CSI2 image sensors only utilize the data contained in the HS mode packets. To simplify the I/O on the input side of the MachXO2 device, the CSI2 to Parallel Sensor Bridge dismisses information received from the sensor in LP (Low Power) mode as it is not needed to convert video data available in HS (High Speed) mode. In fact, many image sensors do not utilize LP mode and often prefer HS short packets or additional long packets as a way to transfer additional information related to the video stream. Users should consult their image sensor's data sheet to determine the need to utilize LP mode. LP mode data can also be received by the MachXO2 device if desired, by using additional I/O. If it is determined that LP mode is necessary, Lattice suggests the following additional recommendations.

7.1. Considerations for LP Mode on the CSI2 Clock Lane

In LP mode, the HS differential serial clock transitions to drive CMOS at 1.2 V. As a result, the clocking inside the bridge stops as well as the pixclk_adj output. This may be problematic for some ISPs as they may require a pixel clock at all times. Most image sensors utilizing MIPI CSI2 either have the capability of placing the serial clock in a free running mode (always clocking) or turning off LP mode all together. It is recommended that designers utilize this feature for their design if possible. Users should consult their image sensor's data sheet to determine if their image sensor can run in free-running clock mode or turn off LP mode on all clock and data lanes.

If LP mode cannot be turned off, or if it is desired to utilize LP mode data on the clock lane, additional provisions must be made to the design. First, the image sensor's input clock (typically 27 MHz) must also run to the MachXO2. The lp_mode parameter must be switched to "ON." This will change the PLL; sclk, pixclk, and pixclk_adj will be based on the sensor's input clock rather than DCK/4 (the serial clock from the image sensor/4). In addition, a FIFO will be added to change the clock domain of the data coming in from the down-converted DCK/4 to the new sclk through the PLL. The result of these changes means the parallel bus output of the design will operate with a free-running clock. The serial clock from the image sensor will be used to clock HS data into the deserializer and FIFO. When in LP mode, the data on the clock lane can be used in the user's design for detection of mode changes or escape mode communication.

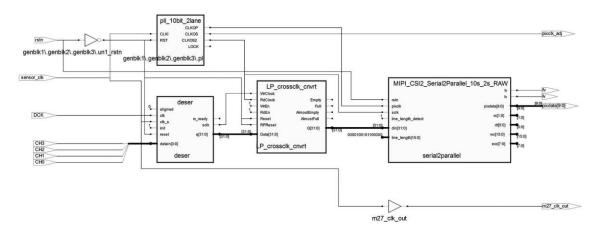


Figure 7.1. Top-Level RTL Block Diagram with lp_mode = "ON"

7.2. Utilizing LP Mode Data with MachXO2 and MachXO3L

To utilize LP mode, traces must run to additional input pins on the MachXO2 device. A pin to determine the reference voltage for the LP pins also needs to be run to a regulator operating at ~0.55V. This pin needs to be on the same VCCIO bank as the LP input pins. Lastly, the LP input pins will need to be configured to HSTL18_I in the *.lpf file for the Diamond Project. Since image sensors between vendors can be different, it is recommended to choose a regulator that can have its voltage output adjusted via an external resistor network. Although the MachXO2 device has built-in termination in Bank 2, it is recommended to place external differential termination resistor footprints on the PCB for the serial clock and data lanes. Lattice recommends adding these resistor pads in case the differential voltage swing needs to be increased with a larger resistor value. This could occur if the operating voltage on the image sensor is low, which in turn causes the voltage driven from the sensor to not be within the CSI2 specification. The differential termination resistor pads should be put in the design but not populated on the board.

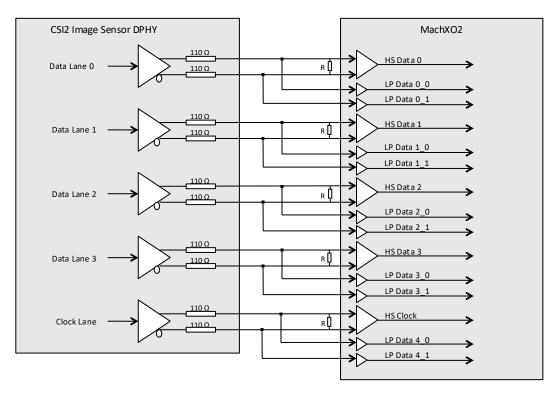


Figure 7.2. Block Diagram of HS and LP Mode Board Design Provisions

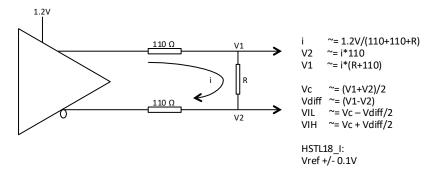


Figure 7.3. Calculation of Termination Resistor when Utilizing LP Mode

Note: Equations for i, V1 and V2 are approximate as they do not include load of the MachXO2 input drivers, which varies by driver. As a result, the V_C (common mode voltage) and V_{DIFF} (differential voltage) may be slightly lower. If necessary, the V_{DIFF} can be increased by the termination resistance value 'R'. V_{REF} can be adjusted to place the CMOS threshold voltages in the center of V_{IL} and V_{IH} .

Example calculation using 100 Ohm termination:

1	= 1.2/(110+110+100)	= 3.75 mA
V2	= i*110	= 0.4125 V
V1	= i*(110+100)	= 0.7875 V
Vc	= (V1+V2)/2	= 0.6 V
Vdiff	= (V1-V2)	= 0.375 V

8. Simulation

The included test bench tests the CSI2 bridge in 10-bit, 2-lane mode. The test bench should be used as a baseline to test other lane widths, pixel widths and output modes. The easiest way to run the simulation is through the Lattice Diamond design software and the pre-configured script (simulation_xxx.spf) provided in the *.ldf project. To do this, double-click on the script file under **Script Files** in the File List. Then click **Finish** in the Simulation Wizard. This will open the Active-HDL simulator. Compile the design, initialize the simulation, choose the signals you wish to view, run the simulation and move them to the Waveform Viewer. Follow the instructions for running a basic simulation in the simulator Help system if you are unfamiliar with the Active-HDL simulation environment.

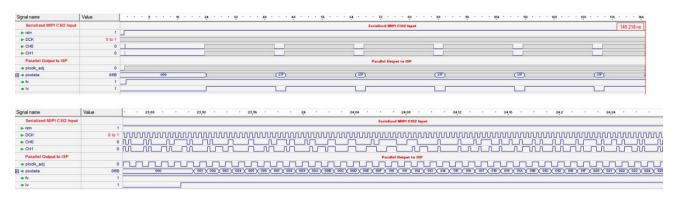


Figure 8.1. Simulation of CSI2 Input and Parallel Output with Included Test Bench

9. Reference Design Versus Demo Design

To simplify discrepancies between the Sony IMX169 demo design versus the standalone CSI2 reference design, both utilize the same project. The IMX169 demo design available on the Lattice website is defaulted to the demo. The reference design requested through the CSI2 sensor bridge request page defaults to the requested reference design.

Additional features in the demo design include:

- Pass-through signals for I2C from the HDR-60 Base Board
- Delayed XCLR signal for proper power-up of the Sony IMX169 Sensor
- Pass-through of the 27 MHz clock on the MachXO2 Dual Sensor Interface Board for synchronized clocks with LP mode
- LP inputs on Data Lane 0 are passed through to LED1 and LED2 on the MachXO2 Dual Sensor Interface Board

To switch to the IMX169 demo design, follow these steps:

- In the Lattice Diamond File List, under Input Files:
 - Right-click on the file ../source/mipi_csi2_serial2parallel_bridge.v
 - Choose Exclude from Implementation
- In the Lattice Diamond File List, under Input Files:
 - Right-click on the file ../source/mipi csi2 serial2parallel bridge demo.v
 - Choose Include in Implemention
- In the Lattice Diamond File List, under Input Files:
 - Right-click on the file ../source/mipi_csi2_serial2parallel_bridge_demo.lpf
 - Choose Set as Active Preference File
- In the Lattice Diamond File List:
 - Double-click on LCMXO2-1200HC-6MG132C
 - In Part Names, choose LCMXO2-4000HE-6MG132C

To utilize the reference design, removing all demo-specific features, reverse these steps by excluding the mipi_csi2_serial2parallel_bridge_demo.v and including mipi_csi2_serial2parallel_bridge.v. Set mipi_csi2_serial2parallel_bridge.lpf as the active preference file and switch the device from LCMXO2-4000HE6MG132C to the device you wish to use.

10. Recommended MachXO2 Pinout

Table 10.1. Recommended MachXO2 Pinout

Signal	MachXO2 132-Ball csBGA, Speed Grade -6
rstn	C1
DCK_p	N6
DCK_n	P6
CHO_p	M11
CHO_n	P12
CH1_p	P8
CH1_n	M8
CH2_p	P2
CH2_n	N2
CH3_p	M7
CH3_n	N8
DCK_LP_p	N3
DCK_LP_n	P4
CHO_LP_p	N5
CHO_LP_n	M5
CH1_LP_p	P7
CH1_LP_n	N7
CH2_LP_p	P9
CH2_LP_n	N9
CH3_LP_p	M9
CH3_LP_n	N10
sensor_clk	C8
pixclk_adj	A11
FV	B7
LV	C4
pixdata_0	C6
pixdata_1	B3
pixdata_2	C11
pixdata_3	A12
pixdata_4	A7
pixdata_5	B5
pixdata_6	A9
pixdata_7	A10
pixdata_8	A2
pixdata_9	B12
pixdata_10	C12
pixdata_11	B13
pixdata_12	B9
pixdata_13	A13

11. Design Utilization and Timing

Table 11.1. Design Performance

Device Family	Synthesis	Configuration	Speed Grad	Speed Grade - 4 (MHz) Speed		Speed Grade - 5 (MHz)		Speed Grade - 6 (MHz)	
	Engine		sclk	pixclk	sclk	pixclk	sclk	pixclk	
MachXO2	LSE	10-bit, 1-Lane	63.865	150.01	73.708	164.690	78.198	182.548	
		10-bit, 2-Lane	76.249	150.015	86.655	164.690	102.124	182.548	
		10-bit, 4-Lane	63.865	150.01	75.763	164.690	77.791	182.548	
	Synplify Pro	10-bit, 1-Lane	94.832	110.939	164.69	102.501	105.208	182.548	
		10-bit, 2-Lane	78.74	87.436	164.69	86.296	99.880	182.548	
		10-bit, 4-Lane	80.978	77.954	164.69	80.88	81.934	182.548	

Device Family	Synthesis Engine	Configuration	Speed Grade - 5 (MHz)		Speed Grade - 6 (MHz)	
MachXO3L	LSE	10-bit, 2-Lane	75.672	150.015	102.955	182.548
	Synplify Pro®		83.126	150.015	95.193	182.548

Device Family	Synthesis Engine	Speed Grade - 6 (MHz)		Speed Grade - 7 (MHz)		Speed Grade - 8 (MHz)	
		sclk	pixclk	sclk	pixclk	sclk	pixclk
ECP5™	LSE	61.155	226.706	54.20	313.873	89.158	347.826
	Synplify Pro	52.565	239.063	61.095	276.625	82.781	345.185

Table 11.2. I/O Timing Analysis of LVDS Input Bus

Device Family	Speed Grade - 4 (MHz)		Speed Grade -	5 (MHz)	Speed Grade - 6 (MHz)		
MachXO2	Setup	Hold	Setup	Hold	Setup	Hold	
	0.222	0.337	0.222	0.254	0.222	0.183	

Device Family	Speed Grade - 5 (MHz)		Speed Grade - 6 (MHz)		
MachXO3L	Setup	Hold	Setup	Hold	
	0.248	0.292	0.243	0.158	

Device Family	Speed Grade - 6 (MHz)		Speed Grade -	7 (MHz)	Speed Grade - 8 (MHz)		
ECP5	Setup	Hold	Setup	Hold	Setup	Hold	
	0.224	0.051	0.145	0.051	0.055	0.051	

Table 11.3. Resource Utilization

Device Family	Synthesis Engine	Configuration	Registers	LUTs	EBRs	PLL	Gearbox	Clock Divider
MachXO2 ¹	LSE	1 Data Lane (LP+HS)	348	225	3	1	1	1
		2 Data Lanes (LP+HS)	626	436	5	1	2	1
		4 Data Lanes (LP+HS)	873	879	3	1	4	1
	Synplify Pro	1 Data Lane (LP+HS)	365	279	3	1	1	1
		2 Data Lanes (LP+HS)	626	436	5	1	2	1
		4 Data Lanes (LP+HS)	877	828	3	1	4	1
MachXO3L ²	LSE	10-bit, 2-Lane	626	436	5	1	2	1
	Synplify Pro		626	436	5	1	2	1
ECP5 ³	LSE	10-bit, 4-Lane	1210	1120	7	1	2	1
	Synplify Pro		1209	1113	7	1	2	1

© 2016-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Notes:

- 1. Performance and utilization characteristics are generated using LCMXO2-1200HC-4MG132C with Lattice Diamond 3.3 design software. When using this design in a different device, density, speed, or grade, performance and utilization may vary.
- 2. Performance and utilization characteristics are generated using LCMXO3L-4300C -6BG256C with Lattice Diamond 3.3 design software. When using this design in a different device, density, speed, or grade, performance and utilization may vary.
- 3. Performance and utilization characteristics are generated using LFE5U-85F-6MG285IES with Lattice Diamond 3.3 design soft ware. When using this design in a different device, density, speed, or grade, performance and utilization may vary.

12. CSI2 Bridge Design Request Page

The CSI2 to parallel reference design is defaulted to support 10-bit raw output image data. This is because the Sony IMX169 is a 10-bit image sensor. If you are using a different image sensor or require a different mode, you can request a specific CSI2 bridge design on the Lattice website at www.latticesemi.com/csi2bridge.

13. CSI2 Bridge Development Platform

The CSI2 bridge design can be demonstrated using the following development boards:

- HDR-60 Video Camera Development Kit (part number: LFE3-70EA-HDR60-DKN)
- MachXO2 Dual Sensor Interface Board (part number: LCMXO2-4000HE-DSIB-EVN)
- CSI2 to Parallel Bridge Board (part number: LF-C2P-EVN)

A demonstration bitstream and reference design are available at www.latticesemi.com/csi2bridge that target the SI2 to Parallel Bridge in 10-bit, 2-lane mode. The CSI2 to Parallel Bridge outputs a 1080p30 frame at 74.25 MHz. The HDR-60 Base Board uses a frame doubler to increase the frame rate to 1080p60. It then uses a simple debayer and SERDES to output the image via a DVI interface.

To set up the demonstration platform two resistor modifications need to be performed to the MachXO2 Dual Sensor Interface Board from the default configuration. J10 and J2 contain one 0 ohm resistor between pads 2 to 3 by default. This configuration needs to be changed to two resistors between pads 1 to 2 and pads 3 to 4 for both J10 and J2. On the CSI2 to Parallel Bridge Board, a jumper must be placed on J253 between pins 3 and 4 (see Figure 14.1). This jumper is populated by default on the board when purchased.

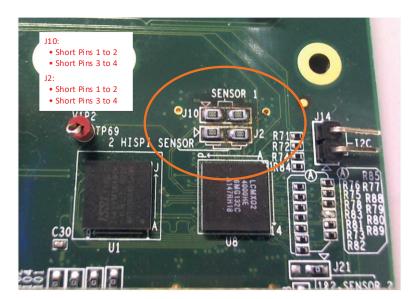


Figure 13.1. Resistor Modifications to MachXO2 Dual Sensor Interface Board

Each board connects together through the white Hirose connectors on each board. Please note that the CSI2 to Parallel Bridge Board connects into sensor location 2 on the MachXO2 Dual Sensor Interface Board for the design demonstration (see Figure 13.2).

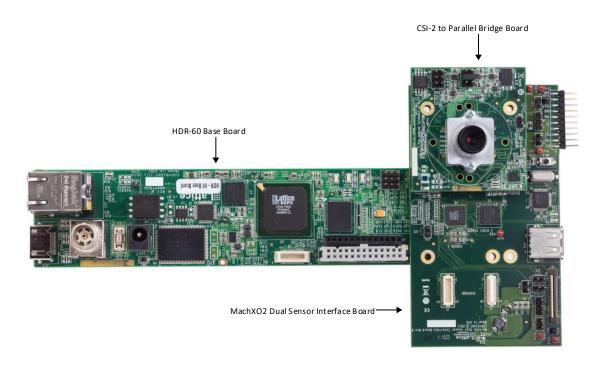


Figure 13.2. Lattice MIPI CSI2 Development Setup

14. Tested Hardware

The CSI2 to Parallel Bridge Board contains the Sony IMX169 CSI2 sensor.

Figure 14.1. CSI2 to Parallel Bridge Board with Sony IMX169 CSI2 Sensor

References

- MIPI Alliance Specification for Camera Serial Interface 2 (CSI2) V1.01
- MIPI Alliance Specification for D-PHY V1.1
- Sony IMX169CQK-C Data Sheet

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.6, January 2020

Section	Change Summary
All	Changed document number from RD1146 to FPGA-RD-02131.
	Updated document template.
Disclaimers	Added this section.

Revision 1.5, December 2016

Section	Change Summary
Functional Description	Updated Added note to Functional Description section. Added note on configuring the lower clip value of the image sensor.
Technical Support Assistance	Updated Technical Support Assistance section.

Revision 1.4, January 2015

Section	Change Summary
Functional Description	Updated PHY Layer section. Product name/trademark adjustment.
Design Utilization and Timing	Updated Design Utilization and Timing section.
	Revised Table 11.1, Design Performance.
	Added support for ECP5 device family.
	Added values for LSE and Synplify Pro.
	Revised Table 11.2, I/O Timing Analysis of LVDS Input Bus.
	Changed table title.
	Added support for ECP5 device family.
	Revised Table 11.3, Resource Utilization.
	Added support for ECP5 device family.
	Added values for LSE and Synplify Pro.
	Added footnotes

Revision 1.3, April 2014

Section	Change Summary
Key Features	Updated Key Features section. Revised CSI2 high speed differential signaling.
All	Updated the following sections to reflect revised file names and folder structure based on RD guidelines. • Functional Description • Reference Design Package • Top Level Design Modules • Reference Design NGO • Simulation • Reference Design Versus Demo Design
All	Updated the following sections to add support for MachXO3L device family: PHY Layer Utilizing LP Mode Data with MachXO2 and MachXO3L
Reference Design Package	Updated Reference Design Package section. Updated folder structure according to the RD guidelines.
Design Utilization and Timing	 Updated the following tables to add support for MachXO3L device family: Table 11.1, Design Performance Table 11.2, I/O Timing Analysis of Sub-LVDS Parallel Input Bus Table 11.3, Resource Utilization
Technical Support Assistance	Updated Technical Support Assistance section.

© 2016-2020 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Revision 1.2, December 2013

Section	Change Summary
Top Level Design Modules	Updated pixdata[n-1:0] signal description in Top Level Design I/O table.

Revision 1.1, December 2012

Section	Change Summary
CSI2 Bridge Development Platform	CSI2 Bridge Development Platform section – Added information about two resistor modifications needed to perform default configuration of the MachXO2 Dual Sensor Interface Board.
Tested Hardware	 Updated CSI2 to Parallel Bridge with Sony IMX169 CSI2 Sensor photo. Added callouts to Lattice MIPI CSI2 Development Setup photo.

Revision 1.0, December 2012

Section	Change Summary
All	Initial release.

www.latticesemi.com