

April 4, 2014

Subject: Characterization Summary – Copper Bond Wire at Amkor Philippines

SUMMARY

Per PCN# 03A-14, this document summarizes the electrical characterization that supports an alternate qualified assembly and test site (Amkor Philippines) and alternate qualified material sets.

METHODOLOGY

The characterization focused on five items:

- 1) Assessment of critical Bill of Materials
- 2) Comparison of production yields
- 3) Assessment of Critical Parameters
- 4) SSO (Simultaneous Switching Output) Characteristics
- 5) SERDES performance (ECP3-150 only)

BILL OF MATERIALS

Product/Package combinations for characterization were chosen to represent a cross-section of the BOM (Bill of Material) changes specified in the PCN. The product/packages and the critical BOM components are:

Product/Pkg	ASEM Copper (Control)			AMKOR Copper (New)		
	Mold	Wire/	Die Attach	Mold	Wire/	Die Attach
	Compound	Diameter		Compound	Diameter	
LFE3-150EA/	EMEG750SE	0.8mil Pd	ABLEBOND	Hitachi	0.8mil Pd	Ablebond
1156fpBGA		Coated Cu	2100A	GE-110	GE-110 Coated Cu	
-						
LFXP2-17E/	EMEG750SE	0.8mil Pd	ABLEBOND	Hitachi	0.8mil Pd	Ablebond
256ftBGA		Coated Cu	2100A	GE-110	Coated Cu	2300
LFXP2-5E/	EMEG700Y	0.8mil Pure	Yizbond	Sumitomo	0.8mil Pd	Ablebond
144TQFP		Cu	8143	G700SY	Coated Cu	3230

Multiple lots of in various product/package combinations were built as part of the reliability qualification process for the AMKOR Copper BOM. Samples from the qual lots were characterized and compared to comparable lots processed with the released ASE Malaysia (ASEM) Copper BOM.

From an electrical viewpoint, the same wire diameter and same base material implies that electrical performance should be constant. Characterization was performed to confirm that assumption.

ASSEMBLY/ELECTRICAL TEST YIELDS

The first step in the characterization process is an analysis of process yields. Yield information is critical to gauge the manufacturability of a new package. As Lattice considers yield information proprietary, the yield information below is normalized with respect to the control material, which in this case is the existing ASEM Copper wire BOM.

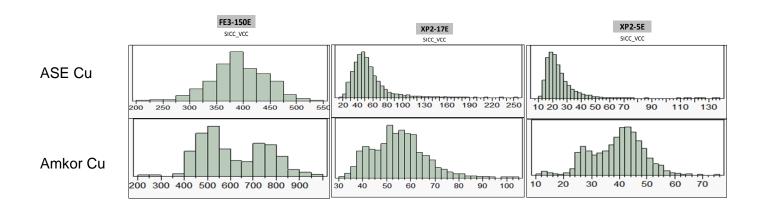
LFE3-150	Assembl	y Yield	Electrical Test Yield		
	ASEM Copper (Control) Amkor		ASEM Copper (Control) Amkor		
Normalized	,		,		
Yield	1.00	1.00	1.00	1.00	

LFXP2-17E	Assembl	y Yield	Electrical Test Yield		
	ASEM Copper (Control) Amkor		ASEM Copper (Control) Amkor		
Normalized	,		,		
Yield	1.00	0.98	1.00	0.97	

LFXP2-5E	Assembl	y Yield	Electrical Test Yield		
	ASEM Copper		ASEM Copper		
	(Control)	Amkor	(Control)	Amkor	
Normalized					
Yield	1.00	0.98	1.00	0.94	

Lower electrical test yields on the LFXP2-5E were attributable to a test error. No other discernible differences in either assembly yield or electrical final test yields between ASEM and AMKOR copper assembly processes were noted.

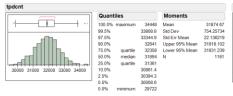
CRITICAL PARAMETERS

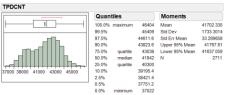

For the purposes of this characterization, critical parameters are defined as speed and power. Samples of the qualification lots from AMKOR were tested at the same time as comparative product from ASEM. The tabulated statistics, Cpk values and histograms of the actual distributions are shown below.

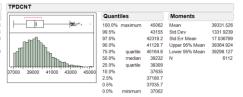
Note that Tpdcounter is a Built-in Self Test (BIST) routine that is correlated to datasheet parameters. Higher counts equate to faster devices.

Note that in most cases the Cpk of the Amkor material is actually better than the control units but the change is not significant and more a function of the sample sizes used. The critical parameters look normally distributed and do not point to any significant parametric difference between ASEM and AMKOR copper bond wire.

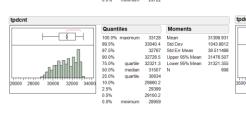
				Icc(mA	7)	
		N	Mean	Std	Spec	Cpk
LFE3-150EA	AMKOR Copper lot	704	391.73	49.04	2693	2.7
LFES-150EA	ASEM Copper lot (control)	590	612.7	140.6	2693	1.5
LFXP2-17E	AMKOR Copper lot	1083	54.75	11.01	395	1.66
LFXPZ-1/E	ASEM Copper lot (control)	7349	53.1	20.71	395	0.9
LFXP2-5E	AMKOR Copper lot	1921	39.3	8.93	172	1.5
	ASEM Copper lot (control)	28435	23.5	8.08	172	1

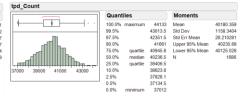

TPDCOUNT								
Product	Group	N	Mean	Std	Spec	Cpk		
1550 450	Amkor Copper	698	31398	1043.9	26561	1.54		
LFE3-150	ASEM Copper (control)	1161	31875	754.3	26561	2.35		
LEVD2 47F	Amkor Copper	949	42040	1525.4	31630	2.27		
LFXP2-17E	ASEM Copper (control)	2711	41702	1733.3	31630	1.94		
LFXP2-5E	Amkor Copper	1686	40180	1158.3	32000	2.35		
	ASEM Copper (control)	6112	39331	1331.0	32000	1.84		


LFE3-150EA


LFXP2-17E

LFXP2-5E





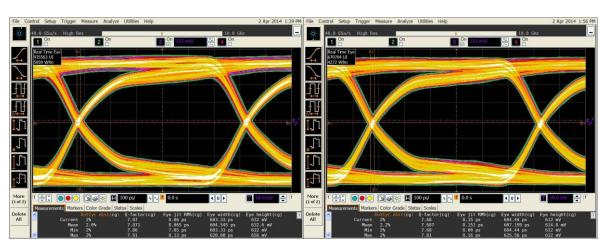
Amkor Cu

	Quantiles			Moments		
	100.0%	maximum	46310	Mean	42040.251	
	99.5%		45304.8	Std Dev	1525.4252	
	97.5%		44730.8	Std Err Mean	49.517397	
IIIh II	90.0%		43906	Upper 95% Mean	42137.427	
n-dlllh	75.0%	quartile	43172	Lower 95% Mean	41943.074	
44111111111111111111111111111111111111	50.0%	median	42183	N	949	
	25.0%	quartile	40978.5			
5000 38000 41000 44000 47000 50000	10.0%		39861			
	2.5%		38970			
	0.5%		38262.8			
	0.0%	minimum	37976			

SIMULTANEOUS OUTPUT SWITCHING PERFORMANCE

Electrical characterization of a new assembly facility includes a check of Simultaneous Switching Output (SSO) performance. This characteristic is also referred to as Ground Bounce although it can affect both power and ground supply rails.

Different assembly site may have different process or tooling which can affect SSO performance. Since copper build in ASE Malaysia and Amkor have the same bond wire geometry (length and diameter), SSO results are expected to be comparable. A delta greater than 10% is considered significant.


			Ground Bounce		Output	Disturb
Product	Material		Max (mV)	Min (mV)	Max (V)	Min (V)
FF2 1F0FA DFN11F6	Amkor Cu		258	-130	1.93	1.448
FE3-150EA-BFN1156	ASEM Cu Control		256	-126	1.942	1.486
		Delta	2	-4	-0.012	-0.038
		%Delta	0.8%	3.2%	-0.6%	-2.6%
15VD2 475 5TN256	Amkor Cu		222	-144	1.376	0.904
LFXP2-17E-FTN256	ASEM Cu Control		244	-154	1.348	0.956
		Delta	-22	10	0.028	-0.052
		%Delta	-9.0%	-6.5%	2.1%	-5.4%
LFXP2-5E-TN144	Amkor Cu		332	-188	1.728	0.796
LFXP2-3E-11V144	ASEM Cu Control		362	-200	1.708	0.758
		Delta	-30	12	0.02	0.038
		%Delta	-8.3%	-6.0%	1.2%	5.0%

As expected, SSO measurements of output high and low disturbs vary by less than 10%. This is within experimental variation.

SERDES PERFORMANCE

Similar to SSO performance, increased inductance due to bond wire geometry could affect highspeed operation. The LFE3-150EA was chosen as a characterization vehicle so that SERDES performance could be quantified.

Three units of LFE3-150EA were programmed with an actual customer pattern that internally generates a PN7 pattern that is then transmitted over the SERDES channel. Eye diagrams and jitter measurements were collected at nominal temperature and voltage to compare relative performance. Pre-emphasis is off.

LFE3-150EA 1156fpBGA Eye Diagrams (3.07Gbps)

AMKOR ASEM (Control)

	Duty Cycle Dist (%)	Eye Jitter (ps)	Eye Width (ps)	Eye Height (mV)
Amkor	2.00	8.07	603.35	624.95
ASEM (Control)	2.10	8.02	605.37	634.25
Delta	-0.10	0.06	-2.02	-9.30
% Delta	-4.8%	0.7%	-0.3%	-1.5%

SERDES Jitter Statistics

As can be seen by the eye diagrams above, SERDES performance has not been measurably affected by the BOM change.

SUMMARY

There are no significant electrical performance issues related to the new alternate qualified material from AMKOR. Lattice recommends the production release of products from Amkor Philippines.