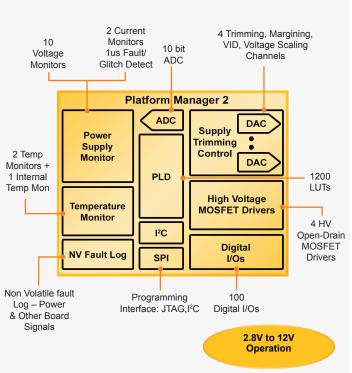

Platform Manager[™] 2

Scalable Hardware Management Controller

Platform Manager 2 devices feature programmable analog with FPGA on a single chip to integrate all hardware management (power, thermal and control plane management) functions in a circuit board. The Platform Manager 2 architecture uses centrally located hardware management algorithm within the FPGA to control distributed hardware management expanders (L-ASC10 ICs) to integrate power, thermal and control plane management functions cost effectively from simple to complex boards

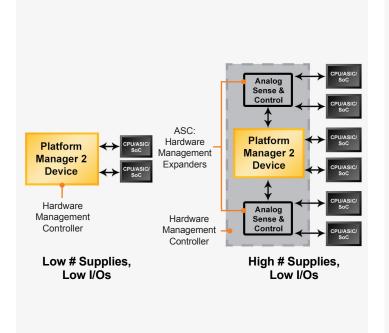
The Platform Designer™ tool integrated in Lattice Diamond® software provides a single design environment to integrate a circuit board's hardware management using LogiBuilder (GUI-based logic entry), Verilog or VHDL. The correct-by-construction (automatic selection, customization and wiring of IPs for a given design) design methodology enables seamless scaling of analog channels, Digital I/Os and FPGA LUTs to optimally meet specific hardware management requirements of a given board.

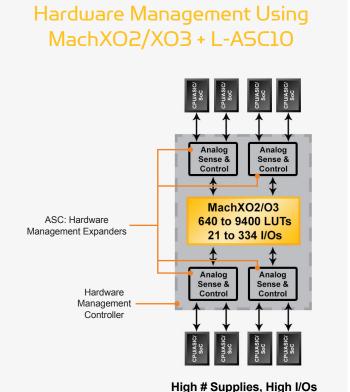
Power management functions include monitoring, supply sequencing, fault log, voltage scaling/VID control, trimming and margining functions. Thermal management includes temperature monitoring, fan speed control, power control and fault log. The control plane management includes reset distribution, I²C/SPI port expansion, level translation, system interface, fault logging, and other glue logic.


Ample monitoring resources for full fault coverage Accurate (0.2%) and fast (<100us) Fault detection on any channel Increases Reliability Minimized fault propagation through abundant communication between hardware management sub-blocks • Integrated power, thermal, control plane management algorithm in a single device · Single design environment covers wide range of design complexities reducing design time Fully verified hardware management through end-to-end simulation Reduced design effort through correct-by-construction design methodology Reduces Time to Market · Distributed sense and centralized control methodology minimizes circuit board layout congestion • Fault log, software based regression test support reduces board debug time Reduce BOM cost up to 50% versus multiple ICs Lowers BOM · Needs fewer number of I/Os in a CPLD and Cost · Reduced board area and layers saves additional cost Simulation reduces design errors before board layout Re-programmability minimizes risk of board re-spins Reduces Risk · Significantly reduces time-to-market

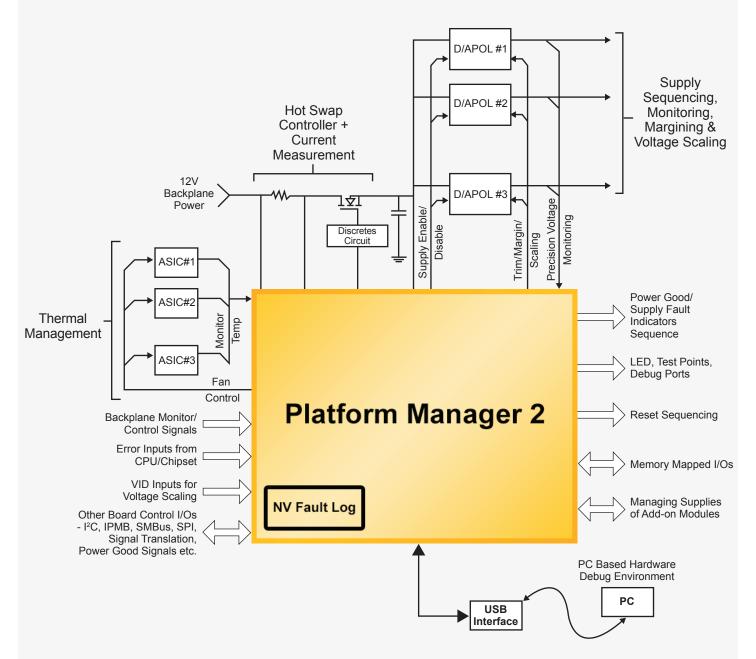
Key Features and Benefits

- Optimized Hardware Management through Scalability
 - 10 to 80 precision voltage monitor channels
 - 3 to 24 temperature monitoring channels
 - 60 to 384 I/Os and 640 to 9400 LUTs density
- Precision Voltage Monitoring Increases Reliability
- Programmable threshold from 0.67V to 5.7V & 4.5V to 13.2V
- · Differential input sensing
- Over/under voltage detection with window comparison
- 10-bit voltage measurement ADC
- Temperature Monitoring Simplifies Thermal Management
 - · Measures temperature using external diode
 - · Over/under temperature detection
 - Temperature measurement range -60 to +150°C
- High-side Current Measurement Reduces BOM
 - · Measures current across shunt resistor
 - Differential range 7.5mV to 200mV
 - Common mode voltage up to 13V
 - Programmable gain amplifier for current measurement
 - Fast fault detection (1µs) and over current detection
- High-Voltage FET Drivers Reduce # POLs Needed
 - Scalable from 4 to 32 N-channel MOSFET drivers
 - Digitally controlled power supply ramp control
 - · Open drain output support
- Margining and Trimming for Quality Assurance
 - · Scale from 4 to 32 power supplies
 - Digital closed-loop mode of operation
 - Voltage scaling and VID control
- PLD to Integrate Power, Thermal & Control Plane Functions
 - Up to 9400 LUTs and up to 384 user I/Os
 - · Support for multiple interface standards
- System Level Support
 - Single 3.3V or 12V supply operation
 - · Industrial temperature range
- In-System Re-programmability Reduces Risk
 - On-chip configuration memory
 - JTAG/I²C programming interface and background update
 - Dual-boot recovery




Platform Manager 2 Architecture Hardware Management Controller

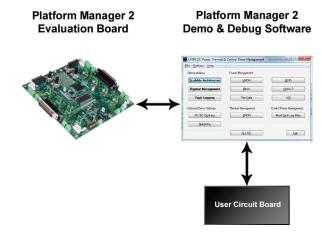
Analog Sense and Control (L-ASC10) Hardware Management Expander 2 Current Monitors 4 Trimming 10 Voltage 1us Fault/ and Margining Monitors Glitch Detect 10 bit Channels ADC L-ASC10 DAC Supply Power • Trimming Supply ADC 2 Temp Control Monitor Monitors + DAC 1 Internal Temp Mon **NV Fault** High Voltage **Temperature** Monitor Log **MOSFET Drivers** 4 HV Open-Drain Serial Digital I/Os MOSFET I²C Interface Drivers Programming Interface: I2C 9 Open-Drain Non Volatile Outputs Connects ASC to Fault Log-Power Platform Manager 2 & Other Board or MachXO2 IC Signals


Hardware Management Using Platform Manager 2

Hardware Management With Platform Manager 2

Advantages

- Increased Reliability
- Smaller Board Space
- Reduced Number of Components
- Reduced Risk of Board Re-spin
- Reduced Time-to-market
- Standard Solution Across a Wide Range of Applications
- Single Design Environment with End-to-end Simulation


Platform Designer

Unified, Flexible, Verifiable Design Methodology

3 Design Environments **Platform Designer** included in ATTICE Analog DIAMOND Circuit/GUI Verilog/ VHDL **Platform** GUI and/or C/Assembly Manager VHDL/Verilog for Micro 2 Traditonal Platform Design Tools Designer

Development Tools

Development Boards + Debug Aid Software

- · Evaluation Board: Test User Code, Expand System
- Debug User Hardware Using Debug GUI
- Extended Log Hardware Management Events During System Testing

Platform Manager 2 Family

	H/W Management Expander	Hardware Management Controller
	L-ASC10	LPTM21
Voltage Monitoring Inputs	10	10
Current Monitoring Inputs	2	2
Temperature Monitoring Inputs	2	2
Number of Trimming Channels	4	4
MOSFET Drives	4	4
On-Chip Non-Volatile Fault Log	✓	✓
Number of LUTs	-	1280
Distributed RAM (kbits)	-	10
EBR SRAM (kbits)	-	64
Number of EBR Blocks (9 kbits)	-	7
User Flash Memory (kbits)	-	64
Number of PLLs	-	1
Communication I/F	I ² C	I ² C/SPI/JTAG
Programming Interface	I ² C	I ² C/SPI/JTAG
Operating Voltage	3.3	2.8V to 12V
Insystem Update Support	Yes	
Package Options	Digital I/Os	
48-pin QFN (7 X 7)	9	
237-Ball ftBGA (1mm) (17X17)		106

Applications Support

www.latticesemi.com/support

