s=LATTICE

Sensor Interfacing and Preprocessing

Reference Design

FPGA-RD-02048 Version 1.3

September 2018

= LATTICE

Contents
ACTONYMS N THIS DOCUMENT ...ceeiiiiieeiiiee ettt e ettt e e et e e et e e s et e e e s aaeeeesteeeeassaesessseeeaansteeesassaeeesnsaeesanssaeesnssaeesnseeesanssesesnnsees 5
O [o o [¥ ot o PSPPSR 6
1.1. FEATUIES LiST ettt ettt ettt e e e ettt e e e e e e e ae e et e e e e e e e anbe et eee e e e s s bebeeeeeeeaanbsbeeeeeeesannnneaeeas 7
1.2. FAY o] o] [Tor= T4 o] o - OO P PP PPTOPRTOPPPTOPRPRPRIOt 7
1.3. 2] [Tl [DIT=Y =4 =12 TR RURPPRPRRt 7
N (- Y Te [Do TolU g g 110 &= d o] o DU PTORR 9
3. Pin Configuration and FUNCLION DESCIIPLIONSeiiiiuiiieieiiie e ciiee e ettt e e te e s re e e e st e e e e aer e e e sataeeesstaeesnsaeeesntaeeesnsseeesnnsens 10
B 1 o V=To T VAo @] oY1 = o USSR 12
4.1. [V aTora oY o1l B T=T o T o) 4o [P 12
I Y=Y o o T Y oY o 11 o T e o N I =L 7Y SR 12
4.1.2. BIMPOB8S5 SENSON IMIONITON .ccii ittt ettt e ettt e e e e ettt e e e e e s aba b teeeeeeseaasbeteeeeeseaaanbaeeeeeesesnnbaneeeeeaanan 13
4.1.3. LSM3B03DLHC SENSOI IMIONITONetteiieeiiiiitieee ettt e e e e ettt e e e e e e st e e et e e e s e anereeeeeeeseaannbareeeeeeesannreneeeeeaanan 14
4.1.4. LSM330DLC Accelerator SENSOr MONITOciuiiiiieiieeeieesiee st e st e e e st e steesbe e sbeesbeesbeesabeesbeesareesnseesases 15
o IR T \V/ V2 € 0 [0 SN =T Kl o] g Y/ (o] o) o PP PO PPN 16
O ST o O I 1W T YT L Y AT =T g Yo SR 17
4.1.7. LSM330DLC GYro SENSOI IMONITON ceeiiiiieiiiiiiiieeieeiiitteeee e ettt e e e e e seiarteeeeesssabaraeeeeessassssbaeaaessssssssreneeesssnnas 18
B.1.8. IC AIDITEI e ictiteeieteieteetest ettt ettt et et et e te et e st et e et e b e st et et e st e te st e st et e b ete et et e st et e b ese et e saese et e sseseetesbeseetesteneetesaeneas 19
4.1.9. SPlInterface to ApPliCation PrOCESSONcccuiiitiiiiieiieeeiee sttt sttt st et e st e s bt e st e s bt e st e e sbeesabeesneesars 19
4.2. 2] [oTol QB T=YYol g 1o} o] 3T P TP TP TP PP TP PP PPOTPTPRN 20
4.2.1. Top Level Module (SENSOI_NUD) c.....ei ittt e et e e et e e e e eate e e e s aba e e eeabee e eeabaeaesnsanaaan 20
4.2.2. Sensor Monitors (BMP085, LSM303, MAX44006, SHT20, LSM330DLC Accelerometer and Gyroscope)........ 20
4.2.3. 12C Interface Module (I2C_arbiteI)ccvciiecriieecreecrecere ettt ettt ettt et e e eebe e be e beebeeasesanesaeesaeenseenreenns 23
4.2.4. SPlINterface MOAUIE (SPI_TEE) .eccveeecrieeirieeieeiieeeiteesteeeitee st esteesteeebeesateeeseesataesseesasaesseesnseseseesnseesnseesases 25
4.2.5. 12C ClOCK @Nd DAta 1/0 CONTIOLc..evieieeeeeeeeeeeeeeeee ettt e et e et e et e e et e s eteeeeaeesereeseaeesereesaneesareesaaeesereeseneenanes 29
5. Design Considerations
5.1.) ad B a1 =T 5 = ol T PSR PUP PRSPPI
5.2. L A=Y T =Y S D L=TY o T] o o 1N 31
5.3. Complete SPI REGISTEIS LOCATIONuiieiiiieceiiee ettt ettt e e ettt e e ettt e e e et e e eeetbeeeeeaaeeeestaeaeestaeesensaseessseaaeasreeeannes 33
5.4, Pseudo-Code Example for APplication PrOCESSONuiiccviieiiiieeeeciiee e cettee st e e e rree e e eare e e sbaee e eeraeessasaeeesanaeaens 34
5.5. Design Customization CONSIAEIAtIONS......cccuuiiiiiiieeeiiee ettt e cte e e et e e e tre e e stae e e estreeeseasaeeesasaeeeasseeeenasseeesnsseaenn 34
5.6. ¥ Lo g~y =T T o 3SR 34
o Y=Y o Eo g 1V, o] 11 o O PTT R UPPPPPPPPRRIINE 34
5.6.2. I2CINTEITACE MOUUIE.......ocueeeeieteeietecteete ettt ettt ettt e v ettt et e et e aeeseeteeteeaeensesesesseeseeseessensensensensens 35
5.6.3. SPIINTEITACE IMOTUIE ...ooiuiiiiiieeie et ce ettt ettt ettt e sta e e ste e et e e ae e e s aaeebeeessaeebee e baeenseeesaeensaeenseeenseeen 35
5.7. REMOVING SENSOIS i 35
o Y= o E{ o g 1V o 1) o PSP UPPPUPUPPRIRE 35
5.7.2. IPCINTEITACE MOTUIEc.eceieieietectecte ettt ettt ettt beete e st e et e s b e s besbeebeessensasbessastasseessessansessessens 35
5.7.3. SPIINTEITAace IMOTUIEooueiiiiieeie ettt ettt sa e e sa e e bt e e bt e s sabe s bt e s bt e ebeessaesbaesnseesnseees 36
5.8. HDL Simulation WaVEfOrM c....coiuiiiieeiieceee ettt ettt sat e e sae e e sb b e bt e e b te e bt e e sbeeesbteesbeesaseeensnesbeeen 36
6. SOFtWArE REGUITEMENTS ... ettt et ettt e b e sttt s bt e s bt s bt e st e e s bt e sabeesabeesabeesaseesabeesnneesares 37
7. HardWare REOQUITEMENTS.cccuti ittt ettt ettt ettt ettt et e et e s bt e s bt e e bt e s bt e e bt e sabeesabeesabeesabeesabeesaseesabeesaseesabeesaneesares 37
TR B 11 0= To o] 4 VAN { U To1 (U] - T T P U TP PP T PP 37
LS I BV o 1o 1Y o] o] for=Yu Lo T W O] o 1| £ 38
B =Tel g Lo Tor I U o] o Yo o XY] =g Vo <SSR SP 41
=AY K] o] I 1] o PSR PPPPPRRRIN 41

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1. System BIOCK DIBZIaMc.ueeeieiiieeceiiee e ciee e ettt e e eeee e e st e e e et e e e seaeeeeesasaeeeasteeeeassseeesnsaeeaanssaeesanseaeessseasasrenennnens 6
Figure 1.2. FUNCLIONAl BIOCK DIGGIam . ..ciiuiiiiiiiiieeeiteesite ettt ettt ettt sa e st e sa e st e e sabeesabeesabeesaseesabeesaseesabeesnneesane 8
Figure 3.1. Bottom View of iCE40LMAK-SWG25TR (BallS UP) c.uvviiiiiiieeiiiiieeeiiee ettt eete e eetee e e tee e e et e e eeanaee e e vaeaenn 10
Figure 4.1. BIMPOS85 PreSSUIE SENSONuiiiiiiiiiiiitie ittt ettt e st e e sa e e e s e e e s e bb e e e s esa e e e s sabe e e s e nreeesnaneessabaeesaas 13
FIBUIE 4.2, LSIMB03 COMIPASS i iiiiiiiiiiiiiiiiiiiiiiieieieeeee ettt e e et e e e et e e e e e e e e et e e et e e e e e e et et e e e e e e e e e e e e e e e e e e et et e e et et eaeaataaeaeteteaeeatereeesererenaaans 14
Figure 4.3. LSIM330DLC ACCEIEIOMELET ..ccccuvtiieeeiiee e eiee e ettt e eette e e ettt e e e stbeeeeetbeeesetbaeeesabseeeassseeeassasaeaataseeassseeeansaaeessseaaans 15
Figure 4.4. MAX44006 AMDIENT LIGNT SENSOTviiiiiiiee ettt e e et e e s tr e e e e tte e e sataeeesataeeeansreeesnsaeeesnseeaaans 16
Figure 4.5. SHT20 HUMIAITY SENSOI ..iiueiiiieiiieceiis ettt e ettt e s te e e e st e e e e e tte e e sataeeesataeeeessseeesnsaeeesasseeeassseeeannsaeeesnsenaaans 17
FIGUIE 4.6. LSIM 330D LC GYTOSCOPE ceiiiieiuutriieeeteeiraiutreteeessassurteeteesssssasstateeessssssssssseeessssssmssssseeesssssssssseeessssssssmsnseesssssnssnsee 18
Figure 5.1. SiNge BYte REAU OPEIatioN ...cccccuiiiiieiiii et e eceeesetes st e e sttt e e e e tte e s sae e e e sataeeessteeeeaseeeesnsaeeeasseeesnnsneeesnseeanans 30
Figure 5.2. Singe Byte WIite OPerationccuiiiiiiiiiiiiiiii ittt e e e e e s nr e e ssrae e s sraee e 30
Figure 5.3. MUlti-Byte REAA OPEIatiON.....cccuviiieeiiiieciiee e ettt e eeite e e ettt e e e sttt eeeetteeeseataeeesabaeeeasseeeaassaeeesatsseeassseeennsaeeesseeaaans 31
Figure 5.4. HDL SimuUIation WaVEFOIrMviii ittt ettt eette e e et e e e st b e e e e tb e e e eeabaeeesataeaeenssaeesnsaeeesasaeaans 36
Figure 5.5. Simulation Waveform Excerpt Showing the I12C Transactions for the LSM330DLC Gyroscope Sensor............. 36
Figure 5.6. Simulation Waveform Excerpt for the Application Processor Interface Showing the Interrupt Signal
(proc_intr) from the FPGA and the SPI Transactions for the LSM330DLC GYroSCOPE SENSOI.cccueerureeeveesreesiueesreeneeens 36
Figure 8.1. iCE40 Sensor Hub Reference Design Dir€Ctory STrUCLUIEuvveecuiirecciieeeriteeeeiee e eeee e stee e e e e eeee e e saaee e 37
Figure 9.1. Sensor Hub with Pre-programmed SPI FIash — ICEAOLMccccutiriiiiierniienieeriee ettt e 38
Figure 9.2. Sensor Hub with Direct Programming through FTDI —iCEAOLMccccoiiiiiiiiniienieenie et 39
Figure 9.3. Sensor Hub with Programming through Application Processor — iCEA0LMccocceeeeiiiieeeeciieeeeieeeeciveeeans 40

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATT’CE

Reference Design

Tables

Table 3.1.
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 4.6.
Table 4.7.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.
Table 5.5.
Table 5.6.
Table 5.7.

Pin FUNCEION DeSCription — ICEAOLMc.ouiivieieiiectceeceetct ettt tes sttt sttt se st tes st st sess st ees st etensssenens 10
POrtS TO/From the SENSOT IMIONITONeciveiicieeereeeeteecteecetteeeteeeeteeeete s e ereeeeteeesaeeeesesesseeeeseeesseeeesesesseeeeseeesnseesseeens 21
1 (oY 3\ oo [] [T 2 o £ USPSS 23
POrts TO/From I2C INtErface MOAUIEocviieeiieiectiecee ettt ettt e e st ste e easeateeaeesteeebeenteenteeneesreesaeas 24
POItS TO/FIOM I2C_IEE Tl ueiieieeiie ettt ettt et e et e et e s tbeeete e e stbeeeteeestbeeesseessseensseesabeassseesabeensseenes 25
Ports To/From the SPI INTErface MOQUIEueiiieeeiiiceee ettt et e saae e e st e e e s enba e e e saees 26
Ports To/From Interrupt Arbiter MOAUIE........ccueiiiiieciie ettt e re e eare s reestae e s beeeaseesabeenanee e 28
Ports To/From Interrupt Spi_slave MOAUIE...........c.uieviiiiiiecee ettt eee s reesaae e s beesabe e sabeesanee e 29
Register Map for A2, A1, and AO bits

VERSION Register Bit Description.........

ISR Register Bit Description...............

CNTRL Register Bit Description

STATUS Register Bit DESCIIPLION ociiiiiiiiiiiiiiiiieieccceceeeeeeeee eeeeeeeseeaaaes
(D) AN =Y = = Tl DT ol g o] o ISP SUPPT
First Byte Transmitted — SPI Master to iCE 0N MOSI LINEccoouiiiiiiieeeiee et et 33

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

::LATT’CE Sensor Interfacing and Preprocessing

Reference Design

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

ACK Acknowledge bit sent from RX side to TX side to indicate the received data parity check is OK
RX Receiver

TX Transmitter

1’C Inter-Integrated Circuit

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02048-1.3 5

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATTICE

Reference Design

1. Introduction

The iCE40 Sensor Hub Solution is a low power sensor hub solution for mobile devices using iCE40LM, iCE40 Ultra™, and
iCE40™ UltraPlus FPGAs. It is designed to monitor sensors and periodically send the sensor data to the application
processor. The Sensor Hub reference design acts as a buffer between the sensors and the application processor. When
the Sensor Hub is used in a design, it allows the application processor to sleep for longer periods of time. The Sensor
Hub reduces unnecessary communication between the sensors and the processor, thus saving power consumption by
allowing the processor not to be in an always on state. The iCE40 Sensor Hub Solution is configurable, available as
either standalone off the shelf or fully customizable, making it a sensor agnostic solution.

iCE40 Sensor Hub Solution

BMPO085 Sensor Monitor

I2C Master
(1.8 V Interface)

MAX44006 Sensor Monitor

SPI Slave

(Application Processor Interface) LSM330DLC Sensor Monitor

SHT20 Sensor Monitor
I12C Master

(3.3 V Interface)

LSM303DLHC Sensor Monitor

Power-0On Reset Module

Figure 1.1. System Block Diagram

As a standalone solution, the iCE40 Sensor Hub connects to the application processor’s Serial Peripheral Interface Bus
(SPI1) with clock frequency set to 10.8 MHz. This enables a fast communication speed to/from the processor. The iCE40
Sensor Hub standalone solution acts as 12C master to the supported sensors. There are two sets of 12C connections
configured with multiple sensors at each connection in the iCE40 Sensor Hub standalone solution.

The default sensors supported in the standalone iCE40 Sensor Hub Solution are: Bosch BMP085 Digital Pressure Sensor;
Maxim Integrated MAX44006 RGB Color, Infrared, and Temperature Sensors; Sensirion SHT20 Humidity and
Temperature Sensor IC; STMicro LSM330DLC 3D accelerometer and 3D gyroscope; and STMicro LSM303DLHC 3D
accelerometer and 3D magnetometer module.

The iCE40 Sensor Hub standalone solution has a system operating frequency of 27 MHz, SPI bus frequency to
application processor of 10.8 MHz, and I.C clock frequency of 400 kHz. The SPI bus is configured to have a volt-age of
1.8 V, and the two I2C buses are configured to have voltages of 1.8 V and 3.3 V, enabling the solution to connect to
sensors with different I/O voltages and bridging sensors of different I/O voltages to the application processor.

The fully customizable solution capability of this solution is due to its FPGA based architecture. This capability is ideal,
but not limited to users who would like to include/remove supported sensors, change the data acquisition FIFO depth,
create an I/0 bridge between sensors and processor, or customize sensor monitoring time period.

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

1.1. Features List
e Configurable Sensor Hub for Mobile Devices
e Sensor Agnostic Solution
¢ Default System frequency of 27 MHz
e Power-On Reset capability
e Serial Peripheral Interface (SPI) Bus connection to Application Processor with the following Default settings:
e Interface frequency of 10.8 MHz
* Interface voltage of 1.8V
e Solution is a slave of the Application Processor
e SPlslave mode CPOL =1 and CPHA =1 (mode 3)
s SPIslave features MSB first
e One I2C Bus with default interface voltage of 1.8 V at 400 kHz for:
e Bosch BMPO085 Digital Pressure Sensor
e Maxim Integrated MAX44006 RGB Color, Infrared, and Temperature Sensors
e STMicro LSM330DLC 3D accelerometer and 3D gyroscope
e One I>C Bus with default interface voltage of 3.3 V at 400 kHz for:
e Sensirion SHT20 Humidity and Temperature Sensor IC
e STMicro LSM303DLHC 3D accelerometer and 3D magnetometer module

1.2. Applications
e Notebook PCs
e Smart Phones

e Tablets
¢ Handheld Gaming Units
e GPS Units

e Digital Cameras

1.3. Block Diagram

Figure 1.2 shows a block level diagram of the iCE40 Sensor Hub Solution.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATT’CE

Reference Design

iCE40 Sensor Hub Solution ca
E3 » sensor0_xclr
clk —f -
p— BMPO085 Sensor Mo(r)wétor 12C Arbiter
BMP085 || N
Module | N Data FIFO Iw < >
- Bo ° E
= =
MAX44006 Sensor M;On(;tesor) R ;% gg . Al » poola_sensor_scl
MAX4 < » | 8% g
£ » |Pata FIFO| Isiate Machine 28 = SE B1 .
co 3 Sell| o> ||+ » poola_sensor_sda
proc_sdi < IR . og s
- B5 § = LSM330DLC Sensor Monitor o =
i < > S R LSM330DLC| |« >
proc_intr e % S| ¢ »| | Data FIFO Etate 330DLC
proc_sdo < » | &|| &
gl e HT2 Monit)
proc_sclk « A4l | E]| 8| fe—] SHT20SensorMonitor | 12C Arbiter
- A3 z|lS Data FIFO| | SHT20 State| <>
proc_csn < o || &
T , Be 0 E5
) L.SM303DLHC Sensor Monito sE %é « » poolb_sensor_scl
¢ > LSM303DLHG [* | eS¢l 8%
Data FIFO IM e22|| 2S£ | 2% poolb_sensor_sda
- Se-ll 93
Q0 o
Power-On
Reset Module

Figure 1.2. Functional Block Diagram

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

2. Related Documentation

In addition to using this guide to help you get started developing iCE40 Low Power Sensor Hub Solution on your device,
you can refer to other applicable documents that may contain more detailed information that is beyond the scope of
this guide.

The following documents can be obtained on the Lattice website:

e iCE40LM Family Data Sheet (FPGA-DS-02043)

e iCE40 Ultra Family Data Sheet (FPGA-DS-02028)

e iCE40 UltraPlus Family Data Sheet (FPGA-DS-02008)

e iCEcube2 User Guide - The iCE40LM and iCE40 Ultra versions of this reference design are designed in iCEcube2
software and this user guide explains everything you need to know about iCEcube2.

e Lattice Radiant Software User Guide — The iCE40 UltraPlus version of this reference design is designed in Lattice
Radiant software and this user guide explains everything you need to know about Lattice Radiant.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Pin Configuration and Function Descriptions
Figure 3.1 shows the bottom view of the iCE4A0LM4K-SWG25TR.

®E® @6
®E®®G
OIOIOIOIO
®E®®
®E®EE

Note: Assumes operating under off-the-shelf standalone
solution. This may vary depending on the device family
and package type used.

Figure 3.1. Bottom View of iCE40LM4K-SWG25TR (Balls Up)

Table 3.1. Pin Function Description — iCE40LM"

Pad name Port Name Port Direction Description
Al poola_sensor_scl Inout 12C Interface SCL for sensors with 1.8 V interface
A2 VCCIOVB1 Input 1/0 Power Supply
A3 proc_csn Input SPI bus slave select (Active Low)
A4 proc_sclk Input SPI bus serial clock
A5 proc_sdo Input SPI bus serial data in to slave
B1 poola_sensor_sda Inout 12C Interface SDA for sensors with 1.8 V interface
B2 GND Input Ground
B3 CRESET Input Configuration Reset (Active Low). See data sheets.
B4 VCC Input Core Power Supply
B5 proc_intr Output Processor Interrupt to Application Processor
c1 ice_SI Output Configuration Output to external SPI Memory
Cc2 proc_sdi Output SPI bus serial data out from slave
c3 CDONE Output Configuration Done. See data sheets.
c4 sensor0_xclr Output Master Clear for Pressure Sensor (Bosch BMP085)
Cc5 General Purpose 1/0 Input/Output 3.3V I/O for user interface
D1 flsh_sclk Input Configuration Clock
D2 ice_SO Input Configuration Input from external SPI Memory
D3 General Purpose 1/0 Input/Output 3.3V I/O for user interface
D4 GND Input Ground
D5 poolb_sensor_sda Inout 12C Interface SDA for sensors with 3.3 V interface
El flsh_cs Input Configuration Chip Select (Active Low)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

::LATT’CE Sensor Interfacing and Preprocessing

Reference Design

Pad name Port Name Port Direction Description
E2 VCCIOVB2 Input 1/0 Power Supply
E3 clk Input System Clock
E4 General Purpose 1/0 Input/Output 3.3V I/O for user interface
ES poolb_sensor_scl Inout 12C Interface SCL for sensors with 3.3 V interface

*Note: Assumes operating under off-the-shelf standalone solution. Pad Names may vary depending on the device family and
package type used in this customizable solution.

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02048-1.3 11

http://www.latticesemi.com/legal

= LATTICE

4. Theory of Operations

The iCE40 Sensor Hub Solution monitors the sensors attached to its I2C buses. It monitors each sensor periodically for
new values. Each sensor monitor can be configured separately. Each sensor monitor block has a dedicated FIFO to store
the read values of corresponding sensors. After sensor data has been read, the sensor monitor sends an interrupt to
the application request to indicate that sensor data is present. The application processor is then expected to read the
FIFO contents through the SPI bus. Once the sensor data has been read, the application processor needs to clear both
the FIFO and the interrupt.

The default supported sensors in the iCE40 Sensor Hub Solution are divided into two groups: those with 1.8 V interface
and those with 3.3 Vinterface. The default supported sensors are as follow:
¢ 1.8 Vinterface voltage:
¢ Bosch BMPO085 Digital Pressure Sensor
e Maxim Integrated MAX44006 RGB Color, Infrared, and Temperature Sensors
e STMicro LSM330DLC 3D accelerometer and 3D gyroscope
e 3.3 Vinterface voltage:
e Sensirion SHT20 Humidity and Temperature Sensor IC
e STMicro LSM303DLHC 3D accelerometer and 3D magnetometer

4.1. Functional Descriptions

This sub-section describes the function of each sub-block in inside the iCE40 Sensor Hub Solution. Many of these blocks
have HDL module associated with them.

4.1.1. Sensor Monitor Top Level

The Sensor Monitor Top Level is found in sensor_hub. This module contains submodules for all Sensor Monitors, the
two |2C interfaces, and SPI interface to/from application processor. It also contains a Power-On Reset (POR) module.
The POR module initiates a system reset upon power up for Tpor number of cycles. The iCE40 Sensor Hub Solution
operates after system reset has been completed.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.2. BMPO085 Sensor Monitor

The BMPO085 Sensor Monitor monitors Bosch BMP085 Digital Pressure Sensor, and it is found in BMPO85_prsr. This
module begins by calibrating the BMP085 sensor by reading the pre-defined values in the calibration matrix of the
BMPO085 sensor. Once calibration is completed, the BMP085 sensor monitor periodically reads the temperature and
pressure values from the BMPO085 sensor. As a standalone off the shelf solution the number of cycles with respect to the
system clock at which this module reads the BMPO085 sensor value is Tsampbmp085. For the fully customizable
solution, you can change the number of cycles by changing the INTR_THRESHOLD parameter value. All values read
from BMPOS85 are stored in a FIFO that’s accessible by the application processor through the SPI Interface to Application
Processor module. Once sensor data has been read, this module issues an interrupt for the Application Processor to
indicate that data is present. When the Application Processor gets the interrupt, it first reads the BMPO085 status
register bit to determine whether the data available in the FIFO is calibration data or sensor data, which is used
appropriately for calculations. After the Application Processor receives the data, it is expected that the interrupt and
the FIFO is cleared by the Application Processor.

At the end of each acquisition this module issues XCLR signal to reset the sensor.
Figure 4.1 shows the BMPOS85 pressure sensor.

None
Initialization
Readout EEPROM registers, Calibration
16 bit, MSB first
Read uncompensated 2 bytes
temperature and 2 bytes Operation

pressure values 5 times
per second

Figure 4.1. BMPO085 Pressure Sensor

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.3. LSM303DLHC Sensor Monitor

The LSM303DLHC Sensor Monitor monitors STMicro LSM303DLHC's 3D magnetometer module, and it is found in
LSM303_magneto. This module starts by initializing the LSM303DLHC by writing to CRA, CRB, and MR registers of the
LSM303DLHC device to set the operation mode of the magnetometer. Once initialization is completed, the
LSM303DLHC sensor monitor will periodically read the magnetic value from LSM303DLHC. As a standalone off the
shelf solution the number of cycles with respect to the system clock at which this module reads the LSM303DLHC
sensor value is Tsamplsm303. For the fully customizable solution, you can change the number of cycles by changing
the INTR_THRESHOLD parameter value. All magnetic values read are stored in a FIFO that’s accessible by the
application processor through the SPI Interface to Application Processor module. Once sensor data has been read, this
module issues an interrupt for the Application Processor to indicate that data is present. After the Application
Processor has received the data, the interrupt and the FIFO is cleared by the Application Processor.

Figure 4.2 shows the LSM303 compass.

Write CTRL_REGA = 8’h08
To Disable Temp sensor, Set Min.
o/p datarate = 3 Hz

v

Write CTRL_REGB = 8'h20
To set Sensor input field range - +/-

Initialization
1.3 Gauss
Write MR_REG = 8’h00
To set continuous conversion mode
None Calibration
Read 6 bytes data values from DATA Operation
register 10 times per second

Figure 4.2. LSM303 Compass

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.4. LSM330DLC Accelerator Sensor Monitor

The LSM330DLC Accelerator Sensor Monitor monitors only the accelerometer portion of STMicro LSM330DLC 3D
accelerometer and 3D gyroscope module, and it is found in LSM330DLC_accel. This module starts by initializing the
LSM330DLC by writing to Control REG1A and Control REG4A registers of the LSM330DLC device to set the operation
mode of the accelerometer. Once initialization is completed, the LSM330DLC sensor monitor periodically reads the
accelerometer value from LSM330DLC. As a standalone off the shelf solution the number of cycles with respect to the
system clock at which this module reads the LSM330DLC device is Tsamplsm330a. For the fully customizable solution,
you can change the number of cycles by changing the INTR_THRESHOLD parameter value. All acceleration values read
are stored in a FIFO that’s accessible by the application processor through the SPI Interface to Application Processor
module. Once sensor data has been read, this module issues an interrupt for the Application Processor to indicate that
data is present. After the Application Processor has received the data, the interrupt and the FIFO is cleared by the
Application Processor.

Figure 4.3 shows the LSM330DLC accelerometer.

Wait for approximately 75ms
for sensor to configure

v

Write ‘Sample rate’ REG = 8'h57
To set ODR =100 Hz, to enable normal mode
and to enable X, Y and Z axis

Initialization
Write ‘Full scale and Resolution selection’
REG = 8’h08
To set FS=+/-2G, and
to set high resolution output mode
None Calibration
Read 6 bytes of data values from DATA o ’
peration

register for resp. o/p axis
10 times per second

Figure 4.3. LSM330DLC Accelerometer

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATTICE

Reference Design

4.1.5. MAX44006 Sensor Monitor

The MAX44006 Sensor monitors the Maxim Integrated MAX44006 RGB Color, Infrared, and Temperature Sensors, and
it is found in Max44006_als. This module starts by initializing the MAX44006 by confirming the Power-On State of the
device; and setting up the UPR_THRM, UPR_THRL, LWR_THRM, LWR_THRL, PERSIST_TIMER, AMBIENT configuration,
and sensor mode of the device. These sets the operational modes of the sensor, including the RGB interrupt
thresholds, RGB gain, and ADC conversion timing. Once initialization is completed, the MAX44006 sensor monitor
periodically reads the color, infrared, and temperature values from MAX44006. As a standalone off the shelf solution
the number of cycles with respect to the system clock at which this module reads the MAX44006 device is
Tsampmax44006. For the fully customizable solution, you can change the number of cycles by changing the
INTR_THRESHOLD parameter value. All values read are stored in a FIFO that’s accessible by the application processor
through the SPI Interface to Application Processor module. Once sensor data has been read, this module issues an
interrupt for the Application Processor to indicate that data is present. After the Application Processor has received the
data, the interrupt and the FIFO is cleared by the Application Processor.

Figure 4.4 shows the MAX44006 ambient light sensor.

Write MS byte of Upper threshold REG = 8'hAA
Write LS byte of Upper threshold REG - 8h00
To set Upper threshold limit for light sensing

v

Write MS byte of Lower threshold REG = 8’h00
Write LS byte of Lower threshold REG - 8’h00
To set Lower threshold limit for light sensing

¢ Initialization

Write Persist Timer threshold REG = 8’h10
To set Persist value as 8

v

Write Ambient Configuration REG = 8’h00
To Disable temperature sensor, disable IR compensation
and to use factory calibrated gains

v

Write ‘MAIN Configuration’ REG = 25
To Enable ambient interrupt, to use green channel
data to compare with ambient interrupt threshold

Calibration
None
Read 8 bytes.sensor va!ue from DATA register Operation
approximately 5 times per second
Figure 4.4. MAX44006 Ambient Light Sensor
© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

16 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

4.1.6. SHT20 Humidity Sensor

The SHT20 Sensor Monitor monitors only the humidity sensor of the Sensirion SHT20 Humidity and Temperature
Sensor IC, and it is found in SHT20_humidity. This module starts by initializing the SHT20 by resetting the sensor, and
reading and writing the user register of the SHT20 device. These set the operation mode of the SHT20 device. Once
initialization is completed, the SHT20 sensor monitor will periodically read the humidity value from SHT20. As a
standalone off the shelf solution the number of cycles with respect to the system clock at which this module reads the
SHT20 device is Tsampsht20. For the fully customizable solution, you can change the number of cycles by changing the
INTR_THRESHOLD parameter value. All humidity values read are stored in a FIFO that’s accessible by the application
processor through the SPI Interface to Application Processor module. Once sensor data has been read, this module
issues an interrupt for the Application Processor to indicate that data is present. After the Application Processor has
received the data, the interrupt and the FIFO is cleared by the Application Processor.

Figure 4.5 shows the SHT20 humidity sensor.

Wait for approximately 15ms
for sensor to configure

v

Read ‘USER REGISTER’ and
save the data to user_reg

¢ Initialization

Write ‘USER REGISTER’ = 8h3A
({1’b0,user_reg[6:3],1'b0,1'b1,1’b0})
To set Measurement resolution enable,
on chip heater enable and

to disable OTP reload

Read 3 bytes of data values Operation
10 times per second

Figure 4.5. SHT20 Humidity Sensor

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.7. LSM330DLC Gyro Sensor Monitor

The LSM330DLC Sensor Monitor monitors only the gyroscope portion of STMicro LSM330DLC 3D accelerometer and 3D
gyroscope module, and it is found in LSM330DLC_gyro. This module starts by initializing the LSM330DLC by writing to
Control REG1G register of the LSM330DLC device to enable the output data rate and to enable normal power mode for
gyroscope operation. Once initialization is completed, the LSM330DLC gyro sensor monitor periodically reads the
gyroscope value from LSM330DLC. As a standalone off the shelf solution the number of cycles with respect to the
system clock at which this module reads the LSM330DLC gyro sensor value is Tsamplsm330g. For the fully customizable
solution, you can change the number of cycles by changing the INTR_THRESHOLD parameter value. All gyroscope
values read are stored in a FIFO that’s accessible by the application processor through the SPI Interface to Application
Processor module. Once sensor data has been read, this module issues an interrupt for the Application Processor to
indicate that data is present. After the Application Processor has received the data, the interrupt and the FIFO is
cleared by the Application Processor.

Figure 4.6 shows the LSM330DLC gyroscope.

Write for approximately 7 ms

for sensor to configure

¢ Initialization

Write ‘Sample rate’ REG = 8'hOF
To set ODR = 95 Hz,
to disable power down mode

and to enable X, Y and Z axis

AL Calibration

Read 6 bytes data values from DATA o .
peration

register for resp. o/p axis
10 times per second

Figure 4.6. LSM330DLC Gyroscope

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.8. I2C Arbiter

The I2C Arbiter module muxes/demuxes the control signals to/from the 1.C master to and from all sensor monitors. It
goes through all sensor monitors one-by-one in a round-robin fashion to see whether a sensor data read request is
present. When a sensor monitor is not available, it goes to the next sensor and so on. This module can be found in
i2c_arbiter, and there are two instances of this module: one for the 1.8 V interface, and another for the 3.3 Vinterface.
This module sends and receives command from each sensor monitor so that data can be sent/received through the 12C
interface. The I2C arbiter also contains the control for I12C interface (found in i2c_reg_ctrl).

4.1.9. SPI Interface to Application Processor

This module is used to interface between the iCE40 Sensor Hub Solution and the application processor. It is found in
spi_reg module. This module contains the SPI registers VERSION, ISR, CNTRL, and STATUS.

This module starts by initializing the SPI Control Register 1 and waits until an interrupt or read from a sensor command
is received from the processor. When a read command is received, this module goes to read from RXDR followed by
byte write. It then determines if the MISO byte is valid followed by write to TXDR command. Once these are completed,
it goes back to an idle state. The state machine is in spi_slave module.

When a read command is received from the application processor, this module sends commands to the desired sensor
so that the stored sensor values in the FIFOs are read out. This module then receives the stored sensor values and
sends them to the application processor. Once the data has been read, the application processor will need to clear the
FIFO and the interrupt register for the corresponding sensor.

When a write command is received from the application processor, this module decodes the commands and sends the
appropriate data to the desired register locations.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Finally, this module also contains an interrupt arbiter (intr_arb) module that polls interrupt (that is to indicate that
sensor data is present) from the sensor monitors. This module ensures that the processor is interrupted by only one of
the sensor monitors at a time and the interrupts by other sensor monitor during that time are latched and presented
one after the other. Once the interrupt is recognized and served by the processor, the interrupt arbiter module will
acknowledge the sensor monitor that the interrupt has been received.

4.2. Block Descriptions

The purpose of this section is to provide detailed descriptions of each block of the iCE40 Sensor Hub to assist users who
want to use this solution using alternative sensors.

4.2.1. Top Level Module (sensor_hub)

This module contains all of the sensor monitors, SPI interface to the application processor, and two sets of I12C interface
to the sensors.

The HDL code begins with the POR logic, which is set to Tpor cycles.

All the sensor monitors are then instantiated with their respective parameters set. In addition to system clock and
system reset, each sensor monitor has connections to/from one of the I12C interfaces and the SPI interface. Notice that
each wire connection has the same name prefix dev#, where # is an integer, and name suffixes that corresponds to the
module port name. Each wire connection is connected to SPI ports with corresponding dev# and name suffix. On the
other hand, the I2C wire connections may not have the same sensor monitor dev# (although, each sensor monitor’s
dev# set must be connected to the same I2C interface port’s dev# set), but will have the same name suffix. There’s only
one I°C and one SPI connection for each sensor.

The code then instantiates two i2c_arbiter modules, which contain the 12C interface. Each module has connection to
the sensor monitors, and I2C pins of the solution. Not all ports of the i2c_arbiter may be connected to a sensor monitor,
thus giving room for sensor expansion. The connection rule between the I2C interface and the sensor monitor as
described above applies.

Finally, the code instantiates the spi_reg module, which contains the SPI interface to the application processor. This
module has connection to the sensor monitors. All sensor monitor need to be connected to this module. The
connection rule between the SPI interface and the sensor monitor as described above applies.

4.2.2. Sensor Monitors (BMP085, LSM303, MAX44006, SHT20, LSM330DLC Accelerometer and
Gyroscope)

Each sensor monitor has the same general functions and may include operations specific to the target sensor. Each
module initializes the sensor, reads the sensor data periodically via 12C interface, stores the sensor read data, and
sends interrupt to the application processor via SPI interface to indicate that sensor data is present.

The following table summarizes the ports to/from the sensor monitors:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.1. Ports To/From the Sensor Monitor

Signal
For BMPO085, For LSM330DLC Direction Description
LSM303, accelerometer and

MAX44006, SHT20 gyroscope

fifo_data[7:0] o_fifo_data[7:0] Output Contains stored sensor read data (from the data FIFO). This is the
data to be sent to the Application Processor through the SPI
interface.

fifo_clr_ack o_fifo_clr_ack Output Signal for the SPI interface logic to indicate that the data FIFO
has been cleared successfully (Active HIGH).

intr o_intr Output Signal for the SPI interface logic to indicate that sensor read data is
present for Application Processor to access (Active HIGH).

calibration o_calibration Output Signal for the SPI interface logic to indicate that the sensor monitor
is performing calibration operation on the sensor (Active HIGH).

on_ack o_on_ack Output Signal for the SPI interface logic to indicate that DEV_ON has been
successfully processed (Not implemented; it is tied to logic HIGH).

off_ack o_off_ack Output Signal for the SPI interface logic to indicate that DEV_OFF has been
successfully processed (Not implemented; it is tied to logic HIGH).

underflow o_underflow Output Signal for the SPI interface logic to indicate that FIFO under- flow
has occurred (Not implemented; it is tied to logic LOW).

overflow o_overflow Output Signal for the SPI interface logic to indicate that FIFO overflow has
occurred (Not implemented; it is tied to logic LOW).

active o_active Output Signal for the SPI interface logic to indicate that the sensor monitor
is performing a function (e.g. reading sensor data) (Active HIGH).

full o_full Output Signal for the SPI interface logic to indicate that the data FIFO
is full (Active HIGH).

empty o_empty Output Signal for the SPI interface logic to indicate that the data FIFO
is empty (Active HIGH).

xclr — Output XCLR signal specifically for BMP085 device (Active HIGH)

clk i_sys_clk Input System Clock

rst i_sys_rst Input System Reset

fifo_rden i_fifo_rden Input Signal from SPI interface logic to read the data FIFO for the sensor
data (Active HIGH).

fifo_clr i_fifo_clr Input Signal from SPI interface logic to clear the data FIFO after the data
has been read by SPI interface logic (Active HIGH).

inte i_inte Input Signal from SPI interface logic to enable interrupt for the sensor -
NOT IMPLEMENTED IN SENSOR MONITOR.

intr_ack i_intr_ack Input Signal from SPI interface logic to indicate that intr has been
received and to deassert the intr in the sensor monitor (Active
HIGH).

on i_on Input Signal from SPI interface logic to control DEV_ON - NOT
IMPLEMENTED IN SENSOR MONITOR.

off i_off Input Signal from SPI interface logic to control DEV_OFF - NOT
IMPLEMENTED IN SENSOR MONITOR.

i2c_start o_i2c_start Output Signal to the I°C interface logic to indicate to access the sensor
(Active HIGH).

read_write_n o_read_write_n Output Signal to the I°C interface logic to indicate whether the accessed
command is a read or a write (Read = HIGH, Write = LOW).

slave_address[7:0] o_slave_address[7: Output Signal to the I°C interface logic to indicate the slave device

0] (sensor) address.

read_byte_count[7: | o_read_byte_count Output Signal to the I°C interface logic to indicate the number of bytes to

0] [7:0] read.

reg_address[7:0] o_reg_address[7:0] Output Signal to the 1°C interface logic to indicate the slave device's

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Signal
For BMPO085, For LSM330DLC Direction Description
LSM303, accelerometer and

MAX44006, SHT20 gyroscope
(sensor) register's address.

fwrite_data[7:0] o_write_data[7:0] Output Contains the data to write to the slave device (sensor) through the
I2C interface logic.

read_data[7:0] i_read_data[7:0] Input Contains the data read from the slave device (sensor) through the
I2C interface logic.

read_data_valid i_read_data_valid Input Indicates whether the read_data is valid (Active HIGH)

i2c_done i_i2c_done Input Indicates whether the |>C transaction has been completed
(Active HIGH).

Note: Although the port names for LSM330DLC Accelerometer and Gyroscope are different from the other sensors, functionally the
two set of port names are the same.

The following is a walkthrough of a sensor monitor code, specifically for SHT20 sensor. Codes in this section are taken
directly from the HDL file. Note that in most cases, the topics in each paragraph below are presented in the order in
which they appear in the HDL code.

The first action in the code is to define two parameters: INTR_THRESHOLD and INIT_THRESHOLD. The former
parameter defines the number of clock cycles (with respect to the system clock) at which the sensor monitor will
periodically read the data from the target sensor. The latter parameter defines the number of clock cycles (with respect
to the system clock) at which the sensor monitor need to wait before issuing any operation so that the sensor operates
properly (that is by initialization time). To calculate the time value, simply multiply the values of each parameter with
the clock period.

The counters for the above thresholds are written under the following comments:

e //init_time

¢ *This interrupt is generated for every

e *Counter

Note: The code under the second comment above generates the interrupt to trigger read data from sensor (sensor_int).

The second action is to define the slave address of the sensor to be monitored. This is performed by the following code:

/*

* Slave address of the sensor device

*/

assign slave address = 8'h40; // Example Slave Address Setting Code

It is important to use the wire name slave_address to define the slave address. Note that the slave address value
depends on the desired sensor, and it is an 8-bit value.

A state machine is then defined in the HDL. The state machine contains sensor initialization procedures. Once
initialization has been completed, the state machine moves to loopback between waiting and reading sensor states.
The state machine is written under the following comments:

/ *

* State machine to control sensor configuration and data acquisition

*/

The states of the state machine are then used to control various logic used to control the following wires:

e i2c_start: This net signals the I2C interface to access the sensor.

e read_write_n: This net signals tells the I2C interface whether the I.C operation is a read (1) or write (0)

e read_byte_count: This bus determines the number of byte to be read by the 1.C operation

e reg_address: This bus determines the slave device’s (sensor) register to be accessed by the I2C operation
e write_data: This bus contains data to be written in to the slave device (sensor) through the I2C operation.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The code location of the each of the above logic can be found under the comment //<WIRE_NAME>. Note that
additional sensor specific logic for I.C transactions are implemented around this area. For example, SHT20 has
user_reg_data and word_count logic.

A code for interrupt to the application processor is then written. This interrupt signals the processor that sensor read
data is present for reading by the processor; it is found in intr and it is active HIGH. The code is located under the
comment //intr.

Calibration for sensor logic is implemented. Not all sensors require calibration, and in the case of SHT20, it is not
present. The code is under the comment //calibration.

Logic to signal the SPI interface logic that the sensor is busy (such as performing data acquisition) is implemented under
the comment //active. The signal name is active, and it is active HIGH.

The remaining set of codes involves data FIFO and its control.
The FIFO is 64 x 8-bit, and it is instantiated using the afifo_8 module, which has the following ports:

Table 4.2. afifo_8 Module Ports

Signal Direction Description
rst Input Reset
wren Input Write Enable
wrclk Input Write Clock
wrdata[7:0] Input Write Data
rden Input Read Enable
rdclk Input Read Clock
rddata[7:0] Output Read Data
full Output Full
empty Output Empty

In addition to FIFO control, there is logic to process fifo_clr, which is a signal sent by the application processor via SPI
interface to clear the data FIFO, and logic to acknowledge that FIFO has been cleared (fifo_clr_ack). Additional FIFO
control is present, but currently, underflow and overflow logic have not been implemented.

Also available to this block is the signal i2c_done. This signal is sent from the I2C interface to indicate whether the 12C
transaction has been completed.

The condition that triggers the sensor monitor to read data from the sensor is written in the following code:
assign trig acquisition = sensor intr && empty && ~intr;

This means that read is triggered when sensor monitor indicates the periodic reads (sensor_intr), the data FIFO is
empty (empty), and the sensor monitor is not interrupting the application processor (~intr).

Note that logic to process DEV_ON and DEV_OFF, as well as the logic to create their acknowledges have not been
implemented.

4.2.3. I°CInterface Module (i2c_arbiter)

The I2C Interface Module is found in the i2c_arbiter file. It is used to provide connection between the sensor monitors
to the sensors via I12C interface. In addition to I2C interfacing and processing 1>°C commands to/from sensors, this
module contains the logic that polls the sensor monitors one-by-one in a round-robin fashion to see whether a sensor
data read request is present. When a sensor monitor is not available, it goes to the next sensor and so on.

The following table summarizes the ports to/from the I12C Interface Module:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 4.3. Ports To/From I%C Interface Module

= LATTICE

Signal Direction Description

clk Input System Clock

rst Input System Reset

scl_in Input 12C clock output

sda_in Input 12C data input

scl_oe_n Output I2C output clock enable control

sda_oe_n Output I2C output data enable control

dev#_i2c_start Input Signal from the sensor monitor to indicate to access the
sen- sor (Active HIGH) - Connect to logic LOW if unused.

dev#_read_write_n Input Signal from the sensor monitor to indicate whether the
accessed command is a read or a write (Read = HIGH, Write
= LOW) - Connect to logic LOW if unused.

dev#_slave_address[7:0] Input Signal from the sensor monitor to indicate the slave device
(sensor) address - Set to 0 if unused.

dev#_read_byte_count[7:0] Input Signal from the sensor monitor to indicate the number of
bytes to read - Set to 0 if unused.

dev#_reg_address[7:0] Input Signal from the sensor monitor to indicate the slave
device's (sensor) register's address - Set to 0 if unused.

dev#_write_data[7:0] Input Contains the data from sensor monitor to write to the slave
device (sensor) - Set to 0 if unused.

dev# _read_data[7:0] Output Contains the data read from the slave device (sensor). The
data is sent to sensor monitor.

dev#_read_data_valid Output Indicates whether the read_data is valid. It is sent to sensor
monitor. (Active HIGH).

dev#_i2c_done Output Indicates whether the I12C transaction has been completed.
It is sent to sensor monitor. (Active HIGH).

Note: # is an integer from 0 to 3 (that is 4 sensors). With proper code modification, it can be expandable.

The following is a walkthrough of the i2c_arbiter code. Codes in this section are taken directly from the HDL file. Note
that in most cases, the topics in each paragraph below are presented in the order in which they appear in the HDL

code.

Notice that one of the first parameters defined is the device number (DEVO to DEV3).

The first logic implemented is the state machine that polls the sensor monitor to see whether there’s a request of |.C
transaction using the dev#_i2c_start signal (i2c_start). The state machine leaves the processing state when i2¢_done
(provided by the submodule i2_reg_ctrl) is asserted. Note the round robin scheme of polling the sensor monitor.

The next set of logic simply latches the signals received from sensor monitor for the 1.C interface to process. These
signals are: i2c_start, read_write_n, slave_address, read_byte_count, reg_address, and write_data.

The next set of logic is used to process the data received from each sensor before they are sent to the target sensor
monitor. These logics are for the following signals: read_data_valid, read_data, and i2c_done.

Finally, the i2c_arbiter calls i2c_reg_ctr/ which contains the actual I12C controller. This module also contains the logic to
control i2c_done, count number of bytes, process read or write, and receive read_data (and read_data_valid).

The following table summarizes the ports to/from the i2c_reg_ctrl:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.4. Ports To/From i2c_reg_ctrl

Signal Direction Description

read_data[7:0] Output Contains the data read from the slave device (sensor). The
data is sent to sensor monitor.

read_data_valid Output Indicates whether the read_data is valid. It is sent to sensor
monitor. (Active HIGH).

i2c_done Output Indicates whether the I°C transaction has been completed.
It is sent to sensor monitor. (Active HIGH).

scl_oe_n Output I2C output clock enable control

sda_oen Output I2C output data enable control

clk Input System Clock

rst Input System Reset

i2c_start Input Signal from the sensor monitor to indicate to access the
sensor (Active HIGH)

read_write_n Input Signal from the sensor monitor to indicate whether the
accessed command is a read or a write (Read = HIGH,
Write = LOW).

slave_addr[7:0] Input Signal from the sensor monitor to indicate the slave device
(sensor) address.

read_byte_count[7:0] Input Signal from the sensor monitor to indicate the number of
bytes to read.

reg_address[7:0] Input Signal from the sensor monitor to indicate the slave
device's (sensor) register's address.

write_data[7:0] Input Contains the data from sensor monitor to write to the slave
device (sensor).

scl_in Input I°C clock output

sda_in Input I°C data input

Lattice Semiconductor does not recommend that the i2c_reg_ctrl be modified.

4.2.4. SPI Interface Module (spi_reg)

The SPI Interface Module is found in the spi_reg file. It is used to provide connection between the sensor monitors to
the application processor via SPI interface (spi_slave). In addition to SPI interfacing and processing SPI commands
to/from application processor, this module contains an interrupt arbiter (intr_arb) module that polls interrupt (that is to
indicate that sensor data is present) from the sensor monitors. Finally, the SPI registers are contained in this module.

The following table summarizes the ports to/from the SPI Interface Module:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 4.5. Ports To/From the SPI Interface Module

= LATTICE

Signal Direction Description

clk Input System clock

rst Input System reset

SPI_SCLK Input SPl interface (connected to proc_sclk pin)

SPI_SS N Input SPl interface (connected to proc_csn pin)

SPI_MOSI Input SPl interface (connected to proc_sdo pin)

SP1_MISO Output SPl interface (connected to proc_sdi pin)

intr Output Interrupt to Application Processor. It is connected to
proc_intr pin. This signals the processor that there's read
data available for the processor and to begin the read
operation. (Active HIGH).

soft_reset Output Reset the systems when interrupt has reached timeout
limit - NOT USED IN SYSTEM (Active HIGH)

dev#_fifo_rden Output Reads sensor monitor FIFO (Active HIGH)

dev#_fifo_data[7:0] Input Sensor read data (fifo_data[7:0] port) from sensor monitor.
This data will be sent to Application Processor via SPI
interface logic.

devi#t_fifo_clr Output This signal clears the sensor monitor FIFO data after data
has been read by SPI interface logic (Active HIGH).

dev#t fifo_clr_ack Input Signal from the sensor monitor to indicate that the FIFO
data has been cleared successfully (Active HIGH).

dev#_inte Output Enables interrupt of the sensor that corresponds to the
sensor monitor - NOT IMPLEMENTED IN SENSOR MONITOR
(Active HIGH)

dev#_intr Input Signal from the sensor monitor to indicate that sensor read
data is present for Application Processor to access (Active
HIGH).

dev#_calibration Input Signal from the sensor monitor to indicate that the sensor
monitor is per- forming calibration operation on the
sensor. Not all sensors have this. (Active HIGH).

dev#_intr_ack Output Signal for the sensor monitor to indicate that intr has been
received and to deassert the intr in the sensor monitor
(Active HIGH).

dev#_on Output Signal for the sensor monitor to control DEV_ON - NOT
IMPLEMENTED IN SENSOR MONITOR.

dev#_on_ack Input Signal from the sensor monitor to indicate that DEV_ON
has been successfully processed (Tied to logic HIGH at
sensor monitor).

dev#_off Output Signal for the sensor monitor to control DEV_OFF - NOT
IMPLEMENTED IN SENSOR MONITOR.

dev#t off_ack Input Signal from the sensor monitor to indicate that DEV_OFF
has been successfully processed (Tied to logic HIGH at
sensor monitor).

dev#_underflow Input Signal from the sensor monitor to indicate that FIFO
underflow has occurred (Tied to logic LOW at sensor
monitor).

dev#_overflow Input Signal from the sensor monitor to indicate that FIFO
overflow has occurred (Tied to logic LOW at sensor
monitor).

dev#_active Input Signal from the sensor monitor to indicate that the sensor
monitor is performing a function (e.g. reading sensor data)
(Active HIGH).

dev#t fifo_full Input Signal from the sensor monitor to indicate that the data

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Signal Direction Description
FIFO is full (Active HIGH).
dev#_fifo_empty Input Signal from the sensor monitor to indicate that the data
FIFO is empty (Active
HIGH).

Note: # is an integer from 0 to 6 (that is 7 sensors). With proper code modification, it can be expandable.

The following is a walkthrough of the spi_reg code. Codes in this section are taken directly from the HDL file. Note that
in most cases, the topics in each paragraph below are presented in the order in which they appear in the HDL code.
The first parameters defined in the code are: VERSION (which is for VERSION register), and INTR_TIMEOUT_COUNTER
(which is used for timeout in the interrupt arbiter).

The code then proceeds to process the information received from application processor (mosi_byte). Mosi_byte is then
decoded into command information and device number.

The decoded information is then processed into either Register Write Interface, Register Read Interface, FIFO Data
Read Interface, or Processor Interrupt Mechanism.

At Register Write Interface:

e |Ifreg_address = 3, then it is a reset from the processor. Reset from processor is currently not implemented, but
there’s a soft_reset mechanism when timeout in the interrupt arbiter occurs.

¢ Ifreg_address = 4 then the CNTRL register are updated for FIFO clear (which is required after a sensor read),
DEV_ON, and DEV_OFF. Note that DEV_ON and DEV_OFF logic are not implemented at the sensor monitor.

¢ [freg_address = 2 then the interrupt enable registers are updated. Note that the interrupt enable is not
implemented in the sensor monitor.

¢ |Ifreg_address = 5 then the STATUS registers are updated for underflow and overflow. Note that the overflow and
underflow logic are not implemented in the sensor monitor.

The Register Read Interface, grabs commands from the SPI interface through miso_byte_req to update registers
(update_register). When update_register signal is true, values of CNTRL and STATUS are updated. One clock cycle later,
the requested register (that is by reg_address) is sent to the application processor via miso_byte signal.

The FIFO Data Read Interface contains the logic to perform the data read from the sensor monitor.
The Processor Interrupt Mechanism is used to read or write the ISR register (which is located in the interrupt arbiter).
At the end of the SPI Interface Module code, the spi_slave and intr_arb are instantiated.

The following table summarizes the ports to/from the interrupt arbiter module:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.6. Ports To/From Interrupt Arbiter Module

Signal Direction Description
clk Input System Clock
rst Input System Reset
intr Output Interrupt to Application Processor. It is connected to

proc_intr pin. This signals the processor that there's read
data available for the processor and to begin the read
operation. (Active HIGH).

dev#_intr Input Signal from the sensor monitor to indicate that sensor read
data is present for Application Processor to access (Active
HIGH).

dev#_intr_ack Output Signal for the sensor monitor to indicate that intr has been

received and to deassert the intr in the sensor monitor
(Active HIGH).

isr[7:0] Output Content of ISR register (for spi_reg).

timeout_reset Output Determines if the interrupt state has reached timeout limit.
Itis used to create a soft_reset at SPI interface logic - NOT
USED IN SYS- TEM (Active HIGH).

isr_read Input Signal from SPlinterface logic to determine if Application
Processor wants to read ISR register (Active HIGH).

isr_write Input Signal from SPlinterface logic to determine if Application
Processor wants to write ISR register (Active HIGH).

Note: # is an integer from 0 to 6 (that is 7 sensors). With proper code modification, it can be expandable
Notice that the INTR_TIMEOUT_COUNTER parameter is used in this module for interrupt output.

The round robin sensor monitor polling state machine is implemented first. When an interrupt from sensor monitor is
received, the state machine processes the interrupt (ASSERT_INTR state). In the event that ASSERT_INTR has reached
timeout limit, RESET_INTR state is reached. Counters for timeout are implemented directly after the state machine.

The interrupt arbiter also contains logic to decode which sensor issued the interrupt. It also asserts the corresponding
ISR location for each sensor. Notice that only 1-bit of the ISR register is active at any time. Finally, there’s logic to send
interrupt to the processor (intr) to indicate that sensor data is present and ready for read.

During the WAIT_FOR_ACK state, the sensor that issues interrupt will get an acknowledge signal (dev#_intr_ack). This
acknowledge will be sent to sensor monitor when the application processor has read the sensor data and cleared the
ISR register (via isr_write signal). Finally, there’s reset logic for timeout_reset when WAIT_FOR_ACK is too long. It is
currently not used in the solution. The following table summarizes the ports to/from the spi_slave module:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.7. Ports To/From Interrupt spi_slave Module

Signal Direction Description

i_sys_clk Input System Clock

i_sys_rst Input System Reset

miso_byte[7:0] Input Data to send to Application Processor

miso_byte_valid Input Determines if data to send is valid

miso_byte_req Output Determines whether the received command is write
(Active HIGH) or read (Active LOW)

mosi_byte[7:0] Output Data received from Application Processor

mosi_byte_valid Output Determines if received data is valid (Active HIGH)

cmd_byte Output Determines if received data is a command byte (Active
HIGH)

0_miso Output SPl interface (connected to proc_sdi pin)

i_mosi Input SPl interface (connected to proc_sdo pin)

i_csn Input SPl interface (connected to proc_csn pin)

i_sclk Input SPl interface (connected to proc_sclk pin)

The spi_slave module contains the hard SPI module called SB_SPI. It contains logic that determines whether the
command is write or read, and state machine to process the SPI master commands so as to prepare data for the
backend interface.

4.2.5. 12C Clock and Data I/O Control

The following code is used to create the bi-directional I/O as required in I°C standard.

assign poola sensor sda = (!poola sda oe n)? 1'b0O: 1'bZ;
assign poola sensor_ scl (!poola scl oe n)? 1'b0: 1'bZz;

assign poolb sensor sda = (!poolb _sda oe n)? 1'b0O: 1'bZ;
assign poolb sensor scl = (!poolb scl oe n)? 1'b0O: 1'bZ;

Note that the assigned wire above need to be declared as inout at the top level module. The above code is to drive the
output line. As input line, simply connect the assigned wire to the desired destination.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATT’CE

Reference Design

5. Design Considerations

5.1. SPI Interface

This section describes the SPI interface between iCE40 Sensor Hub and the Application Processor.

The Application Processor obtains sensor data over SPI lines through the spi_reg module. This module expects SPI in
mode 3 format, that is CPHA = 1 and CPOL = 1, and MSB first while transmitting a byte of data over the bus.

The first byte after chip select assertion is treated as command byte, which would give the address of the register to-
be-accessed. A dummy byte is sent in case of processor read operation to allow the read logic to decode the command
and provide appropriate data in successive bytes. In case of write, the SPI Master would place the data bytes on the
bus immediately after the command byte.

The following timing diagrams show various read/write access patterns. Multi byte transaction is supported only for
read operation.

s
MOSI 1 | N2| N1| NO| A2|A1|AQ| O X7|X6| X5| X4| X3| X2| X1| X0
4———-Command byte — —-p 4——— - Dummy byte------ >
MISO D7|D6|D5({D4|D3|D2|D1|D0O
4———- Data bytes———-p
Cs

Figure 5.1. Singe Byte Read Operation

set Uy duuduyd

MOSI 0 | A6 |A5 | A4 | A3| A2 | AL 0 D7 | D6 | D5| D4 | D3| D2 | D1 | DO
4¢————-— Command byte- —————-p 4¢4—-—————- -Dummy byte ——————p

MISO

Cs

Figure 5.2. Singe Byte Write Operation

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

30 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

- Uy

SCLK
MOS! 1| N2|NL|NO|A2|AL|lAO| O X7|X6| X5| X4 | X3|X2| X1| X0
4 — — —-Command byte - — — —p 4——— - Dummy byte ----- -»
MISO BoD7 | BoD6 | BoDS BnD2| BpD1| B0
¢———- Databytes -———- >
cs
Figure 5.3. Multi-Byte Read Operation
Notes:

e Inthe above timing diagrams, N2, N1, and NO under the Command byte indicate the device (sensor)
number to which the current register read/write is applicable. Valid range is 000 to 101.
e A2, A1, and A0 in the Command byte indicate address of the register. See SPI Registers Description for more

details.

e When A2 =0, N2, N1, and NO are don’t care.
e For a read operation from processor, MSB of command byte is always 1.

e For a write operation from processor, MSB of command byte is always 0.

e LSB of command byte is always 0 for both read and write from processor.

e CS must not be asserted until all the bytes are read in case of multiple bytes read.

e Multiple byte write operation is not defined.

5.2. SPI Registers Description

Each sensor has the following set of registers to configure the Sensor Hub to acquire sensor data. These registers are
accessed by A2, A1, and A0 bits of the Command byte. The following table describes registers accessed by the A2, A1,

and AO bits.
Table 5.1. Register Map for A2, A1, and A0 bits
Address) Register Access e e
(A2, A1, A2 as 3-bit hex) Name Type
0x00 VERSION R Indicates the firmware version (independent of sensor
selected).
0x01 ISR R/W Interrupt status register (independent of sensor
selected).
0x04 CNTRL R/W Control register (sensor specific)
0x05 STATUS R/W Status register (sensor specific)
0x06 DATA R Acquired data register (sensor specific)

Table 5.2. VERSION Register Bit Description

Note: Sensor specific registers require N2, N1, and NO bits of the Command byte to access.

7 6 5 4 2 \ 1 \ 0
Firmware Version
Table 5.3. ISR Register Bit Description
6 5 4 2 1 0
0 0 INTS INT4 INT3 INT2 INT1 INTO

www.latticesemi.com/legal

http://www.latticesemi.com/legal

INTO — interrupt by sensor 0. This will be set by the sensor and cleared by the processor
INT1 - interrupt by sensor 1. This will be set by the sensor and cleared by the processor
INT2 —interrupt by sensor 2. This will be set by the sensor and cleared by the processor
INT3 —interrupt by sensor 3. This will be set by the sensor and cleared by the processor
INT4 — interrupt by sensor 4. This will be set by the sensor and cleared by the processor
INT5 — interrupt by sensor 5. This will be set by the sensor and cleared by the processor
Interrupt to the processor will be OR of INTO, INT1, INT2, INT3, INT4 and INTS5.

Note: Interrupts are always enabled.

Table 5.4. CNTRL Register Bit Description

= LATTICE

6 5 2 1 0
0 0 0 0 FIFO_CLR DEV_ON DEV_OFF
FIFO_CLR — Writing '1' to this will clear the FIFO contents.
DEV_ON — Writing '1' to this will enable the device if it is turned off.
DEV_OFF — Writing '1' to this will force the device into power down mode if it is active.
Note:
e Allthe bits of the CNTRL are set by the processor and will be reset by the sensor hub.
e DEV_ON and DEV_OFF logic is currently not implemented.
Table 5.5. STATUS Register Bit Description
6 5 4 3 2 1 0
0 0 EMPTY FULL CALIB UNDERFLOW OVERFLOW ACTIVE

ACTIVE (R) — 1 indicates the device is operational.
OVERFLOW — 1 indicates the processor failed to read acquired data before being overwritten by the next sample
(this is a sticky bit can be cleared by the processor).

UNDERFLOW - 1 indicates the processor has issued read command before the data acquisition is complete (this is a
sticky bit can be cleared by the processor).

CALIB (R) — 1 indicates calibration data is present in the FIFO FULL(R) — '1" indicates the data FIFO is full.
EMPTY(R) — 1 indicates the data FIFO is empty.

Note: UNDERFLOW and OVERFLOW logic is currently not implemented
Table 5.6. DATA Register Bit Description

7 \ 6 5 \ 4 \ 3 \ 2 1 0

Acquired Sensor Data [7:0]

Data reading is multi-byte read operation (with single address). While reading the acquired sensor data it is expected
that the application processor is aware of the numbers bytes to be read for a particular device.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.3. Complete SPI Registers Location

The table below lists the first byte to be transmitted from SPI master (AP) to iCE on MOSI Line. This is combination of
register address listed in SPI Registers Description section, and also the control signal values listed after the SPI Timing
figures (see Notes in SPI Interface section).

Table 5.7. First Byte Transmitted — SPI Master to iCE on MOSI Line

First Byte for SPI Read First Byte for SPI Write
(1,N2,N1,N0,A2,A1,A0,0 as 8- (0,N2,N1,NO,A2,A1,A0,0 Register Description
bit hex) as 8-bit hex)
0x80 — Version (device independent)
0x82 0x02 ISR (device independent)
0x88 0x08 BMPO85 pressure sensor control register
0x98 0x18 LSM303DLHC magnetometer control register
0xA8 0x28 LSM330DLC accelerometer control register
0xB8 0x38 MAX 44006 Ambient Light Sensor control register
0xC8 0x48 SHT20 Humidity sensor control register
0xD8 0x58 LSM330DLC gyroscope control register
Ox8A Ox0A BMPOS85 pressure sensor status register
0x9A Ox1A LSM303DLHC magnetometer status register
OxAA 0x2A LSM330DLC accelerometer status register
O0xBA 0x3A MAX 44006 Ambient Light Sensor status register
OxCA Ox4A SHT20 Humidity sensor status register
OxDA Ox5A LSM330DLC gyroscope status register
0x8C — BMPO85 pressure sensor data register
0x9C — LSM303DLHC magnetometer data register
O0xAC — LSM330DLC accelerometer data register
0xBC — MAX 44006 Ambient Light Sensor data register
0xCC — SHT20 Humidity sensor data register
0xDC — LSM330DLC gyroscope data register
Example:

Sensor Hub generates interrupt when LSM330DLC accelerometer data is available in that sensor’s FIFO. When sensor
data is available, Sensor Hub interrupts the application processor by generating a high on “proc_intr” pin. Processor
must follow the below mentioned steps to read accelerometer data from iCE.

¢ When proc_intr goes high, read the ISR register (0x82) by writing 0x82 as first byte on proc_sdo (MOSI)
line.

e Based on the ISR register value (3rd byte on MISO line), read the sensor data from corresponding device. For
LSM330DLC accelerometer, the ISR value is 0x04.

e Toread the sensor data, write the corresponding data register address as first byte on proc_sdo (MOSI) line. To
read accelerometer data, the data register address is OxAC.

s After reading 6 bytes of sensor data, write the value 0x00 to ISR register (0x02).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.4. Pseudo-Code Example for Application Processor

The following code illustrates how an Application Processor could process the interrupt received from the sensor hub
to obtain the sensor data.

while (interrupt received) {

Read ISR (0x01)

Read FIFOx; FIFOx decoded based on ISR bits and predefined data length for
that FIFO. Example: For Accelerometer, ISR bit 2 is checked and number of bytes to
be read is 6.

Reset FIFOx content.

Reset ISR to indicate end of processing.

5.5. Design Customization Considerations

Since this is an FPGA based solution, you can customize this solution by changing the source code of the Sensor Hub
Solution or add additional functions to this solution.

5.6. Adding Sensors

The Block Description section describes the Sensor Monitor, I.C Interface Module, and SPI Interface module in detail.
When adding sensors, you must implement the operations described in those sections. The following is a list of items
to do and consider when adding a sensor.

5.6.1. Sensor Monitor
e Follow the port naming convention of the sensor monitor module.
¢ Set the INIT_THRESHOLD
e Setthe INTR_THRESHOLD.
s Create counters for the threshold values.
e Define slave_address.
e Create a state machine for sensor initialization, periodic sensor read, and wait between reads.
e Create logic for the following 12C interface signals:
e |2c_start
e Read_write_n
e Read_byte_count
e Reg address
e Write_data
* Create logic for intr signal for the SPI interface.
e Create calibration logic if required by sensor.
e Create logic of active signal for the SPI interface.
e Add a data FIFO with appropriate width and depth.
e Create logic to process fifo_clr and to create fifo_clr_ack.
¢ Create sensor read trigger logic.
e Create additional sensor specific logic as needed.
s Use i2c_done signal to let sensor monitor know when I2C transaction is complete.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6.2. I*C Interface Module

e Add sensor to the polling state machine.

e Create registers for the following signals from the sensor monitor:

e |2c_start—Read_write_n
e Read_byte_count

¢ Reg_address

e Write_data

¢ Create connection to the sensor monitor for the following signals:

e Read_data_valid
¢ Read_data
¢ |2c_done
e Make sure i2c_reg_ctrl module still has its connection.

5.6.3. SPI Interface Module

e Assign a unique 3-bit value that can be used by device_no bus for the sensor.

e Change VERSION value, if needed.
e Change INTR_TIMEOUT counter, if needed.
¢ Add sensor to the following logic section:
e Register Write Interface
e Register Read Interfact
¢ FIFO Data Read
¢ Add device to the “intr_arb” module.
e Add device to the interrupt monitor poll.
e Add device to the ISR assertion logic.

5.7. Removing Sensors

The following is a list of items to do and consider when removing a sensor.

5.7.1. Sensor Monitor

Remove the unwanted sensor codes.

5.7.2. I*C Interface Module

e Remove sensor to the polling state machine

¢ Remove registers for the following signals from the sensor monitor:

e |2c_start
e Read_write_n
e Read_byte_count
e Reg_address
e Write_data
* Disconnection the following signals to the sensor monitor:
e Read_data_valid
e Read_data
e |2c_done
e Make sure i2c_reg_ctrl module still has valid connection.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATT’CE

Reference Design

5.7.3. SPI Interface Module
e De-assign a unique 3-bit value that can be used by device_no bus for the sensor.
e Change VERSION value, if needed.
¢ Change INTR_TIMEOUT counter, if needed.
¢ Remove the sensor from the following logic section:
e Register Write Interface
e Register Read Interfact
¢ FIFO Data Read
* Remove device from the intr_arb module.
e Remove device from the interrupt monitor poll.
e Remove device from the ISR assertion logic.

5.8. HDL Simulation Waveform

Figure 5.4, Figure 5.5, and Figure 5.6 show the simulation waveform for the I2C sensor pool and Application Processor
Interface.

Signal name Value 3 3 - 4 ' 2 2 B s : E S : . . 16 . . I . Ca . D T . Coa
ar clk 1]
ar sclk 1]

APPLICATION PROC... APPLICATION PROCESSOR INTERFACE (SPI)

ar proc_sclk_en
ar proc_sclk
 Proc_csn

ar proc_intr

ar proc_sdi

ar proc_sdo

ar sensor0_xclr

4 o N O aao

POOL-A SENSOR IN... POOL-A SENSOR INTERFACE (12C)

L . 5 5 0, O i " [10O I P

g Tt T UL T
I e T T I M T) | | T O T T [ET
I1 T [W [I []

) T T | | | 110 17 D
T M MO O OO METOTOTOE T 1 T T || =]
1111 L0 L1008 N T IO 1] I =T =

ari2c_a_start
ari2c_a_repeat_start
ari2c_a_stop

ar poola_sensor_scl
ar poola_sensor_sda
ar slave_scl_a

OO]
HECSD

alalalalalolo

ar slave_sda_a

Figure 5.4. HDL Simulation Waveform

POOL-A SENSOR IN... POOL-A SENSOR INTERFACE (12C)
| wri2c_a_start
ari2c_a_repeat_start
| wi2c_a_stop
| arpoola_sensor_scl
ar poola_sensor_sda
arslave_scl_a
| srslave_sda_a

I

|

=il

I

15 5 o o e 5 5 e 5 S g] T 2 e e e 5 e T o 2 e

LI [y LTIy ey e ey e e ey
LI LT

alalalalalele

Figure 5.5. Simulation Waveform Excerpt Showing the I2C Transactions for the LSM330DLC Gyroscope Sensor

APPLICATION PROC... APPLICATION PROCESSOR INTERFACE (SP1)
= proc_sclk_en o I LI 1 LJ LI L LI 1 L 1 L LI LI =] L L
ar proc_sclk 1 IR
ar proc_csn & = Mn n n
ar proc_intr 0 LT 1
a0 proc_sdi z] 10 VS 7] P VA s e M M R W W L [E—
 proc_sdo 0 [| | L1 I !
ar sensor0_xclr i)

Figure 5.6. Simulation Waveform Excerpt for the Application Processor Interface Showing the Interrupt Signal
(proc_intr) from the FPGA and the SPI Transactions for the LSM330DLC Gyroscope sensor.

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

6. Software Requirements

The following software are required in order to design and use the iCE40 Low Power Sensor Hub Solution:
e iCEcube2 2014.08 (or higher) — This is used to build the iCE40LM and iCE40 Ultra versions of this reference design.

» Diamond Programmer® 3. 8 (or higher) — This is used to program the bitstream to the External SPI Flash on the
board.

s Radiant Software 1.0 (or higher) — This is used to build the iCE40 UltraPlus version of this reference design.
¢ Radiant Programmer tool — This is used to program the bitstream to the External SPI Flash on the board.

7. Hardware Requirements

The standalone solution for this reference design has been targeted to support the iCE40LM4K Sensor Evaluation Kit
but can be modified for use in other HW as needed. Project files for iCE40LM, iCE40 Ultra, and iCE40 UltraPlus are
included in the reference design package.

8. Directory Structure

Figure 8.1 shows the directory structure when unzipping the iCE40 SensorHub Reference Design ZIP File. The figure
explains what files are contained in each folder.

FPGA-RD-02048 Top Directory
docs Documentation and Other Instructions
Project Radiantand iCEcube2 Project Files
simulation Simulation Scripts
source RTL Source Files for Radiantand iCEcube2
testbench Simulation Testbench File

Figure 8.1. iCE40 Sensor Hub Reference Design Directory Structure

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing .':LATT’CE

Reference Design

9. Typical Application Circuits

VCCIOBV2 Vcciosvl

1.1 aL ol L

|

7= cs8 -
i R iCE40 Sensor Hub Solution 10nF[01uF| 1uF
R3S R4 RS R1 S R2 V
2K2 52K E2 VCAOVB2 VCAOVBL A2 22 w2 S22
12€C Slave E5 poolb_sensor_scl poola_sensor_scl Al 12C Slave
Ports of O D5 poolb_sensor_sda poola_sensor_sda B1 ® ;,3;;; ;;
SHT20
CRESET B3 Switch MAX44006
LSM303DLHC System Clock 3 ik - @ swi Maxaa00e
Source
proc_sdi C2
D2 ice_SO P“’C—i;‘” 2—’; |fpplicaticfn
Cl Ice_SI proc_sdo rocessor’s
SPI Flash D1 flsh_sclk proc_sclk A4 SPI Ports
E1 flsh_cs proc_csn A3
33V vcc
sensor0_xdr €4 —| Master Clear for BMP085 | |
R6 VCC B4
oo 5 T LT
C3 CDONE GND D4 c4 c5 (¢
10nF | 0.1uF | 1uF

LED

N

Note: Pad Names may vary depending on the device family and package type used in this customizable solution.

Figure 9.1. Sensor Hub with Pre-programmed SPI Flash — iCE40LM

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

Sensor Interfacing and Preprocessing
Reference Design

VCCIOBV2

I

c7”— C8
10nF | 0.1uF 1uF

R3 R4
2K2' S5 2K2

12C Slave
Ports of ®
SHT20
LSM303DLHC System Clock
Source
FTDI
FT2232H

iCE40 Sensor Hub Solution

E2 vCaovB2 vcaovsel

E5 poolb_sensor_scl poola_sensor_scl

D5 poolb_sensor_sda poola_sensor_sda

E3 clk
proc_sdi
D2 ice_SO proc_intr
Cllice_sl proc_sdo
D1 flsh_sclk proc_sclk
E1 flsh_cs proc_csn
B3 CRESET
C3 CDONE
sensor0_xdr
vcC
GND
GND

VCCIOBV1

1.1

c1 c2 c3
10nF | 0.1uF 1uF

R1 R2
2K2 § 2K2

A2
Al 12C Slave
B1 o— Ports of
BMP085
MAX44006
LSM330DLC
c2
BS Application
A5 Processor’s
A4 SPI Ports
A3
vee

B4

c4 —| Master Clear for BMP085 |

B2

D4

Ll L

10nF | 0.1uF 1uF

N

Note: Pad Names may vary depending on the device family and package type used in this customizable solution.

Figure 9.2. Sensor Hub with Direct Programming through FTDI — iCE40LM

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02048-1.3

39

http://www.latticesemi.com/legal

Sensor Interfacing and Preprocessing

Refe

rence Design

= LATTICE

VCCIOBV2 VCCIOBV1
c7 _CSJ_C9J_ C1J— CZJ_ [By
10nF | 0.1uF | 1uF 10nF | 0.1uF | 1uF
iCE40 Sensor Hub Solution
r3 < Ra RS R1 S R2
K2 S22 E2 VCAOVB2 VCaOvBl A2 2K2 w2 S22
2cs! E5 poolb_sensor_scl poola_sensor_scl Al 12C Slave
ave
Ports of
Ports of O D5 poolb_sensor_sda poola_sensor_sda Bl O— BAPOSS
SHT20
CRESET B3l — @ suwi MAX44006
LSM303DLHC System Clock Switch LSM330DLC
S E3 clk
ource
proc_sdi C2
o D2 ice_SO proc_intr BS Application
Application Clice S proc_sdo A5 Processor’s
Processor D1 flsh_sclk proc_sclk A4 SP1 Ports
E1 flsh_cs proc_csn A3
33V vee
- sensor0_xdr C4 —-—I Master Clear for BMP085 | |
aa R6 vcC B4
- o o2 .11
asl
ca cs cé
(bata) €3 CDONE oD A 10nF | 0auF | 1uF
a
=

N

Note: Pad Names may vary depending on the device family and package type used in this customizable solution.

Figure 9.3. Sensor Hub with Programming through Application Processor — iCE40LM

© 2013-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02048-1.3

http://www.latticesemi.com/legal

= LATTICE

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.3, September 2018

Section

Change Summary

All

¢ Changed document title to Sensor Interfacing and Preprocessing.
¢ Changed document number from RD1189 to FPGA-RD-02048.

e Added support for iCE40 UltraPlus.

e Updated document template.

Related Documentation

Added new section to the document.

Pin Configuration

e Updated note in Figure 3.1. Bottom View of iCE40LM4K-SWG25TR (Balls Up).
e Updated note in Table 3.1. Pin Function Description — iCE40LM*.

HDL Simulation

Added new section to the document.

Software Requirements

Updated section.

Hardware Requirements

Added new section to the document.

Directory Structure

Added new section to the document.

Typical Application Circuits

Updated note in Figure 9.1. Sensor Hub with Pre-programmed SPI Flash — iCE40LM, Figure
9.2. Sensor Hub with Direct Programming through FTDI —iCE40LM, and Figure 9.3. Sensor
Hub with Programming through Application Processor — iCE40LM.

Revision 1.2, June 2014

Section

Change Summary

All

e Changed document title to iCE40 Low Power Sensor Hub Solution for Mobile Devices.
¢ Added support for iCE40 Ultra.

Revision 1.1, October 2013

Section

Change Summary

Theory of Operations

e Updated the following sections in Functional Description:
e BMPO85 Sensor Monitor
e LSM303DLHC Sensor Monitor
¢ LSM330DLC Accelerator Sensor Monitor
e Corrected typographical error in Table 4.1. Ports To/From the Sensor Monitor.
e Changed table title to Table 4.4. Ports To/From i2c_reg_ctrl.
e Changed table title to Table 4.7. Ports To/From Interrupt spi_slave Module.

Revision 1.0, October 2013

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

7% Floor, 111 SW 5% Avenue

ZLATTICE

T 503.268.8000
www.latticesemi.com

http://www.latticesemi.com/

	Sensor Interfacing and Preprocessing
	Acronyms in This Document
	1. Introduction
	1.1. Features List
	1.2. Applications
	1.3. Block Diagram

	2. Related Documentation
	3. Pin Configuration and Function Descriptions
	4. Theory of Operations
	4.1. Functional Descriptions
	4.1.1. Sensor Monitor Top Level
	4.1.2. BMP085 Sensor Monitor
	4.1.3. LSM303DLHC Sensor Monitor
	4.1.4. LSM330DLC Accelerator Sensor Monitor
	4.1.5. MAX44006 Sensor Monitor
	4.1.6. SHT20 Humidity Sensor
	4.1.7. LSM330DLC Gyro Sensor Monitor
	4.1.8. I²C Arbiter
	4.1.9. SPI Interface to Application Processor

	4.2. Block Descriptions
	4.2.1. Top Level Module (sensor_hub)
	4.2.2. Sensor Monitors (BMP085, LSM303, MAX44006, SHT20, LSM330DLC Accelerometer and Gyroscope)
	4.2.3. I²C Interface Module (i2c_arbiter)
	4.2.4. SPI Interface Module (spi_reg)
	4.2.5. I²C Clock and Data I/O Control

	5. Design Considerations
	5.1. SPI Interface
	5.2. SPI Registers Description
	5.3. Complete SPI Registers Location
	5.4. Pseudo-Code Example for Application Processor
	5.5. Design Customization Considerations
	5.6. Adding Sensors
	5.6.1. Sensor Monitor
	5.6.2. I²C Interface Module
	5.6.3. SPI Interface Module

	5.7. Removing Sensors
	5.7.1. Sensor Monitor
	5.7.2. I²C Interface Module
	5.7.3. SPI Interface Module

	5.8. HDL Simulation Waveform

	6. Software Requirements
	7. Hardware Requirements
	8. Directory Structure
	9. Typical Application Circuits
	Technical Support Assistance
	Revision History
	Revision 1.3, September 2018
	Revision 1.2, June 2014
	Revision 1.1, October 2013
	Revision 1.0, October 2013

